Statistics and Probability, NAPX-H3-NC29
U2FsdGVkX1+udqDCsB6dJ1xJRHIPqady1IAItjCzVM7TmYGsGT6Bbd49I748Xl5lxwEaXrFrosP9u0o6luEfetpNHy22N0FWqAKwQPlzV70SgkMXadkPe1mMcvBzzQ+gS5zNPMY/VqAV9CpvI47/CMBbyPICxelK1msBlAoKwtOCH9g5vY3qHOUHcpwn956pJqGbJ6zweLkpFQ9gUSo9hwxP6rPFY6e7Yw2VfOOSDJtG2bWmU/GmpnJH8WUldxz6HapGZ8qCA25y9nWzYTMAHVlbezWJR08hbWdcEVXc8ISs8Kt3acydGDDJvqmDQ+F5AmVe7HbUxM+UmzLFkivvlx7V3ATwon63CMLhEISKc1jIQLT26DzCeZ2Y1dL8NOrJ2iTqpSZYF5Ns14n0uO9skS40ioxCzDAz7YJDFU8Ywa08ALiSsliOBrIH5boKltS9DK0vNpSy9C6rtXryM8HxVv6+CD9imNKC7urmRDTN4VPKvXPMQAAjk60mmBQZpKngH+y1ZwHhrJEXMBN8LM+d64Q+oUNZOsd2XGJpulg+8wDU5GdAYzGK6Phw9p5C8scjUTrgFoGulxwQHjQ3fSBhdqMk5l8yziksk8GKg9BYxQ/T4B5psdwuXjbP/5YW42dsgxTtx/+2uIWOQBdFMjzmUxrocZggRVi8RYuQnoP+glBTeKfZ4wtCcjNLXPdNb3eoXq+3bl8TsoLF+FmVNa9sot9k9eyFo2yx+qiszpHvdaiHTwZt0bIIb9l3+edFUJLWu26AKkk5D4PyqhnVqiInc5jLyEADtyusHX84NlCbRAG0/R5RMXhY+Svwiau97d9D1ZpWUv2n/d38Q87MwvQnq+t/wHbCbZh19LFQBAJOorE5g5uSVIvZPXJbGKn/19FdmcuymeUc147BSaxY1zVWGILH3iBnghWzuYmbw7CSDvEG98UoMawuJqLj+ayeU+pxlqL4RqbDHMbMs35abQ2qwMpQeM6BboiUIuqoDD+E3L1ktrVqBnzxtN3N14M7jCe3SovKaCKt3a31GzOG5IlC7P0RtJSXJmKjdt/s79wJYWyFt6omGMgUwKGsw2pa6lAp8j+/E8f5/0k41ZWVYpPLBiW4GFj9ut9ZaqDfRJyr18+50557Yu6SK4IPa7/1e8j5HN2THAacUvcHKDf1ZbOkarIevlPpQ2RCObIF9KXPsaufDAt6BzsX9xzhE2NtBh62C4xTpWLCu2z3SR9P9lyANGiUEh+bgbHVssdx6ZYn7xdgWM3lF6uXHPnyMl5UaM0V76C+TKvtgQN0q6jI2YHJ6tfe+kMdo48u7C6nbSjwE6/X6cW4uALDb0ieqGVcaaBLPhjvuySc1qaUnJYJuu1ymQdQI/X7fg1V1obdRDg30fQNrnjgQ8UX7xK6f5+R16o1mmsXmMESpOkt5814e1ZBPh8VKfhTFN9+OPF++wBasXcTGX7Wxj/rh5fjCKJB/DWuiUBiNvJEDXvPnHv1P6cEhl2CsxbLHxiT0++u8WLIBAuFVdJue9BOJcRzxnJ4HrO+Tc22emyAR7k+SYzjzugbPqljut7fER7eF5VAzyd8AbsoVrxWewYFEf78uYOkv8EkTf10KSERR7Q/LAplvvFCh18DlQ8AlqZgQLKgF5ErPBR+2Bt0f8hrSQQuv0HuJNJR65PJw1Qfto+E1lIOCUrzWxREHFNQs1R/TlOOWOeuAuNRnd8pTEzTfDG/DRhOJ1lLBYgwmzyBtk01A36jOCxf5G9WPjGdcRE+87dO3nSi7/SFVLLPuB7XwhmGHKNXX+pZkcuTMVWFKjnRTjugt48730wNmqz3qEq9WvOmHLXVpEP1ypTbValgSJtenMHL5alshrn+t6GwJ/DfeaMGrNWyzmuZhdbpQsM6wtd9JlvADmoIeU8tZvceT2QI5PhYd48Sf1hdKXHTCeCPat+6ru+E8NqkuWYLzH5esgkCE0TEvmqLpNayJQ9BQzZy1q9s5w7i9JsJe5edBlvfGlr0tbxJJhbCb5D1kYsOnQh2bXa8iZYEm/DMKud/daQ0NFkYaPeQc+bvLj9HhRyluw4AEan/FBLK3ebiOTiZwQfAALvMyLhvWz8SxyGuyltrHFJYtcjEqRA2dLullb8csCcD/iLvqoP4iwLOpOP+0furPJ6uBBRjjxwxc6PrdTbZAo99pdLh871JSYcRHqNU6KEn1at41fSbLaomwCTp2Ox+zqFOAd4vVzvUsoW45h1F7d9WpMJuA18iYKwR45uObEg3GY6T9AkgdlHD+szYEZPi2fW3USQF+b/S7UJ5XoqGh4FwALzeTyXmGAX8jADkmv0BFU/ZWUzyTMean+C6zvVp4feKUZSRJTH8NrcZJFkhWk2etHTsuiM/OTwJR/SCWdc0M6ZdiFvXYRP4TxYVWi1GqGS9ClfAAtCoQyYOEa50HNerscoLuz0dZPAYvFx8gHlqC8md/qK1m7epI4/u/C8YiI7acLB4CFV7+TAQSWyxjJOhJNDxuOv/O2DFrNNuD8ty/uqMs7f8rY2B7rN5CVfFCfGfOU/H8SKUieuwZ8DajDT/WuKzxqVFYGqGK+n8Ek0Kh48AC+DALhST+FKhyDP/rNuFGN62bIpPd7zky+IbcqD/hDOrv59lAB+x9XZM6y0XKY6N7dVU3zOxmG5i3Oo/xoEDMYM27ZZV17PdHe2XVREdDclQQiP9utPiB8xwIegUSWvFc2n41wJ130R5UxMRLf2oxFN10K9OGVfxh+OHWyEwhI81ew6x4ucW7L6eOxHlJ8pOjTPZ+jE3RgrJLw2yWoQbfVbXIDrwtuNT1AJp6szUzfnzxKSg7BmSI1gOqSm0IUdBLjcgy5pf+AGbS4YX06IWaf70e4nVITGHCKKJDU+oMUQSoX9WYKu47nbBCiyyeN0Nyv0b5xeZen3wTSMdoeM1WURl7pDTMHwIT/wPxnOTsb03jmbLkCFlFwzQhIfqgTElD8emzqhL3mOzAy8ZJildhNptzZihSrlvNct+YBo/kk6HtF8e+68C4RPt2sKEBKhsIvlgWnohW7oIqkzeIe2v2wWHMkqHfNqP7RCIKzF7nmVqPZrnZkHVoobEXqD/PqYAhqYpHCNWiLpNqKWlxth3CKgrx43sdDLQpkByMJUBoy2YUPws6NH1RFNMDiSatgDVbB9xMcBizJ1tI5zPzAHB6l8Ve41rTV2af4tT+y10KVccyDhVC1NR05MfXx213cem7JAeTkzr6uV0xVyll0biRezE7QaPUP2IFsqsAVajBPEyupq1PKV1MsN9c/1M0vzWer9zpxniiNoSFtIpeA84hlc4mjP+U7xhXE3muISyB06Zyx37bc/Bui3X5JXvIH02gyesbUaIEeMJSSGNGG+ePDko5bX4iyH/pa7z5Flw/gzsrSHlQZ3/Wq28l9OWPawZtyIx08maHKzSuU1Pw4jkXtYUSr8XVR1CPTcxld7s+VGv8X8RMOplIMpZEZplhabM/fevDBeOdYi+tJvd5DZefXyfX96f8cguxbdxf17jZw6tc78IXKP4tLfLNEHkzd80W9i/j9/qoeOCXPJI2MqrNnF5kvDTdwFxz+jDzW6OIt2VafH8XEjxIUOhXdD/BZu01ZxBuJT7OuG90qlg6TY4DNnKxQk+/d7PIipJhaR/jnZk9jC4o1Zpywz2QXYd7+G0ZmRumGg4hkV2GU9SHyhjRyatj0QqiCu5LKC2saLpPj0pm6shQ7KwjuNIwofQyLafEtuFEJZ9g6B2lN5z3nT+nByLk0s8oVndWG7u9zZkiVEiHS1KgurNzlWXw6WLu+a41mkfvgfOrYRUnNu90wQMApij/xLHOWKh5QxCbKIBKrgSARL9KlATW4NY3eoZqSz5w/3azNddDZ5drwGaEJ5lFLhvXX1AT662PN70+Bb3bbQc2z9BVBMtfZ2Wd815DyRB7XTuNI1aDy9PToYCNTFW14iAZgt13QKoS4ubxOb8Soi3MWWunKZDrG4mvXYND2kdcfhObCWey9u/8wesnYZMV0xQBaFipHmBn03SN6MFL0ztUEvk3GJWdvwA6nbPLmag4B3XYvXXQU4TBush0aNUY1p2eDs9GqZFrlJIMHh55f9S347OTwjl6aNuSXprBKXIUuSqSzwXgndg5PvujWTyZwpjAqz5VmVH9uKX7Sy9sMm6Ll9A1GNWa7h1HM3r8qc5x4yqyIyw74LmULPts9TCO5xfbN4rNfLjjOBUxi1/0qpoRMByCVi476mxrzuRlym+sgqvtWKnruH6Bj/BfsUA8GOfaCg2oRgIjN75aztyDjdC95acN3uGJ/7f3SwQbO++VF9nMFa/xsx9fFK3sE0vgj1tiJ1QNDPmFbpMuv8tShZUWOdJOjLUxREGlO4PMCxrIqkdB0blGcwyggkSj25xQrYrKIF6BHVHnMdaWwXIvIX2I/DSzp2lVl2u6RBvuOnaKy6licz4UCY77oBAIJUJ6D9+JflpmSJ8QWEtQmAzIXbs9baz+/JFBFvUVgtp20FUjmjFtV3dHQHvrxPjXRQ4iAnQBY8FwtABv34EIHmSMJDHhJIPh5CmL9ueBs1ALgBBAtIWyFWn7uR2Jjx4sDctqZ3eYVmM3Q8yuiN6J2Ix00QQ6Wrhs2U/zlfQjuJpZZQ3i2INFY1ionX7pOktpimBXPFTl6TACjpFqtEUcSCfibRxNRDD4CtmKkZfKZQqOKGnL8sPie5mpnl43AA1sWeDWxFGU1B9eeDBQC6+w969D7LS0s73nsYnQWuXIy0yP1ZEgMyG//tVVyqj4pUrhoisBFAjaqQIV+fQ4EIPlGls6hjk1mnShxoysy/CjV1cclDt2I+pkXXukK5J9A44cslGw/BPd5QNNUYjhC1w4qu9UukkY0enWibhYffoHEdoJwzyHcm826zf8WdavSU5+5oCdsoexk9X0SBHr0dpq4VXuJpBj5VHgpGyCXjtByukQ1yfJWJJ9w3qfOV6vnFPmD/MikFmxrclmuC2bAOZ5Spq+u/E6jL6VGrJO3lmDQpmfvWWIEezQBVgtkbFk5AqqjofuAlh6RdhWkZGdjZk29M4uenN06mZS0HwxR86Zu4a1s6cQ8FHxtmP9YDaC0sGshDRkHetvSLOljT2li8c8/sttLvITB3HGQAtW5pMOISSz0J9SeOOdB/1jN9dclO+JtGSxYNkpLiyUV6NEtigdVWYeCgGrPox1lZZ2Ed0FbSm2j3u+wN2a6Bks5Dk2eToDJSM4T3TNqz+2hW06bjDqnly/cms0JX8niicoDdi3eSBKgF/992DG26VoNUnQlJpH9J2nuuTTA6kwXKm37+bUdKOR06QUCW13iQ7v33dTc2NvfSxP0sNN0elYmCJNkphDtTvbef9A9IsgaffW9Z054Vnb2tl8Z0mGnczeqTp5owwK8BpsW22Tkt/0gF3wL7ecVmwjEZgYLThW9KmHHDnxfeca0OUhYdSTuYesczKWTNtXprBxfrFtdnta592ayBTQeKLv/3Dd6FWDSfUCIuTYyAJNQsNVqoz/IdjcY+gFk6ED6vabuRijmHQ/CQRycrXhJfrVE7EgvYVit1WBSsKU57BU1nw5xEyihX5rVjF0xDZC0RqlKhNyoMftL6YFwFHg/H4zeH0QGVAPb3WdRKVVAOJDeZJpQBDIN0hOOMm9gvcdcT9wFGl9tpBtQ+A7hQGFBmx5YqFR0x7WUVHhT2hlAPTpyFhAgJTdoG1L19Hx8DnglL0sPs5elPZVShdmp0AopPsKJGEhSRKrGdWnHJ49nCM4B+1AhbSZy+QipWFtOSYnFHq4bXPCQFS7ArNya0Hke1jmgRnqU3xB6XuoX828YQvvfWLjD4bsEZOX/0HilbDavc5iml62r06lV+7HAk491dD8qGAsHrXcMa+bAlNzi0GoOSFppeVRH0zgvjZyEHw7+PLfhlK05upsoC6YgB6yg5+Y96ndUfNGcLS9fSH3i0wSofuQEXGeW1nqjS1eTGnbDKvc75ffTpgqTozKD+LgWWVW/DsHv7C1HIMVv1KW41OnNbbe8tGhkuywZ7GdNXDaIB70aUkKFrEtkilnU9jqL5Pk9xh87CK9xMQwfwsqwkdBUoKrYNDWSS1aZxWemMSGiI1K9wCslpXAeDKnTGJ8VHQyIuD5PXnqUhCi5G2OBxW75E16oo8jZzHR0wvr3LtylzEvJZspDnuR1iDa9R7NtTbQGstLk82y5wSkIuuJobgZK+IRLs9/DjG7h5+TBShoPLp+e8REfylm9dEnGqXJ24xRH6j9EQpRu14vhfJKNhqJfz3rBhWMM5SqpCR5c3Lvq48oHcoKTkP3zhS8LUgXDRh+rgcT0SuZcGfcBi6NRkwJlV1lZAzTpkHYJyjgS0rNOojHrZ1lTRDVP25MVzc10BcNQOru2tHAbCrVDLKrdHTdQsyQSnebfzqaATRTdabBh4Qv5FIOB/XvLhg4pYGonuKksq5W9F7EPAi3LUxXVNsuT5WFYrsw34h3CsNDABpN/vsDdcKAWpc8oirPwi4ajFb6uxhedliZEoLznotx+cUtRpuBRH4459UcHlqz33+ctgprxBEJ2Cr+R7jelrblCtmE1HHXsMoRSfqt0zkQJlmQ8voTdVkDEdXSXFEkR/N2YESYyDMksTfxUqbYbeGSEYj8l89qGiWlhilE/lkTn9n10FL51XyU1EsBi//V6l1hoDYJWSBZIarsytyF4E/K6Gn1HdbD47dJsKwcnR0Gw+EqRKYWFY5/mTN73WjwdAMe4o92IB53LgH0bRjOW26XQR9NJw/D6bqHQ6XErU1FTN0R7IWk5ciKEs2IjYN4kik3XYgEmw1Rygzt4JcT/HZV/t9196Ks5JHZIWzrCA3GeHH53anLzOSPSeMkORt3g8SzgBKlDUCeVyTfF0iiBRY9T1glr4oS3xjngHtP+e7FFNpsgaV2J/q9klQxNHzMa0Z8ZqGwQ+MlNHgrfnIFWdpIzaoqj4AMD43ZUeZthzCOKWbWew5zG7wX5eiZ+7i9MrI3W5vxG0vLfPhPufqfhsImQHD6NIWHUZwbURbXIGv/mqfyxQQA9G0m1b63K6LJjU/mCJmVNtfo+jagTYi7jLmM2CBXBs9no/ysX52z7K6wbYux0Y8htTIbXqUlK9MgHTAPKcJ0RBTLOMR6gHS+aKBBMtIJu+xS4+CFqoLFGVvoLPFCkWnU6BsjDuVfFzP4iXAPuFpDQK3V4vRPV7iYzagYJPwuK5MmnfJ/7OckSWKNIjpJOw1/pxfTcsNZHOvr2BomLKlm2Bo5gkNUJAfRdrQSTXRrvBOmgT90tqpWEx6l4A6M/il0G/1rBIL4iUkH7/8zTHwfkscONjy/mZZ1+B4f8OS3U10dRg8w4TN3MGY4l4+sOl+kA2YL0XJVCLu6TZWH+MR30zIGyDCOzjqrEQ1G+J4wLYAFWlQllMWPGT8tMhCTUQeOIRdumuKi9wqyqU697H+UmplmAAbpHD5+d2/pE6ovigPMjxkIynOzCYiUzjNMApC2Aa7asl+GIxhKwLUCTFkOPFkFMjxGeQavqzz1G/SeqpHqsI9cLia4XygMjwF/p1c/TxJyeS/vQ3SYZLvb1Wm2X7YU2HCEvLFDmMSdNwT3jDU7xSx4NflrW2xwWWVVDz/i3+zx8/tmini2/IzmnjCsqNaEi9N9EDvRWFAH+Vbmp1gWyRRG51eUU/8tLi6wtIueooyoS0pchkeLoPf2ptB4XnKOtgGojd9z8S5C/kXPXxnD+dXlagUjNAL+Eu8EzcHG9XtCtp46Vl23fmXBAheyNJhKyDS3eZe9wzGPJ0HlQCcdzH68noMx5aGlg4ik7eAf8Ho3WCpYV0UAUbrQPezhUO0K85V4m1D8WLT7CCcxWErr/ajadMLNURaD+hPSj7duahecjxnDjZAPv+kDpUnaaRUsdNIXf81fx8/WtHLGv20nDngWp7T23RkqI3WWJu49+mM6WUe+6oFsvLi0oafFUqjV/HVr3FsRbhTw48ml2QGZqUUeKEcYEY58CRGZdqzOcw8imWdsqWp4D3I+pYxSeqyyW9/OcoWspp59bSWFZ8TRL3NvN0/w43IcxMYodZXbqYTLO+s/XiwwHqLDqplbXo9TntLXFEEnBKUJHZKWZ/Cfdo7D1RSvZkBP8FuO0ssKwFGBGuZD0uleiN6LSJ5pLDoeL0uojHsz/S4QbfVHD3CjfOXMRgGX7EM/LX6C3qBknX95Uyv0sPuyYAUGpyRBKwLE58c0es7Kr9E0/JfgQu1QTed33hXZIDBaM+A4cn4PJgNP24RWS1w1wnRnPKA5dF+VPRLvmtcJzkbGQk0TX8aPn5vLgdmtejPB+2nVVwrWzacW12gjxHghAsQqUnd6svhTlJZ4+RPvflw/KzLsk88ptzz5xT94ZJro+wTpNcAzTZXUzg5oBxWCne71v+XJrHVfl2VncIO1K2KblwikuFQp4UexFnTVrcvk0cM0KQL8APtFBfM5uoW2D18xjqkjeh4dEZ2Tl5p7FbCg+JDRZlv443pvGijOW4ot6Y5wTJ/H/e4F/k/ceTlyRS7Y5zxg8o5LiK0JkfbPKUg6goLgaCQ4tfigDyJy7sZ9/AdYHc0Mc+GzL3/t5RFyTWngRhHMrRZCrA0YseW2M/xJfeaTLMF5PeqOqwJ0n8CoN0lIZCFEjjaGo1ZbQeX5p++rg9xAjaUiaKZNnN/2WemULAh0TkcOcOLsNqXQXOVT2z4Qm7BxxCZNn3e3aj9sv8ikYO2eiTVdV19xhq8FsggyOl68+K4a0KpOz0cc+Vs7cI2wZWbd7IHhftqpENOE513QPTORJOm8g6wtN/Fvqgqt2HLpeiXg6jgvt+k/26AuGmebTeh0XSco82VXZbG3hrpYfhpUZ6HSrRekdoOlw8y6R281LwFwFC458eGana2fUK9dqB4nX1Nx3BZ/734tb30+wIBl5FyG5/phfyQEAggGD0TPeeJW1sWfgb53TUN/hWYHokucM5dnAc85shUh1n16tJdW8fuY4bHqP8lZ3dtmAXz8MjqAZ9L+fARDS2TdPcIpEdEWypBAhQbZarXKbMqmNr/V9kAhrMd4B/uff9XdwYCcTrjI3lLIek4up3brJlk+SpTEoG+6Fp+my+/qU9LYlpLHT/cgZHLTGf9r6eAvvH9avcMNIc49hj3kF7nvwtG0A+0WnIrjvuuXmH+ofpkhvF56ehVrCdWVH2tSUSeu0RhPVK2XOSgeFMfbrdF3hGv78GhRdvY1wgyVS+IEKWA9bqAEInRZAcYX+UgtLWK4ywfcdCN1h9Re/23sUUpcHp3TAb165k9lepyMuRNyQeYycOxIA==
Variant 0
DifficultyLevel
658
Question
Dippa arrived at Toorak station at 11:00 am and caught the next train to Southbank.
|
Train A |
Train B |
Train C |
Train D |
Kooyong |
10:44 |
10:58 |
11:10 |
− |
Toorak |
10:51 |
11:05 |
− |
11:19 |
South Yarra |
11:08 |
− |
11:24 |
11:36 |
Botanic Gardens |
11:18 |
11:22 |
− |
11:46 |
Southbank |
11:30 |
− |
11:46 |
11:58 |
At what time did Dippa arrive at Southbank station?
Worked Solution
Arriving at Toorak at 11:00 am,
⇒ Train A has already left
⇒ Train B doesn't stop at Southbank
⇒ Train C doesn't stop at Toorak
⇒ Train D arrives at 11:58 am
∴ He arrives at 11:58 am.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Dippa arrived at Toorak station at 11:00 am and caught the next train to Southbank.
>>| | Train A | Train B |Train C|Train D|
|:-|:-:|:-:|:-:|:-:|
| Kooyong| 10:44| 10:58|11:10| $-$|
| Toorak | 10:51| 11:05|$-$|11:19|
| South Yarra| 11:08| $-$|11:24|11:36|
| Botanic Gardens | 11:18| 11:22|$-$|11:46|
| Southbank | 11:30| $-$|11:46|11:58|
At what time did Dippa arrive at Southbank station? |
workedSolution | Arriving at Toorak at 11:00 am,
$\Rightarrow$ Train A has already left
$\Rightarrow$ Train B doesn't stop at Southbank
$\Rightarrow$ Train C doesn't stop at Toorak
$\Rightarrow$ Train D arrives at 11:58 am
$\therefore$ He arrives at {{{correctAnswer}}} am. |
correctAnswer | |
Answers
U2FsdGVkX18k/Pa38oELZB4Lie45ELLQYoWMUcj5CnlL5xWYXFwyM8gukjwSOKU8QEzOhY97zjP+3Gz4dnjg2ALnuQOrfhHUyBhVxM0rYMcrp0PVvDnoYDcGh1YKJDEugTL3/W/gTKP5SAZkViLNZFKwnug1SW/NmzGWT1JQSZbmVxRAdPGsvRXH94Zcc9qBHNNO9hlWN6B+jXN56Uxr6y33v2wila6gk/pzMZmz2H0vBSSZeHMQroS/V6OZe2MRz7Igx3dN9Wlpy8pdZ0U4ZS58M7EGRq//X3WLra3DhpUK4O+hkv2uk1sI0kUmopgkU07I++7NSZIb0qdSktdCT8I7uxVoZDwfYn+fJtoTLnDUJakUcyJYiGpWTry/+MfU5DuSzDcLp/UWdIk1caDzgH6uYbDgrHwLTZOp0DySFGOlp8S+huJBwHYE8oLg1/8dd5Pzb92jF7s8C72zQGD3F/TjHCHd8NNdriawrGaK1oQuYiKZEIFwjilCZSAv4xs8kpiYzvg/6eb6DXugGXINpOo/YY+Ws213dCnnMIleMopLirZ7GNgLp/3UpKPpc+v/IAOP4AJ+qNqEYEUkPkjH3z04ezOqaB4hwDYtSUqtyEFxdCge8YryHh5eTLj8uLB+ImkLPQyp8B3USm/+spsAiax41/LArBYUjViC+2Brc3gq5rqIrPL62viIMVj3mQiv+YihiXiqHvbTCurda0wNgTxO/5t3A7fiexkJiYbZjRrYvAqHleqhhYizQ1fxErBwjKUIo4eLN6dkFnosNSC33cKLrveWB51md+05xKnF3E3EDqQcMghv+E9C243b1VqoK3icbIsZutW/Thpv55a0QUdR2/Csn2qfM11zQbb+gfTKeth/9k3zJNghOjO/SlDk2bstQ+UzZQ+gCJEvhrXnk1R6rtO1gUZ8u8P4P65YOHxS+2O9Ygs5RAqbnwvHpelpEfoALUQp0LgqtFzKbgVQIE8yjeEC0cMEad6JwQdrFLFfoUilk1mgDQbqJEjRfTDsSSq2Cw6fGpYPF7p7pZx1ukJkkgVIjaByJcVYN/ZjA/3wr2PZIYXpugdz4Ve5uRfUq7DuSs8joGmtM2UfTLd4nOArskB8dTGqahHwoHefeYmgYqjo1lk7wHkr3uodPZeuuyAFmLJKRdnFAmJLau6B8eeupVJvUJK+pjbs/MtAIcFGKTKkrsyVUYO8NRPiJ/y592tJHYe8LAltJnQ1UgK4GZyUdfKlNZDvHc0sjfdHOi0qcCifIKOuXQJRMrx88zQDJjr4yhUaT5T/HepZlc1lGCy2QX5WzkgE8/SM8lxYriWG7bZ5s4C44vhlZBP3SEQl9h2nyXCwKMi/+wmhf81/1W5pFHFMSYESIO/tdY2yR6ikXlrYPsgSOKY6bMjPeXCeDvoz5LC/7vYVcnkUH2QvG9nTwnH3ME97b5al4V0G10i/+km9dA6y7wbdNF8Kvjvd3fV5ZYth7XLVa7Ol80xIOT7XbkOMGxrWT3HLS0pALFPrHLxtLWiZr9bybkQ1kJEdXn7NSfI+Uu+c6JW9CdVTha+S/cJz6m5bcVwi4ZSymPBqn7dMdyn4QP+MiJ1f6UnOD2gA9jskr36U3Th9affdmnRPAeOCRtybnsLlXocKkXYCTmBd0grMdl+BZyGjAk0ikP8LoLPBEHReFFWFe0EgTzOffUugmakyebLXii3xBzBRC4dkQXRixfce82rGvxRzT7m+7/sqJDIvAXMfQxHIlqvrV1Y7KTaCmZzqHEw79UN2xknzM7ia2cAIy8FslnoBufWM+Q+dJwSc5aMxjtAgWJXWKd6jp1LoTNJUG3+Oe5BGGdPhdvA+Xxn9jBK+E3HdM9/X82NGxtqJj6XgDXehmUM1O9D/Vk6u3wyRThVOiD8WrdKQhzRBpTn95aJ/8qi1ttY/xl1iQCiq7MoaQGEyUNGbWIqu9i5vb4eLc230CXCIEcEiEM5nYD4DfJnoVzAsteV93JpGZxl0K2f3YtCXc+63C7jBaCeRdYhYeS3WDvCcJL17uxa0t4S3WR40L6gPFbKDftzj7JLLTIMZVMplcoX2buFtivKlg1qt30tUwMYtnLL372J32aHuXgLGaQnVIL86IxywPSCgM29i1zsg7F97P8zefQN7nttlfO+RYdgneuUjHmGb2o1iLP7bbbEzaIKyRXA1N9NlOm7ZQbqEfkmTFlrpwvnObTUgY8URvjN7Y9rX3YNfHJTLu9hEWbkpZ8wBCSNsKXspqNBEE2xkgSJBn/UZLuO/9QOunIM5ESlrpeJW6yPWjU6LxR6T10TJ5IqT5cg2o3Ey+Yet1SqdOGOUouj2m67/f9VIwQEyiX54E9CylEIcd3JPMHk+vWf6x6efdx8eJp93evxDon5NHZnovPIfWSUWELZRsmJc5TzJaDOxPsovDavkjazpmG6evAbD/IiHvqQZvmy0jdErhwPrg+Qd1XIfnxmV7F5N2q+B/Pv5+9IDyhpVvTHvrQEv3XpvUzwMJTJJDS1ip3ic/tvvGp9+/8odRfX4zLdpva0mq9LpJ2PsPXC9SsVjvZBFqDM5/BltWKuVfWjC9G36BaKMJiOOuvkHz06kGWJ4aEnqJesJlMz/yq+t4pxZw8P06oYPQ+aIpfVYRy/VTwdSaWSMBZo+sRvhI7fVS5m4kHsVLEE+Ya+Dt+RTqjPE4y4HUHT7s2FJLKYDv2MxzxjqGO1Z9S8amsL3+HVYYscw4EN2o3W15TBWS7BgTJG51H+hFwHzLDJuWOVt/J9GLyo3o1SiIkLn8Y1Hs3RMH5V2sIhBQMrUSOT/4mePQme+DHP2XMpxo3b2QCj+dnwcrwD5r5TxfCP8WBzosrN+1Gw+ww0k/JEvrox3cx8kuOIE9fOxWsZN6G3x49J4stDU+4djdMtqtdyAZ2SYiTiS/7yKfgy7Px/E7VXOGuKwh6B3pNIZheLDHV3bqliuydux7Zqp4TxNqBFv/jXbNlRKB5eZo5JIq19lz4XNJiLI+PEHZL+PP2B/0AlO8SzeG7/Qr+o4Elxssa5J85DJg4Jo428vRgvbRwgZlrEwqNtPgHMuEPmKeB/HC6gT5xzxX3WDjGwdZpHMfXTzqmsaGaSB7PyKdnqS5/uQhw3l60UT9bMfVOc2kzqAEslD+WAeEylB/WURXWTJpI8Zz3LOYbo5kM15iBIs0FCw9OmqsgTTfryAWbMAYybkq876woq6WaBCkFwgbZExN88SDaZu1mfK+2sbslzI99OVDfCwreyQcC8gpjK5DfWs33kEn4AOilMmr9MBgoctTAEb/+YgOaRLiH8RK/J41OXGl1Ny+fOqzJUeiwNjbNrwC/SzwJ81fCF+wbjsyhN153wph/isUfZ/s6zDZ+sFC2KZKLZLQdg8xnOWzUq+/Rm9l6cGgi//OTsu5UT7epY8d2V8VC2S8f4Ws7feB8KiULBfinRyethpLqEf1j2jID3AK2N9T2NoSeFaRXWnWvk5siowx2pdXKS6NoLTW0jO4WwNtYkyAWIqMcl5gr26dAmJt1V8gqSCuoCqNy0xDmzKKhLcc42Wj3pEIpLxiO3WWSj2OxBgB73Ug01BRhqAx2vi0bBQeHI9NPo6n1iy+msOJJ/AtDqE0DWxtE0SkmyP/A9fu88Igj4cLt+EsyJOvdQHeePYTNAHGw6BgsJEUG93IyaEjkksRHskVUi3XN+qfxCb9ntQPRwGfiYIW8S0rBlfExNYaIH6LWQbV+9+RH26RDQR+PrD0wtN4NXe1TMZj6kjsxnCLZY5XKPZWg12uS8sDOSchUVK076edGVU6BGcsjAq1nFMjdQ0H4IuBtdxMSUPFs0SYgTi9XE6QiT6JtOJd+O+ZXvzoxnaUNNN9UMQrsAuM99tbtleYo10CK03QR13mpkbK7s7WtiUqH4Pt6WVFx2FWFV+YuM5UNvt5vZCVjFfab0x5ulRRS3+mWbdmyuaGwC8wP216uYCfZp0NXr2T1QkOSbPrsjZt73wQ66RoQiKmQu9azdZqmYOKMBnM82XigftnzFEOX9C/MgdOw65OQbb1Vqjw1sxsT2On4TMJJbKxuZS/snwEmJCIKxCGt1Uwe01+8TxDjcYFPx305Y+SfQO++DrxVC81lCLd72TafwhSBDWdXzNpArrc+/9IKM2paA1c/EzPXkfHziRehzwMnF6+80hght/DgVTlPqvjVxmycRSjQa4k4WJ/3Dl4OqtbdE5N79Uq5n88nmLe0zUAMLuFHFFEKoMxtL/OCt6hWihA3KhNBJSpiT4BcpC+4TMDkzExBigECXjSsvSMhNeXzAyrvKi4/VkVt0PEsymsk3zkUYHW73UGfoELgKhunDd6VXjhtvLk5RdxFLDcrfxq57D6mA2vKfJuypOf9dsZUCCjo/06CPrGVjTtPv46bdTBEmmj0doWVPupPAnryk7LVJ7+IhockMiyjOkb+1X6ikqLZij1rzCTcUylrpJTbuJnHUUmfWG0Bunij1eINW3onNJ6W5qo2olDPC+1sQ54hNUNy+Jk61jEp3YCWXlfZMv6QQEYyrt8QzJx6gXQPh/qRVXnKrlmS5nI+e714/6SisDVVV8hSdCDqnPWwhDF0IaEV5/3VjhBs0fAQs8p2qWHpZ/fyfaAB2jkUy9YcsXEE5AmDhPrgJD/cqObMTh5JaftTDb0ZFdIgjFj+fhO3LdL8fxaDpBw4R2feBxzWYG444zWy9XjP19aoNwy6aey1WwR3+BE0XFT4EX1Ng/sU7ewgIIqVCV24CvM2VHOSEKBJGihrW0g7iAx9Oy26Qqw7CIAJYyh/BfLOZYolg7AtUwGRsBxqGQnoar5SAGIbS8oUpHIt2uw5WEvnKSmrUDMKSLqOjcWeaPZnZxXniGByIc0+wrhiBDXMKB/J4PGM2TRhs6815DjMO2D4AHXvKly1jz7RFeJvocx9eJlRz0RG9Ch5GPefstE8G6cQ7GLIc6yIYAuToVhN+zVoQYrQQD9tZQ8JyX9c7VM5p6bn5z/U2LdM/T3js98kGw8PUJVtIEZIQPLHSIfA3Uwmx7P/9LbaFPJ+VR9+/bypg0BXWWTEbnMkiPEnOW6tjIDQD4+z32Q34+prapJpYl2qbfx5cl3n6TMydgskbeZpPW95mHEDMdpHsnU4ARL7sRbVlotPpe+2kdwnhtsCgh6cJ5PX+aKyc1uDZgz2m1xC+HzyggYVjUu9QZX+QXduQ/x+7pQaWu13rcQ2EBe6/kEPOiYdth414Mk+c4GQ3JbGhCkxJneNATUKQ7/D3qj5ozwj53+yuOZOPyjlBFD3B/fPAeTas5ingSj/1wXT6TNQjnqslUKGEz8hF33/2vlyAjGLpTwxaxb78UTxpCR5MYoA+aY0AeXI0X+1mmanSjvCUwAM91hEcHj4U59SP2ZEkX73oZhftRZaCqKgPZYQ92HI/J/AMFfPFNgxBNJPM7CRRR4YJ8wi1iE212bTths6SQDC1jHlvzLOkY5LEtb7xB9Hr0fsN0C/0WiUlD38Z3tD2+GStR5wTOp5NvaWyfsCzUWRnSb41NXuPbzpLEwcE8/ePCRB6xrFN1Uap26I4Mq+kRgCtqjj3aQuy3+doUMJh3Z/xDbp/POCJ1fyMSMG1CPgK8StkPRYh3/x0C6Mpl1bqT0VrHl3vb7cWEhj8xN9uzaXJKBEXfMKty3aVKBs32G2c4XNrms8UkfbMbS3oK/nkH6VI8TIPmveIy04lLiy4SC+5NMLiCkr3FaNqR8O/rufRlEk+NNL8+VUF9cuDK7Ip615UDyVv144pobjwGPFyUkDYkpvY76OzfsuXS/tmEWh4SjE6HuAmt7bX0uYAkX0lVsXwpqSfjB8HeygUbUddy+sTBP6EcrBW3vWpUcRjwde/lIdBSZ4saNyfmal0iJdA7LWifRZ3gSjF2frJiK/Z2oYls+wcMQbmTlkYmV2n7InuTsJ8MNaE+F59qYIsGrf6CIrBu0ggbNdiNtPCo0gtqEJRQiZ4zI2cQRhkApM+YjPbvNOQxbFM3TtfQQU8UragHHdrASxeFV5U+CCyI1Riuj4yuTQqux2zfLUiuu76EQddvBml4vYAqeliTN1fA17oM6dhpvGgMfCvS2D+6GZWRA71/y1RIQNVtbkVZ7y9nohmaO3zxfAa3sCjiQgqY/Drtbhgfe0Iqs/1pNn2dBx5LqqFkJKIpb3UdduOost9kCH8N6lP4gKR58Bnd6DRgx+0cpJ81OXDNAchYGvHilX5+cKWQTdLzO58YX2YIzRBsKGIxE7BlxupNxuPQTvgOShNrwSQJrNAcnU2PVy+Ino4CJRR3CggiONUAJBP3vD9FEhcrijuIxPQAQpiLrfTWBivSOAX0Khjnj02LJJIqQ6tnYBJVgc9nHRW2scIe93BkJFB8CIkTH7zMMT8uoq7Q131uUuQfpqvok0prEFOtyzb6nEqoB0/Wdb6HO8gQ7uf0Hxfb7k/cyes8Vyl7uHnsHgCAR3UwL43NZXireJRK43nhtkYUM7j76/Pv4uO9ESzs82RHfgeu7PQX9A/K4AmnXiKONagzumsBmjMP2V5uBriAUtUsWXNtEbtPuP2EV5I8Mk77t/Nh6eIAhSBCHoxU0dX1T26SJ5WDpp+T3waIL9/jldtD5GJCcWdrygsRc6OZ0XhdEOdNLDyrqtiNNetj7RccQ+59yZklIA9c2L35AyVo/Jer5+7C4GEm7OTwr1lChdtGZ9hZdJVvfA68+SFCJywf/Os/qmrc9KaWByIQ3tvlkPSH0nxOBAKR95fIH0Wli9o+u5ELSR0IA0wtjA2v2t2JG68pwuGhduZC6HDtMqxnEnh4tkO61A9D0CRaE4FUh0IIFAaNL4dnB9y5kaXUnpUbWRxAzeu5xelHMVv482vcdC72hUHphyqSue1PEI5JhJhXq8+peBt3xkoMja0tEGupKDf/cFkQkeHJ2crxLmUHOwElzvlOP5Y9HIvQJBVoXBDEBMruwzWIrw+Qmk2vueOeZ7lyUL+9mn6xhqZUdpQAbdC9qCVuM3T+2XueOCsUAXcip3ekfNG8dytWl7VfeZUHPWsl4IQHTTdZepruYsCHopDs7/K+4Xv/mUxaUcAsQ0b47vnXAtPae/XPz11CuF+tbv7okEXKz9OWVwE/AKThMz/YSsbODNTgyJeOFpZyXCX56S+QGrFaLtoZugIqHQ7erN9uayVUvlnmmZzvUNzm5OocTs7ftuq4WENNw9uwlrwf9cn0QCw2g0L4avBBscBZrRreg+0bUk5lrz4SdOkHa6cKZBb8PcSHmhvFkNnnVZvWKh5zL4wUX237387qqScQWSIhgjB8JVFOTj9pnD6R3++nfjA3bfPNEEfnRuDxEQWbXc6FsLPaNOO22K4AcCGWFFNZOkoiG9ggMm3m/VdgbjwkK63knypuQ0nJEwIH+n4YbpOVS7XYQlHDis0nfGVDsoRXcVHTQM4BQ/Sd5bWWTH51RXWYgDTWAGE8D6gOr16bgbWQo9knHY7ICo7Hp4eieJjkoAP299fjHgOsoOj7+0wEzfKMW3eFRVNDADbdLadhFCXrgzpzbFwB4waQKFNQHFXqTP1NNaJ3N0ugjaPS4lMUnJUMzDRdlRNXnAP1m2CwPQiZfT/dN9FwYORxa0Z8vun9zlFIdDagCZzkhAGvgDFegVptmGrAm0NQ+GxdTASMC4trrmj5tRVRwhcSKagI16G0l8FveCbJBo+VWT2x+Tzv3ukJasvk74BdAhybExkUq0NQcqsX1duGzYrChqR9f9A1DIOsp9r0OiRXA0yLBRF0BLBSAkV3u53Qim3R460dBFfC+nwDMfRN+tweN/WXOT1D/0IBtDTJfPb+yf4Ak8onK0bmhInM8ilzWZzjdbxVVTaUL5MZa9HScfr7dl8VD1vxJBPfl0Gyv/VyXn0QrEwu3a12lWOxAFwOcydBAOfq9lp+59qQQWQa39AQzbPamQTaIjS6X5KgIf7KlE66/Iehx/MIOBh2Vfnp6TezqXnVooTVyx3ejs2J+FtRLMP9X3eQm6+tXzr3FjqtOqJhZyjaqb0jhE1JN7eFlKHQ7Es7cqS9NIyvIwDlgy0zHE/0pEVde5ry9yMXcavOu2gx+VLckiU2LFaShsc/1AHrdK+3WbhHbYM8hCvqycimqj0PH0eQ4Qo2YHsbHf7lJnWOFmOVd9DOzS3U9EceHRvQ6fAIiOnQmqwarrPXNqQRQRBJ7zmKtg6lfPzhk6Ti7qy9nV+Quaj4YjZ6at2pKOZ+jMV5XZmipd4rRV895E4Vh381ZXo4HjHGjFhKMIwH8D6XDLk89zcPfxy0YKoy+dajShgDGIPYYLKg/TZFrS7D9LHtDfEGS4jjpTpfr7eie/AIKHJDtq4l2k74RVU0rhnSwMUsam+K0PIfvajl/tVlmTNKTlnc2bvRHfAWcfv5dwYP9VYu2t40EAe1pyX9VATkSIll23cJ05UGNDAqRKOjdmkm9kLFZpZ0cfB3dtIgN7wkgI2BonX64k4SIq0wCq33msfeKhzFtpSktn++rXHq/CsAPSot8lEK5Hi/8eIYSOAP5H476LSq78YmfnELlhBdBZDMapN5IMehr2PNlzGr5u78pxPj2DXjkyaXuN7XIUIsLmIIabQCZOebNr2p/80cIUYv1FFy3wULEIgAX82fExqIxcp9TXmzkJpiWpJ3Qao36uaxaRdgcjM+F2TdQN/0Cq0OkImIdrx98WqF4CrSkWU9lAp8QSfaGrXNCN7Lse5hJaVr0c/CCWSvT1n9PYKrGzCS+itGSw++QkRAQOe9YeZRLAO6
Variant 1
DifficultyLevel
660
Question
Novak arrived at Toorak station at 2:35 pm and caught the next train to Melbourne Park station.
|
Train A |
Train B |
Train C |
Train D |
Kooyong |
2:24 pm |
2:44 pm |
3:04 pm |
− |
Toorak |
2:31 pm |
− |
3:11 pm |
3:23 pm |
South Yarra |
2:46 pm |
− |
3:26 pm |
3:38 pm |
Botanic Gardens |
2:56 pm |
3:16 pm |
3:36 pm |
3:48 pm |
Melbourne Park |
3:08 pm |
3:28 pm |
− |
4:00 pm |
At what time did Novak arrive at Melbourne Park station?
Worked Solution
Arriving at Toorak at 2:35 pm,
⇒ Train A has already left
⇒ Train B doesn't stop at Toorak
⇒ Train C doesn't stop at Melbourne Park
⇒ Train D arrives at 4:00 pm
∴ Novak arrives at 4:00 pm.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Novak arrived at Toorak station at 2:35 pm and caught the next train to Melbourne Park station.
>>| | Train A | Train B |Train C|Train D|
|:-|:-:|:-:|:-:|:-:|
| Kooyong| 2:24 pm| 2:44 pm|3:04 pm| $-$|
| Toorak | 2:31 pm| $-$|3:11 pm|3:23 pm|
| South Yarra| 2:46 pm| $-$|3:26 pm|3:38 pm|
| Botanic Gardens | 2:56 pm| 3:16 pm|3:36 pm|3:48 pm|
| Melbourne Park | 3:08 pm| 3:28 pm|$-$ |4:00 pm|
At what time did Novak arrive at Melbourne Park station? |
workedSolution | Arriving at Toorak at 2:35 pm,
$\Rightarrow$ Train A has already left
$\Rightarrow$ Train B doesn't stop at Toorak
$\Rightarrow$ Train C doesn't stop at Melbourne Park
$\Rightarrow$ Train D arrives at 4:00 pm
$\therefore$ Novak arrives at {{{correctAnswer}}}. |
correctAnswer | |
Answers