Algebra, NAPX-J4-CA32
U2FsdGVkX1/oGFkUp15YIktX+Pn14U2gE1AQHF1HzAKFPZuNodc+S2XxfonsqVyB+9B5GV7iAgImGun71vb6jBOapRqEtzsxqrxBqAsvvWEKazeC0iRfLPbZgBAMRzVMUlPpwDsusH1XWeVUe56B/+OUfUBdTOukE/62FlNdnQv5rSv8oK6+yVvgDwdlDX6pGp1TybWLnoRx/hviTXSxZ6MUmfe723blUbGA++Me6An345wG8Gh40ZlHNYGmNPnNKWpcdC5GDD5p3K74UrxvsskgWJUg7VlVFsn7ZRmD7QQqCztJtXAQNXmqz8et4pD4pcqDWUX3o9iEruX6lqXoXwa0UVDXgBR8cAZZA45OBKV1XVMI9tGpyWfbr3L1TBpw8Nz9ZNAo48ph+x3wuummrke9OfrOu6BQFCQAQvrmK0qeGIJrq4sSCyLozmkKe1c1fBvH/OetpmI4g14qgov6O9Ah160D9zvartA0lMgd6Yljk858ziegETOO19Yv6ua7o+ItinpHVg0mCMSGDhddawrm2ktzvDCmgdGVgsr/yKIKUYbBRkIWtMk+2JL7zkn7N4pwAlxbSAG0gFx4Wrim4rOgauA3Q0d2tYLmI4Q1c9WHadYj3bo3yNZZRT7c1dEcUwRqwaYC8b+QIClfMHo38cYAHSC7QA4OsCVpq7ahIDY4v22e2WBVL+nO4kRh1KC+Ey2q/SMsIQS2cwCEDznGDL4K2Flj/L35xHdWL2xNEO/O8mMb+oLnW6H3M1Xf4zJO3xszGqIZpJyZhmOc+aPS1y4xvc5/oS4GVIh7tbssfk3Y91MDVTqXvwqyUNfLVm9cHQ99/Fr7KAf8oi2wlZhyQmmrtr4mYzybvyc17V406QuwKFjm2dmV7025COHP3XfLbCjzHLLHpHARyrpXhAmtUHAZKszADuQpzyro8JoF44YRaFH8kdAKPjxSpMyDMvdpWkJzOzE5IeN6ePcYsA4T1G0U4N/jAneNQxR474jepn2//TlSOEga5D1VtwTiCwZLefbH3CwD9yyJmIwOk82uUncePYGg04ph658Z6we40+ywunYXDOhhylCWEKJ0EfC6xpUzl5Kzk1n3hjR+Ya3aFh8e5O+L80OuxyrpvmpjMrl3rhfO4kC1Dxcvr8XkatZtti8WWL0+MopPWF2di54T1kEcCuYs/vAXTfZlgtyeCZYG43fJHZHY5R0py8FBlsd4KMid3VaCPPMNFcTQ++A6u92T0NASgnM5WkLa6P0IU53tLNBDC48iNzCMzIkptXdQZxF09pRn2UuaQC5zxGYg60Yys6qlRFMxDhpiBQzKvU0MCJmGpa0F5ZdbiaARrIN9WAj9ydoavnsfFayi6csl7yiKGRrEg5z1XBz9PQq3/feZcPjWQEuKhFegvSiVJF9qVtbR+fxo0c7xeOTeL7IKCWs8SUrdDED9fILVK61Pom097wL2MGD4BoncWcewKs1hoBDP7SB68KJqsZkP3euqrNpufjLyn8yV40EZU2nmp+lmTLFWqZNkchmnos89pLDtMG8/s17uvoikOTKOkzamEQmQCRsl8tYPgKPWgydVD3oNb8MkhqB2DUS0jfZm2ZaR8F7L1mrNO+1AMqj8J2JoGFkVaSz9l90BwvXe+yPl5L/sye3Ot+ntIARbZ4ZBBTz/WSXT2PsJgijiVXcsbDyydPTf5z9K0A16ghrGpOPo+XfIHxbA60kl8udqDIND8gx39sBsrIlFgyR3jJr63ahUkMVejvKFtFtdRCEf9lF3b9Khhs06LaFe/QPm6sRbdGFunX/YWpwUFe/3bgIEOb7NHiscAthM0RcTFAHwZ6S1flL1YkNVRzj1i/VM9DkHpM5ytLbaMRWJ4kJi5MxRzg+GTysdM+RjL7tCSMrE571/QoJhLCJU+T83ed61X9uUGzaB7iWMbbLoGkVF2FEF9YMoyfvDiJJXBlW4unDFXh+pLEzEuC8Y6qfzUtFfaGNDAhdQ4z1K6Sd0a7CKMLsYuAPJu0VwZA5u8jtkxkawbXPCjeObeyBhFQals6JRXLrRfhYNOgZhncsJd/6OQbRdQLLXKfBtXuP9zhyro0wyRwpFoh6TBAHotuxrqt/oarS5cm+QXeOXXIFhJhqvTc/gPNkLbSLuglhmC1fFqQLv37uxIvD8NSZzrFgsfqzyAziXZ2F6oxpNMwVQE417Msuh0eyKjb0NBzTfflA+expj8GN75j7zn7+1uOAg65E7vpkgQiRosfnpZIPbhYMhEGEJJDlxuSu4b0fQO+yDlk67iazdjfINWNUrI6yCOGl/vGzZ2SF/1xWnKU4iIIS9pzTVqeWrrYq6AcwhkNr82eMbZf8SYMpDPvzIKZSmqBmXDY08hTsV9z4G2v7Mlgr3wJr6g2f9RD/T5eGJxH9mak1T3SRY258BtQpklwkONybR92mHswRBZXkuN9xeSSnH2U4v8b9bdzf91PrlA3mo4S/rDhl+WrOYxV8YOaOlHhfj98CknDLV0yEdgW6SyAaw4SsHttp3OMf4TVB4075Hu1l1fN2k9FjY4dVDuNt/+lriic2CSFHajwta+7XvtJh/r8Di4J4Ie3qlVdk5KQqvW2Vyuc0ohhcO8d6oJSOPOt0vrKlHWEufiOcZb/pDZ47sc1NFOERFWQxGXjk1WyCoSpVWknjtvUnIoiQGHeO04UxE+KeIF2Bpvuc5hSLDowR2wbQooLaIU/XFgBHSRxrJVf+YH7vhlcLlc2yHjKsVL/NBAlsbX/4h+cVGw7HX/z9puX1qDCVIk7LtBumT8iF0JpYneFfK0tpLI5PQkGY63qovZhw9fyjkzUcEkdGS3aUl0VRLTr55ouwlSaeLO1ltQ1GAyf5urlq6GWt78vaUc+ODOMAF5eE+gCyluZamqK7oyWKlNc7FLlx4ZVr+nsrDalKrsLCFk9a1zbkcyoSI2ZqgDJO4Xnpy9vAJHikXeaZDRumLnFexHrf3oRJX7mrGMXfSO4EK54NW0D98PzPOiiil5I3+zTbVO367ZKFxWR+1ujaqmrvIxImVibhOpCgiaPr+N5tlYBeQ7UDtCTO0x8pYkr1YrSVIBP7GPO28kmQNjhvu9A1NRMccoI6l6pJGQLUmJqvEluPvhzbdng/ShVDnCKD3JI92nOiEuCrUjy9C6jFTKdns8mHoJ3wAZb2fofO415koUQTjybQcBXyI78wuJUMBW9BteSHETSkyc/OrUDLhIeId1sPsGuaQPoDTxvt9gyl3rD/OyDqbENl0ZWOgVUgA0UipavNTcfF5iKCTinjNDO1Uz6wd14GdN6GoeOV+KkSJVfZw9Xl2UMLK0tcEZwBWXcAjkVfrPUccKW1ywOqCz/ZBVtTATjlhtiwwOF+10tyPyhrQ2wuD6BA9OGQb74BLkdWBWMbag8QdOnTWax5Wr6B7KuG2BFHwJKDsTn0vsZ1R63KnRj/TtKLoTPRNHhQwJuxUbF9RgxnnO/Iu2WDyPzb/NR9nYjatWznP4W6TDPgk78ySY1S6/7MPI9Xdxixo6RybRGNTUkZQ94zWLUQHoag2eHWSlssUpF4gblQtyJGe3r9ItT0CcuwGvrYcUSY1IU3+1wg1Jj8M4cUXJN8pb3A+LJsw44eXE6V5Cy3kj4JiwAaMzSDKhLBH1COtpxASzZ0Vt01rlkGXsOwzvxiUG81JJQSawwn9ffS8Cgd96nIDy5e9KPtBNg5kRV1qpFKBqxTFvkoCppUieM2KqVxlwVYfbwYDhUy1TAf1fxeXWAL2OQNHW6/DbVzg3o0fnvEaHwlgdp3ZZ3mxu6BO3HMLA3mFOIpTSkJ1D5np3B8mfVmHnECQUNcHvMEmup0zuN+QbfuLnKDsA3q2FcGKzDuML7cBo7OK++lnjxf7F1H4+NzjdMZ7dmOM+ay+OB1zIgeTqPmHdg7lDTLcjGeIPAGbgkFAdNUvWV8SMysBg5sVCxlGG/7Ols0U2CaMPPaWTGvrXT93KIPOOVYFnz8NWOdxFWrepsTqh9oAxn1pNF7nQkLkEfi8AEw+SSoM7ZXmaOzTAMEiXYoEt7SyOIVgFwkZ2rNFN1l8R388e702MDpz4MBouuNCrzAqDlFq2q3SEpcidOap7Cnx6nWscelO3gpaOs6a1AS7LeIOlzuHKUhB8gVJ/V7UwrdWpH2Z41TWUZD2A3QnU/fnhj4Cl+PRO93hsVJTLTFXmrvX2W+j3wpMHpLgrf8MOJLj9K1h+NXlvWnDcVaVANTbXRd3GEpTE9KxyZRVU/udXoju22y0VcWko9NIPtLljjtsmOet7j62BCaJHTy0Xa65z5sXRzXZ6A5j9lZgx0P68Ysxa0DU979Wexd/cKIcDpS16oulWg9bVHhtwhR4xQmD16iHI/qEkdrmofPuxaKzX5XRCo9r5KmU1RZAj7erySGyuCRypXd31XyGaIOC0dqReiSm8nnEu8rjEdALN6uTPnXzDQ0+ZF8euNkqcxlAFpmu/vmAw8Zcz5hw4aG/sBYhOWXSy4iEqRNi19pxs62IHCrqG8rnBP4+n835PdJ/vCtTP6eA5ZRROHS4PFxiwVz0ElxfyVYR0v9bCGdLEtBlDYCglfaCQKVPviScGzbf6xZz/PrPX5f0EK4CxGJnijByFkkCH9GllbsD+u6ulR8qhzMJL4AYWscFCklCgZNxPCXC37R1u0OjJUZWKLq2NLCMOVNHqUghScAc1iKjfOOC4HT/tbVff20dnrd38wzYb2pdGY2nwykMlXrsEfRoyfYJ9v8JM1QtHuf79ysvTIhk1ijnP5fLk9ecd22a1xWjrUbQu/69Lr/py6b5GeEyZafOLJMTD1SI6YKugt3nH6cl8zF2Lq9ahlizFIvyZhdZcGddhVmOha9mMdHmc612h2S0e/yVLwi64O+ZR9oeQ1ow1mKsrlMgUZmQhGI+jWlULa+ZSnKgzTPmv4cXjVMAoEeQS7rckdW+gfaWkE2Hb/Q3TuogkCaHkVgXXdA150871yOyKLSfTFFNETHGW+mZ1q5+6vB3RqREAU7sTJWoFVzefTCbXbgben6OtYTTJGE0FIyVDJSnph0VqIN4+LZlzxXKnv66rSxSVoAovU1mcA2b0E2BeXOhM1Ii17fLLQ+B3i84K0yP2B8ASrYrn8IqToSTplICp4b5eJGc5FfKjy8iaAxLsJm7NGv0aBJo3ZT5adWI+ojf4fz+ilwoCpGd4ylt1pq98jTKGhVjW85Ctm7PYjO0AQUkyEaemVX9ddrpwO3LqHImfFMGCEPKA0Dq5XHqQR9u2ggt0WV3Q5x4zwTi+XrYHmdufmMgMZX08Uzqsdl8u88Ck7hupz/+0575bOpnYxlIjbUlwy0a4wi/1/ls08AKViCa6Ibj0dK49AsbbIgkuH9X9sKDOH4dxnFxosslkvwipY3WmqVAGH4NyLmGwHXyH7BqANEONaw7AJxLkUoPJe8o/ZUq5zcVJj6DycwyhH6zl77YYn7aOgem1brNxqgQ6v54yCXBuXVngyvwhm2x9VP5i4NsDnolirEvTLn9F/w4qpLzeABFL4NGFYMBgrDdLrHeVXo5JWBTJ14PGKPrBgi6AM51/gonL21dvtOGeLfaej/PM9gNJ68fiZPKoyGiJHQrSoIJjitUghA2vPNhipCBx5RwEvyXI3BIY5u+0LOZ+Uq4up3fuSlvV5Gaw6u7J9ldPl7YTkSv5GpKzBU7o4XbipuBDQFuai4xatO6bYmHIigNAeSf3+AZLQWwfMuD7wqpyu4KZQKEFuHHV4dVC3ckJHYLeVxGvmpJkxIn6tFqn1tWTwCUNFaV4TCCcOvp4ZvJNAaWMl8pu72ITYbEbo3O7IG9VG3M6KIzuUSZbN4yzvJAr9z8ZQADqM5MsavtvFoT8lYDEJrgNZaQ8TQjxb2dMhuXiUPP5SlDsIb4IW9IzFfYeBdNzBvLSy/28ft0l3XAblE+9w6ZZpfVFVwCkvdWLOZ4Z+kMemawYkOPHZEfq1wXvqKa4R7A+RsYX3xEsy/GZ7N0fviRhi3IdOdOY5Ej7c2Kej+LU4bcLnr4o9I8gQzvDOn3BiNWY48Z/9le9cWGB+p4jsTJbyALHfCVD+yKAURKwldAh44Bjn9quLp13E5Abx97SEabKyijrrZ3q2Q2yJM2LXfs9IQSNJkWR+yuQlts+mzsgwHetabRfT8auUtLjIFGQVb+L8Vjg3WnvMUFNBNTJH37ZaBvUlUx68ZDDYfa5QKdcooxSURiok2ssPpF18kENMLDlCjOJ1EjfqXODOrCihM7emSu63OsoedRE2zySuaScP/jsCIBwYmrnxpoSBS0jK9l1p5tBUtvF0lR3i9S37mPaurodVV1ihPn443+HGUMNhRIiCfzcypU8RFJQsSHQReLmo6P7YAj9QtwhiI0CTlOJT/Vp21mTzTirrPrfJSbdYTyMzIi5lxnGKcDyEeUsBXLvLFwg8yahK80F1TpRqTH/tIEdFDZZcieAm4xVb+28QxqjCX+mncjmKMPcSvRBoEiNy9kcZIL/oeTcCf5TRzdlKC3UYUjk/Kl0/q7hzt8OIC7M0QWwEUVTVkXnOMzXaYoi4Hdsh7JXFM/5nShVsExzLFkPTmb3v1Kp8YcqIgBkwZO9xs9WysFx7uAgHcHjZgOeRapJrogh2VjUMgVjFqviz/ZtWsaCAnsWo8UcubG7Nlajgx15a12hSoiVgBbs4K5nd9l1Kj07wo9BV9q+zsJNDrH+k2GygddI7GCmBHUZ9V3R5jArMI4WXa6Ob9oXPbgaDtwKJjAWtPLSTG4GJn0UwtbNQv+mQzEfVxWACozFuEm14Xj8LcE197w9PFtUmaHeuBtlAQzPDGHz/HGe07G/Ey/O6Acwbm0CUgvh/20dHCk1fAqmm495iKxiz15Q5C1UES0a+tsAjGPjH2ESC+uFetc11LAKxq36SktKrttljxlPZFPAg9qsFA1awsMd+hUhdA0RmPxPT8qw6iA+rMtqZFnwHdSIUgbBBxUlN+BwQ8k0RR438Rku2UDKXkgh/6inThQBQITBZmXM1l94wqOHmVkPSEehynCs3GF+T7c9uSKd+LO1Z1M5WQ9h3JZ/rz2zA2SN1woZQn508s6qe4AJL6iJeBk78Ep1qyxTfvv4A86aiyCze5m0F17r6twYjJF8jSgijI5azz9kHPXZ8qE8dmyhUECjbcWemXfYmoZSkDE3XY+NADLH4FvdVNMRGzNQ1YZR6qB/+Fj/NCQGxvLhy1YzidZMLNzFi/QJHF7K73ZLCI/bG6gqK1YGStF8d9prJ/XwXMGMFN2weqzmoFWU5ES+h/4xHEoGAzuBpBymnvKzXjNteqZa06hcCrXu9d/dknw/BeFgoCY1B0kfLUI0X29qcl4HWOlLGM89odkj7e/C/mSZrw0Bb/xmtGwpwtLtkHRe0POOWj41W2lFjNU1ZTXpVMw+3kLP2QKGZ73NHjaZEtiKbF6TGL5WddyVGNeh0UVj484vhP5CXD2qU/6b4n4X7w9BtOY2lKlmMCMT5AIGBcC9Y4nkgc9rsMWPU5gqbiMCVVXvj0CzwKG3VZ1a4HSXwmtC6fg84vs8+Lu95ZR9NHsI2pzMqjWcPY9jPWHKfT8u8djDZY9qg4StEY4qnm6hJSQZ1umPZFvGI9+mAb1EhtXGX67m6zujxaCn8VK7q+a3yMf3CvR9eYnpOV1bubWLMboWIOOji1JhtgMCdSadrLXVu+Tx69vlZzgLvfh05/ZQqmz2GQNoYH+0/OIH1QXlizb827rXrtyyeNOPQJ95BQR00j9cBXOe2Z1IQoTsoAlw8WpUP+/PhQBzTtLzlKU3wt7vmw3EF/7Jf+Gq4p8Py78Vr6aFvtuT4Ctdwjjl841+/A54wa6arCRRbXDPyOkmTh0TKSRgtEYyk5ywvkpRsNboJJcC4+dLEwa+Bultf7Qk30LxiFvCXkWsJg2Ahni0eEvjDj3K2j1xKlAsaQ3yFwZEKU/MAXNgSrybhVp2yGZ0Eqfilv8RiVsVWTyDb56wIDTLutBWwhGCUemede0rkG5BMLnX5rhLwBGIXZKvU9Zt7ZruKIf6/SyhwuZ1kQvNwRjWodWNweNQHmmTMxx6VAJvn1svUw2ZtPe/dfaFilsdR9yBI4VcuuEdKq8BlZPd6c0TIxiKbOVUBl2sIMIG0dd7YPvnuV5/hVSouFMcMhUFG5swaxp7xWS/zwCHBTnRhk3kYCi9aAd9dJo/fj5JVyIJq5BlUSuljvXRgESCV0hXp7Q3zdJlC6te5O7H2UlxCsF70M5gHg0W73psO5a/L3MnAooMU1AQjbflf8iBY6DET+UilFdZAyf/SOwn57eMsX1WAXbc7QgkBmKTtk96LDMwAwKJtdzJ/HvNyN+ae+k747EtJ/Tx5qm6QA/PXq6kBz/yz2LGEqkF8Spk8nVpIhdb5+KkjvYSgPvTGJUiLWDySfWzY/GQDsQDu9JnT16HQMkZBnRO1ZYDX9BAkcNI115X19+8fzK88nOQIQYgyb1U7QvR6nFbRieD4W/M5kOuGS2m9Vrpj0RmjgOEy9A2I+Wow4KgLuHHTu/N7oqo+5frPpR/yskpJvcIgkE0pIYWSx6PBxsJncVQwECZDmEHHRAO/8+6eDIwd7UvB9d8OV591gbObE3mkPBcgimerHqlGuyYhqlqkA92WJ+XG4m38hwinUeFNWpvywCf04fVvAuXiWhikVlSsB+VB85eXSkEkuE4azrbnggmwG2XzqK5rSylH0eTn4s8SJi7UNDrCtYcHh0kt8AsqDYAYxRSQFId5R17bn/QuGvT0d+Qnnm13v+06cfY1+uRIYfuZ+LJUKfavbC3BjkB4KlMG0Hq/ZPMakAlliL36/gi27rartsZnDZUGpkzPtMXCGQfFRMvNKSM/1Fs7xsoeDd04rmM/8PGSoskp789cMmxdaMFnKkuCk7MdAEkKHM2JPtgxSF2gVoeLa80OOK9xqiXrRamwR8IC+mOZKjwKVuyV+hDl4lGShxb9qdEtIteEZFc61hLBQGNGBshpXqCKX8KQXjm74eA8fmksOfVeFKN8GKTpFhOHfoVphsY82xfdvOkEqwpRuXUFLvyu8vAF5oIjdgghppRtWzTgRp7wZeYOBT/4vgD2/O/vsA79Gj8sTj6zS6mclFyROLL33JPJ7sUTgj+I2R1FryqoglekjG+9z/7oAr276DhHJcsPGPqXUem+9m9QUwlK5EPrDLUDd76FfsWFMst57wfKQM+S8nizUd7XIqfZxHYaDcTocZFfEbLxyT+lFlWE1GFUSSjYCyZmzavOn3mTeIL3Vn4ncbfwV7iZLGQYqnJ7+0lUANCfMl7jsmN3km+axfIn+BC1SPPjZW3PQo4zMagVbfpEPyuU+1kpyXe4Imml6nARXPrCwGpw9iRvV4v2BHxxydv4KgFUbwoA2+Qjhsvtj6xF753AGRB7wq+fJS8HwqRLhle/azL0wUsI/l51vyErbshx8RRi16cU1v9ZPUe6liWSDYPZ+4KekPn81E8moNpImXXjolxV7/3qs2JsMnlaNw0Y8bFGPeVrs4IsG0ZHbvOhSl4ZFTk3VZzOKIqbsPO5uIb7a5Yre4qVfup3xE1xY5MC5Dswj5+nrqJizd+1zoY46oA2erfglGXIXwQKCNXZgAsIOiCUY7lbsP4HiCjaQ191o7S5cjIHFwPMPHphJyYO/nYBtgQi8+PbJjK/K6tzpcoG3tkDtUvobEtE6PSYnX8XDom7ZRfS7rmRmukPlGU4UNs4vn4/ayCRSF+rJ+7vCRpG7ly+zOB64RD5ibHcoff6NauF5g6svU1UFdpixmlErL1EOqDhd+0ie4NUCCVW3DSIRflhzpN/Biyhs3ibVtlT92JsB2Wu0J3PnVFUs/rD1O4UnDNtcHYLhZXDMgOOxTEU34stoZLxIJg1IyV2cRfFiAMyr+iX3lGuKNJ+2epQ6qJ69IxusKKxnsLsmISzrC2/tiYG9EaN0tDHahcdA8X9sOX5rD8aEcgA/cLgT3kNslD2GxT8ZSMCK+ueBMSCkgVMH5mxxrgkX6jskMJxAd0DuJ5zyzeZTFlT6LBnjmMDQ/tmWFuBdWuU3YFhg6+Wg5AAkg3jZ60uhZyXokhHs+1MkHAA9eid0oyhlkraZ1CpNanIECW5C7Q6D/QNDJ9Y00nFYkcyozTnO/PGMl5lkmfFD9DtWYK655vZeViSP8jOTCKY/RskBxVmGUKpn4NpPdsUyiPzsx271TNmyq/B1B8RLQw02T0K7vhW+tkLSG1yafTw1xgLGGgS8yLpEuPtNbfgBc+rPpwn5giZVNl0h90ivsIgrDpoRhoqmrXSyQlHZNGyvKuapeyTMSJlDsi0bUFkWbYX2R0WErFRIsrQshhI0hUy/mEhvjHsuo5rkLf921o1g93OD+lZ8VJI9vFMNAMezcH4M5hvu45Ai/fNHh9enQu/0q0p6qxXydIAPhdhbRYos/nylWn2VYxSqmoxVhV3Ju8CbFYTM5NYGZaDDLCkbeyDzlW7r1QUDuUmdwNzu70F+C+118QJdnnNDa7l4EVO0JM1k2KB9XSSLLCofNJEJAHXj8qmTsJRyvZaZGxF4CLFZ0mlaz7k+0+gqjp6tyPUtJU3rtE/DCCXpIqVn6Kith7y2TmWcfYNohOuRWl7lc3jmTjCsnGfzZ+QAt7AXnTsSYm57bw9RTZNfStK4lBa/zPUxWgwwyZaItkZMt0Ek+YsJEyiH/KgD4M2dDakc7EAEkS38Bq73A9Wl9OKgW1WBRqwL8v7gieIvhPnsWJhYeMFfzvdDhee6wziDnhF2Y8PyZb0Bb1yVwejgXJ34GY2fUsvQX6Rbd1Dzv4ol/JFocuvts00vEIv0M4hTrDb/WqXhx1kjXTxKMvCTCiHqLmE9TN8Mqz/3z9oBVy28rTidGJfnFisdx77z8Koy+2DbF9BTaAuB7sTkTAh/PK/dozEXw/Y1+mFYU64mZvyD4qdS2cilzPgaD746DCPU0d8c5gFY3qvz6nq46xDcplXmx8mOKr4nw9AzPzLeo4HBo02+Dg7xFY/tNnNZsW1miD8IAC6MxiaJDCHUNlHjGirqLnwsslEt7WZ2mNFAuNDmt6ubfnEaOQhTnaTBtZDXuV0P0xD48bvkmfg0UH8CpulQLY6E0iGaXiPNu4eFvUvBbYPK6R+iAP5QPp4zEErf9E5U27hmiPsGfwps2zZZq8uR3VS/wHuzEaSf8vjlAPqMbXULr58k6rlMFYMxx8mOJxxjPvG9tl9HRbDTmdtred6rs5v2MPoAeZK848b9/GZ3m0IiHfcoZkzYChjbndka2D92T7gDi5Ja44TZJChUe4KPgCNL9e87pyY1uivbDjVGesVKqxRmK23DGUQuo1PHAYLOCntRp0fFQ4cMoeX5UHAV/zYuh6euF2GYWt7/Dr2TLUIPIfJ/ZVA9xDQFaex+WBG0/+GsWj1xUd1B8DWaA2BeLMYJQxsjBhgqriSbZstIxTGALeOZbVVw4EEFFub8C/R0+/rf5AsUvabR1MaXNW4m1PGQBU5zgxom2U28xuztJFqUlgj4djDMyxYoRTCfm1GaT0zZhf33RfsU7YEWos62YS1DQRyjpPp4yFUhgPLwgxWc+VNKh7FYyBSMOrp7q2SnWZV5SMGHeejBCxtFuzwbf3m4rHFbF1HAiUezqb0FiTaYvAyYkd5i3hQzAT5hnYGUnWqVGcoxc0uwq5bcz+EBKx7DVF4hNs9sJEFPS0cFj9D396tSYSSt1fKn+d3or2OB1b2nTGuo/mfRbOoIvs+PHce6m0ZJ9CYIszZVXtxbbCZPD1jWcbMbL/ARcAmK/3Bvr0YqPSVCIZn5DEAw/qQC6BbvCENYCiDTE/U4/zcDCeKC8xUEnsp1iwvjBsDi880jkBLzHzfSQna4Erz7BK5pTkXVc6og0zvWW7CKomroxXr1Bmc0NsaqN5XNNfM3o5DAk1u0tvokrPj65pA3qkZ2IeDYHTXyMK161kxkqKfXC3Rzzd64pyra+NjEYRuJ2PXaYpXkiFEF8F34bEY0AqoABEHXcGqH75A9IGFFmWOuNfWudcJOGZFNRRw2OmsSPVz1xekz3v7t7RlGtOa32sqEkAQx3bsGyCKjumtaUyG6LheMcWIp9Ci5JYzDplr+/MzlbPUKyiTX6uO1rzfvMvdy5ZfocNvlWueHG2BRpS8NivqRmU6VhUJrvgztYU2vinbEpF9CKBivE77sTJ7Yrsy2BmdbKsPfFbb1awPSLxpSTZoVDoAnh5LRVYg6lsbbiucwCHQz0S5jaZUsNmS7gF6Khv8OxAp/4gZXQia8ECCTAFpF3ssCbDuWc8RA3meCWTWcd2li76qGJ9csGgUcNOvdKBVqMsdcfUutWs5Q7ix8N2KDxHtp4jtrp3/lTjNhUEpj+o4bkFGXKcd9uH8H/TAeEYIBOdc4gaHVBynSfXUnakQUyjPjmvl35zm9Ig/tBTDvcwF8+zG6cc64Kq+y9RU5a7X1aV4uu9XW1zxsq35KSQCWpP/SUp+/v6WHD7MmZUr7GI66u2JbDCfs+mJdrEyQxxe12pHLDkBfmbD+UatDnjZGp9bmjjr/K7mExqBz9z60Bie55x6/yNPsKfKZXlM2XbQxJJ+O/Zj8vw9WNr0w400r27axo8r39Ef2e+kdLh6nnCquk32+KCLsxgTZkhR3s1XdsaLFccCQ=
Variant 0
DifficultyLevel
685
Question
A Greek wedding reception area has pillars that are x cm wide and the gap between pillars is y cm.
If the reception area has 9 pillars on one side, the length of that side can be represented by which expression?
Worked Solution
= width of 9 pillars + width of 8 gaps
= 9x + 8y
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Greek wedding reception area has pillars that are $\large x$ cm wide and the gap between pillars is $\large y$ cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-J4-CA32.svg 240 indent2 vpad
If the reception area has 9 pillars on one side, the length of that side can be represented by which expression? |
workedSolution | sm_nogap The length of the side
>> = width of 9 pillars + width of 8 gaps
>> = {{{correctAnswer}}}
|
correctAnswer | $9\large x$ + 8$\large y$ |
Answers
Is Correct? | Answer |
x | 8x + 9y |
x | 8(x + y) |
x | 9x + y |
✓ | 9x + 8y |
x | 9(x + y) |
U2FsdGVkX1+11IoDHeAtB52mdfOBHaTCgbCSn7xPLnGG/1OU2oYdHXiQa+Ex5D/2wV+MknfRZjdenrejHARA++O0zA+d2UfmeIcgV2ELYDsBj9uwztjK1SiJAK65bNn4uIB/j40n1upa1KJtFI7KfZL9qBGatmqqocRYhoEXXs4f2Ept2/bt8dfddziRCE6dcHVeKB0qee26M9KSon4/xGv61eSwdsQUS8GZVt9k4EoqQT0GRgNoolvAU/A2sz9TAHBKdnMbd4kA8MIbbq+L0GGtXYwbc3fopXBT3hjRM+fdN/svpHg8jwVfOVxW+47uZCdXKEg/rTNJKUXhxEEDlGldDoQ1XDgZKt1dvhYjT/pPoo7uxX3orM9s6buCvcrNDlz+yDRH+Su2UErUJsW0O2LGPi7d1ExpJ/MoQLCKvO06Onp5/0SNdbNgBHyV8eLD0CxalYvZBMnHubUObcIc1hQ/akpgHJzwKo/z9zD0H6fpYJxp/n/bAGPZVEVpyLXmkPbdgVGQC7Dv81zMS7uEU6Zm3Nh/N8xq08pro/z7GzgA/QSpl+SQtou3UhXDUVgu8s/Uvs472rOTEdevVfxyXV4FlsjeDyJyp8nkFdAjvpOgGgi6AXBy4GUrkmcBoFfH9rJW8Ev2gDjCO6fR/PwUEYxsVa7A4nPtgwYnWsyFnaD//ShnVwAzZuHGnCqwehgs87a5bteAHS9nWBcIq/gRietVfgt1Hgy2yOf8VkgyXyDUEcTLh5HKMU6akjPvzUpH3vH6pq6L8Gbz/8ZVQzMhz/fI9DvnZ+NNQzx/iXVLkNoWynav4UP/tWAGq+DXO/WtzSkY4nv6kKN6FzAqyS/ajnwWLOLT4h7ntQzguIaS98GznG8Zz7TErrBV1UyEjognhJLk1vCug+JnHMtITAoZmvUtcrfKD4h8R0VLCZjdTuCYIqyvuFQRHZg2U4g0/Vs02l4JtyjRIKNkP/lEQIZ+gxnerro6JGoJ3Vpb+nUMlZUyrVfVC3pgYfpV7l8Lh/o3pRxRHLJXR82FwMSdZogICG01lf/QRPU0jZvNLcybL9QJPPq4h5jc7UjPaXxT+V57W/ebzla26muJW7GHC3QNNK52Pv8AHTDv4c0sd8AgMPjFhghrCCLQO4lw3vGwjTEZw+x3h0/jaL80fQwsejBxgFylzR26f2StchBqMFTzL8gur0exzGcN9HK0mVq6bxSBo0yBU6phzVtKdnCtBnsKiodM69Abpm0Vt4FNjEDr+8BYQS966eMuaEhkBJADYUguZoOwqg+34W3q0ZARdz0cQtAOum9WV/y+M8Q8YiGWEVcx0GYcXRbVxVypJG5NS109mWjncMh3ueAhWoc6O1q42hHkXS+qanU6rKWqrxGm68Fq28xANblg+nm+0l4myig3cHyv0bAcjjQfyGVd+Anr2zU27r3fU2WYjeUgtkq0IEIfUVCEfNhN+jENJEA884CR+FC5vQc8WO+FWA19lvBt5qass/MHGqAqw9kzbLvcDdiDQpsRWI0udHKWtIYfljCOFq3kDkMEHzFo0uFz17BIy5BYSefY/m4qzwaB4P1phF9MuTr1YhqpP8J/1lYvIJXzIWCJvGSeyEUrjSEHCQXg2+CJie4goIwXrBd10D8Yue8LEulrnT4cUz3efZDzx8eqN5p94X4XDyg+02hUe08cCuzyrl2HNBublYFMOnxddICKsH7tQ4vNgPFsQLBTDqcOTHQLntahfnDZ+y08p9XAN6qzX0ZbTUz/L1tbvXGPvFLlGxqE5dGAwFqg81kwoiPw7ffy1h7TsgwHzw/qAxdYT/RZjbTPRqFZvylhPLsPwS5eAU9y6XFr4lAVlUy/rd+ex8COOYNiuXE0stiOAmwEZuDyX1+roWlPGk9LFqRzeOZ25ASpm0tqwGSr0j4O3RPfDiiI46H0Z4rQZR9I3wr7/J5eoYTmOYVi/atBzCvqxQqI5vhcfYbURYxQ2KhUa2QtyNW9yu9d0IDwrxZ4GFV6UAwNu6fRrEuAClVIC5r5Rbk8ZI/u949ZumoBudAVSFVfrMkbR7pLP6VpYyXp5kZPaJ5QazLUVas/v5ehebNqvy3g7wTlhyNEfaXgbe0QSfBj9gjsi7GblQ8fjjKbP11rUNbzu34c+tHBW8LHe7drS4G58bsAtiSLkKw7WU7/xaCLuzs2YxNK/C5Azgxw0Io4/fTo5fFct9ZajBW6UVakb9Cu6SPH1+oGPUloWuZ8STVlJl2i2didf6zkAD09B52Gz1n1MQUu2DNbM+4zIpb2AViBLDKx1/xBZhjMzZZYJOW2scfe0GqJ7T7ABfgMVPwjsCEywHOJ1McRT9B0ItXBeu0vOh9nqmPfjElaGeaETHmHWV/HkJ9B5x0L4+NRaCTZOuvcqV8UeJb3CJCAg9frz6geuD3p1RnUFaA+1jM9SZzGrUjECHrHDoqrG6DYFNHIF5zVEwhi5IFCRtfaYZ3KrLFxB1y0gnswVh2t0V2RA2p2atcSrc/gQRwW2CQMRhzYwlGmWLhuZzFR+/VyUiVeKJvXUNsqRaekKY5zijiGFew3A2FG3GnQYhZRH+8/GNNR5eHEtBak/ptSzCHWedhEKFz14wdZmJmMozjJDs0esxkyE8B6kQ56zuKxH7PNLs86pU0IHj3ZPR7Rw4inWX6xM1zRF8/7+TYY3eg72bgFqL2c4yl17eGstBNFUh6ntce4XmEcxlKu+4wpimsZXBYHC05TqMavZbY0tKlkV8jJGvmlGRaYWvwBTEm1TmQMpJUP0wrz6teOR5wo5BfpYqcbt4hfxe6jxgO6KPIvzZCM8gaxSgWaTIQysw5nrpO/Ala6YQDePKFSmpflwrYL9lpIZ+LRZAaKA8POXeHvAPq+ZC5dXA+66IOBI3AJOitoFPbfQqwophet/v1hHyr40vR6obkOcQyPdlXRgBNg4Qx/qQD0gSdzk/NOL0Nt8sUxTlOSN/CnTHyhJArGeOm7oqm9kthuPTfjHor6liwgjT5z9hB8xyNr0W0Z6KaibDuPLC7T9FBejX1BBOU93w8+tXKhrWm2m1BEAIoKaqLpB+LZVwbDcBqgyzcYTeukNjMP6D+U5QCc3z+Uzam1IcX7AX3sDEtXzo1QRsNIZFldJBnZD0ZD+ClU2jo1zcrJj0ZuCMh1zkPiY9r1P/O44hrnGUn3dSMa6csQEfrr7Nm2WUHQNpk0bMDPbbyDBXqDxwIbi+q4SGT4zS7nlgCVe7mS+dB8YxeNGJTRd3naHg8HdVA3FxKR8MsjYK/Piq/yLuJL62HZ+0lGpxo3shVnYpZnBAcmgI+vH38kxXmqZI70JJIXu1ZgiGGyhoXQ0M47busZugmAr5WIyBc/Fpb72aTDsmiMfHwQdA4pYT0W5OkWz0zuP1XGfdZCNQ9l/jqQjGUoH6LVYrSVGiuwPIrtYmYVkShNlKl21ZZnxF22vlYD+4D0jgVEiS/YR4hxsDMN6RioPsGkmBCFju5KXec5g+6IKB8Ozi349L8a9IhgGBevlaZJtx8HHMMK6KXKMQC2zA5xBLk8rs4YbnhunA8R9rpGBpXW/lCm7g2KVUYjEisXCdK8A/6wzIC7kOSx3iyWlq0YCMfUoh4/lUlfpNqM1XDh9eqD5oCiIlYIDuyeCPcXymfNeHC+IzJNghxwgDmBe9GsPj13dmxpk7z2oT+DKdIt9hMhuXfhQ5yHsaR28KwuqOrUmXl2kN7tjewERRK6TtoeBlB9receqteS7FHbe3B8xUaH2oicDvvP8IMt+a+tAPcvHjYoZWZBh/pfT/aD37IcPexW+o0/FhLuwLAmXDgTTdUYHqf3J0TZpAhG7H+CmsAWWppXVL6rqUe+tZSnKXiWvD2cVLLDbJGB51hlJmR5230zyLQuJVEuAMehruK+/A2yefOKwbFhwMZIEB3or85GQAMKSWxiRxW9KWIKkGu5Z/FY9arYbM3BsulE2xsMS+STbl+ciWwMSTL1zriw8Q4lzDJ4kM6hU2E2N6Q/wh01oxdACAZ0raJZn1yaBID/LdzQ8w+NG1v3EeDYsoCr4D+TM1poR57qJd9XOFR1F5sOxy2skZqnMXXg33Ff7zsZAIi3b+QgDlP+jvskUrXmWbVvxbmOh8m5aEvgQMIIPpA+0T1WKdDRdd/fTLShm2lZ6DUdiRr8GM3ZsPsKzYLswWxdCyKnDZXIrVH0OlS7rP0xA+Jc4EUEyzrJRUE9E1ANtZZp277foRo7fkknpJVMIVWVoTxOt6NATpr2e+0Db+sdekLOBleQyrmxI5VVLC558F5GWnbqJBvt+tt61kUW1Naujja/UiWQpb/xy7s2elXmVIx40lDZQ3LCXxx26kAkyQxPiplWhpKP2vO4oYgJKr2hCFtfQ/6M7SA5D2WTWnE1FYQM8O9rUY9IrCqm7vnvHLuHoauAD98cXWXkwbUTJLoAnTp2X/OARCEMmhpTWFS0vOyE1+UvVEs1z0EAKsWAEixTAe8sloJ/974uu9l3YeThdliZtx719HhPnXmNN4mBTPb+LHhNgCWIlCajXtBz1nuR1jQ1F8lCP7Mq8vuc5PV6ikP/b6d9+Izk5RwybN8T+AIZ9dDPZEqd5Mh6ISf2JBlIfTGE6IddmwT+Qj0zSQai04/KFEaPjR9jizHSV+VHF57nnSwxXsB0vOTfK3fIgYBghNBQCHmbgFZ+xcRMO/95TOUinfHpFFkYrwDfEGF3I4FBBbD2bWNpYv9cWDaLLTc6aYrnRZGx1lERYAXiU11m4zxbiKjMfaQ+ACfkY0xVkdZpm5F7QKvCpbUJgZdR9YhICcUKOekYJPaVMiBYtvQb7iI/zfppF/0itVfrPy+01gXeGRQGuDQg6KjFOw1ii/OHx+3nwBBv8dIrPDHVBwyefI9ChJhAE6pU3fbxC0mee0n7dYW6N1mbBxUmCRQULiQ7u1rUyL4JDT7MflbmzYJwmtfj7z+AL6PP8NYFBC/f9KTIhNc/Ru1UNhkAdrZfQnccfNwcdQl1qYdmXI+57EKO3yvcst20Iqkvw4MjJ9CEyOch0OQDmc2oKMYt9WyIUtx7OOhwoKC/gV7oKjILhPnGhmvQ29AnGkn5sJ3Ct63YFM63DdSQvNo5pDZWgtM3JHl/sScEcf+is1Nm3DpY4V3NKJ/Tcnr5o/UsPQhTE9NKtsiAFLWU5LjAbDkNh+nUWtMEvfV0kxgtv3N9JtWRXRdDVKYJLD59Cz6PKEP5WqaAOheOkREJT8QY8bZouzgwOyHw2nV6Gv6pzmowtfxrXmGr0sIrLTZjlgtkV+f21ZwgwpJNeFwgXUwcRBb5DYYEHda6x7u4QlrZeoWE/FEop10mvEeB7rhJUtmACDsCCNOwpIizBdYgIg+Sgw7Z6d9uBgCspZCMhV4G+zPWdw8S0PHiMGZe0ukzvVrX2fu1dXPB5lHT2fCxls0IGGyfH8XPfnZ6RkfhMLNYcyOy3xKhrNT23lgOfMwqp6LoIvslmqT0ATt0HNenbdKe0ScEJ2nA3Bubxj7+ifIl7k6f4kkUnzJJXWfMfCBvHy84OPtsq26nX71GR2CLeeOufSnxs0mus8fFjN+OWSub1wyNDxrZjqrjJXlV7cr50hd88j8Y5F2IZ7kBJKbwWUPaCVQCcGJWFNl0jBey7Of631y8uogcOzjSk0XKVXDn/kDPzydQCKHdZYKJh0b4bo50dmWTwhr1NR2G1MEoofB6LchHXex/5fvGzb+qojyxi0kxnTG+Dr0JfVW8PNNWrGkcNB/am1ml1DL20OgK5LsnipkVEImGZgAq3SN5Nss2ez/N08Gk+udGmBnfPIZemBjsqPCt4+930+0iHy3epDzzeFEiQDdPVTVpbCkxXmJuzbWJGjy7S2iALc24ew9YE5kBxJ2png85Pf0CJsnniSuy0BGervMfePr9OWZI7J1yqxr1mUsrBAT+K6Wl4EdFwfhctb/wxDTLbzqiIlFKthl8LO4qlfpvMwKz4iEmBygRz7hPpUDGGUOJ+oYftri5P/Zghyj0DM1T241NrVKGceROc+5SjgJVtFgsvgr+rpUiGRB1jIffhOUfftM4UzUipKOtGFC1CBArMGjpRVxu7+gGG9f9plZb7BzhEBN95KWUYW47/kHjgtuqUYpBZjhck/KkmtUtPvnAywAseiwpVr2vdH6EZu2YygjeCn7n+gPuxVconOPBT9TN48wm6yjW+aJRJr5WujZNKqOACfKHm7DtZklK52uPEt3/5DftvyEA2rzqUde/uAd/QLXMWqzmn8KWRwfbqS8waDNN32PkgERzaNB9Bx88G5Cuw6KgoUe0CQpn0Z/9okZTwf3uNnMOpubLkqh1U7mUaI8NhC8j8kk5n5BiyWn8pRReDbR76H2SU4Po7h/04osmzrRjZW8HAfLFe5BvZ38bAIQoVZeezGvH3Vk5rWf1n3CT22G02O0qN82u3NnWDkf/SoZGhdB4yZLjcjQdkMHNjxTbHllvDMVgdUtOTcpClLq3sZo+MNL02fHWcJu8rlqRdF4PKumdwjXTIi0Sts4HaSdySIuYUAaZDJNvocfeOxVlzjXG6afDhNtlEoQf3mi7MBl2VTbbz1blVEZv4kQTax3Mk8o1y/F/VVn+Aa2PKT1xtndq3lP3aedZCk3tnLxxXFAal3YKz9sIZbbIryCQfbDJMuL7YVA5sTLKjFmSmxOpPZwKQZ6M2fZt68/Sc3tBNArG0OedlyxNK+WnzBzR4U8sg2Ks1zJroF9yPb02hL8lw0mWRoK/lYdEmKMNO24pzYHdquLrS3vIqJQSy4nH3WB5au51mgYu0gr9cbWXFxa7mlnXgGXsc/IBRTkkU7Gjiu1Ilmw4rOjh4ue0QtouZdsMzQDUS6Ch0B2YKTTbbeRbzh2x16BjuLjtu+w2mI5RoU6laAZ+7vTWMV8ZGBQPsLZKFEdrBlDoKrX/l2ogzTwzCCLabtOdsDyfUUZJyKlaWpNZsDzEWmGqVRX9BYfwdpCwgy2yrsk0PWSkXhggVRzjLMVie42KeBBezwMbJ1lPZ0tvcNgOdFrU5GcOIq/Ti+p+AEgP1AxG2jQ2feC57bvg4R+tXxjxpuivVTf58pc9+e9JnnX68YPidXa5TeITxotnORRC0aigJBf+dtiSsphdF6VvnLK306Q9CKJXQuoUtru904Az5Hm9TJsVzsTEwBXmhDHCN5jHUQi987c2qFbKOYERcE8+rkbToqernWHt8vyTPp/4s9eg/l3rXbFKZZ5xFmoA1RUYfHFZ5bVjqblY+MvXDfyra4xZ1dkVWjYiuflv9dBxGTfA1MBxQXtvt8eXnFbZeSpkYg57QCPkYrm5WNFD8URJ0aFI33KEJ0/U0DYrrKNVets9jDwZrFDcQGnLruh7v8jy089mna0gaMvUteosjuj9As3Puv3gQ4y2ol+d8O/+ueLaOqTnBdwIwEVU+457edUxdtLXMq1bfiSFBIeU33AjUL1fqu4uiXjz63jtKeWhH4/SrMi5KpplwiHdPIbc1dvkpbwZEq4DifxUZE85gbIIte88yZls9g/3Aq5lUWfJNr4WSmSuTk0jHWDWX3yvGxK8C6Ht4rsFM1ENdSeccw4Bu3Pgq71h4G8Uncg7tR4/OaaV1GGom/Fp4UfOEebvhszvmuVXkiZYxXbMaIV/NdgBT+tkRKpD9xi2amYya9k+6IuURgCFE6dCtDdPVEiJp72db9c4Fz5J7ENbzAfw9wLGlsDN5FmWOHhVbnnOCuVb9rLEx1SDiTqE7NOsX0Ysdkhf9h4UnHdEw6a8M+H1bS2BRzTsYo+lI1Vs5arFofhPNri9jWX6eeu+R3IsnwPGBvQlAPxweg/B1sfeqX/lt+f0Ll6Ntu98HyvMpgkYZ/jB+b0cTVnpvDZnD2r/JGeqslpCEVpWdZ+DJ10HQ7MEvImC+pY7BVzVLtI5rNcv/yu/iWSwOUz6HJgPWMyDFy+Ntj68KykW88HuJ/q9G5Bbl3Y85ePZutUeAHQyU/UV6M7fvZP4peveJvwtL+LkPbnkinQosK/i9IRZhi0RG6Tj0iUEqI1NMxfG8DzIaQnlMNO/hDUc/anIevcb6PcNYhq2cM6o+vp+HAp/1vqRuLo1h2VHm5ukVH8bhIRVuT5+xExhVYOk5k5AnHoE+jo73vEZkJ0uth8aUV91IEfAHJ2SJLiOrn9jAuXIAJf/S3jEY+i/UfstbpKf1TnUhMhoX421/6mOlc7gmegC3l2YI7dUK48BwiOplWJnwpUfyG9vAm7TgAPvGsxYBbeNPhqN8RdGA5rvRBakAWSet84IpSDPXhDr6X5C5Nbp4ysEYeNak7fprKO8e3V2MczEVsiPNmcNouMUaTLZym3maY5c+si7NOlBI6glWZafNb4EYWhKRf6nP3Si+0cAkScE8TQmEZUf1jfHUU7mzMenweuFSj6FT9maMq2LwrnGD5ax0ur7pBGNJDEwxLyGnD9wX3pnwtJm7W3iX0V6Z5AS6U9OIGHmAjD9PflYtz0+wGxhDcWUb1R0818xbynnlm9sCh77zDsqZlDPDDfLb8SJvLwketNerlGhGkml4z3ojjPurxKaw4WoFyIJ1AODJujGTrilT+p86tj9Dk7qzSpeD4rLZY8QCJMFK6f31RJYKQQ7Uc0vmb3EVn0VCjCkv4hc2BdeEC0CGhSazsihU2SPNpTFO1H6O70uY/q+Fb/TGeB3PTfKvc6brJE1ZykN1Oeca6DC0EqsMlLl21cmHvJWlAMUxXn6Q/tUuvstsvsgnEq/EK8BwTwSSJCj1teqkQgkqa7yzkVWgFVy8L+QLzlDEVGcow03efY12MumiqMTfYpCtDSkbDkB5UjgasQYD8m4bgZFPu75ysMdRqRLJYsO+pHZVZZz0hXVoeT293GFprK5TwI5cD7qO4rn7xNktT+WgLzl1dntlSzeNJ/SztV4MgBS1EYgnzzn9+Qm+LU5HVmxi+E+5wxdYRdDD7MC3NyeFg9EKYeDE9HXpvQdVAF+ySU125PwPxdGlVp4I6OIPUMc9yjfQV5FOTEPvkAFWtRAO9xL4w3DF2xWi35dTgkKo+1rBiUKywe2plYRGS/Jk97EBVcSkiaCR+9QGxAWQ1lRuiAH7FUiAgFQvOT3xAhJq1tWL2bjSHtF7ruNH2uBVwl2JnyxPT2tuXzUtInFfTvwRJuZHdnP9ttGbe3fW4iwqMaxjJK15mzaEudSXPalUzF42VUnWNxH1ElDuNIp2I7YDhH6z6WN7LFg5IZe+xQBiPzTaVz1HYS4e1IhINbUrbzoewJfWrLOJdSyrC13Qd9aeYJrgpJqhEq1xGSknENobz3gu6WUbr5SfAZTYaVF4n6K4AnR1WLXEiT5HD+eUPQam0TsKq7S63C4Veg8EmqaEn04GALY1zxSudWj7ZFTqgPRywCVm5f+gBK7lS1Mfr6/d3OQRFn/F4y/MqU35NIrswrk4wokDxP1nj5MEl5x+b0gsThheGKnveREFpN1OICODu/24kVlxngJihQczSVASKnL+KDm3lTc88qs5Vi4SxI8kafitasEo+VlXnESV1j0PEJn6RHocmUo/0L/JYXf+KnmGIe9HXDh3INpdMLgCOEMgX09i4fHhFO+fMwOl+C65FPQt7J99J9MqBIUDDn7YQbLsE5xN86mrh/MIdiU+1vtaxYXtB4OnWcT0yIKeuy3IRUgSC67fAjtO3exvADSTUg4SWZcNC1f4tXhkMqL05s8hbkeNs6TXJ56xTSuH8h7rwZYupF1Vb5glOiJa1g5l+lPEAdYoaru3RHt+65yd2CGHByPAVKj1YZvgakioIfy36Jrb0+LJX+dALiO4L240GuEeLFSflJNRoCExl+6BA24+hKxi8MTlhumM16QlZlD6M9x3DXzVSEihAtH9wPrj6c3YBT23c2xqTRuU7n3m8rWatBYtGERjg4GQgEh6H0ARhySNge7/8o9x37PWXnsoxdbI6MIANT/BXKYPCFfvva46T5oanQH9XPJR2MfnTxWJlbhEoXPdwEzuvsqnPz39eCTBOK9oppfgEIRgiZXe9ntatVjF73skFkuPgZg3zkDlMMo45oBtYJM8LKGGNjga2h5K9eALr87OfjVIw2m7NhMzNkhynL3RnJO1yzqfL87jZMReECRVOcleN4BVjESwo4Pk6vrnpLArjgiIAS6tCrZWXIMNVVUXHujB1NBQaPXJjvQ7yAK5AyVuYxYrROYTDmczl55TCKJMOC9vLT3aKiru09Sqoogy/opjKZY70K2+g10UPWihwWP3WD+wIiWYlllWzHGs1WtZ/okUFcm+1PPuDgCiV3l6m4/gUfE43ThoDo6rJYcw3YpdReTmMZZ71epWQLRl/9iN1Hk7Fwish0sZh1u/h2Vs1TK2cS81uJFNFrb+JIdggitnFELeBjAMaUHc3vGawtnVVZ7HEIp9dQ2aFoQRt3AoW1ESBEUgW9xTkBLPgrugPgYZWulBRW0zERnIED2quxtZYVDJfKsd4fp3an2OaIo2bWx9LNcN5Em4pN2bgVlgqkZAcasRxCashJsrXuapcJvLSauJnTZluYRaUEUrMNIO6wOBv3Dr4sBK2yOoUQffU+l9zmsclstJOuxZCXDkTzdMMMOpVnmzZq4GP0EJlebo0mIV5Lt/7CNisMKhz+RHc4+6vxCqZo9TpPmaqzF6Tpx7YpC7pxhQiq9nB4gNPPn9ahFDP6QMizeM23DmMwNHO5LzL8ZqsSSJweFEjrJb43ri7QeFRsRKMyVpLD/wpj+HrUIkjuym4ksd/3PkG3TuFUlYwH3IDlXRfr2Zz/zTxq36VWnfiGey5cryMAX7XgRlJDnNB0/aXxHKFBpgWl4Onqe+DTzquxbaDkm0X+kzIQFeY4ONry0V2TyJvzEvQouVEPWQ0Z1/vqci9A3xvT6GoX8Lpmdk/1KVn4MJuYK7zoEcbCb4R4v2BUbB1pbwSyj/AGaqRNEACJlZI1pESctIX4SRST4SI9PsbCy4v12Njd2j6TPxgDFC0XhrwyziDGY+1bwFEMj3zveY1eLyFqiUfbjfZUxTCxiNalwsjvsyBGwjNI5TKSa3A3cu+hWuhiYkDVoIiaFa+f1YT2FHFyo1Uu/Cj7CLNbiXuiE+DsdqDNHKdIerC5dZBOAEL82OENFHoAEI6JgMIfA+JFQOtNCx/cVHolLDvOjTVUTc1wNpNNyoErDO06l4arawZS1NmX8NlHzCp4A7n1zcMV5nDFDvez2LnW3sWDKuaH95AYa15ZuYOx5pyiHko+0DGoy2UBx65+QWGk7AibgWg+itnsQsjzAsOc31ZSNYLDD/5Yg9TmFV09qG+hibgTmJiwc/6cxNW7slg6zMb2+PCY1VEnnwQ+hTERyt/52kCevztYMwREGfw5wk3OTNAi+XCkb5si2CPz4iefE1ES3bG4ci5/GhV34A6yyDcu5L3DzHCwrZ3B+AWp9EJCRMo2StVAC2r08UDCJAmdWclzNqS5PMLnJTqTdy8MWSs2E5D7olweOn4Fsa9fjfLAAejaEV1Y71gR1FqDdDsrvEUUYaZvZUe30eYCbInuiARGjrvnXga8k2f7DkdxqOk22R55S2SwQJh8/+43hQaaEp/Ohex6au8rDtJiOcy0rbrYFMflW1rE6fGcch0dwKw7ImIArJKobHnfUGOYp4BCnu0FvGJUk51TKokK+KAoJn3aOFOgtUR3S7ykG6FaJ8uuL43C9w+T4tIYGVfJnJSCRsOISP0S4cl7vGzmQICi0YcaVaSssChK4sqIp9i2Pu2Edkxue8Xn0nPM1t2DPN3u6ELMQ5863niGDKKOsZVSZjJTYJ7uAwuj+qt3tB0ZJeMy4+L3wWWwsTLCrzWU4I1vPYBV/uQd/SawSeVHnR6DdFX3SLmKfuYndtJFSuucJOxCcSfI1csjaJIdnK/gsFwRICe71VYZgZVFISB/d/24GA4yffS1O73vQkCRChfNeDL8fNU+GtUK8eM4ttRasPUOxC4rp1ZqBcOg23kmskw+ajPZKyeD16C8Dn5LtBiEjNWwKdzsSFZA57bt2LorOIr3w7+GUnG6YHB/Tp3GDjVEKE6nrUzc8UyeFv3hmKppWB5nXj4H1gve6n4Z5isp0OUjl/w09YEZRdHVE2kYKereYA6DoK+wPoYJXQWNU32Kig5xBoIMBy3EuJw4lB9QbClxYL3FEc4V+YAlWYYcYtU/SgeRZ6mZVsVYl8GvdIg2RVpBho+jn6Z51KVGpx4aBhHU/LIcqavWEm1cmGpzgvwYlySs82L1a79AkVdQ78wYOuvU3hh8nd0t/S/8H1lF3x9EScicneLdvD6H1ISf2kzprUcWzOjHPfTM4vjC++ziFeUBQD1nKI3QhWnicw0joM0ICb9E8/vgTFLcGYUJqRt0JbAytjmdkmYl0DHIsAfJk5vzIql3afAw3Mf83vP8q410OI1UZDprnJpihZI981Co1dVqjVa+tz4beS4vgHZ2clc9DC8Bf8Q5Da3TE5M01B4GSsmkFJz8NecSkJY/KZ6lJ3rvxTgODJHh+k1ojbIS7D3hgeSjf9R41XD9z4HEEyQuIiLkgAHQg5wgSnC91Upf9Ie4kB+TQ6GOJa2VSqR5m383Ffd0qYJQXS308NATBk3y4YWtXlOlFEyOhQRwWKvMIl99kG3/HQ8yFSpQgex+zc0EceRiUWf6xbCfb5lzweTeMcnjk0enAnNeFZqFvzVdhWSgJaMYH4gnwDGLZ3JVel4x+LCALngDe/5dYH6+hakxVlPU281F7YqVzk3U5pRk4ms2F2L8F/PUiVTxHAdMQoCEv4hDc5LWeBK6PRzV8sdurVo3flxfOSfcomGlBLAajI2esT0NajFLLGvxbzsPLwjFkFpJWbjXvHy3tx/3JrHGCswa/q1rFB0Oa4s8rYX9H3XVkxUNSADaHe9wgdStbhOTDf/+pY+V0dk4=
Variant 1
DifficultyLevel
687
Question
A Greek wedding reception area has pillars that are x cm wide and the gap between pillars is y cm.
If the reception area has 12 pillars on one side, the length of that side can be represented by which expression?
Worked Solution
= width of 12 pillars + width of 11 gaps
= 12x + 11y
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Greek wedding reception area has pillars that are $\large x$ cm wide and the gap between pillars is $\large y$ cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-J4-CA32.svg 240 indent2 vpad
If the reception area has 12 pillars on one side, the length of that side can be represented by which expression? |
workedSolution | sm_nogap The length of the side
>> = width of 12 pillars + width of 11 gaps
>> = {{{correctAnswer}}}
|
correctAnswer | $12\large x$ + 11$\large y$ |
Answers
Is Correct? | Answer |
x | 12(x + y) |
✓ | 12x + 11y |
x | 12x + y |
x | 11(x + y) |
x | 11x + 12y |
U2FsdGVkX19XCYO+QQnXCphJmTCOk3qcL2oFuWhNcKjnqoTDogxkT0DGyRUQuaJ+BJcQnzjIdXe1KlWGR8aaeYQrz06JCo8FTmnW+UR0OZcqNION0yfsNHDdWwzuF6GWYo1hAcamKoura976BcYZryu+2ddisG+yW7328rhX2xwSlmNwvM/+hUsPWJtU69AnLsfhx0cNvRAg1mV4y7WOFhpDBMhULgz4fEeSLRLotThI0sjQxeMpuqybCRnlqRGxr+AEc/6ltCjpOxhYxF+zw5HYqBaaQmDBsGSNbWJODCwHHZLN97ZUKglVjHYplGbPlxp9sLcm9jQbUm/697bZjVkGfbZi0oDMM8ql2C4f4IYTh/LD9Z0q0GF8laWQMy4V+f1m6Ot0sZgjAKcWoFuLHHFGW1SeLYTZTn3p5IInxIpFjOjJkuRoIKEPfBjj0sTPdE31T/A43rCsA0sI1lxg4DrxntyCRSaEt0WC3IB/ObSzH1qhnnDId/m0OLTxHKBZ5xi+a3h9iAGsP6GBVTbmxTpPqJbs0xbtF5IEsaL7Z53PRypVnrGLBt2hnDAR/3+ZupzhQZpHypMpHL+RSo7inEmRs7tgrq9Mxvhlp3CMEjMR1gd8IGqhS4pDJHiXVYj5pV2bx7d1dV6UOIPNXSDxwHqHanGujg6+A9mHVlB/1ya9xFpDeNbzHPfCLcemhEfztJ5kImyjaUC4bvUojBVEjhHH9/DfSgyyH+WTY9edKHQXRV88znSLDLYS+wouPmIbkjLTNbhxVvgjQnq6yTTPfnz+Kh1nif/2ppYylL6jFtVPh0cX5yDvpvJ2qbRHKhy0y2x9z5rdzmFlVIfMLsBExZlKMR5eoS5lr6QvRLhsB9SHicp/LQFE6bVIZI2+yGMQK1yepQePyhvF9znUoMxWwDrWtfUbtb5Rbwrz8JpnywtXKtxIlf+q0f7brE/cIOXanxvJ7Nxx9ahP2evZlK/oV77oI3z9/1hbx5kiHQIV4pHhuLBYx6GnjQMeCUDRyayTTyUkoibux+xxSLwjLA39pA4+GN9FEVzhMjPg+C8eQqjHYexsq6NzO6y1hjyJyOAczI++2n60j+VzzKcs0QsrXxDV18bCkkXrc1EJm55hBwJr4exKGQRy0TdGETy8qWf3nJyLpu0blY03NqAv8yLqOvhV5435bd4oXLTeCsKezA8qS2ixjKUZ+x8y49qTWs1PHgp0AmsbNxyY8BoZpglf+0kcdPGe081KN5kWTDGIG9fX85jONzc2ddZDKWJFzC98oOeHgW8zkUr1Ap0Pa9Z98xRzELGQOj26NejmxHBTQRBZJkj9YSKJtckHRpRNUz8APUc8ycCM+sQOCBIIsD2dIOUdDenD4ydcB0Ddx/Tx/E9bBUaqCIStSMRF45M8bJ9ti5lsn6dy5kc/62l+BbFHFvhAkCL4KqNq3Vv9AOv3UUSY0HmQ8VFqsYATaYsTP489GUpqBFaaAh3BqyFVgVoTP0Wt5LTCPgc/oC2z4XI4wTtOTsr3pkmyzni/qMj+2SL86K3/HmwOePuCpb3Filv2cIVDzv2mKzBaMJhQaSVcdhBElB4flX8peRXfONEjAStnDadq7afr6Uo8I/RDpyWzjvWlP0A8Bp8sr8NEJuKPfrunUFfb+IMcdojdMUBVAIgG5IPvDz6nyxkAK/yje+bVInMqB6kddnXmLpxS46IbTYG2vrGNZ81SypJusTsK/Cg623aBTY0vtQzn3F11Rb0/xGwULrOtPr+jJmc+aV+QdttbC4iAv4WybQjeoNQdm8k5isWyz03ljGnHsNbYsvyujuTZR8GsFC1VlUg4zF9fG9BA9x4nEv5NYuICvi/XNnW3ApeItq1y9XqCvajBl/7m1Tgw0XWAtW28LW83sBsRahVD3ttLgeFFCcksNkytJQkOoaCGc+1yCbovOo5YQwmvFM37xXa2xvl1vVuGVrLisw9iAC6AEIq9amK77I2flUYuwe6LhmDoh3cHbbY8dUuDHhROLIC8YdE199mqnWwv2W6BOUvQq4p8NWnAZ/lc7TDg2G4mJTgaSeIzZYm0Dj2I46aMESLMMePeP2ml7Y+R8Y68AHI/3Xx1rhSxC5mjhJs2wo8jTZy5fEpZqLNAubzAC+FOIk+q43OiEuagumExAxMrQuja3PCIyDDP+DJyaNUW1Z/0LcJc/xb4/H8YjPbxu3WJBAYU9g+2mpcZHwpLb6dsS2HWynkTEx39paGh2WC7fvgAoHd/zckgbUxRZV2LtqTQPpIlHDIQJPVjT31XPYykN2q8Azm/yUo40qSkvBarkw9GQdZK+w7FqE4XR51MOKya8zQ+zf42QbxD59+k4BpzX55sjzIpYpg6ElnFbFZ+07qroZPqnS9ZBctHnqenx44sMF3dBocutBRmKRKHOOcE7C+U8HIHlrAzVaGlVaXrFTWh2ft2geaf2g+w7+tYznTFLAG1b1fGpbl4qNFeXPkqULn74hJYorpa6RTdc2xtaGaUCOjSsOdgPGEQBAezs5LhLKTTwz+8gy6QTOD88ts8T3yGLgld+F/cStmEGTc35Vmklr1qKtbu0W5+kJjBFfhBT/rGP6HoU8FqImoIH14td12jAbS096pATYfwka1Hp7MFQWjCswfCNOEvbn2OL3ocVjOcOVT6IhBroKw8g0FmZjJa13xsq9KXSCCQ0zPGkW7dBhgm636WDPMHFyIAwT7w0MPTN//Uy4ZLzhX2Or5SEO7WUj00XM8zrI/38YT6FooZU1qAj4EKuWA2D7HVoB16hFICgv2bpJVB1rPMHaxkmIiH8KN64Z4EryqgaI1rvXhjW48tUespHth9CUq9XFyQyW5GaDa0sOAe0XfOGbcExRNg2f4BGHKa/jYa7Oj+l4dgCXdIsDnHJFaMIRD0zgTG7WjpVXQOfRUUJI5GCoYG5tfttHOlEKNQBTgt1Unshe4b6Prxe5+EKovLfXDHocM7lklb2waeVUeaujQCV7nVnk+haXKI89lGqOpRj8LkCYw4KtZjuUlefNdO4Iuvw1qepHz4GvMQrHnxhVsOWPQQOYTIpWo4C2eI1fRp5PRL3GPOPOYAa6ndqlRhKvl9av4UqqKlUj26KWZm8bi/HNM0NWJ0auRXAXa9EOJ7StSaBmx+lyc3zmux+q3GZIhZQuyEi9ZPFXX3QMrOR0dvcgQVVR8r5cJ5+1YkAbx0INSDkWPLojRU5GtOKQEeZQzirV3aiQZzF8s/f5fU+biRq4k4fDXtMIo0WRG1wrvuybcm+Zkej8CqZADMVZW7RrlYmsern5TIQu6drr8uHCifquWPpKt/Z1VYmBsKKXC0gYoWGvtZEZXjZrowT12/68mM6F7WQzNdrTwk/gbw+dhD7kz8HMqNtZVrFGAeXT11BHnn1H1+P63cKK4fYd4a93nGKqd6YmNKKHZweXKu/vuhpXaeL8iVn3TY8lEhGCEEoylV8LkCLj15PXmp86k73yomdzXvT+zDNJchy0Xq+Qic75vGk0gkc0Njcgk6UfMHQmlYvbkbyQaNcu3ozA0wAOgpmcvWovSOknqllRt0boaHACIAtMYbTbByRJkzlxXnIXj9hWwDUYHQ0Ak9c/19XK+20GFUWROmy4z28dMqLJa8LdudS0sHao+h9yhtJVCqHxraM/NFZcxKAQurGYkjinGWUuzeR1VCFO4MEBeQOt1Nch7fRPv+gd0kgT3cwi8qPLjfV7+My90VottThNhXpj3k4Do+uVJyGz+PRO15X9Yhw2v7puikqA3IpT1ATRBkbwoMtbdv6a35UIACo3DwPlRd/uGxzcUIa2AVyMaLGayNo6pQ9onEuDqG/yJ7xlny0ujh68vi56TZJumEDan7Ph2Q6ix5wC47zl8dxWtbIrshG6/mj4uxIDsqjUD5fjg20oLJ3JIQZnBJpqTU8UMiJu2aL2qpsj/S2ofIBOERxQV7RlHsizDaKSoqv9s7aYy18+bSs8KlVQRimYnCgLBBOIo5wNdDgLgC+fcZ7L/iWWXNy8GoV2BwGSFhlbOPeMlgNpDgigVg4KT5JP6Pa3FB3msSCLyY5d5HP/haHslAT0MMkaBLWOtKTTyo64nfag7KBWBn5iYG7iGUQYE4TB382zFNWBcUdzhyc5Vi/pL9Ka0mbrrjc0rNf198BedArt9egrPPUMo96YPW1oU9yq1xy9JgjVHY5Tzrp80xWnkLRVYm50iUxfu3fFuSpAMXqTq8yvOePSyA3+OiV/CSS++kMJiZE+hSMbxQNhwdgHL7x5L3+ZAt7PskXVjrO3lidjjafOjGLEsYb6zGOE3fRPDgB8aJsVIA9ApBkE9qZWVyhalILGDS7a3sHkltoLprzZeija256+rLbsdXZrsFctYZxNtCwGtgAW2QJYS8Hzy4NzsVTibost0Ei70midDcoHL3VRxkKTL2857Aac7+9dy7EzdoVHaP7Gi9zWM13kqNLhLzRV7M5U6QBGpW22OuHR6N+7yo2xCHLZdopSDgIX6zB55T2H7l6cjPiKiKk8wm/DucN6wJKwGl6S/TRRl/saBlh3rxConmXiaqnyrGHZR+6gueU+RG6Vaa7ZUrBuH8Hj2ewjxl4hFzmLz3rQcZFU6YlOXp43vfoJqcIgqp5V2HQSifXKcBABOA12v/gq5TFknKgS2CUOmoc57QPzdgSVxg2OM1JTZL7zee6FmbqVE2U1V9cIhlaDqskVVi/fKtrK4zTNSDB+p+/MKvDMPSwfMkBLDG2l70Ai4L4reC2nXETYCF7ekgrizquHCDezjTo+K8gngAqh20kb3DhSp7K2zMrm2MKf9O7+KQscoq5FtTVMkwzQr3tjJCb1N7q2LCogGZI/fsmIMLNxd6rPl/aFBSaN+DRPJQPyqwxLV/udNrAIYhIj1KqkmTGDUafuvUFDhu93Bk7UZaVVcDJgOr29XtszcJzvIiZQpFKVwMdyy0mAjG7DodhENC295Yc7em60Fgefsi/eZZnjtxTUS8Vc8gKZsv1aTGZcSlvNZA55ZfxDy+D7ITS/5tJmc2QNdoMXNFslrZ1tjC394G7pkfDZsQq1Ezo7JxrOw0PQl/Heo5Oe4yTTwtcx44Dhk+P8sSGrnm410Ebm1c6pgmYfLf92h6wDKsSrRHWt8GeHq8rLnjoCPxVhhD3IZH0AnzURfPG8Q48b9O3UYOf48FqasU9KOUH9Yz9YYygnXJMmR/yLNou00eL0soMlxOIA2iVSvuyKaBEUs4qLlEyBm3JThjFH/NWIX19nKD3YqKNdjBTLIiyb7IlF8q+beiBZVZPyjdvJkI+fl7zBnap2jG/9KoJ5RgjklbSYTIhkFYjsaHHJUWwK/kZMWMYiOQf8NhA1ao8pL+z26L2m2RK8MOYov1q79Mz33nAXBiTConI8xqUY2xepmZPS+K6m0XaCsiE6X9eyo4d99gOS+6lUvrfoRU5jiZs3IKBZ8zNu2dWTE38cdOOu64OvgwdPh0zfkQYd8wlytLZZBrRg+ebB4zZ/qJAhEj/suXezy8xLEyZLaf43EYwiLeLY8QysjdRUCpPgBqxZ0uVqcqBlKizPVy+ME4dXy4GoHVK6mjATp1TL+dxKfztl8O9LU3CAvQ9GOHkFm9DwoIfYLSCPlXci7jRw2soLBlxOcdgM1Aun8wwrNjhqwVmDhwZ/mIYWOP3Tu87JcObYNlM8G0ujU0C5dgNaUP5w/b/IsLXXaRp2Vi2dAWEl08VaEr3FryBDJY9Jz8jKEJRg6qCZ+d88TeGiunAOngvJThDlJ34RMAuMGwVEhN9DjG8/8cB0iPKh4q39dkouBIHNXtp66oGvUcjsTTeJgucAEh1LoCGn5V6AF+3wKzMzJ3lpfAB39U7VQ7zqPCxiFaCPd3c6qoW6oqvlCUrNea7u+5p+Ntyuin+2Dc8YSMKQq/W7zhieG8/WdK/hvijpPohdp9W+heaYRHjISGTpXjk6LUBVYst9RMxSIihHYIsWbMgmoYpxWLDV8IMPTbOSNHIOC+qQFDXv8PtfkeHE12eHcXFTVEuHtGBgorm+ds6+0+0GDTpdCjggBSsFGwKJWpCQ9hFqxxcejwIcnc9MSR9mujNIEvqtIYrZXs1EsPWwB8uYWkpymvCocF6xvWoe9jQFZ9AXtyor7ar7F97cpZoaHPjvIeJYnga1jz4N4ml8PrCcuGHU2dvjEqGBFktmuL5yRObr+Jps3tgphjw9u6uA83YkMg9pxRtwuo4NvjrIE+MCyq5Yiy8HfkFn/1/Y5MFyoJ6wHEbthu2/Q0P5OIpFyuoYl3l4+dNNumUNuQ9MlN56B30JRnZwZg1cqapWewzuNNiqtavQNuZex+d2BDuuYwK+lO6YEkFxQw6pwOFx1pMvpUpH5z8SDPGi7FapVvWE4f1jaXXrHORNY4aSM12a5yrua2+osXI5zvcEwZh2fS0pI1Xa+hpFXXw+BuIUfQRAIwG0HPdbKcIKsLfQ5nsRaU96lFqAk7oc1EZ77IIhKQvcnwH6n0eaZns2DJF/JN5Nmzs4zMS6LR0Y610C0q0drQ66dLsC8ExUs7ow9BOIKbdIDuqQQ/fykMdl8xYUvVg2nIoONVGqPM5C/n2MZQaBWEi521eAbtsVIq9ez7Z7ZZ0XQFG+BxBXpc8kUieOQ88o7OVoQaF2asa6NkPww926KmpS99uNMWJJAyj5VA2f14CGdAtHDedhSWsKJhQSSbNBdhMrgkhSn7aTekuwYMTG6UaMcn2XJzkJDwL1NUVxRmT/NZnRW0CksSV4c9vt+8YYKZtRlkKF+EE6zKz1C+DQdR6jiJWtIBTSP2gGyLNhOWVxW+T1W8Y5NXVerIUKqRzL+XcQSnEB8fMJR6A9PJBfDUr0C0rbMN5x2cDl45PwHLw5afxEPvcuvsInDI/315hzJVwQIWucrAForsmmMvyxo4GLKcFniMqIvZlocUDx0g5VRi1336lqKABxOEgpjpgUtZKMkQ9bMGiK/4ArgioEUiQeHu5meCqU/VhUuqSZ3sKLquPupuwMAmnK0EDfC2iILEWMkNvev8coGdXXfsYBQk39AbOtfFGTGFWnVG+TgbuJ8Dy8EfWvz/GTsaNe6h5s6chbrodBJ+N2HN9miAQsIJvPl4E9TK9c322PJ/g0tz4e5MZO0NvFlqoWPJ49k5v8FImABvOQvngTIgwc3P4u3dTWkgTf9wV/XR7pHryjeXtJ5X+ggmrjxdst389+9e4ehsj6USpY37sMEB1GDKF8I0BGU9uFrPHg8w+ygt9uYWk7uPJa8RofDXofJft3k827ToJnDHQB6wZP2eYicHwWKFsl0dCwgFlzbl7fBY4pygBzOcZelbWnXYwVwDTdUJ50OkzTOOUMchojWdOQS+CZYg0kjP68L1jusVRulH9OrXlB47x8F6A2293fbGFiSJ86+oYg6vCWTRvbyKYpiDRlKOhg6y5jSGbXl/HodSTMqPVfJ7w6mh7ntWxkvBPsm6bb0LRvF5iUVs4bzeYXziO0byyq0T6lRuwLkWbR2FOj6QbCg9HuTVP6dG60AYm6E3qV1qvP5fhDQRuyf5hsf4VaPO/8+/2eF/eV3tDIKMD8dm/N7D+5qga3jSmhjwgzhmsghw7sF39yjaNUsyA+9/lZZLJkraVrA19s82g/7qsrW1gjELJUoZId8Tn9MbPVwTGMhWuYRMDE42L2mhcx1WirXSraWYcag54KXPXIPa8WUStYZ4naLoA3itzVLSKD7NQpXz7lQyHX0GG3YjnGha3FCW+nLDT+IwaIZ0nL5r6ZU/uDlWadFw+GQEch0We7kebaKp7/s8hjAKL9AV0WZYqaivm2qgOHemQ3nIi5iXZOq06vTjoLr6MUbhC6p19LXHyk0yCKvM9k2z39loJArV4BzP3iprkL3k9Bk+4xNX+NY9m4IkiW2bn+PWENOrDlSAtf2q81+GPPvr1WzHlP5LpjkiYWPDf0joLwUxrJtRnaG4alCMJ0qjCANb1mOruG0TYjUnRxMm5pGtj2K4b3Oy//27iTw/VY7Fr1FqQCbdXRnFW/mbuU+TizuKcTKLxPnK5TtiJ97zo6p1j9qk0K5MTprlUq9BHYbn47mmvaIPtQwNT4mHfznlKEjqLQJLdg52moljo43p8af9C+i9vbiqTxfIqs5R5nezA/mCxnG7mxZZmQzxeOFT0fDm8XTvso+ZR3znNc5WVnd1w60sZCorBpjM0BfkJ3Cy17FHC4RiHPjKG/o94UN/X526qr7SSADD69cZkcLbC99LXE485S7ct5rUDyJ+t0xxTRc0wC7TseHbIIkzEiphMX6ugJ/4PPhpF5RBa6DeInN0CEXOzc/zjy35w3SdO5KTl06GLrH7ssDkW20WOYIXpnm9xbLN+ZatSp4oStzOE+LdrPk+QN1zZFE6MZQ+G453SuT4oy9/MlB60Sud9Jpwqd4GSMKoyNofzkG+j4vDCd0PTbDxeKPIRp6IfUjxmStu3nVAAtdg5AX1mHNeoFES+Mv0Z2Xe7J4Tu/Kv9HTj8KgEVN8TjAKnHUsLQBWfE8NFMzQqkIFiBEGxqNbDv5QWieMPo+YloRdJAGcqcGX1yyre20+oWIvnDZd23VgAyFPOJjIDFxV0auEhO83x5HBlNq/XH5Mc/5h2Vqt/II5doTSV0rkYn4VbVXZAUZr+Gjmk+OqowU8icD96JzU76O7v4CWCisMvqmAeZ93FdvSgQiVRwLt8BP21wcEXJC4+MdctKBZnurkhdBlnJ0ozahP9uhok76OhstgVwZpcmfo29RROEm7PRrJJDYAIEBb2RmegZHWDaxidPKYMHs8uZhk1f/iurT3vmRcQqRcBI/7fJHuSlYP95DZyRRpxy92sqwkTl0FALcSMg3nr/2byoCXBZKrj/2+g0gsu7VlrMhOT4F7fHcogbGV2GCiIEXiqWaA17/1j1Hdw4WhR3ZJhixuqbxGLCMsRlROUnkcJf8bIhbB1z9g7EYTSbNnL8yExGYFf7A1bdkjKWD8MHXmcIyAZmoigJKFPvGUY9jABBZVMBXb7h+6mSc8ET0fv6WyblWPjH4CajcqcCW+WDZTg9YlLXSCFNIMKcuGJPwnON6qLezQ8nheSHjLhmpXi5RrXNG30+0sVor3tpyteoSWfI2zJDh7WxQaLUoN5fT9izHX3VGGGck9ChNu3IFo6BZ0vtC6uZ8gNCkeNBrLWM3J1NikdVcUytN7ZWilSr7IldVn1SbuCJfk5UZbIOJHDb/9Tl46hrTiLdDBbpDDMKst1Xdhq2ZtDJ1ah4rSN1LPMqdP0pA8raVYO1ej+WgfPSBpzsxd+5ffOOENxp3KwLLEjsWsFnekXHIpwzv6G8RKj+UFvwIkeBzHBxghGotRHpzGbbeZPyqULEamjWbf47/I5AZNiR4EyrnLkFoAM+M0q83kt0jE0fRx4iu2p/mdDggqylwaK8WH9kJmMUR5nbH7zpjY9FLLCgE7WNaDOoeWHBFYpqhvcDsaN3a59fX0G4taYDkaVZTTSDwiWatchXnZgeYNgp7KMvwrOF07SxfGc75bb2HHEvxJ3x+519hYQ/nCd0GWpM81U2lIwC3oybOW4kEyKlLfEaSjTLXpD4ixnMwCZTxy8x17YwTkeyMspaDzRIyZjZvd/n4mKsBvcqGmhSTvD6ZuOMq2npV9LkRnZYluDr4MZJbCkb0yOY5jxLzPVFrmwYoJuEfj0Ax9YU/2a1BANavkteLOc5LuOyhO8SvcNU1dPV3v6X0wk7eGAv1Knan978yNgNQJYMVnc4IYNt4EKke6hNr2MNrOawhYDCn4BXd8QcW1fLHC6YYoHxm8rttqAYygI4iKc2hpCnVYZHKliixnBqXoU3CDfFVflsLoklAr3lOJe4vrc5gqFBpOfmCJc7SVkdGBxS6sKy3Xv+AlEwpLKp/YsblN50KRg9Ma2fZpQB9HtHliflKYHgdkT5v8ZE2QYW6f8aqz4veGRLTDFcnYrSOYJZmjETX+CnEK0VjgYQoPvjszeouGCfxBUT02AgKMmJ7XyoTqgPyXptyCUy7vHQzGp9lmr4PwFGMQVLbmQurG01YgrGu8BlTKzRP1CN1XptseB2G+aA+26hcQrW1K5fhRiP8HW3jmqoygXz3tqh2Wo4WQkx7tpm92LezCQJDUzsl8z96PPNWjP01MZiGNK6jZ80XDKpmvyj/U/5aHcbciim/v0OMAy9XReJGLubjPZGsu/GaxtqqV1TTYNo1KSuQnT4XI7JgG6lDOMM3bQyofQcVsan2RhKxNFYkNUnWfkl7NSuq2y+LN+oEW3fCLv0Bp0rqyqwY9ySZEB6BHdg7GHUBRfyi/VJ0smuN6XsEt5VYFb0cB/MxyAgb2GxmivexN6fbWBp6zTsn2VCB99IBbIMnHi6xHMsluvSzuTJ++FcKwBYNbBHQAhBFCEm9XueCyZ0SD8n5xvSf7msU34jTh1qLjh8WU8Ww8YiNmLSqLXfU0E4c2byWW7mAcx3gqy0OIQz4QmB/mwpXol2CvJVzM8cddFi2MUnP4yAxtCQJSMEcmWFnd0xkoZfWM4WDaUYGyvZT+osnEzjVVDsT51zn6JTBmod5KHlqPDjRTgV6jP4RTKC0kB4QSWi53H3vf/B3Q/aXsI6zZEYd4C/yW4mJgA4WGPVJSNPBF8uhrblDcJ9kcyIyveljU8vpYlIE3qs6YxVK3suDEY9XNChC2LXzAYHLBKvoZ71y6GE+gmZuPM7rE0EuwtLbDYPERlFXVffrgGT3ZMTSO4rEXNHQwXcl+UvVrsqZ71JJlI+dnCghS05JejKARlFRk0I7WGV5gmNGrb8UpL8WxXCB9TbxZHMQqDioGE4XaXIslKdFepEVuKHan/qCUNU6zNy1MTiwifZZqym4IBYHLf4EtSrrjsxJnjnJT8fqeD6dvm7JsBXD8DXb40Z4CqqVX9/sik/px6YwlbZCxJB2edVeBosVISt9Dz18Th62QF2B/meN7SG26gsIFUgArF2dpdIgxefe0HGLEzAuOBRz7RhfTVH8qWKxs3hvngKpPViB4Cq8qS+OFg6t7ADEev7jhiZFgfKsy+LOV1r4FfWWysqmK9ke5aBIi6BENkweRjUP3evTllW0lXkup0HMYTU1ryT6VPwgmPcmuXj8uOLBSz0j4COd+wnV3PtWpjgp7trLDgVz7HR/ef7D2d2JHSCuvrymFOk0jKquOflq0kR5beAE6DdCGUpCgmtML/CDHXR1p1DI0BrlLIvXqjx6bS4p4UfCEGHsvCrus0qHUOvg/exX4Xb6iTjuDbBfpkx6XVavtPS3ANKNrz16W585w9xbAU2xTHBSK5jVUpL3ur0CeMVGhbtQnV/E1ArL1hNQAQCk/qSWOed28dwVDn/D25NGqub9tc6IiuhQ9guTM8/zTyf/Ey6WzX5M2CkI0DFUsoiQCeddDPkRB/by7XmHhBIGJsGhYYpBKSFiQa3Sg2UVrsJpalwHViThp3aPOeAUFnb2lCcjo0bRKAMFOmTYyo6PEGcPg+Hfxq86YRqr56VBwGjTwtpuHIS7icnCwc0uwyYGwv6mEIFD8NJBO8wBepJKlCfS2YHy4Kb891VqOW67vTyJak51YRq0YmpoOa1/d13dUi8Uz3EcGq84zhbVEPQ0lr0lkAwFmSc+WNIji+vjnV/TsQH3xzl5jwSDR3TKW0FnFqxDSMx8mR5VVLpKPUFz7bMpAwjWuN/JbOxN89wtt2+weF2rOgZbJJp4WvJTC4ah+dRnqLbn2oiRsOUBp2c7ZGOUfs/JpEV6v2TsKWoEtku6Hk31Iou38DGu4XT8l4RbjZev4UxqYj8HPUZ57CIGfyVSGrJKLR35e8h2+T4Ybq/hGI6enKMlzHwhCz8Iatpb4O0mne+H7NqVcdmgMId7ePyntOQ4qPtyGIK4MLKyN/7tz29KXebjymdzeOhLkeioKARhAKNTb9j1JGo/WMNZYU2B43nkA1KccvFyjiSKQYa+WwcGE3GY3hDZKICBpUfupIjtk7G0wfG0jc5MSf3IVpX1m4Onj/ocvhmyf9aJRvVI3lRo9Np4g8b9SRpcwyM7R19wvcUHdASSnbkIarJRFt7QGdjX7npNVksxZqfTsduu6wgaFR264Bd/e/ti5ubYzwZmtQyukLZCEtU3+Zv3tpehH2v/nEyXgcZwMHulPjH3qJyUfC4hZCB69y2UWnjH6YMxTR/Y2gO3i4gjP7nAm0BOb+K/AH1/Uw0O5ts2fbujHVFtMGycCdfBXaIjBFv9VuSVgTKwvvGH4FMxjNTXEOZY2925tMlzu6abkRjMSoDxCtOMLleounKNA0VfvT/ig906c6uZslCvotdWarPQrDFdX+z5mzifdMSOF2yBm/1glbWdhz+goz7aouMf/YmO216Bou0Wu8zEKnuOkqo9J7VYfpibxUnOkc7pjguHG0Ho85noAUpVvMhTcAuqzdnvJ9eRCgZCjrlaJL6AjA2d95SyIuDYGDe4vPL8FMJxXHkqRo+qODBuneornUmQc2SEqsJLopQpoijQR/pzFFlrPIekXmu+tHueh0Yjf/pA88S1EtJPQbkLG4LvzQfmcjLBOLAvgo1GFxmFV+pH4Klv0JGJLaFh+1SxTDIE1owDtR7MpodtrhT3zI4MWyEzXn3h3IlgyUHrFgPRZlCDzHvJ0esiBrOEzCGS9hHv/CSQJtWXTllvYLc2Nwa3bGw+CICNNasdyc44E4gi82hoQu4AWMfqu4xsEQe4/1ly/Jz2jJdFgCT7G1rR6zrbOf/r3un7UlogH8O8sAu70gqz6gfsSdd2ZybHGHzQhTn3YR8J7JZN9UCBHrweSpgIyXBx3mjSiiesVCxcIPWAwXV391HRvlKRlFu90kPS5U/0EbJB9nJvJsdTT/Fam++Dgo7j72PEZf64obbLNlLYI94Hcu5HGNDCZXxsNqxHoFnJ49SBmj018=
Variant 2
DifficultyLevel
691
Question
A Greek wedding reception area has pillars that are x cm wide and the gap between pillars is y cm.
If the reception area has 16 pillars on one side, the length of that side can be represented by which expression?
Worked Solution
= width of 16 pillars + width of 15 gaps
= 16x + 15y
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Greek wedding reception area has pillars that are $\large x$ cm wide and the gap between pillars is $\large y$ cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-J4-CA32.svg 240 indent2 vpad
If the reception area has 16 pillars on one side, the length of that side can be represented by which expression? |
workedSolution | sm_nogap The length of the side
>> = width of 16 pillars + width of 15 gaps
>> = {{{correctAnswer}}}
|
correctAnswer | $16\large x$ + 15$\large y$ |
Answers
Is Correct? | Answer |
✓ | 16x + 15y |
x | 16(x + y) |
x | 16x + y |
x | 15(x + y) |
x | 15x + 16y |
U2FsdGVkX1+X8v311O9de9v8HosHQUgEXYH4jC0vnyaAvAFoVbxnYS50bsHFrA0VmdxFdBLt3V9Zl4XGqa8MXQhJETFeKWl27QNWXfM3dL9UDXohfM+2vdsFS6kQNqZS12c+7bvMd+b5X5No7WBvEMwG+vLVLFKF9vT4boEAQaYxnnMlNKIhd//dBdnQYb+Ok5BH55cD/OYQP4Txpa2sfKXJnChDg2oMksZ2nWWoNRAWxDytp226nbwTBB7vXxVgp8iZ+H/fSJEKHPglp09p4UCxNiCx2uZWs0MLezAVKSUgIeF33fO2z7G8TaVPIs0EPHOY4IZwWxsvJ1958XKdN7LaRrk/r3wajyG3+1UwwWyxThD+IOk3+GU6E/6j+OhjJudt1t6kdma+VMenQNKLp3IEETniLcG7MiyBtplr47YFpz+A6rVVZDhvzOclZV/TH9vP0OHpVhar/5lVY8Tt8/TBkp/2usDaYq3anxugTjjIEvRC0OFQKEAT4ZwpJashwiBRi7CmFax5HcJRxyGjtdWMZ4BHxgSw8DFzbwp18HqO7LisLkfDC952JulYNIBb4w46TanfXHVHz3exsCOMSuxdi2TmYCIF9qpApfj9czosMMTX1ZUOCXum1zodhxClgtdG1Bgh0eRoo7DtIvifm7Ow1bZrNnwEYQJVNgdsYU9BVgi2N/vQfdWvA1GJH/6NhFDN8WPwlPllBVnFaUf+ROoT5FFxOOlsO32j38yS7uNqFE1lPdpdlUDdCNBbVHJGDVFFdksAjz9DiMJab9p4VaWYqFufPQVyAWzSrm0IsMRXWLqiiJa01scv1bNHijY/NJY6s/k7p+TY1G9k/+U/fGPw2YS6fycOiQyje8mr5BR2LUkERbX2/5PVLmw4Bfp+7aJITVCr23o9urEdjY8ZaEOZ0yBbGoLaFvweIEJhPehY4HTZFf/mJ1AaQi/rFYYi5+8whoTsRh9P+wXI5EsdqKdnVzNtPYXkAsTujkT2JPMxbDC43ckC1CY5T2dNDcqwIqSmCu79xPnNwtXHyA4eR/5FyUgWCtPj65YJVQDOQzAyItRhPPbFugrfM2t11dGCYnhZPOC6GbVHXsmzTAUm6SZ/ntONsSgU/rSSmjfNqC9F7CMgXjBTXs2nVqvcIrU/IPwmslad09kZV6y46wH47NERSOQAG5O/pfi+TStXrbCVijAvnJKHj2m9EVZEnRqzyVYWsGOo6DGQ8KJM5hCc43xhUliDano587KQ29I+pfsA9XeJ477VV6BAPyQmcYWWL5/PLPscDJofhDDcOMvAo8Vwwnm7p7hiRIHo1I68l2abxxTrpHSjU7+xWgpM8e/stMoSBSpROk96//MI9FVZlxtizKWqhW9zB6qMUWnd12+s8GyMqh2ruN3V5NOmyuus3l920Gyf1DbNnXRa7ui7eS+SVkobeoUKdCOPzT9yLUsqPX98U/rRGeZxEkuiBJdoHqBpgZ0wzG9nFY7IW5uC6prV1fTp9rCq/13xV66x7LeRHLBgea7qqbosHFngewoJLIqZ4F+q3ADEMNhE+Fq2ONy94/J0G6w4he1ZetE4mFZCSUwP0EZYBncKxvqnN+tQwFQwEfJTvxBwfAEA41N//AhEfPM/+jEnO3uXeABA2YthxjVIh4irtA5gAZJeIVNOkPm0Yll9Dw1wgaRiyJnAoK+DsQtfKtgOMz9lATxe5ZWFVy8/DHL5GC6LpakQZXKpi5mD5Lft751lLZ/QLG/cdgdR5BP5rmMbPkyUwMHfmVWSNaZbeeVWX7aQvcliEWqvbKPjasbDglsD6zVky3vNWbYYD8pHgo6YYDQOXOp8wPwWfFWnjR53+/A1PwqPigfgt+3RDGZ/fsg1kZIXEpenROOGO6fnnHPxQ9KfOaqMYf48Wnd/wch74gURm9e7dyMpBaiB3hU0bt0fONLohb4SlMlzlvOLrwyD0t7aopHnAQ4UsdbRghtcFGldYrwv+L3tf25vQdmkVcQblOkmXkrGcxVTqnX4z8VY+UFHPL78j4Yn6EexxBOyTa2/LbdaVtIe5eZEnO6L8JVPwoXXCSRvfrhfNPI+30Pzo/CIY+ND6b6e0z+5kaShe5ZvRInNW4J8ZwZ4LuDDp6Oq0dyaiNjT6Z/tkRbGErGqQ+0dKMX6StmgEw4tiGp8AV8fs/r0YxtbFwnx79OLrLouwbRjghNtUlqr09ug1QC7jaJojt/HjdCJteM5gag8HCM1uxPV8Ka8m4U4se9cKgDs5ENki0HnJHKjlRIY1fU+x+k1W89+fjVeHvhzCNw6AtR82K5eVsdhKZcQzmeYDCo1Y/lNeJmhfCbQgoqj/GeBzSJQIGil2GSxPLGuYTrH8C4DPVU/MUJRhFkgHeToxdtHI3sG2LZJtFNIE3csAih9Gu+ibbww9jwge4yp9xSncDV2dAzP8B72KGHsFM+6H2XSAHxn2S/ExlEI7Uo1k63viU+eOuc+s8Jfzh0z4o/ic5tmn+vfoXUWJUQZEyyb5FvJMusn6Exb2DkAngBD8Myrhta47HKH9j9wYTn1wObOIT4IB2SYZQpxV8QQ3H/G+MWBFObr+Plzy7u5Q99uISqKrWIuRV3h57oKtpS0Zw8ieDwyr7gqKX8z8WAqjRqHOaY8ljbqQceUvGPHvf5KcnX+jlpr9j6MZAAhAf02ELhgAnnQK5Or6FdBAGnfDwrC0mkt+kevXpFi8EyZPQuSqUZ70vb01r3ZEFw/A3IsQwKGcQbFFvz9dcheKBDCN4aU8mjTgYSxcIGbiGJky5T4VXDJ3SmVQ5cNeB8/McCJCa7pklhHQ463EhF6+YKqyGXs4/ADDz6QK7kIGjgAxpl1x6SOAQZVZ0X8uSYz33U/2TiFXMkD27u58/MLvLKYp9KoNb5IlTlpeVoKXSjgEr/Kikc5Ok+wW8CHGSm/qxtwkohMF29/UsKA4JhCXTAZxGKoeha8ofY2asxXiTpu/ejZFYN89M8J1hDZoIWpKaV2iboLcR8IpiVl8d4jJRhp1uQcaaGYQXSHhElCsEpBfNWf/o9tY5lVwjvcD1f8eHOpxLtwJXifBrfqtBVb1aw/l8Jj+OxpWxrsE8kgug1IzyaDNmDltCwvS85gzjKyNrq+ipZ0/rt1osCw+9fd/EgcN0r7Hw78+c5WR6V02XiQipgaVLHeJVd6Cw97iEEXdP/EzjFx2ZYCVnj7Q47x0fvbalMTsellxok0topjhs4KWQLYRpasvCBUo6RCLY3EO/EEb81MmIs77jwnttFFXhsLYt81e+6iAoTyZGNwJAZaco7IKwoC5Ya/MJuwxUXBfc0m7b95NmnuopVbQHbveMxrXR86SZXx7hdq6JJHFcmU+2j0c5dIYzAcMSayWo+3ATg5W4ze+A7D6AnC/ZBZdHBtOs3FMfR39w0cOsOhMaw4kLrWol/PAO6gsUjvH8fUel6oik289IVcsQEjfwzpnYsxJu3rZQvDg/oSOV0SlA9tUvD/0v8JrUfZmeHrK3SckrF53gXXFfwbxYK8A7HmMPhqPMnoNGFUjPnp1JuWm23jbthtaEzScphlCFPpHZcedBlsp/oBQ55tc30jJ7xJ6e3S6kd+YKnt3vimPEO1GTiT+cE/LiOvWK+M1nPQGHS9Q5NPVKg+s4fBlpfwptKmtmFGMnCJaNUvqHUdGhW/pQDaDnxvxA62nPNwxiAVuODCsO/1EC5Xqi3I534MfMuoh0jTz252i73WW4DzBcb5I1gm+UzekeoYAM2+lP04BD0PQoobhe6myRjPBRbzBpZsV3ZrG4i5cnQzzQkQ3G7/tc+xv8lmhRCDlRNI8YljLP8zwEl+aUUbKyDNV2Y8me+X1ly87kl9LuG4XWdswzlOAlLjqfxRBUWdXl5MyRVHmd47USyjq7HYJTpfwruMHv/cvEm8+vnNd4wRigAVmu1ijA4Zn/4Y37phJFhrEkWAlMSto0KDHTEVCzBdEkv1fZ87K/ER6RKhOrGtADj3nSrXWDalApguByBdPieWAnLYcT2dlC5fiXBn7E1N/tda8gCmtBl09M2Oxhp3ciaTAvA679D+AgDe+RNsNKNsuCf+bK9KGXM5i3jQ+TrBp+fco0GCnM3TPi05EBSjzP/nsuGQ+ck5VXoT1wgbjeMnQi9W28qdyU6lHDgwPKS7vSeJC20Tz0gjGbJYp9K6qNsrl3VsQOqdU+AfRJxcRvlihIxTBnlPGfDR/IB4Wvr06zh04Vjb10mDfiid8vuUgBgOf78cpeIXCTr7Ol2N0nVizT6pRS7wjgT8udgtnG0bW6iXrsZKK6+kHwW8TWCNoBWyiMoCrDqMa80SUq2srYa3avG3t61Xtg7es+AN9N58f276hNxrNfnXDTvTcPv7ohUtJyaN/2ht9QMrsOxF/Qg/uuqdfAJDCHlXaT36+Hlcb9FxI9vhs2uF3+6oljhJqf2oNpj7k2QvVXVOmGq3QJqBfgXcIxDvE5padIR6CooNf1x51NVUwVUtxhIcJEvSL5CJPyJzaa7ybYygIg+Ry91/L005VdBziTsq5w6Rn4HzbtZwbkRogrNKwKTklA47r7JpkgUaRdX48V1CeTG5uJohC2yPBrDZnPJEJAn3Ur8UmU3FqiP86aFHM5ybEaZ6w6ruRFgUjBrJSkA51+j4UO8qWlm+jMWF+4AOP9LifLg9eAMiLitgDRtTVgEHskUpVxYoeGjzxanUSARRZfl9AfxaA8oOjwSHfZBbto8Qx2r100zvAAt6s4FR08IbmjhjIuXeNU9IH9Ga7nqd4YlT0hFjQ9WRU8gf4vVa4Fg5cCPHJ2MhMyL/8iTbph17wqJBshI1O28YU2yIvgmG/2192DU/uVw116oRvAuqdbZgFHY3bk7WpNQPALK1nSB8yoG9driHIm1JVXQmmi15Zrd6aKrjzYr4Au67NCZve5cb/YahjKbnvXrSd5trVURWItM3xpsP+OV224g4hfNzYewgTa54ly5avSMe+I2VdxantcCDhTgAz1EmSB80Z50KgUUh73t0yI63hcg0AIkc+Ls5zWWqiHwgVRAUGpdNDSFaJOdqDoPpQL5i9mRLysNLkcc6o/5K45/VWU+oLURKW4HtU4E2mIX4OZxCkq6nEAhzRSa4velfrxKIbeHbslA2j1ufKKlrwI5JpPr1zGebZ3IIIRFW6wI65guBddMkgSXqAAI+UXb0oU/F2YaV9GJqUub7Eoj72hFx05+7CPZEcgkO4ETHZe90tP8uatj0uzqAfDeaX1+IJaOokWSXmqtagyLjXkQrZ0EUvuWJ+7sly/9Ih9Swdt5Yq2exke63IQV1ypxbcs15YK/008AqwfAsCO3Y+Gf5FDjsfcMmqPnuo9fOtKJVT+cpeAmu9pFREd7g9/jPJDgvejb1K5rAj2viEpfRXVvqKgmtRIczVK9Ojsvxm96mfD9p91IsUY8AU0k1ObJ5gzTovUAD9oEghJUm7m7xSG/xnqcvpPmyFwdyU/x3aN1nRDTHsYFUfY81s3v4zI5M5lFzmcNVL+wnzbp2q9w9iSQ7zohkkyYhVNufPO26C7gzWb75F+w3Bf8lbxFKtTldV/8C0ejU6Sc2F/UXiyIdiP8IfdLGtYeFfu3933OZUpa4H0ke8HyKTpEhRb68Bx3y1PRmIB7mdJ+1pAua6ImiYl/WfByoZUbpy0z+oWVg0D8IFYWDxt79V5fEe2dDW2H7ncDkEd2hmfZOM3OlGU847jJW0m0oWASoPjZMP3JtLzk8Xf3JxSJaSGnc8KOck2UZ4jA523IWbuuudADi5QdAN1xH1Jt1afYTCXuCphrq3ATij5OWW4rozBO8qESpgC0+Srm48hHmzCZ5IPRzBO9hemEWt1Axc5GS1+9zn4DxdJCiIEVStEdvf8t35dY/yZUzb7w+FaIkrZdhfn6fYtz9AX2cFQBLllyweACGFoeSnOMev7QhWSvcSUMqfcyx8j8GjFjacPX2uDwO7bUrFf1e8usXEFWMtTiIuuqch+wl829NJ7bAo3lTL+BHw0Bpv4qqNOr+n/8FfQfUuL1asdlj0SheOafJczo8nDvsT5FsY6L27Wto2Uk68eVPV4gnJZATaB3CB+FjcB7ATwFamw2UGLNyxqs+Moij98NpYn6B+YYByDhUKWtzWU7eJ9zaM+CprSCKv5Za4nWMd2p3R/4M3p2ToELHA8KclnqQ9TPKD2LjJ2rKojUkrH60OEsSTrFKHXaggkLXhsTZknro5i84HrUKPH9g0ANdt9k9kHmvB1TyNGu38lxir4ZOu1Sna531i2WoDFouqFYd8WNjZsg07MC5rpYmFOT/S9E9LEqs3i332G1Hvm59rh+ba5kfFCmv9evrrxTJglrQ6xli8T+9ZSCAyMho7EErfjc1X/poAlhbroaD6Qd8/wKs/x9Bo1YiEzX8cUEA/UMWaL85fu3nphu3EnXMJtfxKm3NnNmizvJlbf4v5ql9uf1KNowQI4d17NhQRpjFRPHOvQZPDQPktxf90jy8ElL4BpjEeaCgGkfxcdf4d5oRZdmxi7G/Tvhq0FdEyFvpDigCraFruFCkxCYzWZYuwFQ5VrCYdKOIGeJpBqzbCzghES+0jt0MOZE2ZZm9iIo4nXYt7Y3y0n19Hg9g6yOE+hB3rnQnDqur3WjBmEpPPFyy1wJKe1EBXL0Xgl+M6i+4cXEAQa7nZ1OdcaydZQ//vJTBg/pDj40T9jliEETo3GOV01VQi63PJFmhLHE6GmSur0zVzw3lHFUtbo5sz6EnnAoI/BHekvDkmWrX5Mr9LNBExZuDeopvkpeywFgkaleQmJHb8bHLBEAkWDZA6y8xNINPhr0K7UE82a15iPyt+S3OQ1YZZrDH+XbkYl2Wcs8Uj4WcLf/pS3QlvMKB4lCWF7Bwmf7JrEcrpUXnj6Uwgp+OpYXYSzfGd7Gkady/eBXuZYXYu6kmhXuxh4Q+9CLlROPeJXjw+siRpf9vrnVlnwng3cyHDD24L3y7VRZRrauDZfXNmiYNpMFTQw4TW04gZBvQhnGyimt7hAPuYy65sKrcxHvLNSJi3D5gqbjBEbqzwgcWfPyXH+z3zYKWoQIAB48pu1W+8SriHM1NHFEFHZKgGwUa/tK85Ra1sRng8X22Gbzg9zGl5nV/0p9M+2wyKsq2VWhHbEfYDtuo1wrMYBIZf4xwT1Q76eDJrJqEh1+l50f1mAK+kgSKYohn/WSSR/Zlhcer1Od9R4PU3iNEV7V7uolYdX/g4bHKhM1KftMsfqOkvPB7ltCw0zXZyudu8mgmWbbtva4whZ+XTPsVmjtgnT+8FAZVMUdJbEv16dHJO4rhYJB3NYYKpFJxA78y2Q3c8nq2akMk0gqP84c6j6+k170sTBNEA0fClnBRJDlkhJsTk+9G9gPfwv5xlMzTj7VM2lyRqNh27ZUSKaDZda2IN9b4ydBlI08blYDLcQJESITekcHyUujp9nDnf9DYxe15oWFR/5mqh0fm2lyGmrjf7lAR0It2wjDokciPo+opu5S9u5csHUB0SjSFefQg59grOKgVTBcWrOkhV4Yym09a15WYSuSg6VyqP4qjaIwf3y0oTOnZWUE+qQ2LzA/mD6QiG62RLKB8arHmn+WOMYxeH1nbQ+0Zwp2c5Y/VjwBqxIojdClysu7l6euuoKCONZomuqWtLeIW6bUcI3dTBus8L+7U9Myuvr1GPPHrTDbZ6nE2pjAy2owqyCDraY1R38ilcz0apOQmBHt9hfKOkJvwHlqUuj+nWL17IiPjTCd0yg9zCdKlrsHc27MyaUq70C1p7r5gsMtjU6P6NtlX0VXy/Tu9Lcg25DHTr+EFKkji7FqQ4b/t0KRutZ/b6i68Sk5BOYeCV1omBZHim9QrdcJUnls7q4RnUzOWSqguW4i7AODIeTFjXXw76qjSg2v4LFl4gy0IWoQ3IiH95mpON6NTSqRcQiYWm1auEJHZ7o4jusUIJxzCrwM31FSLJ0Fbc0mqBPl8PLJWHZG7Z7SpnO24T6XR3WI12kJsGpAHApx7pofX/v34WSwctoyMrd8BiUxEED6huZRfwqATME8wO708zBCbVevhoG5i67ASyn33IXCe2DEVyN0boroO9DdJfjqc6Oo8VZM3eRte28IES6ii4S0LMc5YiEncZtNtrNQ+u+vBGd9jkxZRdQn/AhoKaqjAXgoSSzmLiKp6Z+/M/zEAhKo1b+Ed2hHlEp6iRM+44EYzw0+Hc/QSvOG54N3KQFQUGn7chin3O6TnS9SbV9OfidJpS0psMqOlPdbkylSE4Pm/9MFLi1ksetV/yMk8xiqsVNP6Xp3L7FW96VwnZ6NNd7s5HM8V7qkFiwRzhrrF9okdxWRWtqu+h0VGTGB097S+Rz5COFPT5bHWOj//B+Sd6BtIfE/Ic2eck/bmBWoSKzgPduhCr/OUug8x6ZNo/Ya1ySlz9KoVyZp64eqf9FSus0avYWg4Aw4H3yTR29gwwC/Jy+vo4RXNBDDVBfZxPeEC/Y8tpX7lymcSfdQPVfGyY9c0HXuxFGseIA4SZXE3MMs+wc18C6AF8wrQ8mOfQWlcpTCu3k8KGu+8ofkQNBNq+c1+AZgnieFX/Zslphn7kpH2Yzr1j/d6v3xcmnS0gjTaSDMSI5ZuFRCvppZ1/bF/bJjUQtlDPetnA30UGtk4lDiHaHqRZvdLawhAjv3tq6a4c7eg4I/PQaZZw1a7JgE9YejFQr+sqEUhBqaUYUcAMJq3zAG/Zg+VECbgxu1qiNB94cOQznVFZTEUIv37ovTYbAFbzqgYxCeg7e8+MH7kJSSvHCryVJmj2pLWUIFmEL+P2a8/iMFfLFhwbrMJuY0Hjm/ZcssYueEXDw5bSS2LYkxulvk85LUxiVUcBt6ELzLi9oMxCJ8wiUwqI0cueftTrbhbstiNJUHYPgRJ5zlI3O9dhBRb3viN1MXaVG6nzmEp09QbFLn//FRaM3rDMImAJFttu/iLbz3MfIoqrTxkhbRPtwv0RgZE9ersz1sCDOxuGlB6u/MswNEA68fq4079NVvzbJw+QuiIWHABQOexfcYeTcbGqhqDwI3AkMcXhW8yCoFittMI2OGaXliIPQMRhI/h9TxAMtEp3AMPYBLkpKV87d0qp5bwHHmoszBGaGxYYYW9NsUCsToHCyYNwCetzzz9BsNIHC+2Cutx+jFb8bOj9wLakd6mXRstoOr1PgPaFGx3Cf0et5nkeV2zOn3X6fCkhK4ZyJgI3eN1oz6M3gHXgVTdQjItgIHRJHqur0yHBkqFzY/746LQW9yQZnzOszH80Fh2OhBY7mVrY6i9D4+qpvZD1fQ0I/VHbPSLNLJUvPIwDsYhv+WIOeEwGOb0zVHLFTn31uIuXe3O8nRM/hbdlsgRmGnnLpl5jVZTHEFkogfDOpzx3my8m0wYNS74YcyD38JHE4IUTshUb2UqzHge+fqPEh57hukylZV5W+joAw0oCKU18T8TngF7r/Fi8m7ICiE6HjzLcmtxlhjgYg/5UUE67MxrfMH9UT7itcGVelzJOY9KTxpLexDGU3u58gVdgUfBssYqJtEWq2HyIBArhcUO7qv1FfSE2rByVb40zqtBt7FfQraNNwlYuKjJHqKth3sKBaN0SY8fULFYlwfnXetXc2wrLQweAYe/23yd+XMKGA+hRS3halXPRKh3oBdf3jpglLDYnNajjRw6DBjWWh8NwTcuSm4m0iCfAr/IiRWfZcp2ckwJnRnZTtlli459hHVhatjR1kDn6snEFzDY6wh3PgOjE+81jzUXSq1UIJeq/rtrcS8BEyQaLH7pG2RwOqUAwK5a1hONmfzG4EuV109jpqWishlUv+mm623dumBUQDl7cvStc7vG6xcvG1qeVZPqIl2QwJ//4cOf044v+uhuxVzDQNsLZXUnaNTY+ro8OWuwLh7oZlb3MVB8c1Pb7dQmFExbdsSnxdwis3sTOuSEatM2Y5plJ5CE5vrzZgLd9HiT16r0HQfkXF7sFEW9AiMyHTMzNk5Q2gOUCMk5qKWkD74K0tC9IWCRXpFZgNzTkIhmZQGVYOsmC6E94ofJeIMQk+wTM5/jXpgQ6hVhQr+t8Zry00oxvhFsqT+mbcdOk9fxC0vdbM41QqOfPSg7zQdEK5EgRhgIiAud1U2LfXAkqBf17pwPJtCnJm+MRMEFmWDqVkmAK62Cum6eNZWH2rkqdw/6PaG11K8ZbM+wDHpSZstIk+Y89ddrV0Ilv+39q+TxHy2HCNmhKu9YgJFMOK2bHRCoviH7eSIKBj9bg+rScUxcGPPkBcITm73xVEs64Qb/PBrPfTBAXOweHbsw7Ye0cqAU65o7eGpzsr8JuCxe6Wr6HUhQvM/sAttVs9tEktdO1zE/P7wJ8JOkgSwAzPYpD0005TkGpHVpVo5fU3UPJ+tYC2eiqcRu0M9hpGz5gnM3lCJZpj8eKP73ilJXjBl9djiohzu0SSkHnyZdSBbUQdeaL0Lzx6yf0PoUSObiicWX52YSHNsx7oKgvJSPZlUFBO6fOfFqqY0YWxF6qm6cKPO5W3/EEAiEASknI9zc4m8LsOsawI6s12pYZ0iL1POopY4F4hHqV/j3ix92uA8i1yqn3WdmWHkEnU2fU+HZtyDjvPaTYZiBx3OqGGFUYVFMzYtCeWwzcU605mguTX2RezkzMsurgzSLvUuipoFoehgp8FkrujOnXYYhbfs2ol5pRf/dQsX95Iy+WwVC/hkCvCZh0W1YSBafBggjbwKBlynuWEJh9AgV6WP1iiR5siU5UbJprhlHByHpu4vEmFJ8jVKuaHgjSBK6X9/5kuiaX+o0vl+07WBuhCJDjNLmmVfgFg6wWvQLUgIcaLL97Kb+05S+vFmtQnBLMwPfejeCiOatlnKATeXhvO3yTt3gaHgooxtOYglTpm/QB/ta4ROZArQu93Q5kdMR2ctPXFwpxS7W0I0fhp8EC6YjsyoJkR9+fGxSQZ+Turbqs4eAZPtEqJpVDzDoMQuUVKCVy+NN4tg1X/MlkUbrEVB9a2KCwCuXIJotq8fxU3hmp39bSj+Siq4DMT1DvyLYW9YmupjAbjZYJE9jgd094G3cvqYW/y2QZ6RKK6HO+/JTdRleBlMbjfmWERF406Br48rDpUher7ciFjyBxnnrjEKnifFMIS/72yr7RWcazk5c0UVxgYvvyWT5JewltLUB7l0qJed0o82kpKDhEhbLhkKrSsfccq+LOLiGlq0BEAZ39gqgoEnODViYKtIkrZrpzfhTeQ5RJRxd+7drERYaTB3hZE1fmwadw7mrX6hC1PdMy7Y+yxMIJjuROJmIypfcngdhKrrRuZL5FFijvRPT+5fmlyccDexUPVuyghXWR3yVV7KuNh6FnERzJTHhVdUpdLy1ZcQfQvysI9dIPPBkYnmbAKf+RZ+d4rrZyVxWwBYoQDWzRjx0F4ASu3Jj4V7d8HjCQRYnp0sdckZNIqBd6A8AmnBghJtQjo7s7el5XY0rGens2ZDc12nI8vfFAN9U3mL6ZCFMvXIw4GWKZ4a9oRQdxsPgqKv11MbqKSs5HtNMgkTePP0VRNr/9uef0mdAM/AZ3fxgPEiLPFBITn4YTZ8yJE6m/lBQhet4TrfrTVmxQEx2gkyXIn/D0rejk9FP3IJrE4eSydMdAiHMOTVp+nTPzW2boHqlK/QBYNJHxjWe28wRvq8IqoCzNwBPz1vlhJqFGIy8Mp4SINqyb54oITShJpS3FDZyvGI82BoNprF1OMZzdp1BoOTgchTBc3qwHrhpUwq551GQB8GEMGCBvV5+9qMwDCd07QVH4HDS61S5RKbx1XXZIvWRkSnRBIB022HpDIMBGnO6kxjsI3JQJ95zs/RqQln6y3SZ+acNaxA96EPuYxKwxNCwudCWPddr0YQFSSv2k6XYcg/2uYSzns8JIueR3cQ97abr54Ksju63fkrIAJffHzkuI+hEatTXDel49A9YV+E8Gk9HVGeSa8CVQERL7yfmnUl0oK88lOnWJ0GCloFy77HVUWCh66DYS63ebtmKAtKCyU4ESy+bk6H0V+DZGcRft2yygZHXSk73TejEQQ+D+RX6yzbpubaSrY4xTlGANGwCje1zOE4kt6HJdqV6+ZjVSUVZgAs2OBynCjtGPkWSDizczjxTo+fu1HX62JTCk0FdrtvgmSoYKDJ7tOyh6cqGis5eX4fPk59ksQiXnSZ8KDUfEguy3YbOBEw5VJmPQSHOkyaKlhlhoK3AQwRhjJWIClZYZJZbO71w1OsM9NgIZV84fbaGr+SvmexDPItnwjHsBfvaR2BWA4KtT11D+d2bSHFFv+dxyHjc6mpOygQHjVlsjgBgRlaPNlnJSMlyWVGGz7Lo0mLf7tI95tiuKDrN0xSj55IDG/HogHTc9fjpDWnUHLcCjS+3DBFblfAfCqy9yU0D7FbUzUn8JPA6FSTnkHV0aI4Smg8gc8mO82Iahp1tUUPs5PnKWdtHUS6fD0XZ8hv8OXDFRc29fKb0A1TzSQ7oHKz4CCXe1brhdjoQuKsUUYkRS4dH7WMr/nCJHS1FARV2NSv8d5wcjpK96E0iUzPCo01v4vPHTv1FjT0NbrLO5moTOYft9OXXd4n5wkGl5/qAmvLpZ/3LHDIV1Lt8pzV+dpOURfcvabuvBsExGA3K2Cqd81B9gHilkM0AK8J3GFGBkalNQTQ=
Variant 3
DifficultyLevel
682
Question
A Greek wedding reception area has pillars that are x cm wide and the gap between pillars is y cm.
If the reception area has 7 pillars on one side, the length of that side can be represented by which expression?
Worked Solution
= width of 7 pillars + width of 6 gaps
= 7x + 6y
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Greek wedding reception area has pillars that are $\large x$ cm wide and the gap between pillars is $\large y$ cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-J4-CA32.svg 240 indent2 vpad
If the reception area has 7 pillars on one side, the length of that side can be represented by which expression? |
workedSolution | sm_nogap The length of the side
>> = width of 7 pillars + width of 6 gaps
>> = {{{correctAnswer}}}
|
correctAnswer | $7\large x$ + 6$\large y$ |
Answers
Is Correct? | Answer |
x | 6x + 7y |
x | 6(x + y) |
✓ | 7x + 6y |
x | 7(x + y) |
x | 7x + y |
U2FsdGVkX18czshLayyAsDdeknbxX/8WbZBjTOvEU1/x5laviyavQsVXi7Qck/CslvsVWa2Ii5cykwvObEgzXlPx0W6pKuatqXaCGgUYf9um7NVMmZDP40+x8A1DbEwioBG+bH6XMv8/IF9mV3cCE/nbIzPLOB+aY7/RvhWk/yHeIN12GmGNt5T7O17dzB6Pc7sPR7wNIBeP1Aef/YZbpwi6/UFS4ijdW19j4kT7VyNTy85WR+N3zCG5roYTWFt9uTsU71uA0vn33iqxhS4vUKN4c/rE1YJqgmlKbqbtTXpcv22kFwBr39BlnP09M+10vjxFWPzwhEBzgujFc4vVVAz2BpiA3AArh0BaRyauzOubgUBaN1kTu71RUxpQ9zDtB14ayaVihBa9AJU4ER82qb18+paWbH52QZIOSBAWVrGNTfcDQFEwcuTBm3jFv4daHzyXebIjikDLLTl6qHqALRvHTEbA7vMyp8g3/Rt2qUBd1OWI2H8yoCoBpp/EEudjdWh75q86M/uJOXiujdDTqCdCOwTfq484m7VfCDW9iENDBZQDCiqvYH61lTn4DaY6nUQsZRmGULh6CSWamE9fZ6yQjF6+q4wCHFbjOsr81TY0IXANsgJAiXn0SkCVfqt7GkjHAC9Y++dTt5wWOI8h1ifEZZEg3S7DVyhN/5CNRShw6MIgEzLF8HqE3OFYCEE0QPuLDCg3040xwZ9CmGYziU1Kt/omqOMIsve/DZyZHFc5NnnuWqCN4e2xWlXtQkDYAzf0GkOmg5anAHPGjrK+EmrbIYj5jZnWRoClYpyApZurXq270YTPQqixqfDoreM49mXf8OGrP4cfY9WwRzqlLvVydc39YeWcQuIxXfbJPMu9Yf53Zprep3K/LrvEBgBZuTApxqaz37wPVAaqOanPzr3m01pr+x+gmbEA5nBdsy8VpUMFKBK9WSmPBnx1wjnSmP+UyWCyaBPgLw2mtBsFQ2d3aG6QOt88usK2QUiC2HZ6+ssNTvXO7b/U3D2LEiQuKzkOw78vpeA40YbgRuSbhjYj3t884qQr4GqCxWUslRHJeEbVrDKZnazK9ecFhY31NJjpuyn/8qlTKfVowF00raHcZLpgmu619bgZ4UITmv6OYGZS9nvw5v8dHOx/MYRuu0v9KQrWxZmKV4m6jUIGNC3lA6LjuPef82QnJ+4FlxW8oDUqtxYDz0LHkFI98pEbHX4XTze1N4V5Ob2/lH6AqwJ1pXlYyhoFBB0AlmdWyhwmAMZGnZ2/eTgr/9nxKgTriFEK+1Px0+G7709gtzCFf2uYrnN/MUUt5Nccc7aQIGI3bkN0obhyo1wemYue1lTNvjKYC7FlggXz6ajQAXwhxd/K8+vO6aJsF+/naJACtikiryQ+u4dIdjimoh79fuDo41E0g2Il6D8cp5Q8XdK0GN1DjePP+0Rav7GRznw9NgrflLIZc6yYs8SLTGD8CRvHrMxRFutagEe2wDdHdXcw0R6lCpCJ/q9ga5h8zzeaGDouuljy+z4DoKw0MobWOPuXzEMOz0nW8oTkaBKpQlOfKRDW+vrQKv0BE86japdla9Syn5K6YKHSf7ZJMGrt/XE/5os+WIFXjutuffRt3fLdkn2OOzUuVJwBKk5QYELABIU65uJ9eqTZOwRqy5ktPVaa3njWX+ywfo5y+J7p9q3/sDGJqbrb3alPATnKwIaSFW6PAOh1DIyyOXdOF4sv6FF6E5r4Dy8FBTofm9Z2R0/kqkq1YeMX53wfk8MYnd3MVPRzBjGwam9fLYE0iJ+CFtePLzc2oNvJosaAjZ3A02EeBFRntodvmhKHd0neiYlnqtBIBZuZuadq42pwDkrMgU6L7CZqfplqJB0XWG+v6/qjCDWH4VtU8KSm+pwGasDQRmJMRwmuj9Yvxb6Cn7R5/Kp7VXQDhUX0PFCyJ4TaZorhF/2mGB7X0z3i4HLTK3HpxX2nY3ViHKjkHN5wsHEg4zprXUFeP70KGJE1FhoKT5Yy9lM5aJItbrmjlRKEVbLOt4EA6/Px0f5GZWzQ8Eb5a8PygeG1c/chryMU7Isa3IjxSqhfHBB8huRPT/JkNABrnre+cf9QPQt4JnmrDQR4vvM3vw57Sd8VZJrzOsUVA6/JELA2xsQfBEJ3rn9Yw5YAsxfa49ay/RAnFVRNPYe+ZPIw65TE8fXFoYE7arKExcV6aBsuytqiuUe4DbXoaypJVo+1ycrTcPMfEqc76Vbia+Ftjo9YuadPmfDO9Xx4niM8h4QE4qWGrv4Yz1blVfaiw4llwcWNth/fZ3YapJwY9qjfdX/GfFkKQEDms+Z0KS3lAFnp3aBnK6b2ErRnKpZEXxZeEEx3CrwIEOjUoqgLVpUahT+bWk6Z2i78+urFJLDUxX/NrTy0zmx7n27TWsPWXQUwWIsk6b0kbsRv2ZWUIS0dgfTH/8JCGZAMELveeOmRQo3dVGTvPejkbPRAtFjCgXxKVXhy8rUOjx2l78OnlD1uTcJ+cHseMhPavC/wTLRbuO5NyeYPDjHVKJIcE42ndwcr+rUih6tCQa9jBJu1vuGhrcjMTUuL/SgabqN8d0zD1zIa31Qvc9xOpwtFTU8V6UERXIViI28GPoosF8hP8jUCWd5/Tvos+yMxG8zKMwMt7gjIICLytJy0+6YFcHsb3GqnZVZpSDBHJQVzrvdpiSiTB4gliFAmTkDZ1hY3Pevcl3WqGhtKMH6GhpcGwIC2mGjj76KvwLiEPTGAqs/ZueRWKhk/dvgv086LMkUopgqAskTtbhZcEzR3WzCcWWd6/X58D8x2UsPhO5ObIbhsNvXounuKIv9C8wGOwz6/nifX1jc0DW0918u+PRZjdFTkG2kdplkKqM1OZvOyecIrcvtpupVYZwrdvhcv0cGkujJR5Ac5w1IcSthEC/fe2OKMqfJ68ztPDTeyjW5+tNEx0694cb1ZrQCJj+vKkb3RrPvjbKZlcYvg3oMPWAh9IAaKKtbDe00hoqEaa7T1PjzajQZrNO92P68461KUsWmSHl0Qnby2mOT0UHG6aMIXAEt+gknxh7f0L/ua7+I9zHxavFVLjhS7HJKqlLblGI12UhRUSVxxpMtmWAXw8DWu2IdNtEm1znyVkp0ueGFyaxVN0KySg0YPHy96X/CyQnOsRyl/IyBE+vprJcxuaVaI3Sygy3CbGqDGif3vrD+IrxhFK0D9wdh+Btm1n13sIfobbOAkrALBsSoiD00703QWuSmCNJaOsl+7fSKLMrM99ViGkQWkPNrYrnH77PJDQOlJWN26VF729/zFpKer3Cen3dQRze9cKq6bob0Y9Qp0OfEZ/0LnW05HnqWteE3mW/EUw7JXrKCMVEAqie2B3O1/UgwmN1mPjVB5f1VkxCDZ45KqsIhElQbVdgYiISI/XIwup3Iuvt9nzlzimNofzifK3uVpcQc/BsfMldLi1UjzkvdC9L5+epHuKjp6bY74hYkLQwg5EWVrURT0IKxY2EMGRmVYiaIrtrxgYZdz+ESfVVg7WTCVhgrxfcH8tzff9lp2bqf6Z9JxT/pV4/m7UCTfEg9lSgFSa2+urDNdeMoGnldAB53AWuGONXfJCXZYQNW++UJjr1RJVW6gOY+lrX3x1/wBr0mM3yiYU1P5ezsNMGvxYdOD2S3YPOYqoyXmyA2/Jo4hBpWIuHVMEEPtRA1tY8UCB2kUa1yWHFrr1mHMDyA8yn0orgAcORFnYLGP1/ovhAtg+2oHy3lrouLQy36RVM0PslqWJX+L23bNkSafer8r22H2tXrRERKobefCIpg89EI20s9nwSwhipEmIES/NbwxyLXH7Sc1B8hYVeW3bTNVNhRohiH5D9o8jysx5eikeGk9u9IsRrS9f2DR+HijCCFgE4emgfkWLS4klQXZc3WxJThA/onyP9L5B8MjTM1zgmA50M2MZ+rAb6gi5XoBTZgaiZAAJ9ZzPB3EzLmtlvQKZVF5oOnwJAo5zSFkhobqshMnsPenf9cHoNPy49zaSCJpYbRyiUS55bU/6b1q1MEpaEhqaIEJM0ozDgKlVV2ghF+fzeSBOEMCtZn4DEyvabdEmvKoBh856ND8zfwDwyuMv531giAra2SFh7MCdJTIRouyY35fcNHun6RqHnccNfp/ccv5utYRQIBs8SvM+8A9B3hDlWOb8s/cPNYLSWLQqNMe79Sol1ISFXH2HLOaYEpml7LP3J5fUBz+wJg+CjQHnr9c78D5kmjczozrP09olRymzOq9B6QsZeplhc4jrdswTcMy/9IcBIX+R6VVYW0ClEzP0F6K6NRNgAE5LrHr58wMrqPP7MqcVGlzthkkIBbDcWHsb3Bl4ZsF3NmpzOrEfMtbKSdtofcwt4kZGkI5uTmbnUQweVyj4BeCxvdTRREkh7IngYSDxhtXhwbMU/GHLATV54l9LtE9P+tT1oxYnysImspMAipVJZQ9TkT/xf60CBEQ23PJ7Q0kOaSPi2lixWKw2ScQGv/drMO4Ys3Bw4q8GvfyYSzaDPstEI4RKP46F9uGEZ2/lC0ERML2IIbumbdCE5L9c56/utb4J2xhxd4QTXwuwHup6xm2O0qGgAHFZYiMAjOUt00bdLthFKvkoh/Q0mqz8zS8EoKwMABYPXW8sCFsCBzjIhSiJwZZEWbyzeO91ahMzoG1XH/paiE/QSE9IvsW46PS7vYLU5I8miM+9WW30sS2fi2EJABRH4OG+8biFXstYvEy+KL4NNYXUP0epIcr0dlnLUxuCbEsT4v4eOO35S1V9KqRJ2PgG9L/ui0HDJ3fr+Ap2RvpTpWPLbBuBJXXO4V5R8PLs57Mko63szT6aEa1nKL7C8bQt5eQQ5VwIOATzQG+K8ovVFm9hPNFa+91BcOVIJpOiUyScqKcwiXWftNj5G39JskacAIuPy0CIFbfNNdUu915JFTphiLR9IpRQajaMl99alwJhvSEyGIqfqiCovniP40Erhe/T+T8WHi/ujhZEsWt9yJ5gmlKPiXGIEdFBejA8urj5W3yWy91S9KSQtsz3D+BQQVPtx1K9Yxwp/fkIJPudzZtGx0US888FP5QyIegPrIYKg2ZipK14DdYMBhbQPjpKoP7DvNuqgwOAK26jAk6YsbkvUeu2VohrK38iuP00o5ABOTnadFfsUPMudzwmLDJrWG8cv00sIuiZEZWV721yomMk3fXxn921dSNsr4ejffBvMgCkvfTGR0WNidpjnxxGryNQjIZ/QUFbDkVZyFgrq7vCOF4m4U6BST/RMeMJ1ZGKOgdI1vQmxxkIE15lG14LqN43prQKRfQ+shb98dEwfP2xrReiSLDBDzWu2thnn0mCmvaCw7jUF7rHBV38vSPTaP8Hi3ObBw9xthgO3cM4bf6SVeCcYWD0wToHEtHOtiVnd5YU5cQa34XB8+FdaCQYX2Fx1KIqLavNwxw8U7rztRGelSefjzo42NJIgIX30yiP+TlWFGjnCBXkPvEt8IwAV9uWvWm4Rt2XUkpMKvcCX6U27XS9JB+02qA5EmSruCA4CrsAlDK3fpma2mWMS1zeb2Mr0pNpTo+KI33cWg2IKoifjXJ0R00NAR0WFNE7hxQB4GxaBGp9WfuY/AhfuNiNI1u+sufssX5Gp48HgFsvSsh2C1PTejGYsXSOrufFhwtCcfKql8Kfr4kVJoDfJQLualb6wgeOGLfqD/V5XRBPiaDngr5tUidsZpVeI/vdPGvNOtYl6T2zpJcMWLNLGD4q5F9lkwzodlWWA6+FonLSIKsdlavE8nqInLfnYJ/cYV+HW/HiFNVkUm0NPy1+36rPltk+Ex03NA5EeU+nkpOwnpnf/MD9kFDZrplovGmpVA9vuE1UVuRMCt5WUK3ozK4OJPqtBUjybN/Ai1X+e1KyWmyjgl9iXHKMHtJMA9fxyjKdcz/KnwdcgPwsfL/urKKB7o3iF8hNekQQ0doTcTTPTOTC1MjbeL3iTrtgIILg/RLryZYUHeXRXBRbxwWLg8tUPtt082n5ZCpKGlrM6egopa++L3FgWRhH+ClD7lfI4lXL+U0mrD2q/p9xMaB/DvRQV4wxyb+lfDSv1PAFDyiAeJ8OXmgox0bQbxv/MCIC9RRV84oafr84PKnxl+pl9FeGWYysrjSPpTvrm+QodSKoqmOUqXSJ5IQoCzW86MOuHBJ9iokOgXjhiw8E4Zau2b30ID1f5pIx61MJlUlHyxCqe1W7yI3QJ50hFM2NbQkrfEJq/exZFJLjwAtVshJs/POyMdfyjYue8CxRC9meCtHrkxnHK9M3/0UsuTPNpDVmRdJHYbqOAeKMPdBu6yZfwQh8P70vDkIR2RHq3H3SVpI0Ybsl1CTthKleN2kf9/m2QazgMFyHRdvqk+tcVjF6ukDvfXf88JrzHQKRTDHfuzBZkO7wkQ891N9MfttVY+cJtN6Rw8DXkibsLuGUH1+ItHQcC6Lislxx/V88hhw3AE8rDX9WBrpNsdFMeZ6uSRtpyuW6F1Xhkh7dmSkmZptKVpn4iW2tj6lNcYhoK4O8THfxi9t3TWKoRLP4rQhhMrWulIrstex/GYt5lUXmfvOvEK7AZxmXqshma/D7k/rGOmKOe94G1s+oyYUu1zDx42qKWI7uc678PHHZgUhsVQyL4vjiEWxQ/fj97Ht6Te5bx742iMUp48nIc8uloJcSV/IHUMSNX3UH15vb+gZ9n3Ci8gslt3Own8zYMhi2GvBpjsiJu8dfrv5y2i1PFFPpFLwOiVlqMTDLFZnYZj9O3yVTd99wvqfeCaUVl+MuwL5qw4Z/IAr8najPvRyMnIJqP6aF2znKJ9B1cZYWVa5nLy9Mju9Ku7zKmDdByrwrWQLqH+3mnD/6PMzZkk8kH/B47oCw7MkC+WliTlYSnUVAeGRduTeO15ZQp3/2h/Tr/Pkw/wh+h6zRsykmE1N8Ars1YONYz/MPe4pQcB+qy49A6+BPIKNhUwSeM4qFr8DLqzpyn4djI1+kPjSesa4Rw6Ca6VQqLF/DSXj6RGRYmqa8DTo5U442la37hXCJjhqZWTdkqG147siaTzucUydDC2rxLacs0hxV/jSMYi3S/C3N/4wVfynKINfM/StRQsKrQbSPkiEDPbkvKRBzjuUw/jPWJAm3CeK3qilvsPddewVjPvKKxeDSy9Gj3rsn62TcN3ZP4I3jst1uC+/oP5OjFUMbbKUA6xukNy+ViMKr9smJIV8AXXBpyxkN1FO0ltYfJpDqm/3vMiSarKp/dXzWFrBMAxCxw6D/8NPIFX39p4n+ba9yhkpmsGwltsH8UfF+P1CW8P01WTSA9KHAPvUA3KaMBvRIO9BOlFhdtMzWedy30NBDXJ52b/ZxgNnoRJ4GUBt+GxMXny+NXWSkjndLvXwmn8F0QXtnZp2zvXNxkN0tTGZuBZ9L+6mijBqZ97XNxf/0hVmBf6UnHQnqr+sAWMoJB/Q73LNsHObS0GinuDw75CcG+XULh/cRqQC0xFYjVG6GlcSqukeBkRqe8ZKT6iBnrbZZpDqAbqC2g9ql0a+igeRFCmRrzsNi3POYW+jyw9YNFdM9U30AHvCRAk2YKQJKNOCGSxSJNJABVp25xEtK03mniW7xjJ33fC9PhzASO5hGsURGAzq1+tmLsEQERfgiO6g7owe1m8F4onkQRtP8OQTDn/R0Fn7RdvEv7awficYbOvzp59DdN/hI9G462bHDU0XdLieLfUWxnyN2+cbf5eyTaeGnyVp0fhaPThysgaEtO5n64pDAT8z3Gex9GMvFL5QeyULh6rnn1WRu658rC6eAKzcMYGuTQKFh9786e5CUTTJV2vplnisKXDgW+b8t1m4h++plyoy8W1a7PYBKFX22ZRSI3DoHmhp5G2XuZ1yms7E2coZFOtV4AzacpD4KiZAEjyH0MxAYzXhJhQ5SM0bT4ZgDdhY2a1jfVP9cursaP248+o7SwWCKr+icvlMN9/HvQ5eUbUraa3/Np7RTFbXHWT0oURUZQStHjfpsc5ZXlQ3YI2rLgbRc3tlkRe0inb46qyTtc1oj1vuy73uifXs8oANP5R1flr5vTyuGcM85bwEzhjVlY7r1Tq470Twa1QOevSrmABTNnyikhTVN4IRa/HYlIV900Mr9O23DFtY9W8hTGvC+zwrBwJSSFEvT3YW0OZSAjuj7RNp12at2G3ZXOK5ZpCiuscF4bxv6t6JscO5LabS8O07eKSciHiR3bau7dnYiiTFRkFnHmUWw4qSVi+Eh6tEIk0YVVfHOkEK0ALLY+dos09UnV6rqdSWzqlWuON0S5fjBcvpoaBd9wEQeNqTbzpcBZOVtwIU4Q4C9lvaNhxTUpbWSh5ws31tf0uoHa+vc5ow6roV4Cz2CuCWONEBr4BUth0gKYxzgB6jszPhR004FTlMyqRVcpl90zOOufOBxWi0XDaLaasJFTXIQtKKseTOcYg/fNruC82hvHmPb2bPD9r56BC/mLAkl1UD6ao0aTY87SRIio2eS/xKuxSI5kWLFLDswp7mK0ypOjRzD2T23ANj6kp4KJ8lgJZv2a32OmHQlL+0UTYWXPwRCp6M3rkgJ3xGHYMel3KGTP6LNpnyvLtLyKwRPmDhpRWElCba93QjGR9RL57GBzp+ul4dlFilt3dsTL3DAwyAycZk6pSJAqn3UVILA93xMg0R1ygx5brb5iVhGVffIoOtiSVi9t3zNVaW6mKxoLKw9W4EVc+qFPuzCgi0kTLYFUGOUrrrFK8xdtmslO8KXqtakQgGGaYLQYwL8JP9aFyUvB3e+kpbLtEYVUId8uDrxw1sjIYYIMjXQT8KUfKRzmm4okOJPQpXZY4VFHru6LOU1vLvoGRtzwhezA7LhGcitRWU/jb8X8UwzWGQX9tzNhy4WUBHc2qN6WuBpnmDGVvIUrb1s21gwl+oOeVxqI/ZAVNEvWn34AA+K9wpsC6t85mXp3QWxsZ6ay4amhTVoff0KaWbPtcKgw8/09DvmFCEEVyXcd7sDi7W9O/iek1Jk+GNd4wAqChHtset6YfNruNVriKi9vSyKjw9orrw0YNzO7kRo82ubtmGSKnkyfd72BgesKzs2/dHd64lMmbNg3lZekUVG2WNWBPeW6DRknRocc/MpwEoviFhHmcKWmyqF0/ZSDhW8gHxNTtBByf+JFEseri8HT/VcX2WsnwdYzSkn5buGtqEHXNpvT0gfIvCNoJv6U4iaUA/1g3d1X6Yt2ErWt8TxdpYTssstyQVgdFCWFTQo2nE1IiIH2JwWwBv8Tfbh+rwK1h75tHrwqPYJWos8n7NJ5maCKfNrt8k2JgWx3zALtIoS3tsZrcTCU+4eI645mjeSl0Gr7q/T/8p13XFeHDmBBFE6dZkqqZWIsTmw3W6pa7N2dfwkk729rZnuDtvjE5JWTzuiiSRfRUV9Ke9SfQtlyv0dQ8BCPeoEjGt34PacxRqeSN+XDiDjC0aGSKpPDFdc/1j2vyqcMSC/QX4ONwfE6N+tsOYvgXhPMYTCZMOX1jVkbuzDvn08eB1bZlw07gSeaf1DKhM162gMO4ETsjtzqqEu+HxpS14pg1snKCMriKWpyODBH4H0aD2VmyNVXYFuJDnb4UNiNJF/S4su0GQbhBXFjbw8QQpatjsyV6GywzIecIUuR/4VRKCclOafCC5fKgHyyNmWPFXZsTgr4hLqXOoxp/hmxuLKPUQe0qagOKMcP1HetFK0RQdTywuIojn2rL5DMsC1An5JtyH1r5r0yEs2v43EQxTaNr8erxqqpZZHodRdN4sYSE7Ng5kqWvn42pq1T6R4ZPpGfN4x3TXp5C0dxXu9KOSNOahR2kBaPnJXAARJrATFzeKSjS+XKx4uAOs3Rv1iL+4Dk4CPPusmhfpGG/UBL50iiB5/9Z2cCYOWGHkzzWkHLQcPqy++pb/0y+SjYHYpf+owYQT7Qswooheu3c5hjFzRiqlDzWcq4QSs72J1PH8ivdSPB3R9d1Esi8qAIV33L5+LrTGOBOMTGX5/jSUVIUVJ/eVc09vdU5qEr/l7JGBv6fAOTL5MNZxGQHtzy424J45+b2hQWf0BkkrgdBjk0qRHchGVy5g/1svFzmyejJjrFTdKAdk70zYuQXfxJ4hK9UTPuALRR3tY3aSVmZwyqy1kFHxMUCPrz89ZMliZnTX4Clf3vJ5dYfpqmDCrfoc3CmUz2He0pmrewOk8Shn6UANlfiZWZvQQOewiBRbbUa3n5ZJjeZLgfDttrKcbQ+yuiwLprr9sqF0ezlfj/YAhURkpExltcoQc83rBy5isrnhSwtX6I/Up1kSs7WkhmGhMSBc8buGIE9trj9MaRo+g4sZ5C29ddORxekFfVZMQ721P1xRBkJaIWZsI9jCMqJgJk8zXdPqIH9/bCbhri0SBm2ft3o+Lq7wWnHwua4O16qWxKoY4W8CJerDK4j+M91IIOhk6lxYR0ka0BBXnMJyggSZxUq3jErwiq5mRoayfMsmDO0NFiF1o5yBNCO9akfKU8wJQQeceUlV+yMW/FBsS3W9g3C59hgBT0XB5U+Lpv18hOSBWxjhIFUWN188XXIvL3+G3vF1mUpI3GLW5+9s6eg/citRChPXNgQKQPYD1j4cWy9jLjzE8dd1tLft7QebECZnNtCjlV2Fr3uqXKxka8okq98osWVVbnBRvrrJv2UBqbxn75XfQ6tUXuX+7rzcjX3pCDWnQL4i7HflGRgxoAwQzXG39KV4euOVKkAEY2lS/3kGNpimj7BCUsP0cV6FN/b1z8Ux5z3JKY5j4TAF9Ihb6JiKKQrrcZoQ5H0bGVQqVbsml5EMmXSPZFijhCU6uZjygK656bJtL52rbbNY6ce/3JKpL2DjSgpeHWjH2u9JGEtVrZHDCY7IFhmfVATkmnvr5Tccsa4bZ1RFhAgrGjLA7RD3jjZk4vqQPeEexjD8souNwYN2CtCV9oqIFDFuzI2gNPgOEusumeERgklteXUs9XHK6PZMxLbKlbwTQR4rv4Rwdyr1LE4iivmGs6VZE696NJdCwIdqlbXtTQQkOhAoj0s9wyELPxkrAL5BA5HVTFqCc6O5bIJuUkJqA7KdXdvP4wa076ZdYEqdxrCNc+872M0UPHYv5d/c9CFW6Uq7sWKTg6suScTnvlpgIrlpIY1wCkFrjjdcR6uJ1QS+pH3GtWP5p2CM/m5RFsMt3bPm7ZZAS2OH4ji3db9ZzmBX94Dg3wIlY9+uaJSQeLoXnP4JKeU+orZYzkDVWYQ4nOZY5+FVJ9s86LvGjCVX4LkI6MMXVipdzDBhFzzSmjdaBlkAAxgCJgyUqkgWfDKgwGQumnHh6ggI9/bSXSdwqb1NZqmwwiHLKR/rtE3jJSp4X2q49piOzCKzPRb6ck+k3n1M+tIEAL21H6kE0LT7TaRYD/O0sJZXYhcFTTiNG08VfkN3DIoTTMTri4IptL1mqCrS/gRXM9EDBHVk13shrIocX8W3hlf2CSqPadqB2THco5HTGpwQYrCIADduXXCZ3+uZgMaSEmhclsSw24fjl11vdUO64+U2BB7ls1wKRmypmIHbtP5jr6z/k3bNOLQWHUhhTkl8YSaQLl2I/yrIFjWSryPWDL2LJ6oABwHRbypRo1B/V+4d5IGOZAJPQloKN0Y6QkXpE3eQjPG5bMGDJDwO63nSDSTDqJcQpWbE5h+BjBpwSAf3PXePo4+ZpoU95nxJTDrnByVVu/stQXcuVKYQTnRefb0sLlKIPXrmXgxO22xXISrkXAbJOkRmfeQxqdm1YPeyNNXwMSNcVjRblj734Usa9kXBGveuXklrxyjsOyjdrz8FjrQu9iO1uZob+XrhR29ILSuAqFIeJ8RMYwxjOD3AOY0SI6E3kyUOf2kCyBxQkNusKR7d1eQbHexSdEHWeRdMXN/tg9vsBQ8+Jj1bAGB2J+TJL32XqY1OIVcI4ZPS227wLRJhxRgi5srLdIT+1+2pcjQWb6WQcKkU3+CyuL7tr/G6Bhxd9wt7/+t7LV6dheb80pu2PGKBAyiob1FHesfgrnnAigI0iKZIloE0fBLy77z4MH5hwEU959WxtOoC8j27ekjXfAkaTtWrr0VoiFCojWaa+vmthxQ77xuNHgxjdDmQVhmHqSJVvwUWEZNkb3VXO50cWU2nP+x4SHuAXs9XHcz68B5NHMss7/0vKk+Q56p6vFKuEmjLmHsb4LCJSBAFl8RPGnsYSd07TCUvL/qxbUtMYJyZYa+xHf/fVP4MnRTB+JRNodZ1Jb5sYytJpNEmUQZjrBwzYJSf1k61BHQijptI7TICvYQKLRpAE8dWHwF4UHbLxt45L6s1ttO6lotZ2fm5DH5ZaKomQll+7rYv+SUnaA+B954RZRHl9rC4Fe0emdeMIqVCcU570BOY2a8wQx787ssQ+d3VES5r/4NFdakz2ZSqaTq2DW9hG17hxd8s3166/8EV8kPHkzf7d9XJi98qUivJxwvTZzBxXlrQDxhcw4I1kj18QHIJ+p35UNszjDZttUScOY4uEgPpNMSosJEex1/lmTDEmX9CHPfQ+uqA7lfNORjaNP/PGC+g8KwKeS4c9nmN4FHeBY9Acf+DWFS8sMqvIq/fVyaAss39SkjEyAp6arENrVjRmvMygnsp9+xiDuMJPjLiFkcB8AWKD9cmRsvK9mNi5SMJD9W588x9quxmvKizMH58iH1rR8snDvC0FDr7YlhM5ATUpQCDEIIagIXevNQuCF5t1iKfGB7x8XVQPM2Zbm0AZplQXNrCPSXChfVyM/IdfDKVm4/w5UxlEajYT0E+bwUP1boWVIsAT9wzgnnqvW5o66HE1iMKteKmlBGNxMmd3//LX5h3AVvJIZQ4Yu4TVyQhJcA5Jttxi8e1WHeSjuKmSibrFLLRElY0RI/m7DyZjbWD65NW5g3GtQwj7kMhETANbpqSAZbSYgUfx4b+U+9sZBiHkV80O1odt7VQ1mlHvqbaHk/4hcARpmBNfixKG3RPX1TRsSHmYOaKAoRZoBTDvkVjqgpoBkyozmSk2mzLpIjArSpvad0c76bglTm9CIXibVOp0EiaoeSLJCvw9v68eeQgV2ONbr+XYZZ0mq6TN5yyDkg1I/CHLe1I15CzzCHYgaRqmmFoCmfTuaZV7nIEiT3L3zpB0yhLXqzjsq6CGmL5aN8jPM5hBU3gGD0yf7cv0EvxwQDkAGDjfvC+gj0Iin1WibOFpJaD3cesxqxlKm42cv4MaG2b/ydY/gHfThPtUWNcMD42oyW4A/vRv10xeN+ep7DcHIurRqUHRoUvgYJ8xIymLrhkOneT7PbjudbI5KKFUh4+iOQH84WRZ70qsFZrhqIE/TQ7BR1BtvgOKQXNVv0haVf3iDSt3yquJigaOotA0hORGfmVm6ES58/0I4gewZ8gT9C54VXzxyuiMYM2Mehl7OnW3Px0tJ9Ejv5/kXPjJEIRem5FoKc3X+yr5S7bEsVNI2PiXwjTgQjRzd+4YGa4suhHG3mPSQaaTnYN1x9Onr3lBh7PLgYF2a0WYF4aqh4oI9cn79aW1JZ2HXOGTfJZxZZyEOmmK6Gdzxd2BsUrZK47Mn1G7f7jVobdZacRnaDHA58Fq0PZDmA/ZMDjs4R9dw60E4+rkSilMk0w/GxuUEQ6ML8XjKRuOETgP8AzGzh3Mg0EdFHgNxkGZRryyInAC4wORL9SUEtMGvvyVRz4vDB2ND8aK3Y6PzOTfwNpyqBTAddQeOiOK/JN6ZWfqHa0SW1xFlmNSKz08Xv1kT7+gWMxyR2eddepsQYDjnn3bIhU3TiQjt/lt6Gv9eEon1uReQGGd1AmMm6zlGUv16yxq4clG+ghHvSA2P0Yh9IhBy8CM6kJ/3L6xv28yet999idJmv7jml8PDsQ41g9DZoel97eggiAEzxwamAmnxw850YYSzplfsP81hfcskpC/K1oUEKCxr1m9MxMYALxSDqr78lNRlMukFnGvw8d6as0Ivb9zGqC+4731K7LbMoegEuB6Z1zTrAvEALx+MDvU01h21LsanYDDlKnqmxMVJnzn9bg+Tu8OYAgW9wCU418n3DR+V1/p+o0beh4BTg2g63+vsNpGASFx78FpvHPcgGlB+lO9WAjEnHbJw6dHxMBK3r7AlW9gKy7czGqa5y5TOgqDERKOINOrcttswAR38jfToOnRhOlCtOe9h5H63fnjUVUvXV30uRff1Q8hAvkTBRI0ZNeSo0bScYnHNKLDB5eco68wRsYgSq6AkXMn+jy4LRQJzJY06ZNs5Byl0U/CzFf3/l+eAPGm3n9A6W9+GexmvTRP354y/MlKmMdbgJs6mv5r5f72Bek6L6YmuO66iXFwjxXtjhvVBZLBLnyR/IA/uaSZInu5tVb54QN7AAgQoDU1ksbkprwCxB3MgwjIFN4py7is1WzlweKd80b6P+8p1XOMze2yVDox8kFFgrSrsqyV046abSq958pTRUkZGcTLgpP1rKWIh5KHdqsyE7F5fNy2m3B3xypvDhkzn2cuIeJUSPixEea/aAc8twtTQ8W3i2puM9Rzaja61lF8/zNZRpGLlmUVvuhJofwbg1HAFeU/oqEHjcObFQbXG3CiXkJAkbUMqrZHmIyNYFMC178bkZ1yY6C30dSVDIwvra4V1iv+EuZv693Rmi/tPaUdQmrdUSbZ/FTMMB/2SXqaM2Exzs3ZR7LBPjau9rTSj5YUnCIP7pf2nTiEgrr/AOKk0kwXSkgTsPiecu+1g6S/Ih/acHT9Gvf0Kch0mJ9U8eCU/Yyfr8LHcrlwczy6LAjCbM8X6LSWpaRx9dtfshxEj5EEwF1knarkZro5Ul+FwrDDKMvUvF2YoZlNoBsHg==
Variant 4
DifficultyLevel
690
Question
A Greek wedding reception area has pillars that are x cm wide and the gap between pillars is y cm.
If the reception area has 6 pillars on each of the 2 opposite walls, the total length of the pillar sections on both walls can be represented by which expression?
Worked Solution
= width of 6 pillars + width of 5 gaps
= 2 x (width of 6 pillars + width of 5 gaps)
= 2 x (6x + 5y)
= 12x + 10y
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Greek wedding reception area has pillars that are $\large x$ cm wide and the gap between pillars is $\large y$ cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-J4-CA32.svg 240 indent2 vpad
If the reception area has 6 pillars on each of the 2 opposite walls, the total length of the pillar sections on both walls can be represented by which expression? |
workedSolution | sm_nogap The length of each side
>> = width of 6 pillars + width of 5 gaps
sm_nogap The length of both sides
>> = 2 x (width of 6 pillars + width of 5 gaps)
>> = 2 x (6$\large x$ + 5$\large y$)
>> = {{{correctAnswer}}}
|
correctAnswer | $12\large x$ + 10$\large y$ |
Answers
Is Correct? | Answer |
x | 12(x + y) |
x | 10(x + y) |
x | 12x + y |
x | 10x + y |
✓ | 12x + 10y |
U2FsdGVkX18DU/nSGDyz6AZEka1N/Kw72eJQs8YbyYdq97HSB/95QHe5zugxcXzcpCRAQspFRv3T1AckHmlE+cjuXiuBx/FmFUchHyVS9RyBis6EAWgvx517nJO+3CD7h15d7AGToMm0NFcCnMiMjGZ2TySu83sm5jUKFvf3z272SHpxbWqEdStmMXp7CMBNAf2UtKnmXzvbsftGCCukJI++s1h8nzf9TM9a9rCPvi02a4586w6WjmS3MLIS3uPFTl7NLUaNRjf3nps9OPwinuVOb0iRxrA2ECCqv27R7v81rq5C4EfKB9DKJA/IFZd/RrLuOBEAVm6S+7/S374NPDdyPoJ25rHbr0WexkkBGgvzoFHvRbHfe9QFiesw+fAo5SRd0tl3EN+Di9h2i7mrEgMk98yiPZwUqKWnmNg4P0U7f3UGNkQWR5EgixZf6TVjFAA7gdvUIMoUyMtPLoWskGXPLF7dfwLPXkrHC/HmORyNyJjZF2VmLLP0aLsbsUJHK0o+4jijqlSJRXFdp4l798ovsPB8f3FWGueQdt2ESirslxmPqV52QWG7HFl9cDuNG38Fd8sUki4fISoDf0XoKPCCdM42RCSpvxKgHzD4Flt0MqUk7QNYbhfcMaMj7CTWJ+2INv/QDgdO590vLoADSmr1nKSljGeJ9H+YCXMeZFO+1UxxmLmI87oUqnjzd32VeO/7DAAJqkrNCyEJvyZTHtjk8ctMNLDx1lx5LtvbL8J1rMvOfLdVP8U1RdxWWshCTsgl//mOr5/FZ/vu+HQBTjg9bMeEpMGxqSiWN9J714+PjB7+IwSvs8mMz0fe9YAWVOiMOWVEI9+xof5GN4QzlYDUtVXZ+3D+jj8OtCA2k8TJjmXb7Q3sRezjCcD3YbdWqxwgtFYD9pY5z56GtWrFODTJFzD6hkG6z69ht7Mh+oZDs2b3nv56oDUQHhEy+BIYXLLcGyo/eZulF/PB0dMYUTaEM5FYNlfHb2B0zqSefzHakUSCBchQ8icygxmxFXr8nivIKldE7VO7qoFOL08s6Oojjekp5wB+P7KApkoXPApIuPvWwXvT2q2PcWE9Boi+VnCiuAmEOvHs4OQExEpJFQCP1PLsOWGfVBZp9o/K5ae9IpVvaVsFQSyIPC0IGRbYjLCMO+H2mDRAti9Z2+Iduith/BhdVovhWAzp5C30B7I6NBJmpnwWi6EK6M9jyQHpKW/2rl5Ci2KsoxvmXeqIgZWOtrBqX0FPM3klHreleO642xFfAvXykZ/r3b6dJvFToGGHTO/ENKRnCwL0FfTXyRztKb2oq8TcxnPHrSoHqnPrLm/lDNddXb1kXrxcG65d6MMIh4957jAKIkELLeI7vAV4+YKJhlIfJLayLZ+qh9gibvvnpk4u79dlp1h1YfTAcM3VZZEFoCyszF3ZgzxCSezpvZxLTSNweN2jzF8fnAslmXv6H6+8anXvz4RGaCJwvpWYgO2M8sFuS2KUSvvA6HP5xS/pXA6oX7jD3+NL8gOIOIfaaPWcRf5nhrRH+m9dvJzLfXCAkLh8/D0dKo9xZ9jIcQYxhUrr/4D/pznXLzmPlVDxI3YMfRjfptOssvKaj9XMUkPvoi/Js142k6aMw7fsjl6tTKijra+/IR9XcdsUe/ByH3Bfs4k4TbqB5IXK+4LiREyx7+bRncOfTKDRP5kflHFAfdsIGhCWIHYouiOntgPLD8uOZS5wYup9vj6u1hBQDrmsbCI/K/vZOFn+xqMZmt4SjBRb7srmK3l2+k8O2DvKGWzqHGT+qNVotH7P1D3qKzLbXtyHMiX2zjbOJ/RQ0ob7mBTJAnSrNtEsKR9/tsjZZnT+QziDBPLnR4Fa5zFreKUE5JjfpPZZI/NcP8qurfYwkjOfzNSYLOZ/GgX3yMKKg1fjwyT8apovyy+PbcjC1daIVKU8bRF1D8zc/scCMnw2KzZCBxBQpqCBYA7Czi93NXTl2zuc47nPg/RDjq6kfoljns46LGPlN1R94XB1SmXt7uhHipU9HQgg22jANDDvkEl6+4xdPGNGZzKPCeFOgN27WjY48cA0KmDXYtPiDYZvOcLid1f6f2WSHGwmfzDpgC67290/5iY3aQstj+MEblTcR8QpmYf8AOzrkYMzvojy9PKiPPbumCV/YlUVAHa2/cUMcFTTNzuPsygFjL/JV1wnYgOUqJGCVWWrHhNTMeqICsXddLSi9KRIvBeN2zYA6Czm/bcmoDt2cR7ahMC6f3lqB/RkLS5aRtnFOm25TaFK6OHhHPh2rVjLupZdW2rqveVHjixBosu0yvUijKI2XqF/jS9K/zBN8gNJbIcvrjLy947G5ge7fpnYx8ZVLC2uomySeBh9Ev6AQGfa38prtZjM+AKt12Ijds/5I4StKnvC9tSuxY9l2z/KSG1BNmKrMuIFkS2At8hUubADMEQuh9/cLpGuunEXSjmqSyu43ghkOjuzOOmZxIYAeG+bNkwz7E0lOldYe42tTs7AL22mJj6NblJ6B8VhkRCAnK6I30eE5eeMVDWRCpxo3N0KpVyTnKSpaOXzLn0gczKW7HmQNcQ5dsMjTFF2SnjGRSnYjPDvpBIe0KheB1dePJ0lA7MDr3eLu2rlupDg908EPqXFOQqB+NuOlcriJB4rz9FOF44rejGLByvOcIv0ASxLooBKSCJey5907m6Rs9hv+mW+UV8W1oMRK/y9grdnGGKyDmukgOmc/ZTs5xWH5ZWbA7PTppvhTG7Qla03jL3jIx8YVcuOlAOA5tLHn2CjQfLh8IlTB7PBPm0H3G43vU5JllkAgTEKWx9JNW5wBfY+yh1st4Naxvg3mVV2zOXPaqZim35E7VsFtsfx66N2wIt9xP88l+IoJqAFLRTgYSjVx42HfOvP2lbr++x6hG4RhlNemzmAMUn5i1hI2AwzBNOgCs1ibZbt9hz7QbTATZikDxpRFj62ZkTILcKaV/X37+Hx/OSqWAHkpR/Da5Kq8Nf43Nn2/p9Vc5rLXCOUbfAa5KtRmrQ8cbpkTD1QSAOXLDZ+RMzX3j6IyWXxMwFW9iWSA79PKeORz9+riT+fKRmb/xQer8/lHwixXgKjoYSaRfEHx57amJeO4q4Hj4R2wphGTF+hZnVk0pzR8RvSjAFxL4ogfq0Mrj+MP0d/CMt+pnaumd5qtj8Y150F1Nb4yWMGF5ORxb0VPcZl7N7gXVUErqKGLgwV1EKKGlSO9Y+gjsdVIBjgeSU4uiIDuGbgHw9ICCjefKikRbfNI0lo+bo6JZra92sfIW2grk/meM/mtWv+BGgs0TcuiSaOnrmj6O4cZEY33ag3giACnrCGWvTTiBLJbox8VvW2dbNlq5GK97xya3TBio+ZUBqqw8WK1X8Gkecs/tgdG+CkaI4E8pUCWwzDLQXe5hMXLWCUC9035VzuHwHc42Qa28LP+sNH+dGnlFtuzs5EFnE9k+Y8Uu1KJDsN1/pEg8AE1fbvkLW516jonRVUS66xKGDuN5kq2tcHkKIKoNv6FrrGsCX60R+dg1IdS24gbxJTXIpD0hhwsYnyVGMwmGl+501mkcvYcfgjZejKdL88mFuyhTEdGD3AWF/EJdvSblbkKlL/ZNS6h2x/3laxZccGCRvK1rExbDI4RRBAJ+uk5mBoxZcmwVFFdBnK3PENqQRqRSo4aWUnjRE6QzOxn2NG4qD7oKVfeh2l310SAl5NC09ePt8hpbZWnudfT4QYAcJN5+658Z5FBxPDnLNIhv6JLMWJ7ifgnIx314Li7tkl7Qnlda6cEUfvZDBDONfs27sMSZ5rDfstavtdRd4pRa1mCZ7Q2t0oGWE/iwNnZTJBDEguXxlBxTrDJzx1buxXorKt9GmMxlhIFG9UwJzUCpWHBMWyNiz0rJRpTEe9T3rtOjlS/hIM3dPegInEmTAbZCpsDaO021zeictLXM0ZGexwcJ+5BMbHLSxAjbAjFPoaR944uQG1PSq3YazjeRT0teHGIVOXrJxEbdYxEyYJyUjB2Q8P0N+P621CfRMmlES1sZ/Tiy9lx5U8ZAH17awZXiGDRHAjimdKcD/veGWpPyAoxWe4Se8pDCfdbdVPkYKUYW86OgyuOS/rKv10UiH3feEb+97QfSYfbhJijK9ZVSoRmshQbTNj80yr3/r7z0xdQRfE5BizxqRXiNGCL1Fa/3CPhDuv/QZGVytbpLAaydtkg7SOdqG41QdOQb7+xOfVjr0wjDf0tESpi+NyQZMkBe4V9xV6gz5u31PNJ4i9dPZ7DDTI98qq7ZdCE8HXOO6NPmyBibvMakOZ589avzZu9lSm4mfG37QjtaPG+EHyHdNX9u+QK0QFX09iQHrQA57FOg8AMWpRdCEQ3W9MyitwoWXMt/L9/sVHW/wXk4MlkGoDc9BqRqmdc43N05YOsMrgUCHtAKznsAaF0qk4zXrDctkCepIaZapwT570eHsYeKCckpMhgzFga6idFMnL3R+II0xLvtJQWVovLIM3tsas34TvLiU2E28pLmFgkfT6IY32mwf8Z6kmLbD8saDvc4AuoRRdgoFMpLF2Yu+9m64sYpX/iGj4axAUT0Grg/uSp94BOLwyveiuNfRQkV+rmjHSvIWzK6CmR2gC3jzYtSGtJcqgLeuYVo56AgKa8uAvsZy/sjt6duiKeipOt3EWYN3U5Gy41JZIDNEN4MyR/Ebtgua3Vom3EMMrxOEAn0fPp6nJHOK5Y9kAACUZjc0we1u0w/MaHaRc0mjWz/fOpEnPE5M/LJBFBMeW8xttJ9j9DhIMT+4KuGXemyjyIhWz5L91lfFnxwj6ceRL/3XgcGjKmpEvgblcFQFGtWR9M+sk7E4jNeMRJ6l4kyYzYXwOdHm5nLhoR35DfMOHhj5ym0TsxhvVOw4NBfWb+KrzsT413KAHzePYwc5Cr/R05OnOLZ6RxeuLvZvBOo2nL3rGikasNjMHZhBZf8EW/mDmRYQJP2TAV17+BffcjFLaw3UZWu3oOAnkChbJUPZjolvgBqj01OHA8At3ag9BD5Jte8zzbOzq401IPxxRjZebsxtMsLn0L1LrBBIpr49/HeEblVgawtOw6fTa5wg0/t6GF1wj0KzcpWzYm+Zxu8tZ+74S81cobfKcFjBur4K5Vdn5neJ3Jsiswl2q5vISqa4Ga6AEM/34ZJSbe8mbAmkcQ7yQbSUoPcPkokDMw+yL4HQs83xTzbPBT0eJRjHNdC9ShKoAFMBGKmdTXPHX1QPurQJjo97WxODGBqYDDKdqY28Z/2hvkzrQFmgKRLoWzf9t4+kPU2EwLcd/C3xJ12Bos743CoYFxJM8fjTpdh5OWrpACUXCjjjGdMzT/7RIgUL2OxKDoXsKbGulf7CxP4TELkJILyF4CQvC1GVIb3GAz5NhFH+L+VvsnyDbCZcNMbKHXiSz5WOAcO7WklrOG57jess7nEV8p/veScAZOr8Oe4EE23y6jihL01q2XkqjkOnoWsCFwZMc2foLK6orJvMneFExplCp+V2ZjxTImnCPM4yJrPn6kSalYRq+6Ot2yCrgEoUyXAQMOWWI255er2apfN3jyzNhuvN7/ZlhfH+Cn2tNSJTIJZ586sdEpd+OkpZupPRxzxlf7357+k5d6vtzqEyVtMSvwpDmkuQ/TwfolNFPf++SBGbkRVW7d8PzposNKytdQ5dZz4JQdXVUd0FEPV64sJer+M/PAXlxo6hMJlIc1bTBh9fFC/wJmWFg6652r4kdBnhbgrfvvff1UW12Vg7wDpT4GDe5uggkY86N6RbtVCoyMMvWEv5+ICv6urspY22Cx4gzvpaYDI/qk5JsGRHBn3cRUv6HJ8OsjoU3kTjLg2lOCcqHlrIotr14QAGV1eFal9Y0kI0e58bc5yEI2hjq/XCRiI0y4Y9kElZ2e0BCdT1PkE51IqRkAX8bvfezDScPcPOVBF2jUhuAgvwMwgEPjM6+X/jQ/pWQRu8WoK+UNIb1/eHfZG3puscDsHmkGYJWD6F8J10V+6lcq+mHEupQroARXQX4p6zfB5g361S3psyd/XTKPysBblzZ7w5b+qsK/EC3UPn1sUpFNVkMQxguxXUbACvnWLJ94DOYgZ+KwulrCd6OINmwynAvx5xFUx5CzN/ktiUo6lPWzCalv5pqky/V7stJ+sr9AKJDgF1n6+jTllKtXwqNjdXFrJat62WTdWf1D3y2a6i7PE1T7rad3FUu6rKolccbA5K+AokHDWM4Ffpe5ucTbcyeIYD8gBNaPLWRhVholVQ8cBxD+jgmTk7/XAoirJ4bQVR6J4YXdiq6oWm1SQHUIEiFWqYm+TxVp8FjFASEIqm4d3iLoNIJoxO54Egx0CEqtjkVvLm0EoNMof0IPVTcwDmue26c1x9pgUjw9nXmBwqJS+CWs0pdwchNn4gWgpBwLtuP/KggybUlN5nOD7wLWGPwrCzc5oMEvMo4lE7TamTfQMN/4lnqHFNYVOFXxz3P11XJc0RzyNU0A/TuuAcRasKg53wleFFEUFxNo1JGklzGa6feJqYs4TJc11mgHVqoraaJNsxUHQbMBaLH1eq1/yXe0HZ7TwzJUr3iEQy6le2L4aP/IdtJ7c6fDdV5qs7sVTw0QvNvss6f1ke6cETOiaBxUgT358oaI2REJ8H/3TIK9YrOcTeQWONoqc+kdeXo20KrjcVGffvBKzo4gy8n74yl7gST1qj2APod5oojeGIJZ1lbdDXKYfQulUMWLUEei9GtUalTgcbhAS71VTDpDDSX8Fn/1WIomraxOJtHgn8UsUZ6LRsJ4D8/5RrKeDFdE0/jsg/XoG1sy3yVYAuzC49XVaNvs1UIzP3jCPW5evFmT71LwpdeNU9ed5p4aYFEYMswRQ4B+I860pGGHQESK+42BFsMb/ZB6iveHpxAZ2XUbrlWudC6gvTvIQ2b+q1Qb1lWWXzDCRJr72J5ylLDOunGR3HjERSiKeAaKkmnx6cJle87fKikOtGmDyY59nCq23qiczpltYNafW/l4qPG6/nT/tO6oeofdnFc8bL8MHbq//Ve2yhkQ9Qs40NJAuCTY9EgMWOCPmaQU3hxykAQfrl0aRXtXXLOVABnD3LNjT3NYmnrV49rty+tH7a10srVEjUMioKVr3kZQVudKitCcw3yjxP52QRokthBEXWi8TCWXz05r+HNfin3sPgRs0Yush/D2v5aKA4Ml0t+8KK1XOq0M4smMMzz8+PI6qcjvPld+fGABZp2NUapJ4Qdi0GnhUgSAlOxBwzjkPaiitBNE2IfrqlYrK2IKFulN1i6dumsiYJHNK19MVMEbvfevxsZkO3D29RSfVEiUaEwGZs75ZwMj14CLs6wgds2aHCTNbIaOK60vgDmcZXU190+lrLgEx6+q0VBIkF88mpbikueAKFaxXWxD1djBtTxzirr42sFjpi2On7zXNTCHbnzYLCW4wLyZtEPRtG3GY84/yn8jqM+T7K+U7LMExlOOzMJTk419GAdkbUVFf2TB91IDXnyl6lUU8Gr8hl+gKhaQrN95sPZiKuzKXYkFXbPIfbror8qXtBjynIUdR2JdG7875cBSMTUe2cB6oH2wHNVqglgS4CvJvQrqCdv62mfxGKMEKSe39McEcRrPUTNQI6NmDtNt3G0JZJpuCbv4mpQlpIMOPRB1fQJfsB0cq2c9Z+nVwZzmAoW+HLJqcQU5j5MbboQ8gT3L892vdzPsXCiOINX8zsF0MZoxiMEFwEIItXK417ow06fx0UsJXFBu0d70sq59kvPraZL/So2k+hwZJBYp5bsnVdvvZELAnj5VYzcTOodY00jayIL0fF77GtaqUA7YHmt8R9Ht/t7v7ulDd/uMgthleCZkjPT5i0mTz/Zd/qeBmJRZQEBJGCzH5/UIKQDybp4SAb6kOFsw3zbn6qMKK8mxLMfZdlfY+QMMOyaefyadyOiiWCsImgkNjnd8dMJJ9j7C7W05swV6YTnHkw6MJTR8hUu9wBCauu0d1EgS89cLAAXqELhLKpBFiKmEZiCaBlpY0GUWtmZyN29QpxxJYX4UeeOca1K5bi1XrqOGHMCGfhiQ+WsTu+NRkwqgYCmAwsrXmWqW7MX4Xwj925HClv4lk4HUN3b/wZLPonVwKCPrf0OsJ8+1ZPQrFAxmZHGCRq4LPhs3W2gu4Scue3pQZLFwWzEUcMSAiVuu43cftF98zbOb8kiYyZ/NRKpx2vKVNMHjF1GAqxOO9E1AOUfBQXbgtZN2sSqJJ3xZKX2jdVjNhcgjjJ2cO4Q1sM1JhTm461JbxYrlmBGa/fNkqUIrxkIQSG5MvGnTfCEEzyJ1Q7uX+bQfW9VsgPaFFbAYBomCqQHJrsxf4WywmhDpqwR3qA9yyDA5HXhDVh7MZQ9Y9e5kN9M7PFDXEsRMaHZZV7WJkRDrWbbL4cFnAl4HiVuCQY+QT2kWS70zx7WSw3NLNnXMZXGkiK4tOZIYe9Vi4j7y+xK5MxX++/v4m/U/fLrVm7wC3KkxAeiHa2ugBotHtUyRWrYF7Liai4s6T87ReWmukUSbUwGIogmR0Ys5Gp26kTvvGEb+TAsz3hHhF03RozcKEgcwGTXpxFkBng3r37rsRU5x/Wg2bJwXOuZBiDWGhzzIFH2bok7IAnhKw9UJxq+7GdLzTWJYa6gE/W5phVeTnZnKdRhTU3pb0Q2dyepI+wQD3fk4kRMklLgVFhRKMUezpVgvljB3Djs3zEn0HkIQ1CyLdkG2aTfTJhVNWPuHbIUq5aXsKHkk2rhQGbJ2eRF2XqpqC0arU3nW42D9wCZD/TBKKof2ljCKnIsfPgWF19APatz2BUzvHc9hX3B2tsNaTY2r++Ze+X7Qy6VcK88o7wXwkRAP680qLTiqW5Tddve+FVV9uV+4UXwFBMteFDQ5CRmRzc9B4CVTAtYBLDFT0lzr7Lh8Qb3AfCswpyRLq9ynjOmKH9dLNrq1IslNIvvkqj0fX/Ljah72WMQw2rL1jqw5/kVygIuFtZHj7ZL5RY4q+vWoc3KD3dWPZ4HTb7zRz4JcfZygITXJS+uNPumXcSG9pvsFFA5j0kcG+0y4IjU31PuAa6ohno/g//AKStRtBhWBJXm8fyu/D9vVW26eDjZrL9TkNWvtY2yaJOaaPN0+oV+DqH0rbJVIuFJBPKA7TB2x9d7ZXB9hRIa02V/H4Qdck4zbOXd4LPc//QieorQ39krGJTlSKXH9fLALrTdnMSz5VlGQS4+Fcp5b3CPLFk1UnfHX53lNmliYDn3WeCb1NLks6G/8GVEnQZsqkChR4KCfdLbHTWyTz0VgwOC4GSd/XKNas6x+oqt51NnF0jMXB6v41vU2TStJCoo1SJgI0stpUqXx1vDUJtR/BgF4ebJxq4xr6OA+XxWiu6uVjtN8Jvy0RJxnPJ4Q3ip3Gey7L4IABUECXCpTcooBrIWNdNchfDTEpWhXd4JTlxhgpgn7BW5qqbJwb90kRVzvjSkd58aQRH2/4MJ0Co9rhbf5KLhlNvRuVZTTbIbw23lzQGenoTpTbZPVK4oXpA4lj7ef5utyGxZ98ud4ScWONcXrzWndTZNqt3a8OiX47aOFDSBC8nP2uuadEZqkezwziqnHN5lKvW4Q/Th4j7D6NOhNTe9210aKf6oNUdzabAEr9tw/60YJlvCYCwfROh2aOXaWkEWGWFOcazo4pC+JSSqpOd/vg+fcohqy3rtU4tQTbXSrhee+5b0HghLaJyvUBUKOwuXkaaBk+/vD0DQyM+/cvPPBsfZC7GkeZbGq0xnDuS8nR1m3+G4pZ6rqK56BIQsOC/GDmM+R1bnSxeZ39FH4hK0tI54WgMqmTVq25C/x7wdcawjNpmZEMDaWQTJpMZT6vO2ALn3CPYHdSOp9LQ/bfL0n7dsFUQ/l/huzFYfI20BJK8u4j8sFltOI07oIf0wbcZ8HBQhAnnYFDWXKeKz1miLK43K/NB9aYpiQwfW+2ht+un7zAQ9ri8zQXk/qjhPdcV+4g1AIWKo1Xe8Zpm9Qb8/J73GZi9X8WElsQgSlSc8Gh5I/wXTOzwafJ7NnOLufhB/rG62+TvIpFtkWULtToFP17hchMjYMOgnvhBr9uZgjacZ06vqCD3BbYq8JZYem2iDVvN4vkchPxNGrbdJTnRlpCXpQ0n4duofBtAsDfoFplnmoqElAbJhks5NfJvf7B+z8A7TsAldA8jQ5W+X7m6CUdAToTF4Jg3Pm3G9EPZ6kUXIHLduABbQMV9ducM6tCvdM/voCpF5/eLxkSA7UU88KIJwuwB2euRW2gTdMIjMgvIta3rzPNQ3eqCsTbdxA0TZPVLD00xs6VYXKJH6yw//jWXl11r1sMgBlo/Ll3wgml0No9oE9WQ6wgR1JRL/mbascQ6h3LotmZ97BwoYJIaBQL9i9iVxcmkdmXanbI+ZUPR5zJdT4AfWA8tytDTlmXnljFOc014pmd9OpURnurzNSaQgI1oevyYdf6FaXGb2L9uuvEnyQPmLxFRgrxD+2zPN94DnfWF3IZ9QuEuYaO5gYWtcrnAzLepe7eAKpyKsps+iwYI3MUSw7tlnQa+PyYg5ykux0qQiK2D5OFqVMc8HqLb+VTrJt/4djqhCR9ZkBM16VcAXvVlO4zPblyZNxHTNJKig9LNbGGJKg1GJOqu5BPNk++zT+GLyBb//HNZ4CXIr9fjvnQmMnUEty7zRwdhq2ScIQ4Jc9LG627ilNLBDrhd52dbxKcmMGR2ulUVE7iOWQ67Qu7m4FINuFbXhlLOCYXZNC2xQYmNvk7udi13a2EgdMTSLOwcFSuKSsUiZ3zwT8lEdKQYvFvGafnR7pWd04aik75tsYVfEo0NUYja3Vxdb/Nhn3ZV2jYyt4UnRsbn4hwSe3L7eOjcu/2yrpSfJU7Yd0QaEJDhCH2A8XaoGGwnpyRg5MQ7QZhdKi/xdMc3zKQyvIZtxZiNps1q6ZVU7zKkwoa0cP0gmXCW/GXOxoIzf4W5aQ1yEcIwaUrjOl5ns+eumTrdQ7fslzHS3KsFnIOL3Hk3qjz3PkXTRHk231PJ7ZTPDv9Vt49MEeNF1rwk63ieUtzELBiXQcPR/1o3i62oecL8uuSoGsSqOWd0PFTgKvtAmaurUMn1CnRVmg63h7opQZqBnyYK/ohORXHMolzgvt5ZR4rP0KGxP2LwPWX9lu6BLHR2K3PghV2WHT6lNOdb+Hcz8mpZKYTbzbHQIw1npPHMdL741BUsl3IgcLEkh5MPKxX7D0ffripy2pLIknp4hFtml1Wsz56T0H5b3qMRlpVIceed+bT24cjLUDGN+exuX544HE5FFPDDgUgoga/hIZcCdbpHELhY1WZVmsKhrPCM0SW693ds10kKi+W2OkpxgzyM3e64TdkYnmjx+YLkaiKy17sEM+pQWNTx+KcpXX4D6pdH84qIU4bTABcITOYw0UpmChqeHNfN9DvN1W04tAuvJ0KmUffwA5KdJAJgJ+J6ate8ExdBFFCvUMn7xse3buylPpnhCuX/VUPn34W+L2nu0rCDY7fTvzzBERFGsjv0QDkZk6/4QgSb+GoUFIAuoqFN7bVI99MDbWzwqxJGQt26Bb4zFBkDM5Bcl1sIIP4T4qB3TRkzF3rHEK78sbZgARfKhQnvoER1C7gKi1io+O/1xj2a1GnwhpCBMC1qu4zBGZT45b2rxbfe6oZEOo8PlJaHxPv3iVcTg+uruCVTVS8FbQmHzKGK4+p8HjyzvA6Z1kesEltjRVCFSnjzJQdr5SVc2K3W/OiuHO8+Rt1rB+e4DOgkQUHkC3ch16YfLuixp6BrVLwl6WM6tFwmB8Rhdm+kI0gfwJWYsirSXMvCt7IUPxptAH/yarotIhP7/lYcvIP0a2VwgNQrFkuFcJOFQ1YtAwr88flloiI7GYdLro14cRnCVzDr9pLsAa4f876uoReCFF+EGpy77pCY3EL+X5V3WFScJp9qFPrTef6c8YbkIwBA9xVWyfHmUZXikEhP0ogaqVwN/+JbrQtZGEkvlkNmvhlzVK/grJ/jfZwwA98S++b9ui0NwgrBUnUAFC4jGAzpZQfM5sSKuBaH2d6ZLHJoaM+4tdhE1B+w/eSG7vnBRMFrl858yyCuDSSipDGFe6w4PD8CdFsfQVyiQcjRc37jtk1vw6BYBuQaYzyGQfpitfoayV8M6iBw6T+uSFy2nHemSy+9v7n5x0Aiqf6xbQTwAXlj6D6KP1zqEMW6XyLooR4CyunkUwSZzT/bJwtItDvg1eCMlM8cnHFSDANpgpk7yDmk3WI9M/4wKq6aZfZpBVdf4/rxliRhZUoaNvHGHiW4vruxJJolFhdQpk4Ts8rYRV6IQme8A4hYLbAszEdNYosRlrft3r7RCXPuRolY4gfloDBsPAtYRguvzkV8goH7yrVxo8YvfW0Uq7HiEVRKAh34kaRThBCOvquDH84c+dVh2+rl/M1SjAecCvP68mT8pwiJ0SH/c8KfgiflhriVuhdgn14LiJK7cu2mXRdkG5yO1p1w1loW6wM7t8Sb9K9kCkOVKKj71ra0P5vY3rK+Ca7EfTw9sd7m5VngidIIE0LaLAKJ7By+OlZysd9HlD51eCBTASeEHN77QDJrTQlRWM9/4puDln8ReT9kwo3SHobGDEQUF1fUpZQrM5LDYabY/1YiVSBbmjh2LaT/2UvLETK63qwfIhx3VHWbmiS4gmg6+9V/ApA1aJwQajrkP+XKNDEff8vgirzfghFHtGlnKhCqTe9N6cCHRJBQEwGuOdTQLi/A61AjgaxdOzaPzML9mNk9gRddVN2NiaD6SbDUhE4EN6DaNYxiT3jrZhIMpVsbJX8ucYmBXPCcpnEQjyvEXkQEQGVnpZm77KxRrLSeFkjvazrj85LoT6BfiiwkTK/Qel38VudMs1sG84F3gy+xqoJekJoPRO1AJ1oYNA9CSWqcFuqekTHJhby3VaV8iWnUhWfwLX5Pk/qABX5hbFZuMn2gBVBx+d+TpgzldDX90iXcaG1Xl3O8m2n911Cr3bu/pzzSWyLXK4+g3inTBfaXQdTzkZftuN0iKT4JWnpRyzqTmsW0iD3Dl2r/fCDQIogYadJ2IoOAuV3IByaySLf7s2p9SISTMDXuDno5raJOTjChEvV6464AFhK0zv5s7XBXVVOxX4uDGxKU+bgKRNWqPVXuZJlAfI031kBLYKNEzdqbOykmUTNAU4LYpXnnLUnKrMmyKSnXQ0IRo2K/33yUNqlfqlV5iQKeZ3dQAAXz+e0aGxRn0P1GxKuU5ahq4X/mUUcqgiNLukNcEA4YNGbwQswC5CxC5Pg3bI+mHoa/jsfEVLOkUCP2Fa7uHh0+ekTRch9I5aFYSoWpWhVZl5CjSfVDRqg0IxdfRv2JBYbucGvwueK2CVYaB1fPBHFs+C50w8q2cz45sMlRVridvNRwk3xNVSkuO6K6XDOA4b3qsjHbXoik+pmLxFd69wsB9kKujyd2n0xp0J0FND62V6t/HgYqcckC5OMlKIlHTcetJLYaNIZjood4OADXLIZj25nzx7o4l0+u7NMJAZq9X8gJ/2C0qZ3My9gVtOKIxadMFT8iyjPyTmEnb0QdIYdaHcluSi/uE+SfCrNJcOAAIpC7NDNiLNUbVXTx3w5o/E+ZylIHPsa17DRbrzRyVJSohXEj/xQPVYA7oxAQfkF+ZkUVYOTi1ME02rP3jx+adBv0D7ytOCj2nvDC5iYMX7pj5lynXfs5xhqkGcFCwGOafluZJRw7zD0vldmPCPbbJvwmSjU7fnJyb/DUQhqbBgcfORZE9S6G/+T5lGiQ82EDZ+G+hUuqYfY5vHAIjlpIVD1VIbgxnn3bIcO3TTAygnnk/oFWUesjo64yFcWGaV5Tbv4DsFsqFw90FhTBmt9u88qnOu0axIY3XJdpJGrpNlNzkMXNOu13yuuDgYKLeDyMSXlfSb758dp8WyAJgRnDWg0MF6gkxmiMu8J8KyRAalhS+LvdXq5Mw3q2XQYZekj6WfVx+Fwa4ZUVSMVRns4+PegW/EBrn4NrNcNa3ZrPygTaW8s3GgVFZY55vc0Tdcd8OcwNiUCtaFwuJOHJO7Xpcze91C6Ltn9NVpM3immnExv9VygjKHhCzfUSfz1ihBkucEdulcDocXZwuyBYYLuQlRLMpBr9GWFzep2Oha8AhfngRZw+B7P9nd6b8ZylTH+pP+I9YIo9zFJV7YHB26/ebLuANRB4Y28fjC/U2jh4oMSiJIpNfmi2KphEWeBwt+rsbvZOQU7QjfVNLKF5cy/un+ae6XNt4kKGzMRu7W1r7fe8ex/bVyMy1nCOS1UhDURYhOiYAl83Ubx3p/egP1bzYOwF02NkuNQXnbzkHgkmJO4QW1qvfWdmCUMIpnrt/zvcKI9BWBvrUMm6SNOWHErktneTVvBvIDAAp6PT7NGYAoavO78YrWE3jFCqN7AsFj9mDS84hs3jS0bJ/Q+J7uXNXOg4AMOK0S3qDsQKYDS/XCGUKfyDygJMoD/DnmCDfHYm3RG+qpGvdnNznUU1VhH4wAuzy5AiOff9iTKfbuuXGmVvYGBhP/UOhWnQy/Lo/jTOfoWSpoMGPcziTLnoJGnm+oa4+yuheKGZEdkmrY2sMlEUNx560SApFauQIfK//JW72CTp9grAM6akZbsrKLiGCnizIpsvPzRx7K2Fj0CyKvRuweggclT/OVwUbSAM7BrrJjTuJydYyZLAyb4hLu6PnfJOeCLA5dd2pfVGP3AP2tVfbC/0jpq5X4+QtKhYBsM+X/RWFNPq2LI/Crmmr6HjbCshC2N+yn+tgEtpkIc8NE3+tffpbn0FnaZ9E
Variant 5
DifficultyLevel
691
Question
A Greek wedding reception area has pillars that are x cm wide and the gap between pillars is y cm.
If the reception area has 8 pillars on each of the 2 opposite walls, the total length of the pillar sections on both walls can be represented by which expression?
Worked Solution
= width of 8 pillars + width of 7 gaps
= 2 x (width of 8 pillars + width of 7 gaps)
= 2 x (8x + 7y)
= 16x + 14y
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Greek wedding reception area has pillars that are $\large x$ cm wide and the gap between pillars is $\large y$ cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-J4-CA32.svg 240 indent2 vpad
If the reception area has 8 pillars on each of the 2 opposite walls, the total length of the pillar sections on both walls can be represented by which expression? |
workedSolution | sm_nogap The length of each side
>> = width of 8 pillars + width of 7 gaps
sm_nogap The length of both sides
>> = 2 x (width of 8 pillars + width of 7 gaps)
>> = 2 x (8$\large x$ + 7$\large y$)
>> = {{{correctAnswer}}}
|
correctAnswer | $16\large x$ + 14$\large y$ |
Answers
Is Correct? | Answer |
x | 14x + 16y |
✓ | 16x + 14y |
x | 16x + y |
x | 2(8x + y) |
x | 2(x + 8y) |