50066
U2FsdGVkX1+cT6IAvc7pDsdRJEuOqIihBrf6kmefuRNF/rpZo9/Owy/xrqUs7bKCQdql+l2GvpBbMw22mUIfynqqillnS9oN0mqz/U31PCswOaZqMBSDp2YWgn7slWzG1Bb6sraCtBcfA8lMtBl4TpdjJcQcGP5M/5/YTBrg7E+KWXln5FCCGkIb1GEjpetxaGIwSSCo5QmAxNgPbEs/thB0MvpCH9xLz7uJpHo9xtXSjbNTXuMeiQHDKSG74G/orUk2YUKMX9DQbShEvUXZwxwNvQOihuZoa1/PaBzVJBrGG1tkfqYKO1MlNJDkiSOmzdmIIBZYrlWkrlpsKgO9OxPZqBSUnJJIR+ohnjbDdM12ehX6nUarKxLNt0n2Z1u7vDnUKBXC5vtEon0rbh7hxnEjTepvccZ2vK05fM5ct255mSWfF9PbA2+al0OPLeZt1obs2GVjFWX/lyqju5MHQW8VsrV9rqHcMZQIArQh7AlyIIc18GIyHboh7svG6Aq3YwOvKj8AvtqkoRvc0fDr/EoneUFcmhr9xbGp2TprOF54Ch+BmZZVdKkG7vn6o6zq0MAOlveuzUtbYzx5xRnOt3Ow+Bws1w0ts/7Gk7T4JG1ig6QP++u04+KLBiIy9N8hT8kG3PBQ24wbpoC0GKeBj8VGJmZOJmSaACttJJx0hL71HZ6G5ztzmzl/wSCtYYsGVyYTvD/l3vfy5rPSQfbi4t/hnyn7L832o5SHtHHAhrmuR4L6wGhoPGY6o+1cZkRqSLqiUTLWyQxjLA5H3f4HSq47dVkIZ0aTu2MhHarUI2o1xP190NMNhmbpEoCYkmVXVmuDSZrIpmoDuN14NgiaQcaSOhXYoOTsNQGsOEPKbGaw1MeIsHO+VVU9Z5wIn7upIfL833EVKfWyIiRYoOCPMsPJcor+JydKn4BePC7A7dKB0ovHoq6mhsClsffN9Ay3LUA1odfdR48Z8lXLSlO+s03ruOMPxKyKoXTXXjj6TUwIMxFVpxHs8FGB4aO0QBGpGpUg8RGpBzwWdI/q6DgS5gNIk6Eew0RJdKFlQTQvFISIAvvRmwllpTd7KdFOILnGIrP/P7cU0Kp9E0Otu4dwtBYIXvrwO33fDUZLxtQss9DiJDlTfZOyjcx6ervC7KDgMM0rCAtjb6Mo7II2XeaoZHMSfQH3BOJahSd7iR99kk/a/+ZtEOk7d3yGCiWFSBga4weU9mmnahmE4zVA4pBGvEOCaufa/srRuXKrx3P/vug6HGFAvRyTnO6nTxmxbFa9OqKk+DXWQWBCLO5i7pYlPZdv5lOI/Og2WllFohvhjI29aqWeb08T1SDWdL3ki+TdgWSWwOrrf+o9TpI35klMkB1vrYOEZiX9wu4+sxLtw9JgCzeaDbVitok/irifditlsMXcuUoqrrTE7CkItBXylPMyW8FSjUr9tpi2DfQZiUEtzyW0zr3QG3Nqu6FwAtramK7hf4tAWqF10iQjxkusLUD5A1MDesObsA8Um9URymsPVmqjDhq5hfeSmynrLf8NPLOudo7qGwq5dIPqYcmH7IXrswM4Z3hnRSEDj7gRccx485jkE8v8f55hDSfEA6CGBsbaiV/QccGV6OMVnQm7XHX9TREoKnWP9P76EU9iqOeG8jx6QIMJcomHO/+jSTktB9YlNN3Rm0q/Q5nPmAicq1/igk8dmGiX39qRKDFmBNhtbdR/+2axtdzbUTmFm7QzgShZDLhseRpypWf7I6ifKqplfuOVAnuExJdBRzgIQ9BKBxWzcUIhTfMNJ0lX/OOX4/Wz7IYOilifeQuthfUZTlvdST7/iFpAGTJeACc6DzF8NFKMQUw3QiynAIAsw+oX4e2FNYSmKfCmLSmWJHdUCZL7CoFH8QR9aAtu/GWOVADMfRgK6wTF4Z/yzA5qqYVMfn9Vr9LExisgdTSsfDk1lT00g9QPEOSHxkqOR0cxs+MmanR1ksoV/XAcFyEfhDrPsMntxSDJppjdSl3M9NRpmPpSsD7GoKWmeQqQHxCSuh5BehiRul0RtlXfIgjRDU+kI+iuiU9Z46e9fhZbLMx3ST8rEZolwC17iY5BcYKcRgszwxGELaPRQsc264XyzKc58WR0uB8GbUXZP5aZo03boO6hAMkM5N9NDf5Tjt8ci/Dgyy5DJLlT6qGOb7rQUHmEgsAi8f68BEGBUv4deQF1s3vaxkHyjHYkWdRxVIU/qYjk7zRtoneVu3ITfnyQ09wO9T1bL80QE6WyPVcEWbKEnhq2vTBZWjW5yZq8b8mLashVxiISrbp4RGxPzsmG58NcADbLU0mnDEiKVYH0af1znzVR40l++SjyBhvMqKjnHXK3QPqDfkROLoa1UD2ydplOhWFa0hyGmFtQNLEVyNU1HARmdQ/a71uYeRenPjpb90rHQQdQBCULHT1LtOTXV6ZgXiG3cZbc0DJ5Y7jgOq/xqSi356cFc7K3HeASU5AkAlOmsxySg+7b/YCJ290AYj5nBaZVDGufAHnUtDSuhKEuRNhLBVqM96Zm0NAC2b2I/e6qY8u3vbgoiILwt2crB64wE9zaUgUb2VqA/UELtmq6vKxwXcutkFk91d83yFDQ6Q7bzbj/SFVJ64iIOnoDgkMGFfq6jBmLghOEwaUeoAn1r41K8ZfWUQsstO1xjQR2UwbmdQTMiZaLjFrQyzaeYmtBwi8ohbELdvju1+4KovGCHDvNXaqlE/1jOIvbnHpq/0vZDSHl/uWF8003UmfGgMbJxRPNv1AC3mN3dvdmdfzG56Lqlcpd6dEBWAdicucEQhj3WpfTrh4LAZVMTYqJ9YA28kV3QgRDIYw2x9CiJxygoJmti0SEgYDOLlxwUycAegg6sMWy7kLXgVEeLyOfM62m3mmegUXukJ11Obsh8fojkZ9mPPu6oEoW3uvJSLnIKovVRUNo/qDWZz71J3EtbOp1DrGUmgKjIKSo2txIJVS/aWKcLCZi799EYXg+dmYcr61j6TCcLxIBb3KAzidIj2Su6eN5xgR4GmYNSGCaI/hkwDhDpSoA00wT5qP2LdgqVp2czzrgZ2eAXRI9I9DC6RZgU/GadSJ+xtd43S2UfdvLeTXLWNm/+Lk4EYfQsMf/r0QqjyvzWeDBtdUzqtBJX2t5NCl7iArlt6eHkQoX7QxNQoglcB3l2mjpJ0T2BZoTK09A2zccNKkhhS7S+PKJAnoeAH5yrPvqVVA+DKqS962xtQPlBzYo9DbsldeJAfRycdMmd16BWLzTqH5Usd/Sww+iTeBhg5lJ0VK8Brn6BV3JIsbkdMI6I/6tCY8/+m1jU9G5D4igLG/c4W+CPQqxWgNnz57SZ98VTjb0WbgT1Bkja/edo5h/ivJQOxkq8Ljyj6zb2dLT882LpO/dUsnBMgWy2O8Z5uLNKC10RdBS6+7RjpspO5sGOji9ZJQRnOxO7Jxytp1VsXxsAyV5pdeVWBR1cEpQpcEN00Qr33+VceaIJxaBp7MQGBkoSRhKFDLxdkr0/AfT8qdb5D1IXIfpRZfoHE9ZPBlBN5a2obxZeKshRRSzbNYv3tzV67fm0oEAdvqEVl273JeU1r+QInQhu5airMVaQw47VV+MDPkSgWjJoDR34YqsIdsrYXvvc5LfgfdzdF2GHYraHjR/zhcoEgdZFsPRi9JTgLHBuhYJry00k5XmNO3c2prTI918UqdjKMGTzvrVTBjuBY+27/NFEzBlgbvyEIqo4ERbgnRPKZ/dphnOgfNSKQSg4/OZ0QmzKC0rxMWY441syf7Rd8ElWNUxOn9WMoYbGKwbNaJK9hOvC6aH9Fz0C6baz8jYJpiKB5GamjWwNFY/v9bUL4zqaDSx9VI0VqPvwLVk8VFNDauYPHNdxym1syElY4N1s3SF8CMx9TE4qc07TU7u4jXBklc9mdlVNjEGmiIlVWdL0mnGMCv1nFnnqmInw7HhQyAAYlIs4wwiHRla6GRvv+LiACSUycFT4FynmYNGRwli8sIZ8bLAakR88p4sVg/E8afkB66SjN49mzPYdm6OfdY3VdRr43MJJ3SiyB9iG8S294P3i/BI1pMp6lLB3TCj9qDyZhUq+gr2tBzOQkKIZ/S2lmlEsiKNPvJnidyLfXtHhRWEwQYGZOgXzXLzcH/QCQiXw4uaOQiqOFF02thxZxVV3LAaqQLKdoSqz1lCY6uVuklfUmTymcKTFt1UTPGyJElNgpZZKv3+EyXnEZceuSA61fDwvXnVqwmux7zh0Mu19eWjWJrBtRxQo0gP2SHi8wabjEPa+Gk4RbdOld2eH/3q3G8bBVzS8W1YmFInE8kD2i1269OzxgzBQJEtys886qym6WUrm+XL0DYwD2qDN9e4Bk950ZtR0BHEGL3j7njuv0Qz1ZLO2Z9QtRpvpsATRgbVEhK5ohYXnXpnpjsb1AUxRzHKHyge1qOIgI/kJGCmyrfJ974enbnFKN20nsRmugvgQePhxmANM3K00FSYvwjYnIHMQcia+m+ReetIC5lK0PReJRLpS9b5OeQdP7f0ciAnynJD+shLPhhAPpBBFkMFoSr3RSaNcATXn0Xik9vX3gFnfD99sMwRVqxOHTPgOum9h3RglR4L6a4mO64WJ3DoWgAR/gvOHKsWqB8w7Q6gdfAlnBk5VoZ2niloq5H1nwRK3YVuGXvkQZ0Sq83VpYbLJmP70YV4uO//b7uQKSf5Io/zHldOsQe0C2qJSiX6Pt50F0qSlXvzpyjU7JJdInB8EjLxrOFuJwyF1SOlwSuvaszhyyIHFnfkW9KrmXHkRCook/8wPU+XBU7SB0zIau9h6LSwtW+Np2z9o0rYMXFaj/pw8f5vjqE0uI0sTqYz6k+cNJDUyMzRm1XrO5wDn7zzyH3KghXTVvIKCjgEsWeHej0eyvJmp5LvaUCVMwPWsKHQ9Kb5s9iP9LVMAl/lTOJZzhNe6pzcTX1zn8uMOhiAb2e8U/2tVoLHG8BIwJ4jmdOjhEHH8DQhzWd2cSZnuwrB5ZYHa3gLObDnkY3qo3RNjSWZnSYPm5FaMGpNaQDmgQeo/QpUc1mG0gqrlC+3orA9IqJyGhbUGmJKvHAx9PW3SX2r1/tdHF6lxikPcauipWBPi2mcdaFD3i9SLU3/KRf0U5u2+BqgBy1nL4sHLeO4J5Lm2NXj8FpedbS4Tlt6xlTJsy74eUWBJy9Mnr0njkJfDWNaDRfZPlw/7+ABntttk8YL9AKwxBHNvKbT56kyYygQ/CHcTI5lTZThnfaL6yZe5vnWIzUBm0PVFby0lPqK8bImuBlmI1r+6fDe4G9Jyjp5r/Gz8qKtvlQzmxCwXZ/+3rFEb2aNog7dLaQhPscm4pPlMc+R5c2YqL6F33gye7GsqQ9Hcr8cwLmSfHu50AHw9AjMyYr9tgBzi035ZQL3DLjOWk348MX+4zY6AYDqLGd2SdHFL6fAsRkIIvIqE9t+RDvkZsVxNRuysUy8GixTg0A+J3P/R3M9yWoYIYSztM75LhE+9E120Ssugjx0YB3LdzS5x0vRh0kr+7LttCefQ84rwZYjXRG4RI2bS1lI/CfuGgvcRVgJY1wGTUSf0fAa9pZw18lVrHmgWGM2thZF4IqyCl3OqkdSB5VoQhj6HW6HzMwsYyVU8b+3pcP9v1dR5Whha9vFmg0D9ZW0CiXvTUeOJ0afR91HR5NzZNFCIlnA61OnAeVgM5bQgK3N746yXf1VyoAgXUx5x5byliXemPi/KGiKe1WKACb3ErBBnvNpVkE/lNbREytenoMK/6ljm3zNayjeYYcP5qElznuTaR0NFIAaWtohUqqMu5XX0W4cOC/Ts/xaa4tgvA3bfS6k6Iuw5XdhM8FHJRrzip/6mQtTZOLKGLQ2LmjLewqgtRijXPDM0pn0BW1qCQOOm8Q3ew5gBGTfrWb40+ArON/vCOFHU8jAWSyLgpZBVT7Q1TGd6Gfv4MYo3eikWEkLZsPVKEj/j5+BWy4F+wxVlzv3rYWk7dk2N+E7Pt6Q1/WOEg79nCJkgjmwlDMsbWhv8FMi77TUhv+P72N8ER4vkHd8O56ZvtqtjJs2FWTAmoK09OKeYHsM5C5lcR9bl6SotmEyUaLZ13ep9oW+wNmNKWN0WgB0YRVxolKk4Z9rqnAPbWz61AUYA9QDPjMV9+6htppszmhAFAdqKbVKkndYNaiFbC4swm6IdJEAVPjFK7A8mi17cRN+4vtS+8T0koCty0PKXHFmK/bScsbiftZgX71lexfvtJa2uL/AstLRdJJvtmFw6xmIgcMpj1xizhw80RDNXERe9I8tQ3uor5zP2ieaOfE9l7na2fESFBkGOv1msj7O+i4+8yuphVxddfKtDriOFB0uAzHwWQDybi3ZsRfarj0jYvy/3PNmGaHPcoySPFHAhqbGHlkcCGTYVMxZ4Ja6AwG9vg/rPj6gs25o6lFA8BXAqU8Y5ousRhMp+B8u5OAoGMLjbnpxkDuOR8DzJDbOoZIv10fvS/s+BjJzZshZMNYJU/xK/Rf2JRL7qVkqEEIjSEHmz0q3aJGI6qwe9DTKMvfdpdNNuodwjnbvsJ3187K+RhNcwaiNMA9ISka1DFj+z13TBZRJoZRKOxwOmY6YsYH8wRrDM5el5DMmBRFRgnOg8+5erLgLTqyIt85I8CfeNRfb8380cnsLacQ8IM4kaey9ZZ05XrfJiEjlUQdmoX4Qwrp6Kj9PtGMcY+gwRkIk6ATqCH+Nbws3ICqD3csj4LQFsFq5jL9+rLGkY9KXLXNvLqueKbO6hXnqraazV7pJhrq29/I2Vud0YIs3cjKyb037CDAz+PmaWc7u7WmSFxRKWnWba/lst9XD6qVdQ76AEPMmWem0nc9AF9J6YQMKsRlmL+7baGXk9ldho5HH7iiPmNpCepiWSpBZ1p6RSwgpmsA62mxCkAaPtYxN+x0KcLIj1J6puiulHZF+vFvdFScZHk75ZzVoXzJjGXGKnpuaaQrBFCTgmmpzmmNMozz2tLmluxRF3MwIHb/lrWsha4fg62WkvyLwNDpuQjz5CUleayivw6YF7NOstveL4oaWC6wBlH21LhdHUSj6rfyPgR3HKm+eFfBTHu4hX6ZioSr0RAn+73LXxJJ9no6Cv0w7lREaVPpn/dph2Z/2GKoJeBMm3c8WVMqT2Ab2C7A/eNE0xTexoMe5tR/aD7p4EXGL3ujxc9vgtGhcyxliy0TV87hDR2gTYOzjy8DMAjjPVlUyomUH0XpzrjWIh8SnGZd71zKTwrU/pzH5E3nxkhcxDa2wN13hoqfJgT7LUHcNcYTA8sQZ7BMdKfH1SKd0fTRSdNd3AinrQXXEvKfyXYV66w83YfySKbdxfCe7QQxEE/eHBshd+VmV4xwg2LcNu8H+L3rWl5HPdwLZ4sgp8FQb9cxpXzWsTaqgjkjT4oBDOFgKzWmWubtzfyVqMQ4aEPFNCD4j3/14ZhMdjJLp5kT6hkklPipT6blmIhZ3Gh11ZBCXC/GRoAAlitZ+IyT6M5ISmLTOOlwpdl+cxtzmdHMHpCfYVrHrZ59121XEbi87YFOk86vXP0/Xpo1L1iihzNm0a3BUHLxvbDpb9woebsAeDA4aYSM4ypo8Qjmml3wY+CgekMNzDNu67KSLYKmZrQC8Mcqlskn6Et1vnmZ/NWnjpHASxPBRkZ7UvbeZbNqIAGGFGoYyYgY7ZpEJraYAEJ/pjwSKg41GlzyLD+x3GHbJ6wJrXLDALZKQYgkbyc0ULQOzv0YPbossxNotEE8h8CrGsxe5FS34tvhRJ+TbbOdlFZd3WxvOJnsEsdN/63InjPpKz0h1jC0oDGY+KRp/2tDypCG5S99lTKX+/l2Y45my/RiZtJRVFD2I3etLkXihUNcj6KzFXy8kXkz3wHXQXESNP34YatGd7LLW1kWJOd0tIc8EBWkg3nCo4TDW0jVgXtQTiIg+L/5OqYw06BiJK3rlgVl2iOaQvAh6NPCOUFr0kboOHYfR5rbt7sIERR6dXQdHA2XewxDmTQsH9X/cPkqRh+L6xDTKcNryBjDZ7rW7x5h6NcY7e3nq7gXTsEalmg60UE8=
Variant 0
DifficultyLevel
543
Question
A cake is cut into 10 equal pieces.
The angle between the cuts is labelled on the diagram as a°.
What is the value of a°.
Worked Solution
There is 360° about a point.
|
|
∴ a° |
= 10360 |
|
= 36° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cake is cut into 10 equal pieces.
The angle between the cuts is labelled on the diagram as $\large a$$\degree$.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/03/NAPX-LA-CA12-o2-cake1.svg 220 indent3 vpad
What is the value of $\large a$$\degree$. |
solution | There is 360° about a point.
| | |
| --------------------- | -------------------------------------------- |
| $\therefore\ \large a$° | = $\dfrac{360}{10}$ |
| | = 36$\degree$|
|
correctAnswer | |
Answers
U2FsdGVkX1+RwQTa4ar2Z8gd2tVMTqUOZR3vCeyl6hKBTLdSWB+1e551PHHpkqtbpIxzXDmT+dyUdgBbzyi7Ktj1rJG4mXAmpUDH5/pKDSApJhgPSvJY/1Cg9anvqHnZnMcK+cu7+3vKUkj3ZwIpcio8NgVjnFw9X4QiLylIG01sb88j5tu3uPr9JgxscMUSsNLfSkDSLnI6HpcwkFEmqOyEy7IMsmSoCCVp9uNYctggCc5LlFmqSEpMQqbLL1dL71WmThlVmIjytLpXer93WAWlTUQ6wRmv2Y46rBmmnxz0fOKMxe05fto0g/bf83fv97+iRAJI0Uc6/AI5v4OmOeEFzE6LXtQUARBs/eyrukb3HDaXC4aP7w6xrFMWia5DTG7YrXADPSAhhYIpALQmnVP8IKNFab4QQzwVBGRiS125kp3YyqJs7fmtFqaA+IlTXmfJlsuCVUi6GTITUdXySWLIghfg7bk7t8bzpvkNWxMMPN4yswcbW1UV+bzNZ7khZTFPAmF2mTQXxAdUTHWOnwGGzkJhTP1sms+bLhfF9b211yvj07Kdf+V1GGvN6ix80O769qGi10RdoCp7zlHVyGsQtht7vYOirsTl9r+e8o6VLj7DzQyjpvrWuoX2eE4eKags1nJOXrsiDjDjjM6mKaF1p3zn9sMBsQefUf95WWKUECxcsDdSFmkkADyMoWZMVUV3moW1XO3uEHu0vU/EAYFhYAUAJPK4dRNY/8SH8moh6G1zyZi6CeTFBmQi97vLb+rwhGOhmva/HJtoxWJx8Fw/HiaCFyoA2zQhFwzn4xkZDvdPu7rsVCNDHXsS5GG6xjTmDIatQQFIxNdGIyMYABq52DCO2ZWI/P2SI/N40wnZxDrVpUiK7t+lZGsZrRqCEg/q9o+4Lg1DSS+Zp1lNNqL1v1j9gIm6TyE3M4lawhVDHBd1+3CxNUFzDUo/Jr0m5iMooOeD1xX2+KDUKbApjgxkuM5zhr9mOd8P7/4TCjNH2siIPTAxbBuOo5fgaU+fehL6gew/rhpKiA3B41REQEF4/D3flMioWDVsPYRpjJzIzm/SKfvaNg90dd6YNkU5kRHIr5fy0f/cjtcs+MqrvKBgyK27PBoeP6H3DGUUzWUiOvcZ2gYPv1GQQ52aLH8feoq782RtUlD/ZcC8Ge8nsrKRSn3gOG12hDyXK2lP4QUNuSxiADcgfroLq2/NPpvzggeXvR+imV5OKhFA6jQKbGO1Ywjsj5/C1U/K+2QWRSJs4Uk+j8S2e+xhuyc+RJqKmCbTpcEr7DOyfzgVOVDn8in1RUY2qGlvi1+hA2+s3cfJCYUD7XV38rzTmSWAdsKsIqETWIn9aiebpY0gJhSkUWkw3QOXUqUlCVTEUURbJDxFGnc1yv1UznZ7ErZPp9qvUye5YJoSjn3b0+B2l8UIYjiMIGMY8fhd5qhJDUpfHNLMkuBGR+rOnLuY5j/mHbSXx64u7S51K1WS46SoxeG/xlZwyU09Tk97iNe2fy7T1OvTllgp0dBjXvYCz0+WkC0uQYbJ7i3bsbcLZ317zoygVsxdss3tKMFVB382Jy55e+uR5YbA7QYudZQOiA4Xv8wj8rS+ylyN0uZRQLmz8jZUe5H3FH7YfZP1L6gqqAQIMcWFeQjhaTlkx83o2lJpWYWpRa34YbRNiX8dso1MgatlMQpk3D2fxMqujVsmZzLF9xybHnB/Lo79YndfurpmnhMhbjHqqrWnV7to1RAHNOBT6TcJMe2NrNzyZ9abS8xLSoTRT/lJ3e+Vnp6mQUsLds3mY5RgPwJcC6FQsbVO+g5uUHScWZaWNagaNmgbafLtiN61C9DuB6c6U8iVSZREitOO6IsTZvU99PNhIHm58SzZsmuoDnfmsXzJJbgAV2ibCFAikfrG6jiD7v4CDVycE5F/vY5PNwDO1Radsexj9SbNm4x4TMlU6GNtME1FKllZFfLH/UPpRxMcVYPvRqdJ9IRwhkX+KrBcbbCDfUq535mEHQEiMsbx0EFBjE+eFUEgf5Nw+3CnF2RFpIY5UIzbWdfYs7psFOd4Kw30WlUHq1aP0hbWd2jlbJJpA8VMIrSn58i2C1ACrDAryFXkc7s6OqL5ar0L/4X58/LxsG1DdH3fkdiG+hZ58BaD2Ah3JswyI/s8khXGN2f6IGbqWxw4YgYldFSn4T5kURW1uVFrJdti4Zthvytdh2M0qao6AZnD4AjWG8IRUPBVFHoYwyYcnSvMc3y4ZXoCGzHxRUsGLFu54kM/zwkA1zoLZwnV66zekM+oITmzCn8wMSu01/DsDZxqbF12iI0Do0QtJSxpF2spMhPdhcJ0fPs7QxwuXz/2wQhtVCT/4r3BFvMPbg8CMEP5khTTDjESpWev+3cwXKuWAFxVZT1yMr2nwXcchTGINbPweC7/nGgl/PQ4OyPc1ntNuNHhIVZ501SIr3AFkdAncUeXhOA5Lq9x4WS1wHJtEQV6bjJbfV7Z7umrhYWui+fDAzDTrsumrNOpyok4CMWAr+G70v5wxceHTrXlKppeAFV5tDg/PLerh9DFQxUZdmcAjxAjylCUP4WxRVP+L8OVBZCFSFHv2MQZlNzhGOg3jHw35gEcJQobikExYZpeyNmVK9LegjRbrdUOgaM0MxmM1QotRu7lFqwOG+58twg67ArpZnEXgF+WtIAuObQxkPdU3BVoI6G8CzS1xCAdjLeKhaSUFrwrso6Y3PeXDhJ+RsQP3WP/GBgn5jWcfAJaFcVRdyrGAC8T8ErHnap5TGmyxCcAvZsozsEva2Fr0bMITuSwp8hqc9tqkEQX9P0pDMPtZvBgyZy0d4o8hPg6P0AiDe511cPBSyCz6YaJ1ow8Mb+Sg2MYVgBUfKnQd6LHFQDfkfboPpUgnVmvpIA+KecYlihZsSPWeZ3n2P8jJK1NaoklZSJfuV2SrxvI0zywsaqu9EOJKuxf1bo2xIyKl3jS3ArrNsLIcAJmpYEnkxK8KhjyypvCQC1agzeHBLQS9b1dq1iajCKJlEFJ5TbIyyBzRHTPaUouKTd3Muvvb+0HEJ1LBOxxQJWgA9cqVVPYgm9uNYvi9F/QOKtyBq9aJrHm/SO3G+nhAmKBhfoZ1OxzdT/nil6AamWEsv0k4+bgNNr3z9rubMrEMAd60mKtvpBpb2OQl4vqt8j7HR9mWwc4icHZbnTJWjmV4i7fQBWayWCNkAUw0CCxhixWzDIl2NMBMqn6B56zu+NZxoRywZQ9ttWVVp/K2AzQkfr0Hhsnyiwt0Ny3ArzzSSmnWszj+BBVTQ/4v3m2a6JFUFPYEHgp07VZeB0F8RMROMqBiO8cnlp+wc9ggC7e9d0x3kVb5spJDIl+SZXX7OH6HeUOOIuy2Qh46kN1b6azBHL4i9wGmxgkMhl5ZrUVCSJg/fcR8VQ+1owd1NeWKjcBtY6jXjZnWExcbJpjlPvCm3PvzsF25XzDkURQN5L068k1gCh0fefZOwF7EMsoARjUvq5tnlgd/ps1MIzwolbsGAeEXb2sJVziyIjBJSs3ZCJf1AIZ7QEnP+pxVlvtoEzBY8hQTdFFIEDD5CT5Q9a8LhRdiiRhUY9A+xQt9Lx1KknaH3uuSjHCYfBfwNKJhpn5nDjYyn9aSGZs+6BOq8GX5hJ9ssZ1flHGlfM81D7TrB7o7sn0TsBvogDmOj9+M3dCCNxAtPy9RDtTNuGvWO2pn4uBW/1uGsRCio75ihdr4E20QQlshn0fFxWZyEXCzuVbqHKtGHysa3G0V6+jg10p7W5YSScXnmRSNRNKis2Dd8U+guL1qI6yAyWjjam2X7rQ33xYLKX4bExfsi7Gk1tpPFgNtmZ7l6eXSpnNNqZpc9iiO/yN4MMp74dlpE9iAEqKcEtz3Uao4QagUDBNwcm0yz+a7nDGajSLfQrkkiUmDVCKSUhM3EXaVXFcXpf5EVYgxY3n7e0BygcIeQZX3+Jb9i96eom3ADgEhM60647/9oUPt3StCjweVsXDXlObpN1JmBPAp7kcvQEBP/U5Jp2x8nnTTucq2oRtFIFQfFCuLsd3Pz7EVlOX6cxbiaiQFK0OTouykYTqWHIOSJIyjOu2rQGiOfGBXAcEEGLLGRmEjTJYcPyshHTkCemK3ZQrYuXKvK4Vsfd4IYoHdaORyC/wH38a/drLocYv3r+Ux/uVQ+7WiMa1xhSwprZkYmkEeQ6Vu5kR1haFAJKjDE34fTuf/cH9/O4weH84hw3CZz8Vwu49l9654aJ+hQoyvQ+zDU7IoavSdqBhMeZpIx4T3OZnaWfqVIn2D0YcgFKNfTAuKp8p7vDJDtSvLboLXBKVmsV3hbza4GgLHlr4Sjd35fJ8EAIVFOvmdNqKOm53YOCc5rqTqHikkl/JLZXSim7xpM9lVmuUjY/ARoiO3CIfh9FhPy5aYLBjYkVzitUWT+VTf646J70SVx8tegn3Tk6gt8bcX7ir4ns6giLCLgJHBbIIneXyssw/cG/eW4cNY1lMwIBHF2Rugj51Bd0pxbkbaR+FBvBaOD9cvoR8mCGjV+JexgctdZQZoOmf09fcmWjbshHlpjrmFAcrt22lbT+DGhQGMg5uFdEn5sjgDlmK4eSatC+DAIaS3LCTYlhVAHWJ4jxbxJe7kWJnWTjckXfhezqnvzwHPi7ns3+McEzs3QfvK2Jo+oPk9rjEJ45H2CB0RjJ9bgyWIdlN6BO9djqFAfHAngXfAd+exRw/J/7Y0rBxAR5vp8YXQPHuXVf78txlABMvfQaMuj3GkDyr0JvShKKzXTdj8PikpeL3AwwZzL0qQkmRelqmeZMRxEHG1m0KMNtzWyuoilnADxh9rszeX2ZABUd2e3xplYgHl3jiIXVChRa7vNg+z3EFvv0OQmPua7sL8np8z5MW2K2w2nLi1qltIFhg3LvOIuMHGU7vpOxo6wZpQb9GNjKOM3eqHo8ePE5ScfA0OqJ35GhcJ2cDm9XfEh/0Uyl2ZszFeO76Bfcezjzp02Sxw9WksiRweoBCqnnC/tnZvDj5SWldtW/u8tUCj4hUsw15T3R9l+N3ozq4o+r9Zl3RfEdZT5EbA/9T7JWw3BMw2JbOWQ1BNzCeDGUZD6y2IGLkLtHXnDuiD4EkzWYhVDR32m7V1o0ZNhNE1bzWeCXBzurL0ynoA3rDJgRqOezo5vRmwM2gNYpUrVqq+J2bc265MMgbhcV3QVFNKVQ8ulWnz/ueCeiiZPpW2j3mkOdNAMreO2mO7Qy0k0tZf44D89wmcqod6lHs/4e/4e2deNlJuJVa7zJefFC1bqkT5mcFvZA9//CdY/APGmYAgZg8q4pM+7Oni9pUe0N6psS8gWGJ0z8uz222yUHEJ2cBCXZGfj3x+IbJp4mx/WNJB61R7zWg/rj2SCZbQJJe31PTPQTy6d953qKBwWAw8ra07TIGUT1SPnGIjslZXB8Mt04a/Hvn56RsvjnkeVgk540wMX8BoSH1qbiBwh//mZZV6yHKID9/3q1SDLDxNpetNd50wjcvDTWyzY04GBS43P24lf+CULojURPD2VnZrhNFMCZj0YSCb06W/fSeWGdgUQyTJK0xYmft4JaDwNKrzA50I1+zRN6dRS4iLskJ7MVhlKAE0Fkd5ByToGRq8ZxY2tJ3UcHK0W8cgg3b/JU7UYntLYAV0EluLTiQtXVsgEOmCtPtUAoQ2NyGVEzWGkSTMZ3fUxCmbXejIkNodjttd7M7WAN9iCKFGs1PaEJZWTi1ifHDL+YADp0cMHaTa04YUcR1M7RmZe9O+R18kP9RB4myRMOr6Za6HKM9Z/cYmSD4b8tvZQ+pshNSgV3BbkAzuJM3gm2zSG+2UGwnIjv0nS0Zljq8/H9HILVhXzIfXFK7+GoxaIUxJOfYV5HK9rOKRZ0u+RhLZ9vKjEaJa+cBMOPuIFtwAW91J4YtcMTwgSO3+9TZcEig9PxnAp6WAL3vdvh4gKkrfLKC1xZ7VSUOtz5Jer0NPx6Z+tB22WMrxniJiVnuDrCjGvYHonw9Lo4ARMSjr9Fh9YX8/ZvbwdbODCCpZfaPcpqguFQ1DfiRYTerq+vRySL3U05wRgicpiApXVxvyR6Q3zCsXCLt2KEWn3e9jIqwRkBGFEfVgjenKFKUxEwxSCJNQYbryUoPjRYCmBYxMGfHbsc6zrugSrf0ie7PTchdufoupkhQkQgZAR6PeCxMQfKp+YQqTX9180JH+61n73PNt5Tvxh0+D1MeIcsdf7VBfyN2uiQ6xTvaRjB6osFzsZu7dR8j9zE0qrCbbouaRpJEIzlQa7k3jmaNqNaTWOTHMuCT+/386okqigGUsjISbpeGrmeevrebqv3OMXudRg5OhidYaLdyPk3iKyIUuJ/Vr2XaeTzbNqJlRM8Qfxe0qnrmaPcflTu0FxDVrLciebf9yuv3VTg6ScxqW0m7ToxcUan1CUURB7fx3GWJ9QAoa+crJiU3uGFjThek6RV7jGawfyIJ9k9rKlFwpQCDBxyb+eUiSv+gYkZBhzzRiXncZO5vSv6QJ7FEsARFP3ohtBSogH/l3LnDapjvXpYjQmCmtQEP9Seg2v4ATsWKNe+NRUkl7g5yXoRKzA1/QO4kZOI7adaMbTUSgU7GA1VSaY2pClANuhHs/BQqlaPUdzjbJIuRAYQjnmu8twblC5DqElASC4cC/oiHZQzwLNuEqKm+Rjh8F9n4cG7jJzJ7Cs7nzRJzwqS+kNBPowKKXLyu2hOuuBABBFKBev1UtBClDzD5w1IdAqTSwWsSJtWOJTlB7vCm+y/y6RUWSOnZkV9MBh/Bxo1LkC7axTPZYq4B10MJH8vZsqR1XEMlE2QBFKVPY7RxeItEpebsY7tIm/PkPJHFHE8yC8FOE5htcWkb0qyhRsrgxu6PelACKGFo9lw5OEa/0J9hER5QawtP8JV6QtgwUuNrKIjuUGOLRQ5NHIF1DqfHNwZU1xg9krJB/ffhozXVncFC/eRSKun0F29HwA2qlF4Xl7VUImtuLEBmyD9kB/s8nDqQrfe7PJT6+sMo+Icwz4NtuFalUPN37/7SmyyGpaBLHEpWUHXQTADhxr9TQRzVuje8qlDkkpnyPrkt901kJpGrXFDtJQACon68uFtRHWksJHzNdA8QOc6yTqggOp8NNdlOE4VI1qbhQJcSc/Ya5xSQ4iUm9e751/MN2O+5b7tSiOGYQPkQaCSC84cBjtmQR0IxymvZ6KI++4K3xdf15bTciD+E3vvGQcMlag3DOudlH+hX4c+229kdishonWIX6ABRfX5ipS99IUZPXnmsz3X6irUemG0qAbd+E128UF8oJ15kyBlxkUcRI9v7zF7X/H9GHErJKwEGy58SFCyH8v77c+n6yhrJSu+qt5xIDyXCCTs9eN47wl+GkHWp5DlqfcZGTXXFGBuHDdghHJUkNVAQKyuj9Dc3KtAWtM0ieWTjwrj6K8FUtgxHJ2BrCw2a+EMmQNHOLAiozWsIVEGs4yh6HSjYT39jqCKewWqGSIbXL1ru1SKPsofzwKkX3ckF4AxglwZ+75KPxpnI+JNMbMN9gjRnhnsKdXvgOAugPSDkpsV01Zlpnf4VejKBHwt/kNRromIdXQe+B7ckmlIn0HzS7O61CEESb8/9uIOnX/mhg2uTZkIwHkie0cvuo922nn0xAsHH5EgxDizMw8m0lRCNqcjlrTrUbIeY5RAMuhzYs2WEcnvS13f1imySNMXPY7eJd0HrJbTKxJ7gXL94FZjNwhpgzOrVj8mhAYUUm8AxfJ8FiTQbJu/Tv+SIVVqKJYzmvEWcVo4sJ1Q4R9t5If+xLAI6lYm19WXyVaZEnaeJ7hDYq3H5xl3cZ0C9Q1AuxtO92dLXn0my2KJQKpCHwCyhMRd+e4JfWzwTEp1c7futtkWN94HoRr+FKGisUbblpP8CTnB3Z7OYBbPEtV/STKACHc2VEaDN5Kl6+4Y0DFdx0jqfsQtElKIGzDJC6GkfhTC33zPVJqtdVQ68BpobGXDUes1JofEpbvgObARkPAAcWl7Wyd6mgVczUL6hPlReRZ8kXwaIte4y5o5WNSRuLgNzewng6P0KGtXA8n9JPmBlvc3v9Xg54VYEWZrLG1Qdc67JGwcHKoHPqyYCQHtKPQltEQ9/Eq5zZarAxV0AKOi+gABC1BZYuPxNuk/6d+BPS2RQ4/66lVJ+zWBZHceZsBGujSaLEY3TsGrbQvgQ9IgYAkjDdSBq3gPZcVQNUa6BDOIqti6Cmd7ZVVPDyBbyEaQPOUdWXNpCmwmW4VSLh7USeDqXUm4kp/bvcJwe34k/TycO1sHPMgjO9rGsEqjjvNfpwor777mhmEWQq4l7jxT10katyup1dwLMS1JF6FFLTYtIntw2lh2GJ5JRGbw4niGZkdshJN+P879w8vlDeuLAXdqGpg+uuhv/F44nF5NY/Ce/9Ywb4itgwOVvp9zhLGfaN/zs0EgB4jzWKGHlZ/jm+rinYU30r7/wmVfY2uT0pu155c1JVVJGdvRz6hXgmYH2+LKhGuQ6nRtbtFSVQfdMU/wvf0kGjSHEwuSHu5Ht6sg1I2JbQKeczofXp51KQk4A35oTyzCa04iqecVZpUZwJU1d0hP/YEwMEWIQGDMym3M8pQXYNPNGcx2lYb+Nnts12Na1b3YTmTtjRodF2kC+BUpumrB68Iy5RcGgiBFXuVi4Qcuh/G1kjsGmAcET3AKx1jh76SLNaGbv79/k99k0nE5SG9ESRGfo4vXzcKXBpwMDdAWBL9z+K0f6a/gjESw2JLcZDsocdbQ7K33Gf7M/7iijwmSlaNzy9A2njzbI+xT51UpG6x9UJ52SJGG9ymiQsa30XY6f1vZbzDYYiiuyXRb+XiAs22dcPgSqpNs9+jo1wTpMlaQvFXatOOVnfPQKVsvVomXcPdOJEOYCqv02J8e35FdHSWQUazomhRDbB6pFVJ/NoR6R7RMrghYmdYXZ5a+b+q1jC/HMCLwZawNTICalMqJCQMHgWIeaaRa6c5QR8zTWqXdhTASzZ6CyV9Po2koiQsTQSWSb+65XG2rUG5mTpHJwAHzH15Mgswe8jdfeH0l8+9/9CCT4QHc7lA+XxWGm9E0N3GjMSvU6JfqMwH1eIwf1gslD4bwcZvWl9NkPEyfEeSLk6OAi2XdHilaOdbOx1sMe3msWa2XwJPq+adBgPUyyYfwI5XpGAcyxzxyPjJL58gpx6rR7rg0NWLH5A/iq3fjT7cZlf/pde+3XggvA5JH/pz8OGSasZOucQexEgC1E8UGBbvV0qz0bJfar2IawZzftRnpyyO5moc0IkHjG1jAiHCLSEODdTpWwUVJGcLN1gGn5/nnEyEiohTwQDgdlJPXnc8ocqDP3UyPh8u4jRMAMIA9QiowtQHNRmyDvVvsqaZXLzJEmRjR/qZFjZtZb3dL7dpWj/8UY+UQNzOIL32A0hPedZCm+7u9uKxsYmkr6f07g8TW3XsA2vpfslmYLk4um6FBMzk1BMuP6Yx/pk4mRu09wXP3CvgbimeGi/azbearSUWQZSfSVrwP45ejrH/Khe8dvnA0OjQlXCsbc+iO4r8WqVBhgN1M78Eks+GBsJwAsNnmsDHhM1S3hcQ8fXHbH6uckICepwnf7lfnz/NAdBfpl1JqNgrM4UL5IDvcQPLtezITlj3wptO+TkK8CTxlxUsyBGFXlU5ksnY7PLzMIeQGmsjq03+Uk7lhjWkoHiNhhp9z7u/DVD0YToprkXcDoxZXm5KBG0+yX+IpwlCkuoygWVmljUQWebH3zpKR8/44C/1r9p39mMUZCAOcR2AA1egDsMTI+i27SvfPRxRd9hOeJAy4ZQWov0Zp/rc8ftwh5FN6AlxfvZk3yLp7ZC0qoOqY7DJwwQHPGvn0r+6EjeRf95zgsqzO1otl4Jw/YgZ/COVecKQewpA6VhffkbFJrdmXfY4ixZUNaSgR/ng3Ic3fLwvtzwaUUaKvX7MzI4O3rGrk6TyQXxOLIKq9+4Z4KqOAECDvvkjMR0yE7mCCWlDNyk7aalAAdiM2KBJUO94V+40YwoROFztndq6UsuRLMYqAcWm3DZ8AfA8/IlnurhM3K8W5PZI8gJa+cpTpWGQ9KpCDDen+ChYPR93WMr+A4cT+EwojpQVftPr6Z3LLufsk00tq0h0YxkQlADriHNsQ2SoS/d6EQqJ0AV/f1vQGRrVQ7cmXU0ntYRi2fpv29Z3wpTA5z69tng/7ty9eivy5Xl/MOE5BF1DKs90svOOhL2epAhlQSu8Wyag7Kkfmntjr6WaGNrb9YVPHcxi2cak0+E8niNFStdFhJK2jrPJ4fd8Vji//L4pNQYKjuSZFXxxUt0kRmjfqXEF4JNiSb72AH2oq/dhxFP//Hr+kNpdQACboHQ3/OvqHbjEJamJncD9iRdvvwm+tI6mSM9sPEIDu9ZNMzIVOotrC9d+6n49+gXaKMi4ROg/X3kGeqOizZfl8B65vxJX0BPvAohajoXk6q5SLsINpMp9TGJbtImbWVJSnjGINYf4/8anlyK5J+Zj+4aeCY1mugoPCAuaPD0QQ+0s1UuY5Rv0B+4SUE0eywaxIgzOicolCLktwD4DYnABcGZQCQ9AqPci36idkgt9BJmayGfjhOix3AcbFjMC0J7CcTJVSDbRclkx+6HDfaCun16a41gYX6vxR3B4IoLwxlIgR/kxGpKgzH/+zk59UgXKMLUbSfLeSJQVn79A+BMWGhB5XuwNPQLknVwYbyJrEh+MefKeXvP2cPiFi7kwqeh2kHw6lIml4dz8yW8XQU+XbkDH9J+YP8pYp3nXUcmaLMQ0Ug1vVr07S4+MFBQf5KZH5ri3UXXlo7RrZaiqLWlxs0NsT5fXaPIo5nWQ9GP0lIVASKRVAojGbhSoOOpcL+SNytOwfu7Q9DEzPkHDdB17t8ihtDThog/Mm5mlya8cAATaflP+szatvR0U9gfSN7G8Z6OmoPQNU6TmCpRGL5hXCQlqd7PNpriq8UjYwCs0iYv0CE6mYSuP1i63UOltnXBDgntvRkhLNAl96LvBgCic2Sj3yP2xAa9knbItWyUJon3djQOibxU4z1YYj7mJG29OzIyWdXkm6IENhe3fqYhM1iGq/BabNvO5ox9wkUX0MFgzlzwPnCs/aV2Yskpteadw4//nKzeCfvB3SxFZLrKISHoHLjjSZ+JQ==
Variant 1
DifficultyLevel
543
Question
A wagon wheel has 8 spokes.
The angle between two spokes is marked by a° on the diagram.
What is the value of a° ?
Worked Solution
There is 360° about a point.
|
|
∴a° |
= 8360 |
|
= 45° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A wagon wheel has 8 spokes.
The angle between two spokes is marked by $\large a$$\degree$ on the diagram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/04/NAPX-LA-CA12-o1wheel-revised.svg 180 indent vpad
What is the value of $\large a$$\degree$ ? |
solution | There is 360° about a point.
|||
|-|-|
|$\therefore \large a$$\degree$ |= $\dfrac{360}{8}$|
||= 45$\degree$|
|
correctAnswer | |
Answers