Algebra, NAPX-F4-CA03
U2FsdGVkX18NZbR/XPUBmb6ZPH8DS6x6nlu/8HpaI3QiledAur8+KdtYuvWgun4/l303fCtTzfQWysZ1WVCnrvnJFPjKOn6A1BCELgAW2veeZZS8j53vpnWAYsNbUW0g/CM/C3gi6TAvAIPbJSpledPIJSGJ7ZmGwjFRaDr7RgvF3VlrkYSt3Vp/XktDuMf0tsicS6lLVBoEO+j4+STF87ufENEpfMs+P3lorlaBufQTCx3eoA5V+quD2zarvr8n+0/e4ejVxmVlW3Uhcr55zHhQsc/Yu4FpoZszIpFQ4LGF3kJaHYkst9qSzuUfRzUInppmgkQTmcBKT9kszoe5XhPfsGAbBKzxi+NkkcED7UttRAw9Y1YAFQAXXrYszwZR6KsyBYNofQ4UzuwinflGHLryGuACQrA48XKAKO/Vp7ZTBi175IFPSooANpsVIhkkEPUWKnrnsVFu3xczQAcYSwooXbNWRw4ugtjXVXlPzxYleX4RdQROoJJc0J+yfELFqWEnuJ44Ge4TJ+TtG5ULn5nw4VslVeEpmTzhz7jmzsbTQH8wHhFutu1w3bcf1zcrmgAcXVl/sPR8ZxUfc/VG4A+ISf7BwC2p+oyDRRN1bxlAAX83BhmxNR3eykKR+AKrEVL4lyYHoxc4nl1QSja+S9umC1F48JVi3hTRWh9iGdwXReKmjYbT9RUuoFtln1Q+hVaMV7Cg8dXD5D9G6/qdxXA48oQkGjsoAHJZYzV9smlNaL83PCLY3wOZGargWJTV2L/MYKrvKeFf8lti9GZlLBFo+3W6WQH8Zk7S7TlFWHry0P3n1fmFC8ynWxkWle1sDBlgG+y9VKmpumMdwcJdwg7OhvMGHjegLI4YwqujKB+jaMsO3BGaBm3eoYVQyVGF/8+hnQzumiUVc563LwHMOBCIy6UoZzRbgxppLveS/sivFJ7lWK8itEWQZomZJF9dqR9IlG4BB4UrM0eSyVsansMIC3eGd1ujLzIPqCfRNS3/BQ7be66eIDPvmsKAFZr3TfWV/9lfL5GD5G8CdUNxsunkzsT6+UiCzVFWpVL+zVijfm/0bJUkoxbGXHypVcH5CAdjpt/a/SNt7ieV1q8rSNRGKToSjJsEZwVTabkCe9SJ9Iti1UUaDQAd/HE2CDwAwLOk5sOvjQrmJzwXD2gv7VOzLjnXdpCF4WsMZZsnbaqj8adsXcCdhYJcUPgiw6s7dDYoKIgnOto3pdoR/rOev+7bdKxjZwlV/79aNWvvR2CsRHoUSsoe/4x4b2MOHHx6bDFSzl5jccisSF2RRos03GLFDQskdldL6lOo/wHqsAvFHJA83U84lvN9K6zYyhEmedCS+TxN6jt1susAVMJ0KIiMWFUwz3+A6m06yRetabuZIGuQHTrB5bXYakOnmDSo1dwRxTWp7BJYv5twlDAGLm8zbsIH0t/usaUsDKtOYx6DO8+XRn7ivSRJhrOAb3lFslWbLFjYfi7aGv77N6MjH6QzE+lzVdV21C4uRACARvGSMOIZdk2+BUf+6SJt8g4ht9bAqJrulmV3upaMoFP7q0e4YRRi6RNH7IidhLsHALtRNW7sr4DgvMV0RYgU/gdgUK3aQzljV98VErxHUtyTiT1EutPi1QP0kuDYrI9KuTZM2SaJgqF8tX33UilZwNMKj11qvFw59tVoEgaq6y9fX12uwnz2LIRYXNOsX1JjpklKmBedjd0t3Rwq3+1oTik51aFAtbh9I4wLv6Tn3JTMgdjYru/W5+ilgfXW8q5fB/8o4RykUJzOXvxIWz3cryHOgSnjiDjwS3pvNvtT/iC8JMDspcf0PWiJewbzi26EnwlKQ2HXZr4EFL0mgJ13YCpmjdQmlHCdYaBbigUTbrtj5IjE1zpSlqK1gCQQGesUkNrfhmIwWXsxW0COUSRztf27LVxfqSOtGpC8MQ1pLQbyawuev7wscrdru6hcAh5kZBkdck90gT+biilC9b65UzpQAqo4xp7NeHs34FGLDFLxhBC0onF4wVDz1EMlEzDNbr3/QsimzEHMXkzk+gia+v3kzzx9SFj7y5FL3MuZMBqDtwejal6tChMoZ/LJa4DodeTiaIvsC//CLoXYfQe4cfsnyx8t1exARSn1sLBva6rRxGUHLQqqVdOlZmZP16fcGUmCrSZq/xVX4J4w2fs9QjB75cwrL4C9MZVdSW/17Q43NcKYt2mPqZZtGx/N1NuV69MJoeR0goboK8T2vRCu2vl0a6qFL2XN+WpeRAPfYp6RXbdoz1gH7OiFBgukQcVte6xX2zq3NC4exly6xeKgL5cf1DfUfRgjX7FkDRVj26Lz2iiVCs0JNdZeXr18DrKFLPDRw1OJHtBLC/KE9h70rN8VuP2FsLBCESuDnhMv1U0h9iNs8PJCdBmv5Rg4O9e796c6LhKqdtagsuUgIVRWeuUZygpoFuLjxS1XXgM1y44Lk3pUSsuOwfkbtFtZueVgDPjx/zVXqg9VYBPWrMPcNtYkUBiSkbLhzvBKdpSDyTUnLOeg8IGmjoN2Y4/4EnGaMCRFfQxD0ev07qZzHM4sxI4+fl/9mxtEsu+Amnj32jJX167lpf6xGHshP0EXepeIbX7RqU0HkxDpo0SsY3kN3KaAzQMhgiB3H1SzyIsIyLbAV1ZxwippYEi826wO2eFwdVJPhWj0W1U6n+aGEwE6Dvdop5OC0cNLbiYov6xlk3gcEQZLxHc5ekv1RW2xe3L7ZlhUM12wPQOFfXKyEEdOoWdndA7PH5V5qrxmFkNzGM6YllCKGdlcyy6FEBg0VhHRA1i0mZOkkmHvdp+bTUGyRKjBWIhj1ql3mApHv5fnsu0ocMR+PNCnArFMrYTPS9G/4MyPjcK9o2UwD+t06LvoMXEFppg9RW188Gzlz2NLEVCchbfiGAbkoKU+gXOLgXNs7dTjMue8ySGNSRldF4HrJ22U1vzXu64mOII7pS4xCrzhY2e2IqItCYm87TQdFemJ6KF8MMTzQgCRrEfTnR/T4QLVJJPY77mh0npdOlhSgdMSL8kGU9/W0o060zZVr3CUwVrac6l7HLzRYNVyulk8dSbGfsPixFXv/Vj3hjhLAaIgqyqQhudSIBVv+rULHoRfRaw8wr/BTl1opLXRITJ5Us94TSnjiiNBBdwrJgoJEeCilav+4jhdU4HWbdkIKnPtNhSXZaXbuhwEwinJ9hqMIMRGInQPqKv2hwiwGYebwZOYVc8ztdSlfVZO144KAIo5n2TZVUYHy5RV8Fi0hlpwfyCRCr011vYhrh8+OIE7eo5v55aus8M7Tt+TNq1EaNgzqeiZEOhuFQdwKVFtkqnkT+76bezDnOHDlz7/OncrGpQlni14rpzkSgBs5NCPlWoZA0waUuxdZ19dbTvYgPTJDqNjm26mwUqfnLEs9LoHgWPu08Jd3M+ZTDDquyNPj9XWtNyWZGv0M5D0Xk59Qxpe9/o595gr8IgzOr+iBRV7KfX5W3cDbY8K+QZE21d0hxOZ8PjrBMmo9nxu2UfxjJtHjtkvST0w7V88li3+ZknKc18X8xARk3vUbV9Irlt9xzy2W8ne2QN1L8ueKy8d4/12pTw1bUf6iM3/0Sii3v1og6mjLTYYf/3nsNxWBFA/PDhRT9cD8bpjLIIgLWeQ4LMxyALakNkVdm4TEr5LUEtjZxRY6Y9ZQ+K1D7/MvasICxD9Ti+3xcQDiBUkOpht5EYXe2JfU84754s8DRwthO2WcT2r74Nx8ii7O4r+Nz3kwQj8EIu9+/jB1LKlQdxE/CW5QaB3bFLqbk1bOqhvwX0c3PVfGAvQ5HqGQsoImYMdioDYowzv8qgrR+FX4UAKiaE8Xd5GwLVk16tV+uYmvvI5IHNqy8rN+YJncmEdf1C2TvnXkc6KBwzOpIhiqSa46+6SpYbqmIaiMt+Gog8Z/CysnCOmA978D6MGxhNL9pUk9KV8BjuwFRzicX6IGiVqM0mEhCXmhbh4Qz/cahehhxJd3C60v2cfcXB/s40mMwyj8FlN0D7RfSG2mXIIqXvOcIqJz2o8gLNJZlbbqhxHimy3LYl7vk87t013PfQw/NbQORgISWxBbF+GQusniPRl9uMHrcIC0UrAFEZEU1nrTNM8lQRazEtCFwBW6Xdju8j8PyGlqNQDatH9BXWCB1Eld0dvEuWlyll73CjMdsg8JBTrSOAUx6s6vk8+oR/X30cutzkkUIB5R6BRhNT0qfT+E+tlJT+7JHTTaX4EnglWjoqhW8EpqTbgnH/tQubVW+k4q7ysO1/H7BiABqM4c9/ALwmsKSx3ZcLuh0yJS/+KaUmOBsY9PQJD8njA5vo/TbyXa1CVT9rLmzMqhccF63KUpZ/snWFNnOjHzK7BTgqzpeBdiezaIx0e5vwW54tglcBY3Piv8B9KqcLVH2hA0sbV1IzTzOow70X16XNB41Nabsm5hslNnkrHL67ZzaiT4Q98inl5g4TzFN1ZZnc5Lqi9qbfyljWGmTnz45KU3RNUljtH/orBV33Z/3vGHwIeRnYlOoHZ3nbWv4jGK8uTHKa8LzG+RdI4bgAjLsDOkEKoOMBRyDP+VOTH0QCWnW6hcDW4ZZARvJaCqp66ecVGpRn2gSLGYDliiKh5RkTNddtwToSyx0DJ5CnhRff90vhtuknqNo2ue/Ddikp3WtQ9UBHcvGKY7VQBtw6bKc/J60Mg9EHDprUwYtBKDUm0ILKf1ZrR72kPhIUxI3g6hLqBXVVvPxfdqxkeZdIOYtI7ISM7JrS1DKdnzVlGH0xcH+kHOnxPhd0yCw7CWpY/+lQtGmakh3cn4mQKiRYSuI0QbGA0MLb91MyiACGPoH+AeG3GktXL29GdwaAx0xKllLtGjdnsPZxX7y1GE30S+sv1AUL7WBH2I6w4lw7czBn1mqhrp6Nkv6vzet/I5XCuGlKlKeVF+wATtclP02OdPn42GYrVV+2Rtg9O92Cs9Ia1mfsMMnls4nkqQp5InQiIX4EkG1qGOq5PYp7wol9QtDYkum5MampJkdJQfJmHtojEmjA8miKG0G3XSobPuC1KZeU1Kunod01pY7EOcR13Ddh2/Li3edsyZlzCG40oUrqIV68FXPXGfpl0xjJRZ9RObE90Y4p0nztTd/HToxtb93uZX1K5l1pTYSznBTPuJqyZvZej28StCVBnhkx103qWlu1B7jcrh9B7sFu2skbM8IF4ilywVkirtEW2FEkCJ17+gTnuDqCbOvwlk1gL4HdOHryGHw3VV94BF+DGpUbjvVhud1eWzGBqn5WPPU7sLZFgN7157kGBT3d/1cGFsXz3n7Q72Hx6u9ddgWVLNJ8So2y6SaPe+A/yKm12E3sShADU2Pwvtz7JtXCGgSPYP8NXSkysFt8hPth330XUhNyeZSqXO0f6TY02WNgbC5VASZHTsTK+poeAK572SeP5zuvfkoQjdXvC8UynzGoYZYFu9gIbDi3yf+gAWTSjNJ8kP6NcLZBCxHZ05GzOdebpKo76H/KWDW8xq4NZ+2gAy+4wYbcxp08+tNWWBOKMVGHDhvqUa0ACSAbwGVbXu4uyxKf5gaZJf+rRTlxqAXYoHzIUtWeW3vkVSbs95t1Q4+XTPce/AOu+n38OuDFRJqVPc5a4Fjc8nNMcxkdjKXyc1L8LzC71l9BP0E5eYrcuTGO32j9eUcxCAw6cyHEwO4uL6CdhOkXrC5eGyiRoX5z2L05NpaqGdttJ9ZA5EyCFHaaD1tgaAxhqhQjOaaoNYzHmUS/Ii4FtYUzOFBck994Idz89kWjEuOyIeZMkvxJf8xo2D2D4a0kwErHfZ51mjZTwpWIs4xlXf1XRI7f5kylVRCBHaWpg2dZdOmzNWuMkDXiPMRk5loh31KX2tEsnoyriTD8WcMawdeREAssv0Y7jJSxRzI/leZhD5cRQ29BZphcWhDMKsKkhSgKZfE5HkX7mf3cnhuCfOu3K2YYWYKADN15scBRQGjq9ca4j40Dhi9iB8yA7w1j0ZkAYMaHWg07TI1mtq3y1aguzqfayd2OfDrfYWOwdBKZp+RL8KEH/sCLhyFdXGGtrcuX+fcswkKukhMhoHOEYGxYOMp82HcmazC9U3M6b4bL7KjoSV14+P81YlIy9ifQR9CnJroWozCsb7x/8CDPVe6tUN38u2jlBVDcTWdfnRSiqgpstgLJnynxQ2aKfAF2cS9/vzKBEdcY0C6GzbfSyeUNYn0L4ddNbrskB4QESoiE9cYB3IwJIuFFSOPck/rcXyuQQkDioH70TSB6ncHuvquhDwxp1surbVKAE1oerU830Ljars8VD1/G4ntF7+mho7P3vR1B54FvPPjUXeu7JIKq/idBykwahquS4Lp9idM4rQ5rgQGOVHW44ZdCkNV3QTSQunQdMrD7rdGNjUuuHl1y/dPRvf+E4
Variant 0
DifficultyLevel
492
Question
1.5 × ? = 1.2
Find the value of ? that makes this number sentence correct.
Worked Solution
|
|
1.5 × ? |
= 1.2 |
|
|
|
|
? |
= 1.51.2 |
|
= 0.8 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $1.5$ × ? = $1.2$
Find the value of ? that makes this number sentence correct. |
workedSolution |
> | | |
> | ------------: | ---------------------- |
> | $1.5$ × ?| = 1.2 |
| | |
| | |
> | ?| = $\dfrac{1.2}{1.5}$|
> | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/WQaOvucLfIv/YcGEJt7Vi/4WAI6wgptWgpM1hsJowt+3FpmTRFOksJ2ftwfFO6jFQ3WtV44qZOI2/c/ir2vj0JG+7/xClxlARLIZe6nzF81mbQ6il4OSqi3qXSIN/sDJWmshSYVZUZNpfErsW7xMpLpjYc7NRgdSe9bYQpti8NTTvlULO8M8oBzGmPTfaw0upn++vycbkJQQAuUMAOWnbxWYaWnMmuOxQfT5q0EAZlgRlHERLptVQhEE+pcoR1Y1jr7Cz8PmN0J8M7ySeu7Yd+Ti8G8LFQLMh089KL4PReMq+VdJDWn9eXGI92uwXrvPfiWHJPmKIgopnGwown0ewPKHTbxMQcg3N4TAvuer1tm2bA/rrJFdlierKRcCNkwegPvof0WKJpm+v8uXLm8eekVQDNTZ7mCCT9x0w2ZqDaSUILaIIc0LFLrrIYcO/Qi8tgthsaYU34SwHiFiH8FpA+thxDuXYtlDzxhsXydFPq1f91iIhF32yrXfHAOi+X+Tn/WgLI0HXYHB0Aci4jORVDptWeXTEb0p3LgjuHthAjnGUtO7Bf5fHwFnQT/ZyXZJq32x9qDgCYriTFLutwDd8MqLlTikoYUA8ONUpCz2FrVITgLpKvH7EZQxtclJ5kwgXYofGwYmAQe50URUpBQOxBrERdHW2r6OVCHDtEiu3EtM8Swi0wCvpQVwbdNT7uHMznW+1KuRu9dZ6wW+iLno4nLAl1gj8ZmRISgiVNiSkynVwici5hJOixUGXQviXC49ksirKH7u3DSjQjIHs5I8lhi9XrpylSHpPYvYHMM0Cum92GYoqpNCkvPizW04fEZtzOL5aDB2rlXtJErGXCafCG04qtd94yP5K/dhnprk/ekHYPWsjtUQJAuSufjPR21O5pzfZmJjLx5Z+6B1qnCzZnAb+A684AYT6/X+IlV7ffNtqOJAMxeEehGfvN97uj8+HlSBr+waLPfPoYtuil2KZykrZkqACIqa/hevFS7JYbfeidiQ4kGM8baWay3ZNzsZt943p2YNSun/xwAn02F1XQtngvskx+syqsBJjVnb1p+/oauPhNjmaWxSwjTQuQCEJpwvLX70MjTGAxqhj7GiprIJUw5hpjm5+A05x+6+B/ywaNmJ+yH13Stre6zbopJZZNtR062RlRqPmpo7/gRZiS3F6n50m6wrmft35w5xFW46XMtbtLVm78hlhzE6LjTKLjoB3dyKhHfU5r6Obxzb4HLtsNZT7o9A5/W5/ghYam4K+1IqRb9Xam5YuO7Sw7evqf9JafzKcHOIkEVDKH5D9XZ+dOmfzDKfoOTO/+RwJmNXepz6mz3WLo+35q8i2V3m6qrWvJrCv8xCfu6JKeovtt0WHDu83G5Uw2JiUFOTxaj7opwXrCqN2K21eBRbctjSmlxjMhhY7GDHyTsBYzi62XsOBLmWtXnuiNfNpM+ig0OdXf5vFdLKqp39NZeqi3SrVtfGHSYWWqth487jqNKoITF7BwgEVceNnDrZRZbwN8seClEWx459ka249WdQ1iV58amnbr1DEkQei9Sh7dfcJauANfj/BxtFI2FiP0zj6cSlzFuVqpQeolamJreEX1ZOYk7XzpdLVb6ZcRwSOdA0J9zTgLEjUy7eAtgflu2JOCtndpNdu2lQBqy+OhfmL5AWMSMFzB/6+Ea6gpT9cYpYACmBY8asmMD3sgXp0Q07AxkKsqhRncpzbpO1Ot0U0K0IKBV16dKoqRbwFkfsUswDXXZcofvaYHdJPkcoUrGFeZBaFBtDMxt/f+iQo16afqglgedNAZ5bIOelp3/l7a0i5kWalmykisRe/s91KOJM+v70SgtVOiXrzpzSViU/OhnaDgNi8iiX5nRiNjqvrUzFE2dbawjkJzFp3ZbV/9qlL+o81n1SfMFkY3uVUMSy5U+LMTjQVCnddIXJkjuq9eW/pYjsqnsE1G6o//4olQAIEP4fJo+r8u9o7I3W3p61N1hDWRWNw8v4j5joqM2I/Oa9OxwJQYcY5acF97Kq6oLJicvW1m4mzGV9Tb9ztVzZz18tf0ziJN2FCr4xCsjBKgwZPFYfnkC2datMQchZIuvQplQy8h9inBp6ks8cZF8jdafgctu0ZWfV/+tX7ZeeyAbEGqpBiEmL8HJ8rQs+mKRCifeNT85tuPUT/avKGdU2lA7XyftlYD10VP9daeyY1neOXX8Iivgv4DnSZ01Cm4T6CaNtkCUxMwMxOae3LagDxxae99GcGyXb8KvmGRgQHFyKuROzfwIgTuksz8b1DHEiZTWxG3xBzhbOiL0JjEG+chVjzyijYpvo54xT3nJmT4XD568VVOcNYrXYEFumhBxR2n7qR5ZsscOCsCtiPXXWN4ZeVJPXByB0g9WzNW8U8rV851/isW9c9PArE5zasivqqdKV4j7GiQsZvN0G236VIVUNOcXcTchSfKIc40EyPkj8ZR1us/71iFHpNlzS4BdIzc0eou2bLJaogdGRbPhJLyoHr7LT8tzmSJD0EG6Mj0YtqNyU4esMwGTCJo/U0MnqvhyUdlQi7oSBf6rvdSEDheWWoQFnEj/T8Ygohk01GgwsUpj8mdewOOiJtD9+phdZL/FsqLCxyGfT6KDrjMnEsT8+2EfgRiW6LVev7uvklaW1/1ANZ01BUc5BlyPhBWgAeGpnMktvp50wScon0Q6qS6rPihb+kAaSd6OC7O1uAhHw9CoRFffSF7e02MIA1bDRN6Pe6G5Um+KzS4Kl3ZBtqN6t4dR7e3cuC6x2PE2NccVRfkRLaAcMkzx+WaiO3ZtDwrgoRnRzhuAEYuHT9WOlcUXfV9wyuGZpYCxzrJtjGwbPc//yGnZxxdW9z1TbI4/qNtCD/arhA5xd2E+7Zuuer96pzpG0HLCLpqXnqhcIh09AYCvqGR4Y4upuPTaiFEpKhnysZL3A4eqwD7Fbnxt9ja3UbaPB+ox6Z3VBoZ5jBZQ460RTTst4aQK69pkx50zkqJ3NkAOKk2T+xu6Ddrk4Y57m94w5cgZiCGYJJ1wVHnEmPXGMuRGFhfBlqyZFcGrpMhFRORvJK4gjIBa5SqugarTpGdsOe2TFomP4YLqsub/88RKrDFLqUcRAJCFGJGin8NgOXKSxp1F2Gv4sP0YAMg/bCVQlZh1DpkMx4ewLZpJMR2kvDVdTsV8DbZc+Zy0qzeglQ5cclTqNviFZ+SAgi2p3O4PnnvEovNelWlyi2+vV1WgEPLMaXA+BFaJuSJUoSBMZXpfNLErz51mH6Cw7qSm5k35p+C+BCgRM06l2YW1uufhulrp4PILJBzbsvdM6nTl0H3aVLx0gwwTG4IH4Zx7xdu0asLKK/CMuAXwq2olxZ9kDkjPDmiG5/uJsk/RC8hZXL7b/aYUDkXJr3SiHoAWbwzNUlTUKm4KhyhmxsGnyOEu1L6RBxcSZerRkcvhFk2Px7LUrdilftWrQyMpzkGaa1/ONKP7I7tqfRMbE9nGJTstzGWtUybkqQ/pH6/nHiLeiByE4j5nIIApGE7UwyrvcsPrEBA8Dr2ArTDtdBiRrxw8w50ZRYbaYqIiDFENcy/nzKE6rQ5Uol37xUiLnIls/rKc/LIlZrm3BTaTKAxrUWMXlUtcQcJJJ+0mRNf7nY8jxANE9sqMVDXIDvLw3gxa67HK3sDnkE5l15Re0qpn1HMp+I4pRPjk1lG7B0OWtK/rQi5dpFe2PT7KIy3PsO8rVCKgyqa2Dw8S1qcFtxL+FZWwfGj+QHQyDrhFnkft3If6kh/obLfoiSf4nR+HolzbRyvNnArL3j837HJ7gHODUo1RA+UaxqUB+++K6Pqk8WdsEhcdvOKdv4mnCkPX4dXcCic6GumZS5Yc39lvoNtlBSIEn2wibwM+YFtEEVKHFFnYdRqHbzxOxgn5+F7zlXg8wNBLWxkOwOd4VJvCWD7wSDSWgArjpNvnijcbM/QlvonRx3KsEJLBvKNWolYFIygdl0i+HhXabx11CIpqXLehO2n5cZQR7D1w5rjb0gj90PDAKljdGcxg/Qr2Japh++YaOx6He/mTJmR0e5we+3vH7O9O5C5rR5XyBLGkQF3gKLLKa/dmgeLxtqypaCdRDGeq7mTnq5LasP8wEu011JbEVbQgsCYnSRHYL4JVUGd0kP2jLVRvrhbMWheEJnMWZGpprkqbkoHw2cOF7ge+AhBWhEjhTIPI50Vt/j0MkA9Z9DHcA/pNEXPgWgECTJu8cJy1xiC5jaqOwYkgM5OWBy5zky5nTpLysDKvGIsOi5TGUNzCg+OBxWJoNcxZJsJlhLL+bkoFa1Pty1kEVVLOeJxt+KVnkEEwnZPJ0iSki2vKF8Lrgo1tZDRYlFyhFTK+GqVGAgU00SfJqidgilZIF4qc6hJqW0ZZeJIMFO/QVqpbWnt/SeNAEM5EVDTrD2B5cVhk7SRIQj1f3r1o4stJFWwUP9iaObMxQIiiIIvi37dCErr4E5kGvh7ifAqRbV9LpCii2ba7SYTX+ErYcuuFbzCaDZDm1yfoHnpxmWaON2c+TCzg6T0neTkVLVytswCN4FdU5ngQ++8njpwaZ/MJXLYraHTXDNSXLRLGapQNjqQnZcXGVcFZogLctVUdRY/zMKGTAlrv0Ra5+IpzgnIfPBpSu0zSi7lHcoSdMxnOYvrfxToTCi3DFiXYdN/vKkFJfUo/7palb0YE33ZqZTfzN3tNjxz5nTSpLv5g7Rku0kHMgoOa4RXZeUY4dJzqyMxY02dlCeVD2HBlQPkvChjGjafIIbKLCDLIsiD1kbkOvVK4Stc28Kvy/7NfRGsLp1JT6boW5UNlVft8IC1qluNBfh0nKokn/X6CMpaRzHJml2bTBLvCCU1uNlWY6Th9aggkfdbK1RTUu+ZqQ2pdbCr1pyULeQXx0mW8BOmlVnP38dXQleJVY493QVt3pCMxclnmvJIz7qzFNEEM3/R5amF3oLOt1W3ZG/ppoePwJqWx5L2f3IVDetjfmKKVuPSnoz9GjY0wbT+WAkZA04FdCIyk9jQLTKlP0psbWbmG9qd72EEnSoUXs4jw9Xdd7JB1mKsZuOAE45oJEBOO4V8XqF+txnuexMWDuDyaEp942oLno3zYPL2l2Y7cj6Wm/1bV8MBBX0SeBmfyXS2JqAfeh5JVBnDuIzdhfmk+8uXIhgVXsdH7lzwnmNiigczlwZC218jpHhg4A4gakWrfr5nuboFmTDJodlnza/hyLqf1Rt6YeeZLZ+vrNadnVkMCeS58KZZkbhvmcm6fngVIzP4p1czEt6tO80qOLvPwq2Bos0klSSbhu/+MJGVzpvN6RLClZAMVzI/QHDgK7nDsSXHpf7ANdLI1rTEtQR6C/xAhcslOq6XMvCdGhA3qZgms9H4xRZaBwNJf0ZTSz1jnudVJFdDCmQJUGLZ2o2Q9whl+HbaRHBftIMxJzcsSZN6a1dSJIGzWHBVv9CpG+5d7JJDsB9mf5cFsB/aV+7mxJb1KTjrkd4jiDq8ey/A0BjeH5Kt0V6TDfQqpFXEF7Onf6rCfOJgDwkilf3JA+u16Pi4xURsRgNKqm4ZIJiWDp++n8axdT3PqXr/bVoKPE10luJu8SFmfO8fSvnrAejVQxOIZjJPaZhNlVaOPPvWTGhjNlvU9x1PPAxBpNZ/EwahKYN1XKMcxEbOd3d59dHgCwzMxczt3MOhKdi5AASkvykuxSKFoqwthAFy1s9NNc5BhTRWdc2Csor4YSpIB2HuC+PRjHDbM2ZrfzBJYkB3vwtmfFG8KMk8i+v6QW/GBmjodp0Jt1XJ179YSX4aQUXmPsOKePY5D3MRO+toV8ivt713Nib5JroYs8htN17qC/l51b0oWKkL4Xzaio39MiqHiQ1wNm8iAR0yo2kg5rQ0EzmqQDOWC+M9InheQRLDYElqMIlUQEptjWwg6fYZkUPC6AODl65M2mhUP6PO1+RYvAasra5Cv4E3c6LUIC5shH9aaOFXgvrj+80HCIbfBVwCGRAWSE9Xalmd2JJ1Va7q22CnHZVKXjk6PnEnmEdB74hkvLMYjd1IjHphFrsEeXzyYC/JLFXMU55DQ69QNPvcldNN0a+RRteYDedkpWBPi8WeYPTRxTSba6MCtbn6hTek+N5V2SneBWTjzQ5KxMQbCunNbne+6JbU+hnMdVfm+wgnUsoGb9NdDoilsgnU3n9dXNGTbAxWW7vc3MiLwgfHy3p3fBLpoFsLr7WgGIwWdOjx0qMnUOXEmNuT8xy4aKmYiYldLOsII4osgZUyNQ/PsoUsSwqmYb5UmWmRsN3GD/DXSp8j+c+jejuSkkIEFhwrZFYa/aXx9D0SgUhFPGwqNbadWLYIexUZMIob2pbp/lHGMtDOa3W2Z5HUOicttWvAfeH7eNqGH2XFctror/SZKJjiDUB
Variant 1
DifficultyLevel
493
Question
2.5 × ? = 1.5
Find the value of ? that makes this number sentence correct.
Worked Solution
|
|
2.5 × ? |
= 1.5 |
|
|
|
|
? |
= 2.51.5 |
|
= 0.6 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $2.5$ × ? = $1.5$
Find the value of ? that makes this number sentence correct. |
workedSolution |
> | | |
> | ------------: | ---------------------- |
> | $2.5$ × ?| = 1.5 |
| | |
| | |
> | ?| = $\dfrac{1.5}{2.5}$|
> | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/6sDsf65xreh2Ywmsj8V0W+BMu1xK9L/EW5HS8/4MFBb1tgQ8y5clDQ+zchTrdHI7RgBb4gzIxUARC+h3PLvQ49Tt4G+kqr3+WKhab/2nFp2eNnoWuqg43hf18SCZTUHzPd7MqwCwQya/NstoyfI6vI1oH9fUGvMcLxNwraie0/Gls4Q+/eyiW69gFRRt9oRsbWYFawu5k6+OnWT6EilmQ1b5tg6R/EK+Q++HFRsOMNOqRXH6SDHgi03vy7fHI/q+WAeQ7FhLYcl68MtWW/JkJPd7bqz4qDZ5fL3CCOeT+BTpWAqXj5UBFpZ/K+NnGBwXBXfzaC+OJOFSu3r5/jQJfM0GpSiPRjb4ynxj9Vb+REqKzff6wtZQw55DXkE2sdB/Vu2ZiU2MsZJi4N4T08lKj315w24r6qKaVick1rHEF+kFJ7oOPCnl815tqGWH4JVc/qROSAEOaS7S+4F2TReQ30KsaXzrl9uxdXVnzLsz9G6qhO3j5XD46kBTNcEgaqBij49OJP0PwQxQytHJawdolgzgOwpuzgj7Qw/lmCj7AJbKmA6pO3OsVIdXd/IhwWN7ClOWSOEp3N4iEQKFf1QXk7/h8XrjXcWQx8pz7w4WPgr1Y+Vf/V6V+6qhogzDX9UqCZicLVDJW2FFEF+Fgd3CfyM9RT/0KKAncvtP8k/LD6LOU07AkBxdD2+u1S1TFnYek/xBlFfyP1syRKEA6kEpjZhBxTYTvG4QyT3Odqu9jtB9h54zSQDo4qaXfOXCNE0AdNag2j6TzGxfMh3y98hUwn7yoy0GUT3clxmETdNsDdPqFqSs2lhHGQBvV6l28kimEtDqYvQrXbOuUhTG3RPfK8Phc1TuFto1AZMbGR9rvY0H92jw0QuUjGvuTjoDP18Ta5jg5NkxcGYfjGDodadJZfCoKFzaZCafhR2BpG+TWIcp76pT3QVE3p8tEx5By8njXdXkE47VkmtaaBPEUEbWKZE2khUQyW2nYcfKpPKpcTNaUo4YAx+gEB1piGOCnIJaX4ika68EzjaxSsYFWV4BkfXKW6Sw/0gih2ZsrOn8gDmVg2n1whUVV6dnd/eMW0rHMtXO2stMUdv0eAa8enJJ+N/JU/Q51kY/LlJODVB+4jSnShaiAoeYRQVgJBZ74X+mSMdBqtnX0nFODyhmDvqY4fRfxKiX2Tcq2O8X7RprdqmUiBT/vSViXOSpNqB5x3ri0OixJQ1ZCRBOdx9Fn81N+GPAj0v50F1cM3L9XtpwG+eG9002pKd+vPHt2B2pjnoN3EM040TQVHBHCBPX/AW5rzZPJVy56tV4N36Or9yriCtt8PgCNlHI61yslZZ13GSrdHor3yU1ZsYV0M92lwZh6NHOxrMGXasocgIAsYhXOFwnCWV4lOw1pi+OzqdSCIxBA/hdo8taYY4erCZ8Iom1wWbXKOVjMJs50G9hYpLM5euR+eAJtyK7rO0aBG+iACB5Q0dU2PKB+6raxdfY+jWegwC55cEFYgTMYwoK5zACjEWXFzYOJJZ84VFDwrUwI7b+tQIHci6s7KSo4XRPn3SzF5ZgYuPpa6gc2UnSVhylTQ5REl23OhmISMhz5pNvEIA1gSv9zRkWNL+KdzpP/NKVv13FQRv2BQof73MQ//R06roJl7IkFfsoOldajLNaYj0v3AoIStfJC1wsovH+Nwq/cR/BVdVyWTVWFk6LBGey1K27zq9iyDbYIolU7N+Yl4A1NmEA1vOqjv+l0pYaK2vi3dHkVPV3QbcY/qFeH1g61SoL7SyoO/own3dHR6j4Pw7pWCeAudF6hB+07HM0MFdR8bDQaBWbs/OH4eEapt+LStt0PhrUQiAPm0fWa+e0xsIHlWQE2wsvq6VrXO/XuMVb6VXwF8ygJ+XbiWbfcvnmVrx7aV0daAfIO4wkbqm9pY3dMYh6U4KEdYilxbwQ7JGl2Xoy4+SBB8HqOLj8E1xqZeVwia6cjD7jnEFrTR7raO2Gv3LxaXk7uU8VJflOj8eg74tPlnEft3bxPVY17y0TqBmt/EnBmpNKjP6/E0DAIapByLbpEgf+yHgInBgpkFXQbUeGWtVF0lKarpbY/4ac234gMVm+pppxKpasSo9mwJXfSpaPMGFXH5FHKrBOF72NTWTwK9xO3+9Uiw0ukgtJvZTnXfUWN+mRVi5IlPm3NYxhMC8jVSQIDHoB0KgluXegi0dH9wsu1xouijwQipvq/0JMCN/2+5XUIAXN+EZYGhtRS8KPR2YnA9a4OywRV3cVI8sn4aNakbUXtD2hqK9bW3D+8FafIuZmjJlBTHVqxZ2x5f6Xl8K0i/sGI3KB16mWHkAcmvXjKOKqqNaJiFTrekeLSqwjAznKbleFy8Uqn8/09+YQ2pW6tjLbxGT1Sb7o3LkqHgO6ap9BAoUXwADk7X5BwQC+2PvywPtytFnKeB07lJAMgzyOyjDKspS1WHRdsCWbIagPA14S9YtwyigeU8ME0z84cP/Xy/ILaKC0+XSI8RT5uqJ/Wc+c3GPyb4xs1kCy1U82dkfAeuFsFTFo3NMBsYgQ0tRgJNG5eBob394sJy1Q9JpHTIGCzxlmtJbwQS88eaoGbmjZSM/0UWoMdoYJVzPxxfOI5Pj3/XB3aXdhg/lSjtyThKg7O6G88ivy00qjYNzSypZDx1rOR3ZITnJLK7uvDtasf6Aqp4yF43dGibt/Bl+rQ9For80S5A9urYi8YOpuyne6l8+mH/cs7A40L9cpQ5PgNOHxIB9AnDBZyMcLZB01N9PuxlCxmwm5IT5+86pfdJYAEX5kLHm9VEPaNETNiMsO0hFUkUkvRdIAWV1rgA0ydkJNI449LrHBX0mQEFSMIeviQfiWGU8R8TJXRqopL3vXZo3D/Oar1w8YaXk2kTg+NGcJz6KkUWqbBbT4uweuVx7AqhRMQtuRR/vHXbbvbI2kXZCDuIbOcjk5AGeTMVs92Df84EKk26JP15G8rudaBFbM+9Yqp/m+3fwpwEBo3hAnVMeRbrTLRbdTvPSinuSPo3dNgWRx1lNiFfvCAeWxzGT/An8ZYesTizqMkSmp6ARmQZOjnLMuCVWS6s1wN/qqKOAF7Z+DxRpm60On6QaZKFve0z4iGTaOrQevaRQ0LtCsdxv412/oQux+CuhYYjJoJ+1wo4XCTm4NbsvUjFMpcl+ujXSk18rtbmBzcz2FioTf0mmyNsdlFuydVvSKUZDbYnaBK7L2bLcXLGVbVNxNF+8p9wCnOBKhGdjOTypmZ8/zI2bLYpDWGpSabAg8JCYlSQY80SMwVUs5ZJUfAlCTrQI45qr4mkmVM/fiz+iJasqAZiI78PyPB077a0YM+BKMsRB4Qln5gll/t9nLpharyYgufSjIM8z4+xb1K7qWzIBfaRz1tEW6kGaUb48jSC+FK0m1xjv4ZM2iGaZXGv6SLafJ2Js8GhN7vIbq8dsKrnRDvUviDJNRV+3foyvInA5mvZpEunOQtiGtEaMMZjPSryPJQSyFJGnt/7jB80/eXK2Wx6WYcvYax+qt7d1mVetz5fgAO5AekSXuR5IgTuIMfW82xo9ub99hmJ/jf28/cIqF/B9IY+OxVCb2zEbf4OaUMAO6w9rStKG4/7cMAONxieUS6VHkqBK/mPL2oyVG/RQEDD4ZwpzZu+GRwZoC1OfWj6WBtBza6Dwl1Z/altilwkIBmcIZazpaGFEU6TcAcmEURZtZSENz+uRuYIIGy/BLcT1awdo3dADvxILGULj8h7hCITn3yCeZ6FYLvObPAAc9+CGmLWb48+U1WYLZRy00rhamHIMKBB7bjRAyoIo5Cs+wluv2B57VuNh7UjnMjl02bcixM2HbcKIsagw+KWeJZA4nM7o1O0pljQY72+PbHAPMKUs1BPPR4a8T4HGvxkY6ywa5cRW6qN5lqPyDh4Gxjo19eyQFJ1V5t/r0GmLOnjl/jv/o23V7hYrXKcGKLyqTklCXvFgv9qSzy0gt3GMTfkugESGpY6p1nt6+k3stzUxmFMNT3LZSHJstSyy+Qs4GxSlQHskbXikOJCu09hSwxhrsDTupNdv/ZTvOPvqALTsAgAf5G8Cw1gS8VbxJ3efinBdiZFUn5tS9glF1heGK+cLPRDONCuWEDeYFjlks8D5ycUi/T1P4BtbMjOWq106iDpupaZd+l4lYIYB77lTXRZ5V8hipsnXffJy7p2qaKgJMy74CG+nl02jQi0XHiqgPsdeE7p328TqqbE9aQcUIL3jl1yKWPwcNgdchzR19fycPr5Lpdx/nZz7G5EuRGMpdCN4utUanQ7Ezbxp4Ev89jBsFLJsWkE9210FhbLCWJWcO+hRja3Ba7EWy0SEPRHDzo/9jRJXCmQzvOYunyDFu++A9YHZKX3pqT4CYfjko+ehwUu7aOBWp6hEJc0h4Qxt6Vr3Hbmja8YAaFIpEj3xSE9cKqJ3esIF7ASTiEyr37BJdScpbP5QSmK4HvF1fOe1Vtwo2jyO20LZu3dMsePhDX8yxoGAFppEjQ1P8+bBAXFb/YTEtszX10d9i8N68llXAUlKh+vVsqnyJ8c6gkd3FsSh29XoTdd5Inu0E8ONAFyeAz0eXvp1ejm/TRwffUlHlAnOl92TVTYrwFfyTNJ+UvML1ANrbAWu0ypbh6BKEQzUjkcDm9RHP02zmd3hXkIE5sl7E+XoKNOaReZHuoBMeppTxMz/fQvlWU149lUPNGjagwECn/nfjxqgRgzDVn4YekR/4sOnc0p9yVS5pYC+jL2vWkW+PBYXjPCyIurvfL6NB9/nskVH/rd9hdIOizIMbe79YXM5nTL1nMYrgEfQcRD2RXW+ej8driYB/GD/GBxvmjwGyHJ+XxAmnZhulII1cC1p7m1fIZACib63OYU0Lz1qNm/RAgvuQFxTpzDhb10Rn77JM9hTVR72v4vJmAwJ03mvOCA0ZgpuOBBf9a+UfXXH1j9cXPWGH0Vt8kreRu7/Pn6+jLX2H4V1H+bHKn24NHxKikK5yghqPbgHKxO8ttQD9RV8ralKWXY1NMESUxhfL0a+XddzVZofWW5RPqqhbVrmYPYp+tPIcH85jjlZIicdcrX0n9FAgTFELgHUj3yjpMibvSFbP++PEuj/oJ82bIKrh9y0zGRUR2JbHCjXwTI2MUlE1e6gq1DNZ4W7Wj+u/Kb7aXxqpxkAzwV3srs0+CP2agbdQCXQs6oHnEp3nq810/MEE1Xgit7BEmC9QCLIBe9p63K75ktnd6IouiK4SqZj7ZuaEKD/xeky0VrLOrBtQx+z249+RbFhrP9rbSe9XAovS9byyIPcRTsNh2Cvt8Y7gQwzL5kUyCcmcHQhEtzGd8sSgVcYIZCJIF87olhuaea6n79KeLueFWwXMnVB9QFEBPPix8Alhn2oxKbySxk25hK9g2qui6eji5U1/Cz3ik3O1AFnuHTfkPZNSZ/Uxi7pOChteVg2XxN2FYp2yU1Len78jYtmkMYt9qUPo/3YDq27n/woJchRz5wU/meNbQDESz7CD2UNNDgSihM404p61c0fAFsIkHZPqOtZkR3izXWyPMKQYDy1SQ04eYsU1m5CVFh6oFM3Iy80Bdhh8jXViLkeoZ77a5REAAD/6gqnyp58jv/DwdtqHdff/goY16D2aiSwRRje3mQmzJHNTP3Hv2PYcb21xuIm4+QjeKMwSwfV5c53HO5eKE1Inyt9wQFSkn1Zb9wjhI8gBtK0T4WDHESMoUdNQBykGMEHgfkzMhGf9AZ1Eg+hEm0YjeU8bdhkwxg9gjH0ynPtal734ARI32OIfmQHMXmmO+2fXLtThOQnsnyWSeK6zqFTIgZPr3FbwpSIrjtF0L8MdnDr83tp11kXKIg9twkLz5iTrA0AmLjQYheii9XuD44EIqByXGPDXY2pqv6ZyW5r87EQjgkNnziJw5bNiQuMlywFWuJcnkgcpmNiUerPvhHClNcED2ohiIfrvvyAUm8E90k7fjo0is/c/vWqFeXk2kKtajKFGWnqjEE3yO1kxFPImwDPop1azkWNUd7tn88t8m9897ASXu0BGLIzkBH5KDnpy3qmakOCin8TB2s6CF+GrTyVIJALV1oCTYJ7Bq3svPuiOj/bJoC1f4vOdlIDuVCqGI7y5uPv4S+17uSugKo7j1u8lDhTeck8CDAS/9u1+ZUhj9HFWwiAe4cqe4TS3cU7ExysAAGoPl7em9aHlnbiYIQsQjgJP9uLQdciE5w0u1nRtFHR4a34TygmntdDan3Nvzm4xr/oG4iub8OdbvEIczVGpUQ7v59LfdP+eU05zQA5cChOan3K22chb+fYA2aQgrJ/EH1bmoWaQzXaRRmNvnf4oGBctfVwn1WkIJaDZ+fv1qpA/nz6ud00rnsYOZq7bWTFpZbDJkSX5E2hQ0cxTK44z6
Variant 2
DifficultyLevel
494
Question
3.2 × ? = 4.8
Find the value of ? that makes this number sentence correct.
Worked Solution
|
|
3.2 × ? |
= 4.8 |
|
|
|
|
? |
= 3.24.8 |
|
= 1.5 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $3.2$ × ? = $4.8$
Find the value of ? that makes this number sentence correct. |
workedSolution |
> | | |
> | ------------: | ---------------------- |
> | $3.2$ × ?| = 4.8 |
| | |
| | |
> | ?| = $\dfrac{4.8}{3.2}$|
> | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18Fm9vTf0nk/xgO6vZcqsXk+VcI4bBzkJjH16h+j5l9OdfBqclZRVW0fLXs1pm64ZWhKAjCw6+q16M4InOjHC7w4ALi5USY3i7NewMrx2xRVYiMSdbZbbPV6nh+5/yxphHj24e59Coi93QcK9JwHa16zY9NBeKxtq8TR4EcmdDtvRKAyvvl8sCAKWAwL8HQqoF1DM5KzT2KwTnVUu7B2eM7ndwTPJ4suxzg33xbnxl+sZ15sUo5XnhAlSCYWBvCzDinYG5BwtkB1McfdrVAl1TPaZEXqZWu0LKy1zKNm3tQ2GJ0r5mITRT1HncF6rwk2iPNMKmOGp7IRzsa0IzXbTZ+CfURRS9eAIXJSaV0G14c5dnF8tfkbXrST2o1yC6XhwUVij23gSzvArDpFKcUd5Isx1bVFTYYsBry/C8m9HlAyz7VZRSddtAZDxjkKRAgmJrhp3iN3cPis4YdSIgF5h8882isB3Z3CX2k+ulJJXo8AtNKZDSur7xME26Y2c4/r5pEJAeBCX7u+pSyeBIMFSju166vXq61Pg4kghoYfNU7Mg48bb2y4AGWYZ1NArovOOFYuGllp1BU1BMNUNL1WvS0doA/MWxo+fInwgHko6Q3oUtzazqBaJW6FUfqgt4igLVToNrK//WOp6bIzUhLYeCbjH703VRXjegxD2u6uaaLAlm8COtGBQ7QRuQCvqH75oDyOxAQ0tZpwNk1q3TVgE0Wm/2pf9yk8HXNXJgliL3WXqKbqOo50ebDxEJUx1yB6dzSOsDsY7Bc1zq+JagV5siu6JGi443SQSAZNwCp3uJ/ub0HUCx3aGgm2s15XYOvCIVcaTj5O7CjMDBJxDRumN+RYiMPPvZvXbV/bDpvHb+i3258fYZGR7VuKIqLUJTydhMc4tIsDU34C9ec/dQV9cHSm7lWW96SgkviGF9yhHY4r1YFdPUhTTVoo7NxbPIDp6gQd3sLSUnA7vmIq+nVsNAeeNG7+EXvfppdV738tdvX6i1DMef4EVPo4VUboa03PbWe6MM1RYJhCxPQjF8uA448g8HBSiKOAamL2TJ3XurJIOOklt5AThLYwqrgHVGypA1i7TXlCsg4LYcBaf3Hd8qcFuOlfA8dc9cHczr3azRm21I6mioWjhA4clJhr9GSx30ojwRY22ov4zWiWiBNAZlKMxvoHNviW6Ljh8cL+3atjwJ3MQzcU2JogYNQaMgY9BbR0Iqq3GNkeBGeA5+lu14gGEjsYeAu8KJ01scI6iR4o5HaywTJ+0jPWO9fjmXGtjxGv8oNHTkM7Ffm9qVNC3EPxVpu2pOpLJ7oMPQD4Ao5imwdWNOhFNOOeXsGWOZkfps8qNM1P/8JGoXRRCLAIlQSqhLk1zgtEjRjqQ0rvD7pragRxwroEuxm2vF+F6J/en49qBxeZ5JWj9wQmkskuWOGrUa5XgwJkEufXh8d8swgaG/dSFbbE0OWB14lzq5RbPAS7O6ZmmSOtieywrDn9wDj2Mdt+6JPZUFT9XnpN8U2+vVSoz+J/xu02Fjz6Ibit4Tij2XZPlrlTmgc4Qe+8zB6xbpeB4vXiGnjbMXLb9BdcmJu4MWAnE1fqxgzzoglebtGTj83ILnnrDPHi0ryxzHXczXFYdGWuo9CIo8CBvDeaJSCtUOHevWWPVP0jw4xF08ADEorQ1uL+wMiZB1TD5kD4jXiwc+L7okoMxyt8QBfdraSRvOu7xe6tMsdrYBMoj4GGGqJ9Sp8l4hnUYyLWjeYOg/MD5HwqRj2fZZFj8YWosxC9E054FocXazchkPGzwfUnA9MrJP+8vpT+SqaQakNtzCuXSBSok71p1jnPGtWdCOFSQn6LVvh2roWvdlXftH5UDXwKPCQLmh7UTgvzAED9tB2ZWCPgB0B1HJO1jUw+z3DG+uam9B+M68PgvKWznTGtPJjV74abNmb2WTyyjBiZWs+H5B7Kk/ZbPDQcdtNr0in9MnapSzwH2mM8A0iEOUBRNZ7ZdhDatWiQC4Ivvm5/Xpwam2uRiKKv8Xz264zh0/B0IEYHj6B5Eto+SEBwYzkuneRRl/bQzWs/pR+Rz5A4yjSSvNYrWIgDDXMzXqHpTgMnTxNuJNjr4wwcE99K2j3ka4MGdRrbYiMr6G8D+KGmb0Zvkn/tK9vPVqXKAqZgPXBig1NfJ/xqCwz0UChvBXD/FL3Rx7jrnITH/N60M8bOxw4wABwGjzDby5D/ZTA3++X6iSR/p7UFOJn8Lf+A52fcKbWMd1HGh5Vuv1v0e+0whudRMV0jqc7aPQSEu+rHSBLuSJqUlXvolsjaui8fYsGmcXRitHziCRWItQruyGfT5okzr+7MCtHDCOlP+z8AOafuBSXB0U8RvE4fm73KysN9bbyIVRoMTQZmSQDcL5ytwvueDZs+kIRdKq4vmqtbJglfEVFpdZvxPRfttpx7zwaTWMTwiQ70HUkHwBfbWxWCLOGjidHTtZSZR+zTxVLg/1Iv3FQkE5HvFC4v/36Arm8GFJcbMF3fsCbn8eBdmzX2HK4IAHnlxQsVobbgNHtTNLwey0Kn7/g9SPbkVYTp2/dEiWKsBOnegAD3tASKfWbaEVOWhWUvp459XzkEJvc1ci+1N7TMY1zCE3lBg4XH4MG0MYTQbqhYAsMa95wPSitZkyujqqbILb2GuRm5Pxbg/UGOkAEFileaEuZuWYaTtjFcj7Mwp4IIs7Y/7UNK2lEttXSjeG92HryC84QTgwsRXQrClikHTRlpC7Jn8KVI0mIUOsVnPMeOblW95O2CgEBzaSipf0+udIUFdJ5JB1uHaou+MyFy8Fc5iVteYdZZ1Ee+C4GgP6a+Ec3MlKk4o8AnTlMVv32Ns32n5jtu4nAHtRMZ3n5vYVOW/evys0F6bq7T/iQnr5MhsoGLoaHkfU1fWDBZbSe1C40zRAyNT/WFRNaz8qTvhlqWEnBXTu0lXJTdGQ/ts4jhwqLJqCTJsfskbMF89bEOt39IlTwbavxMLVnZ41TkKUsV/QgsiJrPu+5ouH903OTFEf3WKfE6OEzlxWTQZ6H16MxVJ9GzjNEBXDMGJZhm59TcgK8zGVvK1YoGu6mA8aJCY0rCb5vBwymjF7C5yjNsUDDXGkTRhfko8hx/QhCUDuFj52BowY6YqcAkTfseKuJi9aJ9df4IZLGvB5OBP1nM/RFj1MICiv00H9JMX5XlrqUVJIVuDa2EioNHlpdujHMeX1M27CYgYsF1TP+nTgaM/Oz0fthfo7feYMdEuGxnyvE9EisCsH5JF1Z1oyTmGwbWhbbIhCk/oacURpLSz1lhg7ViJbQYK3O9DX1wkxl+P4n9k14myp3jpNtRsdJke7aB8kh0YSTAJzVF3/Ve1/uqrGomi0aLMsofnIagATTHIVT+kmU5nRIWSGErjsC+Yn7MHtcU/znEdmKowsKJRYZC6FKl7JzaKNk6sO+WMdnlBFxa+uR5PsvHwQeykpEMFUZqH1572AtIzg2ipVBDGrckozO+GBnTqhgTsIpeAK/eTfi5xF6bey//s9IKH4ihct4zVf9odoJCPvGqBqULlt5aZ80kcc1QZbqzyGLjxrUTRW0tRtcy42qGZ0DWRP+7isfVjBHkr1jLa8UhwPgJ91kkbQOuAg/O397ngX4SV4sxjgOdVFk7Lx7PtzzXD8K/ePn0WvG92nvq0PkCxaaW1tuqKTUYrolawrOiE697pAgdRrHT3a5y2KbaQHn08uxnZc2tGdsJvQEVoFc03RzF2jSRuWrJ+ZQr8EXPMUP0Lh4CSZJ1Iqu8jVBAtv9HGGyu5g454U5nVg3uXQVougKrWu1yL7C5skzIkC6ZdDMWIf6p4V3y7K/qV6d3rU7IVr0ey5nrhETdHpro3U3MiGE8zWL+7Q061NpBqgDX2h4uzwjMPNdR/85OP3JkFxWqUtuTr7gpD0uc9itgJnw+gWUsyRdS0IfS+754DCIsP+C53ET9oYON2mrNRRzbgW1yE3S6Qf2fEVk+nRegDBpCA+XMpFt9zoFezifsNqkWGO3qV6zMlTudKBkHGvUImuO/oYpdyqpM61AArpw9mVpLQISNGwYvMmpiap7FlDdTvWl+xgLCr1XpE2s3zgLEo2A0sYWI5Vvfa0lpvA1Bcz6/zvKvarSFTjDDxbzWA1ZP5u3lxrsQA7zKsAvqc4LC8L1KFBq+qyHASqgsnb/bkEKAlVgPY+A+YMSJN8mYWwKnltypEyiABJxxQCD9AqSJ9cMbNMNrd8TTLs7FU+MEWNnNdbFmVFMYLWrPCyEbepwBiIl33eclhKrcif7iOpT9bIgbX9BDjjveROXfjpslqmSDa6cdMI2xVIoqtu5og/JsUG1HDLslR7BPQ8aTXo48VmBhuzC9dzmaLI5WYGyaa1EeUxzcGXaISMB39dH6ms+zN77+fnaz+n86W1aOdUbjLSlBpKF/JXh4pa9AKKndi0kceHksSV+x5JCybC3X1XORcQJHkyUdLsrqteQ99bpDwS1J1jGXjPbBOB1rccusEe0PGLUOj+Mu1Ta7aCQbX00qDlRb7aD+LiCYzrv78mG6KD5HYOrjfr79ATh1Hnv5P9/6wDVJiWecA8SSButLic426F4o8v/wI+gMlC6dWYDATon359H3dqf6ecqmRwP9/2YPaCeasehR8R3NejzO8DVkDHftUy+DvZB6dT3ahgHM6CE+rOdHHq+tilpoKLDvKBnIjaxFQSA/m0mug5JcPTc8B9lyqzWjHahDD6xahx04MPy02EveiYSntOBTJDdoFj2R4OIa5D3Ko4j8m8e+b3Nle/C8sqMIZFTo37qXF6++GtONhnV9IPEdVP4SmSoHpRk7XC/drFATc7LPOq3IgvASI1JZ5A0fgLOWjOaD7B/rnMj931J8kUw7yPyaf9eF5NE9T0xXr6pFQku+LBFd1CfBgWbaICPpUd+buMYpw9u9gAYPcVQrRqk/qoN4+BcH5P7e3VAhwnULhqmRR4qTwbhtKtjgQHy/ft6AiZ/klLjbKsGCjuJ/BQt6GJux2EWjjmGxCFN9myz/M1sxYUwz3x/Yftl3B8Wy2i8qKgf6AfyY0chg3uWhvNM+7uz6Ua+Rh4dPF0TODOLgt1JfU9E4WCT8umj9K5XMafBjQO/gCHeNBiLFdFxVIn0qnxIQEbslV0qTcgge1qsoNoxSJdQBmdBgGVMdCZmYJkYJ6cAyygZJb4ZiSJhhbTL4OZ8kXtC5wNz3oRSzDCqm/+QWiA5Pdx70yCnztHvO1Q+WUVpL0Vpzo5JIQ622XvbxXkKUJMbEg99zzovKQ+MLl26xNiNQkQ9fw87cLblXqlJFmwDq3YZmK70DyvgtA3nFktbByAU9k3uQh1B5IK9c8JiSfLJ3b/YioaSpvt+KhuicSAJIWlMYdkpp4EBMbBgdCMWMB4qWQqfoAQIYS3lHO7cKIca1wiy0PSFRQ4Y8Dz4rxCZvg/UQCknzp6GQKK6geW2Ego+Tg7gWoj/gDT+I9WVZ4Sx4FAfBoffUmTdME8AyZekg9/14x4cgIxn0FohBYJHWuMaVGLLWjYXzB/M/xRs4ZpEzHmf+lpRlhXXyNcUs36D1H32LW/qRaonrEwygOh/f1x1EbRK+3Ukw8oMbE1WcrMaJXqf3uxittsLymuONsLhlbvc8Gzbbe8Uml1X1MTEFaE6er7qgkU5i25x9bi4dsGUQBwo0AV28UkJNidvZBdmR9iNLHL3cKiUpWuhlbl6HhJjJ+6S6MDCmCrLBBXL1kskmGbViNlQc4wlM5zbVIn/uyAbhgM/elDKu3eOW+D/ScZluiuaMeoNUiRlCAxtwwmFDXuDV0acMbJrRHRuKZ4INqus4xr+c0ZNb0dejtXMqvpb9V7/w9C6vOXw9lWOLOrAmFycOl7FlKkRWGByEF/tCkx+CWn3usRkzF3Ivpr5PGmvOTH6u7mqycTdc69I0+EVKko1M0Wzr9VsUfFTharFsTCdnxRdGhJGfMlcYeIMJQg79/klNHP8vHA7HY3bAI/m7IBkCZog4QIhRry+NQAhpkY2W5MlyqufUpTFVmgqTuZy8xS7vKmzz9F3/BDIaGwIUTP24dBsqIPC/DoRLnG+Xp6tYUucGINf4huDWBuCI0tFpysve9oPWZb/5YkSLCPyDRYbwGCUqSScAe66nVL1+Ty4aUen3tx7nAdWOmQ2SG4Q6Kw2dr4iX2hbF6k7r5Vs5bNjRsT5fPlwLXD1rKWOOgBZs3EJNn05sEjh0IFgwC7rGcB8T8iO19jXBqa2yhxHS+O2ieijLjBWv1MzgavL/4EYwfP+fdu6ymxBPcwDDwGZS1/osaDx2hMm1OdNrstIzuaoHC9//29oOwwiN8oYROfF5f1OYmLDPAQq1/30ku851uH58u+UGOj8QgtG76MlsFdHDQpWd0p/YgDw
Variant 3
DifficultyLevel
495
Question
2.4 × ? = 1.8
Find the value of ? that makes this number sentence correct.
Worked Solution
|
|
2.4 × ? |
= 1.8 |
|
|
|
|
? |
= 2.41.8 |
|
= 0.75 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $2.4$ × ? = $1.8$
Find the value of ? that makes this number sentence correct. |
workedSolution |
> | | |
> | ------------: | ---------------------- |
> | $2.4$ × ?| = 1.8 |
| | |
| | |
> | ?| = $\dfrac{1.8}{2.4}$|
> | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/4kyI8goTJUhm3AVloU5/k1lrJTnmWf8aVJ8NbbMIVeHw4lSjkNTObKwqFm0DLWJrlrggtNBakhxkt8MmyorLgqAFuzFOK4zs8bHnoFuQ+xodJrIldGr2r09utg/ROpc5KspKL+BttdfVasd5+xqbGRs+mw8vQE3f7zFCe6RQBSu7u8yt9SnT23zhU+JLSofCzuvVSQpCX+kOrWcyr71BpsxbiV5rmFy4pw2vGj0e0VuNQiplxpdrBx7S7V4gL58P7nbwBpZHUnrhD9PSxu5LHvBhY2s253rvs7J5/FwCJAspZVoS2UGYt66Qs1KlERNqhmNVmpSOy7zgNh7Zt1eoOtKF5/HyZL8GhMJAaHArFLHykkq4f369rmQnlu3kNYu3QhCSA0P7Pu5cvgBq1yop7IuFT8fwLwGvYzHb/DjRw3RX/DCuBozNtDjlgVqHJ7XAhY8cR8LSQxCL8a77mvUP6mHMP0r8jSHf7zjDrQYAwXT9/kvoWxedS9o/WuEjtUlyFjnXU4wY/O2KYqtZeYzsvEKudM+Zt6fIQeiPL0P6A2rk+htfD38kAE/+2seXnr5SMpKaYoWWbboztXtBVHe7w0r2LtrnNH/r2gyJoYd/FAkj50dJgdK9GJJJ/OFe7YSAVqmIw1ibMAS+a3dzatKMQo8tnF53Z2sR9n8rpeD/6R2m60NRfxo626kDVVVN7+sB2kEP+WL6h3yfIQanNc3edFv7OwhWfIANml2tmhMELYJWNUZfkZCOet7yOg5slfkrpYszGASFxF9ukKqvAlAsbh7GKGKVqmRLLK35m1amBKCUHT1s6jWpQ/Nq+bnDBZ/3mf+jU+WEmf5RYBc4qrznnsb6nNjyw4WvDuoADxLaXhJs+wGa7prKB42QIEKhwcFqQdRQUUZN2VM02kme/msskRG00F9YqRtk+POr5WiMtnUWeoyJD7iP+QG+CESVlVX3crd/PYOgxnyImkrlhOhyUmZ1IpbS6+LEJSWU23TPGso5TOywALUJX9geAKxfnbk12i4XzkOkQdHq1yxJYtZjaSmJFNwNs0rHYkRXfLeZeNZLE5JWC5WtRoghmqAsXnmwjzfgoJD+9USd+p1r4k+euwassALHy9v0XA3JVA1gZP2T/kYXHec7b1/5Avz3RuovgT6WVu0UosyhhNoCaKR/OEetWNrXtkXDn25EsSC95tqKosKYuWjZLcsQqpKCI095zMT6qF1NvWueIplGQfhFy9kpCURT8DZmd8GFgW3v8uGwroW92TcBdWgWCTTVVQUSd7GW8G+n24sk43eVRywB7V/a8HpExc7sgAvUrr6YZd0+LUG1OhiWN2h5IrU1aLICHyX1QVXknCWNE8pNYSwz7DG5aqfVsD/14glj3v6wkbRetuse3w1ZHO7TbGYG8H71T1Dun7eaV0VdqLdCGvScUjrTbVvkcJGkrnMO1wufY+Joe78CKRBAxsYCi1AXkpXDHydPONsDcmbeEg74EYpKIp5hDC1fPIsYFOa8WnAO0wA6ooCFbHEm5q6gQWAxGpTKCP1W7DlFUgXRyUovIDkRB1tegS2ZZNoKfobqb05sgfNTxQOSo7RYFovF09YKUg4PmKozoSwcZRb7PehhR5WOgI/n6ls9y0i0ZqtzdIKYLpfx1a0qXup2tr1y3O/YY9yrftLDBXPKVU0PNBu+DZIUIoeQfXCRfgvjXLMpHHaxyaMrMUg/lnrWFIVtROFslOGAdD7WMWX3sC1XIlvyvTywgYm3x8vN9+FkDOpXgpHNj+Sx5hjMfbHmnYoG3+cAR2OFkO75eXn11ub+aIdD8UHIrEjXv3jmj5QjMu4zyGBIaD1vRfmoU3900xkSBPjuEELuksEcATEcIUdqpRLPN7oa+sT8P8Ap6MKuyezdLIl2L7Z/ebPjbNdvOTKIAUmOgE87zo9k0hKAFpRAjeO5WNSLGMnWhkxtaw/tQHcTENSX29PrScVzDWynFCuYpBmX5BMwF5ED8oxVLz0e4s6Ck0+pmvKxsoU4sQqGAELyQeGz7i3pMmUW54beXTAgnKKFPQmTzXXsq7wOH0OjEtt3cACrnG3MDp+9d6nX9PhOqFJrqYl2VqCBsGvr4W3Pbg55Rz86zOCvJ+IRLcVdUq5SQf2A804DEiEvmPUJ18JSZbcZ+rHdgHKJQpJkk8GtaiCDkuZ+95PCdbcbaq0I5QyYnS6DxgulPl7egyl1aZOZeWFvlFPzuXSNT5cZCYHejfgZZW0Hcfgqwy4Cocwezew++TpMWk8zKrZLyHEcyrDbR+bNrzeD1LBOk5hO5H+di8XpOUs+9xj9G7zSWDYX+I1WRJR4eq/NxWLbVKaO44N6lSn1p9ERo3lcl37KBdSiUIZdR6od1JuX3hS+C2OeFbt68w4eucwGw9F8Pj6woafHANYIesdOTfxm4afRQWF6q+bvwRuBii3qHyzihnOxrEtVKXlge2zdEZ+VAbLkP70t+p5U2VL40p2rVikhksmq2fksKo+EBa7qgmnGGrXaZYEGAgOXNUagV7BhsufZMyfEqIZLTkWx4ILE5It66PsNf+dxZFQTva7nzsjgAX6sd2utboQoa6i2fVOXaVgsk2b74Mok7XKrM1cFXX3P1yvVKvp09TdCxlOUbR6VRgQsdwLDkT+B5FoE0UBe8c+nbGmTuSxiAM/C4nJwccAvbT3XRA0C8nsZ4k2NVkF6E013kkUPS5SImbaWjjykOIm+cNRgse9GhqIhz7zldjdqSlxupyP12Eqj21TKGrhSvy+7j5Zh6tH2jXrVIXH/dpS/WW7M1zjadmUBLeDNd4CgSqFCVKCzPpN1bwinhDlQHzPL7zVjp2t0z8Oucub3aWrSiVQzZCF4YUxoPfSLO72qXyED0cWYySTpHyU0sIfkll13rip9a+aiF+ziijBB7fD4X0bpVaV8cmA5Lo793+rFdri0gd4CzJN0fd9h+M9CRfq0us4XdaKgcMdyvFUILt6VaQ3eufvGONFkFy1C1euuI3FfoSbaRpja+VuwLslcYx4CVyg15CRcG1qYLoevM17pnDGRIRZtTqhkIjCNiN3IiH8S4jDeoP0DlU9aUq4hOjCYm5lFpKVZumO6TWFgw1eBN1bprUerfTZkK8ZrOk7C5t7yT+LzIVHcLBF8C4EhxcsY228AP4ovVwa5WHbGpmjspbP4mcAUCzQsc4T72ifQJ+Mn4Rwq8pci+sPo2j5UMQfM5LDezpBTTZ6+xgz3dGw0Za4oYlUMmjvSWP4wfp3wHDKKq4TxqTcZS6NqOoN1vEf4uf0tGevTjq/C3nx2S7ipDTsIanF/Wkr0BzxpsXrf9K/Ckgx+BBOny/zrx25CEe0xSjud1Vjn13I46SiWLn9bJdGmexXUyZtQSm81hDgFIJ4ZkFJERZ94bvjilFSH/X55i6L31/P/ql+ylu9ajX1+6SFgKYq8QkLYEbpKxNaeLMVxSgCufeWkU73BZysrODPo0z9UF4FYDnCGjzUflQHJKD/jvH4Sd4mNiB82JOgGLOCsr8FKgedU61jbNWWspUmJO5AwG60KkoeiMAA4Nco24/ExBwRrDQpWOrJi9wHMocINkzpc7KORuuof0GZmN2IDxXAtLKKVIkrbGfiP+zYw5YRDX7f2HdzYY8XAoexvIoTP5Pg5eUK3GB84+7NAM6nj5CqCYvSqwidV90EhGWmFSHPWOtm3vdu9Kj27yLpaLNLrY0rzPuhlpAZu1KHm3G8dLWwRV4jGrfEwIwn40EfzseoY5dC/gaNvAAUsJN0Kimj179otbFsvW8GtZZCqCW3oxC5rhM18S4b7ZoruJrs04UwkZZTgww3zmOKVbTCF68O3lfJVjYgtMGWx2fcBmLnNng8KZXLEOZnto+vOWZNQnligJUpxMhQX4hk6zhWISMBOYHcEddUK0K3cE6+bcZOXZzBRPSLMkpsQDGefFcdsoajGEYSvZ6cv9Mt2lynS1h0pMFIpIYhFOEFQwcD6I2egoNUIJFHVnFX86EGLqOoBJQy9MRwDpzfs56Nde7eVhzgXktWmKeUAL9JhD1zMtw5LtC7te66RswP+0SHvpteIhC55v2CGj6BI+BK+SZSJIR/4MYC/lhWa1Tf9wnmUQbQenIo8Ziy6H52qoVysWogAU6PDp4uj8IUcTzBa/btRpgS7JITZBuinvnZwttbbTSXGn9GJzYJLcND8IU7CROwvG0ee2tJZQ//eUj1j0KfO1YVC9Ig5oJ53BnsJry/RNY0tyiR/UbOL8w5i2JD+wT2VWJFTZq82vBS5zWq7xs1e1jJjQEhohA0w4FXOa9CwwSOQ2HQAE/p1RDU3QMVIi8ZmGYS1YYvs1WTgUD2ic6qhKHs61tzvZLIQ1SbczghKsUw2mFLMHBOMzZB0vElHmVhNK2mcgRZkGfV7zny1eMd+lg8CaoAiAxWweXw2wxj6yoaJ084HAkylHaFi1jrsKJCKHXKcJjQIDvHmEOgfzRNGI+HE4acmk5nUfYQ5MC4AzzwoWp906vnQol2RqOgoiLUEdS6/fRQB2m/f2toFzFG8chfaUdQ/d1Cf6LMyNhW14bOjZDsx7HI+6PxQD8v+5XniZe13H7ttmYwBMNTpnkVg8coOYdc2v3iEFjwCh2QloWoP4NZU/ze4VgOg9B5jmYJ8bhdkyOImFifvATWd+BDUSggP999s0sjH8LQYEDBovsoUu7n3f4Vrr7oRmLSplnb+kiGprHyFt2llMie3YyzJG1A5cCycvpyyAk+cNfgnTFMd+9D0KnrWaKYhl2d5WGMNK8xYrfZKiC4hpDimTDnO/1a16KVKtS0OdwGXmA3AXNOfi8v9Mx0SPYUJTzBtxeJ06RKfaRZLsoVfxj1cVJFDVR+aR1914VUnmXVmrzp5mT8kByZWz8Ksp0QQpfRX9WPqQ48BFEPuiAFsMyL03PGoOiZbJU+NbPe+Mk+iMFT/EuwJ9NkS0md/5Xon8tMvoI7EsBfzags8OPeD++y9BaBgszuiASGwEwy0zZZN0rA0pnaX+GPjhLRLtSTlxPrEyQpyxomGYx+V6rMk0P1sY3z9pZDsbYdjp0vUCZNnDCpDgNOE7/ejJHv/U+eMNUDMYlhv/hkq37cVHWMvgbdufpqCmOjC3Zy2H5CZzRtcv7D3Kcaj6g1MRdz8yvdM2hXaMqjyBkYIsJ6l1KPkiWcz+o4fVSMJXAbsSYk9j+2oRM+PXPObXh0ImlsDcdNzQuYvGyUfobdkxRFLDq2yhVsYotzzNM45qF+Z23DjGakRzJx2AaFNYMl0vwqAf8gW0GBZSFLaJudgnleGX809SmvB96L0Zo17L4FYxljIDvp3CtkZSSLqnX25G6S9Ybvy6oPiRsVI2L7k1WVPepGIYH3p1vYOyeGxFpAeYwy3I/UxKC8W5F8eFOmK3nTcB3qaXkNftftIf2mNb+EMoDrecySE7aSFc1kK5QrQ2muKoBJn539EHrbE9ApuF/UqLXOosG3ngfLTi6V2y1YE6BkaW97rAYwuzA80HyXGJ1D1p9Wf3jMsD58HKiyBtuDh3yCg24jscx3Jtvn3HwR73JcAJMdFFLAm8E9mWfRC0s6T/dqdsdQiz2RIETHVs03OPIXX7XjweqR5fHBrBLhYsnl9mI0lk3CF5EwK0WfCpki+okCUWBd24E6IEvfjX1Rg2JzuPaynPfrfyGexm3ozL09mEHJFBAYX0xjsOP82TRMOqMsar8DwEs1GQgsCzpolAKFM6YfpI/IecFCuOHVZUajauYLlx5JER2z4XRE0NuWCDDrlJrEnieFlYajZv+ZnjW2RuHnriBVdHnnASTtb4qLt207zVnhXc5pXGrBSHN2z5PALwifh25ij8yWLtMRNs9DoDV9iOJrh1JYNxNsrv6jQNye4/pmOEq10Sey8AJkTNQxs9L8suX/1ca3G82w2UVCH+hnUXh5+ls+x2YeOmGkCFMXMVlf3rJnZLzv2ALcFlBM/JvVs5CQYrD72AM4CsVbgVWxUKa5384z6POHXIkyLmilDz/1SvaWSnurl38pENzvD7z35H+yyYxW+886pwpFBLTtLqU8rhFshxMRC6KhNdLIoWE/ZdpnrF4+1C3kXR2yaJ4pHYd0QDZQNzqVACi2nlNAPLNPOvpQwLYf3TqX27Ivoh+LFphy5Xba2AAsfqSSan+hrfiPBVCmMSSrOSTb/vdYrm+gQn+FTBkCRRpUMnpgiwrvxQA8Gfc6sF76U1Rzu1Yrz74THzm+3SrpBNCKajPXYsnTINCj7cX1GPIbhWKz8TZzcK1dktZbrTM2CL4HdPxHRbLFm3eMQ+RdvaIcgT1IU5VtfJWxVuAwj5RvZ4RZXFcbk7g7Vd690Id9qgnycP72l6eEebr0WCFTf3eef5gErUn7wfmAUWoawQstSseD6gISF0
Variant 4
DifficultyLevel
496
Question
3.5 × ? = 2.1
Find the value of ? that makes this number sentence correct.
Worked Solution
|
|
3.5 × ? |
= 2.1 |
|
|
|
|
? |
= 3.52.1 |
|
= 0.6 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $3.5$ × ? = $2.1$
Find the value of ? that makes this number sentence correct. |
workedSolution |
> | | |
> | ------------: | ---------------------- |
> | $3.5$ × ?| = 2.1 |
| | |
| | |
> | ?| = $\dfrac{2.1}{3.5}$|
> | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+qxjbNkQ8FboIUU/A0dzWvyhZHzcgJNXvV/3HyDVEvwJ6yL4ovm+o2yxvXeVzO5oOfnTBN1O8X/HAuUkr9ZTbBgh38RJ3tfcVUC5NRO41s0aJWIDNpXUt3QQjwT4fSGn71GpHwifadlGEtqKFMdiqCBlgakA4YmwEpUVroVmzBonIKvINkQ3ksIyFnRmhQy4aud2mNxkeR9ADYjZJCfEPEr7WWBjvzkvSL6uENrxZLGb5qL5p3uGHkoVt2IZGRn2tN8y/2WkDIJ7KvzsSX5IxLWC9Me+YySZ+V5Ka4LJ58u/WxiLfsEglo+3QsnjTm9+ElOv1aGHT2MftHkCAW1Lz9CWvRs13HChwbp6XoCckLLsFpbKFfwzHUNEksWsHDejNf0AKWoeyH78/WYjoplMg1PbzzEPDhaxOapDDFRZvfFDNYTsCA3+b1ZDBMfCiD2Pqf1AM26K3RJx2cR+oppXbueP5W8V/LwOcyrgfKv0bt2ximpYWZv9TjCX/XrbLvKmsGZutuotJmKxmJZoyAAcoGd7WmpskMYTg4hHC9ivqJ7NA8RFkpSIXNisrUI0gPeXywOVwOOJZKDFrHPPhygtT4F4bPwo0r6GL9Mt6NrPoU+cuArUPBitBFAzqPBGz6NwyJic0v1l48Vz1cgVwS99/pQeAjGhF16GY+glnbUCxO9Bey7OqtYANv9el1Rw3kK/qayeByqmohpdoB69/zMkH116iK6Z4II/DBmhDZqZZHh1rgorXc8rRNksF5EmdV9N3ptnaWFFEkOmixVlI/hlgWVIm2z6P9zPddwuQu0bStn7W1oBq7PK2xCD5mmUc9IwLrZyUnfDYyJ+bxLpB0i/R9x+6KcnWvc19tnfHkermp8jA2xREDSUzIZATpAGHBNJ+CecqQqbmcqBG7rF+lkNpyhfjod7kQXIfT5vTykp8UEA62fHE+KcONipSgIuUFXWacPueM75fTqTcZXCI9rdPcA8anA3YYe6SzGSqRlJv7QMZLQHW1ml5ng5EO5LaOnLCjt6WGt3aL5Mtd+jSFsbkcaiAzUEIbzqgH8HPMoPdwLBCHvWk/C4ZTFPpC8TQ3aTIk8StCUzFOT2EQVH2TS6XCwjHoFLm4q9b5TPbtuCQhqw0ZbMmEAumZj1ZCiSc8lZLNuwEDk1dhIDGZ8mLt1ZYO9lKwDUjWzB1EI1ggAay2wbt/HncK2ozZeMwUaV8C72XL9DVcYDd0zkpZhlPa/JAWWsEAfD1//afs9AcXqypQYd09Dun/VagPfYcMLvk8EWQl8IaJnCa9qupg4LnBilZsuGJ/4Ko4OzvJcXyO1mA2hVx4ZVh79TGwNslfAIZYv1d+d0J8oQwH+7OESFwCmciR71e39P3YKtIrCZdRHniPIUnsWZ8q5mx5gJzbnJd6M4nBDZkIKO+C7XIglYG+0fNMz2CvgQY3L6TeehxemkzHca56JKWp4kpOvuRnx2F7bcztH94RKA4qVPDDR6qAm0wP7MvPWmTV+EqGA4L/edbbrMRQ5J+o9+6NmoX8kAIOoMKU1FnIhSiPmu0HFOMFFiGjJgO+xuIfsbHn31j9nuM9B7D4TOkiuONYmR8IeurKwNQUoUSv2nJRC04JLXXkVEA0OGSv+Rh+CfHwnDskWklnrY0pbnsH9WbtlibbLnZGsji995tUXpBQl6mXzcDgr1trVSwSnoarbzw/1H66wT/3t1uPZU3XrTHUkMnw2XdRrkXiFOUHTn/IWXA589SNnlaSEHPWBT+381VNNGwM90JBkVlQu6mG24SnYFfM544pKvs3QMhI/noF40Li6yVCLIDPLkuSMN79HaIliQasCC2m/RA6O1ymuSLw5PQvqlA2iP0sLDW0ffPYJuzWUhmdW7kQ9z5z0cXfDHyC7AZpPnCBAUbk2L9lbXLhsBQg3rH32YbZnCAwhw1PbMjRmUJhND1EmNnMT/eVMB9w7Ll8Jcicp0ohnqvX7A6xkG9cSuLgy9ixl2O6X1OFLRDm4o4zNdNocDNuPwYg2UPkx+v8poL/+iHom2VTMv++0pprku79LKTtL+mef6owxb+vd/gwREchE5vkSsNXWQmlyqP2O9s/JxrL05lipt5AOtiySrb86TatbLhv4TL/0wGwwZsFW6c1D0ziJB3SHM6OyTfpt4H8Gd+9gdy+J0Zst/1Euvpl4EE7ERyru7pF54mqnGG56zB7OKJc4cWR8Acyjm4WFWpLUQdl+LxJrGUDRMiiEye8tWXSxC7Nfew8bEtyZP70LBFnuebvOYQwjcqn/RWMuuq+OMPNEloigtHLYxBAXxcgc4VDZlRADzyp2iYC6jIO2B+M4xDechvAeoa0S2Xsgf6c5XL7mX92o98v9ZQrE2JDyci0c72OV/VRNooXoP2OCzDa8BBs6nN60ckmCkoAouKmVMDFHs/kNO+Isk/M/F0l2sBiPjraDVlvuw42vh0VLlTMltg0hdmk6keyDvvYN9vvLUIMGGnwb+Z20dlbZXfks+snUImKg/KJgQW+7q1jVM0Y8TOgVSBE0OJeuA8ILzbo3Y7XLkCLLTkkM0HJMadG5U6DAw4LnjmF3xDHG7xKQPviX3nxxozik2Crjl3oZMfv1iPGbXumZR7U+SrweSkN/41Tr4h79LHVsoKK3T8RggaEvAOSHettK9gk6123S/wKyXnn9qmUtPA/afWIN8Mvqsvhx/L8eYyb0/7cGleDNjQvGvnoHuvQUsTJYx8BHlGVmWU87PB9KLIEN0PxMheb8gBBa2I5jao0vSbyiCBI+b1b7DkWfQPK4KfByYlLT2+Xua2eou9BkbQkvcWNTkWCH8guLR3/98NRPfwPGWmjQrIp5BBeDckQexCHUFaPT0kr9hIw7w3dRQYsT3Sc8tIrUCqJfBrPIhwNMmfmiYsdz8OSb1YbZ0xkASGWmv98PYBS7X0HK2nd8QbFBoqQjWhzc7WaYHp8Kgy0CR64MXu8598P7IOT37TNjZzGPbs7iL4Kq8ijW7EbDhQeUId6ze6DE4o9S9HS+GzkLfK7MlPmw00XR73uSo+Ksfr+9L+lwa3A2TSvrEu+IKgEn6oaOQUQYHrHRSQEjb8IqPfOCdxbe9x2bOLiSor5Ij8sCVgw+ZcDP5UXVhVmAN2/t3kUDcUhITJwEGvO4z/cuxQFxOlD+gv1zqhGUafkzb/5UWsIfD0+OEH3Gx2+hvnq/tdSLYELprisXZ4UMr2S4LOM/fn5CrEg+V2nLLFzNtGUZlO0BG0RkKgt14Ch9LpF+VBq6TeUCU9b0vh3J5sdnquR7VZ0MwHlCPR9KmVEbudW+tgxvXQ+j9lj77mBf9iVY1sYbQ08qIwob4RPOVR5XvKm/NH1xdZfrrD9/wQeq7vfM0mwFsWQtIBbl3kqHHVKSVloFE5qDp5C82xgFBOgm3eXskKs7wiFWuSqxrIuJewWz1/u+j/mZjD/0mGfyxZnXbxcQ6Ripm4cC8+UDAdk+/oubBlex3dsbxtjfpMz0D6wH1/oXI92IMv8h+e/HKVymDisUDTGtT9/jqPN/WN3c8QXyzeoPzhCI2pDXh3GfvmkKgRGDbyoGFpD+EhovlA7u9dBDkx5YhpouuWKOvfUoO8X7BaByZ+qj8S2Cck6O8IA/fpXzAF1YPbiLj6zoPdOsx+H1foEtDy6EZQWDO9OVoDv4/BWRxP4ByoRG1TgcfizvkzPrkrpKSKQT8+1MvF/LNeNoPzMcGCrLJrJQIzNXyM9WHAEQt7H1K4bRzc5nU2M+wKDS/YRq/CG16p1a8V3pX8e9jSLboz+aVICF22ZbfMb9XBGtWxaDWYDuYGIbO07C2Ih2STwDUZmeLOIaq0BSGjPvjF7KU6TO5oM0W4S2JJPmTB1RRa7mzwyLBRz3k/hhAlptMfWYdYeQVC9Zm3WkXwxNcHpSmKL7Yk1ajAIJQ0I6V4/5849a4OPg3+bWYHgU2nSNK1k1PKNcNYgBLJn6HZ/JqQgl/c2E7/ufRyo5Td8YLGKt/rZLI8/yewCkgez1SGJv2XmPNKznDGP/ZXkLDw8P8bzibTgK7dsRLaVrQqpidOfJ5HZ3oupZ8N1Wq7h7nz+92QHzuCtyccfQ5ChVGA309L477Xq67ga/oNF5Yt16K9ipFcWJ5DDzYJZZprRWqgu6IuqLFKFBYKQmEAJPLWikWY1cJG4/7JmknHeoB4vtcnJ7lgF9iHGLjfv0eu29NWHu8o+utmkrnTGjsHZmI/6oMC1KI7o/VRmVaIpXbxG388JQKg5cVgOKogrbFrVkPcoa9T9oA8vOdY3hzdUcwkQC8dbBL2WlO52ShbNaj1kzHOX012ACB1Qfp+3ZPXz5p9VWRcMg4AscQBn3PHN9Thp0uvL9YPOWUKfHL47zXEsgMf7WZ/a/8YnvCWZ5m16FjiL9HXPwfo9/W1b7JHsGgHkaQAG5XugbZuVxZWmr8NP2jNwa1FRq483IQAN9sCyz89X2rqMsTrVMRpv96aUHDERhY1IwUjiFdfkv0knDmmKO0h1rOwLSMErLpHFKLgRPZ60pEc9In9ClecYHLOmas1LPRTgUZz2KVGdEfD+RF5ly/KJ1B/XrP8Hp0c7z0Th0v0FfupdyxuAsacTGXtzFJpN+V1nThTzmnZ7WsTW3FccyjoM+ZO99G12nvFnnHip2N6r53sGbbumS8BtOGNLbqhPhDdb+3fY0Lb0OKbSAHEZY2kmGxVRqf1Zeidm73qVe38EoIimyW4mrrz8O8t4nl7ipLNPHeAyoPGKyCg8YhROu0JWdE/1SyjSRf3mI0fNuNEVlZeyAoGyhqAShiMCnTicItCy5JX4NeWENbejOmwVfP0xPaTSYg+Zj+5ShpwFWXYzGJbVaA5v0pKhhZvRsaOIn9F1ssInvQaFHKeSVdfqqz+U9BxY0i4ut0WTG473OZhbtgdD8CoYUb/sBvqgYHdvqZcwaRFfdNgudFzy8w3BBgK6auZZa5A+QmdPIU6kf8pHyEIfxa9JAEglp7mfd1vebt9VI/KQZTcCYJMebEYdUpiPodzjathASav6jV1t/7Nxj1QtqZ7egu77tvGBNVokP2fS8HtwQ6I9NjBYl1UNrpaoatva9HnpxcRt4kOr0+YLkfLRUVp5xHDmzQVlrYXSOZMC+F2XRIriQK3buj+NWJcFztRAoY42axHZtLdJx2WOAwxnO0/t4Xo6P4Z6ecZb88IuV7bjN6NxjTSn2NJl4FWty6ULPGiizwjYkHZ7AmeMwGb5CIV5oOediaBRXSj7jO5izGUEioZPoz3/xM4TcvEWY0fDBaz+44tDq1JyBqxzdBDd5umewi24LpVevCYB0iAL0QyGowXXyIgvXaQGoZE4po9m9GUWi/H4WDtjMl6hcgJM2kGn+6fI4dD8LRqHZPdOpCF3ycIigu82MWD8rFpf3NIwprU3Yc36276pBDaDM1h8xT/lfz9Zdm66k0zeFPVyPFqD4lQTunvyGDLs4k04hzB+sNntc7joUrAqtJXE+V+GReiWPQHm9px7sX0TJ0n88GDtk5B7wWFJqOA3id75ji8QrrVP80Tg1zWGDuTREj9+MqXnWDNrYRNtbwcDmtZWojm/sonBrc5BqPfWgAaGooeEUHl3TpOzas7YSGS2z+IFBxZoylnXsVXTqj8N/WQpvilEGoaztyrnOJfkt53qiLczUDg1yRNvXautQC5KXMtgDuk2omNQ/9/BG7WFWI98OYVdYJgT9PFC8KPS3rSnHckD1+kLEZir5f1eNt2gCI4NX4yQ05qkCaw4eavpszz02Ba6WQVtx9ErAAcio3wD2PId5R+9gT1xtDVYpJvJeUEHo4U+TFXqYrTE3shP4kapz5A6kZP/cC8LvSGogp2iaaPtA7VOpBc0IzRMU6C7A82eUsfqfnKwWRlqhyBfyyZu2/dgNLef66E27fFdgU+KdqBEWeMFFVFR+LSDrMqIPa4ORVdm6S3he01vHaRxQ/fVXF6IEEZ8Au4DJ2GP6YPDBX+/OzPukMfL6Y2OBrpMP4tQl1RKoEbfxeRN/KLgvC0uceyIUwscIj7D37SMFgJ/55S7mgHivhc1KrHgdRQNFvBWPUG10qMvo8hOJ9tqS9mabWXQnPsmmP0VxGp+T7TzCTECT7O9Lho5DXC20SlSI9bkpjH8TffhfIpqp0hUDa6S50F2ZGcN7l851po3d8yVVorhYQ4vfQJNZgNXto91mmQejJsfLvdw4yOixB5kTrqCmB0DojRYHyDx1QtblMEfmMmVqKxjGHZpiKgdvtI7TWN85i4OIbc2mRprffemWK4jCNDUIvNyZcOi4013SpiX1/qqVQk3FzhpgoToyE1qpzI1vITqpqPxTzAD1syKfnZ6BW+5HoUE+ZQk7Zw+TgFIJcqGlgZb+KU4KB50IEafufSMVy8A1Rk3SokVeRkPjAPsajyZdPbafRgyghj1T1cdxvPI6TTCdn5fSDyaRcKYLfiWI+mhfWwkHuwB7K2+narZoSmNgFwvuQ2Ly6dXrA8CJHILomwR5pB1yr7j1MMUdsdSYSFfeNAEbWHAkfKF4aCaQhcjnQyUgHRgQ3pZzSiQDi+SSohPka1qae0marN1DYV3iomXQkbsHwjTZYTm73ok/3TFD6hdNeRp8Q==
Variant 5
DifficultyLevel
500
Question
4.20 × ? = 3.15
Find the value of ? that makes this number sentence correct.
Worked Solution
|
|
4.20 × ? |
= 3.15 |
|
|
|
|
? |
= 4.203.15 |
|
= 0.75 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $4.20$ × ? = $3.15$
Find the value of ? that makes this number sentence correct. |
workedSolution |
> | | |
> | ------------: | ---------------------- |
> | $4.20$ × ?| = 3.15 |
| | |
| | |
> | ?| = $\dfrac{3.15}{4.20}$|
> | | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers