20279
U2FsdGVkX18WaBZntl3xMVClxigTeRdnGLU3jS2pbR1rXJRHh6sMnheXOTYfLrvAd0rimBbVuXnhRxlg3HYJoHqYKxPvzSyR7Z3VLYJANGuLeW+fFP4IurV04UFywIbcONcsvMJafyahZIEbai9jAUMFsEJQxAasyk8i0KVVMUTsZMx8pAdhH4Ywvzb5cNAg2Z4XG2b7+66ZVTBvTY+espdVB3tCk0cImlwEznzq2j9XtTQPGThu1Isg/+sfvL0mhgqGELrIIWtjiH+XMnNel7KuT8i+CIoPp0jmNGLBKh0CX8FWMjd3GGQ1f3fkF8X9N1OUuItmo+tnWEREjaTmR5VV9UGCEKKteKgU41YhcXD6M9/0HjQGT2YV0wZILtHQFTYchFZpZsefq3qT7EVN7Jg3aYZm/auScdO7tfFJladbj1dzV2gW61e3L/ZIK1rVSjDxSu0O5C8Z9jBRNEMKJLeKjT/P3oGdL1K9OR+J+h6pjgw21a+YczemnV/4TOAGgjZEsV+tneRjEX60DKJZo+ib7SU76nMSwVfdTf4n0ZBvqSkea/dRFyk0koqKGu9YtOP4PzmCniywokoGyLzYWfspaf27RI+ggXKAvD3a4pRn1r/vAKBVQmDAgpJnu5llQWiDR0U83hNjBAE21w4Ji9hfDCWtJOSxl289pSYZ44qOqolGS0IcFD1zM2O/T2MfNJEJZNSsie9MbQ6//LysyQmuGyHyyiSW4of9xJGjK5o7TZ5ONQ1tkWcOdRgIp/mhQWGbqfmIPPPTPljJ71lgkTovHCXyh8IaDX+GhHEH4BqMYNMySBVSpVF3YNfQoO3RNCuYraErIOtSYMN3Qv0qXAV/bioRKwfj6mvgiDvdUhzy2IxRzvu1WfRdoApEe4WWZIqrsJr94trMq7rZsCF8/DZDrrBpLnUqkBNP8kF2EAbbYY7DnKMFaml0hTzUknSz+OfYox7v3+d59m2y4k8y5tBXNEaUrxUXNq+p9ipxp8RGhF0zHONjpyXRayYrY6RTm/uNazW0AEoVMnMpxbJmVcBxDYwXp/uRA1xQdomVlHBG1StZ/+kBntvwy+RPqAlnskTFH4cRtgmZ6otoUtDnlOlIW8Fak8G5MQ4dZ/for601hmOZ5h5Or6tnYf/v3aoB8pdMpXA5y1Jgr6HN/0z1oaZr6lZKEoPH4gFj7kTvgMjpOK91SDjim7IRJ+KXkAeghK3xu8qd1xIs5IMpyIDsWpacifQvqLrRuYaye/Is8GougQR5hb3VceDvOzbGYWYT/FRVpCeq5EFAJypEznp5eOb3X8YeMIq/1Ziq7LTzAiwqtc7tUyjJJ7egbqR6/2zdE0hn3XAruIoyKhtw3fPs3LxIjmykennziPMaMhGKy463hE4UP7P3dOuEG2mEcevoyLfy7S6JzccagUN8HWTZM4TzFotGqh0Nb4RW4GeSInQcemPwGPPqjf10Vrc2taIbedvHtYGUVjTn6j4J2/kjOhGg3CMPxWQSYxJz5CX6kRzwcraU7mjp6Xsm7V5a5N98D85xzhBJr0MYQ/XMRrbVE2YXUkRv/rs0wZrgjmAezv0reHyNwkYE/QhzU6uZC7WHmRtgPl1BMz4W5SlXJ0w++pQJQ495bS+9cefmULMQTpQiTNkvqE37GpnuUVGJiObzh5Z0KbLRFdDW9LSfxKbTBiXR7na87avX6FHKhw7PlZJN3je8SXR6qc+F1sVodcqB6eT4iICXoJO7SsXr7JRYatqu7K08xC2nU1b85c++L6fKav/+cTnoWGx6wSv1d9NNhAkd6x5kxxbpOZWoHQbJrfZI78v0JSXLbcXL4zvg7yp3RhbpkgEOgG3SAyAqP6yCGXuFcqCaYmteVMOMBBWrmAgCDVG2u3To3S7HhXjW+tZvXPiEnBtICC9DEVeBHVNzAspCwcNps1or+H0ShbK9JZGufyYI5EeOHULxPJqmZjzxjEZUYyvl1Q8K2r5l+8qBiyrUoELGrJZzyWPk+FkJdeSrtehXdLSDhXyXslDjMwWid/JWm89Sra1hYV8Ys8ox6xiTnSSn5KP0qQPkQ5ytoVyU2RoKKf364ZSUjq0RmPM5PMCIeUPNj6jCL4zIj8YK06cGA8kaTWUTIS8PKqm+WhbqjceGLdnjwhCXsfmflhB+/zFfIJdxhrwfKi/iZlHxnuyoITron2DIiVCh+AM5WD0vzApM8Q0Sbl6QBWD7Ri9RYdw2nAYf5RwxjSVg7UmDJhYrPOAkj6y0Uj6qx01kgcohhkUabHL5SE49sIImeFDxyTkK6AQlVQZHIizEt075RawIMb+ES+mt+ZyEzJ/qQJmkwEn2mUrv4W08j3H/h4Y1LYVEFVoCk5hKYMGykIUl3+5JHPoboT+adWZs3P0rasQyhGMhU1qQYeJWTBrEG6FeXifJC9h513HY1a3YnZft+ltHrqnsfcKc+L75rxPNaUC4xP3HbA8Mb6Rai8mwypmPt83u5f1d85CXVwIoop0aZnhYgSWsW/F1GFafXxsyR6qJXBZzTu/N3jjszlMa//cUSIwVKAdkjHUK8f0bKo0SiA/ab7sciK6cQCxFzYeUzFe6BUKrzZYMR+ya7m42DShbWApwk4d1nfmHoobq2mwHILwWLH828qHxs2rff8LXKCQ5aMqa+nzUf++Nn5UX3Hj+jah0SVkqUF67cmq4ktTYPO2oh4zQeUEvtVXUY7kSuN1oNNF7Bqv2YaeHVWoduX4GQetNuIvqTzXXY4IeGbK13HxReOSGYvnlhXLw6X473GFSbBhq4lkKTQ6FFtpXZq6Uh2rMBxbZKJgP/q0eZU2YEofsynRxuPMEl6vlFo1SVwalSt5QgdBc2DJ1cCzsjVWkwUD+6aXBhzqGqSs2M0YpVglDrt8VdsCLrGDaTvNRVkvJSzwRWeEs5wFO/kPfY+vuy+fO/VinhfNdvyILwpvsDaG5L/cmHtbMeaWR9PGKR+KPc2zfSgqROlIcOarozwaf89EYz/4IntQQap7E2yMKIOwehcDsz5CX3NJaa7DEOfQ3VxUk01wN/v9kXcgiksjeT4PrUxRaaOxcvSa6I6zONiEuF/JXts9M7RV/mSKUdIb03zfkT5ZB6wUsKBGYci11sXC1Koo3tGW0A3CGdsw4UYiLnCSMKl2pjrkbKDe9tAVspYQUtDIRr/nIBnmB9QqBVBAdtavbTzUXWjKqqUjtIcg6M9jOsI1iOpYTPRiZrJpXCk30MEGyvKly80wTLlV3HmIsbh2k8nPUK4DdCkc12igVESCJa0jCRqmNz+htm0QRIIw9RCCZsN3wV5F3yReiaX5KfgiPv8vWc3GKY6G9cCZjKfjAEZKFYS2trwkEHT1FEbBpeLnyMKXEC07YiUCpiE9sMN6rsPHoLC2gTFvWCuQUS2NPDTQTzQvEbATzE7yoUwhoPu8mfpp7yi5OMy3jr+bVw5FohKMafUEvO6VnXX7xVk0l7dGV9K6IXZxNjwmEMOFaIuTX1VUQ7APvmqDxmPKuAb6T6klbf0cShJhoMC05Kig/nBBa0bPqiV1Y6BBVhLnA8MUH1YOnqsrM+Ou3TIqSrKJjNA3zk1sg+fDT5om+Ci1LW7IkesTCZEsEyr9No7A4NZuKqPOepQiDPTUkc9njsrYdDUpwKOoma+gheI4mmw2NrqzEeDccRpY0Q16G8LeFVCAwWJQeJsRR59ahYxV4HIwVwuym/3xFcF0zEL3plgLBAf2JkuCRPz0kIV7ihTO1fFrEAPg8d3sBb1rnmsln0mO4hE1i5UcowFTJj9I9NvWbMY46Gqvfoh4xY3yRHqp7Eo0skXEt4dsczkB1uErmj1x54SMJ6+q1WulfI9FyZUmd9vUbff9d7UHL7OidOaSDt8LVdPMMGixvwxmNKXi9O0Y7IEBpsi6wN9pTBYWD+wM/yZqY/IkoePTOo0qByVGuSKHpD45U00bnnufoLj6v5BKxjYzQLioACg9in2kDaQdmq0BW+b6P8QK+M4jmc8liycZcW+X5KKARWNqr8GskQAMkFNpAxaxwNgfh/JrbGsnc965KkqxxOPrdVgGU7HY0NDvraB0hgpF8Ms6bQnWcge0wVb1oZv8c1LjbdBt5986WvWZQffoe9isTS8KgTEg/M6a2ryy/Bbh6jEp8LVMUhARIwk5pe1rxx7qx1+ttFlaoa1tne7J3sDit2JcD3miIxE3db9DX7ufZLqc3tvd0f39tAfCM8BRWqp9mq4cWgfpzK613lP4euR8xOIa3r7FnEb/z2QRa+D7YF2YHkfx1Ow89vHYo75lwnL2tGfV08dqQaUvTdFriyvmFj0WZ4bY8JpTjmPFsp3SPbz+sJkFnmS457ZYGqfwDNHBNS9pY2dWqn7jD+Tq2pOuYZ3vysqzt745KSPYqaJPYXNPawI2OULgP+zVTc5O1LAJdpHqa9qINEXiPVpAJnXeVmNoplSVz3ipNyv75KSPe0G55KzrrM8JPhWyURXLc8UpOirH/hkUuibizGykerFFtqLRQ9UngJQ7lYcF5E6HX3Mk2HcNTIomVeyCWn/TBBPd8e1iPGgmESZw5ilzxUY9r5VxKy1qBHZaLWqMU9fRH4rmlxPn9E/IG3xCv6aPEsOa6WlYRimx2C3rqNl9hiOpCXwua/PCiOa1yM8HdZsr0JcS5WLnOC6NY4MxsMJdKVkI2FzGua6Ms7vYh4iSgz4TsMowP2BI+4j4lo6e8nECTqlkDi6LFAT0lhrj0gPktiNWebsl68goibwdoWl/oiy8EzLRKqvOPI18pAieP/n/PFlfZZb3tfTAeg7KtYqCJNFSMXwDdUZwAtfbOiBufviuH3dRHUbPj6MAOmW59IXL2ols7334eglemwjM2Jv1vzPV3IMzM+rj+0DDt/YAeqQSRAzwaPdTxu1Sc8Q1t+0Uwu8qAwlnEwDbE8f8rRXyfduYuqmyDVl7BET3Rrf+J0efm1KUUHxTlAMA0kij0SncFgNIslA9slF0WKnHI9KJoIZAIdvJItB3Ei6yywra4DnkD2ackj1Uga7u6/yWPIPQmWd6f9Be8vtJvL+CJg+bVi1w+R9kV2mfWbCFE7pHnK/VeQO1Hjdc88J3YFLkD1EXVNfa7FFzm3Cad905aR9DXF5Y6zTHTVxYvyrtnn0FPNrosyWEwZpgS71c51+e7B4UYkWnwJW0ypHKQIwECH7ULQxpLERwH90HH5Qm5vaGmadxwWH+Avqb+fH5B+G75TQpFJKQfpCzHasGZS7sL9R4mvWLe3AHmdPgdT9UyY5WdYZM5heVgbuxCY7cHuvQF3ilrDYaZzxVDgl3h8zNSeq+M/vpFicfpzE58q0UAogGV7mIvcv9IvtmLOuGZBb0iMHsbEbsGVDxd0Ybuk4XD2r+0n/BJMWkc3jLNlFw9x70IplSZT50lX/6CSqGgWxpWknFVARJYd5UKZWOhMc46cJNDJEk5kBW8+DM81ZBxonzCXLzg5sTdT7rZn8oDqk9Lhp10X9bl325Iwub6e2Mk7+hAraFsd9S8RazneID+rq5DwH0jLaVQMW9bQvgYAMZ0MSCizUR1mjtAO0BKG8ZpM58RGb8HeaP5KJFe0a4Ea+Ck0DLwB7G9kOckdR/HCGnIYtQGvNh2Ta8qnlVb0ufnebCLAs4Rkp6Ualz8S0EB+AicohfHM44dowPzHx40pDjIKHAs2PLRBxl1fT6kgIrZDGP3KlrUAPwTGU4kzc1lC932eX6ELOesuGmiRxHkW2anh6uld++L8maD5tB8hae8TpxUoGrQ7ua+KU+KP5xOzf4NRx5DAyvYe3laHYODbmmvAa8H1+dbv1GA5A90Mq/H/vm5bEIoLscjnE3hBCYuvadxq8xHTaVRUF6+qUxg2vupHriznFCEAeSLxRrHgf/3ltJyR2DFSkfSUW5Q5AbMRFS3YNvZ30H4MezAKBoaia7MSu4qpZwUT0Rh6mhs3URn4urccgfe3C9HaKJr3/6q3tiQzX0w9T8YlsljY8AouSjjkG8j7cmnix2gQsl+kGKO3HjjVcIHpOrQCpb7uuQPgWZXbneQO5Kl//88tPA7kJfhy1jU4fwf9eAng3sPJ2jzZScDuTu2d6f/9aQa7Sz1xlhOTtAqFycvOwTOzMN6IlRrRvq9uk73YxlebegmV3ldu3YJgqZEeFaTo2QbYhO0w0hc/U6yFCPP1EJhkCcKFiqNbVxVO7OhQwuFz8Rjz7W5G8Gm+7Jfq5stSAMozNd3c1l/RAeDPmHvGppGkB9qXzrEEuLtpM36qtWqJvzWeDHTF5J2I/VORp70TMbuLC1Pg9LAC3k54jK+UZ7EZznIMzyzZF4VxSxkRJz/+y/pwwMXUGFd4bcwLadcSsvim3Lf4+NbkhcqweTtD4zEdqrxCx+z6GqZoQoZrlQxOGQ3cc+3zn8N2f3fhOwSJit1ZO5+NPKb1TUWY6zCt0Gs/usBwQLBNetnkjM019bvX3+OD3G5HVjtjkKwGWnNr7UVnNczRCPrg+mJkTfUnKnBnvH+aI8wB8rb7n5W6BEW4jN2EW+jOxnxSegXl1FTOvinJWu5s9g1dW9Y8AV9hWSAm4KwdWjuVpb9PENLFAjsRGcAuSKeKix4TxAI1MBRkZ7Gs+0bOk0GDYrKO4PKK4IRT9OJTOjntSyTxzeLLoFMoaf7vxGNOUjUKJnqwLpzGeauzFsY+J4XE4qiFv2ck6INYDaDdwCadt/gNQisNh7tXovIMV1Kae67ElXyrjB2AMn1LAWQn5AYxqAVOgvDkfYEkkcpfXyaLubB75lbBZQbcmngBHJ1rTeBbKfZx3w5WMfF3f52wTZUEIGe3BRjT9mNmmOpSFj7uqHAUd1ISLj0QVYWZZWeG/4UWXpc9s6X4RNQ87JG07frJ9xp1iQ6SbGsL3WcWTFaCNXSiv3BATCc6b0a9D5kskE3Z9U5jBRuzLcCg6xiNiVhqfQjhB+gcO0Va/3dBbTJ0qX7S3kS4EcmpPucI0ku/cJn2pJZm0t00rs+7AzWXcRozGWIG4ITSOuvJpVdNIP8DmZoieteYGl9AETwY6HIKjTdK2GxvEin8pINJtCB/dLDSlfy3QKxLalv339ErWNYRW6pRoo3Izm+9PL07ptm34hkNeV5lECr1WO3MzuXFjbAnjrRA58l9QfSkZuac9So7wetMkFI1K0QD83vB1wxmUan6DihlkKNCmPueZbX8JZ79aT8TECKFMtyix5bbmz0nztiwJ05Ih1hM6qZR4fb6vpuDGT7B+LMKd8ORN74ttqATDm6Unly57gQsShwtkX+N3fe32t6uBfjQKOTHXG2xH2zNk6toGEU9zj29KuUmd2XUFJwGUpsGw1r8ffUuWSH60GbQcYs67ff9H0sG7sxoEHn6jDILsc/hq2X2/n8zOjEMHyulHYxPzhAPOfB1+ARdnm2MuqxcdPL4T2MAAASSVDcmo0TsXQvhMtlrg+loO1uOfrVanzCIpUFbo5N0u7KkNW463PlK3OMDEMWviXvGKOCLTAhUfvFIsM6tmxoHWkBPUxHaUx1Ho3kR7sZRYCc3VTU5KpzjVms8ZqyE0xOU45LVbZNylzskKe19TNEepwh0OT5bB1NDdcGn5RcNfkOD1xIhlOhuMa3iPhzJgcpeVp9OqpbLXiJifobuu5yK6+tsYYnjNnBFhXxS+XVR9Rphu05AuJOG7hEGlMvXnARdEE9Usq9mIuBmO/O/4FN7+SYLmWfGe7UWraBhZGgMvV1vEMPNjDPdDBMW8Id5G35PqAp9LpVd28y1v0cPJ4he1nkUC8b0ck1PKWuifmB1fITLkHhI6WUPKTFmmZO/pAZfXHcTZJa4vIlDvEPk6wO3/ogFXeybjmE8yqI2ub/xxGpOqImWuls48wf22e6+elNCU0hRd1f/La+nZRag1fusgx2oOaIaxZ7tSP4wcWNUx5gs6f4FMgfhu+jtP/0V4d5INudlFVVsnJ9l/v4e0A8yww/TH1CnFOY+ff9BkGLjeW8eiSObSfHrY57xtS42VaBbVwXR2uYF4+TO7DFk2hgYYSNQoMkEmb1B0apFJdU3hT3mjQXau2yY/PzuroOfRqSYhNhkGEVHsS3Km5THg6mqouq2jc8nFbJcqeOuy7kbwMUuoNUjr+uC2BdoUO/cA9e+Z2GfGhX
Variant 0
DifficultyLevel
579
Question
Kate takes part in a swim-a-thon to raise money for charity.
Her grandmother sponsors her $20 in total.
Her uncle sponsors her $1.25 for each lap of the pool she swims.
In order to raise $100, how many laps does Kate need to swim?
Worked Solution
Let x = number of laps that Kate needs to swim
|
|
100 |
= 1.25x + 20 |
1.25x |
= 100 − 20 |
∴x |
= 1.2580 |
|
= 64 laps |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Kate takes part in a swim-a-thon to raise money for charity.
Her grandmother sponsors her $20 in total.
Her uncle sponsors her $1.25 for each lap of the pool she swims.
In order to raise $100, how many laps does Kate need to swim? |
workedSolution |
Let $\large x$ = number of laps that Kate needs to swim
| | |
| ----------------------: | --------------------------- |
| 100 | \= 1.25$\large x$ + 20 |
| 1.25$\large x$ | \= 100 $-$ 20 |
| $\therefore \large x$ | \= $\dfrac{80}{1.25}$ |
| | \= {{{correctAnswer}}} laps |
|
correctAnswer | |
Answers
U2FsdGVkX1+GQ2QL9oVsF/Lry9lwuFLaHUrUDXLkGdGnnksCHAOkxjx4dp/VTTRykQ+L3bkPAm2WIGX7YOO6/4RFerjXL69MMQkfZnIMe5x5g/NAiZLTCtBSPbeWAvrCnPkI6fOs2NogsP/Dhu7t3aGnX9uhm3ypNA7KcWQu/ku6H2pO4ewb7fI4GA6LgX13DMHWxAsI2eijNyBspWM8uevwQ5MPuxD4ihstZywTdOB5uMIF6Wdy1VkqCWl7+JTD5U0OIcu3DnC8Qhk7hRqX8KMjHLgVizYsMW9iLqdzOSIvPjtjUq5kZnjKYWwSp68Lv+cBjv7natz9hkiNlmzsLqUGrjphjEKa55keQKe+a2PDvA8IRCgJH2TB1bBwA83hi9NPfdsbhIMYHrhfGWP3vfIiap43ZMydf0LpqGS7n4DES7HQTgrMHGGzXNmGhb/+rZ9dAfSww9mpdBrC5ihxC7hiIZhsSbo8w4nASbiONQ0ZskbPmgBqxfaco124vwGgYuOJEJ5UeSLJ5h9gwMWiRRwfj1Y0K+OVoB+SrjnsA3UKPZAn8AFqTSH8FyNiFrXsm/tVfsdnqfoOrKTid3nulIXxTUY9wbi1gGrEe5zu4kHm7cwcQYuZXCVx3Mw3s0PkcgLQgsKrwqd01R9WdvKbrhTa1AeDIChPh26MFaU0ZvAPMk0vOn5sHSd1wSWPe2VaHBkMnRt88LxFZyC+1xc1YCTL/eoNqCUPRkP4FGjf2tVlSN+Gappj2/HNZUcEuRsIiBI0sCThqTQq8YU11JlqO7Dv3TrO3QNflBNRF7wy9RhmrgAQxHMym+nuJ1WodWMkuf40+KMm5p3D4hG63A9HL/H/VruyfEVEPdf+LD2bGHhrAJpoOrMXmVXtq4vLKn5n1wPfRpPvbeoni5d0dfclKiIgXBqG/WFRG/YNNKrzcxK72X7+VxCj3mmfGLOls0MJ+WXTYHQUqKbD81T7Xumt+fxw1smE1vuXWvR1qD1SdY99huAmsv+IgIBDrIs/DjLEjB53AuxeKJ+kmw1i7h9qOagxNSyFcIiSShije0kp5/yP+UfQOhUpeA2V1hfX1zARyDMt/+OCnPAcsmC2EKvjxbOcSgGZG2+xajG1IfrhIykQ66OQ5jDXjaKAQ5J589DnAKZRWoT/6a6FI1yDBkVe6LTD9ws/YR7227L1Yt+DlhozwcMlJ8EDyT9P4MCLHi8qxM+O4kQzwJeL665DSxKsxNdKXHSbbArPBU4qwk2JGV0WgvPbpLxr14ES4rerCl9fnuAuvND4GUXOnIfXi1xEJlQsVBlpQryk5y232M3+nr2g2sunYPKAVbL2kjc18s6nlpMLh+2xMC7UWxGi/KYMG3LS3zEm6bsVzouVlwpZ42r/2vAUP3xEWiK21fGHCAYQp2j5eE/3aQ1T+UXCQ/Bmh1PlYhftqdFt7fC1C+bPSi+McGMwcXgjyDdy3an3DRAv5TMGZxppMVdt4pa9Fl4bLF3bCSdaz2IU0lknb+26daLcEfLdFFKcxLFijEHAZn2Z3Nhg7qzXj53ubPGuFF/FRJ5T2y270IwJL09w4fe0lmeFhnh36SCAy64I0ugZrcq+Sr/1PQoXQygi3HWn9rXKOoNPLbeF2jEt1QC7zunvUiErNWEkib7arIZD2ZrJuyXk5ZeIEftcVHFfxROL7j2WEskWBVup6dxq1J57HAXO94TbgG1CCJ2OygnoAarrv54OOSjsUSij09BeDJwniOc8wYz6ND7baXYZ78rVhq2fYcGA9q0lQghxiUkj27v6A5/TO7Q5FxMu/1W/9NLKzm4owi9OMmO9zMmB2sfjZ9uYuNKhROl6vbcKig+zFxOBtUIYU/bNrIi+nD8MLHSmqJv/Gh7WHRwFxkr88g1mqqhAupkrXwgyNRGGg1uChYvAUtJ2JHTEEbVfRhfe+mQYKlpRbbVymB60NXRD2m5ntoyf3ftpXlITtnCox3Eoyq76msy3B5ycTcOHxWNoJxsp5dFwjhi0+qMJz5vGzTbl4J2WeMyozK8OVwoMB0DGIsOgG288XloHG0+3liH1oqADQfv21P4FV4e804+RD7XtK4vk2lS1ps5wFlOV5d06nRcF7r7m/BCUdzaZ57Vsqqyc1RROhGgwSzqgg2X1sD7dHDRVg9IwY/ouv+SxFjdj74Q0YL+LmtU2y6Z9qMmpkdclu4qh/7yGCV17KZg5DF91uPiJIcLQFzP1LqhMqIQcrpGhEHpdkqJN+I4t03FQZ0CPFC0b+VttajFkXC2MHV9EVvIrwpuWAS858NEJWsVocObm0Wycg24EsNPyhoFfF6k5qY4J/NA2pfHI3aycefqI8M0WpVSpF9Ps420xZ2jwyf3jOI+pwzjIZOM8OovOx5Sw/O4fxt57FeZJ9jYbQM+udyCBmAipTQQtTgwVYRxlVz/pwjnTPmUDFDRKXv+pZ+Yz04sQwu9fLEYuy1L2dXORNWLCaeJ0bP7tXB96jQRRp0MtFNrKdBwKdh0eTPKpHO01e6K9occMUX/mHn0nTWcGTG+R9nJnFcYyqBUMIoYPezQxyU+8j5OKB+aE6+NHm0PufG57GI4KLjDYqa4GnnjWxsp8ytB6B3E6Nughwxh9rxk/mneZBIR/2OggmSdRo97V7OcrLB07gZQdOSjkjE12nLZ8rSjXQOIwv6dlEvzQCJKU51Gi+pArGDOMeFuEqTtTfCtbsJdOVolYpMrrohPWO9X8XCcZI2k1guRIHsdixJUXfmerztZqWzzsHTEY2MVo255ADyNAiegHSM3sfYfXT0p61u01DowYteTnV1qhyZ+BMRYkUjXpK4ts3BQlEIdTh9YNBSSbZDvZ5sj8nWJudZCZnNFm7c4oa4dst7irVvJhnpLYdNfgGLyj/9WtCtkxyVJQ8Hteug3QqN7dW0/x0XqA2tz4v3DRnriJ4SgzVDePuvGZsewo4X/qiwZ2UzVl227/wpodhjp5aSUZqf/386Yg47SVVH4DSYEJGdpy5QwedSE1jZ0xU3wGqWs15Ea81Pw8NYBn5EJGPis4uOlEkeRK10m08DEZTdhx1Olqoc22CyIpMlJw12341IE0BAb1+OFXdO+23SkUiCUQj6gYS5Lni0svKGY43hXohrJls2CS8Q3t6q9SW95CHBG/OpVkgJMi+8sO1QpDWkDPmC4hHj+sJ6lJyVFKUqVnxPCLdaxsrUBbBuZzjxhr8sB/c5G4/hZAnMjrc5I4tHsMy5bznbvZ9/K4UyQRVeUfURDy1Ou/ns7XvrjdKot1vIHwQJrhJSOmMbt33J5ItdC6jH3JwmWx9TIL/tgVsgDi2rf6RqjbyRz0PWklGKe5wbX78MFjJDMaog1HCWLiU0RRe35JFuPj2nH95PjW+oAf0PXxmCxFQe/RTb+2MO6Iqo2A3d/UpsqixEyU0VDNtrg5Z7kTnZg46DvfMdRx22ihJcIPhVNw+Y9Bh9IZm17LB9nzV88cvdTnIyd4s9oSAYx2otLG3lRTN5VoPsKYmO3/2zqDrKFVtOYE3FaTw65ZfBJJhZteSCBBVEwFnCN1y1aN508VgT8zif5juW7CcEih+w5eBXxahzmonZz2WeH6qLGYKXKiDzeLEeuoWmrlKwWmuMh33Xh32jUX+zuWed+ESdPGWDGlr1oDaT7BMhiDJx3lq5pONsATKZnhRlUd4btp/6DvzFXzUGigg2RGTE7BH73lVcOrJhpyNR0QJxMAVAWLjg5TSrurLi0pJx/3ho+DBbDhCLRu5t4aGp/mwksBkz72iDmnDiJSdL0Hi1AWN4G5SfIRBtbaeIaZs+lHNbxbBsvIhonV53JRPqQYZ4Odr1zU/0ywPg9a5iHClPfAjbj+wqiQOrSg49b4Jre7TuQQbFCT86zT5CzI/GVlc/7tJM+GIE4Bwy8mFAx0KT8/5e/CIYaIqxt33MlWBl73bUXK8HDggz9zGgZR7CujjzMgebGg7wMj20Ye9RPczGOUhMnIAlUWz8G00GqEuG2Wf4MeBWn30+NjSz+E4/m4OfN8Lxuj8LYmn+1x4VSxvl4H1q0bANJNDDgZJv9mivXhY/sgQGMAYgxYWgOWFtvUS9Q0+HPFowXNT0RtRLWq1/y/73nEfTpUQmVFkG09qMXQh5CvzSz74s5ej03deN/vH33osP3El/eQYwxt+LMhA889wrNeWlle4XPnXjxELcbuI9LF6xz65Dfykh3xd3weuXngaCtIYCSIVQDesB1n3MZOD3tIaXxoGZWz072sHNrcN+vnBBiEZLwDJfGnOBC8xYOjAQNXs+zSxA4PsvOcnAK6vRtt0WTzUzLsnXPQfZDLtu/W6aYoOI8hXDniQIomtto3LKWazFhFG5F4LI6v0QkL8+jG/3cNEBLaeCpxpVOf700xlrsYIvKJoUc2rRNEz0bZaMGy1uj5la4GMju3ECwgc/d+IGc+li+wlUSgaSlQjQ0uxx/JLfLzcKDdV6/KLc8D/YumfRNE8kxSrsIniQcxesH5humMxESsjn9Cdi05z1o7giCc+7mrhxXLcBbzJKkguc5HmH/eeI/MMRujrRDMBIrneRa8aW7fYtT0UlFHlP6UCO0vWSDxbe/B4qdPW+FKyy4dCoTIfXNBSzO1H51VCDBInA5y00+xhkgb4Wf3YdHkMMrtmegwisXf3VeUpJQJ1r5Z9VKLRoKAb/ADrwaHPxmTTdUqprKgLGycERhsFsKj5V1P5raYASXIXoz8r24clANpRncnRlw5jBHobUNwBOXZQhisbwXrDaCQvXPoOJPH/+EEV8NUvp0zGU3AKDFEgjIXtCbCIYiGU0tXWlSWCZEG0SedTqLUO73MLPMxPGyFJG8XP8kLLRmykychdl47WIGrVWjOE8FVIjxox45So7JUDxFHOzZz/0vTDWj6lbsHHaB//88rBq0VH9a9kv7jId3c83v2s9Hk46Sd1m0lvzy7kpWXfAi96luzRm5VEXJ4lioq6/tViH2vdOx7870kHyoPbO91tyJB3jQdAmT5aaehX3vaeLhk7jRzYnQu0PjK+HW2uvO/VSSTQubu2URwjmD6FkZn1Ee9BESZH9IRET/MgXRKK1jFVtUw2SrGYE8cU8tidtJGxBK14Z6WlhFienPopOlPfgKdie6RWt2+EyGTYcUq8bbGzfbmUUswcHt3DcqYmE9NNa6wp6pGft87KbA/t2FCLm6FwnQECb4yqDKOo5sVBHTE3wUfbHjJnvt9xtnA1MZdR9TfweXYgNDFoW3Btyu5q4AC0qtNGGyYKeg/+707/qoa9aPg/7h726r/TuUWM6PL6zhI2s6NPYVOky6/caooyDeB/l7Y+WFAw1PKGFP7jqwxCpDb11JXGrIz7aOk9zQSAmf1gk5oW/yDVkppKZ4T5qzVjv0nVZVEhm5xV9GUv96aGEXSC2nZi/iz49T8ZOjpi+qxTSip4Rk5kyOmXE4Dk4j+gRIHKHAZW+D5MnEyusOufFihLrQA3C2uJxO3PrfW+/zF4jF1V4/6TmMv8zfpoN6z0+vL/IardaAdcmPQe9kMmwVM361LAxD80NrhWbXwTxTi0oMFoFZVmD6Jz5+Gko2DjOAKcMpNJgfYqiFpZ13sDrie1isgIGhzi751OQAqAXtnKdePfAB56SfFM5wB6c+MHc1Wz/LKXl6vlLJ0/f7kK/NmwvgBJMcl+kYbTiZnZQvR9TnfFBG3v9H/Bz8XzIm/A2cGIl1ZAGiTe1dx1D8L2HZlQJjHuP0zLd7e2SoX442Q5TBh3jWxooAVcho9P/ZLT0NkxBHPh4ed7lK0yKElhJJitLCYYSGTcCgkv+y9yt+NFbzY8r5oiKZFnbKyGUpZVYTiUx8vQwUKYtR47XYtGk4xnEMzAD6GjG9w7rBanBUbMb4zCyWRdc/ZnC1Zf0Pwf0OpCPZd5URUiqpX+QNnRO7FGRfAxC5xwYDmx28V5riXOmG5zHkiBq8hbUCTgnjFC4rF1f/a3EonsytLz2yikJmSQD30jsqSKVtDZZ8bZiELL2nw9SsqnWjvxBwYiqsdFyfRtmZMPJ7qIY/99iIoaH5JK9eoOKuxNXbBtFvCiaslm63zDFF4CfQyLRRhwS0ztGLJlvsJjG7Prc2yR8pES5KCIfcj5W7znH6lehuYSsdlZcrUoKYofts+VljM7Wyz1H+6faJy7nDkEHjLcCDk0Q/hey3C35Go7IMg+ccjiFshnSXfjOScuS/s4swUqO8k6SsEq7uHkCSPeg1R3p90VR6Fr2Hz8J++0tYza8ReRVCXIpc6yq/bodOC51Xs+/hVKsw4jtmfdbiq7un2PXmPc5NPXp9W2HsjEds1TJdCZqTEDp0fBddJtrW+MAF5fmzq0jbTkEZSqDwP0PlPMHU3KLs/tmcpV/CrYPf1cyhYOXJmwO0P1HelOiuJJmT4Z5Dq8acM6cKO/40W38Wcfi1WvEIF3b+ATOu4Sf5aDZpd1af5IrOjybFOLc5L3VP1WnHrKZCpVD1jGBVvH2CnihSXyxfHZaJ+JgGpvbSZw4UMgxL9asfo+YpuKse9/JnQfgTJd9jh/SUfcQ/bOgKtLfz+E/aUyMCydUE3UCiW6KLKG6zO/WhT0pJo28QfxFn6YmB6v4NHFdrDa0CNcjjji21DmsaAWb9Xy+qNB5b2jcEimG1LKqOysZ4EsFHLVvmdEfVjHlg5kmwfbHxyavux8zUzSkraBEYtzAwLbykDl0hR3pTVClGP5rvDbkRkNBnCocV+LuvltC5jmVj4OpXe0RH6Hxi/7r3WjkioQLQH4T5jaRhTP18RBBaLEwNc7xP6rGrc1fZtSEpY5pZqIOjh5OHW6DYWdOKJqrmmQxhXY92l/KzSJhm/NDf0HYoFptQWNFQg+eiLHXXmWEMR7q3JtuWe1UJXgBDgNbC+eEuPbTR1apcGqts4JqpWQDfBgxJYvISasqATh3kOYOz9P/UMUHp6b+66t0pBZBjR7UhO/j3J7fGD7kmQoRu/ZEB+vd75dFzEQxCQn3KKfABsESMgFHsEiJ3/AE+Mi41xaSEXB2l7t3dpo8Zzr1lVvdoOSeg9HWn7QT+OK4zoR1XDSwsuTQfeceOBSQQFarJRAV+p/WkSA2NLtLOYBl6a6sFLc5aJ/0mPuWFdK7m13Q2d5yJWXDz8eCuFPXiknxzi6IjfdvvDetGTuJ8HWIXTD+bzdD+xWyEUw1bZZ5Sf5naMxp2tc3uw7Bgds8L1hSl7lXojoUu+qUYpQZ6KWmFn8AZz64KmGNfHBWre/6nFKMKSxgT214NitC43tq71Y48kyFunhiv9E74WS7AKYdZT/3ECYp/02OCBFutPNNx6TQq7D0VjVb/McBK4MziBBy9gxHUwiUkoyWNgxf8h6h9a6zsrfQ7c565HOHIm2aG3GzxvcOv6l7wHpGmRz8ycJoZHmPYVXHJvyNfEXdexK98+80IRKi4745ilolkUjeYDrtVdwxwxVnU4OlxZ/BDuuJkK62sRGzt+CysQFr2n4jNGqIjzipz+8D0H3h1K62YG0YKxwOiblVi2F6C72MGa+kKQ6ZEI4r2lmllVNsRedRA7kVGfqv7RuRNY25GzVxbB2cQ20zG/9L47xUp3kdsGgG6oEwCkyvQisuDVhoMvWxUP4ZBIja108Oep9X+cVkFnkCuxyPqGi8fSX2qUiOsLSYg+GX9N4Om7/Y5bdbAPz1yYTAT7jeTCwal1ghfod56h829MERtEk9RSbiuogCpyuEx3UyiKaWZwtd6wl3ADNAAtIO4IVfY5/ZzsSI9ZNvazZ1mZyYD6kP9RnFsJmpwci0TfAdfTaoQqSluSZcGT5QlC5StFell2ah0QECwZIAOVrklxUQ7B4gEHO0xymazZHqPZpwLBi6ssK1BqUu3ANgj9cjRBoXKndC/YcBJvAxT1AOL5qUyF3bBguqItYsQS2aT5/hQy7iHzkWW0e/O0umBCOw3jL30BDVvq1pW5CERvpOw0W2K9ZZQcO9EHeJxl3cLT3epFL18zsIrPQYzc+7vPAdesGDuh7/PUFLYBI7RFetgjevG0h577YzM08cqL4lg5eYKQrei3AaIWX76NAWZ7Lmz9KIPkIeXE2aEMN+pcLf4Kgd3GnScUqekIf4lJiEzNYekukXQVlNzSkdWvVCeipAS1R13HYnvhLaDtd38VSvnxNncyev0nyw==
Variant 1
DifficultyLevel
586
Question
Jennifer takes part in a "Jump Rope for Heart" marathon to raise money for charity.
Her aunty sponsors her $30 in total.
Her sister sponsors her $0.05 for each jump she does.
In order to raise $50, how many jumps does Jennifer need to complete?
Worked Solution
Let x = number of jumps that Jennifer needs to complete
|
|
50 |
= 0.05x + 30 |
0.05x |
= 50 − 30 |
∴x |
= 0.0520 |
|
= 400 jumps |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jennifer takes part in a "Jump Rope for Heart" marathon to raise money for charity.
Her aunty sponsors her $30 in total.
Her sister sponsors her $0.05 for each jump she does.
In order to raise $50, how many jumps does Jennifer need to complete? |
workedSolution |
Let $\large x$ = number of jumps that Jennifer needs to complete
| | |
| ----------------------: | --------------------------- |
| 50 | \= 0.05$\large x$ + 30 |
| 0.05$\large x$ | \= 50 $-$ 30 |
| $\therefore \large x$ | \= $\dfrac{20}{0.05}$ |
| | \= {{{correctAnswer}}} jumps |
|
correctAnswer | |
Answers
U2FsdGVkX1+rQ63Ypw2YEb5IHTemBidvquTHWsIOEiWbEqOYiY0A7jmkbnT+wkTM+o4Qc3W9vhs8kyvsdZPegmhTizJrXrWf1bRV+LADxeVXvO7wJ72JP8TOjlmouK0H0sPG44AjgUJTmi+UG3NphIVyGgEhma0Dmt/Rn9ksgd1mFGL48dov6gZPNTUJGID84BO4Z+09mv07n3NZrTY9vcq2A/mlU90xHmbcHD7YoU7URGwqSvnWAwdFteMFKgfDlhxezcgnu8kSveG1U6ru26HGmhokfk4vRQmOEeGrYUP7pXQTsi4HEJDVAOtEfOuzstq6ar4TCaTxIZP1GxqRJ0u8JcjpKMTupv5d/ed8vfkdSaGPo838CJsG2teEu7l0W+iY+MrvnnJkzbryJy2CV0uAhlWP+jJMW4J1if562rIry8WKt0Vx3wb3y9+jl/TxGp45vUFiSHSEyJeYdL4pDxd/d0bAYmkBtjLoYBIkatMYLIN2YWppVzcipnGaIoTRSbeNTMcRWG5JHTG5SBu7NqH3nKjVeM6lkp0Kf22dwXj1KsfjmPmn8kscsqFz16P5okctyTSlSrTAG9FzLEBJZKEmnaC4PkW9WY4QTbLa9O9xseBOXCg6ccb10mGyJL4WbLhzCzIIgkvAIdwR+WaYKN+796HewV1GT0ynwgEivJymvHPPO0Sz9VfUC7yD+UfPwXu0QtbK/OrW57o6aXBaiAlEvdAcDa4qT2bUqj+imBG2nQeIHvV8PKdEp7H4120EsrCtVNr69sGPwOXv5/u8R8C34ix64R9ILmfqD9IFUjfdSghqGhPlhkdUcj+UdaugLE4n1QsVbrCepf61eEWxe+bx0sBIU7fp6ogyj+hIxvz1vgvzaF0AlL9oVPffMCyiMpxAF2TvYcHIb0dXSLX4cJCYmaq64C15HDI8+XvXc/6WnrtZEbPW+HbIJzGFyRU8SuCILcZaDs1lJHKAtjejun9REPo3qcch1GqHiDRXMo5Y7RRjCEx+eyX1bAwGQmJq5MqNupW7vsjvP1mgw5vm7UshkCgcpvXcu1y/jHt1GKPuAqugoosvKEIKjBYJMr4T5NhtzYHH6ssUxZSahIj/KRea7kGMQUbPIlC2fHqZKINmbcbfK2CYXKB3iuRPppD83ku0B8tXk82RcvVTZf6B+Rj+Gror2VQJcXhsr9q6yH5+4zxu9qFaCluGK3XEAyLQ5/clll+TSM58i2jiO4nfdCHlXVPF8mLGCzM5m9AZmiY2H4ft5fHCsoAPTm1YATFvD9XJHUBBTVM7dEoRoNSwo2ZwX9BTbNW2sC+6j+SfK3otd5E5LPQqI9jrkuBq64ULdNjDk6qfqMYv7svkCR0rxpRlJ72R8JjLlKwzNOb5b1Dvkk2z/FwIgjWIWShaJG1OaRmscOMNm/fqSLH7UQrQetvrrAC9Fyt+Qh/LyRfBUsJtI6tLS8Eym/ewupuyJG3bMGHu5feJWE1VJTaILxSKf3w8l+QWzzVnBBPVgdpjfbtMQP/WQzC34e8q8kazPgeF7rOdQuGfXuYhtXugcnyF4jWWmcRgKpy5Eb8qyVbxnSoU2X1zYkriWiokNPv80FiQZ9ZKP7RgW0FzZx1S/s7rFRmd/iEFOUziaNtSIskdm0ZfCwRUTM5OPmx/vJz8fhH7PGU2aMMmMpWnj8ySil8jXJf+YTCT1MZVzyynXNykgawoHP/+iQqLsH+rq7bD7h9jpJLLxnUNOkVuLI1F7C+sptK7zLBnq5HYpo9a/NGHvH6no05S85Bw0psy6GXdIEwxiPbLoZEq0vsUfRHWBbNec3/6X12w9RdLkI2iJynohEbYjMsXH//E1LobteTeAVC70PGYPVQdXU+7r/NlQtvT0qwuITgZ2OzNFMm9adXkOFM0CRBbqdVHTk4uB26W29c9n5t6w/JyVmCfA+9Ps8xT+dZwCiuB3wSdBBcyPmzyVe27ygVkKJ3Rt1oPCnMsgvZ0Jr024SZthfne3HYUDixusLbLVj06f08FxDefkEThEzxbqbhPC/Q6d3o9zyBqu64Hhim7YaQ/JnnbPhfiAGFAfPPJ/P5wSQ8txkxwcker7huDFHXjJBJaFk9zwUdC+KJEZID5jOiu//8PVhpG+IVTM+c6r4YHWum71cJ76fSsvJFyr/g9fKvi/GWvkFSSHZy4qV1G1OYcI79shByaQYr6w/36G47IwiXCCFgpY7bynVWur1lkem9vPDLunoiUi+bILDJvUh3WQ8PC2BrHPbA6uwK6GlgDQSB6u6Y4tNrRpjHka0qRHF9GmP4SYXO3KUW4ulXMMKrAQVzGyHizNOfKV705YmsrMc5l0iwVPqoXFHmjLtEboE/Pt46J118fHd+B8p8rrY4tlyj3DuliuptLDSmA89J8dwJPgLSnNQbCIxfq2d6qxHDQ6pBytUJ5Kxu6brvggmVy9QJWQ1v2yM2ETc58HMUPQa0Bx9ix/dmOx9mOJ528dvzWbNYyccdEjmiX5jIhW5ieuXk1y6NUGNxzUQEst/Qea6hCZdNwZ2zTYQIQaOWU7b1n6nW5gSwC/6kwmXEO0qkhvWkj6fZcKSAXXDAEXm1McwtI9oZMMTYRZdGk+cilEo1ORO9yghmO9XuqIcA0HExwCxzakG5HUaG3HolFWwnlQ+aEVN0RKKEUle6uHpMxnzO+r7MEYTir/Eacbw6IghBdd+q21XF1F8x7sk5zjTd76p3W1pAEmK3jIqyGWQ0E/WMgZKzD9wsQxGrI8RiVdaMCDfz0qWNehGIQeZztEcj26algjfcgULu8lsXAGNBJUCHKIR1DfLVYPYg925uY59Z829jAo59yi2SqlAJpD1vEIyRtS0sepWeV0UnItfZDwFq446TQYW1WvCCbl3/vIL4xRNWQB6kTdmiAp8W8e+IysArQHgczMDqt/NS7ZZS/jKd2nw1Awwf/KV85Uejok+/5Zf9HNEvShh+70zBrNn9xnwzIeVOFHgDCaq7tKWFzzYB+3Fmc7cNRUl8XKJUvGfXpLTqmKL0FBp7oFG4fMVmjzy7dRAl+0ZuZp0Udat7kOK2/kZKd8arxC+Yab9GIHhak3XPbo0rLpXhXRrNsYFrp6Jl2VmGb/D0XKoqGGQ0gpHeAsTpTkmn3KK+7WSuXoir3fYbHDC9yny57XDIPVFsFaBWJ5hEGbSlq8Wi/iQzT+qwB2oGf0SbCXFB1wTfB/UwJqjP/JfPLyB1ErEqx7cG89TdB7ooiLdiOcqx9XQRzcUronDta0rTJTdkEpX+Tor2FgeC04wozvYWPPfCi7zmtp7bu2nZpzgw+8puzLW4umt1NGmJO7ErMWTZ+XDxOaKA7u0zlq4QXRJOYdowDiZFkk119IqUKydD0jXs3ct8SJa03t0XAoZmA9kUwVv45fZbkJIIVk/8xy6gdwEtIyF8biFprymb8qFH4cdEUn6ujghMbBdPnPPBEZayYTp3bKYOCgh6J7Rgq5hCTvvJKp2gEMIG3umVrXPCSsj3W8sKU+HHdvXvkTCslaYd/Lk5oc6PJxI29QoFgdg5YkRX8SueDX8KoPLpwfyeX+x0lQoNM0rbXVI8b4gnGPtL+vyrFo5sYy2TwJlU0162nJF+bQ14/Y0phKWKnBaIYrbYVDuRq8lr05fJvo9NVcvnV3NQBPPjaMf3YdWkZdnQjCKdshpi9gqF2JNLV7KPZmACVbckMKqzwm8IDl08xBGi5l3dnhNnKTP595FtBZb/UpDZrr0JoOeqQqkVQBj8riTTx7RmTz+udHKk9mKjgNxcivOIR6nDUiIHHHStE2eLf1U1Rve2OwXGA9afFPycz4He/vpG0lpILYUHVSVMARKL+OnODbhrzMty9tRWz7KW5CkX2SYtgMIlCqPkMk1YQLVdGwLt9IyUGQFo70DeuCVKaw8PIUAT7l6cBembGoFlsLTeohZdxoHh4FBUB1F24HQIccLPzRUV0pyhF/KFwWTPOtqHi/uofG30f1h0BAg9veXq+Us8/za279Dbj6q1UXZGizBWd86vKrNvS/tqpXRKm1uslWKgWuRqT8GJVT/ixSQ82HCtfuKQGuFRBe0oC2M4KW0Zs5/ew+nSXCx/mKoA5/Wkax+KuM7fYREH4zKg+vFnBFZ5Qoa4B0N4j7voZTgJZDC7juvUC/Q08fh01cgpq5ZojGlPGnIuOfK9GUMEtXs0uesTpOSC8JPc8nqSLHEMa5tFSBPszPSDyhs0KL05NOXccrXyeH6zXmaOT2wPkRT7Kt/bJNuQ1mAlQhSfbT0dtRL8vMthAg5PJteKjpX5aFi+ooAUPjTBeH1teIRvxvq+uuCGZdhORwSp9mZ4+m0eF/QbjExSLcBwKKzqoXvwCRgB6FfdcALsTV8ti7DcxJxlmt0Xhtpj+u/fJzekdfU81P40BlyvQGKcy6SnHo/iLuolpJpSYhMmpOyod7M2jISm91kfrV2Wzq/xF60NZ8wSFElsiuA2jFXnwp9TLakP7QbyfVTLPzup4TDjMAA/zVNPIXUWn89G1O4/U2NTatI+FXxovjbdrUJKtSKm7Kj0AWmdPxDBOiF14PwqjxrkBIdsij+SuJL48G1PVcSapblPGd2g1M8kdT4F5Z0DqdEldIxix/zStv///qIeyQEdcnSM9MjSqhFSsc/rudii/eGz2Bqmmjve6g4akHPthfKAoKTWAXRzGi3Ec971li9CMzRSuVhN+tXqLc62B8WQOw+qbMXaX6NKOeVGBON0Pl7Ob8Emb/8XcHagirKNyW7UYsKhJGzNrk7KTCt7fz86Ru1ugL5piI+YrTkaeGaXc2szawkiKO+mNtHlimokD+8eXhcLjt4vp2YaVYEr1exLj6oTBKA68s20Epidhbf7OSUcP0h+2eyUn0h59UWrpxv79/sJKIkSB2qgeibIAwO7arkW0VjGYEmNVEgcN2jAa5ncRbCewAk21M9IbAz41GD8DrvDZjPsLC97pPTBreQMB1PSr5dAQC98Yr8ke3HFd1lEQl3sd6XWBiqbTKBWBkBWIJB0UIUiR5LZdijKQMBaOsZcpqPyE3kBrmUPAdWk2HFMizvmifRv/H3g+aHkNKZ+rqiOASatOxFq2KJp8yGQInUSQwagBaBOJ3Fm3DTBLKUZ0h/P4M9iDGZR4ORPumBHwgzLB4GkmYtDOARntiHqaNOsu2agEMo3/iL5Z3+dj3h5KO7AGFLL0asFXQRzcSSHMrIlNhVgTcQaiEJKpAlz/BBls7tJ5u/PkZwfrmAfEamXI/OHY114JKktrxMuHs8d99ZnaqAStnk1Iil8Ged9VWU1BQf+Ircd5tPj6dSnS4us1/6uohpkcwW1qhZo4zGOSjDKLJAI9iIwqfN6EkdUBGROLYdAve7++d0cba3OOpMIbhJ62/McjCVsjDGgUSm5ryAdYFvr7N6udEZUVAe9W0HP4Vh1f+d8Z36G07gJ2VC656/N1C2NYiw6dM6QD4kR+t++WESXevZPVB7O/hsm4gSdH0+09q4NxXouZ+RNtzWbhMP1Tt+x8rOzsiTBJJj7A1gxL0cHoP2nPLtnWCrmsbziFbesjgdS3XJv5GH+Q1qNcCOQ+4fy+ame/QoaWSmkhZU1wgiIRqwKrdionPi2cs+khWmjLJ3z48BzRyhSW2fAlTO0iKu5D87wsG750Rk+x366YIEGwh3yTTNsjqTwjFxUpgCLO163GJB3NgaVM8uZIbc9QTZMRdce2NYor+GDnlC/KMABPQMbCx2lOmbERxSuC1wA1Z3mG42WUqORXHSfZjZfzuOsNP1gB+N1/tHIH+ywHHg1adbddfs4bPvR2QdDQIgVvbBBLmUDbj1Rn69nfJPjPdoiYIpvRXMoPtE7C77hhP4aaEyDg2lNvs8ec1X86Lxyv8cnxbX2z3QJ0yNS+GSCYbMJfPuykK95qDJpzv9Fu5EXg7eXV54pqGJ+5shKXyMTvc4k65XagNlho2kHm7DSYlIyp8Eg2XqbBrgjhh9w4Id/dfKC2LVVcrq+NuXPgFiFfdWjDbb2kUo9HxHmljfHYvsvNQD69hTG3hEy9Pq0sw1PKBTJknUGnv/1d41Ed4DTeVOnJEx4o+h1/lIEUWnK7cNyWKK3qkfTrLREd51ukTcITb3MRCbf/ypBFFh9f0X790+bIy7K8pAYKYsuEAmzj2ApCDuSOSTkgjDkk0+GtAhmGlptdWcJjULwgyC3rJDBvW+aRTJ0pQ+ZTc042JUHF24gBlGuZ5lC860nh7TGEZd9u31AogDXNzRZM2X5sPDk9EgQBfRNRO8l+Otlu3pYjivF0nDZFBUS5EaRfq7JkXEFQDP/dpTAUtKrn0YuDr7risydUaoHj4nNRQONMzGZVitwR1S/FlmIabfB1MuXf+1/wzpB1OYO7iKRo0fdw42xmD2Rx13APaHxDrQ2OTHaqqB5YVCwsHRmoI9ZAY9oNgUNaXIPeLPeN9BXsSc/jlrzC5JgsWBG6gti5kyzb/kte2LKhcHR030c2Wlr7U63sewYK4SHfLyaBl7HmwtvKIobxI2v8BKKR2wrJGFdCj6zT+ElxKaUb+SZJylaZX8PKiPhkLl1kJsl8a/4hPMTXbFZrF3w+4a3KZ0lVANhqw8jgUx3GThwbt2gFo3KliVnIkXOsYeH4vp3B6F5rv2bDwWuKJTkGDQpaKvv8SCBYmCTjy9n3ir4pxFRMYzIOtpksiPZkdWUT7fGCQDNiqd4NFzfrIUlHh3fEsmDXhSNWwkpHL9JlGsjHVOO3DF6VCtgXOJjM4OrITvH9X+Wt/YJU53zqGBBzArZitxktoBdK6/AEyj3cekqflixXGu/j7i6Ymp6JVZjzNbNiGVIMDQr2KwWJvNMQuga38F4unWuSw0F1+fCjTyKvtlhyZHhqYcTv2bp7YQxBMYKBV/KKHWvtdG/2gBcR3iSyoNuM0ZX7xenOf6V1ajvDUz9lLymjB4m8Z+WhlaAWeqh/quJe9KPcsfcJF9fQOtxMyClKKOqYwXCaSJ+4awsNb9js7kTRpcGU70hV66TaQ+S4cH9zIaAeOhtFktE8EbkdbPHOa91f5aGnV7EmhkHaK0gS+pcvqBBaXBcC/jfOkl0A1X2QJCmPjBAyS2aYxT4juF8oC21MFvxA9uk7LoOdcGN/Ex+BZUaO/OsIuI7CemXT2Ww9Rt2mZLidKo7JsUD6uvqG1n03KORdcGbsfc1Im6GlxRJf8kUUb34LrzQlpJ5TGR5oIdDr4PBtYMhsmQm1TfkjjSa7Y8tPY0slvyfseSiPKkYXNzHQdUbZnh1fomd+L8rinfGcPEx9DCaOLOZBtaQ3GsdRsAKuyw+2Iv2jRAWPxEbdjuZP4Ji1Ae5qrA+lpNDJurjncsR9CKbpeqohkSVN8lw3WZdQSdaXHEjnZ3iRDDeOl6CWIf3qc3zYPGGgoPGQAMVo22XssudPIgdr0NbCfDSI1BQbpmLObQ8CjQrJWVFYhvDInDEn5DjYKJC3zCNk+D8jwSdl77ysmSAxL9AqxxjXwXgWns6vI65oRZS+DzBir2WW9QsHIRSuWV8SU6ztp3caGSVJ5s8HCjiDWaZ5DDFMxz5EGmEFIwOGV4tg66ui0f1NxGVofeprcVNoOFoPljvJajsbS6hD4TUv4ji6yYeENh20BYPmI1wtIOb+Z4MvE6lcrYKedjyzG74NnWDXfakSmKXpQN454WOGa0b4kL3de2QDzL/yM4nG5D1VNkUKg7LF6e2PHG05Hj5ZV4aa/NZcHAvJBbPbZRSw/qVqdAOuRYDwwNKLjtJTJYV0JkSC54QVeEkpHQXISZSel2d9fjvHl75ktQwYICStVaq4xxvU6SvoqCUI0L6ssgiacP4R1ivS3MUjraBh9Upz8Is7ggvXSIKxIYsmMql1QhS83w54VNlPcb8V+4vueve1V7JWOz0ad6W2lguxib72dH6xeiQUGnQD9499XKqhhxrwNyXuu0eNswDAO4OfaqAf0q5V2SGuowE+OmK4BbvSd+7C60c=
Variant 2
DifficultyLevel
578
Question
Finn takes part in a read-a-thon to raise money for charity.
His mother sponsors him $60 in total.
His sister sponsors him $4.00 for each book he reads.
In order to raise $100, how many books does Finn need to read?
Worked Solution
Let x = number of books that Finn needs to read
|
|
100 |
= 4x + 60 |
4x |
= 100 − 60 |
∴x |
= 440 |
|
= 10 books |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Finn takes part in a read-a-thon to raise money for charity.
His mother sponsors him $60 in total.
His sister sponsors him $4.00 for each book he reads.
In order to raise $100, how many books does Finn need to read? |
workedSolution |
Let $\large x$ = number of books that Finn needs to read
| | |
| ----------------------: | --------------------------- |
| 100 | \= 4$\large x$ + 60 |
| 4$\large x$ | \= 100 $-$ 60 |
| $\therefore \large x$ | \= $\dfrac{40}{4}$ |
| | \= {{{correctAnswer}}} books |
|
correctAnswer | |
Answers
U2FsdGVkX19cqGZjPa/vzouEUneBbb9DQVf5KxgvdDy3VPHj4EvqhM/ZwXSU+VQx1zpEXNN8F4NJscINFy/bjz67RsNHqRUpNmCcJVgskqBuyQXNd7lsnZqL2EzubmhnJprvqQ5VAcXEsF3wITP/NNXUQRDegI+dlaJShnpiOVkdqEf8bNkq9w5vgkkbxza+LnShX+g0YX4n8x2m35EoKX3DKNZrT1j6QBwvySS/EmwKO8SJjNchZE+rqLAe+Er48i0Ede+zpxjr2w/AJowj9D8nGKUGHAVUrEDEKBXzEQtE4NiMef9aWIxe8riPxzS2wFAi8TQbz+iIb3MBW5OBvHHHzcwoQ0QiOCwYd/uVNH7DAZeV0QPPPq0Yfa1+JROGursMUH9Q9PHRZERnJ+cA82IBPeiIycZIdNf9U+cDi5llhnBAI2Y93eXFOC8ntfwMe+RDBR73T+ENpDHR9O2j0KRc6698Z5GoAN+07b01XKo3NcZ90utjQcubSJW8V+reJA7EwhJ/+tWGJqVc9yWau6F948xXbi9UZofyEYUp0oF9n7/pxFzh0B7TMB8NRsw/31oQi5yYrNne5FfeX49tMu3rHTW3xnKBuC7/Ll8LqHrQj7bQ2HLIfp9p9m0ieZvsKkS8+8cdegpiRH9SYzIlLa6G5NAEHlvUD19eEfr5qqyfra1TqyFchbCOrVm5oCR0WZ8O3XDbAny3pEEMqTWkLZPBs+T6q7hwfgHMFMA+rH+6bTT8bILWqC2F+f6vvSFzTUcH50q4kYHsrNtXtYwlhLWJ4Ant1+q0DgWaSe9P4Oj983EPHGqLQcARqJ9e3KWFXX8oTwJZwFLaiccdNhRHqIsJkrKNKw2ovXwBnpPFWYlY++ChKntZpHTEH9diWomQOBLSzdV4UdLXrKChbnTl1chgW5ZfzRizD1u/9J/DDvWTVqd9I4elPdQU8WUSrpgY7JoToXGfh25TO+xlHlGSweYIlxLta+tl9KKLH3d9QbU77AqAHXK1WyeypIa2yispvomoy2i0VBE1vq7RCaBdNPgCjfhz+ffWLhU+a5hke3z6aRP0WJJ0caro0gf4cDtV8SM0aAmqAvWAuIfvGGB1vVJZ56jYIHt9Doguw5CyH31fpCKEJjbhwGawxhlgRNR6432XMb3Dzz9nKoTK0PY2OIumGJcgtR9uTxs9CQYoFe9gsmS7gD5sCRkTR2MR7yn7T6nQeE5CIk9A5LvxJWvHOCtrtqUnchCZFHHsnqXQFVdqjBXAj+Ht4D/94G5PEWzeJNVBMk9qKG/smBQ+lATsOxtePtw7QrHcYcsGBKcMb30n3k9sfsTBp5nQ8dg8Hoe4WcFqPqhLXnHXLr/tAjLtjOxjgHriBqV2KObTX6MP9bQHE71jyTILxKP5KSVSP44lTe/qWOHdWoIFL1Ozp2/3vlbo5JP3ImWWbg6QkOfgBsRXvLtReTcdsWaI35/+4lqX81yHHt+Fib4D+mQ4EMJPal0rznSyJ/RJ9OvJWJMayRsRmz3m+Nj6I3jp9yCd81aa8VQP8yaV+4zuLHt/+1zPn2nH1i/ljQibj9bRnYbWElF7ZybCFYc1cgdW+yhRl89XPhtmsfouCGnhYes0ajQWkskDfsBvuAwDCwG71V0N0FWHqSUX2ZI8OarXKl39Euq80WVhncd/G05mmlsECDCQgFPUxk0+rDCpNp8cxA7aLgDJ1KTn5aq1M464WoQK7SwUV0yktLGG3j6SZG0JIsZtviGqEmQRGkijHhRJdR5P67/0e9hY+exXDcWo60/Fg7CtVxOx/t+/lCxVLNpZOi0m8lZbyHv7guKZ9gLjbREzoDIn3ErSwNmDEPBFQ/wtudqYHwYXcP6KQ+Wyo3MqOniNfkwAiyANII/Ikd5+ZaMt0mBCQkd19ILW7PH0DnwqZlvMdu1NNqfvyFKhVO2PZB/uXLJsO+7Yg2LIELymlLgNUXjiVzn70Ms8WBreaIMPbdCaFDpbDQGOAYImHfoWjVSs0a6NZyvG3Z3rMCqDQjJ+lI/utM9THLm1OV8ArwcFQXPvZN7pok42HZ6NVGHWRlwPYCiA8v8xc6aWJfib35rErODl59iUnBJEcdTAcnoRzYwmdnEBVA5oyLFdyacJl2cEn1I1Wsui0qWaKNwPylYXwJQFRGCP6wW1hezy0+YfAWQISH4xsvhJODjjQcSmT7kbzHD9gPOa8aKqHdhnKhcJfbbk9sLZRjVz6By12sz4j/LC1X2tYLEcCIWDm02Ds0Zvo7KUgEFOxvWBcc8b2NaH5Ap5af9MH9q9jNbDejVJE9+PcfF1YXIbH/Bq6z01pqrPSqJl07jzmuIwAdmFtqSAn/A9FJSRl7WAqDuGw7DK8d/1ndXtegNoEUuM2c4/xiOBDeiO9fjPpdqHGDjIHzo5c/UhHlY3Y8lGCVnITjUidXANDpChPiHXPSztgxKU/U5vG+VDfsmQ3+3Z+IiJko1/px2OmXNWKWmu69tjoDYxK4t8NWeke2NQVVI4csNu4lx7DlQSO6xtCxMwWopZDLOZOqBd+AeJy1WBPW0FRnueLkx9qzBeb0Tgkf78RQo5eXVWazPoJ8+lDIn+ueufpS3nkHEY9XBZnZOAV7V4zMKQ03vrYcMxRVdcgnZzgXBL2Ai0JjGMbub+JsqQcjL5uk+77yE0//avw35WwnWqyqqR0k6NJrZYfQ3bAbMV2ujsm6ehcun3BqzvORm1bPVgYhT57o6NEr0hSX1Gy5Uyifg8w4qpFUgM3qgS/4Qo05ZrC/y7f8PRsPg1V/fRRVM0JMfYuH4I0/wQyEWMdLzVPS21SdC+/wP28vvXE4j1YFEVSpXKkLRd9Er6ZCNLK613zrxibM+xJQDl1/2Kk6CZyhWkgMX7V1K/SPcx+2mR6s+iLmkxcX5LnWi7Gi4Nm+v45U3MmGu0iJFZ1p8iiaKPF3XZqYi8VMz8IdFeZbeQC6mrtXAYlnWQ+IGnEtujBKrS6hQS4tYx6n0gim1BpsT5wm54+P4KU9M06HfOVRRFyUiJOD4lZUGCBxFqPSj0GhQ9B5VrRfn6eduCOkRzzKXvBCplQHC6doU6vdk8e1tyIPXjuVFmirseftysyvGrzxei/7JkWdNN25HIa3mxuCrZCE4FHZ9uZusTAuoKy+4WKvhFnry8MeNXRyz/60HCLDzkyVrug48mMzWYW4iOJHysFv0vUnTDTYS3U5RCmYLQU0wkUJlpjzhNQIBxICZWw+Dl96RQizigX6VPDJ9HUZ0Ucfx0N4FhdGcC2Q8JPvaF4sJ1ENiAR+z6Ge9uZ050SsM66u6W5mC3RVpztu4XxrIF1Yc6+4DiwYPBhOmCAFDXd77A4npXW6Pb9IwJDn5e6NjfqbnipYt3MWhMTBTbf8BXh4tBOoqsJFt+f9lsEeK5PuFwjnbMLE1fPU6ic9XE5jli44Yod/dR0DPsRl3KcWXdbqHimWeX2LqUxHC9HmwsK3S9lfXPxHOt4XnsaflFZYHWz8DWVPMvpUSB4cTS7Gt+Q5JrGYr4ibj338W6hOOWmaQBWogf1SCLqerivOE0GZyJWJhxa9hNWLT8MenQW5c7himBqak2f3nG5Bby3bvSmJisz/mGWpWIXpx2bqrrAeg+VpeEAhlQI4inzZwUNF4w8B44rzSUcX9e1v6MmBPCyxP5hzoImDTbp34LtpTAf2Qj2+SauqF9zY0j5ILNucqQk9f7fg11OCfj9WXbNy/LHeu6GNMzYXuX3K2MAi58L+cFG552853clQRqWXPqmK9RzcxLopfM+VWn5aMwbYnga+83T5i8LXUXSqGqr2OMOBtb4tTd7rDmEWN575AszdbQrNBPNM2LsPOc4w6wJ1G51nLuvQUYOHCKjrQPs+9YUYJaSggoOMKrg2+kdyDkEvNesjTru1hkdgyg6h+ch8m2xShYcAeTtuXcEgaz3Q9NYlJ3Ear6yB4uckMxrrCMMjS1EWg+N+Hnpbm3UQ+zdOtWg8UTfE63aGvsWnb6h+4RvHbG7sEc1lTV7s0Zk3E+GuJ/R4fAayZ8r/FIYmu0EMnQkhSxuArddGN54JK9JgWQxi/6HIQXYI4l2TZ59lppD7p5Sgt7lv5gXUgijdTZiqmT0wrqfBpZ60Fnr4lbpmxDbDyjk2f/0fcs8O8m1RwFDwRNXybbrB+3v4HXgX25cPLtyGJISw3YVqGlXPXAdFxsyWmnwKH9PQxVMGM6DK4wYyMHc1Efzg2zCguwBB4d1nf+EMvaFo/7UULv9n2P9DNlIoo3zP648fj39+J5+om86XaDSvxBTaQRDLxoOdQzYe/LLhCsRKWE42AmKWbsZOjPrFuTECJxkCIbselR2c+i9NgNvh0sgyjIxf3LE8SsLxcDANHh5G35gnCdjIJpDVaCixLf1QOOL4irAFGzk63r7tjX+fmPJxP0FpbN1jCkm5IFXsE/UctyIattk6S4WzflluoWaNIAxxxPVy7WmpHjGa2zxN7G9SPyMPCtMyfMjw9KjQonpuymfCwsyFBqgMTUEbBWkfL/M+87wUKXnT4NTcUaJ8E/js7wlEsdYriNe6Rd3dFJcsMlOyBO716Y0/r6UNo83jG4Bbv3p9QieYy4rZ7Kpv/bW28E2XoNiuSfqIxco2NvPDgs1T5CLb3yREiMxCSFzKs3f26Ozhih6SLKSMJlzOLzQsymXodPA1wZJepieT5+Eodc98KV9pBEt0o7o57d3yGRf3Qw+Hwbe3BOuUvzD/m1sm+UMnxYdFPH4FC+pl2URPjsuj/X8T9T0l7CyCiBxZYQrVBOhg1Ib496c6Nl9uS8Qk+8zOeMTjynROZmeLF7bANEG0Fpv6/wsP3A4hgUGL5bxCjk2OkyWQ/33rT3WpSgRhe/v1IZFa6NEt60weieMPs5fANZtAoS3/X6kDlRzmyKrVuNHrog4qDK7Bza0a2xMY8UQgaX2rRT4fTapQzXTpC4h2DpSvvzLf0KwFYYdaKw8G3JLR0+yVEkf9Wg+L1K/9DZqBetf/bGR/LNyj8/AhqkOKJK5Gz0KFuvFIKVFae1SLwGZR2Flr4mbYCRr7rx6B42C+LYBaGlX1aMGOsWDMiRAnhCz/9yivvCpv9EwaIFJf5m1L4p3odlEyGx/K3qxsO80BfjjSAZyypwJsp1gox6s7nvupGfuM+tcbzAh3N0PmJnICQpDI0ih1pavPhVMbd6B7XqpC60ROEve1N3Sp/eubbvcVBmDMLji++TK/WbFGMA0yJ+DnOhOna5V7XwRaYgcP4SHRzmdIBwUzezjjgQoBTtMLCYp2qR0994tDg28RECgaTy9ADduL4efuw17ZBMtl+UnlR4ng+B1Fo8iiKIVwqbyINllQj51kqHm72uIG2YQhbUgCGLmk2NWkXVWLgtBXKF35qi+4BXvLG/8Vl/qPViDvjKWVuuLZF3zts7j95OejthX1cFmh2W4cEGus2YI4hz745Jn84ToCJj+Yt9T+4+zdnr79s1I3pLZY9lGdfpiniKtzCJ0LooTei/c4fuIPb5zEcphRMq56i1HgJ9gFaGtujyUVJS6p2a4U6HATeomHE550lHrVrUVARFcdzGSprRm3k2ik9ft3cBs56MAYUY5+tV1d4H/2ohBtK9m3kSMC3Ecd4rx+P6ILLvD8CkWygMKsXD1rJmeu9KXruHztqUy5LPch4iJBjLemt5q5YnmcapNWPPqeLYhgJ/33FGiJ1LmobTlEcZTFleR2H089DknBW05SZ6M3/5+FlN3FfZYwZPwZs8YSpN5J8LgdnxGrLPT26mIZG1ZTop4rqtVIov0BMfyUo4J8McY40lYjsLaRX3Ka83m1Mt7B0EfZg5ITktx/axeSZHPK/tJf2764cYBecWvj1uDxjpUgTdRTBw6QBHU0PzxxhZ+0a6FdqdZ1q5JUh3sfgeRJ0nfwsvtKduSZAWVRKUfA9KNP3Nl+t0wp46gteFp7Et551R/zaL6ZpgjCFBxKHle/yd5SrYcDr/lh+28OFViAokKYKy6zlEtuYA+lqvRRHgjiWGhN6WizLY1AuNDIS0V9oVU41Oz09WDFK7Fwdfm3h0MTeEsQz2vW42QgBFRefTXGhvsGv4f+JVeV/k0DV3KS0INBgritGtOzdRBgT//ZjnCw78viOfeHGuqUOjkBQ8kI7IulN/NvrDEtGn1ngck+Rybj3TQJEJLlTR6t4jXJ8QEeGFsyrZGk3f6YlqwXnt8sTV09YPYvcHcoOLZAJMLK8Et0mrtd/FclB8mCiFyjSQdWMMMchht8gmzxJPoKbFOghnr26oM91XTBFWMw1ASyYgR+0tJeEJHyMrw6IO9tKK3aXdfn/SP4B2XA5jYJ5j+P21dylPvNBQZBHfmocP3SR1pACgX5lUFKLgrTS4wArowyFsBrZE1GjbV7zvHmBGzFigqu14Qnfwkf50PELLfXaQF7GAcfPXKqba/vcdrkrBQhgO9eH2SEZkMpf+jo7+XM2FiJY6XsfI4+8xbWc5B76ZcT7HqTn4I1+8JJnRxetunvDTtJQk4zgnxVxrlmofGJOjgpVFIh8LiTnbqNwu4qDnTdvzeF7gBFX8vo4DyqvdLZDV0EDrSYaUQfzAq+YG1kxThpwxl8nauktGW5aVBkiNBnWTjojyH0sqFqpKrAc0zV6rJxmp7fC6SL+wIkBQs+/Vkx9dHVg1q+8x5hjVxKkiqrWcHFW1aI/paitYxfS9Tc2d+wATp+btxRrBuvFlnRCdLNNLdClSofNRQXgxiVIMteweHYg9W5LsiJXkUriA4X61orFwJqS3YyzApAGPQAyICnqgBsIPg3O10Z5Utmh8hGNOOLsD60mjLFT+0GkVgCVS6vWp17BHx2JyCaeH9/NHssT+aOOPlJ1uA7y48i1a65pPnS4Gea9oPP54yHfxgusd4ErCGgfzE8ChNFYF4rSdTtQBRuNGk6sdnvzskV7wFIhbFCR9J4ERo5EDhPEdiNNLXUrPs77H6+AJa1Mt/SRb12N4K7M3hzcyJtAiDFxfR7s+LA54SGZTWC1w21WTuMqkcC1i4N2+I7dbYn2Ambbum1a5diez1EK8dOc8y/vYyRv8fABragM4GjeMHbgSl5cNwlm0H3RyF/ttAsL+SSKOsZpNStEfhiWC76T7pKKvdKyPfBk4eeH4Cliqzn6q48teQVXyswjXWWkrnKznq7TmUb6l1u3KyF5C/ukNWg3ev1t7MfGwlbbmVBnLMLnBPb+WNuebBgDjzWwaGua4Y7Cbb6UhKK4+aK3P/XtgHcwbb3fdX+EsdEtLDpr0L7d68fKG9L2Jv+S3yptmaVHWAN+kKHDB3De6rilIaoPWDkwrdQuM3h1MczwUFQfGZ/QfWLou1m3UOqj20vAvz+aS7VIndT+ct0+AaE8Q9bzkyGgYjkRD63t9onkezFMOoCQO9SsTpjDDNp+9V4pTLEuP7TEFE5RSVyy4ppcc6P27s6OP+Dv2ZxJ5nDoyFGmT//b2KmIiQrxDUYNHIEd6srOuOHQCnQ5FfXwIjKcbC5gDrll+isCfnYTpyQJeLxl8frEIGBq9DXHmVgrxG9Rl1ek9LrqYFf06dzwUAWvbGQw90ZWpg242iux8AY4rgE5AivDxfd6nam/dlqVJRj1d36wmvPyN8pHdbARe7JGpjt5BhLsoL+wA9JK1n3qQdGQl7UrxdOxYoDvjN5O683wYk4graHAq2HPnlpzgycCYJOlqODOCrmDx+/BLeEJiAzaWeujWXSqTB9+nI4pVTK0n7fcmQADc1BigWdYOnV/dVPFrFMTrFZg4oFpNeLp82zC+fCxE0JHXYgAIKzff1xczlx34K8Pr+J4VbbM1gCNt/yFym1/XTdk7CSw2BlRdVob8LZguu/XWJbBgAC2w73tecpa0EHkMISMb69lt5alUdGYujsxzMaER+ohgrcAwcYvrrif0E2JPcqH1i+DW6Qnvf3cU8bjFBqjvCWXa0YX0vgFOSgekUWdaTQ==
Variant 3
DifficultyLevel
571
Question
Baby takes part in a dance-a-thon to raise money for charity.
Her father sponsors her $50 in total.
Her aunty sponsors her $5 for each hour she dances.
In order to raise $90, how many hours does Baby need to dance?
Worked Solution
Let x = number of hours that Baby needs to dance
|
|
90 |
= 5x + 50 |
5x |
= 90 − 50 |
∴x |
= 540 |
|
= 8 hours |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Baby takes part in a dance-a-thon to raise money for charity.
Her father sponsors her $50 in total.
Her aunty sponsors her $5 for each hour she dances.
In order to raise $90, how many hours does Baby need to dance? |
workedSolution |
Let $\large x$ = number of hours that Baby needs to dance
| | |
| ----------------------: | --------------------------- |
| 90 | \= 5$\large x$ + 50 |
| 5$\large x$ | \= 90 $-$ 50 |
| $\therefore \large x$ | \= $\dfrac{40}{5}$ |
| | \= {{{correctAnswer}}} hours |
|
correctAnswer | |
Answers
U2FsdGVkX1/Cu3H3Ogy5g3FP3wUmPOvBvTrLGolm3njsMdW9NLdOupqbJXgNgibNiLLukhYDy2EpYmahqmqRaEp+UQ1GRpbW2HU1h0jDsP5oNrN7cwFBHMO2l3mDq7uWti4dUqWLkacbcHDeqtOZZLTZDC17jxJKNm7ekpjVZMW4haGSXMUAgBBBCAxuXOsJTzP3L6s6bspCPB5xTIibHEfloC1gHGKsiWhUNST3sgaRo0uRntEEbZmXhX156aPcjPY/jltItapOUssE9TDA8ENgC5bSNU2f2hY34jayNF7hUPpe8+JZm5HFZFKRkcvlnwNkkyrPRHvRLdIVQP36EYfDB/08tGjPz4n3yCDaB0j8hjNnXhtrKX7v8paTb2B0tGXQi/dD2ZKpbLPJlkIUtGmfNDbOBG0ASbtufNnNlPAjag+zq3HfjQNiqdoMTq/N7mtToa/3+LsQKpt4XBb+ioUaQ/4mxu0p8k2dsnxZmAADwD5if0e7EN4LT/n501omQzy0x/8VuOFSNsZbilYP2YYQ5bEANq602NTbOKwwXajoj+JKAw/eHBzawPv6nYqnDYKksx6cxO0IRIjepJjUZeIhOymDMLOZilvc2YPKahfZ+gAM7J0H8doBWDPgGD/Bn0GXsn0bUwXg2j5mSuDBz+h8RTlc9uN+l8PkIXjvSBwaqCnXoxVyXw2/sNKEru+rFBuY5F79ryNYGjEOEpOulrXNdtoDhRrDKjAN95FlbjYO8CoZGNHqjWjnItyfr0jAM43qTD8VddwvkpXPAdNeTwN1T2ZBovzm/g0yyreY1S4xtDblRsOCh3iG/Qg6VPM52+S7RVkCMP21KOFXFM0poQt6LdfQpdgKjskiC89ztK1q0CxcLAR22DMXVaNhgxelSQfckBzqfcp+kNNMStgZOluGP/lzEiy6SnuND0dD6Wt3/fdmjQ3VDA4HQkUVQ1SNVA2covYLvpFbeF9xvF+TlMg4Q1dk4EBvbc9IjIUNCYT2zRkRynpM8Pa8ZLtCaAvdAnHRTnq802LtyGKNQ+DLRzfp/kB7XJrlcbqsmtghIBcbXMrPMGvlXtOVo+pjJ7AobuE4t+E7ek74lRHzm5ZY8siK2IjLJWgbVWCCjgKSSMkVmVNWCfOqnhyzmUm578sNHTSxki0bqlkQK0R76nU5e5UzgG8yMVUriynaNjl29IbG+QD65TY7yVqlAvyTf7sAINLBytLswTtqi5UidLdoojR7SuuLDw3GALOnslTiyUJgvXPlFD4/V8/yZ+6cXr3fxxYAatwbmywwRizXC9zwiTONEJAVlAfORNaielmyYT/4G6VfPn3c/10m/vbUAAxj3oF0t1dIUjVIRCM2I+EQN/DfCg/u47f0ZCzvCjqtzgOcCIFf3rRNDaGLW5bs2duOQwtvsmml6mJXDIgzvFrYhxtcFTiGoJb0gOGdre8uCzPGGvTPmeb45EEEGBLZjk5b6O/Qucnar2ncUZUAtT38XWO8G+GdlShSmj3KpoH5YHMiTlxQpT8emjca3fqnMUugKvkmhQfjlj4KxXdwHXocpzcNMJ2xkbyZ6fCtVnnWz2nAlDb3hwl04+zjX7y/6rfsUL0YsEbp0otlF4BvUIlGsSbLno6a5whrFs+1xkb0afG3kUVlB+8poQoj+Jd46gL6Ez/Ma7JCDd5tlqjIQ/sYoolWozVyR1R4UJwyRUkDWbbOK1m5cnd5Dp2YTnuiDHcSvlTuJc+EP3Oz3q1gkbyuChJvQPkvJ92jeVX38qa2pyL6ZyM7atCQqUYH49xGaNJnqTkdU7nKUJRtgFaMt4lEe2wCgASZga0dU78jmqdpIDZLM1UH34TsUWnUspcRFsd2MhfMNH77nwkclDwz5Lp+c5+FG7sWQR83zfSQHps9s8FwFse3yJNXfplvXf+23OoLElt1/K0jSqazLffZyhihjMZIsAzODnxNr2/ZeAxpyK+hM3k8R3wnzivJq6sGRu1vlPbxyQ2KpLxIPLamzKXrs2HLR37K2x5HwGEQ0vZLeTRGjEpq1B34PQkXFVcEPIf5Yy9xLlwznUQb87gnExnb19Hnvj/GDalqLTI5GKIldyueCg06IwT5+vtfF+MNB3DWW9B6ITgxOKVs8W2pO/rZI1p4woMOZnLeYpzYQbXj6zAZo77mmSM2n5CY9GZTgO46HYGfPJH78wkwcVDetDe/tA4AEEYbzsyLT8m2eEBTVMDjV7m4os7G0M4H8zY3qfxh73vAN2L427KTH+AjyFs+yDQCDPwZN7IFMWDMR0fgK7QzNoNc4leY2PO6G1Vpus1I/o4UHXolYrzIcAiOU7r4vfCpB+WlpnBs3if7F0/NoUD2ZZXLAJZZB9jUv1dXnPI8I9Dou8ZGfazZTQLvYNlSqmWi+Yt7VLY3+pzT9qrYW++R2+7nQm2EwK30KSU8D02JGiV9rotG5+k2MgDh9Yq8wf0sbO+v277Bzk9UUJzOSyrD0IWPO4bj5mVS27fpt9o87NqIWbM8Plg20g2UGvqDzt7MfWex6YLDdEeSL2kYHA45gkr7+XW4/OEf3Ysn3nxK0t7WXVgwCcM6/nBCpMLLms97i3YW/tgn2t98r6Nztf429ei2SkFjOco9zf6vUzV2ysc6+mkvmEkRbj0/cduSQNpdomN866RtYwpljljP8Q3AlHcGyNkh38LXQ14qYmopq0hNOG+7Ih3AkrFqGm3xNj77ygDGekOFp8joP6kPTZpgjw4Ec+j8B2HyC7OGhDbWJo5j6FrB4jn+eEp37N8xIrs8fFYElxQyH6f6K48hsNUsJuPTj5pTuXgQlRyapGI+2OwwOGYytQOtzEvD525xoJKDSPjLU6vnW0mu2YFU+JmMsnXJ+0df7MCEJ6CdGno3Ci8vGRnSTnXtdplFvp1BTEsmr6lAmfqY90sxvteObxm7oBmGEOWpxRVC39kXzhVcwbAz1XvoqlTh5IGk+vZvCusQpuaezVaxB2K0Ik/k6ZSpvq3XbC3x29GiyCkSBdlNLlu5/8Nibg4zd2lIM7ePMeu5nyVnIWh/M7HG/LC9U7iX4Snqa7rXdJm0TZsnXQ8sEaRfKQuOsS7y4TDVL0gkT0rJtzbv0jckYvKI3Wu8tL2Oba05BfyTh/ZWIgrJyte1oTIIUjqTTZuS0/DWVqkK+OqK7yUXeKcfXEIKuzoLvFyppPUEMEup2Cg+TFnEwiHEvSxd8ZtEC2xqQzmawNJH+/E/OyB5zUbh+s5vf0gCbj6mEDErsvzcu5l7lJiWc4svYZX3lbRpwh1BwDgZmJYj0+4b/BQ2wlZyrZAY3MJZdD/EtAInLBu7KQ7N88ZPXggWYPSj+a0HA9vAxYRZnJs4M1GhR+SQx37G/NKH1uTAt6ztI4U1qNa8tSzEYFUeehAzn1AzWsDVnY3CC5X9alO1x+nevZp/Hv6sYm0L13VrwonP7MEWnh463b5erEwfN/a8YhRkz/RiKld3qeKZERJcEKHDIzfiBbITqUNMHmFR3ZYzzmNgPJA9CUQ7wE5tf2K5TII6HxgkC1n3e36nktMQ6/uxaPWfQzOqI4UJ76oHyGvgRpXTP7m4tiZS2TjoIc9TnFo+8BD2n7eTM81wxxJwkeKsIOzJhk5daPUMhX7EXXtiYkXo5gCW1W5mO8GYe/QRcTAn8GKERCUk4FYq9h2oooIoDPr7O/dvJMZKULQlRqeUudsgwKY/LMBkZvgJ4GsBf5HEDQp9c7f/kG5EpOfGlJCVWigZZ0PSw2MDlnonn008+xQ9uS8npxuo5mVxOXwOBV2f6uWEwpd8Toyl0rfJnUrvst0JAFz8moFqKCm7ThrS4NkP+HORsOqQ/fyCt/3GFaKzh3h0nP2/tEumtkQfAyGvI7rkFW8rjlHxvELy5UzAf1pyqq1yaStuDEoZ5C68uBFyaw5fCTmSrDFZAyKMruVBD1KADgdka7kXJ5IlmZtgi4oGedgJH/L7lziWKtlzSS49H1E5H56Od2GkySk04gd3F6kyWfcuxz8elPaCLFqTAMhPp1gpOtj6ZE/vYQkTsRA18/TtruOcOtEx3l7NcaSHsgNffUjhIvOE+WHhL3tloGF8Db/jEaSTZ0REph/5blmQdIlBd/7MVxFKUp4ZamTjkzkbX7BUO4iUq8j7BGr47MmaI3nk8sVqWkbzHIo7GxPV7kXljVLc34LZMajI7z7kVdPhGRVYKCFbu1ex6xx7cWZKefFnJYBqh861FDvEqluBYR4ciaT/dzVSurzDakq5aOTUAKK0Ys7bo4TCBUXsqFtkaP3NfDLl0F0VtuNSpPcZ90MYep8egT3KvLapGSDBgS9zhpj8V/JDmQlYioBfamb7MF4iuTm8WbknD7d95Bm4D5dUWbGNJwvsvSs9AmrnHQ5PSw/rKfE+KpJZuWGlq2jBMgi20MqZDAzCoTot82eIbuhNYx+9u/GooQ/8ntzefJf6cmv9+etHMpJjTyFYuylD22DJRHAYmFjG4nZeGFv55LZyTlTrV4m0ADLZQdcs1PAm5ZMUfwYTDBCjZQV9aavN4DyD3Gk8b5N7q1GJvE2RoQqRLqMfwYXos6RiN3FvbaZY43hr3zrj4S3fU6VVnhax+r6mLJEDdLB271kb+hJ6yMp+T1G2jGsPDt07K+qX/b7/lgjP+xBSN6bXukF0vwccNI7Pnbh+KDApc4DVQzd56ilzvrv6qcrcBarZbHPtejjV6DY3SBuyC8qY6UlUzj5jka1XLhvbtauZnmauiu7ZoTOH5PC6aXgfOa5kWGzjAexPamdITXSGzzsb55LtQyDgKSsA7KJS1OILouUIyzkDY/8lnXqoUOWDkOnKNfC94CWUSbAZbykPzFse9ea/AiZTtzB7HJste5sH3qkxlBfVwfQZw4rJ0igiWFGdIbfkorKSiTYafX1B06ooZj0DV8yLo43QKNm+dDXIz1NiAM0mOwWrb48dZ1XVj3Xjzyr0qC35wTE807ZUuVmpcBVxPm4DUkDvPuT26X4rr7AjnT+hizP5RMl4zmdgh1pyk8P6kKaQeBu4hYDqrqPTSpTDu4uyugJ0R7rs2B90S0XQ0oXlO3vVjHu9ln/KOrcAG726hU7BBfCEYGRRQdgYr8Xv6ZNnSegQqbbxc/0KtdWTDZ+sin631vZ0fXTczLqre9rhHNwVHqvPUfLEOqICUbrx5O2b5iOFlYNg34embpdswzzViLLyL5274N6jdFCnXZKiM8R08/Jaoc1DTpVf50I4PMAZDqNQitgjKN26xnrqUYXw8UNDHdGUvzRjCP6dXkNs8PKTuYVAelkAwkJYW7mwkKNMRjq3EAfRMvIhWnVsRzCHQfkTiF1GaHFuy+C82TatQ58CF7z2mRnz0upnmPoID7+wUoHaNvKciHCOh1Js4R3KdA7xmhUfnJqOjZd4BgR5eT+XBsHe4w+N64mVJxXf9+WH96uZqJcI9tyjRsNGPJ0upYl/SHN6yyuTZGXnA5P2J45JnStGxN4MpkiL/La2hzvFfjv79UY8n2CswI6q4vAD2fcBbBXA0srdTToNDQpDTWiRuI+LeVJOwOEiXfvaSo9veD8Mf219apq5rk/5MHxZFm9yHT6HtVwoV7MK6Ds+PreLokdV5ScSTP8MGy5igMcHoQLXeKe1qwxCAp6zqzMBOGBpgvebKoLvkasOCDJ1x/SS5RM/gDiiHWEzvtHecERMY+eAgAvE72h41F25Ls++TO0NH48V4RjIqZ13nKM8+Q48apLRK9fO344FqDFLCmko3a8HNkl/8DHCC/lzvfk4vxzM+rDNuP0+hQpqhy0d7imWzdLmSFpdDP4AybT2ArtASMrS3A8Dirt6PxDJcaVa45rRqy2LgJLExNcBNqREDQEnhK7JqLOPWMR8KWxembDjTuy6VQrTGK+DJ/HfsJEE+AdeZwH44upJoEd84Vhj57BPQpSalsjnHQO9UyU82B2enua0pW74LwlaAqzdUZUOw1XNesBrUZz4JFyP0oAwVjKG6Ul/g+ux2urOMpIDwZh9/WnxCFNC6Fa/iSjbcCZu30csBS1tR970VpVfB+TggmKDd9YWItOScaMmxs8Vu7FTS6NlGQrdwRBfPy98fCJjwp7fqQNGMaJsR+b6Xvu2JgIWzPN6UgW5Rm69C6mwXZA7N/+5gIhX/MnzGipb4jQcETHmgJ98+vaD7LWbnhrZ4yZWKf1YnYL9SWgz4MwA9ujC7ia8opSQc1hg6Fv7x1b207nRiO7reEYChdNHd1gFKVVNZzHT6CH0/LLPqrs2WmjhQdMH1tfWOV25GGqYzA5+kgq2SYFbyW6A+lLG5dR7w7D90tbIGrfZwaP83Xecch/4ubHQl3QUOiS1nyPf+3kWrLj0XSP34m8nroaHpQMW7qYem/cPM6+QWsXelZ3HhG18QwckuBZu2MXMfrfkvEJLLTYojLl3Mk1nZNkCs1PKPyecO2LbLEtcRcVvgLbgt6dU3+/r6gZRGbJCFnLmhWgNbMamaSWJnBb04W7rb8jFAY3eN32NN1AVj7jaQmGehbeaKVrEDO7zLvd52fYTkBCPOzdckaUDtWvpuVB1c1LIwu0z6Dtr+K2Zvy4rMmUUUOqAbREn9LMtYPF3gpL2BEZJuPx9+FQNFdcZ2qLIc87QMzJaQB5ij+MePSNaURfO5pD/BmrP6d70CP4eWEu6wvcwWLHwqkD2HX5AhFfYfOn/wSFu6ahYUO3SKVmDNU2njj01OnfCtOHOqLMv8EU9f7Mzd0f4PgnRsZ0kEh7yRW/x3jGpFHNFYLIlN0LZp1rsLoRDNtPTBEpjzo3Vld7ZZHV2o3Mv9lW+/OLvEtl8D7RyZG6QLZSvv53+iNN9NAxhWgUp2Pv7m6ZeCUMFhUaHWIbaO6u530NgoPjksDCDZbdplD9YNv1PmGnu+uO2n45EYtq3wFCqxjkOu2iDpiov/ATejzPg4dIAeQ0qJE3wpeDno3fyIrvLD48I+w6FJkfkGBhG5S7dGNW2UhY+uh4oz1+2VD7jj9QjVMI5rPWyYR/IldPVDt0AAKb9T53lb7gtSvzV4PuspJYPh8eRGSW5W8w33rWMNWcMO5LFgNCs5Y7EVONsG+aoRn3kvwo9ohl+CMROUiiVP4qKGaiGZEat9+TB3isbAjMPfd/WkJpFdsg/gmgkDP1eZQcEZKar4G8C6dgp97lVzQNJGCVNCoygUNe/CAHrEfVhXm1cPAPy49DQW8F8O9CDPUYv6j3TOrG0cinN1wGYfu9k0iR/0Zojhdrko+2lTcNECZywdWxkB2652AFLwVDChhE+YHP8gPVzWoNqF+2fvvpCqZ0Faawd82RqggWiomfOnhaAq9npmcVsa782ki0z05hC5oalks2dKwvXQ1tmXVCTpkrm9STjTyTNyTzyIdjF+cPKVDm7zXRgE078Wb22Xe+7GGyY2kfyBoXVFEfBKiLv29otvSBmr/JYELNrvF8ix1Qx178ayqDIGzGx2fhiusqD/dGaNaHuVgN+uvPTg31+l9vKqWgg8iQ2neeCJJlE8fM02iHVVJZmeyUegMthhXFH+qMfvCTbopod4sFD0w7gMfpPMyBUUD9TBqcvGIYmjAc3wYT/RB3N2fas2wlInpSfB/hByBfGAtRiII+iUgMhhwqJKMKQ8JUwypRNXezFGxYYJ9J0SwWB8XCx/x9w6O4twLZ4svIEuKEPA/0Vlw53FC9UA+0Su05ig3AdAYokhJBWU9QTkY3yxH0RLu1tXmC45BpgQy1YLShTX1k88GPtpx6IiY2QrJBNnGsEbK0aloij90mUQyYizLMZIh7W4zfANwTCttXEPgz0GEJQi/STipwJ5ISXmOpFBWznO4BTpfpW2a5Oh1ShdDh4dUsjNeDHqygVpMBMUhSUmELXtvYwnsX39GbgG0qCVRr8W/dskLzfKnAYo4CSh7f+F5BsQFErmJTQGYpb4RdBiQiLlbsJnvqlLg6mJJWjbp8mwBjgBDbQGhidQtIun+3wuYtSd87gTCNyogw9HbRxx4rfqWDn+dDJ4R2NGKGMnvPANrHa5p+47JTOa6FNzKYbsitMAniySMpNEqk=
Variant 4
DifficultyLevel
582
Question
Mitch takes part in a row-a-thon to raise money for charity.
His football team sponsors him $150 in total.
His wife sponsors him $3 for each kilometre he rows.
In order to raise $300, for how many kilometres does Mitch need to row?
Worked Solution
Let x = number of kilometres that Mitch needs to row
|
|
300 |
= 3x + 150 |
3x |
= 300 − 150 |
∴x |
= 3150 |
|
= 50 kilometres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mitch takes part in a row-a-thon to raise money for charity.
His football team sponsors him $150 in total.
His wife sponsors him $3 for each kilometre he rows.
In order to raise $300, for how many kilometres does Mitch need to row? |
workedSolution |
Let $\large x$ = number of kilometres that Mitch needs to row
| | |
| ----------------------: | --------------------------- |
| 300 | \= 3$\large x$ + 150 |
| 3$\large x$ | \= 300 $-$ 150 |
| $\therefore \large x$ | \= $\dfrac{150}{3}$ |
| | \= {{{correctAnswer}}} kilometres |
|
correctAnswer | |
Answers
U2FsdGVkX1/6LlN4sB3Qo+z97enCy3qxDH2NrqI8GqeGradN+cHBDu+zWMhQvyQlu3PiBVW/Z2uYcMAuqO2FxGU+/3+GNB1+IqzxtYv13Ca06wRxo8s84qGrPt1FUeRYZfTLc0fHgcqFuZmSuJ/qjDNzwoTiu3UsyuZAw66068kGjHwUIoqCAqVUTxD5F1lnma8vd4lWJF/TnrVosaZV7lW64QKTgT0GoW0G8PDFCEyvcgFEMNzoi0RU6u7hB7YH1taKwOF3hH+txC8GEbskkvhA9saN3iEwbA4kMLaxZnWE3JUXz+TeQqmR1Kg+jYGNKaQV5ghRcxKMOkSdFJjbe9LkFxHJJEd94myXjPi+zSx6qJssaFyBSMqsUP/pX24yzr77tBf4Unc8TzGki00FU919BKNs8J/6pMK72zDhePBbOYEmpwrYE9XTjpG317c8k9a+gqpra9C0BbUkbVMkH7b+crsKO34LJVmE7aC7IXb1d8W/YDBWKB3gKOfjBuD9yLAQCj56FtGbiP0YlToBBzSSv/xKmUu+ttZIuTEd9OzAsJb3hzZIDlGR3gpV7uPXNkrCtBzgMUAWb1RqgArEcc5C5K1a/pF6acr6abuerlN7RijhYzrPMmo+CzwEdZa9SHwnIkmhomLrmDvV3nfvXNrlHRBfdU67ZxxD/YYZyRGbzX/dMI39+ejHiG1v/W2RR9hmjzz8UjLJYdgXvkDzH/VCyNPEaRrS/RKRs3sHuLWxvT2MS3FJi3Dh6BhB+5ffULXfdn78pYYRbmARjzgD9+KdXmOqQ/mdhnLuiBu2L/MORVK43eyIEtsrO5b9DWIdj2Kj5e5c0X8T5EAASs3A3lZ9ISPzg23gubWnSXQPVMUH5i+Tx9a0UpocpqMvhxKMSGVnGc8Kr4A3tnYoCfJTPE6NGxqJ+fAwShcmTXYMiwJLbesGNlDj36a8Hj6QRz5Wjr79qGPTU4WiPXERW7uuJEPB23SCghEAYPh8wT5SRZrUgAVKGQEXv4rD1QlKvz2gVrwT91UIELAAlS+yO0d3Nyo2P6g7FuHdf/A+KXNsOCbeRQljjM/CULYLdZSZIDWDdRE8a3occdAtKrkpKKhXIxrFgOPqz63tZjRWi5L8J2GGZJVSjFLvzdil0mvsjorBxg9xY4sw7WxKKu391vS3vGOko//wJd+VN7pl31xHqM309jO0yXHapWdGm0IpzplhhVxS16rdFCKCYa9EEMl6FAp8XmQjABQqZOFZ5RzWYzgSwC2ZZ89HhCr/f9u/el32D5hrXGIc8G490mkFmV1nHmJKwEk2TjN9YxslceOpHi+WOjCTTf/WuSkNf4AFRfvi8xV/16TQjElcC2u2l1UTLW3lePK71uLog2swwYL3wIv7Jm2O4POnghhpoYzDzk7Gh/blW/iurWmXXWQroYl4zuu+2EQz8g33ZyR8SWoJWo0QaJkcy/iNlBeHSZ8DhrhXHhL2txGzpRzkldohsCIYhk55oB8tDVYlddsYDMC3IjSb7EdZEeRmOP+OC+V/93kTnWP+dmuMkhVDsqhBAHdR0ofx66gt3jVENxRqQSsm/r8A3DH/UkSQ5oSOvkoL2PexpcTcK7RLKFDmIRmQGRIurTdXwRguz5jn70AhYu95wsXj1G8Q7e8v1+0248hkcv4AwwMJx66a6zU21kKV5uhs0S75i36ZScPEa2VPSbEaNXOjhJXDDgomcCIY6EZOQpHT7Cm013Gvn4rEpL1obXj2TdRaJsRDJkAjB/ciNw9nmgVyl4/4JPTN3tF3ThKBnnlGq6txmwp3PtevfbNW7Brx6yPR2bMza2piglrTzM9ppLxYmV9JAR9hf9WvMplZQIQnu71MT64r3gsUy1TBDCBzXYBuU5ImfUnmnMt5cUzR0T0rtoHZDcmnf07ZfPOkrmmuCBLkf+hRdUYt0jL9XpgxXWWJIxHKuRT6GBF15xjLnHQc7vAypooiKSlFzTEk/cyf/7RPJVvpzSQYMEk9GvElFOLacdsjtPfsRvYqI2ahi4P9AdtJaVYYJG+qYH9xYyvZGUKevFwDrmNwsmxwPMgjQMcDwNDEv9neZju94m7EzsRROD4mzHPSKy4cQyD4GGP5SPimwTLY1Zo23sCE/iqg3TvphH1Ky2csl3xVc3FELIDa+Z3KwxP6c/RKgDfNPcPCD34vA9xMGzZ7FN05H4GQnucYqR4nfWe/jFQsle0qBjX2fqIrtejnXRQQtLSK9DSo9ZBzulQbvNdYnfwahgbk58dfa3Hy5m3fg73SLCTqJnnSWdQBfJTnla2ob84Z+sCIxayIprsswqALgoAW4iZaIOb6EZvFGO/+DGDsSBluFjZORADXGMnwO1/102ap7gBCbYzLIDkPESpmhM5xMbrzo2JuxA4HdsL9Zu9pzXpmYxcxkvs7Yf7OAQwmaI+Qm/ShdHiWeakwPNwLBHetGIY7QdVmX2opUeCE8nSj877opm+rzMaRKGkFPt4pkkD1iq0AYwehS0um8+FKoQb/QTw0V6BhoP+gBpMLVng0VWMgSj7rLAPrfOk+vzYx7BmsNUPOzerw90n2Wg8fdghcx0tjSIA9ShCHesLXu+Qgn2tiMIppXOym1/mEoDYf7cGMDgDB9OvEAlXSnzgdku4VxGtF41Efrq1YALrklbmyGZ9m5OoNgaEtyX6lCiz4tt9EO+QXwurEzlhe5dLaZmEq2SksSL65CrSS21Crx25idOUxqRjcNz9deHTlZQV25mmkcYQO+ZudTqLcy733rF+tDUzMGvgwxSIgRmLuf8XYJZnaxV+vbEFD+veBskyrO5NcPW9yFVA8WaaAMwaaBn8+YTxHxM0nEJ94P3iobIpHIK19DrbW9W0pxQxVWbC4g6yyaMxlMtFJwvkzy3Oo6l+XpqMFQVoz2fjjzpTQ5/2WJ9DzC//Vy5LgCI0I76h/m66O1NCaU44zkvXFwX97Hmfn78Tz9iGnGs7IGT2YOV7Ox/sr4WpvWV1J26yjwPTrBPksBIQT6QuTcB3vtUDourMxFG35aELnFoHFYb3x7eyW3qA8asXOIz0cLakakcbeGd8Pg/eCSxUlH21vZfBr4WFhDRSWnS5gFmcsa3p6GC/lYoTfiNDZlgr91jgknxxBPEIMDJVspJln6JLFnpXkh/GIJJhWzhBHkvVtH31DG4VOSevxTpd40aTVnmeHaMTLqfWZQ6LQxmrLX2Zdijw3DBfRpzaSl0eiw0VIQm6A9inWzKANgsBeUAazGsPihX4juYD/o7s1oRoameKdsvi2i18j4bvY4eOwk+yHhW/IKS/rOeSSce+2BYbi35j1+AQDraS3yktJFe3c0lanpkDBzATbjJ6g7AopYvjHNBLEP8h4eZAKpWCd2+AQCllzJqJQi+Dm9p2OnKMk+hxxOKhfer93UDy7c/nZAMaBwfFb66DLnqugUSDEzPhEabh930eDQaK5QzgqqPuQZR7De1eIeK7uOZj7uMY/UGttRIfZNw9tfm87F8mS+EfNc5FEomnm4syrcHOWSzwZ9euk+LGnkeOHfP6sQemW8HSrUf38aVeWTi1EWlDylqfscbx0HL0mHF3frjEag76Lz/9e8Bu8n2Xa/HM+Wsj6TJMzZdDN0C1ToG8azGPdz3VVge1Ms24unpyNw38p/iE8pp2zUPlGdloZ4y8fvF4FA8PGUaS+WODda7jkzXnq+h1YMFZ9WRqsMpmvxC/HvK4ngsCuQOhvhm+XUEDAuGcjgFvN+sUA4PiaC2wMmPAh58HJbcsg6FiIbo0fCcmd1TonCt4Yewh9kRtLxoB4Axx6DOdyp69oCf8+WQIVVVpGzZMzBGmjWDWIUd61dU63vD/iJc3DGvxtOouEQLnlTdTiwvJTeXd6jtX5OdtQ5cEc/W8B0PlM/A4DzvIBFhCC3I2Zim1jzi4ZlJw5ZLcp63UlPsP9dxjJJM7yImDY8Yia8z4UjoacX2dNN1r/0LVftfUMD9NxX76vfXieYTboNMl2ouYHqq5TkvK1dQZd6cBqSsObljxYbvyIci0rXBhsv5Vfhz4nylgr8DfM+npgHf/8mU9lackQTd+Jnf/nwSZJgGV1hpUD7hd45qrFmzNGQsSHKqotZTUQO+Vw/7gSOSLN21npe8IEXWpQ0eG71C+ImpclaO6l5VXFIQYtAon7iH/Rr9jTQQsJ2yNqKGVtlOlzUfkqsFJpilCkx5avU2fdQFBV2IxG5POzXGO28WFkMfbwW1wTq124tED21GxbDekumTs4Q1lWRCR6+TVWvt+tbM+5dWEVZ3hhut/2F8c095LvsuzPClJ+sEaRa//FFdDyFpyRyuXrLVS3gzaowRzRL+XOlQI9G/wSS/I3i1rjk33HmcnUI+o7+dz4JgO3fpTVpe/IcUclI2taooEiX1xZNkUwvKfbF033iqDL2qg6hCuPpLw8B8cpaiB8UNPTX9voVl+9wqK8ZafOJJIwjfMC+vYw18vl1N/HPRH7oD66D+9wlYgIkIOGBmbh6pt0a/vxnA0aQhqfqjgMHA33ZuSQ85qu68SQPfnDCxviCjVF5eDig9eCqT/nIhciF5uiWghuf8eikhVpoWTvgiZH9SBj2pvwjPNMvz7qxn5uEDt7dqzGOeFpgKmLd0SZYTXCWgNThgh9hprYooVbQ9svY6ZKzgRYRBlv2LZ9tkMC4qx5wbRPjhRNF7UhRys1O0rGNk47t4klrUWEsVz7Kl0FU4QR48px49N71x5zaNps3T5H4ICVPVPTGk+yBvJYvdm9gykFpf1XqtzMK1sYsuQUPO/xTy2lwpaZPjWtHBvzJikDlfBPqgygxNQBCpprwb7Uh5a8ykt/+XfbK9RxC6Tcup6iwjDVQ8IlUhyr2gK9X1RLVcrA1DOmFJalgYdwvqIzJreJHAxRtw5DSNbX0f7SwaX/oYt4bjXifeQvhyxkASRQizGVu0wN6n8t5+0a3Qbz0S/NnMhrFfLU3brxtsc87oEVgeVq0uGuB8B89jzCygSlc6HtojHU02kJuYD4ImzKxjB8x50A+BN87NmC0SEIMZ6PtDp5pJl+Q8IZyxR+RLfoTy2x+r/04h0nnu19xLgqfZOhAo2aBhS+q08nVWx6wUHemHBdyKEuSxPlNTsCSWuAsqOOVDSgVzlKa5F/FXBtzIHouTC2ihPqwEhspOR4PYB9jKCrh1YdAFxNbfjPi2FZwSO0MKyjiW6O8qJcW0VpRNJb43VuuktOHnVbzP2DQWV+1a+QjgmQAJieFa+otOjDDSG51h6UI7CyEL1VCG6OTYB/l0cI1wZg7OQ+wmgHYU+bfzFX644f7KH/5xosjuLw58PDPajEB/tXKgUNqOMep+fhncGH6iUWugIc+nEZmIvesVv6Rwr7OUIKVeQjRgT1n8eLA+xdhEusPW0A/nA51bRXBEy+x0FHWmR6xJmOId9PdK/7mbwHBh9KbMMB36GjTTqmqrqbJi4cCWfqXho8s2mVa7yF7cBQK6SH29pe9oKC+bzqGRDusRR6iabLndIXqf3BJ5J8p8SqZ6aQX3yXoCa3ryAMZUPWd94rRuyAXhysKrdr2mDENztQl40fGe7S2B/7LwjhU2uASOrNLsY8uw7ILpAGGr8JFhRPwVCAicqtVG4JhsMKIjmapoZsaHNdc/q33clFt/Wsi6LZ4hctsjjJVniWMN5Szd0D9yHsM3IDROFhG9ucC8rp7tTtEPiSGvEv3vavFtBdcXUXiW27BCq6hEa5gXlHPQpJualkExx3JrfgKlEDMxadTCOLJXLsf0AP9aW8ASlK+XZA5t/oDrlDGdBpjp48+I3glyhJpzcMOsLYZ0aNDzVvU0mfei0P3YSG9yPO5qlMyNSexxtki+H9OXHhkzg9h76ydV87aBuex5e8aMKjy/vVUwoTHMucUTapetVd3QTh4VvJGhontBFpOO5VtEtDhbfVOPOrbVRSBftDMWkJ2H5AFCnB1gmfBlTCaqOyYd3QgVWjHXKbYXGdi1U26SWhNByImi1ZpJW9cW0dNZDDHxZxFqUoYUbgNHFQvNq2iiRxRCNj3aqYAH9g61rmnXTq1VWIC/Y1oTqcd8odSYEUlGa7ceVAlxFx8lA2EcSl4jpOgX1rq367TQuklAQh+V+/ANKdZCd/bMf3IdPgQ1DFfD1L3KoQVnO23PqjNKm7swFHWL+LNgsxgWSPrRKsIC4KvczySmnV6ER/UaX425glYFWqYu6sGY2QMuud7JVjTq5DUS46vWCpaBd6jjsJUAiwFdQXYYvkeMadJlBv43yQS6kDTK9NBwZXF3ze+hAqrudhMavuQsPQg5yPdBJa0PXyztfKzf4MFykBXk72WZU9fWfO9QHRI1fryV/F7GVBTnVPhl/skIRCub9hPKRoT915F0Hzny/RS/lSuDlZvQNxVL7dbt6FbvzGrA/zAO5pE4Cp8x26plxJoKa43P1aBlLEHf8WSBTaq4wxQK7jf1ZUS9i3pbFLaYQ9TPaPJrplgDS9ES9nHpLXXJQkX8a/f7KDa/yUAwteYpAtfVefiB/ZKBoxFW7zH5lkN3vrsCL86exr2QLpNz5QOI26eJspbTrhYko8gLBVrcOYdCM2/Kjadqo8w1ut718Gdj3EUxjY9icOI10TlyDwk1jBRTZoo6Xcz8fWYUxahZ+W+ZpmjilP1eur+hHeBzKRV9khd3DR3yf0b55YmE1cgMj0+bjXeisFfs/KUDWGHdW9h/SRWMtcVmOIU3gKKXYhmDY4QZ7VdYsSDpbEC1M6VTl/QSm+YhcK086Fc8uXQoAiUP/sWD4dxD11uH99qw916P/1O5ooH/fYkb3pv24tW1DJRNTz9kuIUIiRUJwuT5+przFdcw8unKK86BQ8xMfryu+5dyhQLDD12VcN28TCxBSbkJ1KDV3VsdM6V4m7eDF+QSrRP4WNHd+ThM/TDhNMA7vn4yx5uWoy9SrMJZWFRyVmsmf9yu7I6X0kND4kQycBEzZiX+EDbmuXLmR/NF3wuzZKyZvA+7iW20mz7b6vJTlRHsEZC4lZSZiSIbEHer2PIrjnRFVQ9GWD6fiUsYof1I1qeE3RU95l5OY5oCo5XwZhpUwEl8cX+jP6bF5bJKgZQ6BtWEXOsLYYQYz2w57VQkzmwVCyKzerSUdnvdpfvSjtHmig8GlkgngV/OkkQgeXGwiKwz21uDDMNOurafEVcVNDb4nvbU8tCz6kr0WxKw6pSRHg0C1iRcrMyvuMnsA5hMFwQ0Kn+LU4evaSrDRX/CFpZA9mL7xsfCrDEOlDkgvaq8bE6394zWnv1Qn8Ppc7Es2nujJJyNgZeN8Fg/exJcORpAvdzRurJAL82cawT6LjchZo3ehf5pM/s1uxl9qMpIriZbZwy2Iy73UaNlYWr2+GUFs8xwYop6RF5RRdY4E/KdDx6zWbOsp/jDtqlNv7FKLVaJf9lf9MLadY+B/AH4zzW/5LsnTJEF/p39QBOL+5Yzr0bliNU+AdB6mEgFFc7Dso6LzWMID7C3NlbO4/3iewmd8x+lcFKRyF48q4H0JstJlCwMx28QfoGwbZuT9PuqrjnbQCo+Ql1AI21CNFAO/swM9Gv3oglemaJmKIPom7lGKfEPXZM44uOhiZVvCIlCJFxi8rsWbBe3pQdy6OL5hUxTeMTb03ofNUhamXbo7a/TmWPNA9lTVnEJ9h8dZQOYsa0R1lYhHi0hP/Nh474PGVP2TCyX5zln4fnuIzVkSa5q9/YrZdTj+IW9neJJ6jUafSbAC77UIpH9fsuuj3Et/xIidIPrrmY4J3qevPIdoyZlquDdFBekZd5sDoD/ELNN3ld1LtPUW+2ApqRCfeH7L/D7cdbtRzn0bRrC1Cx2qdRKC/fvjiO+wD6BSMzatYtytE8seJGiTVcflOaxGCm9o4kzdu5RRVkjVgii/MIXeRlV2m1Fb6Wa57sSS4K4mSr5DZAqCuJM6Qym/KXDHx65qXV4ZNMTSqrHL5xIr6YTzbhT+lBIfEf1aSptl5Sunx3/C8B5+hZwyoz0WSJgw4ycvbUHHHGXmPdrI9hmq/805mGZ88zlSe60gncms5ctk=
Variant 5
DifficultyLevel
584
Question
Dunlop takes part in a walk-a-thon to raise money for charity.
His tennis team sponsors him $40 in total.
His sister sponsors him $5 for each kilometre he walks.
In order to raise $150, for how many kilometres does Dunlop need to walk?
Worked Solution
Let x = number of kilometres that Dunlop needs to walk
|
|
150 |
=5x + 40 |
5x |
= 150 − 40 |
∴x |
= 5110 |
|
= 22 kilometres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Dunlop takes part in a walk-a-thon to raise money for charity.
His tennis team sponsors him $40 in total.
His sister sponsors him $5 for each kilometre he walks.
In order to raise $150, for how many kilometres does Dunlop need to walk? |
workedSolution |
Let $\large x$ = number of kilometres that Dunlop needs to walk
| | |
| ----------------------: | --------------------------- |
| 150 | \=5$\large x$ + 40 |
| 5$\large x$ | \= 150 $-$ 40 |
| $\therefore \large x$ | \= $\dfrac{110}{5}$ |
| | \= {{{correctAnswer}}} kilometres |
|
correctAnswer | |
Answers