20230
Question
{{name}} {{work}} that is sold at the market.
In a {{object}} that weighs {{mass1}} {{units}}, {{name}} can fit {{number}} {{item1}} that weigh {{mass2}} {{units}} each.
How much, in {{units}}, does a full {{object}} of {{item1}} weigh?
Worked Solution
Weight of 1 {{item2}} = {{mass2}}
Weight of {{number}} {{item3}} = {{number}} × {{mass2}}
∴ Weight of full {{object}} = {{{correctAnswer}}}
U2FsdGVkX1/IpHezFNGwH7Q27ackT3GYJxb8EzNQPhlXzXD5rxTNIQqddHxDVwV9lBQqLI/YsTUgjV756BB6G7vUa3LXhlawGgo7DcDaIGxQgTclb0+G5Srfx6EkNRbYfe7x3hWc6vU2iMWKhQkBDADDtQ43eLHikOY18IhzbewKA12r7KlUkqFAfvAaC7glIpQQC71vaiDEC6nRVxD1wTAGgs9gwRogE9wwhYR0/7LxiB1lHYPVu670uUbcDr38CtYqD0sT0TuypIqcQlkIYqNiL+THQql0JR6AIjajj4U9vBJ3p1CRuylu4o5zNrNjBb+x6GW8LB9H93GM4DXlR7eE6Fm5MqVeuv7V4q6zVptes45uiHpcyn0s8rBT1Pi/oLcmU6OikRFEgwjpASi1uZgxqbZuXw9RSe0pUYa8dns8laEaEnKXrmhvLrpwfc44zPzpPe356U3MCLhkfZYm2T6FmtnrrSBX7otux12/VkmF8AXvdApKe/HuJsjRnU22Cxxj1PZebQX63WcCOCOWn8dw7eHZgzcZOWzLF5t8IlrCx+xyMP60gPpMnkS5hE8SXo4NeARx+aQh4Huy4dlz5XiA+5aGoPNU9hTgghxZZ6pUOY1EKWJVNYVLDZ3dmiir/jXXgheA0YUeYW2EDUHdM4TVfIMwQCcZcTpJmFIKmEAie2EUm1OX4IBFM/BdmeeUC5FS2zBCDJ74Rr2YQEm13tqoziiiZkxJMuY4gQXTE+cyPbCu4yp02lpW8JBkJYB1seehRlCJvATeXnMTwKR2MW8Q/1PeUW0+63GjHqTaZkPTiaMQUL7fM+2GQnK2viPWrkaBDpGi3k1JIqYqJmhNHfuc18myi0x4OcDfbWHUOyo8g7teNzvKxA3I14TF8asBAc+pmwsHsZ1FtOz6XjVmqw5uVoUy8/CmjHN7HRBTMFLe7QrTF8/yaSZsr7Enu53uxK4G32snVytd4LCJ36HNHsQRyxF1u7CXbr6ke34CaBFB7xxBWmWO7Mp4aBDsfzyqObzDCjpYTjX/iTwTOkIenYmT9JVKe934SgZKBYCODP5gIZ4RJcHCFpIcLo+6rEbGT4syQzue3grikxNpCXQlLkvQzg1sMhiRl8Iy4JdFgoOVoti+3kOYdIS5p/vParn8nW0PK+CfbrY5j5LHcKxULv1IDidgovVgNT3egMk4tuJBrykA5EIuFtGqZjecD+xnKayjU2NG9paXyARm4t38nWPaZnQQo7JH0gpMFpZqbX0d0BAdyD/QPQndsbDD+f4SN46FhUL0uzBFixzdkV1onlU5xcxm7vm1LzhuQLVxIpFMqMKWHDi3y/hc2JTKtfAWjCGJlrroDx5bmR2TNySsGPBIflRbAmQME+KtesS/nuk9tyimnXeb01LpLZRXIUDWRj0rqCIdDuF+uPKk2gL7t2/4y14DiZR8kk38NdsZLzUk+uFWSI+cN3+8Hn76hd9/7lBLBcTz58OvctN6nbQ1Ikhlywlt7ijCYdjffJdSeV8nyNh7Ko+RAN+T1w8gf9XhlsgMLlax5toLCRDQlMDyij8J1gkL0kJ0azLT1mSo1KaVMeog/afU1YZu6GV0dUrfoR0lMGjhsIzLap89eaWXXzh8LRrqwEt3Xco2pVkSUP6AJB7UMoHwoDs5JYuenFlIaRZfUPFlKZtaOzWUDjFjH8xCc3c8yf+bFTfvgt1hkTwdjCwBofmNkvWf2wRKsQVwlh3ZD7CI1hFIiODg8oOoSRlq+BxDccDiLCY17JJy1IcRF0kcU3ZfqRkkUtJQFad7JXqFu/WGPqnIFAwengUmdG6hL6tP8XXgQJDu1N/vFztTLxJwY658lZ2tLEQA7QxDc1iWvMoxZLmLmSsP/YAnNLkV1YQPb3QNX1xNu5N9nn0tFwY6B+rYHmsBDbQmtSpAKUPe5h5ComyFqm0vhN6eMOhDYsYbDWNXNHWrH4/seGMTqofeEqIpzjiA0qg3kZ4nIZtQZc+JL8fLA0ThnAa1pC3iD3YMvyEM0uEUdaOV3TIZAKtACXaYTRPSWm87UObM1yoQbZcIPguaDSGk5MUtRVtkT2265DItNYFxr+AtEC9qPPv1wyIUIKn/C8ZgltxTB3pnYRmc694hprkabTdg23aiDxLCc5Id8tXFoCVoh4NbCKIIDBbcD4jnVXgUOHI5jJTEg27kF9Z3BXFaArCF2ia26/mstUhmeJMRxqwBaUIRokjHMtLO+JYiYUvMyAP8mD3lHQ0VwAnU9HM+jSsqpWfI/2cwHFG7OuSZNHsURxnS7+LuZhUrHV+tjzAYcY0nTdtWdzyJfGrVLki/RPeFjN84sijDqv872eoYj8XmfpiAQLHTRFo/elJZN/0C0c3WPuK5dRp9OZE0LW/5YCO/UgCcEkS1PKf66UwSt7RFZxD76UNQ1glO+r4DkzKDC/dan+MkpyzCeCcSa/g1m+vplqjtA1C7qnaBkfOMv7YX9PGCrh++/0CnQ5ZOeJBfrf6xTXQlVpLZnWYPJwyjTtp47c5HiqmifBSqXlJOWjLVgAsV5RyOEnzDlCVz0CRVk623WMWhcCb63CZWvZtzYqyADxK/V3OpZ6eeRWoF2v4AmwJEVvWuCShpRfIvp+h4FLhsM+TgiZyAVHAdWBwNFCIDvkAcQTYuXvCWN3AdtZ/SN5UQDN4EYHUcJUuQVzFCE3IzvlOHqmfZFWXwupStB1nW9mTIkwlSxoe6Z/zAWGxxBl7Pu4AU79v/mpGzVhR73E33GqrdQQg4U2jT99qE7gXqSwZ2cprorl6GbTka8lqs3FjVAlyhxO1xcuxPWU2MMw/zTDcZBUxIUy1wx6CUqLRXZwSF9Z3QCXtWYixVzZ6kOZUi9JocwWB66MWpstk070TPvX2k5TZWL/HKl7WdtEeW59JQ5tB5eF8J9r6y04kPQUBB5jjQzCWMu56jcLZCHjlFwYrULxGjVNzWc7wxJ54JM7I7dUox7T2amUVp6exKGMzBFWTw3hU0uRPPWSOzi2Btk3gq1P01JR22+eF2k9yYcZiuw9rn+C+UM+ei6CRm9kFEFkEvSu0Xn4OZWveAmguhOe7j6LY1MHqpoFCpOn555UjGB5OrcYwwJP2bx5H9XpYnqjUVnRtUQ/p2Hb7i4eynbMOq3a2q6j9JCIumFvew8aMJNxP/bWzfB7JKHyhwWFnELNNqEhNKX13VIa84qUiV+5ECmjuXp6qEKKr9A0gRfWuEGgwD4vvbABbKR4TcqbHtcqN0dkVKmCL1Ur9/r6P7JJ8QfhvPONNa1oyH+QDHwQBf+QcxBtH8g1eTn3z2GMpIR5lr+2jpPKB7tC/UbxWkWQWKoW7dNVJucwgWzaBGrSWYHnvHEXQ73uwaJiC/yrPEf88PG6K1Fp8PCKkZcdjpYXVuTQv8HXZga5ClPBLVO+HcuAmyYAnfD2KlHk7VycshVM3TLot6upY7WbMD8cPKpbjSeE39g5IC+kTpceeqFu4BEtToRb9bnk6mLjH44O8+mdACQD8luyjahDbUep9NZniR7yhTzP2cDpMZIE9VCTuGlu2pnmVfIRD/Ic5gRjkZomkMwz46jEITh65SYnj6ms2VFR6iqttToiu2Wd3ak/MQ+ESZF96qqKZlYXK811NOrN1NGurY933gV+y2qL+X6LpKuIjVmdXg6SmNn+YTcbu2RJBinCasIn8zRwjNZUPO4+J8tlxkwofzqgCi6RD5WD15Y/LGsrMILdGZP2rcmveM8EIH0OFwKOHYMil7MmFCql6n5SQZSswTIamNK6pksi/21kLFiEc8zMmy1uISTVLZ8w0yp8+0XsEPt4YSf0LIgXWIZetzlsBN8ltWwv0t7iVrQYVqS6tejS8cBD83uNynFapLbww402mMNFaar2Nk8r0lSn69fmjewHNHXJyE4MVs8lo3WnPsf6BUFinxR6jWeRDZAJ06DI8t6AebC1VL783SKohGGlKLLafmvM2UwAsj7KxyKvJSwteOlceqWXWYeY9ptP1ptmEvTvDK14s2B60JsNjAjQdi93yn0+7xkFMOqVBONDFlhFMRZZO3nLDNyuiwHzN8payupqrJbyjWHi38j3BOUsAI/+VRHHFEmNUUXX+VAA6shufUwmbS0miyuHjjxxXpHL8gZlYgVCGMS67m4Qzmg884YajmDY3I0AndOURWXHhnf8fS4mDQ/YvflSOGaAudakI/vw7xoAdZjyHXum2/vXJ/7qFrVDeS0cfrxIo/MRwe5JqOJPTVOe7NkAcIAu0Hgzz4z+bF4VD80ThmSmIhGBh1bB++dLJrk3ef0o/pE09Ft4gRm47hA0vdPHSKry4/YlcQRUdikMeGhTqBdICU440TVb16oAhhyT/A3Fa1qgRVvkM62Q6w/zSoPKp7SBO+e30fDiXT7zjf1zk1vXqoRynk5fwwXbxiUagLDmroH+kBKPcBzmNQyKDLz/QBpQ44O+BF4MgmHMgUJ1qUd2ndLwj6pCftdde++6OXJASsQN3Rz0J4iSL0Tw7QG54bUYcgZgsGm3apIFEVg2CE3rUDL+C2nqYwpIGxt1p6pIHamsJEVa+dymmVE0oaECHK1ynQYJh5boulqop8rK+8PDtz3L+vFEovRXWMnG9B8WRgZxjPSnmMIkQ6N9gdv+fytH2RSZrK6vVx2blm77Y5khxVDs42sVBU2tfRcy6Sf6KiDVOhlX38YspJOJURuHGssSDcgaEGRUAHDwBIocxtWjXfMVjWsGjQBWr2fRb/tbcbKPFDrs8Ea3AGYXRVWtb4IM7f3uJh3cJpAWkSLptxal7wmo1N0HbYCd45UONmWwa4wjPInR8s8gIDDhvYRN77qQ6xkfbt66BGzlJ2pjWcSlCCVxy+tTsOxvx0KawPlhvrOAgE6eg19XTdPPLCxtH80UhGtYGjR879f/oLhXJsNsOTKoj5n2EN9iJtkxNIlYyVTL36ih5I6jFBjlRJ4IWrWQlKWJ33DmGEXcijx4UogICPt2NJhSkjn8hK1DYxZO9FiUlB9oXY+0j7PIz1zjP1dojBHnAYHkWSpEVt5PfoHpdz855DxZkgbVm0wyOL3DDJoD8q/Dx+VXP6AwTFhDhCqbapA0AIhdykh67O7Zr21nCuDWX+oYQVRQfrIuhllfxTPyj112zJCcwr4KdhkKVhFM9fDMRZ2I0lOxwp36BdN4XK3pkcMdIkUzT8ES8iY2sboKxZ+W//8YUk2/UKfeNT3sJ7lAENK76zXzZkJ5LFFvjOF+XGNbHFaIkWQqXz3/rzVPUUcAkibASGy5Xv/NBCGvRJ8WVV0lTJpjPJFucSx3OJ1d0aOXiAMjvG/B+RkjWENuMOk0Up8o3jXn1xG4ByitbDqENf4Drx1Uz5iWXXPF0hO28UnvMVrx8SFQjKAO6qZ/pLzx/TrQD6dA6tI6/eXSixddTINMYkHsUS2Y1KoBtL7F14TAqAlAEGreJsvZUeZIT4JeLpivjgrFrxDuDIvbgwvMCBlmSFGdDy7xkHqIX3uc2pOzy7L4nyDHbkPlL/ZF6/AoeiRWFs2tDpggJ+2jI2mw8yFYJpRzBxl5DGzRczXy+RlBVIAh39OCsDEtu51jqbPoo9nNSgPUxQ7+tvudRL97rr/jkVjoQ12puL/+L1lThkqBCmhfomKXCmgKqrxpYB/DDl7HNhQoTA0JLNf4nOIYWoOur82NWQgUVfVJoe86q+LFSJD+6dFN1OOdf0m7iR/1dcp1a+jIoR0FEQhR8AHpn7psr/ftUR4UpOVK1oXie4inT85o5ogAL9S7DFOxWl4A1meagT4/gSgHXYDVAyIVpRKW0Vdvfys/muLvt/TYfuvG+f5ppNNBAiCcp1Q1ncEwK9cKOVD512LjL6G/FLqr+MFLXt7F5U2K9gghHRDEYVGGjqZAAgTLTOKW8vv95k6CoTFFuhJuqI5/J7LvYwHuRLdziPwUE9KaCOZOsBhec6+vNIrZcKA4m6B5eYNW+IWChVY5ahmgR8wEeGRcuQjHtsLs8wxaCIgUTDHFd2RBxSnk3aDWZPEkdzok0Euv6vty6vRt5aVTyLnzn1zR2PSRsdjcmP2wSz3Z1Css+eUE79FMCFRuua7cUmjQKTod4fkbyKyIQhynvJlO2ylF++IVMQCFF1CjJywadyeqeX0ST1HASqQTr0ZHz0QwPEjW+OmnZJnprEkIQLHStCJvFZC/32OYEx5Ri5IG9wP2DWOGhPILrHzuMNk3U0Ow9JSPd1KhBK4+A7mIJ1BXaR7Bto3q64ZIv+aKxClvptXfjpNDZwewQdf7J9fLmfxaM+zmt37nbZOb8N5qFLBsEww3yqP+YaT/5XguGg/G4IfZMiIxFba+HsBHkkVlaGVkG6k+qgPI57M7h/1PZoPN1Fn5qO5ajHy7m8iFDbOlGzqc52KO2dO+CVUag4Yc3L8fNWDkffizXVAHEn3tLA9r9ye5sPcBrkBNy8RyTgd7Mv0R7/DfaS28Rx5QjuGhdR6S2btVDGLi08X7Mo5dP60XZhoPgr+jpgGL/qT1ptRwUEXMnD9wmcaaBV9TM3l+3M3WqusoQ27UrlqUZc5CFbiGqZk2OY2z1jnvMTpFQXYfDB8Ddou3E79vuSA82UpGjT0bHP7nXCwd668uFfAOYVx01US1NUKmthgCeRC2BtyPbCZA9al2S16bJvNPH1tobWb2RgAQJ6slFEnnb00NFRTCWFD9lFbbc99Ql3VtxyI+8zL0+90zB4YYsuoTdIuVY3yCSNZUYuXN8n6pkuwLorvzjKRPKKssBZlUbYTEq+02qfvbEbPHdjfrxcV1GiqE8A4evPHD4/LdBSHlia0GLdpPjipq1aFuAeVghTgkeUS7kHcGq9DKRcqEfGhg0zwTKw4anKeehNaICgfPUxhecBjQEZEyv9zjFqbkIGuR48VJaEyLgWGnWe+a3mHrF6J5ZSDCl8aE8aF8QrmaJfJihdCRSf+5i5D6UWMFEKhjIP96Gf6SdfNmcKHgzO+Kd7G7ASThQ9oMjO/flzQE6aIuiYXcdjErZUbmVz4nxqB+MzFIHXWAyyy64wRhOzQo5s4xkCsdjxElyNQBb6IM27czPsABQ5FMoBf3pBFJ9/09gQTv1Aj8Ybescpm3dNMPiY8fwThHXeycIk+Vp+jAyU+dHW+hKiADli67Mz2U9BXeQqHJ2BOiaRZx4/iZJdPP9quJXVBd9OJTWUN4wCercmZEc7B7V1xFI3tz9m1tbUg70Lj2y1Mtkk1vzg8Jt/8+iPqVoUcuNHM30ZXUhFjPxA+A0VoTwujeAZ5zWApPOnPUXAwhZU8eElKueXgBfYYbHSdGLebDax1mjW2lWFGzXReqZn4GOFuGtSs2diXNMcLwkXXkjO0Jvw90hklkSXzRRv2cYNnBcBJ9td4/Vqwoa1ncj7Zq8EbnnOAQ7bI3laisJrIrsWOgqZah+If1pQkS4lmHINFRd+fK+V43iYiDVrD+o2ACJsv2nuF8flGU4iU2ajDQMp1kpF6CO4YleAj+Egxe3nSPmKur4TC3nFzudrboQufXpK4jjL9LqPlT03vfJxSuf2xce6U+zBwxTzgOq+0/nBOY/txgSN23vqzq8ar9GLIkLoI0HAUOxszxawWYkGOQGBzE1rvm4wd3g6wxr+bFep3m9a/8kjpYY1Q5k5Fz28kuYfAdDwVKtZZQPkUnnd3QzLcvGy1gyj3wot5dNWC7wsU2AJKOTmLhN3jB/vlvUSHIdO8bxwZBQtvKCF8Nw+9U35Nzit/d6bB36TppN1hZzNVqDdVmNpzHZQ9QpS3QN9GZTQTjsna6RnvLJT9ZgKRV0fyYudp4xCAzWwWK6GC1Vxl8VPCysCFJ8l1xfLZfabD5cncpCYEIhXWBohpjWHwW5++LkZxcAo0Oet7clLkiGObXuUza1xkdyOdP1Pp3rlFAB0bn7XhZaxbsbxb39kV9qBxL5Hf4rUsHxmcI9yKYj4YRXTMJGhFl6QrpUSKJgCznVBQUmb2QjGLJfq40U1CKKHATgZQ7J4RppKkoV36tW+pcFFSjOaevtEXE0ia0L7kh8GHpHaO1yxl8t2HwS4v1HpUqRaoAYSITg14nFpNm71zKCChOQY/l4RNGt7rU8Y/RxdAU9FBdwGWuPBztgLlAuKogdzAmqi73Ko4EELSwc15tc66lV+RE7TvU0O0nuWBU9fQC4eSc3ElnIAYsHhI8+cO/rTydPGGy/owlqSteXxLHHpriu9MT+7IBaoJTj4gW85qWEPPE4eFbTA0WPhKjDBuLa4NOEYpEvAuMPGj93jQcfGYB6KTb6cZovIskMQJ+E/NQues/JO16i/S/F/vmDTCPivKACQnTDxwijMiMaXKZRSWFXf6TJUwUBkbHGBVbOulT4UtUh0XbnMbkH7rvNRBzLN11M6RN1hMq+1mG0tcnF7GmyoBmgf+CQ19n6osH4c3ZSljQTvm2kwT9+I7nWEiMIa6Ptphiyi7wn/taviyukuWgzTaVIq9jOPRp5x4Jbf1K9qSqIHS/bjqW7e7MNuC9Efq8nZ1VMIN6nGlQ+jLlEbjUEr70YqmE6kQwZHje6f1/95FKuL32w2DUUnwZwYjfyy9WvQMJw5TncPyt0XY5YmBL+c0/E/WhDlJNhbtkoSSL+jpsP7OAlFWBpUtrgNOnPAXcNxx7dyWdP6kne7CVUI1LrrFBRCNfmv8V6jc7hvdcizKJPHiGFxzB9/yRMhgLJv7WumwKIlXEdst4t1s/TR/78h4KwTfS9XF82T+8zSqLgCQmcBaAFKoGrdZ15bZh3xdzOGEWMEA1d/jMl2v5VPQZSPLJu4JYz+e/TpDaTHMe2u46fM7KZ87MJ19RLFlEoDIBtlfbsRLQRyzFBSpg2XQoaDVg3VYbg5RdPXpZLWv1VZ3/Z0TXbZZYAZe+YlDgevHK0yFe9FOBFhUY3yKTvxzY7h3ZWB6HrawA43JS/AZatV6yMfucm9hlnCrgtqWv20BNGGQI+XK78jEEYPIIYxnunow9pU0M66/ebceRSvCtSwnrz5qhUY+70W8ciT2s5mxHj85xLBslBGHdTF+DPUoVQdd2M7rBhJTRS6P6OjBokioCM0i8CRHXDvjKHZ3qcu34n27Fhe1OXN7PQN32RtJIdYjcPk9gXUMhEqVg6DNjwsjP1Qx44If1Hu8YurfMitVreG0RMy1LJ73cUI9/1m6PzqHwd58/dx0fp+ACgOA90FrY3c8IWGgjls9cSMTkReNLFoWbVOL5J7H2G7+Hg5/uzBoTxxcyNY184Fko02ramJMHStBYujCIluJ3PH5lHjxOeD8784Ea+Q4PE+zSEV7y7xl2JJwt4dwmHZ70eGO6zCZTarutNMSmsWqcnTbBR+Jg7NYOZD+z8Gz4g4WRBuoAmCCdsJL5C4AIJNcMtFvHbjz3WpJS7hfSMXkh7wIu29P9uEBLadhN23ZzyB2g9goD3XfKdj3Lem0xP876pZm/owcnHN0oiGT6/aOcmlZwvttNqjskOgJlgV0bzRcjA2lViEiyzGglbwAX6ELctMM0L+mTF9VRmzgNP2zXZoyUv6QBFPybbAm9L7XAHC3S8XES4/XglCpuxk3SIq0MAy1Ytrb+NYHYWY61htqymsny6uOJaGmmffTqnoj36IF1C0EnxjbnS3HNkhOOftD4/Wzz94IrgKvCsRZ5M9wbQ1qW9yBQVXDx7DLQpVCeivsCO2z5e0U/5ev1Oe3fh8wK6EUb5R0D/iei0FYGCxGw3Tt+Fdd/HLw1+qOpTjMCj488SuZFPE8Bf9D8OGSjA+YlYJTRfGXWvgpi1JLg0BhpijixGntpsA4HvBMJ4kl5uhdb6W2qaZbDSImMlVJars6U7CTmT9uqChJANi8gYfa87PdRta1+GSxRrQVqkq2JqjajNRToiP+ieZhik1Ufzxq5cDZtAmN1z9GfmyNCy3nRkSCNjh71cQYhVSLPeIxzVC8BN25clo1ThU+S9EbAlkGLqFW58y8QQTLnDf6721wTJ2k+6pRx5GkYq0oP1oXv4IUClCaIvkCT65mtomWY0iqz+tf3WVjd/JCeUUvswV5lJrGhSEhmg+5t1fcxn5yHF3GLYklv0ch21gGIdpjrMIW0CLJwZkqwEBap+Wr/rDke6b6DBKLnWhO1cYso/D1t+VjCakNsGBy9RLbisC5BKHoOctb/81JQ7upYOYqpx3K+9tTp80thxhvb4Q0+Pkfb76VDfjHbNOwMmMxpoDU5Rs0hhEPnPvZugXxhOr0Ua9P5GVWpYxJg228kBcIk1Wnr1ZPsXf1k81Q5CJF3Dsx6fRL1ljqT3/UKz1w1t0gtOznYa+oNiJhqV6MDZYGHHCEwFIxDs7IcLVnfdokud02njMf+foy8qWhCHC1bAGS9FW/4oWsldPglKzLGKRFsSk7th13/dP9FKis9Dk71LmbPoUs0cs4lUrIHxZLY2Osc0JesyyxrFu5BBAZ/vQnXJP80ntyg8F7tgm98p0EOX+cn8M4Fwi8yggryKcDgcoukYAZQ2vXNhKi49BLC1erEz2xN2M7gLclMiI5HY529BnGn0rqvxnzmAgPdPgL46g/Fmo5vLFm3W1HFGA9ixiCPPCrAyAxUtL906UD2gOkn/i25zKjaSssS60TQW7GftOl44vVrToD536ZVxf14jArrdS+GeCbFS5ubvVLF4HapYMGKEdvXA1KGwuhb52DI6+42PizT7AhmpriQGhPaWqldhvbhiZ0RVLySQlCPK75b9HOR6cKXscLBDBoLBWAQgF+AjTXWx5KblheWvxZKJTKXQ2ON6eDb2vqPiW/DMD/YrroK5JngKAmxy0e2ms3Ems25DEtocl1cHusANr0beBXTlL3lenM8Uy0X2e6nwUqw2FWNzkft4PTfBsurfBXdfAcElHJLxfgqSU7N6Ucr7MS43TMsSvL0iYjOCwfrVM5XQsaGyMkxD+RnQvPrRKkeijUEiHmj6aIwQtXzt+gDrVdEFR6ONV/SMz6SCF3srQz33W1b6F8dpqEkEnqAtX4uW13Lw7XXD46dPFv6onCRGhH/+l+CujcBSTJ/cmHe06fSXy6WYV8Ip981j47a27C1ul4P8rnB2vYUxhAPcpMouFp9aOvSQiXA8e78k0cdXula/yylGcdAoIW+tYN8F5goVpp9pCwdtM5ZhyfIX6c0SyGy03iAQjrWfdShbBOici9EfZqvctrhLXFpZnKZ7ZJOmSwUyt5UC87kbWNUNVk+RXiYHm3BYxy0WmH7tNnUNBaAAssNECdIgIwrsOUNTboZLRpa0xo3oBE+Lu6E+beAwT2zLXwJ07C5cBE0uZuaCHwRcQxWTHbffoWrhlPNJUaY4ZFpj5vzzqfEIEqqUtLH0FFpDteHyHPXOScrMxPxZ0c6CddgRMLefSsyaYoPo1PKyY/XO5cgClSUrsTZTW7UBF5GYHIT6X2aZh7aiS1CBJzWIhRQO8isgiJ5fp5v231+9ycUrHdjb0hRhxH61b8bEdE0MLF4GDtxjc8qNbsUT+0Y1WUeLr27iplTNpZGszlm+D+kwyi9j+oOw18sP+WtL+vew5ffxf8qh5ZkAWe102gpR7WenFQRkdbxD74/GzozDwdnsold6p/ZVyc5fhLBMqVwg1t5gVVFe9lvIp0nboUJ/l/1JcF12Q0XVjOnyFnSw1E+rxvboqDiTV/f1yKc3rHWDOecUEs2FbhHrMX1KaDTLFqQLCx2crOH0axkqpAra6pSuPNG1OPA65YlvDQ3Sx5WC1Us1HegTV1N+xQFKKNjA8yar8V9lhxyeIA2NsNJMK+WiswVvdM+Yw1L96EUObGVcw1i4jMHZETIhaNETfvZ/UwPSnyiOFDx8gZ/F4zTWI3WmE7ume08RxXYjBbiEtZTukQjTnzkYSMCSayLz3xhUmrVg1xpY/XDvyQitEer6SC6kxjfWjaFbSiINAXXpQMbVhEDuEo06+Eoe0X35bXAIzTk8o7AuWnTjJDVZL4IuRwTk2EL+gL9mnFlLrtBfWulnxFvudxy75I0xpLrwHKCXciVvIQ85aH/ZuuVD0VT7lXf+IaZVyYjAdNqmAZ9jDli1RpcVBLi40A9zxO9pSk1xxe68X0mMhEg6POInRNmrgsUejqZDsMdq2yR+DWE7Xl+ZjHUz4aZdq/dMqGp2SCu5IQUpaXyjP6j3kKWjovlkoGNchfRSyd/twj2pwsFGcKU2Y4jzBe2KhSeyVL0wOhFZlWfQSv8DWmzELfkTKHJE8xHgAi0W1ws4aQI9CgU2LcDUUjIA1Lwo4gUBD5oNLSnEbeSzkPiBPMB5a8jcJl4kL1+5CUFVsGOayhATn8sV3jY3BaveojFRmWjnaqL+JES7PKvd84LvGGMuEKEVrnqS/v2WeBcatbi/1A7yqDHHC0hxAaeo5MkcmZuqx5wenlF9kAoKbJcQvjpt0lgLEdP7Vlu+OVj+tdpglxYzKyfnWwH8tYT5FPChm5CbUMhTwyp19388Q6vM7HHqZEzGdJ+MimflKrCdzkGLs20rtdwckjiVO7OR5QfeWxgvxwM5j96/KeQUurr7MsV56HRxqG2ly0CmYa4r6bd+Yq0/lQHAC/OpMiZjwpnsi35M9MIuvP57/5l+S7FXD2Jxj53opXfkHjVhdUbAv0cvph7DBJA9LcSi+RqkAEri+T5aiRu3m85Hrvk0QT+E0jkgVPsOEGIjnutPpV6PEn5neuW6d0k80yVVQ9qcJxFkgMtGnJwzlnGyXBLWWi8zt7Sr6N8oXnnas39gh5Ktl5roUzB0EUqRlD/SPiwsckPgF+7Dpp0bx6IQJbVyZQLQe+dzMXixFK5pgHcZVGxd2OxJSz+0Yi3KT8MxACuNrWPOHqUSpRcFHilJRu6z1IQeBOSVtlT//ik20IQrVU+RCFhTkv3+RARu8W05awBqs8hIfqh8Eztt+nRdsPW6fMarWcjXtBD3XN3aEROZYqOZ0mLpTc+EIxMx06+KdV4swHNte4Ug5jTrQl8Ud6ok4XhbyDnTtNiPG9zQAjxgYTGmET6QJwcLnRCFTMlUXRjkis0JUpPuql0w0xIPmJlXOxxKvVboATWzNy3v8CBEDFP+QmrJAymxiXxFxnraeeMhnLKKJDbL7Ig6+Mn6kTCv8N2TyuN0+rB+Sm8eYlKigBNfR1mWOrhKJmf2v1Yc6ORo/FOHJn0AvRFjcFaAf+FXa1cp9XraxCmhgk3IT3Ua/71g4uIlXwdhWL2cd5RkHT3B+VyKFmRvwS2pum/9FMfIY5h0T+i9as8vtdt4OEu9x7V+m9Slkp9xoStM9inqho18h2wBTEGME4l9jktKte/YfeX4cBchKJVeqidT3C1b5bGLVpCvnl/m94emcSJZetlVjbO0p1E/xF2O6PlEjdjU7tex2+PklkoXPOeO3M2Hoejfq5Lk6slrjBDGi+KCa0DCfnMadjwxA19l7kCnUeVGmUVooCRKTkSEy9/JingClbzFvkZpIoibevUDca1nlA4f5yWtFzOqeregcbU5bCA+eGnp0Kx/mz8IbTMVi+AmVnRyka9/Z0adFDg4ZIpvoqbPZAYfS+vc8m75p5g/QMHIlvn6I+QZcd+hIoP3K98bCQRu7FEPM//g5v5MCoqK6AZlf1ZInR7TI5zgtToDFmeh60s0sbGmTofL/v57KxsUgHZnMSrUPkKX+ywgXPHTqaGZutc7PuUR3k/9sJehL31kKJGyRRNP4hqFKvienHznqpP475MU0ketjWGtcFzSx0GbukNXph2WDOdiZOQ8TGJKFlnszpO4wbhLB3st6jdcCOrpe5CNt2Vdl5oh9Q60HnQtHK5LyAXSLjASwBB3sTxElNKXjYrrtfVw0B1S+BzuQYDOiImXhV4JHcXYU3SbiYX5E8SMml6Q8sh6giC0ctWR/mVAwAQ1japi+YN2D+vgfYfFFFLCceVna8rx+IpfYn2y5LwjGEFmiu1ttojgQbAVx3F5pnLfVK9w6P1c3gFI+cH9yA02gbfRCnJr75NEtUi87XQtWKoZj5CB1I/uqG1jEFGq/pRwDeSJf1Z2PltQZEXl71oCx9FlSNMzpGM28IhzG1Vs07JJcG9e+lynmopMkIJwxQ4IrMWuoFnUtEINYxCQhcdW+69YBUVo1ysnu5lNDubKYEXyMuK37GAp39oswXAsL5bxfrvlzm7D0bMzG3AfoPNiOZON0eD1ewtJc+iH4pFcvuWnlrq5IcKiyXGbwMA0yvi82ogbkbL1b33Ty2cf2pZ1y2nTrNSbPuipUdNakCoyOzNgI18Q6y9oyFAQtL3j+XN9X0uhf6SBhtFNOLsyb2YwE/80yqxDtDjjnoh4vmMtlOapnlxPH/XeYex38ymeCcPqePg90WUjH6DzHUfGhdYppUqV5tAbgwMm9Us5XTO6n61tYY1vZof/KxH5p5QbFNutK+ZbFw+4HsgPMAofQIncRDJeBMRH6e7JCQ1naRJ9kAvEwvjeWNBCP2+WIOe0LEE1Pb+wb0tYdPd2OWhDwoOv3U5EBph9mThL6WYUv8yJBhIbr8V31td0nDQiIga7rxuYoot8CPmOUitCIKH7B5eX8BCCwQYdALQTeHK7POY+Ud3ubMRfp0BLQitwtd3j+kL1tP/lM3hP4VDQW5v2uccCYdGHXj9A1l0iOQuUc/Q81shwspP+wcsX9TvqfI1R2Aw7iQclLfjjd05A9NiMlEjN2aJYA2JsgmPLTPyPcR3xTWJNzy9ZsbGWhjYxHrVg3s3FSQj4lT8giPcg=
Variant 0
DifficultyLevel
597
Question
Joel makes confectionery that is sold at the market.
In a jar that weighs j grams, Joel can fit n chocolate macadamia nuts that weigh m grams each.
How much, in grams, does a full jar of chocolate macadamia nuts weigh?
Worked Solution
Weight of 1 nut = m
Weight of n nuts = n × m
∴ Weight of full jar = nm+j
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
work | |
object | |
mass1 | |
units | |
number | |
item1 | |
mass2 | |
item2 | |
item3 | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | n(m+j) |
x | j(n+m) |
✓ | |
U2FsdGVkX1+q8Cw88Fhx3khL7SDYo3ecLlGdb8h3rzw6gLplET+2FLviw+4N02u236MEy8An5W3hOoEUQZQq4m7kApqfiPafxS7C/rsVWMzc4ry+cnPqo+3OqZ5R45ZjxeF614j7gQ0ucXMSBc7AcVFTBSckHCUpgS3lNCH+YlKgVY11nG7nmRFMSSOEB8G5YnIE07C0FveKC0P7mbNlnkchOOmgBFS8tvxPRHyZx4JWLZCsXm9Z5ScxraTC9lmOh+sfK1Vjn+OG62KQ1lJhJbWDq8DoK8At8+qP7omFd2BkZjGgZXK6MUmSDrKbkY/d5yqs13Ut5q5pb402D/VEnY7dk4eo+aksqYEbeBiQi9ki/3/C81GbMyvcC34paWT2XOAKzEYeOU0X63l/09z2vH5Jr6/hCcI2vz2bUI8PNUap8lb1fjxhMkgAaaCSQAWaj0ijrLSHWAq3WrSb74BayGFxh1YaEwo6AA+S1q4cq+dkBZOI7X6TYx03+ci3KQ3aFyYpi7txyGmo30FmC7m7EbwCQwN3dHTHkOBU7pQBx1swKWSdOeMavRvt0sDxoBHeEB406MqkCGVSVKwpEQOHZKyQKwa11/8+uOFeL/TGu2UWp353Wuhd4hDXcJOLF3e9YZ9BW20glxWaNIe6AweUBK0xzviyli+HBfBvWm6MwSgggSufdKJpwbpHzVypqNk9lTJY+nr8Wca7esIR4BzWcd7q4sp9emYKwbp3DumfWatdBsjohKjEyrGtLjdWgRZ5Pj2iZ7EawCRx/Bodpe+QATcezBVZE0qky8nbzOJSXg9kuNrzWrJ1kSN6NDkztun1DDGyAfAsQyCXaj4YS34Pa/nOYZPjcWX7czI0CC+7UpZvk977OrfMEIsJkBnf3TlMmZo5Os36RHRiRhznBu+eN/L5O37V9oH9iVXYkG4bgv/vwCJcetpNvt4rIPDcUxPS9SCjkmfm+y2Qi5NUmryxCcjRbsfNclbcxvbpiuKvCBY5ovnW01FwDjHorGDsGvx7D7xYRDSpLOJIUCtupelNyYODaUmvLlTHi9/vkJlWiwBk6BvfN4Kb3BOKgdkQDjX5beQhodUuww+RLsQeEtrz8t+SmlUVM+UTop28Vk/+gc0RZvQ0YKwS3bEdSKhM5mRZy5cEdQZ8E/M7H9KuyZseJXHU8ag7kcMLSW+gxbFKoobI8PnX0XxMb69OfdariWdbpkM7/oXHRxMkcycekpMbtBvckp/PAHjfgN39z75+e4VAYtc6qWOUa1ANTmqaRl6WHbtMgEf65Epll8kCE5wiUTJFbnaONp1hn6QPBeqhMA8nWvPUWfH3OK3N3TYTUU5FkKUfic5ySNBR4q2UEY8gCkEVSXX4r7ffmepXeCNngai026V7TUmce9yKiaeeXiqVxjH8HCFw1tTSCxf3oStF/9RlVkjTa0/M7u1EKnXAPCwgNzxyevIa3es044riOhV4z1M8Jvyg/hFxondrEtN48V4iUo58SgBICrP1twC2lgXYHDWwblPvOS82xir2BtWxGWgfiATKMMGRywdnSvoP6umvNSNDPDL193zayNytLaYKDq/yzvK7L7HXwcAAa1AkqSm6hSzM9Eg0XdapQqvdvlNYyhB5cBHfdlGhT1sw/MdUCYSDRrXfZkBr4O3S0AFiRRKRGsKJA3xUFunUC4kBeO+JUqYBx9AtVD6Qukepeq9kwSkzCzFXNwNkNNMyw9qBLSAQp+3RekbDbidlxTtJbVFoFk/5fdUTW1l+kD27/GAhwkA0JnV6h7Lfxcv+bRIbdN+J+FvPr15Cx4OP00GcfugcmvsQBZ1XB5iDWvuMn86Gehflv4GkSUyHkEW+/rd8AzsIoXr9wCk/2GmOEM0A+xgIsPWuQSJ9c2fwqcin2AAJ8c0pGEAARSWxCUVlE8SvzBIYqzpXl+uuTebNOL5zrYI/TTCdRFl3SguXM8kfedhkHY8+xFYVFkx+GiDKDEi3ZCnbuG3UFgW8FEwinjPzK6QlRPjVCpXRWsFIGkah8MF/BDcoxVSD0whZenD9tHzfI+SgNHGniRwRXRxIilzg070+YVp2oiLPO/NAgbtLRrb+7xMr63mCkN5LdswZ6qMtz5NAKXPhcN6u03t+XBLXfok//p7ZrcRlC+PQUNfyu0OcbIcPE1N7L9oBxUIzNfzeic+yDJ1ZEpqHAUksnfTZQP82kOuREk5sLnABpZkyUZXm5uQV/oZGu5AMb0zZJY6Vie+mhAxcAp2vzNDaCqmub2FNTORjC8Q4QjYoMV/pdwPSQShSeiglw5vHeNTAUNvfKEZ4wjmSWpaQgAb6gC2LOpL08aWgSvgIf43LGWl6z2DKYpRWOWXqHJswYmnAcae2t9QQe9mHgWljF4mP4amujisJ5bDGYjD1ockUZsD8ekieUJ9pzrb1rmVB1JjWPCiOI+Me9up9dJqbW4NY5NwdU/UC48q6wLilSz8qDaT+l2Fo/iorRicjq9ydDJemxW5tdQwyzlRli6aL5/HtG8HvbFWC6Eb0MdTi/idrNoSJQrGdXBNH1mDZ7YxnxAWTGXsTlBY6XsCjR/k759MoDi4CTB4XGkgrFf8xkQ5B8ZaLEiyaHcN8OBhJD9VcBLE0HaF8npK7Jhwlr4b/O/Cre9LKsuGIz7v0REqZoj0q1PEx/Be8Q3TCAdD6ReBjmc/jyAZQ5irH1cj04GXwjlhl8TzgwUmYIB6KU0YgnAO0PIhJJPLH6v9HycDwrRqoNRojgd/A1krU+DrYUZBV7ygs+KGFt/5RUbVO1xvwF0UigEpHhOT4hkS5rTbR87vT0Ram3dRjyivAjpSyncGMJnT+EQvzvlF+mO63njqcr4j0aR+kCu1AFaKyi4Wko4kzySafSNlWcN2Olsp77sD1ZXh2u9tVINPJk6QN9ATTAAE7oyKDTYrxL2vF40IH6LAsWQ3cA9++aetkGj81IlrTtM9QHYC2/I23dNbYuy8vh2VLequdt4NZs3WnNzbwYNrDWLvzMO/6IKSXIQ04goufDxSurGJBc8kaLjm4jKGf74vMmispE/RvmvwPlnlr/Do4q7fWFSdoQWrUT5ul9lwXJdhLJ+MY13x7/Z8aiiC/5Gj5Gv3OQO2iMZiB+DIPjtt26vQli14M2BN6pyt+J+uL52xP36zoStsP17kDOeZwbeW1VGOLdApzljlnYTZDdOabS31olmEbKllf1q1t5By4UQu1J2HLAzse1l7ozbybZ6Xm45CiyVFYv6AnrnFfEBvmWkL5VaMvZ+ZvhGjEq6PGXz6dgQGEfj1mEOzhzuJ0RGsPd/sHxRGx71nt2GT0cl82tY4J/ARi0iLI7x9/eltumhI6ehWyifHGJLb+DTh+A+DmQrty7+/jFpS5QMU2JTL24MGqkyQ8zVQIh61znE5RGXpS1EptV2a8c1iFPJPeEcMQQog0FCDvsxnIEtUwYUjLiYVd+AaLWMZJnVYZg08EHq1CZHy6VpM6ZwKEJhzKqAJXV6eKcCHDDL/bJpm+oFhfz8lgl9S5LLd0gYxvTmk1kHFcyr5mI4UeVxz/8GZQe9arRqQk6gfxAIWd2Sq7HBJGuYAP7t2f1zaOoltxyVXfmJZdTlp1eTCl1lMP1lpMVoHFwnPAFMwkE2/EeMT767eT9vRNlhj9xscvjRVRYB6NCqSbqdO0STSd7FmkRxA8wr81hjQJ7D0GBomt1sUj6MudLhN6U4CoCMJIfLB/uZmkqF9LTFQ9nDl2rHwIrrVW1UlRx3KJSJA9wihPnFZEcPXDkOL0o0lzzjQchcQsyeR9hT75veL6HZHP3CDixta8Dk/q8JF81qojYN+DsqIjD5kDxi/tKb7imctrMt+Ri5X93x9xE2FS5jLDLe4RNMNjUmgoBLKhOWIR7cVDzU6dCaOTTYb9VxTc7lN6jjwQG/jaGTVo4b5j2JZyTuFrTfwz/QA6Ui8RM6tf2WL2EHXbWrp1IFpP9cEmX2mv4W2DeiHqLpmI+/Q0AkidpYcgKcYiqFxPX4+g32Fv3r1sRq365MEzEjPMG8RzBKoOmREutMgGS4cOKd2IOwt8gLO/HDThl0nYNhdFHQQsdIPgAOsK9evSHqsbJcRABY2j3KNvHmowsnuW5OBWaCyOMePRGmJYFBDkQ/fuSeDfvV4JPgXiPLq2TfKF0oZLqHRd2QLgZqIPo3q23N7J9uWr2XjsBebOnpljg5Kmx2K1b1zH8jndYPURI2mTtew1fDAeRrYyNanPP+Vs4CbIcB1YUvL2d+NvBMYFIPL6xSqEqa+j3WKRG7CLqdtDcbDlTUey3uYNFwd1NOitGIBrhut34QHWbcv/MMt3FLlhnlukSV7snTL0Hq7h8I9QKZJCkRE2PmH5rSXxtgELej/Gu0LmZpEuBUSuE2Zmrccy6m1pvDfTDGJehpHBVb+Jp4nf3t5tC5aPNzjXfq/U6st4pCBqKe+Pi8yT9Kmq0cWcAlWuNevUpmjCEBWKqo7ncRTMYg8XfskSo0h0eu03lepgQsmoFxGC1AQMN+EZUfhkpVqIkUGnUUpXuc+3dhuUR4y+a86Th7bVeY/ws6M8OE/ooCjWKXWrz+LHUNZs2kQMs2JSR9aYR6Z3rdIXyaOJCKFMrZI2qKzeahlNXaMhuiXviiQIBeHDgxHPpJvrdE+0qvPFC/3/6RuMtS0piLdJipPQ9AoWMtd8T0I8i6XlQ7i5xmFHKSbiMWlBbtRrxQlO85v9bFZn3QxiZ83nWoE2DiG5KcDiZSEmgx7v8XzarEZiHXRWIHcKLyS5JMbk1awbuRoHZ96Jxh1CtXghC18TWG2eTwnOAhTXQxdao957hvZmgIMFqNeMNmA8/ROHytG6MJPr2pDrguyCETbp7IZOUyTXXXVvbW68VGxlOZV/vw9Cz8qJIRlc9Adi25zV6VtOngpVN0dAeLDXglUKIwqnbnAuibQzFqWBFulX3dmBc7qfTF0BqqOZfTGpszjejNbNEWhotS0ovDSsBFdDQXb6qqst5ussCkp+KiXwlJ6/YZAZozpf4nRkwSZBQUV2/d4obUva+lCieH7r/ujR+6Yzaixdan1hXYeED7u+L37FmwgfLcevcTkZm7yl1C+VWBSLC+9L1PkgmNUqWCz52DTi+Wkx2BJfa9iTY2hGKNndudvsr1TykRjWwBxDhFQBS3ubSxHjpUybSAvvBVTdrMzo6XVoaDZbUFBUBuw6k4XdXqZmLcuHC+QD/3yanIAgNFqAp3vCfv3J40/cTC/aFtt1prW/1Jv3CTH1zKlBAkttgJtNwf3M9fIAu744XRXH3UQl7Ux2V5jM/WknnKZkD9oB/QQ1D1Tr4V0T/LirFqBzPjzo2MeCftgXpvEn6kJEiocw3uZ4x0qc58EZCp9r8FttejRvpmnfEVnJKxOYHc+vgfdEV+JcALZu4kEhfzHdz4gXEeWplGy3gpxTifUjjGX+pffHEHph+screKw+uXKT7CzgTj5rXy58Ay/0J4KWwf9bHENmy+LznxqUK62UXnYyxNSKN9XaMED2YCYOh4ZfCmWV0JdDjCH9PLcg096Ja7mrPyzuBOv8enGrb7ILeOacHBS7ZbBafZ0+zbG6/VtnweDz4FMvx9VgTd+lJRe5tHUPHeiLeJg5TpHDUU9MHkwCJ9mFbz5rSCRZV/+9CeudPNVQQoYe78xPhU2NuOOXkCKCkWaPrxbXpxHp32I+Q6DMClkRUorRTDWLLjvdxC+9uBVll/ElBLMQbeKU9th2b+JDXLG1FEEboGkS3C/qULfB/og8PRno4Kqb/m9UUH3u5X9SoNCNvlT0hFCmkmvks5A4vMGakR0hK3kqoR9gAt9pwd/2G7VQIrxNCp0G9F5PjkynGr8iSraKHOxEzzYl5OcW4THSfJ8DfGa16xl/1StERV7yA7OTpUuCdrUlBCcVBYgdTgC/XR3fmjDotbrINI6iv2SCZz01026vTmad9I8ljXJWJas7G0//KQ07guAhy9xDW/l2ZvSW0sJ/vpvHzt5i98JtGZFetF/7+sb6YoZSMa35bL6l7v+tVlRDcBHwqM5H2uTBydWvf9T1+9ivyroRZz/eIyNsnMWMmPUvciOkbpLehp5uavESj3mKeEsVFuVeikRJ6ZM9EERen1faI0A34j6C254mXvtORVwZyNSuUPRCVWqHWgm4bSEFnGPMFYKxX4wgELYbY3oom0Kl8z2353T2ANxphu+3W/hVSpbUU8ZKerTcUN1ARk3IFyyxYPtFCVkHj6yg2fvzFxunXJ4fDmEYdCnvuvLIabzqb+Ub2R1hM176mX9JLaXsp4SR7BQd1IMeVoLfnFsbzdllzPaiVoA1vsIECGCRbB2gGZ8uutTmeeghZ5QTKfjHcyWxZDwPOWV5+8C1YwXF1rmSm6SW/Vc+Ec9rDY5MfF9CSerrP2vTJ81s05qVOjz7GJBcCzh0ZqXroPtl8wswaMmXyHq0qL2OKy5hDJ0rLk/mRTpbZn+Dgc5hXd5HCkmN65sadV3xkdKRvYY3f3TktigJqnV3QrWYM+yeVe3VDFTkyvgee4Lhw0i+5jOYvhKZGe8wzr3+R5h8bkNnXzjL8JEwe/hgoiadw5q+wBVnX+NED19mWDQ/C6vxLrjnkHhIIisHCXr6SepQbvpM2sqvCvJOOfDuSAowlutN5CS6rvAm5zPqn5yz1J6pmwz1diDv/yOiW/E05qXNMbwYlKZgfkj3K6IxT+HeWIi9bRJqmms+QC14TttII9r22O7dzCdrLD197nDFb4y0OsaoLhXy1ZlsOtBz/Xmc4D0f/5yMneuqpAhpUl6qeoi4Q0SocMXdEu8ZAt83img5CwrA0z+B8+JiWZ/lOscrxvVthf/bEahgs1733E8DCvkwwjpcg7AMJhJZgcAdA2kXbYPTULjmcSfMxqHpEe+J+EbFWXGFyHa36VnP4XSEBNaM0qQ6RJTfoY/YNO3puFvyzERwnzRhRD4BwsC7IME+8WkMmvmuc9brz+qX7QVVGFcmgVs0yx2P6eZFNw0loAT7otXkicZzjW9enGFcB8nmhNr/Ag9S748Ca1UIAcUhLIr1GEKooawlmhdAc8ZUE9LwrBKRMHGm9EIKvqQi1ATGkW4MUI6ii+j61qYaIIEj8h52qAARE6AaY5mQoLlCDL9klEfAQcef8A4HsM/Blr5FrQvAx63swKOw0ih4JcZXjiJg+eXMRqvrlA3b9tBXVnX4leecFuXZ8b4vvuC276d10jMGOoJfqDsvk22OJc8aJvFNNAzibfwrcxYgvoP70nvwfDUAZEdtWUSZfjHzzDmZNbaQtpplVqlSLeWUkYc9G/MWNXwm3EAMADVxkBK16KHzOqHugy/FCYgQC/PvlZfwrAwGLmXmVKFWDQhV8zG5Ps2seRimJ5paKZKAE6PGsE8ebJzlOFjEpvKO8hTxFVF0d5ErGjRpz1eOHcoSaNQNzeeoTH2Q/B8+PxujeEntYWzgY4IlicJhx7T6ChXBJp7xM7tJpB1aOIeMEUZRE46ZL7wqGhd+HSf0zSg9Ghh3KFhDtPZC/yCKyPv7/AeRY4S9qAxi5S8f+7irJ0ki6hQDo76AB+KYoUohEE43vap3Krd4oJqztfSIbllqTxVXOR8l48u/jw7eGfny0zXmLnpdqAZOKgLoclC+ZN+KDX9Xy3HmAZm77Ge1sG02KCnqLZDRaDad5hM+GzMogfcNVy3ltLmb21vGxEgT3BRnGbeLnoEi5zdHSsNOUn01kRtdoOxGNcSPWApPYvjZWRqRu6Ab/Vfa9/8Xc5q3tTkaNMyQAKyYYpwIcboOtwQHEfardodjeYDDBs0wqsoTr/5xLCW8L58AcdjS7z6lAec/lGnnG50aaxL8HWvRrp9xLeTI4fNaso68WYXHkYPryh4omL+J7ZyWZFFR8KPjd+ArGUhXpq7ACO5wTb3ESxBz2X2SrhyOLM97KuInGyD5S7T1EQ7Xk7QLxcSoraqy7XzqwWUYkRDvLz+orWId01dkNnJ21lM0asBJkYAj02kuuc0lWOTc4HkAddsSoQ9cZsvKBBjsfryrtjzQmLs9Mb5kn5nOXiBHtaspX6wzCPaXo4UiI7LAlzzV0WaTvdovDvRlE+FOib5iruF/N5K3xSqf0eYTm0FZ0/jQ82UsqFOl2qP3gy45by2JLiW6NYtPSK/Ze+rHXlEUn9wsePT6WRlsvApHApktpdmH6m95V5Uvby+Fj3RvelEAKtlNxI8OpHG+6Lwl8u5qJGyi7IkKapJ1L1Lc8Q47WJ0AnNLDLLP96PvgMXslNpVOKkZCgUmviaOH15Gyiqms6gujC7uOt1QaeNyTd/jkvRAKUa4A09yTKiRsDC7sfrGNu2zmJdQ+gScsRFrBr/LW7rZrzwD12l+AdRCSfecNyIzsbplNTW8v/9yeJK0mRFnY1in7W9Zmob8+7rdaHGYX4d0A2WK1V4GqDY2rtJpDnrbS/IeG1MmxDkFjG8JIp8oY8VX9LD5m/15BbJddkRF4PulZDurlNo+hZOzpXw9oWV/Xs8sA7KjGdGhw+b8aS76qSZ2SL4jveSxArjN5NkAqZXi3P4Jc7WhMPVZ4679Ofqm6ENEXzPZ/2JIKmasTv3BwsX3EhJEkbDGvvZyRSAV44YrV4oaBtC3/m7zkOyzpAsxPcNVhaAe4fFldgAjEsKGjHAfrWa+9wK2wz6SgK+cNUf/PqCgeG5mAGpewBgS7zCSX6vfnzq+YKf6k9whT8VV2mcyjsQdLu8CYys7u0EuAsnjeMKLSxqzZU8PzkU7SrdorbfLNQtHDPBQuduxkn7ck/AoyK1I/LY8daV6/iVQxo0YMx7D1Gl7lChY1kzkaxBZ7Rbh5MCnucpxbjiiEEPKUZ7xs7LcQsQY6GJbjZglTL5x1qyXYi+TUTIgKzPJbCdEPwacP80JsZ8P5zf2SFk0K+MNe0saOlKkS3FnHr8ZjSI6rXMEwrltDFrEDRpu4g2jk7I0ZF6omGmRY9UlLwDlQznfeuwWN2O5ir5rASPojoM/li4PEGDFi8fwGjayVIJS70l4CaqCWlJLELOXC/hBbmMLyfNiZD1xVurB35u5t/1ksCiMS+NNL9PL4razD6XHNjiBmDSbiSoRX++wRuRKzUmba9P/4irucr1ezfhHUr7MWlvTZqE+/BiTFRYWY4XkFPdLJggWEIMgJHOMG3GnJ9dmZ5aPRIShDaoJLcWfq0OYd+poTD1FectuwNrGc7J9NHVWw14z9INT90qNqsKiaQ38aW23KquGWkS6diROKGHI/UDLQVHzCaTsIhX1jIAbZSqYVsAu5EOzEojSQK1G0Hl45VBjZPBaWfKG78nZfgXaQGhQLwoGSU3CZcn5G6NrGCFc3p/Rwb4i4Krfl9OBxoqwIZxOxSm78ArbXkFlAlCCbntcORhICwYL3WRcr+h+CXH5PO7r2iubzIuWY6IF2okB2FfL1MJgS0huAVtIMyWlVNbfqx+1f97TEvrt53SP2Oow/rQ9/IGsSfkrtMJUsW6FujsFBaWY22VbETdeUuQec9Ddgy/TylWGr/4Gwo5vo93UHnOMeVgF+sLH+iPwT/8+TJi2ZF7lY3rvhsUYfqGGl6msLDAhGFuC0oLW2x4Pg82UrOBRRLro2rhYaS7QsFAcihautGZu4aJU56dNioD0qaMABHoq8tS4CKpVu7EJZFiq4xpImdiumk3tAx9CEHzoAoooOVc7DOuJCf3pHvrXDllm99qFERDQsVSKD3d+C8OOjJsTkLYdW3ljkTeXeZVBYGOoyBhVB/ReOjB89JhZ0HGT23ya3TXFLu8J931GaxiHF8sDsMnmJkDxi8OL6ZETFSzJmxelY4X/luIlhFT+DIZglyyDqeEWLe4tCo448MC+umtI0EwVjEgRCxyVTN+iIyoP9w9tgYDDJ4e31P4fi8YZrDuzSw7Rr4ziNbTBfzN8nek2G5ZDzw74q3GVi+HwDu9JxkV8sjYJzeOh65nvx8CPdxEFmAGSupFr57+1p64hpcaM6ypLcZkg5Q5blRLuKfuzL+TRYGMtmb1t3wItDnJN36wV8Dlx55CDMuO15tIDm6NzcSt8Vb8uRDpCMnFv7R/9YQoLzM+0+RODfpdMyoSUrcJfFAVDNBgL5/psbGy+/bNrY4v/p8s0OJzTL/YlK/P/wBFn01o0gcY7h33Rkmfm7AD8+pOYv4VsJOn8v+cjcPv2ha8LdV8l6kYKNf/iMQ1JBaNyhlKyhcVf+Grh5HGJRQ9vIJJ4QMB1vHbna99OZYvG4jodWA9kRXo2HbwPvwFNEGbRZh+wsvPw3F/fn3CDVc7+vA2rmSaIoyQrNUCAPwmFWNuuK9w5LX6esHH9GNMnFCE5wBRygrWEOVDNLlr4vbDJGX6Vw1Z3zcQgBCbBvoXw1hWNvkxQYUIOyxe+D8Y7WVH2WW+ikdJrhmjL2rt4WB4w1OjlEIjQ2MfFtdc15G0gg3Xf9mcI5FSLfKw7vdDlo5QEf5aa1TMwb+VsSMF4YY1j2BkPj6KpYcstoate0V/bCWN40F6VC4CEeOotbhr9yGRdG7ImpQqFqpUbDHBiISxtvz7IDrmJ4HUOY3up1ElXSwtgtbLcskPD3A3U8e1XyaBs3iZGVctwSRXGyBVkFGMDIDRJjuso9TdeWmbaMl/B0jEBE25ff3/17dVJNJbxMqH3ueDP1pFPyNtZMuftUlrokiM6Xry4iwIaE69RMx/K3r4bZDBlDA6PqkUlFUGunJ50EZ485eCcASRl2ilpAZeqINNgZA8b46f0F5AR158NZ+7I06SCpAC2DfIDsvVHQC2LRbOvbMZIDzG0QSeu7YbQIVMrlsHPJCN0NrWviNVMxHBmakr8MQJZ/dJQdkeBx7rPvfSqwzKE+U7Hx5krykCthO2iEeRwGuyd1cv73Jpy57iIASS+PLmq4jtS/T8WdDs1ASb74FofuxvO/eRDPe3jW/L3MsTwjvl1U++fQ9iuAzxSGyWo6FiqR7q0bCXiyrZGEz7dfCp457D45JTm+O9YE8AitPN2Akv3C3DUayWVdldZbmfMDtZPsGuEsSoqekfwMFY9a7KLCDX90zFIaJhI71suJE+f15WsnHCNbqfmYMxZU+0AWZAgg8wiPdCKR5usxAER7G2zqIEMrNv1Ol7Hgpxu5pgH+LwcTH4uUiy56qf5ES/U8+kA0m+Hi/ZK3yTvGTfuxWHGzmsAP+VNEVs399SYcDpK8Vu5yU28cHSu6UkyFiS3s+s5DWknnCvk75AajH9kaHCcNxlmLkOxNChEnl6docSJetCriYSuD7un03Z3ObyPerTttoP8Sx7+emiJ8Dv38kGxRd/wewnD6wrS7X8dKxbvbgBOdGls6hgy+eurv/qI4Dh0Q6DVG7YPCi+5NuWzIRz19ArCgSZFxgUL357kPTlxlw6PlORlGoFCWE0dpu8QOUHd4vGAJYwSGUC4oVVBskHNFAcD/tH50JrTIt6YjQVNJh4NAOAqBpbEGHJn5733J0A50pADNvL965D7q7BwNuUBbB8ngTjt6uQ3EIqe/N5Vts2/FzLAOcPHuB+ftvE3gqPQrZpSA6YgiHUYM12xIW427EJwRIBBmXQvnWMgShQU1laXF1YNB2FTZzBQotHulVNMnEhEpSCptLrfCkBpuwwg/kOyDqmk+Vdl7Anqrm5UMIdS7g9YzLtoA8mXIghQRWAgABkjYvygvVUe8P/V8A81b2q6aA5HXnuJSRiFy1++3JoQ32DR7PNuu7FaLrxxMo+GVtWzCfdf9d5p76RxTD04M0VX1tEChGVHUHNrUOwXJZYpGC69GFLVbr7HzXc/HwulRPpJRt2j0jeBPu5HDuDuRIdJxD2mUfIVWeDB85vYlDmMeC6F59S9lZjbn+1cY+63Zb/UgxIauveNQLj6s79sqFCzLTuatH7txXCjGtcQnAV7v80pW1UeP+Foq39UB8xPxG4sxaHpwhnKRCzUSVQFWuPPhfkHl1diwW/B2bU5BrL/PWkPd7JKjfq2l7+bzCtJ4KJoYcfnxAbN7orORiS32eajWN0drN99LiGiCNDcGlg2wWKz2vGMjDcL3KmFEml4W9jUCJ+2GrJMeeDQ6tlGnKySq3bR0rUorEU1BWPOHG2Wc2O2Q8rutS32yFukrQCTD8FVlh1l3FiRctCD7rBBrWiK4DH3+4qA//TwM4GXyBQoSNE0q4nU1zli84EV1khKDk0sJ6qrP5RGkx1l46NiUPj8rK+tfaPDNTT5C1X6zwcWVoMEsjPXiqRMEuZTUnimK4/xoxhlXnBEkPv/JwsBbXhZz/7poA5RYUOS2rnwI1OI5QZnuWSql2g/fg+AvnTHT32HFp1WaRzctDhYp5DPOCIoYyEbnlfH6WCL1MwpT6nuRLlSQtVlWCgjQKg0JZfk/vFUI6mvrtMUxU5FLqdt8qt9IVY6c8BIsNx6pPQ9kGKlPYkKDANxaLDrOIMkgzz6TfU6cBJJArjnC5wAzF7F0rQ7cMweBlBuuQlIIAYNVg9My+JB3W2TI7WpFFMQwKvrVEOymtBSAXOIbG3vrBmtZMjq/WYhIcfalo6JYBOtT9sx/mQ2rOAnC8t/SHplWflsKxYFHjDKecvKVZTf5q5w78daLB17TasxkByRqYiBlgZ+oA6f2WvYQMLYX2ndidV4PcrzsLIq86WczeaKaUfEu053zv+MXlHE8Z8m+XM7ONUh8f9jrOznd6j+Fm+PFnRFE2ggWd3MmBZpNEgfogdSPrqXLhzYVlOKViy0zRO4pMjStND+yOcXaBZ29rqYmLDdehSTs5QfHAnNa34pzR0YaUkHeohMacUnVJmX8PG1Y5d/Syk+6PMqUtNqjCPorAbnsWrxdcdCrBRhyVYI91r/Nu0i/UQmm+KMtmoZ7V7ZiycyhDLlDUUiC7XiRMr1/gyxFWc2rwYcB2XHXSWL3nfJT9kLr+9h72zxahrB+r6pRlMk5qcXDpIiQYr+0RPTtTgtS8S8JKMy9XioXwus4HAqLKShGt/a3ggEjEZpOCKXqRpUiY9XjDvFC3USKJwFpQ4kbUkm5yrhSEF3mdkPk03VfUKCgNhfqJAYsS0hCPAQnySq/7AlrA4Jghq8MTKNr6EkcxSm+MGhAYPSEjZueyZNLnKnxEQtgZ2P79Uq+dh08LodtaO76L5tnGSokxPJoYtYLpY5JPWNNkaNX4LmICYzdy/O1ZUBnWWDjfffnI79ph2xttkF7/3Npb5tyPA2SdduqhXr2ZBstlgJV8BoIr4hmRsiaYRT/vcawIJu3Dm8tHRsmE7KNuI3uC7lagCya+IbHinjIq/NNJ7jl7hZ9DHmN0m3YcnvPYysYZta7475FnDLE0ugBY8+vz4PoZIqGizamji5Y5T7yVnn+WGkPp/IS0zXWrv2zZ+unJqFE3pTcUQyYmFa4jgS7C/B6XWKdrVLSRRE6XJyUusxiwpj+HQH2z3e7QYPckHp52UcgKZzP1/Uk02/Ct1saRaVNJmUV9wc0PQ7ka5BslX0dUJimbmDaW0MMskru+qmtt68sBOX0wNg8xFKNXFxX8wQP3F7sVfHpNkSIYcP7j/+Zv824EZDBnRgvMDB7ZMeEycm6xtndIZ2CeDODu3ua0wj5PrxEbKD15c+D/yB6mnXrCoCqBDlTTL2lGXIolkz5BkgOaCjANlXMpDSO8Y1A7RNX8F3gT7zQMVQL3gpdl2MnGT1wNeI5U4b++lnUOb/PJnMXHE2ejDfZ9QimJabhe/fiL/VnYvtoj63nQiL0c1Z1LKdvP37YLnOvK/Q16vZ9zmUIZow6QwAtf4L8Zfk2pzcbK3lf2QYFDspXLwhCzdD5ayw3+3+VO3trHqW4zh2Z9gPbytSN1wB0xrNSBIdnnajqf2O7S+DFfD8Abpanodf+M8lGLvWW8Cuv4N7svptAgvszjwCHyU3kSUrmk1bGyRxnFZYSWYUOwmuZuVIl6DWdV75GKBGYLinYRfB+lhT5S5gizNk8BedecHczWF9fNIAJjT7Sz1A5zoCmTN2Lg2J35kzF76FV4YhCeyBAyKxqHDGYxyi3EDUgmHe9sjLrOymS0YazYh8OM1GX0J1qXYpEGHyYRTEgGct/XAP+4H3e9m1Qx3zjfx82lRtsov6mP+8JDpcbieeMdnb7NKmzM41apzIV2qFRr5bCBYYCa2ikP7E/WvqwfQeVhvPuwQsm/k7iu0XNf5/VOfbLW5R206v5dLC+UZ6kOaXONeqtrPRoWGqQ7J6bVT9ZDdMi3hM+4mcLt05dudeYI/8dB0axOgTXFeOSX5MJushrwBu5Nj2JT13EIu/uVNidxZ7BW8G8r7Srw3umMZ7O4i/UBElCtVpXejjANE2eItj8d6S6CVOzEptsJL3Al9m8OX53CPNIWQSn3LqyLnenXTs6Q1vfkg0kyEMt8biJld6wTLKsO2hjLzOfLgChnkc6vjkjGgr95ck0lAFu7+CQapIOTs/k3LaHYSToAKxl9vDgPdk0b45j1uycV+vl2FwCA1/gVOAm4kwjlpsQlXEuXUaMnriZTYVb700s3w==
Variant 1
DifficultyLevel
597
Question
Isaac grows fruit that is sold at the market.
In a box that weighs b grams, Isaac can fit n cherries that weigh c grams each.
How much, in grams, does a full box of cherries weigh?
Worked Solution
Weight of 1 cherry = c
Weight of n cherries = n × c
∴ Weight of full box = nc+b
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
work | |
object | |
mass1 | |
units | |
number | |
item1 | |
mass2 | |
item2 | |
item3 | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | n(b+c) |
x | |
✓ | |
x | n+c+b |
U2FsdGVkX1/BZePd0TQx6dUxUmugrRQxLZqBJkjHQj0LW8Tg9KOo6ePJV74yH+JvSlaaYSwFe1VH9gjCEUFJcRuL2JxiWhishuXByR8mmfnCUkEB+cDlXy92Th86bQXMh88Lhygg2BnUzH2se1lzW8Ilp5NHR7NECx4boNCSDLsx9MIH5xRl6iBEYGuy0p8cLsHmxP9xe/6E2zCLHT/QpG+zno9Mo8DMeNn8mmKftNoNR+OATpPhDyDZAPabrDksIYWz8JC3NPzvOzL+B1SNipkY999x3ulvbwGW2H5qHFHdCQERkQ4iVCN4Trrb9Kw/AbfMH4BW+4LdZA0zx2IYy3mwZIRxq/2Yp1WWaZ84MTYBsWnv0nliCUzXwHaX9uOE7wWty7wd7NSA4W7y1Bop4S9WRDEWh4OC+v5VaOGPm95nBJ0a8S19x7mwojl4lLcAmP0thbwK8b6Z71L8GyBTrfjy7I/yIQ6Vt5GfXFSpvJl4Poe4LfNrO11lBMtKuUt6wF1Id8IbN+x9frW04SXd7F9fGE+HQcXAsQXr7bU3RXZ1vkFVueZz8agd27IGRYS2sdmdlQoma+DTQlnqXICvJ7Hgq9mx535X8d2/ARPbmy5mBKP1jD3GSiVZedAHpUJQtWW7WSRBA/Gr2lFHSPvX20ZYKJatKrs3ZyQR/sFIMSRY2SuPdpOg+AbcEGqLaeYMeBruorL2ad/R53UOlJBL78O1mMumom9YbmJCmzl9GpiBJrns5zKRO5Ecu6Dcvhqqe0BmbiPKXerEDUJyPr4sPRFLUShLpqGySaEsC2kdHs1g/Vvi/eZq8toCJRAE9qBX7zZULIs1mA+D4UTSJr1K1RfkES/4CetqUzWAaMpLLxbUUkIqTC6IYk8gDnfW25EnAz5wYecieUglMa2h0m3XA8gv5CvWyT18PuKOtQvv4zJjFoAuM4spHhw0fDxaEcT3/5CbXRF1rHflsJo8wl8hsMWilttgl9fzIcIUVdcSczYnh3CO0krXMB+HA3VJsm309I8w6d+DCUyswPKArzPllDo/UQ+Fyj46tPNv3qiEPrV4jDP4FXsr3ZAzSQTgYooZPsOAUtx5re3ZmTb9QmBxCYGfb25iE9wbqMVI1Y8wIUZkFtd06OcRk3zIBYegqGPwgEDyOi+9LM+nkpsbnUfF2/n255ADz/8B9wh9rkuaHyHpT3Oq1gCweB07rfvIavOAKVo+/Y4M+Yb9VfOHUnbry2mJg/NMUa/MaquETuJZK7OCH0ZlA+5htSXDLLxVTlVQk/o8itrRtqei4PNOZ9nef+kDVj9oNy6uyJq35NwhUAmBKaDEq8NdsCUscRvF6lojHQHGBBJbny72oFDWsAwnoV73sIy/fJtLlOYGVsv3bFVeDkb5a+jjnzlM46Qb3FmwcCYMrofMlHhDNuLVBAcmVjbxZxZzpzW3ABtz5qL763HSQGhn/1bSkqeMI67AiGRQ8FOMTG/aiJy2ZxzhIMeraBeEr5sUaz2eA7Wclk1HjYCl/sl66HtXmVN5I9P4rhG4JXWzaAWAS6ozXenB88yYy3Brtpjv0TAZqvjTRzLd/44rFnRJerb2ZCIBjPQnJuYasohmTaWGTbJgeY3PqOnA9CBiiomf5mp1a1VEBzypO4XYH9LsaTKKlT9bABMqAWQ637C3k4n2ZvDgR92ZynDksbPi+EaMssT8yDrJlcFtWGeuWsnjO9fbuppMHtdzmY5bMQiL9j0J56Zax11Qipig+R6DdULTP9aVx9OaeIu5ssv3mRFsw+mxn39w9EcE8noAVdCvf+TT//GSSeKQQV/E/Xg8DCCt/E9g5Oxme4QRZLNotGCujX4o6foyOLj0XVEXZ33kQOYvt1rNe53Kr33lgiCfmZ6bibz+6twf9jym1EdAaRCwENrYPnHTuwXQP9YZBzGPGeroGNEa/+02Ji2WDK5GOxzTWMM5eUJV5OhmWKigrq6xQfjiZtJ9cEo0bz37Wlsq2zzdAWIKpgc2YIwSEWNXFhlXllF6xjxa8nMsQ50OGuhIc8QIGKQK7Ff+jC4q0RofNM7SRXTMqu75QkakAo9QXgVNSfO1emKrG8S1bnZgDaiJG3Jy5W2r4GP+LquO20wiykkMiiA22/f61rEbpybEq6sxqzPA8QRZGVmy/M4fG6WBi7s0gjud/E9As7lt3qkU91LJmYbjUbVoeIOXQPlBibmSFPWYX2Wbyy7pwUIEO8aQhKytAfTXrp0gONkhh2odD3omLbEqoSulzephwkp6uXz4243DRfIzx9xTe63i/15qMgd7Di0QFTeydjzcKGqoNpgz+4xp0bXqU3jBlg4ksTzipEfnxGSYi4sZqmLPRa9nvseL7elJbdxm2ABOosw8CtP8SOZ+d2QiAmZUPZwXHlMMFiAKPnMuHvbMvv7dpLUpQdY0XA+vNwIpGZMGDTdu+1yJ2Vl82ZQ67Vq822E2pErxZsgcAzalMt9RYlJFJUN9K4DgP5wMAFrBtJFj1AHoBl7ed5Q6KsrR3wTjnxo+CkJqvzU3dkClkNn33Bcdil1vzrDXQS/DjS4dXPlSxQOQav7sJ4ZcgJPgTp7t9pYiGh4SEp8s2kfP7h2MswTzIo3pNEbqWwDUSwXJEIoAXfhU0ExHsXY5nBvMbFMjWyspYmS1C+8xOppO/v3Jf3QPB5/vkGfE9MquhwgTQ1eW8dUwFT+e3iqRXkBFWNiOndfUxIVIttS1kIU7BfW4Aj55CpJnebY7Dd5dEu/qze5eVL+roTUVnAMJdawb3cfnzIafVnEzddGcKyhRxHakebvE1keQ/z9xCVLT0RXaxr/P8WomVwQpfKmFRlHVo880Q6fgUjLIQx2BbThLtyGar0YYVuIXb/fUF/zka3vtD8n4+TeEh1ylR6ubpGX/R43EFIeI6PRvhwYtxImihjIjGwRYD2wK21lbccuU0WnsPW41T9s1IlymSFVcyupcsjxy00T5ZvC5QKeRKjRVg9H1XKyiNEz/rYzPxuk7cj2uUv6KlfSlnY/MLUq6fW2gK5c8lJgwsMII5PJcFU6JfTYHXdjRXaAv5l3+vMyw4FWIHXxHgcAQ2fvQloBMwmVsiOu2NuAomowZPi9ALyaT9obm/pZ+Teyagj6urB+siUrUDk1Z7rwv7wKrbT6kZQxD/gqGqPkSRoNBf5xO9Fgd2CMsnnlAF7ndXUZhRdKQhlRCbZYcQwzbKSh7B3eCGLbAu/UaYC7mre8wo8HxKpa7UGiCX+nko/RBpbETbyEQHKsy/28B6m747hXIDhknYKhUQ1HkWNcO2pgw3GK802/YpqvSHF/gVYl2F8ICE4e+hoooAp5i9gGnM+dxfxnSy99Mh5MJM3KzR6POfdXwBL/85H8x+TkihpPIkNlK6gTL0Drlqwe11sYNvRVBGDMo2xUdqpW1bd6Oux1nDznblYkk6QNSviXfJhUWcQOvXJrdlqvNvazXX4pr8ddghQkRpLXxW/Nbmh6WPjobPiQXf3brJNBZlW2wfzSpRLrJvte8f+93xfMjPChPZqsn+i8+dkcE9xXc14qHVY73V2Ke2vw0htOQKVR98OduFLG2zSdw/oP0MQJRgDCuKvDVCVpm0hkFHe3Hlvk0yBIjlzO3cSpNwS2JasM4b4nA+ulWPPLpu0KHJtALMYix44XCOIXGqD509w14GISz/5/iyR4gYeTmJFZEObhxe8XRu27vizU1PEHy5sSozXL2J8olO9Z6QBzpK77kkG8Rq/Cc5BpQOT71PVLISIaH2/mzxT9K9cwS3VnIeJVHRczfFqmDrSB2aMtGv2KjzgcULsWdIlIn6iKQi3tWLDU9Nl7kZobQPus0OaTDrQAfUBRvPNw+dTX63Y/FRLdN9sFikz2lqnGyW6ItzNotVbKsbk7CG0VbMA6tZYeXEY6HiEuOicUgskwjOdVyNZYaNIbKe3HUjTnmiI0DA80rOwGmkUUZvxMp3EcmhoLmAyqo5bVmZTLkMcxj85jecpjOn1cvgjUAiqNzx+kQhwYkdrrA8MDC+29uEdvwIbASbmK4Ac3mrADJIAnp9GgsoUlfyUet+qkZ5fYwOxnHGuPZEMjm3p7u9js5Kd5fKZbSSkYEQaahAh2OSZKQs7sXJVsmDHU3QlcehsQRpte+abj+jqwPfbpENXf9n7S2pg3UZCIfhju4jKJDYglGWj1sMa2xk954A5WROCDZBLVMXe1GujL1DV6a3T+KIQ30uGPUyhCBRkVdbxfSnAa95BdglbWMvclAJU0C+Oa8knGRtpS3j5d33ILSe57Ok1doxx+CVP1r2ziItwj9x0vq6L+mhhny66FrvcIMWqreYhGbLMLpAdGMY6TLjTbAIb8ZydOCyJ9a38kiJQYRs/EVGDLhfBujnOQddux2A+o3m2Ra3og8WBfS0bhxBqQvxsE+NDHjAnjV2ce2wsa597jZJKcbTMzOSGAIOk+4XiSM1e1xruNJOlZyqpNjHaO25CW9kC+mpPZcHhQTgHhfVaR/rM/BCuID60Y3z+NulZppDJZPd7gOB6p5n3yO6KJY4Si6WCWqvuDxe+AWpg4o+faDOnhNTdk3a6xKkKedX4Jg+sfR139vmqctTd8eMoK6JnD4NsvE1QdJNZ6YXdNZ6c/hrqyQN/7yoXUYlADnIF8eY9PTePvtP2qO3i2/lugTe1x5AsjYQRnCUnCs/2IAQ3CzBZeGWeBcOxA+G/SqctShVsxB/5xaKXGoJb1LzQh9XOwoVTFOB1BCZvTw6299CqnyLUEzp3/nO5yhFHRMUpY33e3xalbNzpeCcgCk/gEAeSsouWhv1by9VQJEZWWILjoYQVt5fCHa/Cn7P25QA96yXJ5Klf1zA4umr6CJt65x00uDRO1UwaOfL2pWioOiEDjp+K5ILgQkaE00PfYjuSskiwrrDeEhvebBjO0RF91DhgZuuR5LKEpOveyxwbz6wXQ67xg6OCYKVfHCoqwAzs9J/diHeQ8ewg4a6XOSYEhQ3qkGJZQdk8hqV1KmzFSRdKomKo/yM309tCiVT595DtL/ysRBG86Z9TbP0XXuPVxUSPceWTcMZKaYOAGxBgzSLOzV+J3f/SEiy9LThwlgDJzMSvJ7xkiWM+AzHighv9NpbCHgoa2CbcDeT7SnczUUQZQRw48YJplaWvXOn7gH9Gr4ZGTFSwy/6fNNjT+bPzoyVvoidw6pPF5iESqtlMch7eztBtnMn5mFS3gEzlJ4DxVT5RqTVZIHzakYdRh3fwdAmgiemLd7UaOsbh2XsV+3iMEwB3e/qjsH6qEDK1gOTnOVWKWQL0enY8rdbN/WmmNErXocViDIqu/ub2z7IHAUINjck7O9uqrDpgJZvV4d00jV4M0/sOK2nA2enitR6LeZXDgr3lzVySSqogLRQIReIh6ZZ0oStBRD3K4BOMoZavZRs9/hneIhfivkNgddfmUNQ3GzarKt0AtOdPMK7WFh7qGZEv/aOfQezad1FuXP1Tj+bCF2cMOYPpqxDU9mo4cTL7ZJteIiYIBhn56Y1z9Wq6UDECtMfiQdMQ+WgDeZtaR3GuxE4AM4JMXC86sZwLyMA7VXLZJSLhKhN7KOCpYpRrfcmr/1nZ4CDHdtlO1LyQ8As0xvdg1d5K2lTQ4hJqrU9ny5wfp2Yhsm5Fc4dIM758QXuWexLkO153x3gXCTuTGr2yMp93eW2ifTRdXTF10dorLZhB6FZdiOVGuC7reA+T7R7q6FhKMpRj9MvsVdfNeq+H+HDZUWHx8mUxx+K4egBacljPy67LuN+C1y4SnFBZhxVPVq7xuqUhGBU+F0J9AJo66WHSnWyw3jCVJ14+VH/VJRQPAIJ27SuN2mtlXdjXGw69cafN7ubN9rWYMsSjUwqw9O3K2n4J1dHQfPYgH4BWCTgcOl9OddrYq2pD47KVusGOuo9HSGhK7tGZvob82sZIOC6uxj95JrZ1KpFcA1QmqyrMZpX+R7PLYcNBYzSuiNRvW8pclRskVk18h19+u2SjKb1fzZMGjKZ2kWm5rjLhR58bRvy2rnYAosU9PhwsQenuvv+fSvimCDi5ca2DDBAXHdsE9m3C8uck9IC2LMQlUxNBKMTMbuRTZje1LP4b9df1QtVWbRmWKAAjnTOKul7WWXyep6hX+xCgRyCQ02QJgLtuliGHuxO6PFryzZTn+SlM0Y+6d48RjBjMt8yJdcyujwzKgD/a47PpF6n0rGSZJeimCRpPR/cIbre9yuPEBFxj9l9Hh86z7GWiHgrBKc7lkL0Sc3lKy1wX57XENNuAZgUtzBBnkFdWi4I6GDy3qjpuJRVk2vNECz06+Aq9jBHKw3aje/EKwDGz7zCBIs3gJZ0iYBGq4KXskl3cGoAiylhuK123Ho8I8pbH/am6LbygJmV+av2TheFn0k0aVZYS9ktNWFty76aZFmBR6x4W0FNvrxwpMh2+piH7xTIMCW6OQbJsqxE5KlKbybJ+7xvSaBG8/FPn1FehzKZ9bW4F1PJcj19akeTbpiPLvwoSSlV6VTq5is+LyMgKxea+0cnvFMEAyFMbTcibx8p2wAfTWhDgHDdQEt7fIwxx/x/Jz8lVMo8a1NuoenC7hNet31+n6h0PGW6m8VfDLcq6DNNhy0tjdSyiJckilJdvEmdRlWJuMeC2Akx6E5RVpJKeH4kW9LTD5qBFB8hgovLZyukgMf370Mx0jd4mbeuLxyhE0H5xLUJgTuuvA3tRn4XGWRV049s4MshpFfqCL74XJK+GO+3GcBYvi3VPASQPf5jH0oRXaCHtpqrGRHKeu6R3kT9h0gU3HTnBnmI1lC0wsn7IHlSdhtgq/YLz/2YJp0dnJ/+6z92RsC0iRyn/LrTJpfQa6iPMicrPgFS/LjP9jQRy1yAJvkuSKUTv0XdiGgfN9AbVSGSdpsPL4zumnQ/y5LL1xfrCv8yUGOQkWW/zT7UmTbyCKXC/C1hHEibD1khz7vePOPQzVSPsr/QE0pL4DW3toMfCqpIw5fDX5GxoV6KSZQuRbV+18Byg/zLC3re58J3H9FF6EJrejV6uaiYfO5dRv7rPMrV4Mz1bLrpNdtnpYk0N6FfR8GGPFx62HcHZf+KYdfbgMAGVWSKgsilBDYrvHMss9vBSz/BC6kEj3pID44FAcRlGUfDckjJIMomgg67F25GtUMulMJe8T1eDvQb0AO9Jl97C9d+Vacno+6vItPHgMN3vzJAPFh4ArqAtCLbaOVO72M1naib62JENEjj+Erfck5LKm+Qe5SYOXYIldp25KLptITqhLZY7BpCD6nvgHxG3m8UMgOsgLF+ygaGAZVvIy0eZOJNcPJ0KMXj19k85PPkfbhOfS86HIZ/J8IE88HIq1eC00AgexzTlOmH8IhAlub5lPhIlyficxS93UOUpG54kq5RwoduaeNCg6X8KX1VLlpJL4aXQtarZY7Rf+OoHN4Bxc0s1ZbsgGuS0xjnAPU19NSr2pf8kW1P2MlO92JrGV57q+JBzdeAHRpvf7Ao19kQ934K6F3nIQzDO1OlJXvEKDjAiGCpEDydbzRP2sSwMJwkUnaxkACKu/lojBzkBnbaXW1WdPxXL6TiilVjUUgjlKLyQ54LEvpoXZJmTzDixNP0uce1LE0QoacNujvZ+1IQVBDNISsCptpz39c3KHxix09jS0QkYvuW27hIwQQK3EMagCAYU9au99aX6pglD76YocXmJdbz/KmF4G9Yf+LnqkhoR2Dleopp8Yuf4PrAF2kuTGGLEAVzaYj8/1+5fmpCUUShOycFO6VNM1gbJYnIcdEAfAltIz4zAYYoPKebTdLQeHPk/z6qgQiELTUG9eC8S6AGwKvaxrBvE4RMvytEBeaAyEZkH6WJv4DtuvEU1GtLLm4IU/O/6I0TsP4htRxWY7pXp96EERt+CFAwZbLUZW20SwRl86vOfM11Iio8AKYY4KSM2iRx58x6gX9X//6CSKBhrLJfy3y6QaCGQuyWlnfsCv4ymIqtEZ4QkM4rp7g36UxMGRi3iWI1qnHncnUjHA4H5eVuT3vVdUX48Wp0BtqlhWtd9AROJAbOliOVjeTqpZbQqk1soxl4SQy2bIoM7/N1BhNtpQ1vPUsv4HvyLzkcd24rbnCnyHy8dufxF3WuOAQra3nDqKc4C35nAq43/DSWVjr2KA37L7gtClYjNmLAfOJMYC3goFgOrcxeVLoxDgigAJjMkOuXE6y3trYusZjNs9qj9xcinGFWXnsBEJ4CTHtkSEjjReyUlPqqxS0/E8WLOnpWPvJo/E2VTYyNctCVvxXkWx55FEMbH9r+RAlj1LkCKGcgLDz7n8nAfozwha314axdRt7L+PEMER+t/gvCCvCnPLC6lzky6ahCne38iE4TEKIMw794j8bafNOpMCd93l83FsgLOHc2hfHDXQUmeHizPhx3MJPXhMrKpk76LOY/vQEztT2PeP0NJiL39vPGYuH7kENE2piPPN/5zKJgU1daFL2ajxh2TK0vDz3x3Ei4e36360MnxHnvbClTl7axDjHgHiEE1dKVL26xhjnfSGRIcCuEqGt9yPY0eBc0R/e8xCD1WaQ7KFtXF6i2CuIYWg9p3aAXEtD/0Sg99x4kYUT/SLY/+nj4+R5Y8Gfxru7rC/SLyKrGSAvOFJ5T9An/DOc7wxLV8Fw3U1yKD3rr1J4s+u5HvwrEMY8uM6PUC7nKsfFVwD9ZBpYb5tPjRoOxUwsymkGm9UmfgfUWe72OWpIpkqq9mCbyNb0Xz+E2/4hQWUkd9l1lOWXaHN75ZFk9BoTJ9DXCFX6DUlISd0wfvqxjLKo17p49soYrKTf/MGpihggyzKY3VVAZ9NBZ3NrmJAkKAX/fZSMEQGotolqzwavhXU0vNVGLyBeqFO13rtetuD1VEAkX3HeF0RlOYb4MgTnFB9hkII+9P9KsUJd+fKs57PghfgS/WAfVR5QXXLIbwTuPOC3kvGDkGhMdVn9R+SFMQiACFw5AYUZae41+xO6BvgFG40jz+/wzvCaW+ECq8rnftFpa/l3clDUOTLyK048iP2TE5tmkhSJLC0y2iZVACojyxdpfsbKj6JiHgrUtaMn751ipCekv1wawYQhV7zWXhnzymLiLNESKpaAJOohecoue6qw6e4GlQWJ2wZJhkyTa+FYon6zL8lVyvS19nXStcN/Z6+BWVZD5e0bbFMlaw8yGX4KJHgDWWGVPj0bPH1FKdtx2BAYWClJCd48c0I7YLNOzFHgivTiBuSEmkBByHoynnkc0S6+d/seQcBkpigAv9wqCOOgvimF2Udp7mCUuC2oAXRe1Gm4POT++0TTEohbR/rTWY6oHPRF/ixmS6jUTw2WBgmXUA5eQCcmnjwRy851eJ3tXi+Ue6MAPO9gW9lp2D102VoYc7mokEN+ZTK/djMk5Ji7dOZlbOs7uv5E6l2z9QDPluvcKEdq+5NjzeMnma7Prmv4+R6hwqLM3TTabD4pFZroBFBIV3oopcJm3eIxgJhU1wtmfMcXbrxn5zBgBflJNbPawUxwxCWOroPSX7GWjAnak5nkydj8wbohOUXMlhmrk0QaKhOGeJkHKbV++Fx0AZIbWxSi+RKYChNGM+q5HU8vyeMtvlom5la9yvGAu2/zB5Dqd7EfsrDoQM75sH9GusxliQB7oIeXfdoUZ/48aLMJM5xpyKkFx1Pe7c5jkhWJYzYCY/LkM2exACcSN+RumLN3I5pqrcKub7EbLS9t7BMm+q11/3E583RH0ZHbQtC0HOkkUMzWwyd20pYLcYT4BNn9TFu+7ccEujM6G36jWQuRKvgBG62k824WmLrKkt53t+PiK7jf4oQdfu5wW0TM1Dtvm1drKO7FNAsGLzHor72pZHmSlzGZbtEc7hMh0XbQ8PI0zbTpwu1/YuVcbwzz293GRYyZ055HVLn02CeFqW5sGbNoTgybolDZdFy8miIpQFQS+KfCYogRYIW3S12KnX4w6g9rxBoqwrGNxRZJwDYBdlqHnhWftbYz/hOZ+L5rVsSs7bp/BQBhE5JLOJgIjnjjlL9mvgSO9CsXkjZj9vW0wjm2QXTMPuLeQIj6BCjv5DSgiNXZKJL8TJHw4Y5SMRtKp5iyv1Ot5iq7+RjLS5IjE33nGKxM8fjBkUpWsWELtes6ZKKBeHQc2JQ9dPYhpgI2mlnl2mfoNOiexq4c5rigZlZPVIeeDhA8sY+14sy/RjcJfd3FXhMMYu+a+t7y2zIoNyS0Trb45b1BayzNDhJD6NBzf03+oazTI+46qT+wV3bMYJsGzf9VdwzK0HQ3CCLFVmTfLfWg1oyav2zCl/6hNHkMMul7REMVg/76J9fVG9X7yxpLvpL/fGa5JsHiDmyR4O/YD8593rb2eEm8PDprKAUqrDZDwlOvIPINLIjmYqQM8z5zjEC7TSZBeXU3+Gej57ubPAAEJTbGLFNiBItM0NlhomQmdXii1DUgqNcpkbtgOpk2L1BEEug+X5rxC86kikir2atHglay+WBo4yd0M7/Hj99/9tFsTt0hosHO3IrmYrF3YY0/rDHLB/fmgI+fq8x3GAjT2NmvIZYLR0dTpmNiphhobEEWZ2eypahlGgvwjeJ0nsTRYjJhv265gE3vUNMkPKuJfCkrP+IcQCQXpSmExtwIzFML6Fglw50cSjc7yGETONsZwHn7Wbm2pJw9m6RzlFHIFScyKpBZWj8ZLsofAVM90VZI0gfVKmv89OtkF4GVayb5b798rm6esPRjJ+4GlPF5t20RrTT1kjYt+gjTGHvezVkGdi02lGBb+XhVrfTw8ND4TUqb7tz8J22YIMqUU0Qq6dEEAk3NzJocRk4KSKOg9cls2ebZvm7llhvnLKfQo99CURuhaGVh0mT97uPuCBmiaWWPEGoy31+71dyVSG68QX2Oi8ADU4on/s7UbTyxLUfFLC3pGSyITcKfuTJcOAM5tsZS+2pO2xDWGbQKBd+QVIcxoDyolWxACYGwfdbS3WHwOXKkIW6luTc0JtBsoe/pB41UkD4RBbis1IGoTnM0LyClc3jVNju/eWCUf0bew4ZngdmMvkYj4cD9lpkT/uOxzLo3Hi9j5IIGniq8MBXHOCchabFGTE2E5QuVx2LOyiERyY0W6hwrl1kkbicxr1DYC/e9LKX3oRjsXPCW4iKLbRyW/rvdogl0buBO7v8XyfJs9E7fYG2enqoFDtV71dF7OQq80243xnKgYNquhrmW+7uNsow7WTJl8tolQrFb5CEbs4IpnXQRpDZQH3EswvWcosD5r/rU1DD7zwHS36oueXLYBpIPnxOfp/L8dDGxNjUDFOdicKmWEV5dTgwL/HckMTU1W0m48Brl9cuei97tTdVw4lUZWQy1NloVFdT5ILctfGDeFfgCeJM2/MzquBWTyQ2kNNqZid7A4/HG4tKcObYrWcV9eAtVMJ4k+ClkdP44w447le2N93fv1hwxFy6IGEn5vg4Mqhr7YOHJRSs60ItIrL38vSDYyDQ164pHUljorNdTUoYCqd1bwEGqj+qebm8BuklVNNOc2HicmC86cWNUluAGLVUAVdX3JwZKXcHL2hSIrpx/lOFPqRjauy1wC3dSfEthzYWLNDVsg4VwMkjEQpAYuKR99Y3N4BTC45kONJIOdiHYBwQCsl/exhTSfabQ4GrcYNvu7rhvW7ZcdxrVc132f/9qkUc/Fk/gJLTFzhPD3msTWJgKR/fWAMDbCKQ+5iphEdRGROTw3lRCGM4plQruO3abNOCqGaVSn/zHvLD4iGPmwcLVrNwqxo9dkbYL2p8cHa3adPHChfXWOnuFzEep+jhk4DZ/SO0H+KfYtdPjCzQglVD835cZutsIoXUG3dvO1XdSQb39tk86ddiiXBaFkJxG/bUP/5asQGGJ9COrzUbXwgJPno28fGKE6EgiVFWAOe94gjAn92CE1A6or6TD1C08EJc2LgCKlY2vkfH7NZ7Qg4YsLWNq62W4jFtkm/u43Tc6ZcN0R0RnzVC6rw76eN1dwMiOZUXAVxJ39Dk5i8unK6mlEo4hJEsybyC64f5R+GC6bFWnZWhXHYuG6b1TI4V8qKkLSK86mcIIiJfu2SkCZl7Z9BcYffyOzUEgFCxyRVNCARIdOnUGn5CuGmsJv5eoaaKhcY6+i7x7X+cQy2DcA6ilHhYUAtUfUS23EVArGqBvhBixgJzN/rvFtP5aimbHhbIV8Xvv3/qNaMRmlwn6v+r1oBELC91JxvrHKnwLMhopow6hpgq3dcucgjVSmfDtLaX4HtqkdfgAGBj/qmlPJ2rND5B+TbwhlOq8F/8geN/U7odVQjN6+7XNrwVR97o1XE83SdRR49VFuHHXZoTlOmg5FCdNOzV5SaVCSjnNANtR1DKFKM/SGPkFwCUFPbAvk1YifxbalG+8de0jyMEUeUnHidALpnCNdbo1f/PqweaHOQJzPXZaZUSK6hwZz2GjedEUDPd/pHBawi8D6rZUJH3tNrjURmXVc7i+2qmEWkhilcLCV9B+AikvCGJw3EcVAr/V+6gZAuhZSkgITJRSxgMi0jlcvNz7Cesx34InbBXAss82jBsx4/LEqGtrY9oxkr6tNsFMko/5qfswoa8kaZgu58NcmGrNtp2En19xI5DTMDYQ7KNnMAoPNTe0sRhJkjwF8FaCqOSEEQkZV1XADbYLG95eGbckqFcOTWyBySZepyw0ZRujRTFQNSSDY6nDDe0D/N98xsZDRCXI+pwXUQrKShS46CxpTREUKxMaxpgpgIVnvEYT30P7yFuSAlmqHXZ+HCzc03xJxsqKkzHu+I2hcsoR6O8n52uNsg5Iw4HPB1PqdFqoy+HK0HjiEdoPyoVlg0qPxtJuux0yLqdyrDU5cgt40Hi/4Kz0U0LH+iGPA4S0qsUMhSCoiB5r2ngDi+BMKXSt59T0S6UedNnI7+Zd3aQZp0NGqWTqkqQ5fymNiY6ndYzKi4RqlMaAdeEKWty2xev50b2MojbA9d7bdey3KxKeFbw/kVa772f7Vn6jQneESXnU60f9BGRFrnAZkO2aWo2saxNPCYH4GE4u57+WYjmEZcBcZUomj9NjicOkar+uVrA1nxynWN74FQa65XEEsdCm1ahN3Jb3YCuTa8bFzBr+h30i+c9+kM6YQr1rawyksbNycfdQKaFmxY5U7eOA7yeSntW1k5cc3GnPXyTT5fZgBfeX3r1oI34yka/73EVfWit3cCf4XXewqW1PxbnwHRvHNSCzS1trwmTL6HnUwSDme5d2hbPuG9URy0n72B4iSCxn5FoiS60SMOyDRFhHqfJsB0mkn8wvfSCq5UQLR2BDqb076cNLZw6Ts82SZTOYMKRpZvcMomJuWZyN1xzKNfxhHWYBOovOplvb+hlNuB2zzms/CWhevCfyFvAuJFIJRwcFmtgWSKYJxesC83ijO89TjHcHHNFOBp56av64Jzg0cuyzwB8f/qtmP/bAL/pirbrUQTBQSxF8cA0cKSScpqHljfE01N1zxDVYWjs1nMsoq/LWt59qcVpaHGSHmiWVmM7j+jAef+sELPkSl761fs+OIjTxy1eQeT7ySO9HYo5uCwiR1syd9rEpf+QrPnNvjdRAvouQ0HhhI3Vi2fLnpim3A9G0MgTcA9QpQ7YfjdJhq9q6v929i8TZYSL1SE/bTQkA/1lXyQj1fbfGqyeoa1ZRs6lCAnj3+nF2ksPz9JA8KB/sAH1+M5E4qHmA7+w7ixjnkl0gItEcwObgn57LjXUGHTU0XKXjPDN5JEMv9WKD9pyAxftWscH9k2ImVAL82FW4JidChqM4EROQ0498GaMkvz2QDkUDsIJY4YXpxTT5xFbcoIu884aveKmu/N1nXW0W0OiaVLxjDC59aI5dDn7jlspJRr/sZcqTMBDKORBPE9oprrzZ6WwAgc/Qa8JXJt9+gytS8B8EVWgtf3ANvgpM0QInUJ+E0/5mEUetwgBQ2DYk8OIE2ccQ4Aj6IWI+xjskAvYFJS+YACkOU7leo674OpEwtiXkL4qyS0rQIWzNULKTDw1QikjlfLCiqdHo4L2lRIvQOBF5tdwi9Jox3SX0qhqr9ykA/nJM9Bj+me5lBXM7X4WLOhcfzg1iGXNOwl/1UoCWKmMF7+MYC0+CiHKpCk25xRrPspUthKu3teOkCVPvg2frZU5edjwY89Ln0vbugphmR5h5+zs8vb/1sTvHZzzvbt55r1uMrG3c07gHFfZTeMjdpIjG0+3ftgwQpA2IqPvqiyfmFEXSyJYPflLP3quvNENuOw3DrVVA1qY6CGW/VcSHjGBr0jC3gT6qgQc2VdaAe8udKZq4cMvKH/PSEbyoUgL43vbUUZ/nlOCXMeJSbliKhHae2auXxVJp2zaCJXD9vC6/5KMtZCM7vdhZSAYMS2wuNwwgOowd+938na+jhr1mZmyCWuDy/cLEpWS9BLQrrTO7EAABNX30f2xZwIu7sdK+ML0mSseCgJR0zPzSEFF5FaJbzeewNUvL3LkEkR/YH/jH5BomEbE3vdfafm56t9LpzYH6eRbtJOb9VuLkpkcOHFdzSB7noU6bgSGyCyKsMYUcZXfnuXY6tAoa7rejE+UONSIxFyaOmmOeT2zG7pxCCic/DVjRC5i6KjIqVfdic6/bmWYXBk8gNvcGdgYyd03PwfDGhNUyB6OwZxd8i8XYs8dP79hSPRpTrti7WYe/s/PCcWGh0XydTmWnoXgwPVig+qwJNyfqut0m02o8ufVj8girUg9DzxhhZCo=
Variant 2
DifficultyLevel
597
Question
Veronica makes confectionery that is sold at the market.
In a container that weighs c grams, Veronica can fit n lollipops that weigh l grams each.
How much, in grams, does a full container of lollipops weigh?
Worked Solution
Weight of 1 lollipop = l
Weight of n lollipops = n × l
∴ Weight of full container = nl+c
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
work | |
object | |
mass1 | |
units | |
number | |
item1 | |
mass2 | |
item2 | |
item3 | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | n+c+l |
x | |
x | |
✓ | |
U2FsdGVkX1+AOt93uH+485Zp6rD/rzjewFpyG1Rd11TSuieyb8D5SWeUVf3JiONKWaz8oapCxqzz5zdK9BWUCmU1on2Z2RAJ6S4xegOxodPPTTUL7zFBzSVW1wYIGaGQoziziyAGGwbCcb/dPBhNzqKAbDFDT0jWa+04zHfh+8gXI0+kdfGs8pQpOMCuNXM8++q/x8igLi91X/yEsZ/NhcPNXxPw25E/RoQLZgY5QYUunxWOIxc6Qrf87GN4QDDAzv/uX4/3G00CbtLblTJPh29wYD3JPIlHeocbkHkqnXssivCHPsH34RaIyPuWu5oIqg3uI+ZZLYR8vFJXnnZgJpMl/q9WDZTXAJUwYg3qbnEJOxOkRJuNOdxJXMJsccyFmXhM33vsEzqu1z1udw/D3VAh/Idn1SMSgesFosFzvDy2/v0LcVAo+bPLnqc1mu3JAa6OwHqqf8sYiixh73dLFto/0d9qQm13KqA1KQ2YY5RzZVQLIWWwGQyvpR6ajd04igKtrgTAzkxfPbbUHHBopWTzX+uv+bgvbnTEn0goGZAh6iop50vaghD3wNGy+YnT+G+NWoaEO9fp3pA+N1crxHjn5r48hGzFFF+Rm5BpRsbcKqG1qAzDps/h8RBJXdWQGLdI46dVbwtxXbOtSIkNUUquXyCVYXPaZHp2exEfplOOr847u5uqgJyZraulh8izaMsktjFxF3feoPgeGFoUFNBlWEBTb6QdF/cA4qNo0RS8BHeyjlZsngYz+6gEFoMw8CDP4wrqp2f2WDO4y8sW4c3hZtIFauvjd07bTNhgIMGok87Oe2B6IIpHQaL0CU4iMciJlXirGg2d2Y1gbACTy9JUcLByYfdLm92dPPO36sEIOJcxzDFuBkdVrEmYYw5BPU36m/EFwTXY2GS0uD190F/e3kePFKbhxbYAynROoPKnvJ2fohsa4PA1Bym4FUyWmseqb8A2gic3X8n5qVNvgPEn9/NsZ4aHC/hXATspwMOZfXuRi6kKvvwWGIe7HBYzWsvP7tFMCTIQeuMEZ3KhGBvR3vW8uqzo0ic/fOU+RxCSOhXf+iVTFZ6/IIsSyCjWIFIeaOaL4YlasDXMxG+rkby654T03M537nrTr9Wxs5myFeqxpaz3DEmavpElt958RuWm/krE3qAEZ/B0217sqdHwOimILDx413RhnzOgUJ0Dpjwa4ySdrccCbhIOHktxcKEb18cSSzNGGuyONwys5QJNTGeiGk1R6Gib9CvTAccaDdIuKN2+WkdG4ftM1XkbJUpk08i66ko0wbVDWbv0akc0YobGZaqD3PzySjTiJaoZ+p2orwj3ru1ksgSlN+A6kTqC+e4kyoT17ifSXOQocoLrcXQcg9GzOhTaHiEgwLRV3nheYfdiXd0+QohcAT/4MzmXoTzGaaPkX3hfMFeulM4HWe5sPe5dNlMSb8A7DtNdm0E4VP2LNIEdTaKyah9dH1KC9+oObCzb/SLBVKJ9MLHG3wTesT7TTo4/ZrsLJTofVGeztaSjcpqsvAz4QwMP65bCNX2/44uIuYmFM8U+dLyOkcXb2ZqoTGTtCPj5wioBzXIAe8FUyFtqputwlw/5NHjZPeY3NYLkEf59zFwR3crXm5O0tbFwlFExQuemy0vq35Ch1OvmzaSn4UY03c0ZE50bciVQ3+BjoMmmvwIuN+9PyiUmX/gX2BW0qJ7ktW4aSgeoDm6YlG4RYeNi8YyYSLi4WBi+BdeJS7wW7Jk3UqZxAL5uCBn2RZIBkzSm4Vxoi0VWwqoeuO3MKpcqGiWaJAa+rxPu/lstpUujRxRLQO0v43Pd0tXwpd9Wup7VmUDg5iYyza2o7QZv2Z2JGOWx58lW30x9oO5foR3LIftMrOlzweTylAs5jV8zFPegU0CLEAmOVgp0lrGRyWlrj1Rm0RVDMTAboylI6YyGIp4UVpr3Kwtd9DZXt0qOu97H3x/8GLiS0eVUi6te4juu/BbznZcU4AaoxF5dam/B1yiEQSqzWrhs9xcFNCzf62CVdSxOiKFY6haFUM4LrCy3h7Y7b7RPMK+Q3Bb2pKe0PWgsirgoFw+KKSjWAxijG8cBoRN0aGuA9nll8KmmXvCwKZC4m3V6B7c0COhPX3br9gBYQiX5+pr8Prc/YZ+jsOIuolPTbQ3r9ddmYIYTT0xOGVwhR+/fZX+OMkTUWOwy/XrUzNv+/EzZYMaBy82cAm7xcN1Mx2J+TnwSfhi8R06MyivpzM1AJKJXLrTCtGH+snkcf8nbPtyUqVtytsIlN8a/R5YFgarHs5CGr/su1FINkznB9UwLrW297+NGgD5jKC6ICfOXmXDME/oSlFrNhW2pcWLu4xbej93ZBrCSVo1huy8yX7GkH50myDplJpTAQWdEQB1G2xIE77D0Gx0mdFzXN4fTqliuiMZJQbjJnmg69CoaumyuCUFLQbWAyS6468XbFF0htJnh320qpdqNeE4pd5Qfs2+oprhd8QVqZVP2ktvBkZnHC1HMDVrlvbwWm6Un691yS/RUif+cD1+aSDvJGXw8ZsvYDDva1za08bip+2iUkGT5yRxGAJsTnohjbZ2R1YOzMlvT/eyV7XT/HmkCCwHIY/qm1cw8If+10S22DKh9RcM5DU8tP+4bvu6OgGMinjExdpzY0hlQLNwCGttAaijJYSCfhmJIajxJH5VVrxrRONIsGCdBLo2rU+SzylpO4B+DmtxmzUnSxYP33BmH+BshsIocpymLYVm3NfmE2J6OtdKlXe40kIqIjxHIrK1BExepLP1QaFyc8A8Ir7/3d12iFnUMNMaOuB/OiO0cxqekiJaAVvwfyt1uiTuSsd35L5D+rQvHPeYHW16Esss0KMKqU/Y+wLUZErfWtw5D4qIpeOeqt5O7wlHCdTIB2wsstadcwh02JTWpCIdL56OMeU5NYlYMHaBN/55WJ1T0p5qjgdV6AOs/1RTbyJIpPDZJhitTChelWG2goUueGifHSV+JgFIwxq25DXYMfhohEPKzNkhpsUfoTnfFvlFfCQ/jFzXA+OMaha98x+S7c31WmXIeOuIDAwkAk5At2YxHWz3FY2wfPIeQiQVZrlzoktcGEeA8rx85QRD+2pTrl2fg308TJPwut5C4jxySennLOWvSJ0N1c2fNGPPuh9KQoIYbOm2n2LdQMGemSSG1gq2mvM7EjnInn4dndHF8GFuy3Rs9esvUed5T/uXxJCLE5/L1tMg1JqQGGW/GGWBXYoWvLNbc9VPgvvpbriknb9qcO0LLmgrGKpTDs/0LtWrfWcc6pvVxJ6BhoEoNLlfG+0YLoDLOA8jibaGi8TFwhBowXfBVOG7DdxhXCBnIwh4er0TOhDZ62OUiz4SfDQgjKZdG5mevsWO2AZYo+9bsUoXucGP7OFQkubWMcrgM3OVJqL8pODoV7ZkXhXotZUVtBIiFE/W5TdJnZY+c5n4HTr6Ja9qpSGv9kc91vMKhxhURmQLLLIUe4SUGqZ9OZXLB+NIWv9hR6AKvLfwlUGlrc7DPVCZiT2svdaTlCNbMyAVBopsZuJcEkDyLdAKCnNvGUnMuqxrOzdN4mMdq+ckqzyeh5Nqs6P/Gwp+cMmgjjFv7I6Bb9ya4hEQbd9lJa70nyngaR02ToHCiDGJsX2wq0nACAPZV4E1ZGOfL07I1pUFSvJV5yIbDYDZRuZwWTy6J6GhM1hGgOh3RvUeFsjbsCZAgYXQs7XNMIyDMUl7gdxHdycfkiIq6NPzzTFY0OfbI4n/BtOxMtO8MdFigRiVw1EESsOsyi/oWEEXRXFlBdYxRt/2d8a94dZIkUjjZiB32Mx4nGEKhW/hqvnDzEC4oC75W11BfClT++M22j6SISIo9ASNo4HO8kXkhzh/sSm7WeP+XL2kqTp6NYRObQJ7LosZVLLdid5S6vK6jK6unLW2L11ujvsWO3gpzJ/3kTHQgjosDFA/RM6V6JDySjuAUtTvNrxU1EE9AQQ0mtVIoDeAicLMC4WrIxB1rG8B4K7qQZl+ACRIaxbrk5VA1HUfoiBvQO06igJ73gdur0sFNjsQnNS/aXQjyaAYyjoeLzmC7o9tyURwyPqEGjKMgTXkqBRl81nDakMgESG/a50GAA6sVngJGXfT/yp8vPtwTbjvgzCcqXWJYm2hzPFwua30bZLMXUuMk1li741mYyVPBrSqABHQv1zOW2nVDUxEXuk9Ix6p8Aw3flpodIcmivWnBddN8V5LKmSSX1uAete2MZZMZ+vYIxKuYHaAVMYNuT3gdscRrijPf7INfvB73gJ96EyBHdMEws+fgdEp3bb4K2ySxpAKuW3p3JXMVPuCReKy3OR7YHI/T/JkirK7vdqPYJGSybgRH9POqKJsqUnl9maPLmzDbQcCUH4AAt9CbcdRenhZbR2yS27V2gRRIuZy4MBD/tgslfVAYckykMT4EW6bHmHbxWwNcTmkDtlLChpSXyaaqdXtjtyQI8g6+R8EFadr//NfYOJNJFEfiJxyPKkMcWEmEokjwjYiUwnVO2Vl0KMpU1IZal8fnjxDVIF179oDwQfQZBHDyWogk/wE9tvSqPCJxyN3qHAy8c6cQ8IgPKwIba4uP6qRS0rCpb2YhVAdxMP337gY+RFL+3mutMWaXXf74HO91+6+Er209mT32G0AY0umfSs1K2zMURRVt3jptT28a52GsUT7IhiJt2Vy5bswrrv4baMeKAJ/IfNKgFoy3VX458NLxp6O6qccVtH48v5qK5ee9B1FJrdlx+DzQalDmpya/38Z/HB92JYLPiI4Js1S/xilJXh/WSJh+KAyywNPJ0fvMhk/faISeRKbIk246lyVxi477b9aBDDMzK/oVYPPdKVlHapZIMOFsDaqnF4AJvKn+/vtIgiNOozceHv0c2GUNDD3nlZY3WUpQG8Rk6Q5UvrCdNI9DyGzhcxgpYOcv4edz5XCtpyeSRpDJAtQQvTy01MpeHZNlson5nn8relhlkjF9wU4HPpdwWExrJjCpLp3vrgUXZ6PhOlO+tKa3yeBjFRjYFQer+OtZhigUWRd6bKbsvII8BiWQtjppwrjJdg1oQrgNmPMMILOVLnfEM/J5EiVwG+o57zowqqjz5zHvagYJFnfv2nxQm95OxqacGFpYV3nXSqnidxi76UFK9ufLfn0SdtDE7Z/GLkhTSHHbJq1W+yYKnNwCQL/UWa0wqsZ9YVvAtAAgfLiVAhNHQsZcmrJGQA5Dqcwat5VCaAMPaATyQuZbcZk9j2epL2BoYHiGkMXzq48n5vzEsg0kWkmUrKv/sADbwKRFlv4rNOsi2GsR1InVhD/z7fAR7KhEqtDsd1Rb5UHp5Km/nV7kpfQnrFnjcdcZgnzBhjM8FvYuvXuB5xOFVz8ULPl/AB+s90UGyClfSYAsnFelZStUr/PIXuHEaqwNd9BmobU06ahdP9WXxsdN9IPkudEmCbe/8fOQmZ208pnTKpl7Y+cjychuJ2HYJRS8DUPcP3MlPlOcpN+eD+EezZksCj3NUm2WahKLNKJxySpCrnRhG2vnJJWTBcbqhp2vZM/AYLKsX3uat6oPKumL+fuv8vkgwaSXD2MKHA4Oxi9ulPYOcSH6J53rc9N7mQhkWUhfMi1DTcOyNkpsF+NLUlddsKmE/8dZg14+friOrBckpGKHCJIPcI/zdK6iTKjYpb7X0ersfwndUKYXmGTKnct2T/dy3xwfy1mJN/+U/tTKQ5ZcFhZHcxPfqK0yDWfyspg2AL/dzHkUDiqSq6F5hpqEu3MdiXnZ15naXrMB3TUhzL/AzwERZanKV//0u8v6BnrlvRVf0sEbNb8jCXBJ4nETrk+yrdcyxDXj4dt0sJVCQkw9tFzQGcJpofj4ExTL9waXlawbC0vlADhUjX2aQWI8TM3TuBq56ggyFTXIT3jvXT7xqX9qa95++Hm0Dh+cEP1Phu0zsZRiqMwEQmOKl4yU9pXsuqAINjo04D7djgQS7ONMcJslCutt6UjmOC5SZot/rUQ1Oz1RlZ+k3hrcT9S3VQL7j5lmsFNMVPiSgzgJNezEZv4BbnvEp/4vsV4jiH88bMbjnLmPdnqa2JdSzrhE9ILQt1MEtWsAjyh8/EoZSsHab2zNzpjv03nKk1ZsXTZ50c4U6bKJVIrgH9flwF48vl7ckm9y8HbEjnuXxWZ5mpapZzPD71gVwWzXpzdgppnpEE/BFzSo0zXS27g62oOy3wK9/4arJQXOYJjSXryIcmsq8vpZMfRnY/kyk5pi38+O3A8HJjWeN9lu5HQx8wCvZva0GGOgPKBkdRMNqCdPUG4qMIeV/1fsCT/e8ttjqMwpT+EWriHgnyNxkxqzhyvCGPS8/HixszNogOXDYm0HfMsq57z5UCz4KRoqrxSyK2+V3D0+zbfwSo3cBEmeelbM5GYXD49QcZvrdIso3Q/rcJO6XWBzuohu85IK/bR+RzBFz53KmNuYrP8fTVixppSrs6RSoa2ngRZ7bGgNrR7nLczK4tTgoOy+MUHYtJaylsc/BTCnIxKo9DHe+ySHPELiEtFYajw4LOGiruiH6RQCogNXQkoBoKF01KC1KrF5GvXWXMBugpHcoXCa5EpCIH+pZNtdxyc+hexAubFYS+YQcev3nc9ZBXdYf6jsFP1mtNykks8emYeBDCmSKCOls5GzC3NXW5DsXTSVQ5L5I/KqU8uoJ4N+TZC/cI9CFWTi8l7SPzXQ4tE4RuKkX3EvrA3jrFa3bsKCPgLV8mXc0krKrb1HXajk4gMDKRsN0EfOqLmOyJLR4osLCWKm9CYJbItyFzPx4Oww09MwHRRYfWD8DtF5p3rxOZNdK9/FS997e0ZUl0CcGA5Mk+uVfn0PY+ckhPls88D5R7gR9hso3MLpNaIE1hyljPG8OPsKcOWDo0juXd80nwAfgPNVj7X23J5Wj9x40/Noz2QpQimGQkFeJny+dXiCvk01TJAfbVzKxlM2TLwIxgT6jFkhhHfr/oETw6gu937ch3v0cu3bau34pfncF5p0QOTi5dDyOJp1a2wn6WBoG5kvUtMj2u++qMzEeoj2kmE1b0QRSfpwpWZGPvXNdksOxScOC3e1aIsfJMopMaRCBTTb9sZlufiJje+gFmLr/GqMUgcDTpoblgk8QpApPkxTmu1wu5Hc6Ar2R9lTj5y6CLIrUZhLS0ZQzltxOcq5EFuu7yOpncRgtnN2QXoSk1O3LBH5R00y9Tl8/IlU5PbtQtwZrRJqG1UY1BGdEqcfYUxfRZOe5sfeCSKrPXeZ5PrqpWQeYltFEea6itiO4veiD+ajOsVwT0C6ZoAWsz7TupiUM3us6YoF+fx3UMOtAw+80D7y+CQ6an7VrgrqCgWpituOUhkSszlBE4X4ZlVQWfbm/tLt4J77nbnrjOGxH4mmFyMqMW3Hh9Qo1X9PCerd9j5VHcpoH7W/eIOaleC09m4Nos4E8mpG72OPctIukzCXAgp4wNtll0xMfg4RRYFXDm1pkyaX4kk0KhYfaxf4kRQRpHqYGbvliRVg5txD8X4+Cr600ne5Tqi2QRdvZL41eOEOrVPLu2GwYLYFuZwjoWOforkzkRuS04TuvuqvvQTConeXTcSOOI9vZ8yqrWFqfBJXB580Gurj60WNCFO2dBFUVNht0bFM5lpfEG0AAcBdNTEyi1oJeGgjSC0mAWJbNJobMuFLLEsAj0U4Hv7pdW1sRghNTayjXtWggERDqkYoX0V6vB4ChBKLSlAYmM/ZNrmUwPv9MxFZfuvkfGPkRNkdTMlNxlle0dMZzpvcVyfQi6eyyxCCcPc35TsGNwRIY7KQqdvXdRgD4u2VeiJKwH0KeClVQRHjN7jDz/sBocmr08dab2hBaGoMTQSpVe6a5BbNEODamIogIOLqUnQrCFqWpxT9FZTAwSfoLuCN5UZ4dBzW56GdYlXRCg6qpCn8Mua5J9VUTZpNWfUqYOTgGgihAMLPZZEXSWifvn3Gw0PcQ9xXIIXT8HkCvGnFuiVtHeFU1o0NfE8NzhaceSztHelaSTQhkkHrv/9FajuklU66sCOuuYVPn4eJye/ZrBc6XrQ0l3BN6PHrFTCHR99RJih0399pTr3hQOzPh6g2RFYqw7hR3EzgWTbTUhpWRl6UxyjwQ/I7fL2Mu/8XZtguoqeVWh+alpHI+Ij+sgHKHYpmyjKlV1Xd5JUpeWTqNBYZ3P0wymgzBErRIgx4YFo5GEvmvOy706tIzJViocVmofx1tGiQLitWTLC1/uBosyjEIt97HdKJ1rmZiXQi7awTn54PI111O7pm8zJmYPq1aJ71ENHDNnqwzDEHDf2QhM8CYD5th7/+L3LxkPpfQUvEWk1byvqPUT635KajcD4eYk0BMutv9dURl7pCW91I1rTF+M6X06db/U9QuEurQUsCRlmOxvgqoFKqhBwI/4+KWfPG7Hky+LjJLwfyYaTbKN+NVGJxqQoewhK1LQu7Jn8RVcI8yyAmYkwyFmkDzqpjQYoTCwHofy/JoEj2k+I1Zj1N58sAW5lV4WDx20hzGJ0j29kKYO28PO9UqtPtXMnOW2KoDZl3sxtyxwFq2s+V1TNf3EkAwhgPmF8b+wxtZw38Yjmry95e1Btoss0QksWOkpSLb8RFqCW1kKC4JlrIwq3yGnpD3GEcO0dHVppUDgiQKRSKVzI7bwCnecXRzaLBcz0tZpWsJIcyDZjd3cX27E5qbC6RUcgD7KJV0iW5qj+XKu/ZFea8UMYX9EapB2YIV+LkDH2jVO3rTPzLapsQaGngd6hJhF/M58zHcG8Io3h+bBECYcaAX6vSCZ/TS+I1WjIqCLgH+lviVys8W4Wf9AZ0LEwj8aV6M6cso6bUPenCeqGyC7RT8LYfT91TQsIzjDKRFrSNrOkec01hW585FD9Rol+slvKEXgq6yt9OAYSxykfw08sT/vN/Pgworz4kZ277oUSh+VtXL6rCPSFuNBMt19DFcZgAB16lmyD2KUmwYGF/+hB5+bxVrSygN1z+aRg+dpyGufvTyOxOT7t9Zb76qoGRiODeSXnpM+d+aaootCer1ecFyC+TEBgffOxD4c3TbLREU1v4/nTCgnZwrWlrS9PrNqljLheLo1iss1DRsaEw5dCUvNokVCAX2rZggNuJnO1/iJeBBnQyYo+9dTBh2vRlh733/L22W5os/ceEwFYbNzON8uas/yaVlq/9hS4hP0Dn7M9SvEHtfAkR/+xysLOoP8A13Wl2q0pWF3rqsQhfcCNRazMIrggyEg2AV9UyrsOSnrytYSzIWIXpowv8QOZ3Dxpef/w5eRhZBodzXftD7ZooRW8E0JEMbadgEJH1gGXSXfyN06glxYjjtCFpkDZ884BtRpegATvKf4rxSElj/W5dFJ7eah0DYhUxym4gMSsLSyIdxON+9HNp62oakIrfHfr804s6FEfdXCq1YfunQ8WkIw4BeUzdvH5dSPWqB/fydTwvVU5F8IZ/tT65ZwW0P5RpGfUQUZFHAyxdW/aTrD1Md6ZK60q+/gUaeFa7wLFmGrLTw8Ki+sa63HmPvRILb/h42atvThcHGPo1lS3YSyaPz5Ess0FdDe0u9/6XHHLodU4JFsonkaWIJl7MlmVfWyL04+IXZiUajW8cB9PwMdSZ3hElGqWMWntP6MgrnFyf9LcaZlZpWd34xUBtH1Ef3UuK/yj6NC9hXa+wlSZO9+p17oGUiIH8EMjr92UwnCIZjN8FmY4k/ngaomWxjKPS0Y4FoIdddXjBLeNt9WSPjjylRVIaO7DfmA/4vdHiBw86eKBPWZ/6iPq4q2yVpxS8HLKlUhzL/o4Gs3JpRoi9oYTw3ahAir+h7G75qW0EUWR6plDInNEUohwnXSC44julp/MJBvw7pWuHBx9XfD8yR5H1+p5PtncEkKBWw1QH7LfXIZY2xIEHfiU8UPIVxCvtUs1wSMgmEzYfREOrRB5tC6PSCTHB/KfCvNm0GlRgWWRl0HTYjgqhBLIXfWypWyyG7qOsfjMyfLs1brpIycZfLwAnSsqKw8tdHRaZPuJ3DsHVRXEPGp2cHrB+mA2sJGdqc8ZwscZnXZY+ftlfIk3bNpnRKizN0yTReiO8pMs3Ps/rWjPUfQJM6rEdnAni12Pmz6XPdHScX2wB1FCZF0yr0yfaSpvFjPO9PyludKzAi8BCVUTno/+WBmaHXAV4KKxx5TOvV2kY7G2wQz5VAZjVYIfZK3CGvhWZIWGeBOQw5PxG1y0USL0I1QLNOm35F5gWJdw3fFAnC5DXZ/QhnY95tdD3lQhZmCoKNV14uCbi7JXT6EEWmXuiL1SCp4oO2Lez2pcYTkNY86OsyEEB8O7gfINQj1+XWYhDL+yR41pXulrgQJxmSh5d4q6MeUVlCPa9QXgMTMc1S5U7igAOIXDmDzNJm8K4gikVYqDhDJCHsxqbogSKuFsAUCdQlKJ05MeDPqHCek1mpVyap2eNjgmIVPaFVHet8ywEtzK1ZN9IL91qvRZ46ZGPGcZrmYxNwAyZLty6wcAiQgVO6q/X/83yMsfuAWtchZJvT3MJpMHqkZ1wRjOxzKjCLbc6UGplu6vgt+gYZkUFtNWk3OTFMZhTGCR0Dw0ioJrst4hoMPG2IwogJvxTweQvcc6PhId5iF5KjkEIPw9L125Cx6sg0KFuZG7csIUeMOv0eQdaw4KJ0hNrTjKnPXfqpkJBCZ/bIqnLGZTB+GyherTuQ711+t3nTaIk8NLvlKe3GKX0cm73rlWhXmwlc9yuCIrsFh1P3koyw6TSLwhyo4pKeC8yIWVxZEWCuXQpMjCjK2oARB+qs8MWg1qCzMARckVoIKPuiiSo6rWxcq88nDyYOcqoCI5VPFa8aJsrG4lidB0l+1saFYUNq2sH0EesVCfTV4MAC7IEEWBwWIal+i/YwniefnBbBMfW/AbsOhJgZcub7Cl8AZbLe5zkIiILuZsEmTRhMcBaNFa/EFYmKUu2aMqNrhzcLfBjD2t0P6UqkWwLFDZpamiv0NaNdjeeRslRQ0nwhIBldzFQLwJ3cU77kIJqX6jlMjLmcwCncIYOsYddJ+AWxECmNEwWPUz/waGE3NgXGZvfHAHg1RfnipAhATMdtc+ZHwOnG3u7XEM0hA83EgCFrZhWVC9uWN0a+4InzzBiKrgKSyUq+/+8fJpgGZuyizVi14NNN3RgHXqgay5Lhtrl4EWAjv37Detww7eDjo/v4rFG49P0JckLVAAiv9Jo6zoyfOI+LxqtUGC/cyBWARPexyXyk/vqNQv2ppWmZnYrdqgdgubIM8ObDTkwPEHTj63AtA5CWl+V63GHreYhmh/zWQ7me7iKXjjgq/KUq8Td5a28laVclmV/buQVdw3s61LPvJGRyihn8B64eZn2TBIp4Svsdkanv9cegU4bhibMKqaxfD4NMrkw4DJz/0e8zmEPFS2/J17SViYYPa1wd7l5r0aNAExV/xaWJxKDxBWb0bWtrYX7p/uz23Fn1wXAyI1wPOj61WuD62UYx3dnLd0oh7AR5655A0j0LwdtqSO4nFyoqWcYAbCumUUm104nrI3+WgEC2UokkvgDAjoG/YDfDyXKvPRhaetxjw94VAuEOgNA+m77HXjdA7s6HCGu87CZKvUwtR2LpTw170JKSyvweo86zu3ZSPjS0yFkKCKgRC3WyNOfl0R5IliWF6JxfkbLcTxgpDy9j7ZoMNsCk6R8Tpwgt1maCHWxoRf43oaYfm/kVbCMSZR7ZgMx0DuY/LMyThwAdnsxKjGmhbT5wGXJfI6wfVKQc0NV/81s71nsb4vzOaT/9LeCa8vmnlZoY5S6Y3Nc5SxzKa2VFw9FvEpAQOzJqqD5/80hg76Amnt8GH4flc4vHLibVaPhn6DjyRpooKv+M1R05Z9gDzwqABRG7blkwY2Kq5n2Kx/DiQgBFaG/AJ4q362g4SD338KvQHw/x2LLkV+lcOIoqhM569PHhGsUNHWPpo30VFPIJJr0OvpsdBSnBJ9Op2whqk6a8yEhd5HGUF8dpucMwj6Oqb7NyaxYtDkyg7D/Vwx39em2HcCZsUdyBIRvWPs1tf1yrT2WAzoNVmje4snGvCryu9oRpUQkmNCrVMki84f0t8ZgnSFaUAYqsV8pKlwxy3yOXWTGi0yY+P4Ir0mRnH7aPvfGYR0IchVWu/rpfkikmX3YZa4lXBuISOzQbWjd8rIdeE1qrXhmey+imQtPYuH5O4C3/CGx0vbdGQtyRooasyAb04fPHnmphAZyYW6Dxh4MB0qQXmRgi/CSisWcTniNDP7iQjcC9iSL0L0OOR1m6NuzgN0Z8yc+FjaTpJZ0eNupwKFDLbnNslYONsFXXFdCWpiPZdVpQK9myO8xHGArRs/YDORgYi+6TkOIIDGz3ngUTkAuDOVe5puqFTKqyY6Qe1Ryl/KDZBzOncchEy8gS45h7dVw/qIcC1gbQm8ro5csnsI+WzoCdhx1lEqOyFxiHvEMINZDz+Gi9zkME2oFz0YmF3MR8KDItkVl9GfkDCYjiZ7L1HuDzvm6yVHQnfSD4f+przTiK4pmblA7J0Bkdplfd0bJBxkYxPrO3LVnZ4Wn4UrR3biDw9iSNxgXk8qwid6XKwCFB/G4QuBZZlWe9xREtAqgnfyuxPrHRGnokRJpaQqihcwhHGfQDue1LUVRrHJ/1jWKm5qhX6Bk0bLE2T0BH/XMEaaY9pb7f267PtPWANKfqUKoHjhvg89Negp804TrKXsTNU870uSTqTNBgoNZAtKB6vdl9LS6b1IIX7/7sK6LiSORVd7bD09OAO09i6HR8V84UVu5Sp0kmq2fdpkdD59bGezship8TE6/rxrH8pb9cXZgwmo8zc1viRU/ORgLaudfCzCjSI583WRSDvgqLLD4uTHYzlaSo9Pk0eIEc6pKC6u+s4PAlmb0a7MfakN+mm4jLIb9L4F/xSvb1jr+svRNYgaImYcQMlvQ4b59KJWfQBJrpMEjWr/OuQ4a6tu1ML88Al8bbxR7XBvwb6kM87xB6y/AZ/Q1th/VqggxiVQV+LZTCSF7m/jfQI8oFqDhhbNcYwEDfbxp+uoBj88nGzCIPyrzvhqqZn8TnAS3SAsMM1OiGXPgawrH4EkucZm2dVThhsrpoRFJK2XUpEcywgZ3Jfr6YhfFWN9ZZ8qQB0W0E4YqIsOJDaSUHLJzNzfbPgxvg+NkbT4ewKh2tTEKhGJZro9yQB7BIWcrXFT8zuzCHBcVuulD4vCmuuS0ypx6sUpiMVpQcFdt+hp1xNRDgR763gjvxGxf2BwTvCy3Q0ek9A5BMkWtHSo5OpU2b37Z2zr4au0Lebrbox3TehVI3pBRQokRCqz5IQw5d/fKIEC8kJ1riKu4mQOvPGzbBTqUZTUiklwIpTVBk4NiPOGK8sNYC5SRR473WPHPY6VbuN1hzCLkXI5auGCabJUyYy2IDGAWiFW5+3UW6bPdjq8yz8aKKYcrOzwFfiyEdqKZ3qinstjAxUVAdsWiODUJNqjUoukf9YsH++lE8EqqmjxmWZayloedy7cHmZVtEuKCgoJlwUmKIgpQ0cPTvKSeELBFbKlL93NRtjRattr83mJZfDNmffrcskbXgshMa9Bu/0aSyHnVY9UfmPUDaseodgZW/bHiMWhPcnKk/Vf63LBrMAwGbVmp5jIqn9R8yg31RkZxyXgK1sFxQZuW69gC9n3bjYWosVWtmcAyKgocIvvFWU0GKmnLEav//WqtDrkhyuFsSFVr0qNrF9Xw+AvsQSReHnq7URFnHliMcfU5rIynebQJbJFKnT7+H9oWG9Zya3W9rIqJCRNxe07EX/4iLTSOi5HWHJ/nmqEnzOilU2YzCM5Ug8IzgmivlxsPjA3LcsWRO7HBJCq6qS21AwJjbn5rP3ph3V1/+obcnUwn/94ZkbiMK9SykLuBLEavR8lfBJSMJAtHPs0yQtUxZ+7YvpbHBgnR5QK7Xqg+rhETvmRmWWvo2ZMhTYunL41Gou67vlcFkhD6R/2KqEcir/NePa54HgYVaV9ZpW82dsFxtMoH3VfQYoXVfp2XjTD9yQtm2D+tsRAFx8cBx0mNuFUq1riatpsZYPXqtvytk6akLnXwgBU29IalyeZ4Thxi1DcJKwPkEx2bhjMv1YdmMsjbOyYt7ls7eXFzxrh0x25MJ3gipx6aopxFUtqAGnJbsFXY65KFoFdwHe/fovdMG4KydDYjTnwhNFjURL6U2KnZKtHORgESWD9bR1C4j8pHuMEK3Ry/54sx7PLoUAkM2fL9R3BFTKzljIIJu9VsDOGowoDYh64D0UGWej2dUOyiw0f1GmzoTmZkh58fDMEgx7rrj1qwpE409qRna76qFL7wp/3RhLYhi6X3xId2KF1H+sTiOo+dAhUbmCHD7juJ/0O6UViXCcJogFXfLT7QwEC+8wruC7H7fZ13fSl4cQofiERjzYkyFaDmijzgDYWGIC1QFViGQwaNnKRxR31Ps3TncZ7hH3monO0XLZMcwMv1REQkIPngyDgKlKgwk1UmAh2TcHWhmR0fN4yW2EiMMnC9IrqQm1TBbgvzvZeamhwfQGBgpenOvq2OQlxZegeR3p7639P9Uh6c8MhwtHgZJSrCHQfFI6wY2WUvEd4+UmlBdFcbjhfn3DJ9E335inFaqyQbCQlwGM+zm/U77LlKHZCciuHYx5Y=
Variant 3
DifficultyLevel
597
Question
Willie makes confectionery that is sold at the market.
In a box that weighs b grams, Willie can fit n pralines that weigh p grams each.
How much, in grams, does a full box of pralines weigh?
Worked Solution
Weight of 1 praline = p
Weight of n pralines = n × p
∴ Weight of full box = np+b
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
work | |
object | |
mass1 | |
units | |
number | |
item1 | |
mass2 | |
item2 | |
item3 | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | n+p+b |
✓ | |
x | |
x | n(p+b) |
U2FsdGVkX19QKUtf5wCL4lD6Iw1r5gNRt/e8jwvb8Dlcze7sI6Zq3oo6AJD+SkFdVTk3JqHsEp76wLmFm9z1kTabWRIeTHmT2aNDTowlXi+qP1qvSsOz4kCzeUVz4xg2qsGxTLGZvJ/Y7j5ltzs9qwUYt2a2g3cvajaZ/KkD5mXJZI1wb4P606TGpVHz2sM/YJNKaLdL2TYLlDXo0kIFEiTfPs7pjhpjJ5B/Z5iQc04seGZ1CW3jpvwa4Su77WYZYtfui4e8JwXz3fWplAbC5M7Cyd2YOzJMyT4gD/q5zD5RmrN2I6CecraAYGpbJ/yHzBF6wUD/BbrN06hgsdBl/KKH/FNZ55+Ww2jglc6qHo+YP9G1/wHRwDCGzY2ZT0xUJnXCDzlbAN7+hYwW7OalpVAeC2hhn7H0+Asw8KyuYfccPXpIceEl12tC2kuYpmrSJ5jc3eBfgeplbdXCgBJI7iE37YDuy5hEytgd0bMtbLTbbKfTzmsJuPqru9B4zHVCenRmpxvREYgldCQ43p/Rbjlulh0KQYGZWLrLK3xNg78zONpOWhyk+QsmcaNM+5bKiMUQ075woRBiUwOqTpd3L3LwfExowpskb8eu6qU8urAA8PJeTqfK4qZw55Ydo+G78eZs9Sr9KX350eOWmDUfG0y4RDgOI3NBsiw/+cfD9aUrvUcedWyM80X4Rmofud5i+D4ZEzU1iZpDiBua24ZgSWv8n1YMl/lGUZ4ZZTXaIASA9eubdJZ8AO4Zzf4ph+p6GYv3/jcwOhUi9emuO3Riri5Ge8ISujy6g9JAXxsrfcjebtJOjQc5m3cAHJfC052Y11KWaqCh/u4u0al7QCIRiVoCqjqM5eEKnQmJTJAFnWtK+PQD9b/QbUqp0k8jImkRI/UZWBJMC5+xJA8+117AHbn2uyz/cETWzzTk4SuJOWTWTM8FmxeFrFR7GT7f0KoofLDWxyUFXFZXDGIeDvj/PykORgKkQCiCKqK9JaOBzuupxWEWi0oJilL2x/urXmlVlcefLcA+QuJIenrfRopU9IFl8cb+hVxLsN2jkbW5eLdRGjDkVmCTJj1EY9vH0yqpyU0W5GgBPVTVYjYg+RhRpdqnVUCJk4c0g95Y2sosAqvAtE+1T0yQ3lKnVXnnlGjhEtkkbd42YEhiESm4FJ3d1j1HslCWOe7JYunreGVw764w14MDnmix0gwjRdSzhC2MDwB+wFgSa7s6RPhU/qRLCjyeB/ffL7y2KN0/lCCRQVhg1FlL7nwb0F28zZPlMODEZ5yarVxLas8gciXN0S6KkjpPQnQP1AShnFVLfJa6lWe2msUmKcfzL9njITjxMgaCPy3grVBxz6a5vCZtVRRgh2jdFmG/eLjmYrTV8FWPe1fENmdwzOPzV449vvY7O1tAr4K9S8JInXdrX1M0LMaC4R3tqCNufzT0Jhu5YbN4UbnQcP2sHF76e0ghH0NqRmvQr3+RtPxm0ISBZoO0fwOsUv/nk2pYIitdu+EtruhFiDS/Vva7aj08V3zoAzsI9FIBEPk5mLxeq+a5v0ya1iiVuWbtKcUDiigvBOIZiMYrgMGeeLNo3Y36uNBWVQuortEBFOtDsk0Ww8THClOJRlUo1IlgsgJOBJ3nHSdNTRlu2XNR6+vE6ptH9uO4mE+neswUC5cj7wshmOs6fLlmdZeTDJJgk7WZsqLIM7uSluEJrpJkPLjidEiyb48cEZKVdQAVlqQ0IlKc4JuCqtpB/t6uXnkUK3jJDAncCTmDdMmieY+1rADwjC52DX39Fsi+yftvC5elEi2mUVIX17zpfR2qFh0JqQiVIOtclaQkDGqfyS7rZFOyCk/ItUQc0XXMaTb5r945cmfMx433VKd7941MM07OxevqDqVBhZ5yV2iQ3JqMtfcs7oXse2yuruIe3bojtkVAT32/P4MJSait/X2MenWsmTGYzcbvNZzIGEAhoX1kAaHBrrgLd8UPW5ot736grBY7L7xmrrnufpxsNAjgx04mTAF7ojk7Lk3qWb4Fj70fnlxJC+gAkDz+5ikQw0Zu4RBEON4RJe2lFFtNq94Gucya3+6VnGdXW02mhgSZzh3JSzzAGyUY64dzjmkSm1ZpXaTWnBpPcetQdWMPM6zY9E4Pwbvbi1aZMwHxyZ/xZuAQwLFJzhCThzWihJVtrCduvwB8SzpjEXwINe+Rb3JA9pi501xATJCYa0PDENH35/ekzhkYnLwltD1lQgDJZmmKl6cGefiNo/lO6awRAYwZjhfZILh0x1815mcmtPTJo5fBTQU2fbwPfbbMmxtxzRSSnq0FJMxf9sHgnwdgM1aAYAsdry1TzHTNhq0OVuoVEO8jcZ8CRYEGWlpqzJxIAmwbiUFrAFRWVGFGvcwSPJKpjKipcqHzZrgePJi/62UWYGrASDgjfqbU+3aV82FhS7aRgLjG8vfszLyzCyBvEC2U/VYRkLQy+DTjbZ4i2dTtlAg6P84Ve8702DWxLljpUuOCuCkPuHzrKsA/1qiZztINzvBUsEemuvlD80gVOY0q9HmUbyNmeKWp9W7tssrjN2UVs7FYiVZeDxfsgv02ir/6N0b7e7mY9lY16V31jRPx3iopS/aAjqx3iCQYHSh0VbYQcuSipDSYyFZFohvmFo6YmtYzUw1sKzqFexP9QR4ww9fjWh0CT6mB4d7NF5ZBVLVAKhtoPLvYj5khmg2yw5ldjjAYNmJahya3DykWL1av/+FNJVWZ5aDt2YCLyJ1eDJkH0ammuahscNhj7g1C25aBI+PA8NxzVonnlaTwbR0LRzgdLYnVXOzX66qEpTI99+BlLMOWQBAYJ5wNQ9RQ1h2ZpGYcG1oFPoAjkPZcMhEx+OZNGHnnXssFFfny0frfccy0DPlWXPjktZXSbN7pFhj3QrfUPjSX8cgpyv/SvibSq4VtqS9Q8QdG57KyXVp53BBtbYLwxT9SEetmcg1+Tr9+UdkMQe1dVWqCe8b5cl8td9NuU51cyicX239oqO2r8RcAZpP46BpLOIlcl7ZvUnfH9KI7tAMhl1XmeaCjnKfjd8KbFn04d6iRSVwFOjZRAqiQZEZ/bnJ/PB6eLc2i7ExeIp2y6nA8XckN4tVbqGiXFLjslAtc5EswrxOxyGWm3XJRmQnEiW0nL/5/kKTJEq4vRlbdgyCnVCsEoV/yTgu8gVwb9iQW1wiAcGI+ANYkxbaymqcUOKJcfoz3UhCpEdK7DVnBfVpXNb8HFZibpGR2xvb4VIB1EcGKQaf88mnS1PS9UHkGK1w/g01Ry3YNjZ2qjxaFl/1pp7ALQGSLpx6QvIjx72XdOOYNR9R1maQ5UvhNdsDj38IWABtP+dYtpYfQDC+evKyPtlCKZSoO/9rXa6Da641lVTl45rEnUcMnqoDHYkvvrlX5iDJ+/0OKYpWF8EV63p21M4n4sylFQBbiATUWFyvYgmbYKiK+ElTQLueSMiUNUlxV3xvIGKp/vbB7BkNeVv8P4K/SC6gfhamK3SxweKN0AnswsMfx78xQyt9SlP01/SzgE28tvsevtUeGkYFBMFuBJ1ovkQTqq7oMt5cADngazdG2sqXW9mWczL1ZYJN0n24iDxEFNmBObxJckCClcUKPLuH7ht3b09jOm1ljA9i91eTKG8O7NG3O3idQ4hvDGqmKUJAWmrpGI+NbZsaKzTdCTvHbBe3F6YqlQzl9Vkd0bzpkJh+mLQvioXbf/jHc7vKcfQFqlllBkE/529WiBAvmxO8GF+gE3ZOSOWzxbjz4lqt3A0Gvq7kSTxUoF3dco8pw7Y2sFnf68EN4VfJtGoGcBspWusguLB+3AgAZD3S+RINu47gLBU8JUXKZDsD79FRlz5DdztLlMV2J9B2BJWGX0xLiZz6JJvYudUzwnGa5IL8Bb5f1GBS9gB+zrXPcFxwZkZN+vy+K3Lbn52NW9nGplyj7HXyczYSWjwGnxoSL4avjVD97MvumLgY84/s735wVQGamqip0BoWh3So9C9X4LMBccZSHwbDkwj9hsgDvB/KMEo+Fgd7+XJ4bKnxQD89pp/1BQdl0jTXqq/myUtLRrBfkQCoREyi//g4PbmVwo5iynzixujPSoeKsC+16zi3ljMk40cfzuLKL6gXCBNQL0UlsEpMS9h2JLRATh3+d3OIi9sPVPKvSxHCZn/l/RqELAAwzRaxOc4xpohlLwTWtJlXb7wdVuyQUgOoKVMCMhQDv3qwJumhHzjd3S79KXlegVPve/a+hXAmLTR0FCnK6KqVA7Sj+Odymdpg6bHC+wT1xzY+Ia0ZBZWjPMmooUTXOzPdtWRHhl/FjdtugRul0FaucH7IkfK+/NvHE0d6W8haFwkJB8gTBy+7MnckH2IjHzNCa/sRbfR+qBsNOk7dhRzQDpVhfrMr9nQuk2a/Ncb0Xttu6agz+COLY52s8+o53dem2evZMNYpodlpthCdGP+IQYaqEsnquLWa7WTrf02W9dCGooMUuUnhiBgKi2H3Er+5C6A+JhEsKswyNT+UaPjZB1pCqxMU1vup4i6zuF7+G7Za9v7wQZ7JoIsr6n5DD7Haxo7pKXM3dUjIN/mXtz0XhRJaHZvKSW9xtKyWMy+zUZpgdjDx+McYpawf6ZFn4BcA4/WiMk5+v4NBI1R2WU6pZ9CHJhTkgPxJ24+MgPkvv9fjwNNZp6z8zcpdwA/gTKizj1HNS85YcNZU4vf0e5QLfZ/z9C/5Ikurszh5CaxUzKveq3QLEb/+jEQMiOBQrf4+rr4wEl9OY3dms2+0xKajUYWUOKyzP8vOKEg47JFQ+NMue5XauEdbGqMnx2IsNwd9MeQEiWOAHOfzPXU/PhfM42uSrkWA3xnyxrQzO12m1b9HSw8L26mcUrTv3PIuDfM3zo4NuGAth5BrH6ip0dQK6XH+4sL5HowzfnuBOlCsgDA1vpoEV3wAM/BuChGSK5UeFI7ihLLAR64XSC+lF0Xi8kEROeWG22x5v/cKwOF8vxhjvLg+jAsp9yK5vF+Vz6fco8B9e9sP86oo66Uzz1T2IieMVxtEXsZQX57T21QoIETqhzh/DBcHgff22AJBDE15Zmc9M94+lXXEaBcRc+qlyRaaMUVqpIo+oG4gwe4jRMS+07SY/7ixHre+ZYto39KPcLL/299dH4j/KpzK7kRho/NI3+6qqvk5TOoHkHjaUh0fSab+vEc9ij8XR43xxfMdx2ra+ooli4GcPUSQdU2ZPD2SBJDs4ZuQ6QQS+d3ovpNT1ktDZUWb26bIsKm/zSnvEK4h9Rd+8PWmxhyqTVXwuislqCmXtq4CEjP06taRyk2Q0wGtnSpOmw8TlzWeFcC+RDqgJaIIACjeNwhF8kZ7r27NS6AhXzyFM6tCjfJQ6CKeGApxP815glgqVQd0+FVPdBLj9Gd0FsEzMdyP3ScYO5qZCi5UweOvTwLHOMHdFGhMdPwrQIsuYxxB2hZhhkmQ86hclLy30ph3W4Uqa83TdbrollVly9uoDC2XtQ5tj5jG6JD6tXLo4XrIooAeq05BMxC+5HfqlXqOCOsENnswuFKFunkwRS1V6QbD4dtzY14ucVV4FuwDwDRaWhAShFVXXMeAs4j4AqorvgqFYPe/9rPhE0cQUf0vxQKF5e5xj6KGxO9zMHwGtMD+X458dX7jiWoq8T7j++NKnvwmJxr4b9EzzjYN5lq4rcsAkas5nJPhZjyfbZa7ML4nPW9kQph+ZUqTZcGrsUmw/qCEl6WYb4NE0t8Mw5hi9kR3JmhG4uM6Zox7tI0b+Y1mxb6uGq91O/FN0+ArlAu+v+jJVY5uXC1QFk8ChEOI+xxTIcHoqhNiqu2/fYnRclxLneqc2wzNoFvJ84xO5EQYMDOVUyGa4qoWDIWt/LGGbRStlUTkx5Z9cHpGCYESu4zUdVeKhTFYXNMVVjThUCiQp/ZqQ6qsZq7uzR9KrXr1oLb6/cn3ZxZiRWmQG3jiFjzneJJayIj4dEOfLma6UDC81iBeI4p3KBnosTD+aqRDXmAjxI8zT7ISuI8eJU+1TyQakrOwOA5x05Jqb8umNwEboH69vCmSiH/F1Z1k30HZax/8FnGrsCRnt0Vy9ZXbbj30EzWxnvripALjzWdWDeg4V8Z0dAYeH+F2aZdj2LLq3jfp2bSRSkeulY3hIFzkm4gpJy60zYYHClvsvV5aqyVUw25K3ugg+oPLX3vREfpgaNrGFhS+Cy0M/F5uhUlAaEkeAgeVy8x5gMS8JZu+DY3B7KLmtjq7/hHsPNYzxWAmrghrTlSq38G4KSWIu8PzIAHRegqRc8r0PZa7mLz03Ou4WE3Lzy3pm2bQ63JFZGp/WYBZmar70uaaK5Xirh4ilh7EIkkuIPftDijPoUt9dV47J8n1E5dYIFCbKyt9xpSVdsPIcjNpWkFgislpJhz6YEg0GiSjmkzrQfJdbP6cUOxs60TrmkrcNpuBv/gFSibgob/Qr+fjBjWArm1SBZ6nx1lnt2DVNsS4gSeH453RD/YQuMnjnYCucARtWZWarbMRkr6Sf1QikRksySVl7As/f3vr7VukgIejXp5KXX9S7NIRXUFE3dEVZZqVmwI5HqKqEfWzrc3squGD3ImmuDsA2YDl3dsVt4dRnHyoh5F96n737IdupkgInVGuTBZYxqd9u/lgoW/dIT4TeORkusPfrpukAqncxqOSNoDfK4k6FqNzk8KVFHZSH8nTkvZI0hAWt94zNoxGcRL3w4J6XSRqt0kilwNZDpKp7BU1pj1IzGCJgnq7RiNanrNl8NleqqAP0J0GDGD2UL36pcRUG5KBSovBfeIKJVVOdBew7bsNnT9oBFr9mBPnR3quFcTTLoGY9qCTx/H+BfDELFJ/ncZPaeYrtM7rJaXXPvi4AAOp8MDc3dXddDf4aznqKvlm0lHJD2fTUF6KTaVIN3f72N2YfT1yqMc0ty8YlxN3S/wD/aa9cLt7XlDdSI+iao3vTBeMDid5EsdCT0eWntckHdoReZIpGx1voMA1zF9PH0VvGda1lvxwq2th2bOsdPUoe6/BQ3tWS+Jx5jY7fUNmqjh8GpuYc1nACZ18OcbmXzSRLd1s7SS0pCc4nBRj//AJ/NFBCYOETXS1mxyA7XKGbUgXhGE/9e/NoXtMMgQS7RhJc53gsXkD2Opf5VpYhavkHE8jEUEEy94qs0nq2r0i3r6HFhz3/udZ2TyAYO/fSs0Kc/t9C3ipPkuHMjoLloHyFSVo4purZBlnzIvC/OwWnIWZL1jJYfcKQbNFJszi69QQjlBo78AV3rEK2qZeoh636GgzGDaw4qzujzxKST4kLwQm7exh94Hzx/ZdmkbUfEG1FGSccIeVIJq3T+/tVAezqkGVxW8Wb1ii4Z+1isHC2EZIlzL+h9y6zUEWFXSh2Wtt+iCHXCvnqokCYrx4Zpdu2tErSVP1nm0KydBEUvbvvn8U505Y/uGfME1dNPHA1JCdtVCnFCaHi1kCCTH0Uf9a8Flq9bY4Ujn3y0DZ36GtN1ig4G2ezGgsk7Zb/uIiZKib1decUHsZJSmJIRFG/CZDs6XVpWZrUDz9b985tjY/j/XR0eJehH/5Qsvo9wssdOWQcKN/Jr546GASP5e1kUml/4oYPMD4jbMuYSxDq/2jqUjG6PxCEU+eeL1pCKIgm1dmki2L7MVbnsuvSABtr0BCKFGet0BE3ARc6aL+1Ow6A/e+zuE+avjsK/6/temKm2ILFfrphs2sYeqUSkIDrau05tKfplatTHGiacFMZnQcRYdTS4ncotO+DkRbDmIYUa8IDTAjnxLzH72HBEh6UyHndc3iatXouL/ZJcRyBWYK46axu/D90corZ/2JSXhoLA2MeIva9zM6XH8pi1g8AQUU1E4QTBnHqEaZeoLvhYUVc6vA3ZivByw62TNtFB/Dbsc7Sa4Q7e2hyx3MlPv7JIVeDPDR0e+SgUezts6AZJOIwatEHE0uh8pmUiyj0vQpGWitJ/ecUtDG0HCfDUvQX4Ea9faBQqKu/hBFp/+ltagN6t0QCj5c2hdTHP91yUKiXMDwC86vA91yneGWTeaMB3qZgkybjjeGERjsLnC6jtns6Vha5sRr89eXnyr+OLlwUwV7DRE6whJpLCcFQvGveGq/FOL6RagRGIBabZdarQpldgw1Gcsmpxtn6BX34wRTVlq3+hUwOeBUV0zrDQO6VXr9Uy/1gZBYvppbnOD5/LbYbiR8ld2ucw89PyKx9wzcZJp5O7PZs3iXFT+Bp++0clbrvQ3oJgwPJn2e0yduGhl3CaiQ2sQgBtVBpa+ko3lWtRsc6xxUMEce/enyNPh8Y6wWzPwCxb2d/Lc8FTGv1ZTaMigNR5ZPiKI1NG2k5RjNza5U6PxmwY4tpRMFHQ4Qhg9HtIArp7+nHxMjFwafgjwn7/Ilhc7wCCKAfWXfJUUtoDd1UNbaWvhxTGuLGPxtmmQ0CQMezjmgaqSkMBKRbkxgONnoe0emo8vLtFfX5o0SfGCtxCrCNKAmGi9A28VqekMoH1854Wi9RAqGfGY2JE/UI1T31JuKjO7rGmn19fZ9V/TM7dwRlTokjnp+pKePYEtXrEzhV0bFZJExzSLeJjEOXA3p/SuYQUem9UJ6PlXTPCm3SGyRtGzgDwtI8ie3O0WV1vU9DBGRm+KMWA11MeJwAKy3YhZh6hJ6iY+vXQpsMk/nb/RqTdf9ClBMowEmcwYwWtrSe0N0eXxq/SXLQnQpVL+Ad5+gnA1Lx0bVetqSiz7cMVYHzN4il9L7j5te8ebsXXXvItuLgfDwcG017NbPnBFurCHycSLy0Ucl96/H9EIKEyQ8Kprhy/yGCnPkPmGEIj7dWnej8IazU1C0Up6tkjSHIPCaZxrE0JHIRJq9BR9xWbLPeY3paeG4Mc1vsPezeB8nTzS9FnzUsdyAgQiAPFijE38vum/bK6oyZdBYfdJnp2xQ+nocILaAdGCkomPtNCIOa06A/ZAbry1bRRMaVobfAY3zzkOHmGn70GKhvZ4+p6FbRErq4gDTgN3D89YrO9hWpG9Vac0Rto/PCrcc27cypjbg4Lg4xoMj9SbVk/2rE7zwfVPaMjlsusOy4EXliwSejIjmeXvZpQ9oMgEN2KoHMUkVREhH1PL+/FyniId7I2LvC8QoB5kylbYY4tadI+F11q3TUVlEgMOI7Mnnt1MilsIIqQwoO5YvyrD6PPVTVzsKqfTQB2Y4XvpRHXoAlw0z7dhk3qCDhoTA/TkwzmIx8xA/arISMy95BwcU73xNg37Jxr4RauAsWFfc23eKm9v59KJHGOj0xQkbjfqhqsQfHCEb0ScdXDuD+oe2KRxeMLX2lvCNtfBtj0a+Wz7K+OGjvxlUz6Ptgr1Oo1S13GXmbqQSwLxUrZAD2SXDjz5C9Tlar7Vh+FL+Q2+qhIo634vJxTtl1eQ3xYuGuOGrqW16E10pbvX6NIjrRB/K1Kx7nVeSMmj5+hY3rvZl3UcH1rrXdPxuclnJAkMJzFEvFNqXAvzJvtx4zCCuqA6F8yZnNz8lxHAxJ1X/sNCFHNFjVFx89OFimea6TY8Ba0bJxmUh77ouXpM0l8RD/ANjjRo/rT4Ugh7yjLmyjqTWJPLxWWsoI3OimfcH+Nm8Tsu7dIEkf8BwnckOaTvY1czKeGQZKB9tHUGtFXsSrQUxeg3SUsI2QXJK3YUW/69GuieickF81NF2lQm1CImdIgQd6NhePD+UMAX3cvXcOKtRCmSwKJVSfidXKPfMAu7NhGr6cL4jI9RVGBliUsjLduaO+C4DKVyVaMz7kwEcWBlE/JrVuDnxQCVY8Nsv/e9HC9NnzGU0JDztr+CctntAs70HCgIYiqrnEAt6zQD/vL1Kb8EWq2x04GPL48992omnwz+hvkMtUGDw1bcfYpsGNVP76YwxuiEUfv1OSQPrwd6blwwxAzhZJycgukeITQfeW2ZyftWUXcLg1iozMZepTcKP3RBnTxn+UsVa7WrqAcm4rtGRghBnfEvKzoEfIWwCuK6o7NlmvuuMGo7DIuTy4YpYofz8g0g4Vwxa/bjyqG2nKOkVEPJr0tEGBQXRD4VVw4X2Bfr+lXc7d4OqjEfHEU2VhgktQ6d4DftdD1Bp+nGc9K4QISZxdJt2rq2yf7WYNoJFO4A/lAHdQB7Gb0iW6gmmfPnz2+dUb+1RdjdWdhf/IVmuhXoem5zoiDqiZabNLjlPgDRWM11Fx6hBG1B5y+laNBbZC9BAK8skJHQQBchkJrgFAYjFtB7e1+yl1lV4K3RlabNNB1290lPbb+i+2y2CBvlVTqUK8PBmVzsNWXoSdu9+85tf4KGtkJ3w3PxfToq+5XX1ouPlzdMNz4M5lhiVcRbsMkjV6I6Wpbi8zw8kMnFHDbdKac1qmduJnRCZhWvw7sp1GvBkbquF800JDSPAVX2ZX7I6xoq/pDoQBrUHSCMm4ZgA5Tm7IjxCW0FdRZ6/MEdYmN8dg0dJhawKqX+1qaN6SRbdW607K1uRGRD5xIwpDm/6/jMDmLyICl47b6Yc05QUKIKelYykkJl9xQVFLqckMRvsioYm90Yn6yOUTviodKRYrhZvuPlW6WNypPd+USN7NBAO99Dus9p3L/Lp042A8iBKhVmAnDxGMG8748kyO5Qm4qpNGhUPtpoPQopMxRRZ69jdJUhDNz9u6uUEGnn4YbxaLNJBalNQsZrOOwTFLtogBACFdvAPkdOwro/5bAU/FxkmIzmHU9FMQrjnIwRZ3B+NTld90GL0DcvBBLnr8c9BOFR6Swf0KEGfRKafOCNsMWDQN5yhzhBqvKl3gQCz9VO0ZmywZKZVvAKK9/9m01mlcNuzNYNHTfwwzVXmqdcQtjeEdvDjHFgxubUFwItoifgN5Or2BjI6PAEUJnL+cW8QDYtfpB8Ta6JGRRqoXfZZd3PMEomquv67O7DDo1ukt2ld+a/+BvYecP3QqLyqK/1+Vpt+/lDJmI5g4I4snRoRD3+ZbxwsyR0UiHXkP8H2OfCWygpXpiLygYdjl7vQD6XbQlLh3WgdDOT+VW9jE/G4mlshRHSAfZ9SSn4/Emy4KcPbizw2RYIlO84s8HpVfqTFU1chQH9ppkmmkkjS41x+OkYsJn/eTGcGBIoUsarIaM+nVYBXkkifG3Em/Txc1ZzKAOYqSuxLpsuC4i5tkOfH/UHOU4wFB5+JCpoP76mGCcSFMIeZOroQY2DcqfA5C828H04sv2/Q7+dEc7qQkHq265A2UGK1RyziUv5FEeah4Sxxd+TmyQ5iPHS15Ysu1FVEduXmbigWXjlmp4m3sGs6fzQso+gSjQyyOLhN2st9SbDw8IpSj3Ty4rTkwptb4XzG1Z+qYrq4cr0CNQbli5OHazOI48G4XfoUe6+qXHzna/oHe1auZ0wXoUY46o4c0CklPvvjibBrV/wDTMWnJjOdLs1cv3fv9JFg8i9KxncKwdVqchCx0ymdHvZujoBo/LvtCZWJa3M1dqsmWJ8cHzqb/QClredLXLgkm2E5E9q7iOA6TYOWhYhNrLEFUuXcyOvdAzZhE7CKXF05G54LYy4nCUndhAOXX7aygIfymQFysu2y6u8yHudNCL8e+6ueG25hwaOhtI+a2zS+kweqp5iqWB1myZeCFhBcWIywV1TTifkZTTHit7IpYfAqESdyku3Tvu6mfO2d2sURxBkv7CUtmd+pTs43e/r3w/EZ8YRbu4UEnQy+hnZAKy0T84oZKYnOEyKVNMS1blLxIoyu0DZ4P6u6IUaJAuD0v7oxKcgTcagMcG5MApn2ryzuc7BVGZJD9DR/3ok/OK9aEnkq06AFW35hFSYAcB9vMK+0lN1L87QhV0BSEgaO53kbgauOphDQYsyFU6Hw1+sHmV/IcHm15HMYHB91PKHjPHVtv3J3M107krZvpXVOpEB2SqWWDKNRBhNvZVWW2Z8ECEMGV9+/v9bNbsvGkrENWaJCGoO631sPT0tQf8bVqr3NEV031AD6dgsunesnP94SEC2oxbJZDUGlwZhhs6ZEAD2KZkHVfByo2n+0OPrplx4+862mUXlpnG9YGdM7p3DWYclZJgZjsjqKR0E0pqGlo/98NIz+PT12eZ2UqKnCpvmtx5fX8LLNNEUNkVu1GmEz0l+bbO2OfR6Lef44AGgymFegHdCnMmltbLlvAA4DHU0xSPD+Ckqgf9r2i0evOSNIB29RpMM5L88JWrJhhNM2A8V7UtXxIRXbjEIvW92jN6s8zZVd+IsJ963qjq+EoxkfPB4GJ/ZANDlq+Kg+PCTooFCGy4MWXy2y2MkTJw2NKBZYZH24jDpeeCodn81WenNzm+wgZdP8HtvvFhCyUwNtAMIATKwwHTCuTspN6yCXbK09k95rOEE7basrmJWR0j09+3kjPBSZFXNXlEd/maAWBpvO9Jx99EwMUFgHTT5zixVYbL6t67HkLSvEjp1Qx5tWhvzVoSUIiQ8ZzHo73H5hp5x5bXtpi7dKQglOBcMSgcQbOcnyZTCV6FS5MrFdh7Jv6P135h2LV5VpI3rNjjsvVVYKWGg/LIQjQvxrbRavfbB5DsL4MUAmLSQ3rGdJQ6SSeY2FoQN/kL8b0nwdeBzvizcr5s+9UKXyB1LkYcSWBgwlklR0nTkKxBY58pwCPT3ehKJnsxkkd3fIbZsyq6Ro6mjEUf2MZjsYitb427CH13PUtqAtt6KsGWrFjfdz8EJXVUe/yc8hrGYGS/Rysy6hEsDrnnDycNcP5GhPYBgXv5fUsXmqW4eV3loX2aEvUi3yFcq8m+jmwhesFoJWGms79YmFJiNRZHsw5UxfTHgU1jxsunVmqqFNiUkCjKNAcg9ipYzAZrJCcqCyQuKATv7nnQ4GnsMA/c8nDH5VoX+TYj5rXc0EojBWDR8j2I5lJAWn6aMHpiUcFDfHpruzDrA7J7dxDh5ZY5NnwvXiwpROzvuAP4VrSUZfC2P/M4Nv4rk4n3eiCYzlmmJUkq+HP1kC9W6rihD7QREjb1PlhT4LgKWJXGgkc5YWN/yghgTc61eIAWU5S6+KYjeQu55GxD4Cb2v1XDYKp4dCdJnMPmYbA9jzcQ5pROfFc9rDchO+3kB0ke3SrkUYt1kJ45+8Jz+Rl7ylFgWliggWZ1s/g1xz8pyPX849mCnlFEumLt8FjWo9qgxLYydYPROeQeWVxVTvR222Jvmcl9itwHkIigXY4fC2qQ2gV4C7WeG8zlx+5YMfQ1OkcyXI+Qj32b4hIG8JP6ZLqMEyde22441mghRXSL6bOOGeUkJiYKswv6LZKoaHx2nEMhjq6//diEMIfxvzxC8pa6PH633AX4WRU+bYZeRvNQOhQ2JaO71izwwLVIv7e/4nkwOHvi2YozUmP8FJyWTujAW0pMwTWPSZGkeA9c+qXuUSCaYQYo2W6vxN8m1p3uOQbQpQ1LQlXNkRCT4ozYKDYmjdU/a6/VZvRCvEsEqpsx9c+4s4LWM3hDp7SGmzKskUOZLn3Z8vPAQlYYpjIvPUGYkW9hj2QVPZUOjx/AN/UqzhBdRvYgCnRMusXU5tvjiYZNYTUl2Yo9mYiI9AwhAL7wnQhXt5kshBdMIeVcD4A5WCl0RWFIlXJK5Ic8IkeT67VnTnF6sDEA8MxmKYtmrgJJXIYOeoFyvJyMWxxEOQ9duXtLhfALTckIKwAjYJC5iUMs7iHypqCc4l+ufk5dtXiZ5L7CtT75e+Ch0XtU2Qk8kr2PSnhc9ClWMdLRlqCeEuM9fKO+y1C9HgdkebsmLxhpIDMhFZpxy1sCsPd7qgn+3XiUc0rPuehzYn+wyLfyafsDa0L3uiFswEP58YLwNU4XQRoaIG7ckzw9KWog+dE7f3sJCNqawiS1ZmeIp2sV1b69ScOzzD85kQXmuvMw0IjG7sbXMYoM3HpKSm/iLPZggZvZMXM81sg7GNZ8szLCwqe2WJcv683YzE2la9zEZH5/fvkNwlzzvOHOmQheBlQdGECqCqskzXGNtdBil/y9bZ4Vz6W+j1B1R0X4dVEDQUiGiZeFokZRnQskjhs9eMqi/p5pe/2fDp5d/dmyjdo3g4iO7Vo4BdYiJqANfha32yEXMMhUJ/sLFekvujDZnG0jRP3aonPw9J9Kr0Zz+xW1wPSn9w0GxhaPw64gNXcxCiQHE8C2IN5Qzp5moGDxRYhxjPZw+XaKkruitx6xZ/8dDgPzNHNQik9NBY2TWjWqVUV3k38zbbC7sOGGM3Pgre3dJbp1CH0NRV9EA/JRYNM0+zZsMhhfTqiENMKC1i6zAJSeuP97ipXX2r2KzKloH2mWfjmMIIFts/6WPQnMRay+FYNxjdzu+AzxgFh0rAWY+2iQhMKz7FXR/Ao2II0ycvuEWkjlG+TBQmYBmljS/4nOYkMulUB2eCePJSrv9xG+msgeU49/ZDSyjSz+NDz+dQJbVkbLSTBxAZSIrzHQHfeTA1/e1CggR+DdDrW3SRL9AirwpqYmBzZmZJ+8VohmhHFeujVw6lLeCApCY/y+WcVIPNJ3PzV6DlK/nlMPqlKvwUw1GU7DiawMmThaU4Qjnoqc4HMujb4jCNlcSj5fpK+plqQTDNKOhZta6hRs8RjOYKAqyYmslvqHcCeccAaTq+Xwbcl3Mvx0mL349U2sdX/fEwGvXhpxWBFxN2uG38Q/IHt4muEkF0uCKEaafG/VnK9/WRhodANQASZRRdv/PYan7ruLRV33DrC5PCsuA9Sg57ZvFe7jy7ZNW1wqQhoY5aeBzt65r0SuLRDAlbjGn6ffWhw7e5qgJUiy9vtK/nioGLT0uXMvq9YYm6EjXG+wNvr/qvQ3lvAsp8RI2ancCaOMeGv+2+rbKWkreRw7sa0OmiBqnOs5JJYrkaDoja4HYgj6SF8FkFeXdu71pyzmadjjn8wbTa42nvOtIAcqcDQkNDhlAsb+D4D07H1gu4eaPiHz9S0rI8grP3rgA1xZK5wKJvphSW0E0eDQIOeZrMnhfWV2mK5xMc99CxjsDN8EsRC6RqMLwkWUufynUqHAP965dh0bDgHQBHw0RvZaNtjhW7FXm1RWg==
Variant 4
DifficultyLevel
597
Question
Reg grows fruit that is sold at the market.
In a box that weighs b grams, Reg can fit n gooseberries that weigh g grams each.
How much, in grams, does a full box of gooseberries weigh?
Worked Solution
Weight of 1 gooseberry = g
Weight of n gooseberries = n × g
∴ Weight of full box = ng+b
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
work | |
object | |
mass1 | |
units | |
number | |
item1 | |
mass2 | |
item2 | |
item3 | |
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | |
x | |
x | n+g+b |
x | n(g+b) |