Number, NAPX9-TLF-CA25 SA v3
U2FsdGVkX1+aZYhaUgZcd1Ty+iD8WHXpaL9o8o2MwIuNSd0s9pq/MRiM7G3aRIhTAFETqF3YWz6jxy3n8krvKzSbziEe/U19ZXMAoTYepBgKVnCjlkhTUDQKh7OM7tGub8XuUx/Xjv6Jr5MNqP4N0lnJs3Z3Q1cBiov4QGkqkHQiRZzcuZiiCex+sKQ+gwcKKoe9KzSz43yRdtvul1iiwAog9ywFijtjgVKEK80bwyAsbHocQky6sK7lmSt69rt+PqeM/nxIv6NU3Ieus2U0n4c/bh54IqTohMZkS4cys6eBDHmPPKw3UQafUspwFShFuMjbJZf6JN47pY30kT0PC5kyU7hJggv1wezANAuGlaD2iybEhRnMrfRKwWmjfVihagjAGo0IWB/0l1KXOnEXtM/Bmp4cCUVMkDH91TiDJPn6hcPhH8pcSB5boqrSY0GaoID7VFEvwZuTtp3nGTgIbBcAXhFD2bJgGXAtZnazRu6PoH7U3OPP3anFRoc+hGHLngteT8XfANQELWcYDIHi4zlUS8t+njuQ4pQVYWnhS63MeyoyGQocQIi1kZRYpqSGH/eSSqDnUni4rQKEhy7uo/BFmP1Agfcju7MIFsG+OiKwvKUfAzU0QBu6KeAj3qmYCZiCV5t6vxMNdZpkB696XN/AXT5KmB+AjXqMIpim0NVjdkWqX+Ws/7UFe1+WIi/NR1Lvmfme6i7G8O8gwJSWgETejADc99Xs9r/m9hjGCasvYGEIvhnIxsYwVg+LgxkC+klVsNK99Q9s1dmKOqOCvkSv7OGplOpIoVMyRskoZ9ZCzOgV+HOJFLlPFQEij5B5RjBRA4vrG4tX3kYlE2gHMC8gj6JS0Aot0OrwT4k2B+LZUCTwphMfmJMheRbneM3XUPMIInQ8W4VJg0XGCwN4Y3AeJBholAF+WG2x8NKhRnRTIdd8OiJN+7qF1h/ry8nmH87N/VkeHUhLtyO3HzJEvVQzWuceEICfksNbqwkr98Mm8fWbh0pi240bFKbL58ANGu5mW0a2IL4w1VutrP9GYGv7IJ4906XCnfm3KH4i5j5I0kDW+0UVJwKYE99uMD30NzqcAWOYUCv//Fze45FPaOlWYTye+kEpzZ9Nqj/2JbTT80q/2BhfV5qGPnBVq7GRyTXnnJxVKMclCRClI1w1b2B80Q+1oqUaGCz1Q58ckoL4SqUkXibah2JHdX+afEGu7nsDYrLlEOlm3hq94CHG9fHklXxDNJJ0GHYPEE3Bcxpn+c5sduU/RFtSYIS2IVGnHv5ReB4VhmV5Rb/Wl4481DAalPotJsl4L6mx8U9l8/cBVp6L4xY598tPGK4gI3k8zv9zruwJrByHazdXuvOHlGZWVCZB25DIN48KusdrkebXDklGNJSXu0aKitryHnsrEVAcMIXFlvhmlY8pvBD5Hj0w0BcYbrk3XAgUlc3U/U4RJ9gZy5Ps2+7a0hl3XDvyrZMCGvim+aXCOaIV7nHyr23NusduzCJ9JPPwJkeWRn10rJiNNYqs8Kc+29GAsNqGIRNZ2LoFhhi7BnrZZnnPXGHtN8ceoFprLc/FbkZRuCEYIpTEo65p15uGwJsQ+BYYEiHOlhKly05ioUdum8XHoO1KdlnKjEU8+tR+hsOcglErqeDrP3fJDgLmk+JbgomrGezrH1qz/TPiDAigSZZGuheQd3vF6I/c5BmE2/C3QgcoD79eAEF+fIQpycwl4e9P08MLEB1Onn4n5wKaMfmS0xUx+NsmcSGLxKa9AnIgWf7WMEr1JyZJVyNDKSnkKKa5XtV75/76lKiWtfQb2M5Ulqg4Dxs3olAGY5UIxlJPSDsMQQ1fbAhmTWGOlSL42detsTklSJJ8AcwKfzEzHqQ2oejSYUuqVdeJwSxHBtiN5ckZWc/XkPf9HuiCCDZoR2j5qUkCWdScN8F0wZuqNydr9OqBU8/2aVlFKQ4c0kjngZw9TLwUFD0o4qUhAMhX2aKkMP3dtdsLxt/PXRnzPJxXAJVZNnZvPvoY9mvV6ZE1Fu2vw1drctFqweyLcpKo7jYEBP3PExoTu5eK/B050MwZwVbehmjaa9RVpQS0RdLN7tYNaoRMKx6Jz9MaBbxnyPBVvjZDhd1nt0c/XkMX5Ixc3zRWK2iCs9kP40qTxXppgBNaJ2Zz9QHOi2Lfzm9rT5U1ZIXp07xdVxHBNfKb4j6KZ0e5N75KJwezu+i5P2j5ZS8aZ/Z63OtZNAs39WU09Q3FVLH3ehBYNAZhbaSVBHKHrPy1PguBp65h8amxjsUSBY2wpVgsCXqezIPUYWutoEuT7dhdAXbJxO7HYTac14+0Ugu53lZyWMhbUq1qbOeuYY9Cie9pv61wgU321tKwy9WISn3ojwPlP90pxbBx8XQLIRsHDspEWihtDr2DeWSDF+/3bpf0WgeNoU1tKyismma6HWbKLg+t+IBuqa0dwfFMggeGorZymrgwSibDaoKeiZjZi88vwMwQazzuPYp+WumXg+/i3yDYiKWQWXWUSGRZ/qII2wGIlgs+WKTdNzKwZMIym5QifyEDHMIHlU1mCBnyzCeqmzgV/YeufbHtUZYzBwCYNL4GoUnX2dWUzWm6Y57pslr8XO1l173BPuk76qTR4nVWEHqrc4FYoE3k06yrvDMggeZA0Mu7aOmeIh3E/f5zVVq34HEpevelhSFTRCQN09qZZnUwPAM00HE8aiOAX4CzU4rFAS8nlV8yrcVGcqujSIl9/dMB7nNX2+Ra8qjD4uYpC3BSjcElf8Wd1FOoJ0BcNjjqdGUkZ9RkFd6aMqXO1AnwHuwI+F3PsQ/Rs//n0ofFaTNVeYi/p6mGI10orpox+huF1ZTSuY6m4tRx1GASOmTeiNPKpchYMyQkCuaO1gKhp4D7f7ADSB8soQBiUeGT6rIAcsIV97uRgIIIkvtl1m2Q1XKbRCUhvElyAKkGBPomOnFfqKvxSwaF5bFIFO1rBjnGLAZZ0A60kJJKfLxuUhmpwHIuTgtScEQHoYaDntbA8vW9Xq9UugusdwQXAwBpwIoOXqd3Ixxe1nxp3351ofN6fLAFXxDoRkoYk8/9kk9dZJf1bGRE2BekySzNNSiCNImgcZd/JvHEVoEwcbbKz0RYI+1DCV+RX1JnGnx6qb/az3LZ/SD15+3mtYl39CAejS4tg1Dl4eMYiSGMgeAVx1dJUXJY2hUYKiKkrccrGEs54ZWkEh/4e94HQpUEFpzSIjh4oLd1ufyyIFgzK7HGHh+Ysw+OEsSg4GEkcIzKBRMNuCJburI11wp6icFcnffg66zPhUgphbTbOMtSH36jGJTZgAXvasBU2MlCUbdgMOxHj2cP8VTn+SFprcFPOs5eRINe0iQul31aQ9VdzdYAaIf17eo9dyyZqSy2xo9ixRnwwZJJS9w8kNFRnb25EMqSDuvRiJCDqGwhxtm2X+93+uotadaFq8kdQ08JZhtjlE0CBH21l841QmA8e/jdyq8ciu3gEktoPaEeE75PrAWJrQSI786wAe/259BBoBiO55oF3Y07aN4zASPF+KRbCBdRgl9mQnUTO9auup8Gxw6uKWwrsF7WLclOykCG/oNuAk8vyYzkBs01b1WKVSprQ0Eu2lqXLW1gHl3hzP06E+7CRPRXAvZkpAd2KPAIgh85UalJd2Y2rVsBMnWBYzpMq/Fo1hP+KnmzQikYELARah1WBnAPEPdAPmFgMtq7Q1ZxZ19BZ5BV7n9v13i+FDUR5XkyEBF8IgCDTDdqSWZNT3ut1cQJKcBXcGfVhYTX38ke/NXI1vK4ZKjpo65JFASKQefn8Tkl6V6sb/Myj8ffiKIrY86HpsOruBwMWnPsNHnUURUxkssLtFkt8Dnzj63zA+f0y+8+ONuG6y6/PnNKnllERZyVvD3E5+IemH31JHqF87VulEGxOmovjm39YbBGNNYAYVdFudsOOlXw4n60MXE3ST9osZrHlULjnv1YWitSZHwgV9Y/OyjzTbc3rcCG3U0KSg24cd5kGOECJrzLvknaSgksr1WeyBWyg8jf9DKRQ6rSEiwVWIMFomuo6+6nKdGnJgX9B6YKs24yhs4tlftEC+9bBwZ9V8LsEiCa7wBshzkh9Vd30gK7JIeD5DWs6jBmQPPmFpLzwBo+nmp60G3vePe4I18Eu5N6hpypG8aOPYCmOOUEViBKq7IZx1DQ+96DOwGHsFrJBgnMnEfy1CIjsAOUUqr6naZgW+uFKDg+KR8wRr/5TUbfeKDwkB/POo6cB0lwAvZg9rhibkwEnl7R1zuEiijZ7UlJxYj7upOsYpm6IakrrmNcXvi7tEtbQxa9f4nlWL2IZYaD07FY49quFz2kks6CSmd5UlAkrZHKRXnragdBvyuVdD42ku3p0GRrBzp5UdFRh46+At3Ffzr+RRnvMCBjOKsgSLrnX3tOs5Fg/rNvKDodzojs0DfYauET/UOSQewgS1qrTx9W/8mPvjkVKkZvCn8sdZabQLm54mVu/kimR76JeZpc2KEL3QLZUEMv7pVzXV/l1P9AmvaqlXpKISNLQoJJuRYC5fugZJKaZ6K8IvkUpdqOgz//mdqTbZbgZHdRNg+6gDGpeCPJAqOVCocHOgjcNdLVNKFQJuosLjbFm5PzgH7WDBABhvePP+maceMGFL+KZx+7nI4yynx05/8SlTnU13KxVNj/N+cB9KFybUNvBZq/WKiVfu/u0mIHrk2gGLYyw1pVVXdBTeZGIVfJKzaA+2s5uIMwLXM2kHPFgMAcXLA1VqbJYHVM8r1o0T85joHpL4fiskEsoJkdJR8Z48/jC3Ty6ToUu2ocwgPeX+EfVHNKilKiavkUnZ9Hdr9xAAMeV1riFSnOnVF33lZ87s7GQbzF/pPC/LwhnB/L/4WQMaaJru9x8egMOwD/Wtt8PkeXZB5BlT9s/qx/2k578rlsNx94UqTFFas4rOJg+G//o+HmJEsDN7E+9A85jK5aYXVh4wprLjr5B/zrlYBXHAJC6xT0A6YoEOY1z4lb2pTZA/8YmtLGD8pGiQ30ad8cLT8SOg/maHLMJHbdDy+dj1aesVVzh6UsFY2/t0hvmh0/zlWb3XVvpv2yKmo3DJBluvpKTLrbuXOwLbvureMcLtlDOxSzDaE1GzAqiduj35pA3tCgidkZqXRJ+tV3LQz0ke2pSHl+mk+FzyLW+i8K8SMO0de8KbtTzXpz0sQFcqVytCl/jBb7rVr/zkOoIAuuPp6YbBD9kjYQj6w3Vi6y7D5p23QCuv0/OAcLOlLhqtxBmCkKRwKtT1sr9wi1m7YgvoWC4mwHOeqWBo9TtIg5m6wRAassC8GajO99ZygGO2n6vQfzExZiRSpKoBRkPF6TDwHGwYbIj6W/qAW+hEFyrj2p0ELvniY2XGOVnccNiw4ppkIhR6So4lcktZd4dRMoi91KtngB2tLveUxK+QoONZMILMNbY9ymdBLEAOgvyCUq8TKSnuqyoMgBE9WtUc54yrg23kngBLpf92qPUzoQ4/h1NSzzoGBtmMP6RlwSwwoPTG0KN0sTbZXGKrLiNSlAbt+WPFDXUdrgdyVIrLsDBYk50kNJxAwDzk8Ex7MlmS9TAQXu7s0RvEmt2BdUPv+ng00T1VU9xb7COqPpcuKp3YPTW/s/sRJtllou91rfYX2WZafzRzNtECpWjoIpSoXtpOQ3bgM12C2gJki/yvxiJOPct/fmIQqm2HgHhcZrCuuQCoNJTKUCcLMI6UIkLuNPOx39+eDAsfWK/cWDkmkdQ8u5diSXgfyg7r5ExkT2tksbSivXy2mZSJPDqVeLFhr4dcLywj/P0xLwJXAZymRRVrqTpMYetrQPD8ETPorZ8nyGV7AAFP9O7nBYZi49xVenshyPqIofy1+gn7NDcBtkN28w2AGgIx8tzlMHfWblgzsEgyLB+AuFLHKGLWdi8bJRrG/ASSxgX1fidbJbUGBi7gli7ddAvXee7DPTKZKzPY2/32WmKhQgpXQ3yxTEHLtOu2R6htbaOgGrL4fvQ+VtBgkAOjQukyFPNdQUCSg7WwiUum0qrPZA3WAwP0W73FUA4KZopWK8zyNgLgW/b8SlbKJTmf6rbL+k9FGuDmTfCK/9wbileGuw8LSd7PHxT10J1/qjdu1tlNgpiKkavN1qWrB5rGI7wHLen2VeG/QTDMjQi0IGI9StmJloa67CjENjgrYz6bMW+9ys7tA3YKebpAWGxfZIRt9P3ozdXJ47JMBRpWDBq5F2/P8dWYRwugtuZfDBZF+seoNbEUdsTuPsASnInlis9zUol1cSYTKZNqAeL1mNAwPuPNsJNiKHc0SZ72LjfmlTwno8WkXH9Zr+7R2R8oVfvHUeCSk4Km3ro7+xCdKjdlzUu0QimRWIvovqzkE7coiF6z4Ugp3eUTKG5ZsT5PuweJ0xq0wtyEyFuuqxCVkAWL347xwhGPqNiLnCLE0zDxK30BAdVc5FI5xysbsnJYChdDROlIqla/YkVidUQquYujRpjocEAyb5f2W5Be09kG9lgxUIG52Gqyh4NToFENdi7oP1V3opWSg3n3yGvD7AAoyFor/wZnNbjIWyjkAqcLvsHz2JY/SJBZt6vfqmM9UGc5LHjIjfRbuUinxvRHgBZzAmBDY/wrosc5yTUk0StVcRPc2MqGmVIFMhgYLWuaNAzLXI7MPxhzJZoX6Z42n1ldCOhSvMd+dIXvWw43Asz22mdhXT2dDB0w6HIvCTDrbBrG+UwRqhIT71lJ/GNex5wpUntRBdo+9YeGX89dYzPQ2azcrrWJ3Io5v0Z0aDO9zp7T/NlWz6fIh7s0MaFfCc+lhc9NGMGCb9esYYsin+0cfEGc0nn/IkHV8/otl9dc8mB1zWAR9fbmMjbFXXhXvQbWnZ7WpoREdC6UKkmN4/XoJij5C7fYPeETHl2cy01vLCXoYS/n4KovYjFKewutTIzvv8VV0TMgKVK4PnpoGrS8/ktZO4laG0wZIbRCVYeTVNaQUy+vcsPiPxZ0OA7fEqZFB1OQwj2ury0sw52XoPfOnuCGAxLrSie3/9LDSsu0K/rtqiP2F5YVO1VEQX/kGozcwnJdT0xFERx6XehSQNzArDHuCKcBH8pRsqPrhZ7/gvX6+e6w3lDIx0wnEGifAsUALfvB2NBmpS6hXgbVOGhmNQuSrF58FRoLTjEn6kkFpL9m/YCziVJFDa8NTeuAvAn02TPq69LCsAEM12TiKpfaqIq6hO7/sA1bayhSRosxkVHQArqEu6RIBAyNdh1ufPtMrKPyP9NVupdzOESpyZELv4SdS2prVa/+VhCNa7Isqvz8msdXi8g1uPZ44srJ+EZ6gxXOyNtaJSRLfMAx9uWfLvJDkhPOXCkT3UYzktfmT0kijgXkmSLzEx99YDM68BAoViHK7KoEzp8mbP8CbUoQF1w64WrggybH5g93rz0X2hxWhlDin24sl3iPPO4DDFr0EtFW5DkkEfxGAi1pzz3iPUYUvpv/eOeWnh+zdkI6MSkWF1fsAhod449Xl19Tc91DCLf6l/KJFN5bFRwvN8LzZJrTTss9MPoZ1KCQySDsUc+pcgSJ0MxNzd57Xh17OtGrjiT2f3IrSv/8MRjuYp3xS0PyB9GkXOGIDGLMfchIzySupnFOqflJ1KM17omB6a0+WOd/RONrdRSF1RMczwKT5xQfl5DatEXOojL2qMz8LnQu2iM4cQ35MHK8bEQNleFyju4A==
Variant 0
DifficultyLevel
685
Question
Peter measured the diameter of 2 coins and recorded his measurements in the table below.
Coin |
Diameter |
$1 |
25 millimetres |
20c |
181 inch |
One inch equals 25.4 millimetres.
What is the difference in millimetres between the diameters of the two coins?
Give your answer to three decimal places.
Worked Solution
|
|
Diameter of 20c |
= 181 ×25.4 |
|
= 28.575 mm |
|
|
∴ Difference |
= 28.575 − 25 |
|
= 3.575 millimetres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Peter measured the diameter of 2 coins and recorded his measurements in the table below.
>>| Coin | Diameter|
|:-:|:-:|
| $1 | 25 millimetres|
| 20c | $1\frac{1}{8}$ inch|
One inch equals 25.4 millimetres.
What is the difference in millimetres between the diameters of the two coins?
Give your answer to three decimal places. |
workedSolution |
| | |
| --------------------- | -------------- |
| Diameter of 20c | \= $1 \dfrac{1}{8} \ \times 25.4$ |
| | \= 28.575 mm |
| | |
| --------------------- | -------------- |
| $\therefore$ Difference | \= 28.575 − 25 |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 3.575 | |
U2FsdGVkX19Hu6Es6BD/NKqWcUaw9mV9Q3Wk6jZzrvsvbqpQEmxaMJZAaKkBxLpHptYneP8EgcfWAol126giu2eFlt/HeVWt1vpbxUZxbtnXViB4V6Cz88P4oiK0gXwIXq/Hjkp7QooWNDeLlvXi05ysW4dPtOm7TK0bGF9FoM9JGphpNikSdgxc8JS+rM8tH7BKRqSW3edfbzo/DSXPucpR5qctI1WFAnzjnhHYtF3ClT1um4vQpzmSzlfDiQ+Mbt1QNBoA+emooEdKAsn24ZIAIQ8Obe/dZZ1uRUWtB6DOXSfkJtr7QcUCfUmhhmhELhWfdvJHImsAwBWON71chKUJwk6DV2Feu6cdPCxXTO+YvODcZP29Wm1V/vScl+U5mbP+DwY5e9FP1NlxXgcpIssmAjwVqvfBa7xdQnknIME4kC1h119Ubhn8/CcLRq6sgHT/xaQT6UsP9KY3MuDTfHJLcVPiwSdivZAohSGt4RtO+BGiBXGFX0OlVL8qqVBh8X0VVJzEGJYNdubh1yzKibXUm1GQ9gxnWLTEHstKNOKJAIb0gR4GaBjHGfL/4YZHLTo29JUO+zOApySXHgeOrUJchTgpmRA4nycfYXszWiRu20vQKFxvdjPW+xMMOhT3AIAaZCVufJtodvXsElduOAdA0kjoWJZ/+60Pn7fvqTbQiyzhEgGaIgZuyWq7yzZtaoCaJADjunuyX7sq3fcXnHfE5csZ46ivK2kj1kkiZxygFdHsmqdu6JARPNcNoJyQqHhsWA6mN6EG1/608Hi/FfGS8V3nD9dUuv+gCjhKmUmDhwTTS8PQHBWHLRIpa3I3aJruu6LgtsyQ5s/lYs0A1UI5Ry5Dyu+mcKMhTeuJDfSQjZ5yMdmo6f1XEmMqu68W7agtYGCWh0JwyRm2gmF8PAU2ltZBJWNde2kaVkHqoR+fEEJ2pGHeQ9a7VTXSby0aAuiiUyK4BMUtpW/gC16/etLPPxsngraAuCHBlVoAIixO4QZDkfO1fDE1yNL0dcLeJh+I6o3+BtmG+Lw2Le70A3eMdVnUDcMa0+V2Y95aiKEM+YlqIGTg5r33BH+Nzgc00MUbAfptyZxNCXgVutRi3a3RDE92ucRJ1n79uDEf4eGMtQln5TqQ8cbnxuGq5cuF2OMTJfh/zZvRy/GpCSFgPMqphxARWECRdoD6oCYlIFii9f91EZZnme9bNGAGdyDbaZHJu2awjlqXASQ0wQ20xhdf+Y3DxhmdkUHuhV3MllkKr6vVUWKu32AuvgyEogKLPZnO4TAX9MPQIVmvUz/460kYdqwkX+1vEtPgVoXeJcUBGUngai3d8TTV3W+aBVPiJXjKZf2FxDm/UeZUu8SvuGIGrJKlIj8JXrESOdeW3cz4U/O3incrVQQrInMGA6Swk9ffEonv0mIdMC9WepNQiargnrURvj8ubi95Ph+02Ml49DcOspM4hUcjvzLNioUFuex/Y11BN62Xk/9ET//VltCCaOZ3mYLmp4bzMowxi5QU9uneB5KAeG3+EKjKMDnqWfY2zzx2wVZ5ZxN/YGIU40SZOhdHq0lUEnEZDveS4QMPdiYDbBFMgp8Q7vMKj2rpOan3Pc0aawVCRizv9+yk9wTdgNRpSKP0NoB9iSMODBT1ptjp0zOugX62zjeublilIt4+wrg55xclXcJ56WOPrSBwIUUjUP0sOsvuWqd01kk8e4ialMjooDexrYOaTcWADe/+qa64LkoJXu9RSenCaABqpxiceZ4vumhP0JBXJXQug25rzlqu7/I7XHiXHWtPFfVhzTTzXIeCRc7J5GBqazdiLC7bn/jAOh2oEzqqIKa7b8SatbaJdeQxkh0Pao/CntNAmw/9jqdkiR6xeXCZugpdpnFp/6jSYynDobtzrBu0/JyNToQorFAudj/tVRVBH7SBouBf4VkafEye12PnfYHQe3NpdcKpie/SAidQhQnw9UwM12zMYlLD1ruHnHE/yNMjsrnjtV/MXj7bAyDeYa+CjCj1v2A0G1pn949uexHtqwisTgdg1u3uy2JP3LcZGn+S6+1Ln/U/mx//esV+YA2WakdCI4MYcFNThtq5o8xtXvjWaCUcqURXZ6CnPmKv7fo5uq8sGi+8HADuGfS9ac8oyU8nqvI7GDAlU4BPm70Bn8FPlCvW798gk7WDIHt6s/8Q/jRww8cxBNEKTvPqrg1JfWNMJiKS4zqngA67BEiYT0mt0o1tX8S1XfJKg4XfRV62UMA4XX9X/2tpd6wShx7D4ItUIYzvuIqzaX97VjHegRZk+Nnsi+wr3xoHfEX/jgCFI7aE/FZLqv6iEfrhRIUcrpmweqdMRBg11gVxlo/641VnIfYWdpM5oXpIR/N/mSd/obPiTpmyIfbfyEGZfLTuIxfsfBOMW3+zDnFB2DUic2uwfo76D2bOEkzGQBt9SbBwCvF/UWhXOxzp/j+rbCDBp5M1UWOe4wBeXlVsXJSlcNvpJ1DsKVdL0+4CMueFP1fyaxfOlAiMo1ISTNuGw5M98S2tyUTXjPHNq08RI675hET/9Ib9c6itmsnRyBF9fZWzOZFFAcaftiKxMqgIcTU8ilzCujwPTO2wsae2YOghWxG2My5eloPe7hJ3m4Th+Xm3HLuxYi1a4Dl3OwMWTKfo8pacMSfoRN3bzgZNkWJJm99jhiMcxH4+8tcrvsSAIEVIitSpya+br4yfcpYVvlR69DEHI9DWNXK9OM2bjY9/4qz+DBJn26VaDyvG+TE+PIQIchCiUzzOfirXkbuDpkUmtBkRlt1IdKs6dnkoUmjbmSsy4xdojkVPmgTx77plwUUwOsJ+bF3Npxap+EqPCd0tVdbcdg8lBKSy3serT6phEv04Vg71SE9/hIonFOjEw/gUibwfSL4UNIoqI3vlFAehvfZKQAS2/tuXKg7WwlHW6GUoqs7nSS8K6GiXu2rBLi3WVcqpqkAoQ5gCzEe82RJ90p4e3XbIHiNtLMiaNKqRHnajQYLmsXvcFaQMORy/O2F02TRnHVYCastQ6Bszy767RYaOaDSRLwODXopSZNcg/qi/Mp7t2ulq9qAqB3r3sb75CylSlPCSlTQlEGVGZGKcpQ4stksx9cIg6U/2FI3GqbCvh7o10LCbTp+1f9Rwy2xjKije1Jg2gBOYSSAWdjVDHJy9/UGDxlMGptBa24hwmKPVmOD8Gen8IOH9cBo5ro7cM7JmXteiaYMTV3cxYPQ6bJ+EhqA6EUwmB54XcGV4qD5vbj3Q9GskCj3G1KkWdV2zkB/xrO1qpIllK8lCTY7DpTzajfb662lWR2ACoAK/cB2W/kTwXxKxLMe550C4EVRWJYeFCUgc++ZNLMJIm3zwVCl18ynm0Xf2cl7t4TWTuqeSrhKSbfT5uep+BTlMKtH3gUbyYjxWG0oN+TGh2d8b5ZehOz9aH8EG3HS/pGkI0Mu5Sz4msCczWUu20sFtkHY4GIjJhBG+nhTswnSxh8Mc9aSHhIGoCWTQS8TSBVtm10lrMZAwI3BuNHY6AQW1A6fK/FVCRFiSUg4gZKPUf3YLAQjXJPhetIKW20hZ2ylCUSFKzO0MbOFmpfsnKD5xfOC+GHZSKWiR69SP1zuypDiuSWEd11UGYqWnGk3oK+eFwWjZ2KW+36KHGcDof+BihSesKsY7OVZHeqECqKnu2iFOYTUdhYnGMOA50MBsJA6INyh3Cv12sM/FWZb0xxzaA7poy0lgeSP4foUB19Yy0ASqDSO1VvyZN37H/Akoh22/NU98sQM92QSbzt5eR9BKBh/ADJULF/RGM5SkVyxfesood0rgnbZM+1RUaD1BmC3KAzF6ibzwB0VXmhWTK8syZQx+rijh4xGY/n7VeHOloSUTD1Ls1GOt5XggAAkOwPJ5l39Wu4Ls1Y73/hb6fFBam7glFZkiCQ3y2cMtOEu1Cf5IAl6oLbIRB0+mPM/uVa5rlPfiGiQctU3mMnVxxjQAKaRw+HMyFmfktekMhaExpTdY8Q24nZTP97PfhpWxS/xqwc7VDEoi231oyrpp7z4JnXgOn6L9M1S7AQmjGTK06gYV/egmAD/Wem2P5WxMFGmCmkPt/69wvtB+WqjakCbYEhB01zXpeSkF4fPClvsqUpv6vPGPfWTW4bqv6i0eIf8fT9Lpo0x+JTRkFOGgopeWosh4mF1Oq/eSa5cEKX6OjdeNCb5tijx41iulV3vw/S/OeYQNr7Z+qS/StUlpOZoS7hk2EA9AHKL6ognbz5q4/sERJqxoB+7R/3KOThWvWi7WXhkfhhrILlA1kBaFaH9+X5giWth9M5SPIcLHe9edXmdkKAqr7GuNlS8FdPREqNMTXAoOGQCZ04ixtQFSb59avCHKQF4+TiCtnnL8i7VaMqN0lRjGXXq9b+/1zgbqEI7e8zYKWNrhenhW4YcGg8oORCFTGwwoXc6IHPTwBR9RN0JFVNKy9mRMsG3ZOvzAtFJ+IrtLFtWgjE+j6hJVGDfjZ1NpnV9eLxZyMsl5pN6nuFJlxlggxXPQs+7GSbmvON1ThZB7YhEOfn08D8tBI1VWRWuisNAOs5slJFvlC0Ruh7Tnzb6EztNJeRD/G8/6HYs/x+4orNv9+CUCLyHvGQh4LGqoX8tRqe7w2WVQKDGmkO6VgifV1vLdx9vp40JjnmBUmZmcq+AxbkTFQnGNvAC8oU04kZuHrxPCK+CqdtPPXuJGsAOL3maLRxi1y9h+J+h/hVD/VbfPtnmgiV4cqUFEJ7XT8DxAZEt3tO0i06MqrVItYjLJpcmH8iazVW8nAud/krJqikFqv0zx3SOTlEexVOylmiDEuaNKtH/WjHqkcC5781hQYpQVcSGxe2c98+N7wazvRH9cqfpk+uk3zHB6xOG7Dn3GoqxEhALdPfaqe60ykCwF1uqF1dx/bG+93LwvGOz5sD8t9YVYrasEd9eOt24iInZ2tISIBexfgIKOFyrN1ZSjQ+6pZDvNzx3ONtVb3oRTVtQrN/WoGpwfnsU5nTAHhmwILr+/p/ZF36TSVFow2qM+xn+yKKrAFf5EyFITOjK2Iw9eFMaTCwlcSECyz/IJwC2h0saayjJf3g3dF0OX1MkyLLS8XH8jJQFdjvCiIOE88TmLKRM+dtMFiEEmEw1eiGAcQM8/2WZGLbxpgTSdHmpUVnsUpkFBLTrCHROdNGbFrLBJFJsKSM79B6mvZf+dJs2Zs/yd0gBXTva/gqWP1MlRq/BiPOzBDnEisPlTrBe3+wh8SwE9N8JmnIG1V2VFPmoicHIqalOJWKU9nXiDiNFr71opHA+yYfn7O5zaMzokLkAZDGwvHp9gm2DJxNU7rJEBX4xHvZ1BRywwzmjG+lAAir6MV7ieiG8ZzkBCvU9rdohnsWBF7GIT7cx0asmLlKByCZY3VUzWCSr8t9WLW9ZcNjxwtPxjtgkV4rr5IEQnRC77JsHcbXGE09B99GsxumemSczrGV6WjzjBd+WPUJyNy+UsyfZBzkkIvR99+ywOsnGvjTUwxiB9GgmDQ+oATc/0/a9jmQjsOQGULdT2yk4T309dTWoMfsQcwcEYfwq06ykaTY+khbpy6dHcmLz8y63p4DCQ/gqTV8jwcadg9/SpTTkn9imGc1sZl3d/0Dsub6Bju4upDw3P/QuHGfpO41waeLm+t8SNyG35RKKDufV3SefPU4M+qomTSyBF31pwUtIY+AExPRP6QUmUYhAad7E/hfPTotGJMBVKlHsDzH+KkvPaliEIT1M8ZukGPZMWkyewQ0ISotB8NZMYGtntlNc+haIfcBUN01dOq77kOE94kxwLZcHbHzQuliRiRw2AyAbKMT/9Otod1/psq2FWL7MubEYTQeb3S2WbctM4IDuMMxHzQJ+yJiNxW5EBJlPZUN4L+lyO3KaZW1D8i/tM2/2rhASEDaPeqLwm/jgxu1UaqJFf6DDdu4uYv8rino+3JEFZbzeqUi/K+FIaXuxSMna9n8QkauxQ5YimPWieLeeQAuqp6Em9Uzz0yUqEvR70SXFS35CvWU+nDWd8oYMikJT8RzD1+0q7ioAwNVCWcWApV+6MeVKmIgH6C81rfKPwX4TNeIcCTdShXwHpFmqNCm+lW1jZE1E1rF6wWgpayoBha/rFN7cj/er9YGyR5e3sjqekAgM3KmGgBPEbaifxaOtUVLl5G2h68sU1Ty/msDeDVT8SY/QWPnXq0dRBnoTxjKAU0J5DRBXpRXnc8XufgSvbeqpddyjRr8BToOe6/Hgk1wMiKOvC9rKZG4P0ZJcRP8OsHMBr+swqg+Pb4cJr/3E51LtR1jP57/nMim7qXiZrvby02wyQRVRNL9m0vc/YJmmGPllQW/56CK4cgwQMs3jIRb8J2ftTIo2qJ7AfToBuLiahL1Zo3QivF/ijNL63K/Pkt1hPymG+Rjgi1qkguat+nPBM32IVqHRTogQNa1aekoMUocM15EIDcWq7ln/OuINMuf/qEAhISBOSALT25a/LOSG0AnZnc1zw+7grmjSpLtVZ/10cshSufusLxUXro9Q6K0EUmbQrJruQh3RJwXmXvsXwFQ9vjg681LTvlr1e94dvr/QZ0+11GYX5fLcNekGE6KUfuIhpKXGaJomynlIaSpw2Y5+u6WztbgYyjib1ADgTPuBos6X+LUbY0eoLx2VGZK95b482VaBkb4SoFYnMMMVLK9YeITIDOIOJwAkm9LwavAgz1pGbvvZ06XLjZ5/nr/brpLZV+tcKWb/Vv4UI/zopGAvzTnf4vUSDnYjdDpFN/VFhjTYHzZSrO2qNYJlH/mFIe+cqGfzW8XG7pLk9l64aFwHIGhQ/3Kv2ffIJY9VVFcsgqX4zo7scP3WXvvmVDPqcCXXlb33iBljl3ivsQbJ3rFjLgwVxswRLFqAN3fQVebC+QsxYm+iSeBTQ5i0Edj909Hop9XuGfuI5RbjkOHTGvQ+JKxPEuj4khPF6okD/HmPwJ9UMcK+rXFGE1Mi7z+Ymf6IWKBUsNR0l7tM/QDyovZ7n2UJlONf3IoeUPCUNAvhbWAuxXNP7/bgWAlUEf4MmPthlckgHAjUgH5wNPNS+GEgGaYg6gACCj5Jwg9DjBkYzuVUqc+/tLl/+U9lq2CEEZg98048/hhe1wANEM07jPtjyhC6TkrXcShT7rZgqnxYdwKd7alFYAvzWLIuUUH+nIZOuEHLxXT+p0TGikb7lE2FSc5wDlTVw3lgipvrTXuPnVcVoMCi20LaXZgiOrndU6s/bgh9j1kekZk7EDFXSZaXr9WXoVRxUaiucF+c5fm4hc3a7RsvqDirausYG4dnctWdxjlbqVsl/mVxTB6vn3JyELMa1Obr0h9yDy/fcr5a6KszU7V8tuUwvHhMDI3D+KEfyqS1XeNALydqDdOnQtKszaxK5cNlKVXlQsbnfZqf60Kt5dgqSNVQiAn1uYoxmR7IS/HuEaUVhelLSjzjIFp6oXP4VH61QFYM1Xk+ZVxfaKawHIux59HDWs4CltNVRqPse4Ue8WVoeH9qpLuMna4bjdM0EK4mabK0bA3znNKIILWOoH0z4ynt9aOoOLc75YBRSKOeFGaw+Ytii5EUJWcjj768CfjF+yy2oWH2Wzf5IueWVwPuCrH0prDZm8rSvJOkJ/vCmpO+Rp2aHp4me6icyprrYutYp1ygYYyWxByW9ceL1EzQ/Rn/xwXfMuGbkPXCzAAiV7WvvKfJNpMk+2fjdfdfjejxzO4inS2KNVjuYck8SRtBnfOciQM3HEsThyRr9aOiTo3HvN11enTRcP6Zl0uWGxmhyRJ0SR5B1j/lXHF5OR/QsnbCraTwbtwhYaZaDafhBHJvPUOdqLo143TtoUqHqKHSZdK39smSDpfuTjucs24jt358GGCTPqkLQOGZYz7fAKrhiLNuXv+WdgoTcPD1ESjflfA/rhdRnMk/m7hddA34TzvMgl/xPptW1NTSekVmmqaPycL5tdAyG3VnRHp6T0+fFmwsCRDyM2SEh1tB4hnaqWybLUCm4mL8nDaXP2/CizO17MTVO/VGkWz04tYYr3u+9tnKhZLqf2O4rqFt2Fhi6OspX3CQ7ipwBi3UlrhpL6RCogYpd58KTEdsaLKxhy6jLAdrMATejWkMBEd2Z2KxiNP1NiBXWwZatYIJS+XJ1QwnbMLYK34HPIdDoADRPvA==
Variant 1
DifficultyLevel
687
Question
Fidel measured the diameter of 2 coins and recorded his measurements in the table below.
Coin |
Diameter |
$1 |
25 millimetres |
10c |
87 inch |
One inch equals 25.4 millimetres.
What is the difference in millimetres between the diameters of the two coins?
Give your answer to three decimal places.
Worked Solution
|
|
Diameter of 10c |
= 87×25.4 |
|
= 22.225 mm |
|
|
∴ Difference |
= 25 − 22.225 |
|
= 2.775 millimetres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Fidel measured the diameter of 2 coins and recorded his measurements in the table below.
>>| Coin | Diameter|
|:-:|:-:|
| $1 | 25 millimetres|
| 10c | $\frac{7}{8}$ inch|
One inch equals 25.4 millimetres.
What is the difference in millimetres between the diameters of the two coins?
Give your answer to three decimal places. |
workedSolution |
| | |
| --------------------- | -------------- |
| Diameter of 10c | \= $\dfrac{7}{8} \times 25.4$ |
| | \= 22.225 mm |
| | |
| --------------------- | -------------- |
| $\therefore$ Difference | \= 25 $-$ 22.225|
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2.775 | |
U2FsdGVkX19eGTe4GoQ+oT4kHDoECW/qGbw4Et5Rdp9HJqH+Mylnh/VkbDQOrEMQMtQ5j60ggEtztHGMiob7+VzlQXLmX66exFgnQUwpCry9X8/pyVOfxUfDZXiE7dWlaf5z/JyuymyXD00yAxDufRa+EOyjF0UL9xNQLelbXt98CK0rFvDCbXmhsIT7C38q2/U/c0rX7xd9hdhrJ9ZJG5gRRdyWyDNo0pd5bukkvjMBBbzj4FhtcOAg/wnZL+2UwLzkTFGavDbGaNo8ShcItJx8SKE7PQkFV7rOtWcMvWevnrDbMdjNlBzBUauzWy6nZHvpUs1Rp8htnc/fq6SnbCjUh41Qx3BrKtFj+i6VmynauGawnMKslhapVupd+W8HCXEEj1GZgRnGNLEvId+XBp/V3xI+GgabBR8rWUZwTx8UBuQ/mAPHnue7DbS64b4qbavWTCqjCShmVeejURt3TgUHRF3hcosxee+AUzIo8On7sgwDbVOao2pbf3O0M4chIpu80D1npjo2rvD51JyU90NVOX8HATIprp4IN5wfOBS7Zqthh1FBtooynxb1E1cRa1N+HjwAeV4ih4fQSeXgsccHPAzvCGJjFjGWx3tgP6tpPvLUARo7CrYf0yw4w3jZYkvsEW0C4yMNHbX4cQ+eQWacmWxspE+XEr2TcM7YE/OMFv6kc+kCwcM3nCOmg5b7kN7eGJSFbnkNM4Wu83vO+ODLWEvF5ttF2ZE+KwoYYdS1ZHwZefH1Xf3Wq3saUcR/KTBmaM+MT/gLLBPG81URl5TIdl7BBKCPDEUpI4UbA3HKqLP9tB4zYyGwPnNNqg49kbX+ErccF/IJHXI9KP/HaGzAMnKm/W7vyK8d61Fmn/tcFqXbHMI1G9eEE7E+yk0Kuj3K+rsnaAcHNx+y07RRbPJnhhn9qP/QLtLR6aZIAteDlO/wa2OaQ7SYS8pOCRvwWRgwlt9RWsYlVaZS13rlxyJlH4ByjXLMlB7UIXeA+v+Ui2sh3T+FfmNnZ9iJVp29dKf1BgzOyxsi1bbRnXSeZfRa9HzO7hqPm+/q0NA4vOuPq8IXfp+rr9zZh2wDcbM0KyxB1SjXUPtQcJq8NiyOGdhTsjADOOT/7c0cJSCwfxh3JZOdbtDGdQzYw3cusq+MwSGDYti5mUnDChjkHaxGEQghhLkCk3CpPkdok9JO5eQ5rKAhgl0NnZL18MRfeP47881w+ePc30S9KIjkhcv40KBZhmEJ3g0YAy6RZi/8gGYhksKNejuyN40u7bjA8ZXQIirteDwbVwJPWji6cvWyo0f3H5ncwmPEcuIQPSgi/OdCHeiWa/mXyurYBZoNVc4MQJd9ynwvDgoqWbfeTQYL9f74bgNl9up6kHnH4CWfHyqwRiXul+1mAQ9a/YRMWDAYh2IkjAvawaNcfm0U7zTklj4YxVn9fHW1UY2NjcNFegzEvRvFssdfKkwM/nRdEWkmZT7jwx8DMDIaQrlO6/hum1ooMrU43zSCCx9vI3+EtQ/QbXVTHJpjQYrc1h3SWroIfAUip+EqX9XsmF7VNZ4EUeMHpIVmHXLYOqxpgqwwbpmY7YJ7IxQp8aKjiRS3J/3RI4/j6e7EYwIJsT+7zm6wItCE9w5IO6fqhgLYbH1VBrmgwEJO5dRz2JxFEErvziXAPjweIye5PERf7Z9UT1Nd/Lt/YyAqqEulP/S0wEwO5zow+le7GVeuv1w1IBsH6b39keHLNL70c+0AutaZaAKI4X1EsbshpVQjfqeG3VSgmQ4+WNu4Rx/VVf7e8DlwjEsEuo6CSTPLHe11JkHCuwlvbhJ91KIRRO3PcS0OQdKmyKSs5qFZtnAsHoWzeqWyP04YFYtGCKN1xa7emIxqx3AjDGykz9Dl0uHid2J9im2alyFFhUEeTdVd+Q6kSgtvcES7lsKuvWfQMaInItz0hngp+xP/MBdrMAWs2Gthx1PJw77X3Ryn8cML5/MQDze+yZeIrDhC85NmY/6Nf2dqX8Xd76cSTLCj+UVqKDjFZNfUgDpygJyzdp3KaV5P6UZA6FP+SsPoX+zRYHfo8lwM91K1+3eW+33cOInfjwqtsMUotC+1T+5nhgaLlpfTy0+fUgPkzKuH2wwSlqZNqXmKpJKOTxAjMXaX11WURd6OG+2NcbHY5p5hzNEnF0ekoittHiJSldFKGNMZSn6TrDsdCUdBz1LJhbjAb4WLzVK+nw1G4b6Ku7/IladsZcBQXUbCgKr2W5HkQvxBfCCtpnIUktFygp0SXm+CVkdadJ3Op2sEC4k/MRRrK4KjjS59HuCBHzchsM9fA+LBIxW+jMWabXf3ydZdfkoFHCSy/493O2HdXQfqEIu1ziFkgDBfOY5aeX9D/lsaMNJ8lI6fZT2puBt3mtphXBQozDzqZYY4leonIcwsPv164Q2PJQ2mUA7oK6LHnj3lumTg+fzp3nE72TmW4fiWKx3bDBKYAzGwgvRKpYucGyNbucGpSAL3sT7fUvHZJrnr1xDpjaSh3P/Z/lHqt1bnwrUqExVGuukTpfmotT7CDlG9DsQXLgatT5NceqA2/8Q8GGbLuYmI/L5eJaLQUT+dLdPv7Zs5rGGMCIzb/lTtrvTjDwK7TTow7qrS34W1k4F+Coj5xvzduil49fDcJAp79qFwj2qg15NTi0IHnihk/r7PUiH1qbUZx77o/HE5hPYFjJXJy8W6XOdQn+q9FztkeulZnOchsnUcwZ9p7uVPItPQrch8sklNLlMejgZKQrlDLD4CrAxdbBfngvNOgl9BLsvZZedpuSj8U+QvMW3O2krnhGzcGIJLC7lsGSYm7PlBQb3NUx7KzaZ/tULsQUT3M/o2VSOe8eM/DeCm9YxSDcb3yMIrvUYX3SqojmORJbZO33H1PaeBjO/3o7vOUsIEsK4A9HnC/3t71VjRUq8ZxDw15mU++hphR5ei/m5KaddCY+ImNl0WUTzRD/8F+bKq2mQLFct3/NyyyW3/8Faq3HNwqeDivVgI4HGAtQZ+vSOGqphECG3eoYxKZSBlW8dhCky+fywonKUayVbpGVqV3ipzqXy6shMKCYGmRHPhVO0BuQC/qiIbOAGTT90lE8wHL/kRowYVcMq/cjs138MFlcOVhk4YyyZUNnvYoWFYuyfkhzZ5KhdZAC1t3PTA5J4VP1UKrieNigO0EjOvhf9+3kkrjYcVXWAhDp/dFzCeAWD6YyYl/Wg9L9lLO9HjbFFGJp0XBPK/Zp5UgD09Tt2KQh3RUYffh0B/8hmfSM0JUdv11XBHzru2+tnqSEOlVetU8yv1ipVDeIP7eub1cOValYSn+vFwUQ0jJVMCxcgX8GNX0ReEopm8RQ89V30wBmckQHB2rLdqKp8QB6TMEl3/rbQuSAr6bBpQq1GKx28Vxl8qSffPfgiMgu3RYODLxN5rs6Y/f4lkxYNtxxfvjei6ILzh8tA0Q5Gos/1Fb+4EFlJU/65vc+T1YGeU/m0iTWjoz1m1evlFtA2kzRyiBmRtcMMuM5+H5tsHFnh3hPzHMBQlWDiyFou7TCbZd+MN6CubfyWKVaRuMMweHWA0LIwIm4YEBxs6Xp/JCgJCihn/g/7dIy/aYYwSEH8poey2AAJcq+m+OhwD4KqMFPfAxakjRU82vpRxo0bMpVHDPXojQz35c4feY/rj3U+xVfypdceT5efGLv6/rb3zxVxzrcg7BTj6girqZNxTC3CHad6nPKW79/e+YbG2LNQm3cRIXZsGsMeGCtDUFLl0TLFEiShWoLhIETLdh/NzN6FB19qc97NNIKoD5ufAA4om4kZ/x7tNk9Dy5grfgfxT7lOlTjAQnaiZ74TcCv4bQLDQRsb9VS1sKSsV+hMWJK8UXFeBUMuStjcgz9IbPS4fqSpJIHP5JoNN9SyfhGn7OFWIuJaJ7n4MiY5aEvYpKVYjxRpGDbavVdFPwzFLk9nu7Q3uEzIJKvwbzlvmEFdL8wF6CfAshrwWzYO8zMF+xk5bX/yC28DmqKKxSbaAC0ydJnzti5bdMvkf1n01ZXFBZ5wZxCO+uFMO6H5psyYFFJUcNzdwxYHwDwwJYqcrVH3ausvX3qo/DIjSQ146TPmHgr1TyUPZHYtekPfLJqX784n2Q8Z4TGLeXcc9MqqObruxc4S11T5BqZ57aPu2LvGrUbq6SVdklsELi+XM22h4/fdIfV0fQOi9xW0m0vkp3VtNaksr5i+zcHbHj2ztPgGdRjEO2R1kW3ZSqO4xgpRsbI6dcgfzbJhU/joVP0oFAOx466g9oP173HFa1jKCQHNJIbhu5qu5Kpxbp0NWJvIRXpjVnY32wDdK2+uA01SAAzv3Tubkjy37VY/vJU81BTcqYYROg2t6NtxlL4z+R9qbpJHNxgF+g/kH+0xDLQVl2s+cBIYCj2gT9B1A4gixcXpZRf51UUDU2U8ZPBu0TdbTFivkcxbVj1rcvg+vRuXA//JJqz4bXqZlrvQ+LnXleqmj/l7k4nA5Q2vTrDrKaEeiQU3rxdrAzzy342JIk+R248O6+ZOAggBKTTeqrBOCNC0lJRDCGRVxZizUnzF0p2LbtRaOGkMDuwD4V0K+usp1N0zM2SyJnO5xVXtSKytjbEdOJGsimxKTs6U7ZqNXloU+mM2f3meqlKWwLIC9HovgjNgMt85QICmgAbmDubJUFDSc9bXCasaRpQwxH5Ma+pOVYmfRzUVOtuZ53NsHXUB/klX9XQJnrNSrm4L8l7Q4yGzAF0o77UpkeitHuLnqitsTd+bb9QEZ+sqGTdg2jyRY1NLWSC5tzzh8tmYVkjxaZoD+4TirrEwnUz5pr6WnF9qCk0QsbBP/fq3K61BHV1L/jLSX1oq29P0joJnti5VuXXmRjvLsfL6zXeW9qZw8hjYALQCcquJYnBKPGNTXYnC6AmV/sp7wSemJBnmPVHnlwt5cvMQfvQawiuIv4F9YUMTR6T32vts3h+sx93e3lEeq9jwK5kKYgxkGsfE7+TWhna1UcuiKhV8NhJZsEKUsA4mvNQedSPt89UDclrJfzzlxWRqxhzZPgcFK4HrbswHjN1a8yA45lwEaHsErh6YbQSaVJk7hQTa3GfuDuBVxbjiSLvNnunBwa7T3EU5a/xL21aeXracOJ41gfkvvMKGRHtzuw4r9P7LYErMz8yqujauyQbz9/PR1uINQ0LGSXMD/nF8gEGhAlgw8o2NtylFU0CjlCBn9V5HxGlkofHUOsDqtNWdoS8CAABRDjbbiX4tCFhiwyS6b/WU+gUITcbfmsJGq5/rhD+Pd9z08q25ljTELnB1KPHDFK1V7TIwdnGznbdKJl83GvEfO3H3z2omWC3QJB0h/clAXjIL0noFjxexaK4k/LrLxxlEbUXhSeD9t0lgHDgQmfvco5L9NGcC1d44UmvaJmDPbGhxqUfiLsoQA9Wm6uIhdyNLTY8l5wlDrUetPM9fLpmEM23sOQUFB6e2wv2EA9FaFNRXBlqi8hqWqkWax4dhO/xU6uyhPeL70t4g6xZsZuBGXXbmQW+aQOtoJ2Y90BTgUKFeIy5Shbn1ILUBCmG9SOX7CpUGsFS2INaTLZvekaVgAMYFkM56Qd6bq3VEf8llm1l5VuWeeZsYRouAfuwZnXvJy6P12Dw1F2GBeqOy8/xOr2zMjJk5Un+QV4y0ZeSFG6CPUD+8/c8QkrToMevbh0Q+Bz7/cPa9wbB4ADbtFPj48SV8q3wJ/acmPQQNjXZcYNxY2I5oBNhitVMN+LZPIv4onD3W/53XmQ2zcbznVeFU+ErWtTt2pddf/Xo4Txd0CaTiJ3Zp9FZwD6ryL47r/O6v2CvSGC17li0vfIPQdT//j3orOOs7d4xru4V9p9l5aLpCCsr8cRFkcED7uqYY5NPtJ2+3rHRs2umtzSU7/8BDmiVFpGaCeovgk8jdg+ye4003F1pk352I7nstH2aZZHGA7uI/y+n2bwcnI9mvfqR57e/wUKIpkzDRinZ3mpm2DO79tncNsSHa7tkrfOeCxzWe4zxdSmEM+mUsQi6OXAwE6qNR8oQuska44QnyHUIBfNJBm3bAy5F+xaXJWTYgB0223JmUqS+C8XrgUAXMlvVOJj1O4u9bIJlYTT3DOF1tuC2h/AB+bLCurDPvedW1V9ee0ceu6qxn8e7TbTScXdAqJf0ZjIHN+3Cu3sSMVFavGWo+HGEurm5VdEvU4g2A25ZdNzGdhGEO2YmuR9SHrOvT1UoA3rZ/aTQJfO4Epp/7mENezfdA5BAozCdo4zaAWnJOKJLTr3iQ0sH2vfd6M7TE7PZmFdb/zJKKNuM2YR5xBgzOnrY8fLclMl3LBmqpcu6H1pMVHCWhMChCENxQPGsClysPIKp3D1RAO2wPj6dQqa1Cebl+q02TGmWH6RD4eA7yioeUqUwoCVsJ5ScfzlRSODy0EuYRyg0FtRk+GFl0p56Y6dNTUFPBg8P3W7U8nzkR1noH/eBzhnsU3dAD7/payfLEzUt0mfQQADFQxaNF4PUTkg0TtLI3EbzqZCvhJmoEXHTCX/hsthuFVsGs5MIAyyZXeRA38QT2tpr292LhFY8lOgKcISPHmIsca/iHfUDDaoj+uoBFH4ApWE3y2xwzG8qVjolAkAgf+fTO0peh+RpHNOBnUnBa5cZ8ck5h8MUOTf4imMb0PPslW7xHRPmmF/NF5V3P+zGCFMFSZv87GDTkkACBGFYjS98zVe9xcQoNnplVcZB0DCCW4/Olp3GqG5F4zQAwlovfCr4XJ6aPAYTmrUcf7e/3BczSdT4efNFuwzuk2o4ilxMss7aC1aFAm5OXKgaAgNc7gPvCBi525PC0ezgrzbYOpjXJ9PrBHSwEa0J859Y2H6VO4ItOxn1PL2DT2yjAgvSwqJW8Oe5Ci3vnQpm9smtS1+IIGbWaSBAwspz9/KQPJdi+OByrwfnLev6oAfs7w4J03LWriEJE84xB/fyiiTwj1oRqNcQMa5PHQmnjBH8bT9FiCpM4KQdXzwTkQDF6SvpIBO/rm06tGaz/PUVyNyPi/q2eOtFqj9zF8/biFKk0mv7jUrZltji3Fr7oetOKXKX+K3/lTetkcO8c4iKQJm/jvvXivVfcrWcvxsonPnZgzDKuBD5FH5QplrJi61Z28GzztiBPJvKPlI1aqgQAdpnA5rYD6nWGY47gsTXj7Ml+1rv+1sd3HN+HE3cZMFg3VHkNTkTbviW67VtwMM0JFJgV+JqUIC7lVLz4mqGQpRmCDn7XJiac0Flz8x3UxAxhAht7EL6xIuNQMPDrHj3U2x4pZ12KklpTvHw6SeTEyCCzf3fssbnv6ZiWWiIGaSggEtqKQ8sHoW9gg9RhQAOotl5rK4AN5i8Y5D946bbfv3BdLH313HJC6dXZHHS5Xq6c2rJkAN8KDM74j2Awvocdnnuynlbx9oB5mnVAIQ9Ev9VNO4iLY1lyPtiPb6YkGvUJEV6YWZmUFxbVnQHK8qtvkkry7y+T4jS18JtLKDuAy3du/igNPuqNZpOfcol8NJyYjzIAjZYcLegm2QCWg662Kr8Iirqk7eXFwVVQGtE7+4izFhTLcOFMJcR7S5d7+tAwhABa53zMPunAlM53/g7Am+vgNUxgJG8FHLi0VlijyhvrIDojgT2WbOO+4np8Wrx8KatiKyR1B9v0a8tPWrpE2zZWWhr6yNusAGXowS4+NAhin2Jo0YIKoFztcTBI7eVryHYWYnWTroUnhYUm3srbq6voohwZG0BiGb8XIL73paRUlbNGskPPWglB+5Norcdi+DjKKkydhNXCauCxnyGDgLk5V2MA9QJZBRmGTXgPwtjkd7oSRc3OVA+n5cPfE3x10hBZzEVYV9UkHvDV/Y5qALHucjDHdvkIjY4ZM+hY+6xhsQgwz0oGGxiQ/85MhXy4GgFUq9oj/ikz3V9oWTmuhxPlhH0ekH5vIPYhh/4Kg5zWLuSJ67MgQuXs2mqXljF90KD+kNU90jfPtw3FTx19cRj1lVt8s+QpxvGIcu6cUhi3hsitMBPUOcgD/J3282HiMil7bgRZpZegn9qNAASdQvVRV/R2wZVoOlJ6GPz3jvoP1fhc1NI4RTHdRPQCywr+OElEzOS5MdwYmbkB4j6Elx/d32Xm2G596X/3lRLQZ8wvxrvXpihcNK1JZsY6H/yMODTi5k3WTrZnG2w==
Variant 2
DifficultyLevel
689
Question
Sandra measured the diameter of 2 tokens and recorded her measurements in the table below.
Token |
Diameter |
$5 |
30 millimetres |
$1 |
85 inch |
One inch equals 25.4 millimetres.
What is the difference in millimetres between the diameters of the two tokens?
Give your answer to three decimal places.
Worked Solution
|
|
Diameter of $1 |
= 85×25.4 |
|
= 15.875 mm |
|
|
∴ Difference |
= 30 − 15.875 |
|
= 14.125 millimetres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Sandra measured the diameter of 2 tokens and recorded her measurements in the table below.
>>| Token | Diameter|
|:-:|:-:|
| $5 | 30 millimetres|
| $1 | $\frac{5}{8}$ inch|
One inch equals 25.4 millimetres.
What is the difference in millimetres between the diameters of the two tokens?
Give your answer to three decimal places. |
workedSolution |
| | |
| --------------------- | -------------- |
| Diameter of $1 | \= $\dfrac{5}{8} \times 25.4$ |
| | \= 15.875 mm |
| | |
| --------------------- | -------------- |
| $\therefore$ Difference | \= 30 $-$ 15.875|
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 14.125 | |
U2FsdGVkX1+qci22ENitcGp2anAawIh3heLd6U5pHrIQPYijFCX1VBpI699xS6rqu+A+KmEYs2jGDk2QirZOl+ZtbCGWMtaHN4q1ldtgWru170I/FAQFRcCb55o65XtJYxgOzBq9a9kWyVz7W7AHYdKRoIVN+PuHcE/KaceDNbwMVpXb2+dS7jcPRV0DFcFz32zSS/ITW0XybstE35zCS4r/NOywCh13/kXIm0EL/CKOiLqx1GUcAE31LW4UTDp6WAKPeMSmhMSF4b5Sj6w3Y5lwxyfKQ61TD3DH7k4f1WM98CWTiuKqm5hX+Gxh+2DDaRYS0x8AvmYWmAOwLTEdoSYliZqdTs53mLmrRyIhJ7YZtEL781W0DPxTdDrjTAKZ3jhGBiRZtYUISefmTlrfG7H7418On6hcHm928uwdGeasbedicVufS9uSYE+1czeYcJ7e/Kpnp0b4XZYeBEHFYGhDUbc20tkLvogwI+9x/kwaZPIGvl6dVMVDP+k27slwqduRYB+ZFGnAfxJ/1U7r7T61TW3fhtDQXZpMyQBb1/FBGSbzncgL58JNA/Id2WMqELOhrx/1fpUDd6bzDSVZKdwyuFjYA3SyD++CoFlYcEpnU9IuXs/JAhXr+Wzo8zIAyLyhBiCEwOtv0bOvoqmkdw3mBX7n6nq5EbVw7HZF/afmUhgK9ugX8t0s7Zz6yCGh+z7ae/RV7BIy9ePXgd2ySnlYueuRbjm1oCzsBX+WWu/W/w8boQ49yIMKjRwEP8jnh8vwVxtQBOyVtzlQotPY4lakuFkZsKrY8pSYrTg3kmoJMifKJGGYbr2rOCZo6thWi0yCaUWueExVJgXDYksrKJWhhx71HdiygYYL/qBxfhZqq9abJSCTlPw84NAoLNeVGBnK8vrj4ZrQ4kPTIj4RPgrJc+RZjgkT8m43FDbn0SCaQ8tZ2jMZdUf3AvQW5dvvqWntGHyZ5SqP9nx7IbH9HBcNVPFDncZiCvMOh8BER4S6x3Hi5j6Bt560EW8KVLO+q9LNh8lWNv0oY9q2zfcZp55Oayn1AMGlJKltWJhfLDv2WJVqYHO2W0mnh763qVNzds2uOM/u4fZe7HnaKkuDPBCpZlbtuOaUskLU3MB7mHM6qNo55LfodYmQqZILrCG0kbUuoqXjfYw0y/HCZpKagZUQeOtltwnGjUvxXktd3+aOMBilyUVgJOr/vW+t4WrnMgZ0GaJyebEV72+1bFKvzt7hQCAKTLBJXa0Is9zEmYHmUQrQ7kxQcrtfWMUGPR3n+GTr1y7TeeDg0DUoN9lz1YB1jupG9w2uHZIx33lAmryV32Gn8jTN9eODXnn/JLWESRaSzEmqYniZdqWRvdaGj2SNnCXTMLmK5I4SkvP+Mm5l8hKg6o6izj8GXYmWRKlg5nPGtvW84QIvIld9FQ/7kho03BlLY8keYJWXXjjRoueK5ebDRXU6US5DDfAVm9sU7Dt2uQvU4LuMnHLSY7L6eoTU/QfJ+Qqrv2boUB7+yZ8RW4QYTXHLNFFxvUcDIQvaePPjnvqqZSmkSFmMH3YyoVNf4yhI1ojRDedhX2JMB9GleOkRwJJd1XQy5ildWTpqU2JnH40x1Emg3GUrdOu/jGPiGyDA2QpRJ3lfHuNQwygN2nP5Zv+sJg7i+pzQ1wVjLDsnWwLesugLR7vbDCIW7gS1kcjRYxiZnGAPU/P3IMya3PAK2fguDXenXmLz0mVyglVQiYDaCB9nN0ayWU6xykF3kp+k3pKNgt5KK4Xknb15hYGUtMYBT9BKJPdvvORwAYHQt1fIXtmYISyxUV+QGHTrvGyt3lsS3H0a7grtqoxo05+TY1tM1iN+dL+P84BPtOvYUSGjbtsrH0H8Ado1TeBlnRUXWYnPuJc+e/SFKENzB0VKgPWaK0lFDvRUm5zbds8OO8fdZT6ipr3J4aw1Jslic24TalHi4RVDxujIRB9X8QmUvtOXZ5tYttfGfXthEPFRrA00eFdhxBRRcXsEj663P8f5/fXVrQsSw86vZktDpHhvBGxVzCtnjeU+3TAgkIm9D0/SqPLDdc3bImHFif7B6jmeHUi+QLHhGnraw97u4l3Fdu7nVCXQoYphpeT9CW/i5cWdgWpoffmAOjNoH6yYQrBE7L9FB/zZ3eg5FPBLox5f521PiCtvpJlyGBd+J/A+j1yEkOPFRbiI8Gkxtu4pxbtyBk/6krH5KzNrCWxAPuJyimlL1PTqOt3Cjz2PFGu6TI8qWPhaVI8Q2HrhytG5L6IB1Bsn/DYosf6McxeW1Lr7lBtNlpLWIH8eGDJomMPscJZSHW12UoIxytnSvyUbgxez7WVGg6vwIn213DXirD1gahVFafu5ty6G8gOyWj9CrcsQDXQfhf01sotzUuj68NeYdtZGA23q66ulzLzjfuGaJUQg4uj8OhqXeRd3pr5djBJbW9bRHMgRtc3b3+xheEX3RyXbv1eDpEl4htVt+6xv4qGzSZXo/yA12x7E7Spfr/YMcggaozV69t3XGIH4DTVYBVJqeyq3JgDykThV9tmLvyws+2V7YJHDNsnotT+PFq9+fHU5l1ba2A+Fx1asWWEF2cZUitYIDrjRf9WpOgSp4QuiNx+1ntiWFjvCso1x9KGYeA/ku+aJe7bFuazzhOxgGNKzdREN0UBfT0RyFhgztG0MaxzZe6iSgJkebnImRGt/xf8+MRJdP9EW8OCeYKICfc4zK6wUPttKoz6vcLRn5N5/pX9smh5OvInaa2PIe/08A+N4tsR5zJD3e09ZrrL7Mo5H2pCctbz5MjR2cadW5NN8z7Khfb/he1dcezXLlOiP6PGspmOtJ3IDN1fqVxUrLQXWL9rvxHUQpMNQfNgEnH3+Hl7Fs0TzPuOuwVXHRgV5DDDKiBgdlSSTMJP6NW4rQ3KD/E/Tdlan5Q1YjL+cst3mVnlx/lij/tZwPi9l0J2/vVoWZu0NGxJatJGjIYn8Nz8VoWgByHD9Ko58+N6kbZ+LsPcKPVVsucfSB83VSZxEAFq4NNRfF7Gk6IAsNlwG/+R2am02a/fgWQVokw7A1nlPbx4nbE386xd6Gc9goYzIH16M85li5QhGQAc9wIL+kzSnILV8PgHiZpikFpiJ40Ri/DfrTtN8WkVBxSgX0nOxoYU1QCqxgTzEID8rrXgxuBaBZDOFOoUwlfsbRbDi1WePuw7aLQEDuebL7Nmms5KsQ8V36weHiiOgyWKHZjTo2Wpy5jwOTF2WjPQ+jYnOb8J1ei0CqhDQEotPxPWZs1TQXb8cf81Nx7GQ44WWsZNV9aVrEq7CbAcXPujAkbMfea181Q3vQnAOvhp9arMoPQnrXEcf59UcOtl1/Y2rb/vyEaOuWhrbOUso0l6NpvPfOJLTybDEc7ecy9CDBaCWzX/avZiuApHUSNusL1UxmXMxCJrTIpGVSJwKTOhhmgF2kSfQnzCclnIpUw/4CCLPnyttK/gPtbtSgq0CAxZoIZTCK+QHWDu+T8FS7m2uxo/Jiz6XAmYJfBgmJeq42Rq4niFVaq/MBB5i/JrVj25Jzn5LhGAvsiOwRO8riblH65CdUV7MjYktGyzK4NCk38vi/1g9NXpBNwClD59YEyPISycdMWf/xJQ6BC9ssloHsylpNNAhVMRgg598KQXLnhPXhee0SzozXscMiNNASuAblZG4Qff2u02+PVvDEGlncFe4RrPX/ugwnarQhReHGCAvJbXGJEg8FreBVUEhpn57pKUGsbBH6CTsKVSeMsCEvWN9hnTjUfMTT6girX3AWfdUeGwpp5vWkLeEfIE1tY2zWokuq/iq4UznsmmF6sAI6gnKOE1VSGnzOeJOVkbHJpUH56ljflwbPnepNnoFovfPtiK5nSswVrnxee2rHFvZPNNtFBz5+WTerfoF8Gr8c0ZwgJ3DpUFnStLXKObPKT1K8vyV6l13MUjk2y95j3bRh0QwxpwINBAi8FfIFutyDp0kQQGTwwsfFysY3xsxgBS3XBFSJVHQfqGJ5vr5LZWL/wFK59ZV/GdUVy40fsxGgaSf+nm6LJ4Cu2EIaZtqIlxUU7tkxR5PdUYSGIIPZkGm3PrnBR8Sf94YTIUEMSUFennQ0loqIiHx4jPgjFej55GFxD/9dW30hVBkgogtEQ3bg+O+mjgx4R7TBQ3XXcZFJP/P+twRheX40qTBuip7LqB+GRhMTTMPjaTHYG+v6c8N7/AbrnNBf3u1/q6W1eRUoYIkr4nOxX1NqghCwlBNi2wvfIz30KiaxBYxRESrObZyliyJttoFA2POGwkgMCGSSPaQb0i2ohrZliP9F6DAoKWODnMphDazp6kJpeAtaoCWMxGZfTfkSw3beQgJ55khD9cgW4L3ghb7Wal5XdpTFSJ2nj4S6lEUri6CfHqgrRRaT0Vf6RrIYRM/VmvgVvFrP6zG8fK5+yE/b9ctCw2PIOd5CWP77YvzEGiIrksJCXcE4FkqC/Ni1WAZsy7kCxuPnHhhWUZ4SMWvLMjzc9zYWIrvOqqumsgo/rCohNMZN1jmw8jyazxeTIso8GPGc6brGwuiHrA+LOSgpJAPTH15XGjl5Qg1D5G88ib6nO4rNQ1pjJaj3H6dm67Mp0iNdhGWdbtV9cxBCSMj38C634QMoOvK51jU5rZ54pXBvaEPopsGLDy833A2uQGEOwyiwE4aH/M7Kh5Ii64zOST8dqMGfyV4d43c+q25Uct78ZrLFCJwOHtcXS0EKecXgGExZKWsFDycwFGbvHhsZftpHxeJViMSvAbiEkJdPEv9qy/YwBrZk4+RN76Xvpf8szy0prGZ1RSRR8lAY+mv0MYaeV6gpgx+dE9kwVj2WWS3v5yhcL2CfIDWQV7GWDTGCAT+Df98E/dz0XXl+EdxqNp/SAXLuscjxgvyXh0erE7OyuBbs8GguuTUJ33hE/dv+CWr2xJUPIorfXBB8+xyTCDBuEKRB2gdxZdbcHDfWAByv9cLsvp1UK+UrMYXxl30frA6nRpoUbIM8VX1gn7utTpwAdSjeDCRvfRIEfeZF2Ngt9oNatqg6ImvE5z/WlBnCmhCOCVPg2/mFrCijnNBMddqvjLZkJ9JqFpoqePwMqofDbcm2kB7tTxL6t6bwa9vaR/EiPk8TEqm/62zdwseJ581BZixk0dDNAt0FhHy2RYidTBtB+b4PM0KM4xufHaEtYydQpH/25QDmBN35o135Hqsjo5boRSCOxCN+TwK6Au7lylITEkjTtzWGeuWTmyVGEyBB4huGHFc1OrvFpsKCdr6cNFIzNTuKLzbwhlyUuBvV8AFKeZcXp38kYJPodOKe2Qocw5vP5JGVVIXWSWswM4GPoM5ARAvjuXyL/0t8aH0+LphXKCqbR24d/OWYiih2GMBXVrqPpCl4d4LRHRjXOwuNSILVAUvFQCKXCvITuPFd3uyOU2F4OsC6apDIHJKdtHVDbDoYEVyH+sH1aNEIBkzHpSmvT6GuaXIqeyyzIkB+VvdOVyOPFncdxLSkiFxjFzalW6B9CqDZeLKNKoYL2bcTZMJ9a3eNuQ5tfR0L83wrFvM5y9qLpKHygFxIbks5rDuxEYlHFMQ4+zzloP2nfABsSXQYxhzGpA3ln/Tcj41zyEKQbMyVzNMxvBM5fLcShz08xB1uPIzPpCDhMRs2r2rObbujHzXhGLT5E/yb0FEyqMvzXLD7w/Opg3JrdAgpaMJM21U/rNvGNAci+exJPG3eIkoJ/ZBrLeUtIyCnKoiyT2RD3PbpOiPnzl4s5sxxXxVsB/18HPfP/gtrE48n41rIKA0/Nbexa2VPvsPceK4fYgmkBCdemO+/5JGW014TWDhN/Lbm0gWNC9fcR9mHlU7gv+gH58rtPJygCI+R5U+Ur8V/sLYI2BVRxcC3szcWccsrgqgTK/jJPd8FMnr5C2UnD7rjet4ZqaSlQ7rwFl9BaRrPJZddw4pfzC3EtqIwseXjvT7k10p1KCFPAgcEOpnLQbtyf57KLHnHB0PWI/CuNfz+L8vwOYVKLikde4djm7fLGqVkc5UE4yqx7t7HU404c8yU/p5LBfGCOBfEyCnWlhAE+TP8Ijo2vwiqBMhON7OhgBMG+/b4vPxuBGSq67jNtmigxtUuUUIxPnCyjIdPOK4Ur2f+CMawR3SwZH7Qae5jzUn5eryMcdmj1dNmTOuxGaK6WjnlhfgLSeKsOqKxzlNEUYagtaPZq+3iIsgNKTWnNejALdRpbPqWqr57WHs2mwi6ud0PbitMLvtOAQbqjhzvZDbHi2pNO04ZTzNG2wxdPjLqv0PDBjd2fwHbSpiMDda/VSef/J7A/DFyzAJNWpQZ2KiHJvldzOIb0uQFijF0XnU5PdHVAIqgCMfo88HFACGM0dzr3fRG9ESsI62xZq2JsZlFS8ouV+Q4nJfLoy9plV+4PUxXtxfFBOM4l6vB9gcXNIt4wTE6Mbygs6R6vZ3EUu3ApowhF1cOzeG9Odd8AhZOOD2ry7QcuoArgnacHxoSfSuJvXoskLDN7DRbLwqg97uNsnZCk96b3vQrgJCbWlbf1hYmjHkx9yzXkWk34/WT8kPtdEVIencl1RiYih903hb0p41Pzrg1Zlv/Q0p7h0XgzNAcnOBdrO2cOEPj1U0PTN2G/DsveejOR4d86c5PLj2VmgpB4Lb4fc4LS2iHsGYNzDF+3R/5UN+qKfvDosy5ZDVmzFn/vddwLsXsgqcY5g6f2Q8V57O5RJT2UYV1Wf+J3O8kLlctFanHKWfCV32nwRHm8zLIviqso2MQsOswTjHifs7T9T/ydgrhiVlVSUGSAySBt5oD5eGVhptSGJYi/3giFqchmDfPooj29okIvy4br5lxSgrDSqVRxRMk26tbE2XzDxm1uTX42/DR47mnfXrojKV9p2agnCDK1cn+GEBHfP1ffJdmvMyV+4MQkLy+uI6VGbhhMzMZPLsG3x+464Qx2Z22+h+cVdc4MidfK5YzpmPQ/P3ZF+4HWtyJF9pEY+CUM5q7fd0k4cKDcYGzPlWvTSLYMbaDJSz/5urn7yRThRKFAJkWmjLgBghc5/RXudQa0RCbHLKn7aXTxzI4O00gECdn0n8/GEsF7JWlVv5vrzsbGoVfbG90H/3gbwSwAcP6/G846VuKUR5thBodmq2PbD8i+lPD25/yg/LuF+0s7M6m0C5hGH12vXLjNstUZ8W0Ato3nCLRYEQdA/Ex2IjEbugmDSVyxzqziKu6udvkYHZ/wal8pRoHLDoI5iMAvtIRtbZi/HChgsnfy6yc7hvBpTmUXygoRxqN8gMG52kZL9/1nkG+k4ypvqpV62BDfM/U3zRiuc+BEUmScVGOjk375xztjaQLXfgHcsTxxDCnZK9+QVovwigUnyKqGfzfuQi6/Tq1CL8/SUyq67EggXRTieuEz3k1fejImCZTZ1IUsUETp2Js/Pd639xnop+O+rQ8jP4zePhj+suwQF4IWuBEJyGaco+CCEIIfGx2boOSuWJsEg1kRmbgEuBvXLxyYyyP30D8h3341hpkGZOKTIsRzVLD99W+rwOr2tbQF1yHtUksCs+OtSQPwXsUQ9qyY2rUFQ4baa/FTPlM4gDalu0onVdL1R+fbFXsJ5tp3M70eTC5n2gR88a2dNtqL9qT3FTmI2NyrisF4e1c6T4COuZy8q6BO3SiXOzeSWHOV6L2anLpNyZFL3ZmbaUL72OCjaDyGsiuh3WHsJtIwrE7G6nuTI+iL07l4/m92lBdlGofZ26eKMXIgNJDJxiW303xAM2xIM7j5PkOom3AFcU2FZunOXKLqn7SKEB41BJGai2nxT/+WaJkWcu6sni5p/HmsJnse1R1wykcXBATQRiU0KdkV4vA3MXUdN8NKWS7szMGbe7rjo71w96IBAOzIBUlelu+qIJ0Cj5tUcCTmYMsgY4z02cOnS6WZYGylq1np851AKDGtVsDV2D7k1VZl3Q8beCkB58x0t8gomNvw3atQg730/7fwPx/V8NlIlYLJMnaHWzlyNT+dsyn44coInQXwOQCB7tyzlZRZRfwnMheN6gj6BEI1F3DoitJTZ5NKhnIieYbYhTWGlmHLcuCrBX+ii8YDnX491fNBQjUn7Rf6E0T4V3tHA3YIspSOCXkCqwejDJPVmF2L7/bLMr0xPQ
Variant 3
DifficultyLevel
691
Question
India measured the diameter of 2 tokens and recorded her measurements in the table below.
Token |
Diameter |
$2 |
25 millimetres |
$1 |
54 inch |
One inch equals 25.4 millimetres.
What is the difference in millimetres between the diameters of the two tokens?
Give your answer to two decimal places.
Worked Solution
|
|
Diameter of $1 |
= 54×25.4 |
|
= 20.32 mm |
|
|
∴ Difference |
= 25 − 20.32 |
|
= 4.68 millimetres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | India measured the diameter of 2 tokens and recorded her measurements in the table below.
>>| Token | Diameter|
|:-:|:-:|
| $2 | 25 millimetres|
| $1 | $\frac{4}{5}$ inch|
One inch equals 25.4 millimetres.
What is the difference in millimetres between the diameters of the two tokens?
Give your answer to two decimal places. |
workedSolution |
| | |
| --------------------- | -------------- |
| Diameter of $1 | \= $\dfrac{4}{5} \times 25.4$ |
| | \= 20.32 mm |
| | |
| --------------------- | -------------- |
| $\therefore$ Difference | \= 25 $-$ 20.32|
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 4.68 | |
U2FsdGVkX19lNi1t2sglbmD9QKPlqFphZOeuWK86jDpyte3FaMoybplBnQlMx+Iw7z480L+Tfd1wO/k1tph2Mt/LnmT6S91qJQkxKOG4fXpRfFZfOewnMKT3PyR7U8F2lJcsL9bx+Ja0XKZmXSDWR8t6y2Tv/86MeFHZMi9e0BJoq6f489DfJaF+Km2bD1XRHDFb9VI2N3AzpxkmRC02gitl1G3FlPHT1mEg0kL+GpJMIe8x9ureB7p6TdKw0H6toQ9i2YyzOUTZ5OUUg2q1qVi1SY7OTVwawobCbTTSeCY35dwK8DBzdAT5Xc3Eig8NbZ79+F0gxwwYwiM9qC5DnAyXkZmaEsYyJMuhDzxe/E2yNz0fNDKIUQbtEcxZZul/Iv8nwXYpQenNlUWZFuw03j9CpYoNrG/XzNmwLHcPPIuGQPS6Qwf4zhIo+9EvjOn/ceD6NdJE7RiFQUt285VSg+iZyI3NHtchHjFejAdJQcXyefU4XPT+D7gS3fuRaE7A0i/3Z2xIbkOBtESQT92/RMnAP7iURYBr2HN8DfHtN19thPLNCEJqvmywCJn0kJ6Cerq9nhE149n5UzAHYhYXjUkaQCRAlsT92E/Ec6l/3L3qS5/u21p4+QxUKTW9Co0iBoRuBpU/c62EmqN8U+NJmNuYJ5bnsfByAl9sW5NF9CSEGN+gvHyQtWnr4YKxh5iD5HNApKXVG+26IpOjRvWpWFptVxidk+B+4OaGgRhrpAIjCRay3lJHRQUjuxo92xXRGHsNlwUCmaUEBjJxRDsNMzsIo2Rh/aOIxcu12oSggP+lncyVxeQ20oQrfD1koa9AFuQZ0pnKWb2/YUj1kA4GK4o0w1PHmikXVRgksh9TxSUvJg0v0bdDI1Sn5Gu78Na4388nXPY64gG8KrCMLK559Rs7yXDhrjhgskAehsAgH+eiv+eNh4Tzx80pRF7x7ukJFdBP0noI6w8iZhGeg/GWolSsRivEvaLBGEYfA9r9RNYehw1MyblSyoQ5yqUp7UghW8daT+0TKPIscf6VhSHIifFNIhjhYimyLC4suK4swGJvB3Sem0BlVV6ebryJ/eKFvbyOB3VyH7iib4w/yJJUVUmdiakrD//+GdsTW+IDqBMjkwlFib3JcRM4LO4aGZqgpyIQfmjrCHSFvoz5re367M8F2+cZ1n7NETq6FIju6IMhP+B4rLnXXTiP6/uqPz+TEfymcMfxAQTV/zMEO1Bn62vOUZArkDs/SJrAvWJwN/IfI1zUTi23JENOMXrToymrxZMkgHVM0WK8zM708GuUaGNCp/WTi0b26NS9NCItySZPTbIvnvTjsk1/dY7YUuSUjRnCUHfLC4Nfl8/irrXifkSwBV5EPVa/ffdAdyCk4ef0FTI9zTDO6omzkgU9EXGpvnsf5elykU5Vxmn5ZFF3P6l5OXjldBVZDQx5zCwqsZyuUzT0BimjFbCxbj1F+6ejearUMBpTGydGBCaGUwNpus+IgGX6TLGRxCeJgmUiB7wVfptGfxMzhcejWsq6WAcXxVSA6fCgVrPQ1P6zOfAEgTtGbKApW2C4TGrN2V8/bNOIVGwMN/ZJVoKoQ0BbZ48Zv0/x5oKVJAXBWg5Ni/gD7hlE3NBa6z6cayFcKRMLpQQLChXKU6KHcrkcXQmrzM0zpH3MMTDX3n6FqmYjd/NYOinEQwRapJfbDHuH0iiXSCEne12y8Yz8YXS9v4nZNrLy/ZHZ7zwM3SnYcaFJCIzH4aTKVjT1YKs674Z+ffr69sRh390crG3z/N6Cq10S1c7kMRwkDEIjfBsqykG3x1HfEx1lkUaFSpXd/TyhyAF59AglPNmeUD6fkPmd9Gg6T2uX01kIfo33rYpm+mmiRQwb91WOWzoSxijAjYf46amNrH7/O3pejAJVDwhxFQDVep0Rw+0yLgCf7jItT1A0wBRdJ+lE9vL1WRlDrW/oWzz0SexcNyTcZOyOAePVrvG27APCGxIjfmspXMfWbKQQ+lmEX3swBZSRdKXUPrXEg3wSyArcLJMy8rXg8DdDy4AMZJA1JLVeom+VrU7vDoouOIoulOilEL+zM0CAuWg+sw24m6aQnrkv9zEk/Zl6+webLGljO9zQNcfuWuyJsuuf2juUsSy8iI45pZw+9On6ua4fYvOnieLZVyfbEpEwF/hTwfSS+VKodfMzNyvrObZE6w3hUE9GCBsiN+RpokZeiGAVdQ8UBKU9/qvcxG8WCk1gZJgHfGCx60bCMpQClmS0md2spKpEOQHnzigeo4QyGMHL5H567IRSBMeJAqVYfUnkaM2/JXbKggFUnP+dgS1WSOGRDst349mo4a0eshXJIN1UgglrDG+FEvwQTD7kDCJV2WcliYaV+RbrDG7NYQt1PgtHxvA8xPBE9ZPG794EKG8ekpWoF27vXMwbd7sv6YbUPi66WDt01VhqC+qdsIBfYsiuxL2NwqvmaoSbZQISxEO4rWGRLEIbTLIc6gk7KdScRiqYm9PXCVnGh089RJxrKwF+xemXhe2i0LE3L+ZwMKPjjW3KgNLF+DMy2b6+nfyAhqE7URL2Bdc3COiqLi6FjHRHUk2Dm8bW+ePbxJXx+vahXHGGU+rjhvAzX3JU8iSOa++xj0EaOoQy2SESZO2hsIqbo2V65pQYEVSvzCDJsxgSqLALEXg/+8HZw683G5STJpZ7tSrc8OwXBSiUizmcZ27BPHL8P/4bWQ3pirF6L189xjokNg1G1DnqJOvN8aIUTGdo4ZxliEjjntNzzahZY/2ZxpJRjfh+8Xk78rBeI5e8VgA2TXhhxFz9QmYiBjq7vRSP4s8cnoGoKTppLdD1eh2n0sANh6Jcse78Rk992UjvKINj+hHkRG4s+gjK6bmqPIQBmgMU+xb/u82MC20FhvMDKwy/KPxlpuilk95B1ykr+/kvPNHL5/qcmbfDOdmx2aAll2iLfzpDOQGI+hh+156kaQoaQ9nLgRveVZJWeHZonI6Y8N6QrmPb1NTuO30q+TlI1DDOocQGpWsfva8bln74l111X3o0B304ShiFVkpiCO93Y2ROpz/eT1l0G6+g2uRT4GCbnDq3UPE3XRGAWJ31NwQ7Tqi+v8/zStNm5tlw8BctiSzCoFA3lkrtVjumYWhtYEMtHX3N9RaNLh0KLTIs4gG8OHYIq8AgdvnXScCYLNHFZKfaVH/jm3c4if3lSonk37xI3PaFF4uswraV0WnSTCrG0bkZsvFYZcgurAWo4Yy8oBOV9271KvI4DT3jWkCt5jSPvdroKXcIMIo9Mil+5PTl3fiXAwc2Ddc6VJC2WcM1fRVI3m80wYXekoBFxqnUqvS3Mmck54btyKCRpCNPXCmzc3uelDHA7Vzdmze2eix10Sjz6KRsXJh4j9/5cTL1ncB9U3Rc6v5ndKRLP41Lo9GzJ/jY7rJEbVfkwE04FNk4zDJmygVnof75zJxLYDjZeZUtHh+tHBSqx1zH8SA/CtlnWVgtbrmIbLQQs9WlkyT3NueRgSH+ifp6SEnFy99f01hvcIXCITcyG6LKo3SrXla0YJUlvxVqOQUprCJg3a3tQiqXIHcGhclcMkMs+Ak7OO9LrmErbKTR+ywO0Xj7OqncKnSKaMW5Y1/jDDUjf2jY+Armumj6PeIq2w2j3AM2tM5NFBTZd3Kik7Cs6DXHiaaxQs34MWfHtbUGYinkMbvtzIdD1pytZa+qYCDm0BM8ikVswz84R0jhUBoDi0QzQyD9Sumuao5t+IRcDrjP51gN/n/Gf0tSiUCk45JSAV7FBTGQOMzeaQb+tq7VYIzY5CkbL+SlKD4lK3WlECZw/j7CqBlCJFOqyxN22UF+mXZdzQNSHtjqDz503F4IMIZPHVo+YugOGS1Rsz3cQu7nnx000t24/R/dMtM9zUCMektk10VecWQY1rdD2PSOmTg6O91v+COxnZU41F4069oWSh03YCEveafxoSRG1WNFMZ7mjxjaxo0rhuPJEmK9bElTI+rKKuDhIuNA+MemfZgb1WAEeFrACQRoj9OqgiKIlRAXiUAN740L9GmrdwxMn0AInWBh79tcHQfbA/tXftkvzOXa2oeunCKPXGyM4//duVpvS4Vb8S7YZTyFmSxuUAC6JjgONztrbocv+35i4JBAzK/6dRwDA8CERy4K8Wjt9CPahqnZ6DCoBF2cDK/0sNVTY/fCEwLhuIysKzDd4ioNmGJwDCurTaTiEm2Xo0McYnUq6heDP+yx6PK1mogMH+SSIS9F2ODtDQCF/uyeD0wuAB3SkAxZ7Gk5/qNP+nRptrhO7zxe3WgmmN8qlpatjCGQsI1edSkgLIDNK/i7fs9oevEVqBRkDuHD45cBJJ0O9qorBUmxjBWEt1X7ywuFyl8e8z3xub/oc6GXCIFOe2HWDKZwkncWG+hZLXJGQDaxUEPLOhtuTzqMZWy9J6Qy7g8tgDFcJ7/qCA8RJ+nWYXi6c3OV1CI9T3pGb1RPS1houQWeeyzt4k9wQpztojypFYEFGBXxv8UqBGWpmoGW+uYUTel4mU6htxbjYVwX4m84+PSS4PSzL8zr5HodyuwCjJN4D9x5vi2JGdZkBv0H/kfnqQMwXR21AO1XelWJEjdxrdrQKwxGJ0R/oYuMhCksRAnpMcCEE25wXb6uS1oap+FnpgnWXWflBd0GeqAa/6D991EbXbkP70zyOMnfblEQ8LA7s+hhiTlJ0D+xd9bg7nhAz36I8ItFVColMFa/jMR1/DGFHLnr3xIIFJjTerkSGC2l4R1LDNDUz4hawY+HV0/wlRSoLyYYFzrXK7eaF65r7WxXJro9mjErGNQSgAeT5z6CN8s8/kKIf62+Y2bLP1WuOOZ1trdCEk1Pg98LDMAJs1hErhKHbIn0eCTsahwdcNoeihxkVcmbRGn9kilfpgnOTbElw7n4MZKGC0c9WC5OsPThrvG6M1+eMbWvskZDLkBWg8iNYSSxnwqTPl/w3ErJQSZ/St74WeBySERsz2DfY6i4RteDFUbHLICsWq/94Bj4Wm+20GRQEQA/ffOEaWSTa7duO51zp7mzsu2o6eFbif3NgiRwdU/pWL5CdaYA7CN8Gr41kQN+aml9u1hTvwd+Y5AMw4nVSnF1p2fRyDGBa8pHZE6hVSITiq+505ABeGS0MbD39s+zKmQCpl4g5wxYcP0AbY1E5PAcZYK2fifyAPXzb8IdyX6HzJhDSHDj+X+DSKyRo8rrmH0TGSmmH1dupPjqmHvu+s6CyC+EPXC4W7yWAHdnGrr1HE6cfl6GqPJrXipLwLO+K3JQcJuWFr2wZsdoW+54/62ZfrRUo7+qziSlnmJJha1qjpt3xnSq9Q08kLk5zA48VsBYEFx51uily85leqS7Yh/rAe19ZEUJ2cgZvlqPb9xmY8T/OS7CWCZYx6TrWz46+8zJUOlKvn54kinPHg9t+mh4YwKU/ScwC6hgC3zEYNOFU3mlV8upQ4KV4R5g90OCOULG0XCDjyXmIsHXGZ97eg183jn3E+8VNWbdegYSGD5NzpF1vJPjjz/r8JRoZhELb+UWlyO0NOB0bD/1PLoMo0rnvgwG2vngcIpGk6fCKYgYUex7hdy0K3uMNy6WHttTRSL8ILx/i8A33ZWCW6vwNw4USQfakESQne57RQvNNg6RFQ4rBUgPGojdEyMCFejevu9EwqbCPtBuiKLCAHrvi9oI3IM89cA4pXqQ6ebXpS0exOAmttg5K4lrB09nB36SjIVa7TNHDPsjG6beFnwx/G5UE72NEAyKTemqqSRzQC4zGHL6kUAPnvCAiG9z0aCHiAgm7Tzc83cZhrrhS1B+Jp1x4SqQhU0KnRR1ob032A5qy2rbtMVKxNSq7xFcI4OHGWEy54doaSlv5jjswp9oMN66kO92wXbCexKjCo7s0+sr5DJ0GEQjFfNaln4YRuO0mxooMPGX6g/HRkDgOkcBEJ9HKXt2/DvQAVy/UpHAMmhYuWvdjQZ+GR8wDpPle2EGcjB6mc8lkCiedDdrTyDduKyVT2ZQihIhrEA7XJdSAj73YqzzLRyP+F9xalXmqFxV6ZjC8QAlunvV5pWmInCAWU3SwLlisVofa+t5oQgHSduRYSHjIMceczDqk2vvdn9i+J0ujEPHq8um4ZjrnoqMiR46zy09jy8LhJ2GQdWdP7/dwfu5MpH3+I9It28OsR2+yCGjiPuCbiwFojPvuc3m+n5ZwcbUfMtdALUq0jXjTw5nZo52OcIXA6qK94wpwOOKNZboR0OrqOBqMyp6pORFEY0VqpK8syTO6Li4W1O0sa2WXhY4Ulubpz3surHXCnJxYLKUIVLfh2j8gK/+qP9DPF/Urjii0hDkap2euxovm/XjrFuE7r9GE8dYBV96PagY0dSlUX0Wd7q/8yvZ4nNI4oo1vwN5+ESdwVNLuZLym0tWVWOemTlW8LqbAL6CltvTqtxO1TakO1HaR2J0KNkzYjD/W5al2jdihsj9ZJuG90AbJud3sgQXEjV2I0TIOUufwmlk5YQis3zmQL3gsWEcgb3cghaVuIsqq9PHaWvXLuOYioFg1A/j0kjiUKZCPS1wagac2J39JYiUp6ruZdLCE22xoSufLY2jIZPJcnrGmVFKuy5D//lIHKmL+Pgbi4zgkE2H9cKMXBMUuy9vBgZHAO/xm0ktT8lPHQR+I+afOKabN3OLviBa2iHfIOoGa+gkDtf76zKBzmI2SIFaE677oLtrj/arTQ7zz8ZESQdYLfztWlVz8ECkIaXuXpoV2sG/TlSZwEnSFo2ajrIIis/fmxPGktQwXMPq7h+V+VD427vYOcPLTengb5yN5keQCHTcXfQUbHrdnTiS+TMn7isqrdt4YM9+6DgHUH1vKVwApfgQR3VIsGf1+VLj/r0hU3befXEPGIqFL99HCTFweg3wagTlEksdIrIgPtnsCngTwB50tVPJiu/MjUc5rO27W81Wd0rWVgQ9JGPwJR7lPLG2m1KWNfsNSRbi6tolBzqVKeTB6NxEn0X77MvlMzab6oRBx+IeugfuGRyqhcNzwCHl41Vj4M0IE8kPhRpTSCt60HirlIrpkDsP8KrbuwBuMRHV4iVcb0O2FnTuAr63GbC6cy9PSIysyUKC4hAgrjrCHGmITLuayCzJsGfMRJ3vMfOwYV0MjsTrRm5Gk0E0VT4ejnrdox33iq6E3x9ROOSwITMtHb4lHsUhIxqiniDDpQEiIiuqECmrs0dEeA8ZE1asSU1y92jxwoPwFt2keDapIKT4GaxiGDh6XSjnsvEYqWqVUDjyYGUyg6Xm6VTkBAnd/pl9J3aYMsHC9iQwj4qNxR+Te7y/aw2irhW+fFZSFpF2JjUoFUmFBog5JlSatZV+/HQw0L2xWniUTdh/dlnf+Mg/Xw7qO5UBCK3Sh4cPgn5yBCQJJm7+4FsSM3zQmls1Tg5upCl4yATiy6moLQ3NoHVT2DUiMkKra5SfiuCirKFurk/vkRGWMvyTXojwmQi+VGsWnwSbebvwzXOsz6zqQzTjPkWufZmPFLynUqkNkatXsrL7mnRC3JFZpS+/drDmNbnDZBzm/LfKlAoqdYTuYbeywnJ01Z7NmKhsl26dYnveFLZ1l4bjhBfTqEPe8uf12jp80eIXcqebHxxAiRbwtUEEhcGM+M5yn6cQ6Vn4P9v0iqZfndp4Q33gnc+0RnUdgsfQKtTR/5Lwi6seCc0APwA3UKt6nnaaD0KAy/yi/0l5fw8HVx2E5Y0pmdQnYdQ7xwbxA0SHKfmcuIdcpzzvWLmdmkSXEguazqgpaDHXcH6aEtWH2Y9luaE9is/GRaiSrKDumATe35MaqFEQLcDNaVORPjnrj6SclE1CfxbkAGHUl1BJjUgNyOuFUQZriGglBTvXrHWr6R4nHf/jkNf+5NBkJox2RdxjvDsMDq4ZrQkhAHIuwJ0/m1Cl2HCNVcZEYGdIv51DQOKIGEch4LrkO/qJyKaQMcBLBgPbUqcMPIDliKPPHhTFZpN+SfN7FsKd0Or99vTTn/D+jLyXvwAIRM1/yhr9flyT7LC650wmjZzqcztILq+An8aixUeu4ad/YGMNY2G83e8eE3h1tqO9j8lnNHBbld5VRAZ8V4bVfps2zhY/raeDvZZMSiahUjYpWS8TM60ujK+aMCwa5DGC92kQhcphH+rRH02zxVmv/8DO7lmzUZyWLuDPd6oX7mWOw3l8cMaPoWA8sFbGWOEx+qVgPjljWrxj+UN/KaQS+r7DvxElgnpuudDsQ3CtEPVLHb/7QzeS3YUBgriXHAS8gDXhowS0KMlMYTq6K2WCDGrUwVe7AxzOh0F1GTtanD2jRYN5jTRa9F3eUGKM+kYVLB8gHpZ2gIMwsnOTAA==
Variant 4
DifficultyLevel
693
Question
Jonathon measured the diameter of 2 coloured discs and recorded his measurements in the table below.
Disc |
Diameter |
Red |
18 millimetres |
Blue |
183 inch |
One inch equals 25.4 millimetres.
What is the difference in millimetres between the diameters of the two discs?
Give your answer to three decimal places.
Worked Solution
|
|
Diameter of Blue |
= 183 ×25.4 |
|
= 34.925 mm |
|
|
∴ Difference |
= 34.925 − 18 |
|
= 16.925 millimetres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jonathon measured the diameter of 2 coloured discs and recorded his measurements in the table below.
>>| Disc| Diameter|
|:-:|:-:|
| Red | 18 millimetres|
| Blue | $1 \frac{3}{8}$ inch|
One inch equals 25.4 millimetres.
What is the difference in millimetres between the diameters of the two discs?
Give your answer to three decimal places. |
workedSolution |
| | |
| --------------------- | -------------- |
| Diameter of Blue | \= $1 \dfrac{3}{8} \ \times 25.4$ |
| | \= 34.925 mm |
| | |
| --------------------- | -------------- |
| $\therefore$ Difference | \= 34.925 $-$ 18|
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 16.925 | |