30145
Question
{{name}} designs {{object}} ramps. A plan of {{gender}} latest design is shown below.
{{image}}
The size of the ramp angle maked α° is closest to
Worked Solution
U2FsdGVkX18P+zI8GZuLE7EtSIHDAlFnXdWcE9xRHG9X2GzoRVNXHUhE0Occ7m1Kc/EAH875ryzjwN793tuszyUCuqpqK3Pu1/P4yx5irct6uCZr8TyLFc/FNdlj04dMrt3ZdI1EiRzImuX1KtJG+x+2RuYXhswQ0S2aePDYjBlj/3jOoir/4arxVasxQZR0KnJiRxzBAtCn+lMdDEzw5b4AvmckeKwsKYmOsM8qVHRRCSUzabcSX0NDRHhYMsBH6DpPQhrXNhliBt0WvxFp2e/6h9r83I8NLe0n0yCy6UtLxgWnnaUT27twUSIOmIxcytEVZVz9dJNvdPeZDyqgHPrSKhFMhbzWBY36vyyq1eXqY3KE1OarZUpPdnwDyVer5+5L/3VxObVDfPP/cDn/DZ1rk1ID/K1ZRzoYo1cEbS/4p0I6eq132vLLlUMPoRRgU5s96JzSmdYSXGntgfxxfwkDAZXrKghXbcSFmyguMbmgx3QSv9X4Aiar/vPvAz+RXmsFwW9WkUqaJi/gFiDhxI6n/7BezHa0Dpo50L63sZ5Nzlx+FUDLDZ0WqB0LxVZWtg013w17DubpB8SZd/uP7ZfXH0YzhjFlP8fH3FAqWynhJw5uR/px8lCoeZFLFdLsdAmfg7w+9A/XhWcSRlG4IPTBtbkyDxUJhoNVYbRRZTMCjfMb7VCB48rFTP4Ip239rpB9GKPVTjqJ2JZPi+Ce4xyCioqlQaGp9skhJqaTfmRUmQ7J1QWBkt+l2P2NT8p0ureTTjom42JZeRukFVevERGb/rsCQbuIJpD+pfh4t5uAqJkiTloc7tombzf0FVJETSYh8JUOt2xkuEMW32ONv9u/gdk/SKtNUX75/rADAu0CQvKhlbF2HGYkcAEgd41H7fZW/3GzZt8hKg3uNJcZ72ziKEi12GBQxQWcWrdm3BsUxz3RK3swIbIF+mtoTMbACcog0Lbwg3eRrscdx7MsCDuusCSvEHuAX0HZKkiu9z7hmm4bmM08zUcw6s420Rcol0Ttj3ifQW3dJrU239mRpRuYCxg3hIL/fXB64rdfkE1ZkABCZ3mvC/9W7vP1p1CcWcM655OvuRJEomCupbLLBVVOf6GimtwpTq8P87YkTOFICrYBlAnDtKdW7m3NimCberaTzaQTEgmA7d78T4bQm7Cx83vLYFkWOYSPizx+zzY03odS43BhFF65h+fP4RWBtIJqL2i/yc8+t9Z5ooX4++UqM2nqqQVvsppmr51i/lhPmhi9nj7wy+MGC1BOPHL+UEqWo12950vOSy7/WbOF3GnRH0neqmnn3VSWK80CZRgr5xd4dbIfyOa+g85kDTq3ch+p5hWQ11WxBmI954nDdbQi5PXd8P2nMOa3zFoe6KpCXCWlF5EZ+qWlSa9ejLTR+jJRrBqsNDRqL1liGQKmlqbJTinOAxwUCRxFdWuo21TrPz+JVVoyj2ZR4j4wwr90RT0LP2x/btwqCWFgN4KjfqWZET1yDpgq1gGQUz6kUgV278KPE1x+Y6MNPO+Ho2fo54WNGLgvKKazaCtJKTZ1X6sQL2DP4OONcNAiaGMQhkWgt6FfPymXs/rOdD+uGQ4HQc5Vy63VDWjCZR/5v7w3tFxbRF4jB2oDos/uSckeIroE/MoRUlmPb8hUQ5RPG7pKSgIyDPg2OtYYhwXOd9XCcDbj9taEx/taJ5orMmHDwAUriPsD1ov1G4QRSOiNx5vR21r2mKcsAeaJpBkUxdIpnciP1nqyFKahSQRz1WZP+T7x3Zwg8T2yq3ddXuzfxRO/h2d6SXVOv8hVv0qJV3+nFjKa6CYsjHJWvdfRCptZdkrldvQYsU1uoa7UMgOX/IBg2JzWmPqg9tbmIZvgu0T/UnwcbBk+Qd1m0IXV/YxCjBXVQBuoR45uoalZvvx7cFizeKRKHEyYBL+WApBP+F/IuE16NtOXg5ZL5kTXizVWf3hV0/l7H+nVUPYKafEc5WxcuP/Df88QOItJ7iFVonpfJG6Q2CCmrH8KxL8Vc9a2BrJBIZHxnrT5VBM8tADdKTibg1xYWsbox8WVbUKJvekP8rjF6St1admQXB4V6Vf6ittLJDK+vGlj7LvNRsLKGeC//uDzCy4F+lz27iM6W5jdZ+0h7ctE3Fr6bjd7u51cgq2kP4rIK8AoSF01tB7fy8iGT3S7yWc1bX0ePVz/KWYBck/CvAHGdsdBNWQjR1i2VX3JDPrXNoJu3mnn3sQa1ZtSr/CbcSUBBOgn/6V/IU6ecBJXuwSVQhOYffIieuRKwwu5fXQ4/ZYWo+VNAmMG7xLwbFA3RVb404nfGkq6HVntrqXMn5QTC59J6oCnqRqAopal483VaCJpJCPtzpZ0SKRLo0vwX0hgZ29w01GiSw+QX4JqMCAF6ugqbLipNALbne1xwV+JavD6kU4xwDJXSZDl98ttw3KfbZb+Wl/QOerc5LkCx/ub3WotOua5whdikHlGgaH2oyPO8Se0sM5iUPHAto2h+xNx4SOQZx5DjLW7Aw5a70whoLdk3fc5KPJbt+BTGXxaoCrks7pjemyHEzcA/IDQbr2LResakxKB7XQuZCNWY+Zu88J4FJQa+O0ZGQaLuvJPWBQ+i6DHPV898H5Mxkl6DHoK9VoNaGnU0zv+Ftd5DdZC0FRnZaIGBNhHEhZYotfGz3fHy8Cab725Uv1d3dPB74fBZDC2JS7vp/YM5HNh6l8z73jvSzyy2rVpJ86uT+mOkyBVtr5EsB2Zp08yPwrfVEUcTeeQwXIX8HeLSfqnQh774QTTZqLzAO47mbqib7aSefY0JzVGuOARaHGg/o9W2u6vBNdP3SpPg9rKQLxdawEeGuFZotR9U6EuRRC57oE3tSpbQmtmWGkDf0WMs3hrTnTJcJ0vOzjmb1KIHPqHXRwbBJE9s5eU6KxtgznJoH2tIha3Vn63sTH5jKMlNP3IPez9SiSx3LlLXz7ovGumaUfKIHYQbF+ai1L6BAvauE+xMK3Vb0nhHOoltdawljTs2lvqD7SguWKqa0Cgb4BYtMG6e2ACqQrBuDD5KIb3Umad66Dc6jK/MnQXKa0wDjhpDM68iPCTsUByOlNj9N3YYKjKsQYNtj55SDSfn7L8JsC/2V/4fGgM23BsG21tmb52SBYhGOXgkzqjMB/60wplMN/dyKpzIOn8addGaBfOkcMR0DjoYPpHrC90+rhwB8HBvYWop7MeVv04omHIVZR1UqIxlGngz/70ENSYjWGUsPOAGsAcecNJUkz4jIezmVx+KzopSyFJpgvops7a7iXWB3zixhDurWzdt4pexS4rDnYQhau8cUScsqmqxxUTIZ6wku+A2BJDOwrBVmNkaSLLrrd3tpPgeSC3szvpjDJqPxDhLHzSEwwDIXq1S4WZClvdFhYP/ndE+tqzVM6htPwCui+JoSFi0DXj9SqUpyIuJQRpjp+1XKZfoRSnyk65BR2geuCcHhwNVOOxDthZh1ywvGEuM3IeiuZqjWgjqrxz8/Oc4M773Xlt26LLvWw1/bC1UY1sTCJE8UYa5JBrYEEVV/hf/roBB9IjCq78FWpNSgDTUkYpOZke5C5OKmgByQfjolbkkTLHqNVg9DfKyM3NxRqNpaSFK9V1TcAl+tHXnfccl+afOjwcnwAia1HAEGvczWd6yYYzXFGWUigLpJYDATd8AFi/mBx+Be3E0SGzQApVfHXKx/KyP7xIZU75D1tL66nXjutzlAUgmYYRHG6/lo7WcPgPpkbF6QKMPMy5qM0HzbEBlfq/VM4r8HIjoLLCgVpz2/R1+tjI7Umb9ajzwj6Z8qm9Fgg0qqBUQ9VbYWxTxIOPy1zNMBz+i7pidO1/fLtruDdj4v4EUUYRLhm24n136eTr15433oaTo+SkHUE5QMCMifvZuMsO4/EQH5uL1ynYiRzuqsUCneg+CckvGR7n9XTAQt5Fsdb6CuHvgPl4eKm/e579Spfb/geNN5JFguvejHVi/C0zRygGGM5YCLhrdHQLWLV/4kkO1NN4lNlog94HfaQHjKSiKCgK8E1T7BD/Q+PXy2boapK+teYUvYTb1ioK+0N6AcKFU991B5ECB2RcXfXB96HQ1hnsPzbvNO8Ua5rJHEmg/bNixrGswuZY4WG0KI7cYf1XFZAtwZ9OlBGysUFyVtinmmb0+PPY1GEbeLp2JPk8+Li+5ZK0iK+lnboioPg/y35y8wYdMA7ap06UkH+lZSJYJ1cGgJ15aT4UDeBBBbhAkBPFJvd1xiG4iDjmhg5vrZ2/J7s1PolybVPfzHwg5UBKOxv7rtIy9D5rj8XzCQ1yq8/ZMD1o1iB0QgSMXHDX0JeCkks1xlGFrUj9uAma5ysLcb+U151Mt+uzUbC3+1Mc3YoYUEzqGPhRCnGzF4IsApenY2ZxAH+Fqbl2mb67qt7mEgJ9mNnDoaLFc1qCQI/VnYN/15izJJ7k+z/q570ftwU6vfUbZosXym0fj96dCDGKCb9lfBvJbZVo9H7/zOPlnQhKxJaLHWcb0jJVt5DJN6g/t5wdoreuOFL3PWgaMPNdMidM5CcdgoLhBQHCRwg0X5nGO4eOEb4yK6WMtJjB17qLU/aJVaWpdNT4ZGTEDSXlIVQoOJNyzBds/r8v/5ridiEwM+nLONNX+0P56f1smEm0+Dq275ESLa/8BImQ2v9Y8rp+xLWqicKbfFYTQXg+SWAGI8dHjHqaFFoRv8kOjw/nmBIoeWh5zu9OawmDdML7PrP+nD1aOR8pV5W/qEkBopmjBKdZxuc5petx7RrNWxzKsQGmsmwRX5ZMzvCTSsUPhTuI60xV63Lr1nWn6VYvnjtNlh5eEZXMJxcKVq5/bBwcMMSjzqpNlVlnXX82d0iMUMqeFR5I2huwvZCo7o+PnXjS6KuQJqE1GRF2cV7mTymAU3sLd18jV2png5QhiMbbmZEwXtElndrEm2cpecSsssu2aKVrfknMGK8AP5b3sHISzDyRx8nTm3cFYsinn9BhXXg57rZ3JE4fYge9J7jJoBYtLE0lonh/l7hzb0F1tc/wl9cG92FNaiY90HC5+UpcaSBy4Cu9QlvCDML3gymWitog6HeRwB4JrnRanL0IsBTIiiRIK9//cQHRvSnsnYzkLeKgMvJAqBMQ49s7XwAa+KejwxCaV9Qe1okJObHaZa1eca+KLbdqWqvIk2W1/jjVVKnjrl3b47LmOQCp6YlJp0u0c+4q8VMcAP1ElxjSe4dUWGyqj37g4bAPre/vnGMi7pQa+FHQhzt61xFID/xZQMumy5vZi32uUPx21U+DlmQJFu2V4MHlYe+J+p8sBdVuwU+C1oTuPVGYFX5ouZX3CCHKWkkwBpQU2Iom2wXNE4JBlKyNGT4KUkma1zFLJdBjtt4EW5g/+C9+m8NaK0B9KcO8tjYVsYZuZJ82NqO1UIhBvNEruDobO+JJtqFtDF2S3zxVizrOThXCBpDAP3yvn5IyrA==
Variant 0
DifficultyLevel
525
Question
Sabre designs skateboard ramps. A plan of her latest design is shown below.
The size of the ramp angle maked α° is closest to
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
object | |
gender | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/q36variant1.svg 370 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX18ex//UupvnyikYlKgGe4a/iEJqJV4z9kot7EzGFPJ4ly+v0fvBLp9g1iXq3J/D91L5+3Dnu3UzyzfSsiDgBCPwqWTfkHYrNqRn+x1i7qU63dDY0+4i+kRJ5z52p+JZUzywII/sbNQhWaG5NRcHtBGSoEGFjeiErx9D9w4/XXe0CWMCsIlPXxt/r2EvpDwc5ZJEzCXkcbqkJmYRjPLukhmsxcFHeKoW3g1wseGamCz9f845FeGfTy7J4hFNU4gN6g6WUpHt/kpxUjpsRXwGvRTpfF7ZcjoHvkfWUd9zGQx6qGY1GpLQ9do4hst244vFWi/94ptAG64HOtO+3uU53lfPwaYFItIfwTknmA3iY+XBzAfX2hwM893PU94/dUqeHg7jlvRtZGSw3/L+vETJ6Pzx2ULzruuNv6fmvEXZNxncM6s+WqTmD6mXHDX6XN6oJGY0QM0MITGoeMJ/hzJyFVscOtt6fqVtvCdQkiwnt3WQex/eZus14ayTJrGK1QzykMKDOoW5UyEfBUORaxwz+RtwrHX8YeaCVnyx7dIPgsS9sNQU397YkiirvPJCkH+/c0YflQ1afeRTxXlUZP5nI95RYsWw8tf2/Y6MFlnA/grNsSvoi8FPyYseQeT4Qd4tRUI1SbNlxbdY86uwD9TLFdzyYmITr1oNJ8CT4KTgjXZGGVCJv3BypqA5NX46MlplqmGP5p87HXBoPa3Wxa6hAmBl+9v39Be2JTEz/L4RBuf6QvyctsD/k1fNW1525nP7JdHgz0bLSbLO7a/+yY/amDI6A+fFv1JxnKMuwoiQwbh104KPuhEtKXNEsq2ajrq9g1U0McZ2r/kwRwcAaIuNYI9l0bI7tYoJOlP74ArwFX6CWAWE2ehefPZ1ZVhJ+XzJ2wLOleGXqX8rjY4+YW9Sd4eo5hegC/2GV1YXP805rXasNX4jsP9CS5iQU0+iHB5TF7yiUg92cca+Vz8277D6/9HlMCgNEp6WPLIixZem5xT2zX6gOzhJfDMTNde8fnaC7V0PeeG11DIag7RceCiirZtA9c4CqCoBaDMMH/W385gPUM8d/t61IXsXeTHxHFLboHVkzDzXzOLLN3mrm8NN5kD7LDOx9O6n8mNn4U91Q/sTjkfARDca3+5ill4C16E5lVRXWQCPJQvLAvyH4seji1ecS4kUXM3fxa5uKcsV+CtXd4gKTOK5njKGRLov1/bybwncMZ1flUxE/6Lkse1C1VF5aNUxIv2W3CDRrG+PoTgGkO0xlPFP2KXhEFeH52TsvRLE7fNfca4ST2XRVWLT/aoysgHN/FrMMUfb25f07s+jFiLtLyaFT5g7G6N9O+1BbImKcM1Lifh/ez/vllz2Aqt4aWDTHkLjV/QXQb7xFNb6JcHzf6sRq2MmNBdDZdSFEC3b1KJaUk+RKGzrjm7upoIdldfUQaWmIhmAqNdOnwbLVOg2s+KYhsqhwUBnPbPlKkp01tbBNf7BA+AE86imlmlw2SBHd4SZ33xs/xFdTMsb/9amYtj1GwhKUUF4hxc6ZJHaVQt4GZo+Tyr424Qb+L05qZ1tQPr/Ln4ajEAGw6Y6pM+WEmnC8chcOGFen3PLyVdTmGMqlH7OOA7TYIYy3bPbx2hhGBc+jjh5jf+FPiPcEagaTdjLpRa/8uRSzyN7lzunAmA98WY7vfOzoKKUlpeJlPc99Y43jBqGKQQro4IiTaVDKp62sl53ziFe87+bfoxGRdi6D8PDCOlEl673KWjIkt0L0RvGaTdxpJEnU3I4g4Hw+Sk+PlyPIu8P4wSMzhO9IsFgv59yHV/DHGXTgU9GtJ0XZoOKktuKx/Aty/fpjlch7X1rux/kzlU7IHNVqW2vpcvbm2/T62mmgflpwiYDB1j/PPZPeugWawrj6GuBmj0mQPtRJyqhhwf1RfqKnms8G+M83wI/0zpklTpfIsZOQSguMjxrvwdHqnUIk/QwNGbUs+OWZgWbY4pKLvqSWeu1bIhL1MGSmwRYj10zSyeQB2P08+4oKB7i24OPs+Arq4WiYGEWW7P4aGjs12uZByB1m5By0SZh06kGOxJzydEtSpQhzrx1aAP0JTc0EY2gcgC4wfYT29V2jZ6bPJpUNbM57+cjJj/qrTXx6GwQGlEclnuvcyMgYm2Lg8u3Z5p1loQUBR0qUKoy03RD9IGvOmsI+CotfrIwclmP1gukwIcYwqNnousqqLSndcmoFuJTiD48Lv4/PTdNhko8CtEsYC4vU3qr+Jio0HsJf7PxXCCdFMx5SIFE24bJgoL39YSHBguEgr8CnW670KGm60MXL4E3jMYBxzugaH13UIMgjlC3C2cUnu6Amuu8XJ0YlWweMCL42ot67ixdFP7JJYk5iOlUtZd0zCKmUq/1yaZrjagrmTaLi5cTdlpTz/VrbnUp0ijDAS/dJ04L+Hr0lKiz6lQ+P1U7oOocgIByGTaHaFURzRU3kwpeW5NovLIh8PsLI4Ub/EnHWvLgDQV64tVTpLh06vY6G+MaLJMNuUmx9Zbfdg0nQMJdUqWFPc/6vAzdlTKKZfSqLE7ETsVRawm8UZTN/i4hmEaP2QIDnGoW4S4UlxYoCEoEekltbm865C17Hr2XDg26YhTS65zTOlKI4nHRXAQTkFtXvR/QWacAkRnNthB91SQiLNIDSnd7znp/pS8iWjs281ogofBFh8r0vsLlVZaGy5amC3df2X38AvGNU+2grbSb9jl63IB7OZit8wirZuly9DgkpUaJ6pDs4ATu/qvUgwkODNzkaOgKETqx409MFfUNr+ttqjpY/DFDktg+Tg2KTnvxRFAM0g44KoKOt0u5ZePXbWl+L00RZ4C6bpKRhqqw0yKM8G2j7GvzxJXbhw1vg+MLL1666oJuLdqBU+OULk9aSZXXTc00PvGiOeXAMzRGP5PuFhE77FP5kvp39xwlazU4PDazqK2Qp8gkcTbPC0hcWbxnj+Az2eO83xrD/lTfQ2wA1ir34yzBf0+hvi2PDQgsT9HY0GT8YiRY2loYG0x+juzwnHNftvLz7leLp+lSvFxBJONz+YGnrrza9BtwfPoRPrkZciR+WuRqPKEHF8lqdDYf5qC6aMksYp4S2a91TcZq+eS7CflQoio1gEa6yEVIWHdlTdpFrXszfAYQbETPFhGbytxfvlJtGhC9QWsEA3s/8fHMtGUWoB0GKJuyiCCi3TLScu6mUjhu5QwDI83uY0pIXqdKo6TCWGzzY+iUvXWOZSzNbCGgEjI5Y1eB3bhG+jdOPvLoex2KQ+BBF1Hs0uGrGRC6B35hsLoNy0c4dK8QmAAw3ThY9ATXkqTCH31qInZfzig7puw9IhW5Yj6YdhpToH597xCSvv3MXfE6fD1RlZrkKlb065WfRjohIZC6UARV72+A6i87OUuJKhNBq0lM0GMecEhHXLnXRJA3T4KF2bo/AcW/XQ4FhwJ418KOEcmkv+Squcn8knoMM+QBYrIY5njsT6Et+KdBFOuk5aj9DmIW0LQ3eh6l9EvxcMJ2KavGZBPbq24xVrH6IuhtOPpXcj+WRsj0aMRclZ6XrvcovvlAqKKEbg7TUwCDZNyf0q6J984cdKn5aMwKp0EpC9FBgtotcdY82HBXbqQr3XfGEvXqRFjTBB++lpKao3U1+WBSMGJKIrpDLLABKgZ2Fr1hxoHpbf+xJJnciyb5WHx4mrpqZ2MtUfwugmrb9eKA014Fr0ld/ErOKIV8ILUXQDTwTk2pphFSZxJaAJgXCpcJw4ctwXH87t5b3+osem6zLmsUO30EsXYJud+Ruv/4r5U4nOxQDLYtXrIDrKpWvGwkW5HscmrcSufMl2obkUG7PBVIIvJG/KSWXpuhlTu/zi9ahCPbQdhoyNFTsy+tzBrs3wxN0dlsuymkAE3abLbcwIFElwUFBsNPIQy5UkOtLe2gIbOJB0mt2TghrkGnWGY/4n8a51zLaDJN11AT99379b9U7BIlTSJc62l6YHDDf8OPZzLNh7kPI+A9p98+6m8F1VdJ0kF4OADB4pU78kT3fwS5/CBReHAAumjmjjhKJJDZKdaKHGvab5KUEcanQJ3izi3aNWL/4zzZtpLKjTLTNppD4x06RkyVwJHpQUaBG8zi0kc9YAsp6ON31Wx9McitBYhBntTPeL4v+etYtTV/KGNtTyEWZslLf9cf8k/bHvi0kNuGnCpgbJoWPoEaEcsiSIn4JAxiRbhlHm0aqXYLr76vSEmWHGyUQndDz5O7jRirD+6ymzJBozaMztkgIW12QvjkIlXy+wb/wl9PZ1zKtvLtX2R/zFHBF5JhoDOj4LT2gF16bWXhCD7j33elKrqBHsHHecAx0rSahE9HJCp/dpTs4KqJM2HAUS2aurKy1UNRU3RlbKPu8dgq183XYMgXv5R+QsGhCB8lX01T9iEf7CQBrVzSRDHwypXaqt8TYDnOuwNufE5jNCARc9SeCAr1rFM3/ZDi2CHFeD/DUG95+D8hjIA4cORT1wCPHF/jM6AME23IcVKpF3gihkIvNdLJ7G0wpJITO9dRO1UgZcbHaWddLcsODOyrlJl771mLOHvyDkaqxOreWcF7nxW/xNZeBXvi/EHBGs9cv0CnP89m2f09MtzWOYx0mGWivtvz/0TFJ2MyKpIKgN+SVS/0EdpKJxluyj+tbulDXNA7eGwQzL4bvy5FsGS2c+hGtC5u+Fix/cvcmS4tJA4E517QZS1Je+PLX3c6BqhIvwDS/7qMvMjupJRgV+FppZwsXqtvqBwHAFH3mEYdV9LQf3BSIM+wnPGpOL6dLXGN3vHfPwuFmZ/htD9WJyIAyf7fy2bCyZuZo06EUiU53i3s2yEyS9KvPY2GN8QYJRDe/wqxBGYhp92YwFKBZNDRo0iijLpRDcM8cBGI4rvPwX0VYV1U+HIGuI4gRgyLeuofngqFzUyTucoNNJhOGm7Cuii06kLYiws+vGC+uaiBNM+CdUPaoecnJ5uWHTQA7kWYYBPP0PISoNGygvi1L0kW4B41Q/MDMCbQFoO34EI9nWV1XzLA1T7cmDEkloz5+/nEiuO5CzfqAMb3NmVXY0fTzm/cu5ifQUkngMTQUQPf+35YXt6NHpfdnmFSnhxiDjqdIKrtwcO8aL+mB/xjwWM+xdMpt9qa8xsA/2JS8+Qhs0A8kd2fOUi7Xg0fPNQW9NhSALWD4eyQrw3Qiegv43/rlCpNESm/Ie7lYzKIXF5w1ANX6DzG9CFYoMqrxCHXhti0JJjxHeeyYtf2ZCJQHo3LjM58/3d78G4nT0fEyV4UdvckcTyTmZvnGA00/kCVkh6FfU7Z3/ovEFluqSQq+/JK2cAqWCrGO3F9WOrt6KmdJwSfDIh0BdiMg1IwQ7WSYDt4wBTIZyAf7h5789aEpnRIk6C5prps7Kv0/F3P7N03JZ8VcoOuaZ4dn5vtHx22rinGwlkmvG0cQlr2NoKGVxpUPMNJdqp6Hw==
Variant 1
DifficultyLevel
527
Question
Poppy designs skateboard ramps. A plan of her latest design is shown below.
The size of the ramp angle maked α° is closest to
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
object | |
gender | |
image |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/q36variant2.svg 220 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1/FPff61z1zMHeXKrd5aevVjRLu3j+YP0EWpQjYOrFkynUzlkHsxwGw1sizo9KKYJdwqt7iA7lo2QS3GJE8gny94hUDIxESByhRo5w0oZgai74AxDCVYJmKnpW+ERBV8osLh2wwn/h6DmkP0qDt4xZRXjZzmX5bGqDPon8Aq4AndtiMEXdErNK7XdubQylfkNvhP2Hf2oqczYCehrO15pgIqbigMWktUboVCwf50OGQtuWc+EwXrp+Z8G0tZCcnD7UpetCuZj0JZm4u+ARhSNsLPLas4F93q3ClCqsVzIFY7evXVB9RffQZ0oFw7gKoWQ5mbhUyxBw9+Kp27fnaYdaQtr4I6sdKO4Qx+6yrfayPePGRW7J5QWVLMyRcMZCgoEc7h35eGvOg6/b4z6vh8WIL6Zq/iMrubiQgbe1vjI0tceSbrda2v0lHXG3q0ic6KhpwyeKSivSDoa1idoQ0VBPpBJxFENHgOdu5wKIHmvCBu9pFMznLXGw9K9q1nbg5+ke0rf1K47QDyFGj+imVZ9lnmJGaokNC7GDjcFpeZePXqGCW86q/rzr4AJYvwtNYHcWtQs3mjep50H3avMLWa4Cm+NcCA4ZrymTpG1xtP/miC0DeLLcLWPY3UkbDFFH+XAEeLfvT2Q9acVLgeAXLXyUEsZ3uX7c0ig0DXd9hs0VwvQ8x0DBCne1T9BKGZI3xO5/EM5X9yOOYfyJUjNmKrIHmgPMJADJ++yEh7TjE42z3NfwdfZJNUhVpbBaz0YgtluhtvMITN7QICcGgsLM6TnwTmqXZlrApVB4ND6drInyWOAsuzATdpkq3rMXdg7a+B7CB4Yc9x19svE55Cw/UJxmuzySYpsQOq+SFoyGeTmTKiOXc31rMQxE0npONsm60iDJgMqgWevC+9brFacxSGop3omzctqCKgzhrKmC/Tv8B6wLNC8xaatgd3rZzv8MBCJTWHXQbNPK8i9MtfPVbspMtNM3N3H+X3GQmB7/TIItJrrZ+u995ySUD48Lz8wkdOgUt5qzJZW+jKYo/UvnVyrtdL7oui8UzEqZ9cIzwOv6f0VcIZPFax2bQ8sPe5nFYfGQsdP2yvUET5JJAHYbipm4QLEgoO8cED0ZEw5kYAUYCtACzwyNWf4FaaYfWVx8DoofbbPB7QwR/7QZu0HjDlRhCK8ENEEOCi8IeXfRZBvIKwULcJHZo2WqpYCSIOIen7vEqyxOPk9GSlQg2ugXZgWxfEmLk7z7uumDWmUS+1GXeQ1Iar1CXFXIdjbaJ9CuSrHHRavY9BK8tENRnzcaAsQR7yipW1/o36cArKblcSjLM9x3XTTmHoQrU/si/XjzFl64Pq+M0AjGplihvoaOSzu0x64SEKwJ1pbSOdHmNJhy6KizeK+XNazoGGqrRSYPzdL42zULZOhzQCxYbI9zNJNnf++6vNING+PyXB9oKhLpY3i3jpJYRNmyOLzXCybp+AdGc/U7l7/N5JT0kWmbRXS+Gy57Jx+zwksT0zr9RWnaTUNmfQVesSsKoDGKAhw8VbvJrbEvosxQ1l1bOurGQthEAgmi+soodf1wxRdwy1532g4C9R1Y2lQb8JTQ3AeFUvScarFWZwbDFR+jzd97ty2WxU5vDWNTwa6xvjNeH/Tq51hmY2PmQYxLLuFoVgaHcSsg+eJKJBs4NwkLpOUtXZuRZ6xVhlpuXSkw0ap+ysWysEwc1kgrSbbapJC+v+RFvh8+1y8FOCTB3xXOoh3mz8WMgnCQObjLVzR0TH6tkSWnBAdWcVUVV40nh6ob5uDpJfq22UsrvketoFUqnRTQR2RvK2AYUs+VAeXFrr0apR/UdY5w9JWMuf9x3k8tRt8JYixQvk/QMFARyZ6c29kwPLREu/XCBATZVlSiBR7P18k9609BU1ZwoikdWCfRIHdQ7t7DGRG0ONF9VxCefXTXA98AbvPD2A488TvIm2tgMgxeQommbRyOPCGVFDyIKaf8jJwtMgciGvqCyAwdnP/hCNJTO7DhIRkKsUzkmDvDyna7fpMs0FBR1wNiKAR3+IFuGdwPLQ0eHrIuTK3gPLaMRdx4eRyw214FWCJZj4syvwMOkoXAelFdlt0Th0fbwBW+7xQ/cnEjM0jxXwwyz41HJglf5vlh9kiSSfOowF/hoz2TgLFtkjhtLEyxPRIfShWWNuptfMC9iLyJJhPviqYC/uwtGWdyxRJM9WgybMq16Ye8Cwjpb48Zmy638OC1+W3abEo7W4TKGcFLe4vYbWnGNiSinTO7YH/aweG01WfmVNfjO5/oChJ/e6dwJR8jzSwvkAn4Ju7hSoYn9akpfoA6/FlxNHa0tDoqGQEZPlXe+BYgnelAI0QlZ776Vakz7PfPsXnPej6lRhlq0xiAsZr9cICCHBOX7+T2TDRCPs8t9gSJZ1ae6iLMSh77+rgugEVcktrsaplD69a48UJf8OhL+A4mFEzkzxx1fAwRPOWrLZON+lAwT60qDSZGE3/DQlTkvoCefnKFm++MQ44cvZbKNzpFyrt0hSgWjho3qB7Y/x/zw4k4tKWEeoYYDC4RGhG2a/Te82bSTkX7ptRBYKjb8xALpOWaoQr7pHcB08tQd59m9/xQprjGYZZxJR7NT2AOn51Y1/SBBJUlteZgAfJ/X+YFmzmbyL8yT8nUoC8H5A4DiHAcb3D0aMAEMqdicHcYMKe9AF5BUUKluSPgaR3az6FUzwPYFY3n7hx3MosXJqiJa0CsAWvPnBYHnlh4N5HvsMccHJxUJpnmlHKLc45JJOCWsPI3V5dFbgjjejf2PmA513a5XW4CNgurZrHZmyrZ4SPnwo9lYQSsecN7iecSvCVMAD01/EfECIRRChXiir/fbM7cceB+iZ0+F3wNWLFRPfJsS7wnnsLGBnk6AJQhXEoWzpOUtu+hRc9Z+EBnS7VlNbEEoK30hLQvcHajpQztbtoeh6ce7xydtFXrctPw8F5oLWhxJr0nBEJvg9QbHHu459ZqrDM55vOkSh0panfwCYg8ZZCQyXDzyAOL1a0h5o4nAMoskrfRzTaPvm5rbDJ6uhqZPKRV+O0AbK4s89vhgGqpbRjIbjcaZqilFfVjLJ/JTZLQM6hRYdBv1BLGYXBhjdWeNzZiCoJ3NV6yR96vQc0chgPkdQXcBkHuwD5he/kr4veMCJ3oD7pHnMvI7bQspW5dTPPmRo5US9RnIdoVZY0dnVHjUzFP43oiWh6Gvo3+8CTNGkdQdYVoMcIyt2q7ipVoJ5xVpxeBXhIkpGtwV5wGlMcFB3WTSL9VLtIv2idVnAl5gtHY/Uwn0aM8S/NCTYb0OSFbZ1VjdZSj4v0dWincxoTPK+HcoPy1cOGquaNm8fFDHYC9NzeThF/UjIMFlK+xGqtHyvklqxIKxiQIcKZIz0KXuQhmbGjD9rtLvu976AfquiskkNrSTyam3bzidq+1pRq0nrYp54ibtDvsi8EmvMVeHjXyrEOLIK2TB06zRaIisslYwdfqQ70YO+uw3pr0O40AC4gBTWJdAuPpNVUpUYe4sEu0IT8QglBHKfAEF5nLq8ahoDhaYhJEPj3VRYrkLsET7Bsediot1TZRlzGPrRu9u1ndkONmDa8FNR9D961TG+w8uqvavTEdJKEjCFJb7Dx0a9ooYIa6BSG6uOVmj/lyAmvngIPBB2U1MvD5Tx935uyBwUaYvghDZ8rE6/a9zIpIZskWoMeiS95IPlNrNKspbHJ3hVBU+zzXJf3RqOr94kozYjSygTgLyoTzwupCknVd8FwGqko6Bbr8xh9Fh5VbAXoZr84wyTEW7nmewptRVIYZ8imgfXnUWotHDnBD0AxyqPyHza30OcODD+ntjWDYH/NMUIEZzPj4yUujgwJMAv3yjHjEipV98C7IXWi6+6+FuIJ4EGJlZBtcmRNYjmGO0ZdslLkcjgV25IolH7rMCcn1C33cHrlS3tpivIf3Mp7cs2iXXeDpBnItr/f+HLp+6aFMmO3oz5euXjechKloGVL/plrs2gt63wz4s326GZGZTP28/zMc/J/5Dk4GYW372RawS874Y/U/Vz55Wo4rVavEuMw6X05JnRDJq1dfOwUPB1aR/f4eTE3mFdQM3iTEdMoTdX2TUzZdIGDtLA71H9M+1TVcdNceAkrgRXMFIvUS5HUQTGu/Io+9ySLm3iB6UvJ/RJJBJqzZB+WV7d1GTMp3jh108UrqROc95ABPxT0/1lMaLHS83FNBCiBUAABVKtCdUJhbKelxizbzUTl1bU7mcTMVZjrCuZVl5h91EzwHZtbCveIpafAcSBHgAKQ/V/0kwomYQeEkfH0LBaV8Tl+tUWFqHsSmUpV/EIQu1JD0GR8lB7lx7+RytgQAiweXesalYLP7VfKpqS3b39VbRRlXZi0cvmu2wh84T0u/N3u5AtvgqNum0/jyW1HIh75t1c7GtS+FCCmfobcsUQJspvM5vJhdm35Dyk28nPrig7/hT9eqlw7g4z4cXCI2n5tsIJNgXJVIx5LkE6MjV+QTvyX8QwxXx8asidT+6MIgNKKspcQesW7NKcQ4icHBwoOCe+9oDPllNIX/SapL6jgt32108KwYh71YTcCHvio8Ireg+jB9jLleeC3xF2e2dhn8Yf63TRRUXQ7pOUeCAB7qvVzvJq5PT4ErGumWCgFYG2y5mlM2yuU7rgI4lH9Tx7ujlaMLbTvH/L/0TH5hiDmo64FGJTTXMXPBuLxNPYnTOyJrWIav9QVaOvG28S6ilbysE8pGfiCKAZMNVeECqXABl5pxyqJvWNZMv3jmO4W3E6ZD8hXWvkxWCXJcK5p8OelXuVD6N/Tp9FR36kTPDpI0V0TkNLvrzM2B7skV5EB1MhkEa+2OnGGdDjiTCHL+qd6c+U1QExUea+bzRcJVoEfC/+I9s9s1PhVochlrvh01f3XMiJlYbzNeWlhfebx4CpUDWBUGWlAL0ZP9uGiDvdw8S16N4XxdzwMW2Vr8y7esDoNvrxw5hzicyOOh1eFiZGnJOpavLFp+ahlXqaxWcS6OkJkoK9e2dGA+u6p3f7xtcgCm6YwGgfBBhBHTDZAtk5sUb7HptgvoreELscXx7Y+Ou/Z2MP0WpuO4jegSwa+L261j3P4vr979d6LiYdPwMFmmEEuEpge/w+dOEDiQY0GaVb2MbKz8OrubdynaF2ctSHaoEuIZC04M8aK2kgzqFcuWSW7NYGBPCwHnlqXZBHT0U8qVQxqGrvyrtrOuUYy9kNhvfOJPn699BMnKJwW8vF3pYUbW89kE/9U2lVLtI8VmpmoK3E+WKb8J5XxPXZaQNaNXFoUzpF6AiBFjdDj3as14SgLoZYu9TpXElN/2w1KB8Q7Cl9oRJ04ZG/B0I2hMZwlgyZ2MITsumPzws0QJi4qPNTJKGt3n2wK+OKFCdmwyCQp9VWza03r1uyl7l4KloHgrbaFoh5P95ZnDrEtHcmoNqnBiwkQ==
Variant 2
DifficultyLevel
528
Question
Aiden designs mountain bike ramps. A plan of his latest design is shown below.
The size of the ramp angle maked α° is closest to
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
object | |
gender | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/q36variant3.svg 220 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX18uEpPxsvbS+V4QA0qvaTM3aGkjC6O5zR08j2j2oVnX5XowRUCZP+0mJJw9guNNqJ+R+HAtgGnPzMTKvDLl8mC5h2KovPfYRUoNFzhQqE6Z/hygOybWBQJ/wu0U3B0bOUsNj0bpDoB80geoUOqVdB1U5LMIRf7Cd5tgWB81zzmw/wBw+A9q17wQKHN1PdRjtlF8NFAisbtaOTTgiFAse9jkwRje+jJLI49ruOWRybHwnNw52UZnivD2RK72/Pq2LrI9UMA6DRNn29pugGa3dUQz/LragczVGk7T3+khXy6+XYOp1sMv/okLAWK20NUd+R77sf5ANF7FKq2+ar4jrJlK9pCCQcZafc2TR9E+KMCGCL1HzmgFOXol3XX2shjOPCPs0zDNOM3ftUdj6W/mWptrBaU8lBcYS0dsOYN4f8c0/J/Nm9syOyG6M/Ko5G3JhTIC548f1TLumdwB2jGJqvg9SZuf4cdN05RLrrtiEUH8D6vkZho0bRxa8lJBvQwj21mTThNj//N1zS14e2gO6+18fwf6T44Vl/LVJNnEMOt/s8wLigFgBueC5tczeYXSxxssgngneLAWQupffptp+t/asAS0tkVzxxRCxBCCwoBDMEnkaxRMNvJZVGjh7sxVRJEBVHv/gLNpazjQWKxFnmHdq3ND5quvO6BpmgKNhIpL8udS3WmqfK2jzkcFC2Vdi6td9fStrJO46nLH+vXz5lk1eWsH9DMztvZXEB4Cx3hOREuiUhqC3NFEwIiqmwAIgjiyf7760GqqCxM/cOig9bx7nfIqSOKpBUcO7Xpi6ivybC/gYArriNJMjUwpbkT2QB4yInxEYa/qrBmMhNlKaFvXBIfuulaUVD3u4znX/uaUTZz7pBou2EOq7/Fc587+/jQhxIazBzgG+aHlLybnTvr+X52VcG/hHf1xfwoFM3fXTYosS7fsJujD2KoeDHFRQS9CF1nAUwKedh2+ZFT027Z8exT/A0pyXXvw9r6+ZkDTF7klXR5+/WkvDxxXeCFQUDLkl9MIMh/Hao18ZwGzF3a5lba6Aif2Cgg96e/7xsVj5qDEEQpJQForY3cA45I3HMgLe662QOUXtjF6qMnGVpYBNLbqx2Xi00gmkkhjOwlJrFJLZSTDthpKfPew7nszW8uvFtd2KPjkyfW/8tvIQW5xhR0rc7JD6nxZ6F5XeMG0cX34eoAL/7/1/e7MlL2jLzTHUWT43tTkwpepZ75qOI5Doi4m6F+YxNWgn2J4OwY37V31WxLx9T+Xr2DXS0oV+ITV+TufAbkT7Fp1RuqrMsZGGGGSzhcot9QX2iOSVLbhfmylFXW3F9xhyiHWWblI4wCO8RDJ4GQnsrDwgOUsfm15FQmQlvyfKEkecsFdmuzwhImd/Id3fb6e+OB+T+fCAbj2XUBkC0ZK/995rD6m5CorCTqWvGUWV8V/2ixpuarUTAMueNv7v6iY/F7Zf8LlGJTr6DOsR8/T7vw4yk5+msHdvHzXXGY8UtIO/PHgK5tE6WW5pJFK+yeFivIERtrL6bHFTO503SINI/ROo/oa5X5Tq/DeJLORSoO6sPwA04ct+Qg0z0vEmqGEXcsdfmZGlSfztfS76Ads8LWWfETAT7ThpCgpTIHLwfA0vnGhfYlBcubEG3qMQsaf3+7XaNqdpJQe8luaDDfAeHqwrI9VysrN8BeqG3JxtAgsf2kRH7lwW6wm1g23+5pplVJNGjFT2NcRKmJhfPs080+r2zbFjF71X7FxFdv6lKQLqxnRCEWX8PGgsGTlObkgf03zrysWDFpL7mwzi03vXSU9mgmdeFKyCy21ulFF7z3Esy3b9oJ7Se0d/68aqU1WV9jDFEPWKYBirRXjGyfWlsbbyThXXW+YTU7NjlLLtVEadXPOrzury1cPAwVTwYV4EC4G7/4FRsprd3HrZVhStdZ0J5/TMy3oyrMZ+la06qwOmMqwZQfHCqWjWNBo3FtkS6RGCyQn1QYsfJE/NAamgR9aILwFOdYmLxajF5sZSTKPbzBYl1aLO75BIz6Vpwh7mGtHQvdjgH1vve6WfipV2PgPmn+4DlwCDTc5FYq1lk08TjpC4LCXJRkLebjSzq8JfsEzwv/ijqzx7MjfA8SciZ9OeEbpKB3u4T6XoQknkNFm8yd4KTAtAzk5WZMvnMRn+yY1imeWNZzp1RD5s4P3Wu3kJuuHkm5zUbOcQP+ZCl97y0fJVLof0lZot788+iZN+AYFTXDP6bQ7fY0Lcp5XESgG55gL6WwAWMJxh8Zp4WcfwGmIKroxOtr4qKzi50C4gjqxD3v3ufm4EzJyPURlw3Ej0VHEj0Ek+spb9cNh6eL0SgDt9676LKUod4iZMI9V6fHz5k3KwE+F+aE/LRaXMZqK2BY/CKRamrkHetIOIuwj1Zzeh8ZPaF6gSUx3SKokyUAZFD5v1d8fKAWJH8Xre83GcfkOT3eZOvWmyjoHhd20WX6yIIWlCYZwQTgOpdYsff1AB6Pjnzai7/kSTIfOIlltmQOJmE091CdN6gvK0PwT6P7ZD7FZVRRcy4sOhEh+hMUI2WCC80ukFhTDDXX+NDh0qChaMFWKSzLJ8WukTlOHLDEgCFGAKhZrvQGFekRjYcmGIMI67dlQf7C+HvjC+sLTPKZSiqCMYn+8u3jEMuFuU80/dF4UOlsyHx6NgqUySeMx+oUqFZG1tsK7SpJj4uZfZQaG3/+T0JStVeuMRwqUWqdPYqU16ZO7q0JHIm04PsgNBJj1xh4dcb6nbfWidGmzmVPhb1ZpquzgqWErZtVclBTDnr+tlNcPmSh0fe/xS7aSSbxMT1n10n6PVYW5USbo//zGERYBqwRCJGp6h85nOfeolnI1Qp/v8RblzP4Nr9Qj/pqOvhJYcO+Vn5Nz0OceUNG1PosfgdxASRrF5J0/mUSzo5mZNcYnSg+1L6LXPuDCpcjYq/XvnBu2HmR3/oo4/IYi/aHc+vjF6PV5xoZYIu9M1sbPR5Kw9sN/IDmBONPcuxNiPpN1Q1yDfKhBI8IsyhyJw0e8y8Ngnt0IfPinslw6j8shUxCr1/HYNp+pDDH/uV8CzIBpki957hWnTx2Y+J7PllkLbJmmaFDF0JLM4GYaiJlK1J4d/4lIxcrMdTKRqhyE2Xu4E83f5a3IR8RF9efaW2hjh8n1aUVwv1vbC6djA3Ym9M2d17KlAqaII9R+IuGkwbZROakKPoBgyR4bSmF9xGdf9gP/xNB66j7xwrJSlD3XhTPsPUjjaLTWwVKFVAW9j2/uBhE+iLB8Qf4RTdBDktLHqMDgr7YmyikUT04nPc9b3sNn25d3S0HmTY/Gvb6VyZdxfQyPIMAFSWwPHR04cfsHOejLFIIUd7v4khJm+9h2rtyCuEUdVxhOnAmYsE2WfoqM7j/tEXTL654cAlHUvgRcKQ2J5yEwzMtn+sp7YKy4sDYPiFmU6NjTvVJ+qR3PdmZRAf8Yf3X7zvBkqLOyF1/2rb/zPbYNLx7qhZy3Emh9e6s9W0GFRdWiiGqdIKIPtYQX/Sqq17AFiL4KjODzezJSntxZmLsyF+xwKLjVlt3OBb4jYSd2kRsKvn6txLDR4HD3RhUdtfVL3P4N62t00dp+FX1gH7QzvBx64q5TE4BNZCxYrxsTfcYGq69A6/leSVybd8jyCuGFP8CFMce8ui2MBPecC7Hxo2wPDEzUTaUP/cbfgEWvQ3S/gj5hjChlFH0vq0tCHpb1+7vCVAE0Tm+VQDL9M4FHBNoTqfUvDFTIzFcBaPmssIQwTO+MEXPBBqH8EktKsn3EfI3m/YpF3n5Is9ZNGP7CkwuApuof52kdBXL2GfnYzE7P1FUCYlwMMTQ25ZnHtjC7jHaUnksS84CNsc7CrwuebBO0nJdXt8U1E+LQ043tlvABBrgxmz/ZKxdaeaWihkL7REIE6uTZ2oFdjT3+SMi8TMlXxpcF70Gb4nxHBmDPdXK2J4oowUSTAzmAjHGa8k6bPM+gOr8NFhbBnfePj6ELdEw6A/GPsgQZzRemGeWHzkK+XYb+KGVfsqG84LsigoAcrr6ivYW57gUB9dRgC8z9o8N9gazCNtNhhKCmh2RRcSRYPpdIZXcZbd8jItbM3uxH/W8Knq0sPsxYVWaVGCUQFg9q2AhlA7ZjEBdufioQ67QEPmsL5C9eAo26xXCsBAFxQhRluHE0lNg38G6nKmtddTH5MRD91JnST9T3yYxk29cb3bOiScR8t7zl4XRpQDfbetvQHJEly8xoZMsBtTwlHNQ3VLTnesOJfAbwo38SPK4ZVzqtKQPyce0JmBqEtDu/C5tqN1FTUfY4rQU0YCmvLU5jUASyU9m4XayX5hA2+oZH5BMFHi2MinNVF0E6DB8S0bDK9DwzHfdMzVch5gRSih0IszN0rjLNEpnovVppIrWvi+L5Wzb1N1iK/HacMzf6Up93Z2aeE7vILUfACH5UplfuW1/UFbgqrPZgvJg7OLgBNDtHNbFV0olCzgYf+gOJUiF/bUw2eOctjOjtfwXZ0/asQk9RfCbCapYLDHmKcI4oYLPNo7dUceBA7aql0Eqn0HVA3ISq9+66Q+qokUTqtiWDcCnGapAH5mUPzIyWSms3ONq5yhDbOpKDVvJr3UzNkOKwXOdK8bNvkhg4eBSx1+a/EHq+8cwUcYItMFrWsExVbcAoQJAVodJOqqdLYQ0XmRJKaihH571hoNNV8FsSJgjI2RugFzPyViLcXso8BKayo3InveQY6iQTfuSTgEc2VnXMG5vO9LDYCF1n0BW9mHI3IOIbsFqZOg9+8rVFLhD5mn4EX3SOEx3wFRf8SRUlA8dXR7xCGa6IZYidBz/mtZQ8xiaY+IR4wpgnPayUesjlhzcAZwt3lZcohzM1geFhkwCo7LpNBcNL8O+xM235GtGRPcp0iw1KAuMsdKCAWMGeR7zftLNEp/CN1uV8IvnwLiQch6iFyWzQAcIgTLqzmD3ph/fSG5QGWBQKi3G4M02HJHv0huVHk7lyRLH2mIPrW6b2cgjcVFCSyywbL+QPk5BgaQnzI5oqt4iIc89CiAn1AYmk4Xz8uyRcfKXCA0pgAOIwx9nlMy6IsbkLgh9LWvbQzPADkf9nX0mBsvYx8sv4IRFjcnpIQA0i6jyKBblUx2doLXd2/vU5Oscf6+HKVq6weeK4xanrHnqMB6GsKuJEfBj77XuPjN0b6HaYXFNnwNBnbrVCC+hUJCeVY5fgQRZl98FC58yvT/oheS8Bis+OKcW5nI/57UK5TyehIo/MNGv0vPkkLnZyJSnwsg3dUA/AfP0dr75PPIG3vnE6mh1hGL5t/YM/kV/TQYvYnXug4fBe+6aTsuIWHSrEXAtbAtdjE6XdGeMGHgRhBw8pW5Ixbj5lRTAfsfxuanEEVAGY92w9ECDr0DKCHojcJROPzUo4yabJlYJ6t/Mofo3H0hT3
Variant 3
DifficultyLevel
530
Question
Elijah designs ski ramps. A plan of his latest design is shown below.
The size of the ramp angle maked α° is closest to
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
object | |
gender | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/q36variant4.svg 360 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1/Zb64iXDwSaax3SDNg8P71TTXA2mV8VYnYHmC5TvfYTdQulyKX0sN1iUs3dV4gu+7tEQ7mWYDEDHiJ2UJ4URl6G+ElMgvMKMew2Eg7Byd/CYu9OMZm6SguIGAofGUrNCWqTfBM8vDh25dF08dtDwk9w7upjYngmVrBUgbGfncrbvWAuPUiQxR3HWk1FVrX2S0LYbdnHsGTaerYrY9PbgUq4UgNuqVB3sPROAn6brgUekc4LIII/ZLERUJd/zT7OSUQ1bcXIhDR8QM1LKxr0dr+6YHVH83Wf9xY2CunVVZDHxXz987vnjXWbsm6B+adftU82peb/1clCzawD9ymIV/lRx0HF0lR7jy0lZzNgXE+RZWg6sxFa0nzXLVMqcDThPRq5Q7iV8yIplWmiPa4Wz6UeDxxSvg6MvM1x6jbF2ak7I7kZ1QB9t9YaqOLKm2ld40DF1Y9YoUaT8CxX15RTRqAnhStqxGzRRDLSLTUtuLupyxw1OWNmBdLnSLDI58hQfkUVXLIkHavojEvAoQ0leZ468o+P2ClX44mg3E9E3WuYPYL+c4Y+RD70X378NWsT3L+DWKQFKA0jNOZf8fWd8l+gshXjkbDYvsar2IsD8cGee7YV1nDgC+zLQYPzulY0J7Arew8PwTX7V9JwWwZg+6aBwJa8zwkB+gi7Hw6mJRyq+WDJNAflEY+bmyjM+aMNY8m4k3cZco4MWR0UeVuggKtWKYObK85ntjJHO5MR7Sd5VLMvLA/4JSHJvk08rtiAJ+2k/TCeIdeMnTy3xkhz79KwHe9C2VDfNTTSIS/8iNLZOhOwCSyhhRqu6bnZWNMOqK8IV5RYFSolx1EaJou0lsWwL0kEZ+Y5rays3I6G/YpgllGb62PKahfj+Z9jzlCuuxgh/xe+z9u2LKzQTWq73q5ExkdBrgGZnbbqQinmNdYnEWL9i8YQn56oCxDOF1AoAQ/ZR1++Z0a2ZysVt/6nThyL6UQ2FKAcpRYUmx/mkK9huEwpkiGDgpZoaxMurp7vu9gbPwrbo+sR0IrGRjYTN5kjZQ5g/A76wOg7dCvjZw0dkll5ckYjCIzFz3flO3W8L87GxJ8npphOR/EtrVDsd45uz4Vz7CJJ3MTeIqIyb13y8P/ODEmwYOADIeZEQcuOV7zalLkyF6VDZn91eFVYC9Eo/Z/Kob9CwxIupzwxn2moM03XQASQi/WTblxKlKWInVkQ4tCYPtweiQCCp5jQp2uwRwP22xZ/M0jzWBsi1kbDebS4wAkq0eBO+peNXDpKwxaVu84dKChKGzgzvYxfH4JMmvZXGQn9iX2v6OhbzeAnniRMqcjzoQWgFPnrQzsW8NPXP1vdECJ4WbFdjwYncek5RP3RMPC9k0l/jylpFOPGuLu00HEwaM0oJkVBYvu5DZpXBugGJvpYyoJ93gw7PUdVf5AHXwnwKuSGJdhqFW1w8rMDbGfg8CESYq/EiOp6uIjdJ+MV4683pNwYUbrelW0660vlZsi1PtEN3BQp1dknsnhwojvGuq4ASeGK/Ie0GmwgX+Pp5mxZ3b3MsFN8/Lm1NOzMMg9E/rHgpiVSmZDZq7h3EfOv466N49kDyAzAcT1g19m3U6GfreRkaSgiFKSygaGLbkslx2eMS4vuxxpzYdjuZggugWvat5rx1QlBHaOEsKEyeqMWAISXeEIE7VzIaVMkYajxcz2SJO1qJjgNTLUT4MQSW8PPIkUpM3nT4r9F8k8/dqJiN/ZVhLEwYsEwkdYNk8vsfDkJHlFwY5TSWffI6LG2/GsplWilgBDH0fhJpvRSBLz1bOOZ1SuHWozPE7GzHwH2lBWL1sPJIe4klmt7fXVUUsk7DmzVpRNeRzWp/2OhIMORK9nG4BexERxmxoKC4woGhtGwpbD/beJdt2V49hLavqS9ujOh5btHnO8su4PWUKbQv4jFluKq33BGMVaKpo2rwRuSlPF7ZkM5lMrCtSHlYEy4u2wKpID5HhediCES5LxFfcWPOfs3TcZKFOIoxJGMej1cTByFJ7xcs7Q4nIGvIHGgvAdvuFc2ZhuBse9Q1NO47bbbF8GvTS+vASSyvNEzXZP6Gk7gw1P5fPfqALhCA7mnwfvCSkS6bUZ+P5OEvqlOkUJp1Rj/bEGdIszSCZa079Qg81zKmtXna3+Khh/eLSsAZNUxA4KThMO6T0QnHeAoIL/xoGfcIczps1og0/g8822Xzs8XRyfnCwklXn9DL+Q4d1Bz3OJQp/AESRGnYhAkHI2C7aH6R8GjcdlLfLNdokx8or0Fb4QddOm9gKIh5Thg7smOFQDcdg+BfTlUAkBq7vhVfgACK2iedcqfh+xpe8OmbQKvQDVwWKXt1biccwCuiZJUq1456vQ+UU6oxQTbBC1w2uBZt223a6ilgE1DDqG0Lvf9CzDDRA05URuzf/nWZwy+a9N2gFBDoGnz5ARKMYuRbMJJoxWOzeHCIlcjJDPbHdmYMllqZtL7NqU477Q4fRvJbtTugfkSPM25Kgmv61aIhSXUzUoN+fCrjqdhsRn/eMmE4zYqhdwcHmtOi6H/lUOGE34UhqTeWlHSHXoyKUszQyyW+roM4QjGIKwzvnhQOKEFzaZZ+HzQ1KPUaPTw1TBx1GS7zNFnQbDcbdV5tD+9Dl5SCXJCMIo6ZqlJC7/Vu+W5KF3E3dGA32W+SL9KEXWyOy92AT116uEU8gJu/+I41UGdP2gZD/xvNiD7A6bq8zPJBDYvX+jbHlUJuGp2Z2a230mbvtPF4u6GZzqYret+1bVIlAOkmxXRKW4FPXnVBdyDaf2hgJSoOMD/XlIeUSuAYTu6oRCEZOsocns33FGqYh+flZW3yzlvf52YUYlRasf8rt9bm4bL6pqn9gYn4AJys4Gx/7hVBrOFE9mkUpqrjGnpNQes0TkXRL8epNeiU7OU7J1aGKgGpSTlQ95c+Gm69abHhJzsTcqZfM3i/AHGzMvcok3xZrSbDjhbHsz/OgAs0RNUrN2asU3o6c98Myk02v9W8w4UGL2GiAd4DFXDNiScl7CRs4z7Vq1rOngNp60cw2ozRJgTNbPwa/YkM6LiR1W1MIgsKERiDpnWl5egXoXoU5eOUKVRn5X/w2mLptKgelkZ++2/DKPLFKaRsGiisPxftL/DW4x7dYKJs9a8mdjSFJdh+mZyKTPZ7bDX0wssFHrWq1xS7m9em/WH1ew2jBikngP2VhAtKKl0SVIXOY1z7Ua37Hoq+IDQIn7g4ABsgXuGp/bGhC9qavBdNFyR+RFx1L2POHBoAZcPo6+35i7G7ubxgdpF8pLvVKY6fWLDAm2Wi7yRnlrGK6yjnED6SHgfw1PiXqSWCaFaqA0/HVbutNRwlFPtaaXZ+W5R6xuhUfvxptXj/Va52yEGsaPGBQ+yKixPB/r8AxCRrWIFY0P9PuUtTCWPpEzhOeaVkr7FHe/DCj2mfnargjAWxf0ZT67ieOWsoQVo6dGWv0CK/mCtM3cj7zUSR+IL+jBRabBbEeVY0uXGlj/aW0OwVwag2KmhcThW+ksuK8eIyPPgJeANwIEt51Dxxk4PQgA7XVks+TQO8HcB3TML1RFWV7miDH7KOz7BIBKcEzT/ql8cQN0RrGGc9Tr1Uab5ewV+wqS2nmsr7OvRZX+k6uEKFGeW0jSx2QK9pKLgOSpIeo1921jtQR//0nm4cgaH7NHmABu5KuSeJnefhX8n5hAX8VBLQBJysB6esM2SEbE16JtuBGu+mcwDZqymR+5Fce5IdJkG1/9JRpP3rAI4a2E9i8usi8NSgwGZVRzgR4Z4DQgQPDxGlfv/oOejNgvqEFzYurJt2sZcc4hJdHeZyZDqvJfLGu1MBU5QN8+dDKyRMZOeQy4Dtu8ufQ1TksB+DWi+esRBA4dfH26jXekl0+idDTBG8zSEl0WAsb9/o+rxZo8JNsoBHwWXP5KrgET7nqwLDJexiPrNCmUDLT8sTMosY1zQbXpRujN37FJJCxgF2ZA+4V3KxT8w8FE9lVd/uDSMvUvMKmnVNjuaw0zkFhNsE2hnBXFZZe6jIfDNZXKYGRksILaECF5x5Dz7ueqfYNlqDZbbkCaYZt9GPKeuDjzZ2wgeezjzqU27vLBxwPODvXgssEbbJKhRZTH6X1xV4XkGmMefL0UX0q8BA0zoIW7c0KIUhroAvthz5yOPLYDq5hQy4QT9hi5ljmThC6ex2IYIa21Pk89yHPxNwQDc50IKOgUw9L69IqH/52moxeOHINRsplXdA3UGwcl0oUeaiihCAQ+OECt+3Tut2haXv7Q+ZDA8CcQTBaEN9zEa28J/YHIn4SlY+osTIcZMzmGb8TZEoAwNDAGgx8AKI4Evcx2u4ewPVPHtSg3ONZKNYFaR+wPWdXTdjSt8cabLvIt/vNxvcsVs8upLYzCKaNBM30QQCF2WiUFd7wKJxgH+ZSEeiPoaa0xmAtmCHtsE7cCZux6Uq4YMmx0vUgFkTsmEV1cpmqmfK0ibr37NFRsYR74aBRPxxxf17PIw2M/CFKCsQTW3CSjL3IwrfKKitKZ2nI2jsOKpxGhPQJ+Dj5GyDoxSSSiwbYAUOc2XHpkHcZX1kPPNK9IbT50NhlQlU6oQMdUCHJHm2fC2hxhXbr2Irp387ShKJgMxuHCR0VCp3vHsvCf8jZc1E2IASGBEyjYcXrVxE71q56wFChZYgZhPuIznjJbA+iX+7l5d1eS5qkgBH1ro6OaJcjU2Nr8QV6oQUp2FEe1Za3LwZOdd90TMnZ5IZrr6SFwWGSzz/hiKItXKM3mZkGMvsV93X0K5ZEFtc6cmlJozJoz1ssta/Jga+vD+hl/iLx6LRUC8pBlH8Scc+rWTQYTrcTpnGOILvCZbMFXkaxMAlFWJWnVdwAGXDvURzSZoQhii07MB3qAJh172Q2xs24Dq1c+uWUqZ7xS59zsSMkxBQKUgqPd8Jr1TciKYzZ5bh9u7VjzTVAFQhMd2N7HAJLIZb99TEohyuOVgTlWANNnfIsrKm7eGSLQUF11z9PsXjfknZDiZY2aXsgRCRlb++rMOuhz9DQ597DaUmRwh+juCv/gogS5P+q0GVsuncoJYGEG405H4+dfRUXqlUhZ6Jo4AaOvQqsY4pGQ9YHcJIzYF2jURnN+aAxp/vbqDve2XCeE+gUAG3ADcHJII88JJBkMe2CPdlIzAfHnwQA24hmMHwJ9g4SX+B2kYB2KEF2JTqRsb2ZcCvt/f7EbqQB7RFl8YlwfaIYB1O+/KmznTABVpQS2Xyte9XyGx87S6afAXn47i8S8AZ4r9mNprQK6AjGn8bM8h3ELay5xWGIW8EIhZbOHZ1IXXmN0oWI5kWhnf2p7LRPGno6MXoOCFfxgUa4LlGZutHuBBTBHODyFjDAxuRrZypOgcO5oyHGiicYAa68tiJflMOw0eJLb54WLhcldu/VbtdgfdQatJhP8eDwq/HWiedKJlXnu4Y03qw==
Variant 4
DifficultyLevel
528
Question
Starr designs skateboard ramps. A plan of her latest design is shown below.
The size of the ramp angle maked α° is closest to
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
object | |
gender | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/q36variant5.svg 250 indent3 vpad |
correctAnswer | |
Answers