Measurement, NAPX-E4-NC29 SA U2FsdGVkX18JDlWeZs1bUsdP7d3S8MLKetiJvCbQ2HuBZSV4iV2xpxYFikNbZ3kcu+fMlYEZSVrBLsK1BR6qItarxDrJw1bK3cddMDiklmHdexheHwLs+00BjeDEeuhHwfDNMjTBQK/hVqC5XnymtqI8O0/SU7AQybZ86Vtddwq7xWHwtCfqUCq8Tv+p2al1j1cmitKv5AHnb49ku1zAStRhNMzcbu4AV0pYqES7ubpzxygRQN+TwYkrhVt7Pd0ER5StOGWIHUpannJA/aO9lKJS0EKCGsyh27RrgwXhrmw+G2woGLHLjVgPAHRrbLFrXnPZ0kD6ZFmGeYFBNNoXScPDRhe8XZVxwjoAshjM6J1YseZQhBciugwHrv1BMbdbasrbtkH/Jd2xKPEAb3kutVCr/ZfF9UoMyTZEHIxpo2N4zqQGIv40fldlc/2EKdbnvES+tf3oSWnAThs18ddB5lM6YkgQMuYV4Qt2ACr5e37Ki8f4XAPzXTNQrL5f/2tjXzlRc9nUopdPesgwMVd0NeM0deNcfdaRod0FyT92Yxe521L+YlMy56EtjX9vynbcKBlz04JxsxL3nKu+z9xeSsQBOB76mJxmUeoufjBuzxleD1uG0PRMf21az1WgxEp2ZsBF9YJC8rg6/VSbzpz1B3mfn5+A9caeHE2rWbwURefd1V/sXrFFC1QQ1gZsPz77IEBYZqUrjCMlea2nMpfWwek520TYNvF6zu31nNrouwpz1DEYShqqn/KgI4bnwzWYOPDCp55fNMV9HJQtRnGwArMvWztmZLOxej05N6sMxmqtnESi6A+CmA1Y6R2XOKqSu4/VXjQ/1lHwvh82KKPm2z0HZMYFuMhr+Fue9MIFXCNbdNc1/8D4YAttUmhv6wniSNBE+7DplPSHCyrPEqnY7fHwn8kQ23WibLCcjUfNtEFjDH0MrZJY+4N2JvsP99yXebk3Aeu5OOY3XupUw7Jlp0/yTqVNKGgcqt64lgTcNKWIY6Wz9wdQ6tL+2zejKaMgx3C0m6/0Mts+n0sCenydp0+THE/En+UWzoWpQuXlhOIr9FJLRcWvmFMbRyXDJVGkIKkJ03QRQxzkSrbC3y/9+FRd5f+W6YRj1vFb+YnzU+VCeBPXKbBEQqQeOXvFYt0/4QdrRiCxT6OjwUavxWTTFZkqWna8mj0UvXMKAzA7NdZw8hCtv1gZtNiRYdgrmqhayG7vVAbis8u9cJaxpXVvRAl3mX9YaYP4LVckWga3yAPxv1BKAYWj82BI3SRGQNTbJwmgNqReCiFKfGAnx+W4NASichAYDwDYC1QbW5xXZUOOlRhbF1db1E+7i9Ucs76qJhqDQoj2i2NRaJTIMCU7nmVGCJzBL8W5X7hZCPAaefDtjB3OyDqY8B88zrUacXi1i/6ynAwlflHPoyE5LRCGnAfym9639GTbjOZ6wYMTDoW1j/tarMKRsrNuhGVH18PsnG6lWolAbylSp3rXeXYm8qS/UHieiaF4vmhfrK4fgkq0b0VUyQgqpteNmMdxlc77TowzhWWVC+WaBBlyaaFfIQevKUn+iSp3gkhHXBqevMDQWEI+oqzS0Qq59/+AcPMsWqNgEbjn+pFPrV5AAuc5255kjth/VBzUO2c80CgAvKzgCJ3URfc851xJFGsPf33lo26Ws5f3/id9IY9F2r9EgVtckKFKkN86GJIBo1TG6mMtVtH7t0crjhI22gZvbabLJzgCpyRrSvpn6qdME5GoZE+bGJ0I+NN9XLGn+hY9Fb1zfo3Omq2OOlfQiM3Ncp98eK8AGqiW1ti/SljZIkOqZu3IITxCP/2OQDr2lrhAsQZmvOHQhuq65tlAPXs3pNpI5TJa3RIpwE5P4kTU3bc64GlVofGwiX8tfo6RWVltNkHwV95wYQsOXU4a4o8jGnR6atTxhq/rI2yUUHrr8vhZZScGkWjWmjWXng2DmLvBlOVNkd6oY6U3odtYytQqvtbv9y37FozFV2zBwF8L1S+VfOR6WWFuE5GqRtYhjhplbAD5eKMFYbRElTA7rPi0/AvXWXyrdqiDzr2+F+53q384VyN3Us5LVdwwvP5c4uo4sBsPgjiwAVwlHjIysvPEnzsj2fWA0Drz69cENCBRHkUFhI0oZEEevmc6cYQI6Tr3WyeT+X5cNL0DRWn5Sm1bH4jTHp2ykNZ+LHAcJTesrM9ny5DsZhUPkHloxyhH32nCu7xOD7E9mxfqsVuTVjA4C8TUVVsQxmCAC7qlGIkvxwyVARadeCqWT8I/I1sASqNNHDddeABDUUFoVw5GGw5YsZAy4OTakC4Fxi7TJGqUIAFMGgycPaMZmWMktVPGRVaoB0txPXhZ72EbJL8nYmknS8BpxFUpq3HcCxBgipC9Gz36QSthZqYNrJZtE5ggM2dTLYfcGuzs/+BLuGrSdQ/rzrFnfUEQA7U+N2+rQ+0858jPAq8XY559OQKnCLYriLkoH0RZB4zCTuW+I4cnjY4olQ9ttVzjb/azOs4lruVcyR+iC12TGghNnNMoJa2IRqO6hzMRp5a0MEHoMNBMU37J1ODOSUM+FPnQcbWeekT3ChfinmH0lprTv4srVqN5JO+4oTQDb7KgzwdkMJhS1jrhbCmMT9nkNx3ROIHApv1gTSwjGEeu/uL5OUSlS2Mkyj6KOY9VJiQPtAxlgwqgRXyYY1tpuzssthPibSmksh2OR3HKda8tJiJqHCzE+NmHhw+AVjd7SfEH7iJeSr2ke6JxZ3ne1EK6+3BeZRvZQd4LsGaKeAhi9AutL/pFI96CGwSFCISt6FkA+65O71O784iAk4cMsqeia8OUPv8zN3bcX6ikt0yMlRDtDGskz1MofvHUIubJWCxV8XR8GKmFoeXPyVTY4oppjipPQpUCgTJa0PyqCeEskKebtyYofaxwCQlLnfX9XPQmMWqaoH00L7H0pDTRvuGOn9lpSgUA4IJ7ah+eyLylmZ1b9+ERDt4SQ3gKk3PZFqBWjHBO3WSo+XvK+OjgNJvs+lK3Y6qZ9ZuTiduzf2yHuO1PkJsw7s41cuXA1qlGGgFLlnPrliz0javGwchlkko8TUMbSq3c1d3MzM51rcHvJGf4t+QDoRNbK08X5JP/dWEIIqzAo5DFlAa8stYGQgQJXcHvtHI4N7pO9BKZ56ie6zTraSp1GVD4JLlDfDGF1qddpAGDuBslLdgs1N+J85ZTkm9oOIuk56rvDIFxo1MCOM79KZV5Od69prGjCdmu+VLJzVlgiemmGXDCJxcrhxqgvlN3IcRfXRSkuGFg282XrbYtVvzkoAwSxJak8lzuBlk1OCyrZUDtsCZdk1oc0o7dMfJC0Wm/rz9DGG8BC+LQXSQ1xQpg1x6/ia7NC/BpZxvZETHFQYcVOA9StEqF5dAUHQ85wKyOiUTdkT8DTZyDoofiliuMHkHYSl+pNGrH7Iwh0CChq2svJpUpJ4csaBTBC72IIBZ9QqxTy8bfcND22uzZtMokAb7uO0a/ILvcVzBs91F2kXCobQBskqZkWEcmUpCea1K/aSjbe7fXusLzkrupxjSSdOPpbyRfaMFPNSqFT5SAxNuX7oA10k0xJ4BHEhg4lswOc7Q+0A/p9UUuSUATgRR+xUiuDnflGgdH1FoheVlkM3Gg37djQyoiUhe8iL1qh7v0E3CQcFhRLt9ASBfdonb7VMoE+ZD55fGwbVQji/QhSZ0tCq8F9vVssSo1fmzXQ42lK9xS7+myiykwIjoElXpbLRfkmVyDXinJPVtjZswZxo12hgHFNGALfSCVvo/cHlCk5PqpWBEfzwbnD9SXdAkmaq7uJTPrlDyZhRRdSBuceWtOEVPHQfL+7pa9YxN4/ro38n2RuCQpfxyYITkBBIjkQbcaqlcR+x4g1dGgr3s+z2cnbfReAzKaHFQPZINFmALmZzvhf1CBsxxXStiEK723gZkbRwzVE0NPN9LgEcCI8HS/lQcgFyyKKfLqW+eRRY94YLMtaQmpcfDbqAhGprIzE2/SfBNWt2j9FoknO1mXoY9pGOhYBZA53ZEVMKBUzgYvD8tHDpjT4iBiFKcClhaKFOtFymooIlFwVJdB86gkyNe5+4Q3+bgw0EIuv/+HlB38DFANbtPNQuohEgr+ijWfP/CXP5V0RAmY3mSixBhXExgXRczKkAPkasUOkv+nLZzIswkaI7ufUOGqO7ez3KnvYXOmqljE1BEu1+IOkAOh5Ka2jdAnKeZozezcPZNEO4ZFdjP+BaFKGwlEv5jzH/el/+EnPSZs4Xh3c6UqkIKDUaCVc9ETSevoWiPDptRC6LeG1Eea3/xhYbOlVqWC8OMGsEesbCcpGzPZDWbvS5xqXaOceJRa+k5Bys80JDG6kYVN4u1GHqIWLjM+HRudx/GGijfBLoBOSwMzPeSyduhRwFpfen4SP1lz5u1PsgD5YfoM28VpDQEFvasMczC4ytKDJl0xRhMXYnP8uLj/UwHIMP6YUGPcLqlnbW1L1K8yqUEpDqu2NSx36+fNPADw0AWyIGg5J+cqqvVXqy5JzHZz01ZJ54/HuQ6YEw4eTAQewETrpT+0Lv7zjt4vEctKUFcZDBWoYZWc7zhcd6FtiZdXjFSTtZxSB7bWULI+/Dtazb99nNfvzZqVYUG6cdza6Ny+23mhXewLM6y4D3XmwPbw3PX4S9ZwsW1nXr0cOinb6ofjQBnncTon/6OJlpHrunHc3MPwHTe1sN7aG19psD0V8gJ+Aov5eKXbYobFkjiyfAn80Rlya3js7moNu1S9raX+YfEF2Q8Qc7NAQS2obmwg6Xufk11nezW+RJdwoXo5IIPRUB6dU6P/gL2/erC2aqQVWQ+IPK2VOklKDhDRr8CjOcL0AS2YrCPakBNo0zKs5ZpKFmVmUI5wzXjhg3Hl3ekrYTJ2hVWazM/iBDbXJaTwQiKrC26JxVkBvdDYnf8Cv/eJb66qHC9ZmJHFxl+4IXxDFJx040Jom99ad2xXdXwyCxxqkDT9fcBQpU4l6/GZOxBtbVFLgWs+v/QTWleqN2VeE7kLtzwsuLcRHbFc/Am47m0vPks+N6Vu3+p3WAvx773w6g5aNksVmfMveznonKHWsOGO/7tsdeuY6e1gsCTP0r+ysREfF6XDgiAYUmq3fmTi+9FZY6N9O9WyWFMoUGW2+7hxiMmhH1bX0HStVHWp1KBMmahoBOjbsXswnO17gkph7il+zi+TYVGFVjZ38n8AwFLgClYRoU3RwAfv+gzsOjCRksq7phZ/f+vn+rl+c3uxkbpUU7we4eGz4uwXNtCRXsNTKD874rpZfEdTzNGx5nUzj0nxFwwC3KIwn6RiE7Ojlhe5zgjNvmUNdWFfHVMmTFzuKGdSKhI8uhI6M6SAZS5iJOvXbKkb23ZhFKj7TIJA1W/f0cSf010r+XOob+Jzq10JbYhZc+ARXaV/OrJoAuiS6leHaNYcSn46MU0ArM5WaU463xkq4JPY9PpXXsqCOJryBHyVuFm+k9h1SrUl7jzJ4N1NZ22NbgL+S2Kl3HO64rnFi9SgtV48HSlRoQJNl06leyf2nfWdEBPrCTDZqI/2YQR9QDIK6d2vP4AaT3/+A7WSbWTSZuW8BC952YnMwR6uSATePePi4jkhRCtkwzpqVwxHcl7H9r9YRwiw/KPxiiObPNONF3JQUqoiCTcrX3RfQ7eKcH9fDc63iGjHjvZomIFF7VwxxezXmyAN0XLY0IFOoJxmRNTQT9GRIvSTJ3lx/K7GQSPUCnutVhR9m1pn9Q/Mx3dqFJkiAF8oszVIuuEg7XEVFlL6AepY0JB+QRplYJadJ+A+fK0Kkwk7IBcFyn2WBCzT2pUZyKE5oD0IlCVTtYSl0A4mNeAunipFW8qEPnsMMCjGqxAgOMuJtkBBrjjxTb2fZmcPnDHS++0FppWurBwJ/1j+lDTs0ItMnrEajLBnvR+RP6hPicZXfBXXoXsEgv53ppCsZpujDtNJKOMkY840wDWzbEaS3oOO9r4bEHCuUylvF60vzLNFocna8g+xGpUAaHWIfZS4WYUswI4nd2rGzubm6PECTXgeQA5hOEv6AKI/hcx3hID8DAJLhuSBqi0xMXfOGwVoXi/hJPoE3d+PTFMgazDr71Nxpsxd6yAb6m59O38p2a6bgTShyL9QurnFiH15lptdg8yCFjofKesSd7HFdJq6BLEtZ+zV17thpW0ywPBlOnU0Gvcrbp8QWe67Uz7vI3wrHoOMEUf9PZgBH0+nCAOQsCkzKRoqF79HY/g7dZ3d4DUQVkNgYJ7YmdtSmhsGiNOFKH/u8nxRADkPb6ITi0WXSCG+7DTk9hXHqJrf8i1jfcFsn8QnP9rmR6ex1AKF166oBcKDw9l3uo6q+7nxfdcrYKID2aVhOYN3OGWDfcYVvGA0edjH76XOm+rsE/97XMNbavgxGCfjYVnPEvrxLEwqE9K5rK3HDVawN5CSXL/5oscspxD/90tnPMpxvbmsQu0Q+Gr/q+lbjS60rsfWUrUQYcnvwbi8qRN8WcEHyg3Yu/0oUWs2hphfYwvcDuvHz1LQO8HHWXMNBrYB7c/D3bLvTyjjViR+IwZ4OUqhw8HufOVO9m063mEAOaj0J6B71UuXHAdFweJZpurPmUKSXIq8VbqOMDuAXvFMwD22ndk+os2BVgKxzMLQkpfKzj577Jzb9RbLhU79z4/K+h2kwtkZd5AUxHyeuRugzTE1VfA8ZOxg7BawIM7IZefoQGkcc9ox7IDFoCFoOAiYj/Mwm2ipDOCWFnNdsdLX6SCuq9hgbzcPDGLHujf1wN/zIzL7/17LDZpIL9XAXnAW4T74Sf/q8MO5z23jbYF9FaxsaTrWOZMYftGj4iNDSqbwydgycA0ASik3Z0Wtni7+ZrqwydoLNB/xGf2pkBTVUhEe0N4+zQYFHa0W+Ub4XIfqugfF/Lhfr4UuO2HD1nwfJQ67Fy/ipOY8LLn+uET8LGxo3jtIhtXB6b0W3jONnYI+PKanoQOtxP9gAvFIqu6LqMErvda2tsP/797sZ0ytwaNZgkfjLSyAV3PV58tJXnOja3pjiawoPe7SkPkEsSFcXHS/0qyvjgEtliApKmw9VvxAu7MgBPSbilwHRVaalNdecBOQnx+50E60zktFVD0gbonCkV6/SxWt+sjsrc8HY+n3G0pR4njqeUFyjMGnptKACShAVAi7Z3LX2cFGl3cB/yAH91sPatyytdl+5zMWLc+qXxhOVVi1iNqM47vCSqNlw6IUCAioGHD+VHfTtRtqD1pxCAvKjimtFbmO7Um7SYm+DHeeX13XeA9NAfu6U/DPZhzb/8CWQj+iG4xMeiAgc0CMcziu8GMVeG1YdDcmFaE=
Variant 0 DifficultyLevel 668
Question
The octagon below is divided into identical squares and identical triangles.
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 112 cm2 ^2 2 .
What is the side length of each square?
Worked Solution
Area of octagon in squares
= 7 squares
= 112 ÷ 7
= 16 cm2 ^2 2
∴ \therefore ∴ Side length of each square
= 16 \sqrt{16} 1 6
= 4 cm
Question Type Answer Box
Variables Variable name Variable value question The octagon below is divided into identical squares and identical triangles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/01/NAP-E4-NC29-150x150.png 160 indent3 vpad
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 112 cm$^2$.
What is the side length of each square?
workedSolution sm_nogap Area of octagon in squares
>> = 7 squares
sm_nogap Area of 1 square
>> = 112 ÷ 7
>> = 16 cm$^2$
sm_nogap $\therefore$ Side length of each square
>>= $\sqrt{16}$
>>= {{{correctAnswer0}}} {{{suffix0}}}
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 4
U2FsdGVkX18sM2lO0rZMvvrLD5Eaxn/q3CoOTg1DV4x86E0O2qVzbDmu8uJiSfPh5t7/3/Ghn4K9vUSWpgL3RWqNZVSabYJqh2mZBwCldZxYnqN1PqGcXYw8z47JngG0nKBIyiuFcsugAlIbgGCXf0M/12oXnWVGsUeKmD2dMVoPTUWJvi6RjMOfQM8ZJRIDp26IEAqWdAUfM1ErTeaJrFRCjWJuMOy05qy+R1t17Ll2IGaQ8qVz9yXWZL2aEpT+eS+tZ4JLVgNBb8DOHK5fw5G/6ODxW2H28gmOpAE9npjCUxKHS7/W/i87eY9lk07F0n4EKO9gbkYkwaCSt/oN7W7eCFRUo56OfLOZsSHmzqWTqRaZDYrjRcTP4lwkLjAa6aLwTUXYiQVouLu/s2g2o/ah1HGpPO+FArMDlQyV9pm6Ia5BbF4Qh3zk+NVrdZ6CiYzuZJNBhs3yyqSmOC4DgunheCJLnLA4NSfYKJIcT0iM0mOKPmy1rdh5h/yCqgyuPIvRV4oDQj9ik1INttcMYVE7Qr/FQ95z1hLmzpnKt0yWvidEJCxy4a9meOIb4ul42r6wprl75zrGGQvagQH2l/Buo8q6fokvGC3sltAQV0h046E/EhpOh69OJ2b+jgs2i8E07ZVID2qKheb3e8nNsZDFBSYz1mDcJoJYNsm8J6AullXLwG/+6RTFlb1UEHh8ZWeOJ2upoMxT84q8Z6VoPTvalUEFHJVcoaURJvURW+0bomVQCNHSfd6w76cSCObi+TNTf0zHyt5Ssxu7zqDR5ovdUEp/Q51yY1FTh/Ke1FMOIW0Q9u541eVB/+AdpZIj86Nh4F31WJaDm7086a60Fa0pXuAYaI5mQWx0tCw+Dypn17AZzC3i58nB3VR3I/M/KHqNvcQuDnLAXmnCZCA3kHvPh7s/c7APkXkse0VQB8qxfTGiFHTZWgUuHnGBRXxxqzUh5gOeCb0GZjhYDLUIbTTXYoLSysRzkyRZXfteYn2cEbWK6yDZs8UJLw9wvBM5LkTNZ3hFdL5gdzTFwzqUdMXrMF5j8aThSSZwfwiWnZvBRD8ymK5/K0AVpKXFDl3IRcqGojh3jrl9/uXjm01Xo9R3sdIESIDduW83qNOtfugKiDUA741zOihCru0kvQeYvFY2F57Y9M5Lu/Zgzx0zNIe2naDQC83j5iPhfbd56WHcs/rV2NK2FY9XwOjjexyVpJBqbkjZm42BactBOiEqlQjZdziRv4cxJ4gOR5MQ3WZE9uv8aDrmAhMW+7wUPd3BRVFO4soObZVi/QUrvbfY21/fag6WtOsmpEf0cj2pJU3K4VlAD60+fkkSqiLCuwFh+xJDYqYKNnYWXCsk7Q1/A23Z/uzUTbPeZuFBdKfy1yPmJWlNhoWloAK4ywwJIq1R5hVNtHjU2KGz+TGrKp2Pb/q6wo7u0303nRqmwoTBJTv5nr16HfjSHh8YzeP8er4ZkTbz1soeoWtlkBZiQNVN9h+xGw4uqZa2SKogmKuqoHbx/UnY7yax01jFG2bj34ZiNh08Id8PEmzuvIGa7kUdEVZZbDBpzkKkcB9XbM/cKGPqXPaVfXwJlYCa9MqzWHv5cj5L4gtzp/XHkVz89E3Vmx0UyhDdB1AbG7rCHW0FUbtqNjAQItNazG40Az9xLTI0bbEvNA0D6+snzJEiRoj+dR7TQ2peQUIoLtF/A5YW7acAjDEdxMUC7LU5FdjqJE6ukjzbdAhqPVQe6sKRlhI4SnUO4/TbI8etLWc8xy5/fhbcUTUIgUArF6azlIuHISmdJeRWGpnWmxADrXbkz3fFZqYHxfkCKMiRiRHHef8GwpbtnXMH5PlAetXDtBbwzC4WYYBj0EJCL/QZZ/3lP/CAYEJwYsY6Jf4/wPWBep0lpOaAvo7Sao0c+xoLUPn7NI5HGRhxI5lyr/9DS7Vo/KEphvFvOp7cpRdHqEby7TtLOP/Tki4WEZyEC+WxasGHYOwWzCq/XGlcIo6sY30QE6e7z8rb2iEdRcl8mfVdebyx7o4E8oii2zUxuxOQenWHAORWUucRA6P1tQxmJLG5ew8XIzZYIYT0hdOfR2JBZpPb1SckN+hIRRlKkunvPFL8r9QU8MfEMLRjQTriE1qfNp2w6VYY8GxgLGT0wXcmEE4vOgqoK1jVQ+rMEnpumalpBoUnjbCo5BHfH6N61hZwP7sHg7MaWBX4c7cSbLJBDZzs9N9v+qtGA9pu1zfSUEc7VdyWYGPWWIkCRqgowFF7e2ZgaUgYrcCOtbfY4v9VY8jgaSa22SLzTQDjtq68semhG+lTRX4n0PrNyMVjCMqTAbb1oP3cpctLp7n974JD3yv+mu/FdU08lq421oCD3K6BvdREzcu/Bf00YbDdpi4Ae4jt74mk5hqZFghbKvuD+q/GzHU/nQkKRMrKSVAZL+4PRqES2RfHoW9OwhFOoWJ1KYDo1XAHoL6+Q3e6oTCy2mkM4rhF6QdsXn9/Ay7dpa388ig8zJgS61yn6T5K84MCLATLyY7qg2EdLJcQdKGTakAIE5ExgEDkXeNu5+iJKZ+6DoAQiz7wINEIYvBCEmqlIFIc2BIAlS1e2rrc8FrpEVJp//lUclUvA57n5LDGjqfSeRxL5q0wPMJ9H4dQHFhL8PI3DYwcyK+XmZaN8DC7qO2a5KrRAOFRpJomcTGxDKgWx2qTT4GoHksMvSyw5iq1rpU44Wu+kY5pMIYoiJCqqf8LlMvulaqKbHRAg0WW+fk+JOb0UmWoBcvx8yKoqzJgfjhG9B+hrSXFwRU8cYdqVx+kvZgqsmv+z0aexkD0i0GT71D0tXf6GIYBXTG2Q2ZpH05K2HB5hkn0E922rUu+fCt/ddP2rRUfJaUGXP/PFeEjJDcU3t3ZY1Rn84/q12wrcnjCdw0oz9+VzizC+iSABy4K/hX2/vtr/828+z6pOMHOsn0MlGDVHc/4YnTpz4ayZUJSXQ4HmIvmDXKcoVr0S7xrgfvxY8aW3qUjdFfHIyWJ/hBfA7HHHIfBYzqZUp8O3cDe063QqFK/GB2fdwCF1ebCswCB9bZNVOteaMLn5Jj2h2D598I9zRRJlKdqqX0Mcd+PXcItfnnKaHHJvPapJkvDPPOWd3zOcllnhAkZv8OAezaNy2iDtfAvGoZuPRe079e5pyxRkGEdpdymcT4cnIbyP4ef0Xk/J5YPm8yKcfkA9Edctazwd2ivQpoKMCCE1l+p+26H6tJQ2alqMrweMX/PDx6So4U8A9TtGCcSGdJc7gwiUxPVSD7TvwJlaA9QNu0vURslGDqBNJ7cViZWaW1yq59BoDtUVzAHBtGKzCVhae/ZFW2MkVLSUQsvjT7l5hMlVrP6tSh3i+heSXyoy0LTboo5STgWHceX64wJ/z8uJ3WraszvW/BUIfF02kz98Qk30goj1l2M5Mvm7yQDvJttkMEzSEa5UP6MFL//kxFFPC/+3sHcAJfIu6F+ZPZ5vq4rk/E0vzGF9daO511UwqNaN9jAgkqstPyCs+7Xha5gXhNC3OzVkoxqGiyS/ystmLlPAsdk1YX3ojJ/Xcbj26Tqf63F0M2TB2fRFpBEvpashEHeJIr+vFNAmTyfxBA5FdcjnRIvA1K+O4sDzvPz+EIAutRuakZgAA+gdv35dF39MiOBTNorDByl9DsbUmSjJi1ksaOVE7o0ClVWl1KOSjGW3KjJpIxM6cHXhm/OFEB3icVdUuCimashCRcNuiLaokiAPilOV43B6vD8PJs8VPCnwa/lV1KFAurLMBSzKrEz52aVZEC5AsRcv8AYsX2GqFCud/ildG86WzRAgEoD+oRnmmXzvevUiLN2gulEfVBkzUJVHK18d6CegPoeRW4dg7JfVyPasssF6J5Ks3objKlDbUvdl28Za2VVVOY6I6ckFHSdHoL7GHPD1JR0Rrg/9kxTgWQCOBGeGUEOSc6MUZJSBgW68QE0aHFQAQnlq0nz34iOc/43sl/rst0lSScNM9BzaDm1ItKng2eQeLyfb98qeFeWHRko8TwETPb0Q3rkJlCtcIwEin32RdXWSHlt9UWo3ou6wZMe/FjrWhVJ/l97QlnruTS0jgidVh12UrbMJ4Ddr0xtD0PNmpHK+BxKcxEH6m6fw18ihKV+iiBLfDV/NGb+UF5jxpjo0rsJNdDYYG8HsB4L7q4C3IPDx1aeEl0AdsNk72hpvxLpX9D7V4vbz5cGh/fgxtWsv9UNpzdC8CqRfeAIo2eprnZufqAvJBrgAFZ9HeN+R7nLN8d7CcDJT1ww4dvups+v2LC5hePqwFL0/iyYr/lMk2OpXI5E0MWuhUXXuvG64qUSe+jb60WLbcHd57SJ1e7vK65iAthC4sPz0p2WqX59hWpmWAlML+J/OEWbSbBVX0W9DZgJnLKqhhSY3UPzvL0q3Z09UeWFjI4RPQkDw5xevhHSRxo/2FwzB8MLKu+H7F1KNV/vfKP0WnbKI8Fxxn9G0DyJJ31SC0JtC7T9B1M42JP0rkrgY2B8gciXfMf3MTdzBF9Et/5f9UXjCrdzpkTFKzwgFC8roRb5whPXbjXAfcc2FGEIjltqDBTYqHuFtHunWqPH9OfpczP8Volm+HVcl/fFsP5HWYhSujfBufYZqNk2TVKAeUl9ED6AjhKO7ertd9A9fxlhIwEfMQumH3f0ozJHR6kQ2u/ZMkLn7hX31n4t9DdqUBG+ziVPXIdQUWF/yehjpDAvrHx7Jl9fDh0Wn+C6YEvVjv0CERSpGzLwS03lb7eefuxIK1I71lRAlpfa3M2jeVJpO7k/mMOM/UXfkbm4WnItkXBq0v3JDh2LN4mI212HZXRqvZMVhNvralmTB3V+/wrr0oz1FGqLHMIgNseP23FPy2Beiz2ocZ/NPSA+LGBxHDaf9+XO4Hja8ilRFfXUXkVL2CIHvmdldLN+0o+sKnNFz8hEt5GgrUl6iw0l4c/PqSe/R+uSJk0zVc3IqycfN6V7vfqZyb/ApX5tTf6K5g6FkLWNLIKTOJ37z/iBpvynl08EbC/2EezhGqkidCPHkIPyOoaf1ahDzsiqNZQxK8bY9jEXJnCkpK7/TuhNCF0J+W/E+Cdgi39qZM5KCamByOAb0p+aQ1KnQjSNLUOtBDrwXCRZ69W8afebf4OIJw3+URe2RREj0+HCWV5Y59F4NpYmVLiM5ehmPXeETVamKODkNz0iShFBEtOtUgCYom+cMByXtJBVIy9rakN5SCsdN0Ayz3+ix24AzhTywnaeqZ5SERPbMox8uM8RZh04cDz8fnlixYQ/HyHDj7NrVhGRbxnAiEnDkdY5b0WPbqivh5kBLcdLkLTmOgyMhD1AxlURdA/rHA5phEF10pwJSsdJakUDAGjk+eN5JC09gSnLFWFM6qlPj7IKd1fVH5HgrvUKtv2Di4Qp/N5alitkzPSYTU18euwEpS+qUEQ8Vk9UcUXQdhXXD/6/gDqRFSsjAuS4nf+zn8y/hk35BNXIvED6w+OjB2X7VdLDYOewqJDOnvuxGmScgrHGGT7l1twoUf8jeMWc8Z/V32/3+8sPVFrVbB8mD0o+iUjjx42HwQEJM6An3bIIlhuykCfxAF0YwuRC6iPZ31qfx8J0rPGFBtXx9a/br/7zKPo2EZrEHks2Mq/oR3mILYd4AnlfYykZhGUSXAo2HVYwqwsBk2iEhfkjm7Ey5wxsHKe80HkvSRGDmObxp1pzW+ZNBY6RNO5VDrzLvm2Z0yzjOufKFtu8+ai5vfv5t2c52ZWACzk7xp+ys3EY+xjIodQphq44UWRCt38LMPXlGrDwFP0FYK6JmOrI6aqSVMwgyuiraqNi4EHIn6BCUi5lDI1GhVZ2xJHjhTQscKHN4HnRxCjryliwje+lWLSLUII0sy/QRCseKnQ8n9DGh5BL5sVvAJaVCjmcjK2sQgkqeB3xKssElifeRu/5MaLt5krH1I89djyhwNcCRNavs8ykcXuWAODVv6vNApPy0LPUgepxvNlhmXgQo+y9lNRBMscHx6F/ucDnIfQxPtYs+sHOTV/+BRKWoZwtD8Ki8Pea1r8MdEP/YVC+Et6cyns40hQr86rddfdwF/Z6yKuFCFfyfhIIjhlEw8DrparCI/XiGV6M16O4hNiSCfrllW717b3N003QnxM2lNk3r87+2USgZtEZSmtnp6jFTt9IiNI6GcK5pIZ/JMT29+zJgilPhjaSXN59jK7eShYAE3Bd/ylQ2HKUrDm3X4Bc9eEJYzoQYp1v1FXbk6DG+JgFJ/IVYdGr6Nf1qesaAYY7E5tq8sW5JyOaU9EbQhncEtuL5TaG8bjL3v94T+bkD/gPmDS5r55+4ZeN5gvuCaRdVwQc3A17SGLe7ZU4lZTk5t37vwSk3Q892j8a1XIXI+CABHCbmUI7sE8ixkM28jdc3D2CCbOBO6d2drxrDz9Cht10Lj44bUI0xu70+zOE6DUDlCmHD0hYqnBRnkjAqvRzrJLTZteUxiRANDoQvOhxYJl6zrKNgTM97cwnb0SCsrSXYn3ncr1uUr93+dXvQTXm8tDmazFafBVloLECBpDwVIhKfrST8aPd/PnAcnVvNN+A/QEC6PleHU7xdCl81hW9+rnOwlfhBQKA5VVXlpR+XVnBhPkVHcZAIY7myPhgD67xYvIyrRhfb8HqfI3YpkdAs5D3sO9Q3/BY7Xo95G+LcOQmn9ZNiq6OYyt5ee9516DApcCcWRDfGa5hhi/g4dkEfT+faWUa6MJs/lla/uJNpOyLfvbJUImh7kPOjqd9alOeMDRLb8G+JXi4X7TOuBANvBrD8bs9Sji2JaTAa5Vu9cxuVIgBKj11uQ7JM32RhJgIyW20KOBvG/uew/H494H7oYwhvIJ8TXgMiRzT4v7hMnxli57RoD1pd+hs5STAsZNqqq6XXfpEq5j9iOaBtRZhzypkvZ5C9UhmB/iLlOhXbzo8w6DwFiP4Aw4z3Y6oL6ZwLsxJizMFFL98fSvoUz8Quv1jAQVBdjDdwxAsWMeDdakUms99tqx0vX1TA/wAK4ZP7ZZliJGkCozezUPho5yEP/3L2BzJksYwzemO7X2jA+AFE+88WCBehTWOWBzAZkGgx2TvAupLiqDKZY4M81mIRQGqCor96Z0uxj3dbsHCD1kZpfQzfenlp+GTrbMwfCLOe8BtLezWmAdBUsLMca2QiNc+mAkVF2OgI3IF430I1PrduSo4Mq7zQHj9la1sWtUoOODgodjtmc4MPmY+4B4WVys6bKikMmn3nPNvxIqyNWyFOrrcfgn26BexfLqdQv4pcXK9IhFCXOz/vEgym3oD1u92Foq5RvSfLHIp4Z3NmNcPrq2W3pXF2M0b1jw4fPLmtrpgbOI=
Variant 1 DifficultyLevel 667
Question
The octagon below is divided into identical squares and identical triangles.
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 360 cm2 ^2 2 .
What is the side length of each square?
Worked Solution
Area of octagon in squares
= 10 squares
= 360 ÷ 10
= 36 cm2 ^2 2
∴ \therefore ∴ Side length of each square
= 36 \sqrt{36} 3 6
= 6 cm
Question Type Answer Box
Variables Variable name Variable value question The octagon below is divided into identical squares and identical triangles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-E4-NC29-SA_v1.svg 180 indent3 vpad
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 360 cm$^2$.
What is the side length of each square?
workedSolution sm_nogap Area of octagon in squares
>> = 10 squares
sm_nogap Area of 1 square
>> = 360 ÷ 10
>> = 36 cm$^2$
sm_nogap $\therefore$ Side length of each square
>>= $\sqrt{36}$
>>= {{{correctAnswer0}}} {{{suffix0}}}
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 6
U2FsdGVkX1+FslOcnMX6JeoqNM0z5T5Pxh9+HjuyByJkwa6fpCsVsDIzMf7A3unblCzBgTR7PQaGoa1vMigKJ2bbobfxv3P3DgEH/vArbeXMWpeiL2LmvZHqd1cjNkr34QcP0ccjz/fRLDsKqzh7ORaizm/A4tkRou0WyzzZanlBZVDqnUR0K3FdyI7s2RhG4fa5Av8LN+iFejLtBvJ1zk1V6a4qUJtDhcfSHmKhxYJR5RhMTfTZPHCDhPYE5G+3RZ2QmoFqpodSpfmBGnLUXaalnjeb/9gii9kHRuFGAo3cxNS2lSMR1YWCuSqNbRN/SBmyWrGPQrJYq8ndX6thpxPrWNI2wqvUUvKOXgfbDFRZJ+cY9Np8d60aQbmaK1OfoS8X2duDo/wByAFaGFBWFzfF2DM4XqRAp4ZWjkaz1//fih6g4uyarHM8PouDqx15MAR7ja/nBuPYlD+HIMZuTZXpHpxWc1zecGHrgnZnykMTzZOPWQPWYx22it+l5YmgFGwuCuBzPACcqJMKIC52FQFMJOeP/UsETBwA2M52JMn8THmljLOBgQiY0YyHAz7OmDQW3JWf7UAawtU8ydZKkubbZ9C+4EHXc3TRfd9zX9wg9+o390HodzxK0QmpvPabDGpOdDEiWynd9Izt0fH9i3BvrBhl5Jsf8HDT/kyE3aL24qcOkDmPQV5xebPjwCTn4PuoKOT8st+OQ1uyLZXIUjg3w1OHfE4Y4F2IDhKDnOqyJ2WwLMFRlyHuCPgjotCyC+MvRocrKhMk6ju/4y4L6oMqNNiVq8WrIEpvGM1wb01LMjQ4n1lA8UpF/ZqWISok8uNyXRn2eUlxGj6qHG1g/lyO7V67YOifolyHP2yh7Rsf78jXVtXd0RH04GzdGaHMeYutS8UzdaPj/LRbIT7X2DkxBQt3C1A0xFwRbZjtnCAvRkY3lXZYyc6Wz9lpBzsQDKKNXtLpXbTMvFYKC8MnWubrTsO3j3lun97aPeGI6O35ftSZ2PrJSerEc4mjfmaIPzf+ucIJ83Bp3FW+VbvAbcSpuR4/7eyBZ9QG0w+CbmQnzXrxELzJfpbAJHt8F3dxeM3AT2UC+lr0d1Y9wiUComSLaNF+3B4e7IIuyOyt6H9XncFkD9qdq7ar87BvoTh3MhNi4G6wRVGVTfNMiWgfZCV/6imSN3hEp6mRLeQ0vf2jDGqtWwJa4yWjG5C1QjGqP+WkcLVG/Hs7THe4up9obchopsuz5FpU3bM4YXvRx5SlySg75fTmRaAD22dsiy4kv4jJLlrmq6tB1ZvuGs9V26o4z6HdKmlsDHeSR3BzPP3MrRn/y7OTIdgNi6Zj7L0OPANsmZ7Z9mEND499BRtTzlULavtRXbEM1eWxWxn381P4z1CUy2ZvGN6dFcFQS8eKgLBdtqjsYIowBoM58WMrBox1P2hO5bL2/UWDuPoAPjfIs4m+BojpADcq2v2bO2ALMnwRu6Fcz/piLaWpLVkTRnWI6C6mbxxGW+tFyWd7ttjFllIxxoXmQIlPKQK1kOcQadUNVVWhicSrwd8V+Y5TJMWhVVp/UwS5Sy4cN5587duP+vpwtzlB8ldFVvQc2msj980LvXVwjgGcVtAfy0d90q3IYl1YDFLlFn2c1CrkdMUHVOLLIOfEZ0/aLi5lLtscbc13h0u/O3cfm4Xn/L2SMvEygDSLp0+1IRgJrQ7+DNXew8xfgw0/EjPTt3aksJtjA3PCCJoWtu97L1F+uRIK29P5h9e0ntl2ii03PTINg6EqE/RLQXV7QU8OhmiMaOL1IPETiorrtw/ZJ3Dz80T0TM+gHU6VJsChzn0bLVWavX2RPXBUS+x0w8RxUEfVA6rVr/d+zBZFb/3ljgxXg8LN5nV3rOant9UrH3EJ6IBlvor7iwGhOgtsktIu/17g6n8gRjLuc407LZl2haB34HMvX4P212lhBhNn+L6rHXyjITW7ZedunDGoNDjBKmVG2XAu1LdWctsFV8GCiGxUlTKM0MEKGhzruO1FSJ4rfTGLvKuFUnMyve+Xc27TzZLQBHLsmId9j55182a/GYVZOulc/LUuYsUX5HDR4NS4OpM2VOasMVQmiFxLxF8Sk0KaQS77lazDtyNJsMTM3UMEgY1EAvnMYFlvaUFiIIevbzl4uiZOIrStnueEqaT/JHSMUlRsNmJktUMOaiemAJbskIEvIXZ1ERl2XvmA/F/Dr91jHdyyIbfrKTrZ5cDatmk6n8PkBdmBOMQ+THU9ybIFxya2djiylrPXYKe2Xb0alahVtv2OAuESrUjLwHtvc2YVzzbGI6DlUoZ7jny/Tt+0Ighvw5bwNNuvVhYiKZy37l9NSqp4K3CWBgLAWtMJvEqCu32YdlkgqMBW3BP674+JONy8X4d3aNZ8rhf2gj5Ay2wAaEufG8JHffTfV2W8Ctcl5IAtUtbEg7gTyDGEXvW1X++viptzNpo8IDm+im9GCwC/c9Tej1aNUHwUte8rPNGJYQ0+fK7YtqN+8guTNT6OLi/RKEGd84ayr8ws0fNCnNiHYd39IZAIWAUwckvwMpSrmwSo3xoYGxJlKFZW+Zb3zPVX6bVXHrm1KM4le6o5/BuyLBSfvJe6FqxHs8ZwFmpMAgI9KPLKveBadlUgnJxlTAXMVB+TnNJedO48o2lvPG40/LiqQa3vL9fyrmJX1M2i3UiGYaNcURjldyWAefcy80YTvE6L/2ZVEWlzPO/7SuMJaTzrmsxcktJxQl88XbHUhPMUUNNiiFZrLj08nVK1S+AU50lYN0eGoMD0KAtbbOaAal1QIpUjYxaZOmmsByQyyelcDXP74ubjmX1t8mwsglNq+FemhY9jCMT4vfgRZg9Onm2Kb/nQErd2K/Q4jhuXQ8TBViaRfYpUWg/OlmoP9sy7J8+ArXVqASivzw6/CeTzVe0QnCfB98AUoW8xKJmDREjfx9ZMc10ofywgh8FDvpwdokfyqBkpE4zCQW+sQhkZ93y+DCNt133DndRukRv7u/DVVXDYDMqYOiMkt1aCHyjda+dupUeil5IqtnwLtIybwu0Hr0qHSNIWDhGzkX2SR4vvcGubCanLTZ6d6BrP8SkV3OxusaFYsJqLvtZLVqHZ7AUAH3RMUJWFSRm/Uen+06zIttXt8k0xKxQBZR4xRob45ap61RaiP7X+uyYU57io/JYeMY9r0G3qNjNfuBifjiDazTv6sLbmdd8kafHvIA7pkCEAy8bK8R/L4ZFef9X+IFHRbe3FmVBPacDyQufCpZH+j2LlEJWIxwJoiH0XxSpEf3qciVN8x6MRNCSRIZoHEOaG2LCDlShyCa+bhk01ngiFqZyv5x7r1dbLmm8RT5fp4KdtzGgJuWl2fE38Pm30y+7WP8dFgSZ6dBgYs+MEg2tbQB3ugPA+AztuwFVTjopa7NX+XvPNpnn1LyyXOaBXqx9cKRN5tzt6vQGXOya9PZeiew+CXF7MfY96KRgPHhwDIi1jH7KC8AMKQoew/5ji0vp+eFsKaZmw4LnSzGRM2z9EqllwXbGjKqZ3tHANdsIBWB2CS0kSDJLd8+bAQcst16CA0XuPb6XIQadaiJgzazrEzkY+t7+pYR7pX4fmd/Ndd8L6zGUlTU2PjtvoYfxF46YojQyPJXGriu0H5Q0tybn73cLwBcCdEvHxVad5tT9NI7VDus/Sgw11CIifm8RfrdroLg41ovJdP1t/GF8XH9mpBcfPVPTM4VScxxCw8giCHHpNKNu/CS5NrN+62GhCFAtqD9L4EaVWhaP2tMWaL1kf01CpCbwq6YrDJYnftSAQhZOKxKU5UKYWbzp3PaVuBuFPwMETBlDMud7qySszAFj8WWG9+KzWQrDUPxeV1tefmig+TR/e7ZmDCGMWNxwny3q/7XgnGRMBF1wqfvBCm7clQRLMuHJegtivxfwxJX4RgpASoD4kbfW9fXqQLTnszinEVKJkwcchj3CDWIRWXNzaAOH0uN+cC8r8ylVXf3OIeCnRyeAgiQbZOOJmkQvZpIlUpXsS6VZUEyTZ7koOohFmBHoIwNA4BK+l2TKIOZm0jk+Et/7Vxtej+qLPQLWXBvBFoTdAWhzzQt5OH+0eru8cmOemO26X4qNHkWPPt6V4tYdlH9o2TSEPxPaF3eu3wAObBm81NtyvB24wEsOv76oQahG/j1xzb5WatikGebTLT/UZMhEncKdu5Ejai/t/Im5rQv32B2QWtP7k+5E1izv+iu44Bz8uHwW0VCxSH6hU452SfGR6TluvHjdAIVN4sYcqwuAqFyMC0JNW6R1Hf7yVJtBgLd2NtLcrGgn2k9SYWwlfLULdvQcnqXWM3mKDmnYd++3rv45goludjATx5Jh/Z1bZTPW1H6sEE4QPufYeqMgg6mDfTilknxNRA7P3Decj6FgnP4whFYILoXf1CtOwzUxq0hTsRiNLs0QfZwyP/eDx/ueJ4m20LSR3DXbM2Tv8HMN6fMyPupolLWqx8PeXusdiDoCFjJ9B/8hjumlnegaaXy3HdwpvQI6sK0D15xwwG/PzwKyBP/i01uJKWKCJj9cOKLeDMsXChEVWA0lY/LQrM4NIq5VUoGgE9D9FgihmCFGnPdFooWrm/zuCOTHOv27SiWYW4cBMQUfLxwHmp0Os8PsPR1uVQP9ci80bGJNM2XcI0809Z7IvPYnNDYXGkzCw92OetqwHToJS161i1XNBpqMyPPf7qvIp7iRw86Fe7HXZERxpUjVYlNOesvM/MbKWGcMWvGVqa2LIrzcd9/Ys4HHDo2NsVjfw+yNmsB3WptnjhaOFthHjdhngofTPpLpH1xNGjlB4xbBKGR9UAwfnwLvOQ86Z0YoLWim27qSV5bDnETYdatDG3gaggwZA2sHnQFoqOV45VuciukBueni4IjGhLq3leyMaFX4aOT2XnYnJe6MtaTaz109hKka1jEI6PoBH4xNsFnthSUwqHWDwwFozBiBEwixSol1exBTE/ZZeKqscjABUHcs/CNcM/NNltvAxQPrKg0oheSZX55En8uGyEBNsyfjRaTDveqKmv8NLoLesklZphasjd6f8a8ikJs5mLLvH07EnqWrNdJkkBhIyXAWHwt5F9zwsfKr28Xt4C9m827GhAInnVheboQpfKZ61zjhCM+C0cVtQR0sqKwBPI1Pa3/5oWJhNkIE5QloghL1J/Lka1BgGrMe6/hqA8dDQldEyXIzJ+oWr/MumTeIuaes3KpBIO2M/LQk4KncO2dFzXygjmdiIzUl6navRa6oqPqElQkSIL5GuPIzjxjwOt7PyHi58fRovxEphncoJ3g+C0glZo3s4A8eCm/TwbCsLjZgmambcnLcrp7uPRmQKj8ZPh+5mHFuIY9SZWZA6afLh0h+ivpveBWnMYP739uoL7eqf9ZgHHM75dICxj6Pp3VAc2FC0RSELhXwElvXEChXETQhV1gPk17coBVB1GWpbroFCDvE3F2GmryXdRY0t7rLnP9NShWRqdqvENeJSOgI4zOx8BTL+ramyvbIFCL8QT2s7+m3g5S3iVq1H40OPyqfXw0CSbAqGC6UwxGIbEyNF4nBEqSgDd0Wj/U2ejtA7vPjPMlNuqhBqJyUhhIORijtRpff4iy2Zy/Sjg45CrPCG0HJlTs7JMmluNPRx5SCtobywUpzY+uUX4W3NGcDWk1HTzr+Ia5+Y7aibE7KhYgwHJWqB/UEM1clzIgigqoKxlALVs8/RhbM9SFIe3bQCW9p4R8lA0NKEK/GAkP/pUdwdu8QLZjEL0G0bygRyK+hqsQRozIe1doLT+n9CP8jZyyfkAGJL+UJHtpcFGeqZL8NxekdxMm3SWqycsBEUIgFYHZxNxSsdjDwwR6uttUWT7/NH8/kzsJjMPLw71Kes5xVpWGdHVZMGp6p5PCMzpscAyDdSn44tMoEeFrAg9UDkmIHRF1cNSK0Z1NgcvM040xSYUyAdRVOdwwpSnXFteJmsMn+wbPxGFdoBlY27IBAw6k9wsC1lgptq+hKcD5PSM/TeY6LNq5VvIFxEnRbfPecNoqMAalLEZZqcOHRAr85tQrluyX/vdNvRUL8Q2ORFu3CvTbVo4allIr5c73TOXoynMEOsYDtvWwiHVlX60SO6LMJS8TlDArD3xeNBenRE2guu0JEYOxGnlIfIsAPB99PO1upiXJSpL5RkLWXKKNsqZgW4a0FumaXWIJV05kmLuwcsG16PWxWnp9QySim3sH5u1pTVB4dss3MBcGKfLKYa7aUOY/p1xQ2Hu158kZ4VB3YrAuJCegQ1/aSPBWMbn/n6/nHLlOGjDKho4OX9hKibUMZXaGvXARc47ixN1PbuUIeFtwEgwIY+yUM+WjarxS6RE/avvrqQm+jBWEOgchRvF/67QMrdZTG+9q6zpNAtB0d4X+iNB47ToIElG/bvcOinGso5Fd5n7u4CuNQFC7e2EVrZCS5AXJQO6tpVJnDm2cLNPzOIvPwIKoWJ5sQuJeSdZzjBP9yuBjOAX3ZtKHgjX9x9DYlIW92geoJUsl9nzOQVcN9dAW7PA1aTR15cdixV3zzL0WTpQlx/Yu0yTVCA/zl+8Bul5MlbfRyhL2+uQn+Ipm0/O4RDyOLb0nIetQ64eNZrMfZehQDvfCpIZUl7Jgbp9KfYs1jUEj1D/EiX/Ft5suKbAlhHk4OmbOAHfvV1RawIAy9i7X0FoV/64gcmzdkDA0U8m19ETj01TZA1PHkB1UygMOlLUMN1qLSGPQyauQ1+tGKyiB9QtjwbBABWtS1seuaXFNEKg9CuvwEM5zaLutXo6NW4JZ40r4dER9AjHJpfWaQUFnB3t5nA8baRPXpYLGr7SnlJPngRlHDn+bc0NqYaYGrXI1YhygNXR5fWrv1n9xHsl5RfGt9Dec4w0FC4Nx6z8uUc1aSdHZMIOs+IZ6IvOpiylh6yG2Ba1h/dtfQn/ujSDcWu3Xuc0bSXShMwk66iQBmtDjawo6MVhbpmVO6QgTlRl/gdsFKPKUyHCZuLXnvr4EKijRBazulmmbFGK/ScZbxdCee52tdSBb7KgmNtK0AhM815XV1aOWA+THx1/Bqk6A+s2AZQl/L0T1aBEOjqbxWZyhmiGUl58iNnEDqk4/DDWIqYBWQxGvkEwuTuYZmLTZ/V5K5eLOP8/M06qudSKc0bF1R+zB1bf19/qKUM2KOeSMMjD+ouGinQV4mFtkClfe3MDsglkGEkaEryV0mYt26JwMtkaOrY5E1y9PgSC7scgwKkHcDE8Md8uaa38Puh/NK30qIi8hNUsAKNqtitc29L0iJmKFzHYwIe2hNFscmbyDkIfZURmW34hJBfyCKY8zr5uysNSmqZCTKnN7V1eBg1+k8=
Variant 2 DifficultyLevel 671
Question
The octagon below is divided into identical squares and identical triangles.
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 686 cm2 ^2 2 .
What is the side length of each square?
Worked Solution
Area of octagon in squares
= 14 squares
= 686 ÷ 14
= 49 cm2 ^2 2
∴ \therefore ∴ Side length of each square
= 49 \sqrt{49} 4 9
= 7 cm
Question Type Answer Box
Variables Variable name Variable value question The octagon below is divided into identical squares and identical triangles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-E4-NC29-SA_v2.svg 180 indent3 vpad
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 686 cm$^2$.
What is the side length of each square?
workedSolution sm_nogap Area of octagon in squares
>> = 14 squares
sm_nogap Area of 1 square
>> = 686 ÷ 14
>> = 49 cm$^2$
sm_nogap $\therefore$ Side length of each square
>>= $\sqrt{49}$
>>= {{{correctAnswer0}}} {{{suffix0}}}
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 7
U2FsdGVkX1/jVBPbT5/hlAjygwCENEj+NOX3b9YpqhmGUpXjoQx/pK/yoxt9rOhY7t6H6hjoyrkZbmcunhXLFgXc8MQZMNNhtSq6LmOUEN9VIkNFG6XdwAvn6j1hU+CLNL+JaVPDG0BcHCEPg316I13cPfuQYKvw/GijTWZkakRktUCwPL+L6icRPlTybAagCl9NKcIcbuGgIJ/S22Bj0GsRhedwMOqkiOcEQQi/MqO3EN7/sIc9cSBJF9eRqTKnzh3iYEa106jgaMxlnlyy2Oj2sFE4j+K2WVatKf5HVQiUP2qEBQsXVmN+SmeOJWBiRcGcQcjVza4aL0/RBAm6uQm6BWpWEsfz89BUeL5ZhSLkVVq/QnmUK4g4vOGkvwWf+rNkU2EzTVceznPKJ7htapNOzKE3pE28wNaYQ94Nk6U6W4M0QNsbkKjy7YhA21djwdyr5lTcXrXjFX+ERSQARBN1OWiPLN09Zzjzik1lIyP0pDbJ2VoQcpNe9fB3vkBp9V9VBsv2vB7kCUHD0GILFMRaEsdQJnplITa3TQjRniLCtijJgyrImIM/gxRQdXUZWBhRN13u5nnC9GYL+SWh8UhXx4CsYfpIndEoJIbQ4Q/OFdbGiD6/oiHhtDPMsGBp8oui7IiX25rv1TeXAIEnd5i0r97R+rwDPk50w/gKHOoBSIociS1fjB5wlcRAoWno9S20zYt2VLwu/NbFmyt27r0kYQnHEFjAFh3215oWwptjFFy96dyUfhzLo2pQ3ILyaESzTdt/Xo+6RNndYddDrrD777fpMO7ShNfp3oPfBjDX+tzfepk9c+9+Zgrhqf86G3BrG+xwWbrYpzPuYbt3SyLrRTEp6RKH/z9jZe/ilQPeV1ZnWnDiKS7WCRb5CSv2ILTXBHgIMrsAzhhK3vS8pvuzijfVnx1l9038zPQxvUFnV06saYzqVsnpGKbqsX/YmqQw+qjx2BZCLF24OIS/38qTBGcT71vgBnkWJF/dy0/ur8yfdGKBAxUHkkoDAVzxuZS3Dyc4Sqymb79GtHjgsTDxyJSEm7BxqTw9f41YoC2Mr2Sd0ekT8MKqccMkX5EqoWLiBhBZ5Eho257eKJAJQSfNKxZfYyD1r2JB8b2L0ebqqP34PK0OtnnQ9CNR5cLiUoohdzVZhPImmIS/kW5ooN+i5qFOiaKi3MdtoA4Bp03TMDrpibNp5krkpOeGiTLoct42X+C4HVd5JSGfEaTB5oNv3ln8HNwr0f+KQTocvKKoHSADxJT4oJuAinqqpArp1UrrbcUhSqenpclyBKK9LuuiEPVTdBosrRVsYvPy2KexVgBGNVwT586nvwaWMQySLSW4DIKxt71Mwdnn+Gk6NwGQIkdiQ723F3zlVx+Yt8VPg9HCDiTBtwuX31RfQ8JHOcQzLIKLby0ujQBW2DrFrNS3Z8yYcGO+iOhdjC0h5+7UsaCv/wRy1bmUqlkK5Gu9Hwg2UuiKiif8dFHHlXg1Fj1wUCjyTZCXFahczqXRp85vpF8yrXSASFUaKA7lEMGCvTnzoSXGvzZ/Qi0thqTs4coZqjT3QzAkD6YApI9ZjW+GWF2rNJv6i8IgVy1l/3cv/BLwT7ak9Kn82ulOhQrO0fu3DPJP1lKK/qFEU/F1hNl3ql2bwmbOWKT9Kjcq3j4VgWQnQLTb54mDxtsDKV3LKw2EcuPAW8eR3GVim+Q26/rrFaEc8jU1u68yqEg1VZCYl8YLSYb8lKxLnqwKgXtQkDYOpWS0HMniEEQsmfvXjmK/qvJLuwb/vewpzU152JEVrMuaf7hnlBjgnPPSFXWGyPUtzYAc3XPojJWNnCzN0azZjOjaAe7sEeXq70vhXO+kUhqh+GL4ZbEGs0wBR3aiE9C8id8Ts3Aqe94gkp663Ri/ZgxhVKanE8CoPzkJzqgQBMmzCHRkxPREFjjE4kY9hFj+0jh/gSm2fcxKlLHqkEJ5+zvXo4hMrEeKy8r2PdHoD2VEJmVODOuevdSFPwAT4k4OYeyzr6OBg/Mnx1DURgZ8MQ3B/wL8NYxUPwrbW+yuYbgBm634d+yxUsY4BfoS4ruXNUba6215/8aZ3KBR79O4ECQGhCFQIq0e/lKY8TWtYe+ZF/Lw9kxRP5LtiZLi3CtCK6XQDrIznyx4UtSKgJQJZqQZZSrLSrzZXmlWZrOe7NLoGu52dVsHG2+YnFRyo7/Gbnu+sjVbCbucVCUTcD6IDlKRhSKG0f77IWzC5ITHPSrSfNDolE7BVPaDOXECNsPuAMTLQhk6TaGobCWDrIF4Fzb+ElulhfPDMJDN5lvzMTsDHaOfS981r4HbA680BhrW8dX94LqAU05BPeQJdwKFdiKV7cwLHuU0AgjpmpWt23tfQ6AIThkSmNXoeDS90w4/39qdGqMc+eEDK15ceAcXGM5yEOI4IHkXep8LEG56JXcyUhmnSlGWt9fyzBpeCn47m25cjeBM9f3+yAn1U1UW94F/ZQqehQ6/qzELOjVNohb5RbJRaeRwUBFRXZK0S2XzDmzq1wmdPtW7nZ47Ub2IadDeMxlAbJYVPz/31O25qn0O14KTK69ZlJeTx4JrZQqb/wc7g8XPlSIVeWNI+1vSlDExgcitq6Af1JFA0qZgfIO4xUk+LuHuglElXtz1DpzRFbcoi985H86PxtKnXiEumvslB7nIOGdwd3BHmHNXoueD3ZCm/WrU1yl9mMBVsoniPyBWHggdeKh6hT4qciJnmElDAD2btQF/eXKj2vgBWL6Kb8SEBwfIl3WpnTGRWzwTrVnmMzVXoKES0o2KFLpC+E44lMgP3CooV1zsXh1bHfOCwerikAE/mpYv/BRmt03FQc7bHo3Lr+65gsi3EIYx+CGUdjV2Aq8+9BFkZ/dme1/spj8psWtA4sG8P7mwCUl4HDoMz0qQZbWZm6KBsjhL8xB4rRLtXlbTSkrFP5cYFib5MmGpRUc1mlrHKeghucYKrx6BlcM0nNNPz2EAw5r4w9iZvYVK4hvQvpNBk+gx5om4SdJ23cZ2t2122f4FRicOXdyDGtz1aPy4scl0bgoUh5uXll9jIj0m940U+Rk9vNxWRZ6X70nMrrL1eMoTEIoCSLm0UANNg/ZYIesRzKsskGcZ9cxAMaXP2Fz562peg0Tc5CMKddCehbADdm9tTnl5RUHGQa6C71oczjeKlXMWUQZCB562NGaQmjhDTH0h3PVliZubqMR8ki7Qn/TSk0dy/eczJmJ1f4rp+dagBCAinVrKHqIjEwMfRp5x9UzwV5mL/ISrms7Cw7rEw/RI3KgKnYCfxbks1PbZf9WwC4l/1w3z4ypmyFZQtR80d4KpDQp2LpWg704hCAcdxaMSE4wnmvlKN+5wP/MXyNg0OeHOYx2+sy3EfCjjhbOII+O5xTGPDS3nyICoxee2g4+gqWI2HLcuRKrBcO1rVHFMQ3H+DTQuSSGd6cN5WgY/eiL2PhKsSC8dU4dYEGfJqhxTzH7kAkf6F4m4aN4c4TV7jybkRhk0nhthL4hAwqbbB7nGBx7yHuxxgpYAkyAsZx13TrLhpTyblBYxHgldfPts1suSgGw+4LDFCsLgT7RWSRsOAo8CfN7SYWpBVlMlPB/BEXGpPtQmIyx6i/tZ/W0G9Vm5sw9NadNr7IVlpO3334CpEqa8ADtUPC1W3Aburhyago89ruVh2daI/tCWfuNlZJijbxZDGeh0WPgKjE95f4xUzZq8PF2AhL2SfINuk93n8rL6Sjs/EtNTHe1Qcfu4yXeMdp4pglk1eE5c81gN+iowonujvArmb6XCbjs+9kx3CEVKMAmh5yUWFN7OAloqi7fdXCZ3TtPI1ZAAXMLJKbCEbEXsWP19n+JaaVaOgDU+IR10eEFD72EysNI+jwyCmDfMPZH1XUUgvu9WdvcryehMt0gbM8bQEeRj+MCtbV+1Cn8w3cPF2e0V05IqBO+6gHpiURVARV6N82LpeazrOZgU7/TMGvfaFX99u3FXt9YtTLTw+vhekEXabrf8QxKTVb2Hmi8sfu5UmWptkGE5muCLET6Aninud0+rP64EroCNIbeDWsC5Izq+dtVS46W6EDSd1dO62zptmYk3ITPFMUZPJjyjCx93qDajgBjDiBRaKvLk3GLWiBrIGMuv2OYKJgcaNkCkswHc8zXicfg0aXx3RbCWUdjUWdo6QBX0qroDOXeaVz7p46qx2ytAAOz0B+xdm+IFM7izm/hst2YpmGelO5OnBFctgKnvQc0gfm4imdgoIr4CETlgdXo6NuaznrbomonZ+ju7poDygKjfpSXN5A0ftvzcO0+WGDHZL4RhfJOATglxAj76kcCTDd7d0JvDfZ/rTmu1i12cxCmzIuqaLakhonRNEJbGWxltk7fiaRNamW3LSkI7OEcVbmgY51hEEivikKTuaCX9Bwixb03PG2JIiCUpWuMCKtquUtWZfacY1EevjA0KvWh2NrU3O/fCgJAcevAzb2erx4YPsuitujocljISCb5FkZYoGKzww2HHMQAxI5Cy2iy6DuwYd72WbJqwJu0ZO73lw1YUQLdQdsGmYxtskcEilB/39lP8w/sgd241Dv9KK8mDaeGYks3FeOHR4ZpQVzV6I6FtgOQRy+pdoWV8FIUEo3i/nW5M7/mXbC8olxXMS+RbxvNpyjYYGLn9IqQbA1ZLwIDcBAelATPxnUXbBao/CTurt/8THcxSRExL8ANhuml/ADU66+RG3RPvCtvI9h76Lv41yjjcyPqjGtiIypAKWKEEx4kzOMVGshazqK7XPApLSHn2igMglGuBi9wM8jHZ4suQCvcY4LdjN98bZxvlfDrvUtwpD5g6oV2hJd+7esKc6mr0FDg0CzO+5LGK/D51b5vSuTSz+5x0E5AJYxfD9K8ufmPoS1hfvV7IEq6ldB7KgIH2uMSXjZT/HinHFmwSEMlKBGZchCAHGg5VYHMk04jt+AoAP1HbJkKtoV3CBJT6gv6fJHzW1plRL8vckSTaTBVIsPKs+/QLX/xwc+b47kuDhditFSSYFEM+UetviteZS+nR1lyh1R6096tW9MAc/GRL+blXpLfN9odt9nFyJz+fy52+XVX2afRjGVd7VZici54G+dS/udet6IqzHH/HxqdeeQ4fNOyB1leIeozOkpKIngJmZb4nd9JSkm5l+KucuQaWfeDZ9vFtErz7A4yqeUs2nlkee70uewnrPiApL9V00Vrt9dZ3Ht4Jq/RAElqxJpqqcmy+IKxSjM2hMHg+B8LPJIfQFGYH5D6v2qn0OGhHd2PT92HRYGZZN+CcjtFh8gTeFSJkAabB5dUrRnGniexPxh4Qv4UssBhRwbXk7zRk3UdRReUsi8yzLq+VFbc13GgUKVdmMmF1msvzgudKo28wmg2VQi3rQ8rJo+asekHVya+ajWAPLN/yrDJkwRHC6WuApJzGzp/1tJMtjJs3VAqPlIbshN0/iBC40GIq2OzzwihyO8ZTxj7mWsoD/6hsuQZFvG1q9/Vt9L6X0yDdQ3MtZADTo0F86ZVw0E/+1iDVIeDVPrOaPdvalkWdDoBGoBYPIYj1YBwIT54Y3Tg50TqI5d5sf+QFk/KXYPd/Ab2/D8NbXs68A1b4qJlbDRHEWcHis2mJIGB2Q7GQNmsJsMhdNGf8dT0g4VT3Nu4HJbhcMAyXBm+LGPVwO/mHDjjLLNxmDuyx5GxKK39fWUsU/C9Lqbhe1li14+k6CrDjjcY1AHeJIyBXuyk6mkMXWmxSd7J9VaZtb7LY8wDtoKNkvjkPl4J19oWmcftTIniiBD/NlG+1fBR1QSsrN7YwctbDuSpQMwzQwoVaf4tkeDZc1nBErqbX0c5axp/k6J5FXPOsANpZoQE6MkMpasgdGf0SdAqYcOJgIQxvUzwB9u4bATIg0iq+GAD4SQjDtuVnqFTiBUuMt+uChAKOf5oXAxIZQRVB+MCjmFL8QodzhSu6ML1IFDYXdb9ZX8d4J/HLs5C6aQG/NiefAnHpDK0OHDnqTVuWRMi8kItO4nHsBt9Rril5ss1jpbkQ74INNOSFVOJCQEtqjhAoq7/s0IjielbTkcuSzTQeEPAdQRlzpcZJJH65OgssKW3nRcErlDh2z8A0YsdgvyhoXazmpTrxO48429lohktxtkWm1zzwXrkDIdSKuptE+CLilE8h/VYadoBKq3ItbfWbU+doBZ8IkofabSaULU0G165LZnQLkl8yjo4CNzSHmhAR+5rpChDvZWW55D5ssVr7a8MEEMlB+PWANtPFdJIW/R5n/8aoEATINBFbjrIUhpnsWz9wHZPRnbwIM+6JnNGkDjNhJHKA3N6X1WW0vM/eYWaBH84ffgaATzA3dqHUKBOMpT9n2YzNz1EJQUvp4FNrsjd7vwITDMudr9h6CPCIQbqvndBYF7fNT3efsM3+8rH37uTikP+SN1y9BrN1uFmpdUm6VUCIbtNO1739SZ/4MbI6yAnlru/Ko/qanXdwJEAiqteI8SyFahZ8gDcBnMeCbbsviGr1IurLJk6HeOPbV5izUWvIvIHJlXg+SkVjR0FeIoPYlSQEMVrnqHJhVUVN+K/E8Y+XNHyX21dsk8emZJYhVBE8yzX78cTgvpJ9ri5ixgynWQUzknK7XFNtxmD8wStCiaQwM1KErSkN/fXwojo0PjPtrFQ0q/OloUgh5Nj4N7/ZpU76l6Ox3NNcdpfbqzkNSzYT4EEtaQnOG0hPAd8Og9tLOxsdKyFlyPwzqIjxQmIoP22LF3nlcGStZwRY0JpWQCUr6QpV88zUM4vIwUda2AZ/DNkZiy9SJjyLEMON2QuHGS4XdfKjn1hb2wQVY9m9f35z4Y5HjCU/ovjFJZGjYJ1pSrJsV0QbYxu0/cctr9JmsmS9jIdmnGaNmZHN/aHnbUUZoN7TRanZFNwXToL3BPQvd+Axku9z4vpwIvzniwCnRbIlxl2+UYtfO+drD/AZWeGHYyN98kUDsT9RH4M/5vZJ0QjLpYeR2XK+N7xDzY5TNZPbCm6H7n3u/o3+ln3NfpiYICJiyv4XRmyobeXEKtCNKppmTqZjYs5CqjzSuVHriWW971UpLqOroKClU2A2jDfAhSHj2h1JQ3EPMJBPhOofC5yVtKN1kKuf8l2qmZh69IOGPOTzJ4b15JD5V/120UikVwp8HKWHpO9JSxL0MKeei3wUb5LEP3YAda8oRcWP6VoY5YQdOc/zqzT/+2KokBm5Fff0BJeCyjzN7y5QETt2KRsUkPN0hHrAXhKCYLTGcBZNbNGMFxoeGulphK+ITVcv1kqIgIJSE775jrLeTU6hWebUhJ/j9PBlQPwa2jlfvBYbUELI0mJTRL3m4BMXFeOzVIWPbibjIiY=
Variant 3 DifficultyLevel 670
Question
The octagon below is divided into identical squares and identical triangles.
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 450 cm2 ^2 2 .
What is the side length of each square?
Worked Solution
Area of octagon in squares
= 18 squares
= 450 ÷ 18
= 25 cm2 ^2 2
∴ \therefore ∴ Side length of each square
= 25 \sqrt{25} 2 5
= 5 cm
Question Type Answer Box
Variables Variable name Variable value question The octagon below is divided into identical squares and identical triangles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-E4-NC29-SA_v3.svg 270 indent3 vpad
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 450 cm$^2$.
What is the side length of each square?
workedSolution sm_nogap Area of octagon in squares
>> = 18 squares
sm_nogap Area of 1 square
>> = 450 ÷ 18
>> = 25 cm$^2$
sm_nogap $\therefore$ Side length of each square
>>= $\sqrt{25}$
>>= {{{correctAnswer0}}} {{{suffix0}}}
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 5
U2FsdGVkX1/89PQx2qqlJ5RWisINoVaOjuBE3M6P9GRwzOv8qZgQjEiCe4oJL18IxHwTVXS3zIQk69iY2PYgIzjNB6zDlVtOVbFHDmRm45hJKMLlNtsFP8KLfN2dWC68o8oCG5ASMouukBIbQHCYeTJmhgsGbOAR6HK4daUy1thcKxAmmcFnIwwnSlYz89F9XB7J8uFV2GbDm2uflYulQeDOXsSW41JKlUFDVBlMtQHi3HFsajx3CKE8SpmzmdIfp2MUtR3gUPm3/w+2NeLoGBo20yp+u1+MYoHNtXy1yBmrO9dRspbrceGADaRQHBGXs6/MkrQhj1rRrvgBxP5QlsIkJvZ2PWroslf8uR6zAAzlO0f2eJjLABwNdFr5HqcdftZ97q6/ZIMV/ARsJx3Flm/CE/gFuEQK+hIsTX7BQlM1nRNH3YcPCNcH5dQt4oxzqL3SPqqlCffTKT1F/e95bgf1WiwKfAIAHFcwzk8KU9zeztmDzdWZfgbtDCk6wCV7PBNsYA0mQcAXbAXD+V/Ae02gIcRHweOmcxOZUZy+8HNaYdo+huL4Agtk/iKrhHFq8pImYdSuMWtX1PMTDp8X74Nkgdz1Svk06MfEZdTOe3pdKGjbBCO6PLlM1suzhN7+Ywsf/PxkWYBP51gvnoyvcUy8MYlQ862n2oAq1qR4bFdVn0IgjOjEBOTATbM7zi4zi6CD3jHeK/irEvFQdC/0smGa1rQWK8W18V+qS9OWMj8j7SSCzCKI587JwyUmb8Hu+Sy1UtPc+62h/F/sMnFPvkZQb8y9x2FFp11FzYhmlvAcZ6wsw6vOGx4Y8TXvQ5SEeglrUqNAnxLfxZH9JuK2jPwXbjbRDQjYdF+imJ0q0f4RTnDiHLHoRp++qBmSmOoS42gBfddJ0i1ExlriHKbYstlOUj0G6e32fQNkgbwFOiDf3Ktnk88kVABIVZKsIQwRfA50mNmHPS5MLoTkDhycXZP8kzGDOr0ThvEN7JfXUneImGaeySQt3NmCrK3DLB+CU4j9Aq54yvO3P/J5BHLAlAMEbVoctdL1NTl9y96XCs6hoS0YogmI84M5MMMjizGPORWRoZtAtrEOncTPGusmKWocyNNoF4q9Dh0iYULNPk6TXLTWADynLifaAPL+hhrhxx4Rfbgfn0DYgNpeHdq+VP1FWe8jpewHQ3cJR1zmgpBAoJ9HgQqM5H6h/Saag5HIyEg9OFQR1FbXjl4v8R9Q9GqKJyNe5/x0QWKKAgMVuUIOaP8D+WgJ9eqlVHaKAPQbCNsGAq4GcT9mqlR4kCE+8i8kGscCd8GuKS/IZqpVzFHt5MzZOsHngA4ZYcUBc94q3J0iBkw2q57EDhlaoK57vbPVWDojRGY5Ky8mLqJARXQtE4ULss/hWHl7oShIW23HLDT8D++r1oO28ew+yU7s0Rod6VaidF60+niryQlSQkVD8JsvVhm8gkM9Ve3L3YOavMp49616/d2hM9rD9ZXfDL/25BSIOGZvxjzwzb+Ge05Y7mRAHxMe896ectY3RkBe9sErrh7YpQBinNOn55ZfmQIo2nj1cBs3Pezmxen8YhqyjJn7a9pu3WT8azRjDPfLZCuWPTUQ1Uf1XFohp7+/4p2SjR5KYJ0Wn1ST4IzyCq00NGo5YnLeKwRMGVY6jYRE3Kmi2U9kSKX66rVpt9hhOhY3WZXQsRyAi54FudF7Ms7CmGvl8v3KADm+i8yCZZTsQQq2HIPAvt7xWLqNAOIM9Rnm+KaUk1kvMbJCbIebObo7ZmzmoSU8uz0EgU2E9Ca4Z39ksYThMALvcWm9LePCkVsrkyreZr6O0Lv1f761YvMTJ/yH88xYa7NZWCvfgG/JQ/wGhRajgLawycYCvwAOn2WDkL35qONSFBndG2U3l+UOO3CCFWnPaMi0sk0JX5MDE9iFsxpf0EL7eplJWmiZwZrA6Xnq90nxQTDX2yqROLgsdnpwmWWGeVkFyWAb8nQXA9EAkN8xErBfWMobMuAczPsqX4Y3M/h4Kq9C/xgwdw7VbguGMwLIfAQFUIzmx0tUgTL0v5P+7g++A4WDddXbbqzOfb+g29jTJFDFplVtq2OhnM0O/EqSjt+5KcGLawnCtSQ8pTsmDfeksMyEUCLS5eg6FsGcY4YGc6FhgPU1x7PINUTbt5/UX57QwgmwO9aL/wfwryd2RRyN1ZPhzKz8M0Lxv9UwIZQp/LPvek+7AP0I7E/mCvpalimG5wnm7xNcQGbWlValDSIGd2mIQIK7GLrOTwrrFrqLvfoL3f+16SVOXv4YglQZBNpnw1qSOCHrINcbBeHzkrK+S/JkFCA8wTUHXd1vCTgye0pl9+klFHUcu57BM08fERIPkAYY/wdxDd4gEt2ebVjqZQ9Wix4px7xzE775zasHdJhbOR/zVTFSVHZnY0qyj8GESnbr4sazpQ9nBqspbQEyoL/oeOfLVXUhVTJMgpaIvW4MSXXQYwwOrunSEufTDGrKOh+d8v4uCEv0XeTYpFjH7T+Ce5CXlXX61zph3e//ft6QdGF/cws1Nlm3AGU8XqNaR/RZGq0+HZkXASnKjaJptGTAm+reV8fWQx9TFKrowGqMjqzgR6R3RtwEF/S8hBlbVHahw6r2vgvCb7EpLBOn8r8vBvyfRr4UAdKIqiku3Dp4/xvZvmiXv6/GIYw2XTUR7mRbZUWxemb5VJHSfbL4PNO38JDKoZwGw4lqwXWWUKQiXXBONvh6DJq5fLO656iZss03Ed4KWBBkM+eT/uPEIxUkE9H/COI+gj6okQQJAOD1pOMyBL66pCxXU117VNjLf+27sjFr4eEqpzppNsprOK4E1NVak/McnRjMwIYtx07oqVGl43vyQHGZLMTai7mrZImg67FRPKO631ztQO8Uo9oSyLKZciyYqoarg6Gt/xet772gX7jr5goFjBCLXP/zRkH1pPTGkqxzqynAQsYAsy1EvRFQgtBjtjXtfOkV8ttWJnFn4Fmvp+LCCVHpDoE0UJO+wDtmPplgkKakuY5z6Nmz3V36mBoDqZyLsMA3CQ1XGpiZpoYlER5yUTiL3v/7kKpZsjduF7L1l67aQ48m3n6N/MpGR0AjY7Sn0+5FDuYbvZu+PrGRBGJKe8M2qWcHhWS1xhQGnxVosFWiYTo2mQHluwrui1RyksxhyaE8OISSox8Z2Gqz9nuzpfjpjmeRlTB4BKO9o/0AUmMvpi2sipkH4oUYusQZoGY7rRro+b65Zc3FS56V5lafJJXTs4OM/XJcVk4IhYGJ8/iwjnReIb5NoHcU7100lMd+4M+CP/K+KH+F9jY5QxyVObI3wxOnUPChwiHOHlZzMm+HkvWhhr9oc4r8jfUaPhVgnLN6vU8iRQBRGXNdj9HyMKAZomK9Yi4/zNO7/OEmEIHyat//BAyoo1HzCy7HsD5ZDwleqZTAX5sqHgfMwYUt2eX53gF1HMb78f1B6nf2LYAyLgRV1bSoX9mzMuVF7Z5LpYe8ino3TAlMqpKdupH0u7ObYkQ++aWwu2wZlL+15ybz9MBiq7U9A3ANESXPrcVjp28h9V0cHQC0Kj8aDHWFxIvshe6hCG2a2G5hlb3S8Ax25nnygZ2cU7WD7lbAWnsOAPy3s5AZa23548NkkgylDRGtnO2mSAB58pJbxXDyp3mOacySVeuM4A5KTZBGQaQaL/Onz6dBySHaWcp1eLDuv+3raA1UJ91SXTLpmWk47t1gf0UB1Z7+mOUQUnbuIsUs3ZQDUhMZX0jQbdFQQfB1p/NTvYkjBNqr8Q2j3AymKnj1qnF7mtHGpiA555tUifzHrvmOBqVV/PZxcn4QisjViFLyZQUphqfCga0YI8GFuJJX7Tvvly6EH1y5wbZMex1EO3ah3bUZgGdclJkeRcqEgDdKSYr4TCLAgqDSRXzIrJ7ODBa9wyu40GzPJ9FPvLJraEq8BuN8eCNUU3TJWTqzWkFVoNSfSXs4fXbo6lFqBThfUyN1Dq1vlMcC+9mb8dPn70d4QWmwWB6mgYPuIknpdfoz6Bz8SZJePVugT/727/8yx4hp8bFVJ5UORTLu84emTST0sjnSoR60jOv1TAcFmBdzK8+c0LGWN8UOq9Y8TqAp1NGZp7Gyyw805po5lFw/Ibe/DzDywgPsVm2reTn74ghMTRD/iSTmm++zIEtAwtaMyAmO+P/GsWdgu0+vtHI750uMcDDLYLg67gsSkGJvs4oYyr6Dsnzuc6W+qTdkt1QPzbzlZtHOsZe1XEfhVlcTLiq0YsFAbrvms4KFDQ5gQGCASLjeQXF9959Gkdw5H/YzS8y8/56n3SXmf8Hi1bz3jQ4u7z0oTjbV4jdyoBWbeLBXtnutKGvYfYRSKLSbsQS6Y8bHiVis8yzQ9k4cCt6ns6OWqZbmODeuVo1+XQ6kaBm2QK2d+DpbMcOdRBOxZIIYzAwETTwbQomNWTFW3Rq6pPxw9XBQXYyUc/islQAW6lJcbUHQn25pT+//beEd2V7vEvadqWJSulFezuBsM+/qI/j4R0zmDHsxoc2cEU3KSYuBaD4tPF+i7enWzSk0kHp4RS6+bS6JQCahXqd2Dz3iBMzJuDwoIS4bSRkl/h1xxkzPrT5hrUsHZIzCIJ8vfzEUs5ukAhBw5kcT3hHMMLI16M1LDYJvbfck03PuvN+46jkc6+QzPQXFS/9mlqos9QK+b1ZIsADQdoFFqBhZalXwYL1sgrBLHSiBuvb8WEfFQyFR7n+eGC6JkfX6qVRBKWzrTkmLSucJNcjGAwLdqFhZRUkg49S4mQgs0dYI7PSKJIkuposUDROL+X+qcXWnqhMF4c+sbYhkj6KBCub6TMPZ5OU0xGaBcZVa1fW0/fP2zuLCnPaOg1SvwKpY9a1kmoo/INUWGKYKokMNnprubedKqK/SexQ+QL6wuBdOZbYMycWmtTts++KLuz7F/X5wqna/8dTRUaJJg2LqHIC3vcgDmBHspfSalyM6z+eKo/6KsBrwBPyypHpVuRZZrpgKTtHYC/HQeWd6SaGLo79HN+b+WJynfB0AHgGVgZCc80CBdGQ7YJNPYiBZjXYVqZFkwSWQENHml6NlhoACP054tsQFDAiKiaFDVvqT+MOl00dl/T03VdsL634s76BPA4UlwqgE8bQEN7kVC4Nl0tSah/ntbf17kLI8Ub1JP0iqySOg215DI6l29TpqKTYAe4kpJ/l7pwfvpFmAACuWizaNjP5ebFhyoDTaTiy2/hcBimoSn0pdNXFOxV3czODEP/rkiARoPB1uyU+K59R6RMPL53oPErdeRnusCb838cIyCQKkmZ80jzh7MT4VIq9x6RHaOmmI5MKeWwQDjT6XWQNnNIfCmelbmh8F3OjxaqukSOxmRPYt751uGOXqhJ+c5kfJqBUjOX8KZUEBCOQ7vNHV6RvetZ2F2TvZT2FkfVfrAye0NtIS6/bE8r93VsswSYZ6Fvv/qHZCUpDEQB8RUTopVVxeWYGisGs04dqTQT3UASG/xzGliyWObf4bihJmJiJp3OIIae1IYtVEzGV8yQqsjlD/lVwDUdh5i0/g6Suq2mOhqiJt7HtmUQDDwxKF+eO1D2f6ut9o28ejCvcN+bSCRvwaZzGoNrp8mYk1OKhvfYkcjaD64wR9fprN6qCtI2MsNUrvYgrDqr5Ml5Frg7R9pnrRbmWU4dptWgp31sMqdkjRWFjrAkv9iCZFaXZHHAP4i2hXvm9hOTSNO3IiYI9XzCQsKLY0gMTN/HMWKTO6W3AbS7vMZAMgrD3QVFEf3R7ELeGa1GUVynn49voxZlwmm2IPgIdkiaV5leTuQwntDMgmYdT+d0CUfCqXenftM0c/KuGzHl8ATOqPYO0TNlUFwJyoSw61fewIYwth49+jTn2hG93E2CG4Nh8rS/KUhYlhDbg+3x6vB4KY29tdxd4xUlrVJjvLRaeDnqA7QE+8AqaeETS69dcEFIBHxNNqSdJf77+P0VH+RlxHoCIUS0KLpJumS2pAu4F76Ibx+kk1W+uBK1Zc3qCwM2mB/hMBLSBPMvYHcbt8wKPOHSEQjPqsWHuJBdm/WoNpuV9sjzLZQViI0Vh4r3lqDDP/+grL9nHO0DWBUjJlVwfSdb5V1HnOKHnZWEcbP8UaGJ67TcE+IfzJ0CudCnJX8uArnMKRKopOz08Wx6GV8cuCdfa37UH7wCtgeAiTjZxQP3LmCGcQnBjeTLjWCoyNB19P8EjZBr1x/vRJIhjx63ogCPPIhtF22ASrI6vxGRs1jgOdcJCKxgMPdygLuJP+X1lv+NYSjUXG93Ux32GVCzIPu3tHInFsD1N1pJuoHLmjv/kh7C2obdWXjItc0aMh38bjjwMD14AvA/QMANfUPaLI6dLQeWe2TuAnZOI9L3FKWj5Ko0Q1Xbgcxt8GK3aR4Uzhtxm7fmWMDnBpzrleBAIObY+1eRv+bT95I1vmNn7KxiRc6A3t1Ku7zjbDHTNWf6xTkhfvRxIp9vlVHfYYFGusjKvaOXCRhHd87Ku9QYRvQabBCyrlx0eIkdI9Xtxj50mw/kOUwA95MMB9SS2ZAgQykTDdA9AeUuEmrzmFT521KnlDvcBOn3viPdaa5f0Ty0DXjv1L/BkJ2GQjimWYVNOsTCCBBHwLRhmmLvzX/FbZScTvzv967HkJCocAoTz+6IS3JEZ5WPRuehiJ/nAumBxoJ2oh802CLG/EJedg0UbIzVb5+EHGE+8aRbNs5K9Kn+TtAv9F0uDVhD+DzCwMtCl1W0dLPw9+O2laRBmhyUk66fI2b9f5w+1e1wzEoEvqFjiDUfmF21tlshTYmYr9t6AecwqCBgJsYDXCLNTAN3L6el776MUjtdqS9gCtOLJFseG3ZwGXIgl1mGprTC00/V1VOmf1T0489M11/l0CXLKfEnc6RpKc7Gmky9viG2YGvgZFYEKjvM3Nhy4MxFAjkTmPuwiqfDvHXIFYXYVnDZ/3mNhAsSkt9vKaoGwjT1HMHlBj3hO72fB2KvYveLeNmXQO9ZII84q13lUxlTz9KkQ578f6igk+2sAS2P6pjOR/HHTFrC/nmh9DE1mT/1UyOF3EaGWCZiDqBwQLeej39S4abWr0A166bcyIOHaMipV4oOQXXRfCm3749eQSqOyoHGsrIwj5aRbgr7GWxDX2x65zTUsn860s8aFLFcc5w2vh2SsIGPCRJQ07x6BkfC0GLcPbcTPABJopKn1Vus+SjTz6hny+uFubbYqzoA46Wai1w2t5QSIwCjNpHVeJGXeoJuv2Q7AFPA2VWKUYrFF37KI4ejkwRizBoeMI55+SB4SJ/pAJ4cq8ls2M7HF2NKB3m+9v9z44ccNn1dNWLMmR0RW3wBoTPRE=
Variant 4 DifficultyLevel 674
Question
The octagon below is divided into identical squares and identical triangles.
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 1782 cm2 ^2 2 .
What is the side length of each square?
Worked Solution
Area of octagon in squares
= 22 squares
= 1782 ÷ 22
= 81 cm2 ^2 2
∴ \therefore ∴ Side length of each square
= 81 \sqrt{81} 8 1
= 9 cm
Question Type Answer Box
Variables Variable name Variable value question The octagon below is divided into identical squares and identical triangles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-E4-NC29-SA_v4.svg 300 indent3 vpad
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 1782 cm$^2$.
What is the side length of each square?
workedSolution sm_nogap Area of octagon in squares
>> = 22 squares
sm_nogap Area of 1 square
>> = 1782 ÷ 22
>> = 81 cm$^2$
sm_nogap $\therefore$ Side length of each square
>>= $\sqrt{81}$
>>= {{{correctAnswer0}}} {{{suffix0}}}
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 9
U2FsdGVkX18BP+kppW+E0oYqCI9QHXPUah1dLzPbUeeVwXeXpliHb4LNQoR3sDQ3JrQNlS+Yjcoolwfyt9Gtx6iHsYDFlJc3o8jKHlsBvFju31Wh6resrpHdhLhPQix2o9Uda8MJV+9iiE4fm8OjZjVVCHv5ksxPK4I1jaYqcQznKY4s1v5DzpLr1TDEtQBRfVdhEADt2sbKxS6vgeE5lSNTMPrAOeAaAwAqiZEuk3EB772Cw2pnWgGFeKzfgyl4rA0iAtuBXOKK+O1Xeyf2834k6/bzfUf9grWnpP9PnLdkqSQ59ee01LMC+2SHvHGoSsNhPNN7KMi1sjcKnH9Jrt8FoKKqg6Se1tfDcfUR1TM4+8VVqA/i0xauNxGn909BVFT7nvYNltqj6SflIFf0CM8gtDGe0f59e/zb2ai6+EWFgfj+n8F1nmWQq89ATAhqPQPorV0zD+pCKYTbc9kvnq2olb60ZRKKuvCHQSBMIJXzWCuSB2NzhjCiGfFc4KIAXNVnqennReMBNZazEljf8Z1d+UReHhYayIjj3xQVMxvd9WTY4a1fUze2woIirtDctzBgIpVET4RtXXff+3+YbL4xZHZSeB+RUuHY3/0zr5Nz5lwEDlbHQw9fUNWexUoOkQCN9MCu7uqCx18zzzhxuaw+8imycSTH3rhfqoK8AtYiejetcylQSKMb+A0xt7pQzdYhagaQMG2V0S1SxGsjHi560ScK0vTAhIVIVaE3H1c+tZemgEj9HnkbGuAeTlRKkFz2cgQebU7pRj+4YXaszQz6ptnk6unwHTnZozd4Qd9lPG+LaMU/bBPH3TcZLDThYWOXJFtA9+DLJsFIHV4XtfrXVA9vss7JBMoTeqIlU7opmO65+kQ6qtAJQypBj3r/fokN5ku0rNp2iXBwjwLI+wtl8NpoDWIXw1p5uzk+c/ke8EZ5xGuLxCTUwL3Y7Jtb+wwinjX4J/hAF8emMwbfeDBQHyiKmv1L+3biayC+P7JIFRn61RKGBh5IRCKMszKpIJOXFhaD9zjy0N85YoOcjD5lsRLZUGvzo9iMpKs4GGZxmvdbxdelHnQ84xcQl41apPBbgrVa+ENFtyaWdsRE7OUAGV58M1aNksa5oluKrfE5w/56aRPgFQ3b7hR+T8caN+lUH6QMCgSWUXTWfw+7UEUY0rihmt91ixCAScwYL8l3IfesXsCBz+rq0QvacxdTUO1bueCsSBJX+tPdx4SAtDLhzPn/+nZ1QJ4iEyfLxdOnX0d+EYH5drt8XdRaDPz1h8phrCgC5ADznQM1Ydw9UlQrGDJsV20QP/2+CAoHh0iq4aiC0T3d7H8C2UkDkIWneo/wZ/Ks78+UTF1ntGnY+KSOujmowRtfVhoHD1dYtxtw0GrRA0zwEzFmtR7eI+Z1K1VNwSPZn3IURCDBa7LhcnL0bXY8aDOqThPdhumw8k/pCf3Qlt+MI9tEmBvPtbWCQZ9f8GHkdsf2yxBfjQQ3wNF7PrCnscfviZFNagrK/ofh9h6B9eDfx9dm1HaA/HZvH63GrRG4vGP68+c4GQlqr29/aZLA68Jyi4MMNlpJhVsVq2MZWqwEcVZqlUBfZ2WCi1GbAjgilGWG/2o2qDcHFGtqLde7RAi09LWioyCvNfkrM0WUZCo8vXpCIUfNPeWgQ3+o5u9Y8mfswOSXVmI3Y2g/0kmpNPiSRcjBCDfoOS7eB7NT7fDxtApWM4e1KTHP/UxkmWbAnDX7qyfiDwT7Q8tFQc/cY3OJwESQaM++C2/HBPQVemqb1pNF+FdZGLeLlw7UtW23OVGF6zTQfXDDgdb32zjIN0ISj9Ml5XD9Y5Cpq7FD56UlnWNNcR9QbxHXb38lQekLoLkQVpvRuEIoJtxX2Id+iIufbCZatZi3Y75X4KW2DkWTWgtLLVB2CWhnOn+vBK25IcZJmQlfsN6QxD729mK+MeXVt8dS0bUF9WaYqYug0q4n4AV54QXtAc0Mde7ei/n1CgRK5Cx7Oczgnq03pl4e0OVmltE4y3dqUkTNKzRN+Siw2TUQvJcW0CqCpYCi0B9xFxie9CUPIFHN9kx0GSRDoVFfW/eKVc6wu1K9wJvrs2/0RVKcLPx+2KuK2Sdj/NW/gsE+Lw7MBaKq4qUZKofFsJB6MMbGqBBM/mM7nXlBFm5+FV0wXXN0F5jyyGjfyuh/ERCMn5VhMRmFjcIaulZBamaolgSrSCnkCUg/L+Jl0N6UkJupnGJS4nIwiqmR95wydDUwS+BG2HCw6wIfRro/jsEFNlI3lnuSyUM8hQqbymv5h3tvUfFxn5mpphJEFxwJziGhBcq10HLlvo4J8SkvFLUunBNePvctiyAlofJg0OkRuNBy3w7ns56KCcswdPjKrWiS1SLOmJ2tfUi5GVyFEukoSSaEUoeWFMxWGhnRFLFQV9ddr0LIRE9w4D4vkufvtB9pRE8uwDSoJQCWX3o2drj9/QrHnIGUnXQsd73jK0+kclfqtoKwPojlsdqmHeaWqXdEL2SwDxiUGGXgSLgLCBsMvg/Tjm4p9omsZpe231/pPU1iy/xcDVZoBLsDblCXSAoUaMF1aQqju+VydSAXu0o6GCPEhQw/Vg2uaIygn9undGZFQYTRjgD+948fQHRuJC0pZj1HDf73C9eI/kcUmckUtpLEkHyfXJrnmn5QJyeMSWz7YwPyqd6GMbrcWD5jum5Oo+s+xLyCldvAqrMlVJQCdOlWBhdjuwWoOJwwCQybEnvnLrGMH6VQWfTsJnVjHrQEjklYSGAZ5CVNEV/eiQNlu2Rs9OKhvb4yLjV6KbRx2PqQmuEkyUAkpKDjlJNMVOCxdNJ648VT8J2lm4MOb0Sg87X4RKEzFbDXfdxj/qGaJ0yMQQCc7b3jozeUMzXVc3XMMQP+iG4NriTxEk8Il8P6oof6nAv/yCfzuEoyF5E/uIwEmGxCrFulx25Ym8k7p6JyDBCGSy9yYgCdDYTKQKhTBwCVRq6uOdP+/UfALtM+miQshQWc0EXnsntP9793DMuB0p0ViK/2GOLp+8eBI2ITKq2CeXKpFYsB8qlUISLvnG0xQJWGHxmknIoi9JnfQ6n3YK26NOE2m9RTc/L79ndewpA4P6t3GcN2V4b13E3Qz62wnH1HcxNOvDANp1g1JzI3FBVgknPjYFNy+KsHEYl6d9bkJ4EEkau6UmwbE1qk/JQqAQK/sbkafKeJP7KUo1S3JrQu1Dgaxg40l99qkAYKeKgfwG6sPCGlAadGgFA9W5WIudBdUbetae8s9MKeSEJCM3Zc52E1AexEwHO3PJnSECsOHBj+NHc0BTWTqYX1HSSo4O9+cxb+K4GJ0+xeRABlGooImXrZU7UDHSNp2083uNu3SgPkEo4S8foaxDppVj3UiChan5n9OsrjmyFuCy75W97yv3moNYCJAz8NHPg1vjoMwgTbwFfIeG3qwuXepqjhnCNmud7Wk+DVnpyYizzr3jVnNrGLjcm1D0msP7FVsr4O+ITH3gK1htJVqwIajkqYyAEofnUtcBF3TjFD05lAM53Zc/LmMLV0QFOx4cXTOAGrf+GcPR6iELtqf2xGGuUTgqLPpfGKBRXaF60G7xG4xrMblZz/1PGEF889Zpxw1rnYiu8LzqSbniduRf+cX7UjqPVdjZPiWNPx5UJtTqx/ZDLhfDfmMv+hMGB+qBsUpmRlNpgYDDTQO4cTJtJ+sommEY5E0tiMoqYCnsIHkH2YAtvIqW2Cegyn1Rz75LcvoZ8V7ShQMf40l9jknfUR1FO0VBPufcAqvQOpZw8aDFn1rs38Pz+T0i8wBM40nt9D0dE0czG7K3dDFMqpoCEa9oo10UX8ebsWWaavOqT1yde/7SoTBHhffaqlhmhpTkNsF4RK6K/mn58Ui5FRhbooAfylhc6J2wF1aHcnNRQ9vz1UNj3gjsusYMlk1t9GaaGme4fH6PP2Z51vC7Y/2sLeLBwdpWNs6iaXQ1ARBIdI57w7cH86uuLHle891zJ618HcYZYQHDUHTp4oeIwbjVL1YQ21OoTZzfqk1ipvLiTwlp+QaELYXLNkl6NBRien10pwDkMlD59nB+SJuct86VZtedq+Qa2XEbLxOl3n5F4YZdu22kdvThKYT/wGTvcqkA5jrh61ujz3bbFyO4cGv0hyPohOZO4Akr8wpjdBXJk4dEovwCDH+e9gn8bwZw7bKM2RN54f4MYts1LOTPaaGHBohz6H2nNqNUyszpiphsk5Xb4B0/cPPUJ5pL5tHxxDQYDq/hZsqP1aZ6EPs3y9yiFoJ2292DaD1PNBq+lbi1ByGmvGcl5rZTzS1nB4fcbOpuqIjDCSSxUbylgyJIcsCkJ064xCP06OX0RBHjZwCkyrpU9eHWVW6tzb4QI7SugX6djTF2PUeALqCX4d1ryOJ68G4N9YZoQr8v87DiG0G87mj8QpWBppn1vLeBc7lIWtkLv+P+iZaBU5sRzGPQxuHCzrTBvL/wP8AYa5I5js6nUFY6GOedVQkHV2IXKo94BEgBE3GDawPkLJKAERf4qlq7qhfGOJlvOhAN3AxlYwpz150rXnzezdqgOufospI2PL4qh2cyHeVRCVO6NvkSNGypnKJCQ0OPzid+IWZ+ajmKl/278NQFQFNGRHJD+s+cYT/HwvfqGrWGmItjHM9Lnvvfpx89VhZyq1VV7yEtYyA6NxskrIA3eCmvZRF8uxkBtkk36ClaFyIbK+wFGJfckdjFN4iq3McYt01bx8nt2TiglImIdzqvA1F6D6SKjyZAMrwXYWUyTmy3faPLvSM1J6BTbkPhIpdeU0t0AsbTgb/1xepNX5J1kMEc5ZMFacZ14wAJLHWsew9vnsnvzrQJzgaCewIlh0LRROCsqcCYXvCHFjNJKqP81SL4PUfVHBCPECSlnaM5aBTmG6FwUl0DHzaLmHNHgnNyVxgKn1RAWFJBj1gBA2vee7R6hIC31wIhlqkrgubLtzpc+aGY0wM+1R4U76HEvHUzE3xcDKfgDBPmwC3xE1HhRIANQHT17bqCPY2qFuTlAWjAcFiJCarxPIU64RqkB74S34l1uYvZUOBbkvbX4Nc5aOKIvYoA1VVF4dE8gUiszOIhE0PjqLGnDnCEk4kYZTFsfs+SnCXP/ojpP1Lpvr5RcGt4QNFKmTccOhiJpMnjML8MGJZfvDBjx9p3N6c1JHip6WyCEi5nwzZIxs3Tzq+TpTvpjhEwJegBerqgoZmo2igmVR/A0J/X/4rm4B7dw/3vuPbDdif6KuXKDtEdGhCk938gUqhUmrAcgH/oJHKueK3BciBJ2xqsn4SHYqUKVeq4F8WMPmHws3Qed/r4QnjqTYQVV75yBczpQ8PHkJBFcVvDBgPeilHmRVYDCAhjVqSeNe9Q/ahN/AayZcjRxfzwwt53l7ViPAtpQl926FBJHINfxQK8tLDaptd25gRzG8Vbc9YE6GBX7oavo4zRndjofM8bGwA9LXS6vLqNvyOM4r/vSy9p1WTfcWh92R67VrxF4erb4RcXgG6bQFW3qXaeuOaoOiFIdYQpF7AWapcKpZsRl0Iq66G3Dq6Zj5v7pX/byEl7NXw4DQ4bEfqsVbPZI87ZBxwgjqUH+9M7fmfjHtz+T5T/4OgJhq3ICqpmkU9Td5JgqjADyw9+UuRy5i7MRXeCFO+1oVVgwYoIgZ40RzbP64VLeg16qbTMjcm4h8PavPZh8M0laqiR009JNt0gHzNBp2d5hQ3GQAyU2HIhQY1nUKnuDMIXuJ4fK69Z/UDswtt5xd9ehhxgubYcFQQSVpaectFjMy4AIry3o3C6W8wa8oJF6Ba0wqNEeJ/GII160RhCG8KqyPIyDkF1nwV6IeIEQ7uPuQsNssJ4zSTQ9DzD6wGiTCMUhNEfiWQrHAm4RsAvlI3Tca0eVo80MAlc8soQZl1pTvaND6jJ+5MZuzbEctHHwPscyQF7YLhGZ3lOM79MJgLHhaseoYm/uD6WdDTmSUkAvnjT1BXUgm/GBjIagNhUYQ/3UBsralvHc+uCgCBc+M4foVMPfLqZrEbkB8gaantoLtI/fMkhzshcL4sjpdOvDz/3rIrTohqLVpZMqeTKHu1RpKTUxm5uWWzHk5BruVI9k5A/E+ZLeU32yImcFAEdhyn7+Pv13SAtXJb718KExCPZCiVR7Y+llDyq5dF3WR3LRLWqnF5zaZn1lcKmzT7RS4LILnOz3XbERxlOFLhjoV8yjlYqXXi1jghrvEW2NtxH4XZEYeSEjCd3OajrHoKhmZA15GSmaweBShGJ/bvN2xU0Bg0jyLaBkd85o0CFqGaoojmPx3NpQuWFAGGcM8vkn5m4IRpWizPAWcfXQNarDrtiCouanKyelqNpvrCpGjjTLBtcnm2FrqiTRVxJYSnSkj3d7B4R1ixk2ICPsE7ZSzl7Jvw6DaTjjuebW0N6utGM7ZYfHWmEDjT0SSAcv5kjM5NYFwHAV/RsgOW0Tn2OQ1/8c8ATY/m0Dcc4n2wYIAc+1RJ3KWJAMGAtYyNN5i4u2Ff/uIUK1KFajnLJqfCDho4GrKfRzfRuBazFWntiK1vdqNkdv646+ESm83/ZDFYduXyK2PfpMxC/EPAfbqeRjz7nuOUD56PTz7LJ8AZczqZVd9764H6kSexD+8p5vFbfAoNkMTJGPfHXSoBt8nQSqXzQDn5RZds6w3w/m3zajs1xK7UfB/ZaDdWyWw7tkJkHlfPtw242rb/LvLBBhgUiMy/UyurW5bR1MrOAMV9gxiSv3pTpYyPRfnhzL9eOD604SgOmzZgTOwlPcK5uZeGengbLySn7MvUq097UssKGejuQTACpQYzUKUdJqTFpWYHBJkPvCu5FnJ/BfB6jFIv1FFMYtt3PBScqeDolVc+elTEkhodF3V1Gh8vTBXkuUUITJek7yXOwG/zwXo4WRFCY96la2ct4WWdk2XjYCbsEsIAhCSu5Kjo6nLl4kgFpenokMHMiSkGznU5nobDuxCAUNIQ+1edYmSgn+T+Bf5ADA7ovW0I6vF0qEctPNjrvW3IqyZf36AgM7YOb8/7MLU0hL89EF/o4WRw2PEWC9zGUWM5GwZFD/7n50dtqWN+7u+av90D4Yn1giXbPoZ7tACOdzK5gO6vwGI0uS5pYM4uk7RTahRoWXym09W/3j2CpDS/W1F565pmxqVJ49BKzt3nXIVzcFe8FXNoX9HUgTyPoDlr3bk5s8iuDFVqSuO3jKpcXSnrFqr1plysMCpeWEeOI3IolUAOcj5D/+slEc/2uPoblRFEI3AwrYMWa6uZgavUg/Y1Xp9Q86u1gVc1rRIUbkLWFmA1oLizHZYfgySYcxiRfK2XuakAYms3JtTE+wCdrs=
Variant 5 DifficultyLevel 675
Question
The octagon below is divided into identical squares and identical triangles.
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 1792 cm2 ^2 2 .
What is the side length of each square?
Worked Solution
Area of octagon in squares
= 28 squares
= 1792 ÷ 28
= 64 cm2 ^2 2
∴ \therefore ∴ Side length of each square
= 64 \sqrt{64} 6 4
= 8 cm
Question Type Answer Box
Variables Variable name Variable value question The octagon below is divided into identical squares and identical triangles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-E4-NC29-SA_v5.svg 300 indent3 vpad
The area of the octagon is a multiple of the area of one of the squares.
The area of the octagon is 1792 cm$^2$.
What is the side length of each square?
workedSolution sm_nogap Area of octagon in squares
>> = 28 squares
sm_nogap Area of 1 square
>> = 1792 ÷ 28
>> = 64 cm$^2$
sm_nogap $\therefore$ Side length of each square
>>= $\sqrt{64}$
>>= {{{correctAnswer0}}} {{{suffix0}}}
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 8