50056
U2FsdGVkX19RJGEYL4pxn4TivoevjNxWrMVW5x7uLkycD09lPgzsLaF5BufgaT/dGmX36JmJoaSfWoqCvLRlPZpeShT458T0aYmc3nKGFlWDqcbqhIZOaN0J7TbYOM20OnqXVJM5GQL/5GDIaC1CJsxAmys9Vqmk+X5yeME8f/Hhi8tnOodCW3Is5DS9brz5MzOGsssXH4eTPwD9Taxd1xSzKhYOf5YouKMrT+AsN/5DqlkHprPlZpNjHQC0gI+uZw9g39yH2kwOW8s36ieoSeNFIaUHeV1ipHWXgQggWjrCxhfFKsrh1lpP9QDnJ1V0wc4/yXZqTZ7zqpH2Qfxx0HuUUIzpmNyFIYvmhx4LPR6MwJidCoYvoP14YSfoP/eA0E0bCeugdEADmVnXME8g7v12URQyKRApskgB+qBjnEac6cxya720ASfQ8mosW2Ec9cH5tgt6JWe2Ghsusa0wD1Cu5JvvOW403qFdTfxXIFGtgHoCw34G5K/GndCermjatymEbDLFxyH/TdlplCcHMA9KFcJZe0JtL4n/GAEL7B59IsQeq1hQYoBzb0YS6UoiKLtMO5iA0j49y/nzatsxlruL0YXD7MPcxmjavhq7Bh3tL5U/NTshbkP5VNfdjT0ZqE9o4Hed6k//wuXBGTcLtqI3jUIxAV9+9dwpaPurCI7pNQ4kDD2LOzgWrK1hWkoTfMi9MY3ecf/4thpgKBIxR7G1uy0MVKq82qAR5XUMiAh0MMrOyCLjNoAhPDx2MWYHPxow6t+QfecrCgRArqDR2XM2J1oJbU3ba9HfDf9qmkGP2L3pejEKr1NP2VqoR+ueMDV0JUCKWpk6vrIVMu6Qv1mP4PuVV9jws9bAOd1PEx6yRp1xmiuag23qsT8dmsfREJoAvEkFbgFmidHsFw39Dd8lqVeupg+POY7vXTKn86fdjIrFq5MFzeKarjECgRRIzKtFMUVxdafJ4Fw50OuQQqDEoaR1uAlaKIgbYpRAxln2D/KFS61YFxX64tob57P2iU3/bEVlzDSeTmQx64CFzON9HwhD+wmHZUyPKkry4sN0COyhMhB6K24VFk/glzgbM8AkiqzZj+AEGlW0BVTh1YdrW6KDaOgeTd5FTjvJcrCXsiAbMvDnWbgbRDFxy158kb6hw3ebol1O5z9NEF8txWkJrP6xv5RaRNLGapcp1Z6mI1NFWaACFDNiR6z8gOfAaQ99IBUMNjN+dppROp77pnRA/Brif+31nR41zdN7FYaLMPfOC1veuD1ILCmfoYLWYYoOLRtWCaXQPC1FNHioiIFfIvG65EYa9csI6qRTSfxXno8qfhbf3SOe+bdBlx4mLkEfPhdfQ4JKEIX49M26u/WaqgRACVACI1bGJzYol9tuDqRmS9ZRPsAseth5Vq0PdyBKf9Ll1LDK7PLl3lCEmS/1xxoBULRyvSJSNi0GxC+OL3ALo5ZhF9Q3Q3MPZjmEBSFpgvLYm05jVCti1S6+G0uTZx++VI3SRT0cD0LF8EFEPdTlCv+LqitjpodQl8CjtdJC4dOBeEovZeX4+4Ml53ac9drK2SrVnrIKT9NOTERPYzUu1+TljOYawk2R/UAW/GIfKnc7gcAUFz3uE80CUMEQmiXn2MGL0lcIIOziamsd6JG7Bp69HXoWOyPwk5DoKXiOTwNoUQdsZaXpBBbm1vMkOFFvpAfcdxpDusS55xtO58i7Tq3Qq/Ml3gOmNycIp1ol45AlTHLv7By1f+fYSE5gmRGgSkkVWwgHaqOP2GathYiVca2YMRbbw4esT2HIorDb7yElHV6tJhEAvNsHqHnRpSa7Hbz9VBQBJk6j5NY4HuYEm4WBQL670tzSJUFWCJBDSpfPW7iZEdr4Mw5B6ttQBhBxTHPUtgC/SV/yfHlIQN0LQedFYUKe0NuDf2+X72qtDPqUrGmHt7uwKw7I1Kfz1TlmVNrIp5G275AcuzR844FIK0r5pz739GAB2x0vDNdPDp3UjfxJ3iBXb35Sf0+3JY7PN59EoffMhkCGzI8OhzNUeVFgDq7QjmnMN+mNxE++20yR4iB8uUsVncQbD6W+RjSWZtU4ZKlxWbCvR2iiQlE2u7m/xy+SHOl5u3rDQJ76kKdc/O6VHV+92pRgReV3Q490TDTSbIB7emCiVT4SDRbaLiEGBRj7soldszufLz12HBW9srZdvBa61DVyuWIIWFxn+BJ2UBHu4V5Qn6Y9kD8tgf/ThGLplvE33Bv3KqogxxHz7L8ckJwYZgqqno/qAd+r2/K5k00evfy6q5YoFNMJSfINp/0ccg1QZJ3gsV5LCVn1LvjTybMGflAd5DtBvYLUwpZRGE3Qm0CVcFOUGlk6ooKv8Gx72Uk3EG00U/QZpl9PZnv1XU8sOgULXOa69SAtRbwWUi/9S3jA3Pj4tdeUB/h1gg2F5E0YmIy4KSfG0ZkC3xwelWUmj7Rf2GNwG+0MQS6MWNaLiNJ/WrH/l4O+JNLbLVL37ZaF4pIC2SVkTvdyow6UkBwUuEJAFkI/A12pf4FPgripJetoHaus2aopZbN2GvVf+/8wkPYVcC1/5uM2On7VVXczTNRsHwl3Cvt1wt3ccMKdH9MwTHLHLi+aEw4unbCd2bV+BFnh1QtropTG9OSSN+OE6PBBLR2QX0Pp4UtAmvuGctR5MS+NV3+wlk3zz55HWxoB8Ikqk6uM4FGIhc0iK0KpWMteHfJ7X9Grd3pAc5s/+1Lj7IavKTqKuQpb18rcREYewyWxDgF/apKMxN9K7cBIPFTGA8197hMV6cWNAmmCA8iXqTkqq/+TEy/n/qPCbmOTbhE/P0KiNJRvxN5O1+rr7cgz4WTgFIgx5PLbMSOxm8TQPQWFUhTsq9mrhGV4E2Iv4Cmk5x9abC0xXQTth/qgUh/IWbdedsTWc9z1izVz1XYSx+Y5c9GPSon3GnJDOol+iPGyuXCc6VkScQNA5tXzDh6jK8aH3lwMa8qWUrNlEFKVgIEnrA5o7XDNDppIpS0GMdGPAnJU1j+3RBNsOaWwP3QS6/0Jwm4llykMCtzS1zEaBU4D+EMBQZEL8ubgj4Bi5Cb5iSKzO2+tNNb+fDJijsWTgo/+4NgzczuscXC/idZq0Aydrj1E3sep1UAvZuVvkuenhtU9OhxLWbM5AQKIXW7bG2qRIDKNlfRF5UjuLtbv7O9yPiK+qILDlEmkiKVnyKg7lAEwbIGCVyNbfQ5a1D5+gspVIP3eXuAR3/XThrYqdy7+xEj1Y/+dr39vkc4n/UVHbBdxzTYc+KiIvL2hU7/a4vL1OHZHMgF+ZZ+uMVM27ggu/Gu5xupxjnMXqzWZV0PH58PEfsQBejM9sMILxY1b8pw4xyl+Tr2yC8wWX5XP279cyMHH5bHFk0gB3zJRD6udx2cho/DBlzoyDAOgze4zjJ6+sbry+hHAdjHhGE0dt6tERp+KRtLD6sasVtVyiQFoLr/BWCrE6UBY02WljfGFggV3q3AENMHEoBrxDeS+7SBVUN1T2qXyGzjg+54B7Xg+F8W3xwAORIA1PFr19B7vV8Xb/IheXP+Na/PDiDVkYQAH4D43pZjvosDUUr5OKsucf4o96CHm1yLXSjkW6PGjTNCc2OVloHD1R5in5ucn0nct68b7af+0Ll6hTRRBMzpc4eUB9kKFCZhTxA7TH+oZ/Cr/6tUFQ/cY5l2wbCd0FMX8pjnCF8mJUk+lI7mMRZzNMmZdHrJwuKW/y9aidigmAMVtrCiTW2ee06qX0gqVTLlETMQy914vfPM/XvrXY3ZWdWOaIunM1Jycm2FbhVzJWNbPxSeLvqX026OPijpZ8YR37voRdqIKSpdgfv+3TdG90g9oP+0J8Ryo68yKl2q6IDXCTIis+4kn8B4bWlxvdgH5AecLHRVUE8cK8jDZwaPuz0J1b6Q7EbsLrnPP6Ux9QmmkzCCZ20W0j/4n4dlXH8kt9DtG2At23cwrsnbXrMQ2hA2xDZM5C9Z7h0rjQgN9CydRcril4KgBKLJvEG3aMZpTVz+yl90Iq2SxhfX8KqWFId7706JMXO4GkE2AOlsIoJr9uOMgSE031BIe+2HKk+4=
Variant 0
DifficultyLevel
592
Question
The triangle below is isosceles.
What is the size of the shaded reflex angle in the diagram?
Worked Solution
|
|
x° |
= 180 − (15 + 15) |
|
= 150° |
|
|
∴ Shaded angle |
= 360 − 150 |
|
= 210° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The triangle below is isosceles.
What is the size of the shaded reflex angle in the diagram?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/09/NAPX-G4-NC20.svg 335 indent3 vpad
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/09/NAPX-G4-NC20-Answer.svg 310 indent2 vpad
| | |
| -----: | -------------- |
| $\large x$° | \= 180 − (15 + 15) |
| | \= 150° |
| | |
| -----: | -------------- |
| $\therefore$ Shaded angle| \= 360 $-$ 150|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19TH9XfZCHzlYAhHImWpQt1O3Lylwli0fNLMft1mppviInDojVd9kiGGGzENw1jiuTMO+yYtvO5xAyeEVj2V6rCx/9e7oYD/UZZJlDaOeOJvrbwtqqVF1ggAkLiEvH+I1dj6pwdBUgRJiqAIfIdtX2g8qRXMav7KnrgHvU2Umwy7CwiNhckXcehNrv3XlKneHsH0nhi5+C5mta8BlPD3gvzpopIIAe6cQ6wRXCWG+EGA1n8VJbBFFna+9BPd3P76nXOr4io1252l+3Z+41vW8/sJln1rzONKgoF8bGcB7euZ9DFsg04vWr0vMg2ooRaaelMlT6chDASaDyBt0LXAvSHjKSYJN51Fj0qd4HCly/ROTsmYih72HQKYbUCcwH1b9dXXaOcOLBHJ48foJlXAmxg9YLuYIDhwKnI79Udy8AA34UjSmT79r51/MbhCUogLMewQoBlrxOyA7slvzKZ1rnPPrevtQt6J6+YMuxyhdNOqu0By5lYIJT5e2C2KAiAuJXzCUh8L42gmXj5GlnNU3tbmPyC4bDZ3pKQqAUQ2VfvppUQIbO+fv5M9ahrnYdzKCCjCXsd114ML/Ku1Bf3b9SwA42qVk14ReB4MjimsENjRB0PUfhj5ah644dLqzMHOdEGr5g8ft8FKbNMxrhH7DbLgIw6apAAJ6ZMcnk8/y8/RgpMa2lnxXSc261gcGukq4sCNomx9BKAxkr6C0JNkkTWSY9mWTvdrP7gT5tarJBq99m9KtDnNC8q06MkYDesLvuXuAsPoiPWWZgN8dnkr+mufAg2+/absPrPV1skoEz7eJUR2GR5THafzpiTT5y/DCi4P0fF4fVMMBcoSf5B0SZC9U9x2lBvBpaNQAOWOmc/3yQhKlpUIhA1MSo0NKdwn6tgPJ4ycShLnA0hZNz3GusrkfrNEoIqa+/o8zH3rud10XU8S4KoItKf/7Xtq9WX7VTZLIEenI4VXE+fPGJSuqBZAyCEuT38vae+cx/9xN/3/0sOaUvly9tG5HfT+h5MGns4woiGzpB2X82QWqFoCGudvLrJEiKVL9y5cmzjEKgMoxLaoReV9NtIHUucXgFAP6a34VtiiBnqChb8RwcUl8UWsw/jjbBW8L6Y5E5hjO0esoDKxPIm1jFC0fD9EQynvwvdTURGaClYDyGm9pQhfyN4V0wI/wIMy30Czk98aJS8cUxUSxha/AfBRAmdE5zL/oG2W+kmfrzIHk/ULF9fkd4rdXcMcj03azAbggV2FJJz3u04pWTz2qGekK/W5li48z+uzsYF58ZwRg9NoEhOK2iUQxZluLZo0GS0XwxIvBo9ITwGEtO5U0XR4SCTURJgL+rOh74anK5QzVPszj7IxhGWAkeJbEh31wbKYW4m5GGfuL40kU4RL1JNnvk3VrsQ3u1+gI5EpIMxc6ys8lJ2aqbueTa6ifJ8cNkJk+ru2V5F2x+SmEfUdPhKut94e1rVY9cQZ8rLCCSSVQ0Za1rizokb6ra4WlLTnzJ4bMDxZ+jxiPXBK9PqVTuOZZPK7EM7nDY9AeHLJFnhFB45ksTCRk1XV4sMOyTfvJI/5qyUX5G2bB8t422TgMkqiSFHZZ+RnNHu7i99K4VTlt5axEkHVSdXSet5JGoE2x99q2+OvCWJ43a+VuK8/YqmplZeVqhN06COKyCudpfqhQ5nrQF8Gi6ag0AkFKTGISrWgLRARFjzRouaM1CtmP6FhUzF5EGLppoQjrc7HrOxxC5a9t/0rQwrZzf16F3/xUFOi3+97IlEoou69IuQzBBS6rw4rdt+pPvqtSFZBfH9IQ+nim9bcVO6q8uMgvqf0aoOg/I0hMzkReBDOIBdWl09Yeo27VPH6IrCqaD6LgezBm4GJXCLgmWRqT5wUxBKsCbbf/NvTRsbiLil3lad6QhzeQdhVhg/EiEo2fYFRn0T7CdnC07bU2T53Lrf/rAm7xYFhrnrq08qj5qtKLJ41NBn1oV0urnU/IcAssZQgMj4+wJNNFo+4j/n9vWHfJozUlJ43vYN+GuRIUNdzeiabsmXxZ9BFujCJ3jL1lYG6sPbcRC6jTaxJB0ajwNc+c9av/7nhOSIc2a8NOdR/j0zXSmMkJeghI0hM6yIe46uBAdTGYd87cRY5fZOsMbAW66obJI4KOdjdkiVEZ2EKhnkgLybhAq8vQROgxdCkr2tjYze5crDWyzjQJq8AgiCqkq4YL/0v1S57uBOabYBOSwZBQYiHPxRoWixjW81Xk3fhR5jKnHFBymcXjc34si6NQhvziXqL7kw40uLuM3QgNBC5vqCKJtZ+ewi+WC+U5SQYUrtjhHP6+dKWfB72tHYKtSgcAZx3wZ+Qo8FpV1WjrU1gZBP00a4OCYLbOTL6ALqoAcI1RvyeymEd2zp8vS6GA5r10VYpd9KzJGvGSHu4AdSKwyaoNyfbwURmCEBmu79eTVD3TjT4mPqQPJglWM8qARMNICytgijbPBx+ZFrgOWhNKIYfiayknylBAwysuWjfLH2wsST37R2FmGHDaF2X9NsYg5GG/zlqZ0UPfwRZYpCFv02LQIYFT9Fg6HGnmRZJcZplp1+SYigu7ApruO6+Vkh1GlZRS6LYuAY+EHa+ieI/dz33SYPhWkHHJpdGWEwkoW74KkrySPPiJSX0h6Gir63OTrojyd64G0DIaM40zgEZkceCxEV9m2nLA8mcWes+Ll/5k1cZAPqXqv1mObhnWOmz3eEzOlnnoXUA11mPc7BXGPc1Pq3ENKc8X40z8M/0QZJKDCnBVJyrJSk4xA6WWC0uHbYT8eUwcVzzT6MdOTwy75CyiBQHtYEGUD+y3urMRJa5jhyL9rHDqFzEIKjxjTOTK+7fSF8mJE32DMebAOn849QpaOWd/1ZcexEaffnrG/0znqEBjzPWC3uFkof7sZV+4AkRCueKTjiRvrsYpJm2B9cuaeCvjLsM5c4oBmu9iW05wAY7Kdk7sgxW9u0MJH5xysnu9zH2qb5q19/5og7CWI+zfC33nwOqMI8++A+BQrOztuMbu/FohPKd9YQvOBiwVqfJaWcFoqC2aKXk8WpaxRaiGsWr9QIyghOaXQE/dwMukeXFLUXhpqR+fJxG/SunlPJNGQIypmaU3DM1447Tm8Mv3y4uX3PEdH1YX5CDxRq3qc7zadCp7gp2qJeoIy/FRkPv0iElWk5AhiZBRor2bSfCDzk4jaUcD913Bg2SJf4UfVdm1Hn154PwGbaNjq3omU40RXt3Jr9qwRc/syIYtyg1G2RVYEVGXw5oHN9amNBRF7vlAkUYu8e2dAxXbcztwTSH2WnBPu+PqacodsSBvG0ipfmffwH9/H9bKf7Qnlo7GD7Wr/HeSbEzQWAtB2FP3jkwwjaSP321eWQS3+MMq69sS+KQdqXFSOOkZMFi5WLqSkThHr9QoF3bnSwdI5vTGq7EqixweunHwlJ1p5jZ54nunt5MLCJO5L01F2P3nhcUk/hx9LbMVye86cF+1W2HdEaPw01Lxl8eAV0pa/0lu1J21djMoI1W3ZklA4olcXTnj1zMbto2WLGf57Xqc1iS497HbE0bYInSwrhhg0KRhpJiVwOmjhbI9I9U8QjjRdIZAk/jGZCDdCkucXhUsFbd9CH9g7//GpW2yjS5VsIfKG1FYE8g+/KEgUJm0zKOG/DnLyl/lwM4FOQpLa3O/iup63bMESpnT+9jvlr9V3Qs6YADBfo3wuVEMKM7ya0rXQhMe+yoMLk0Nxo92e69dcxMoO1oxJ2ioH3EkXAQvuG18wykBY7ig1IcLTx7ofOuXhSSoBt10bb7ZKQSPWmF3aZLGbJtkKl9ziJq2l7891MHVjuMVX0zRFEbH8sV0X6SfR5X7acFeLyClmkDrrYhm4OvnvhmOdnKsD14n/KhM3Zk9yLsFfXlgaauzxaUeg2ElTR9mPQmCfr9S85zBizXpDvNBJo2LjUnFBQs4PIREl+dm+E92BPzQbDmZYbuS8E6ZR3KCudigsL0Qc7WNZWs/1WwHictGykRT2wQfz/AakydCgkf3xWZVn8uzMlV7FvW/5QGUqJBVMPzd0+KQv/81Fe50DqyTa9VfnGiA0KrUPsrO7v9HIYQdcmN3h9PZD+4p3IVTHweVBDb9eCRIi9N6IqrU7colkAhjpoE0fHaqfqmIKuaz0+Dvom/ojJIyNumrOI9MNG0LD91SGVfMUJVSnaNy/rHSZ2t1N4LH0u2qiI2g479R8m9fvnUe4yV1MS0ciYP/eAdlTIHVv87Bo75VmcEguKaXjUHLsAzoo7wvqosyRFaA7YqYPBHR7HQ9HoprU4iC1hRi/5xrPqEHvj1Qx1LtLlq0GcYD/rbTI9t8wJuM0S5AxvphO/IWOyRCZhJHYu1R7O3/RbA7zJjlpaSVH5wa9j/K96xvKmkiHyRpWRqfim33AJ/EcEWnwNpYDryntzTgXC4Erq3QJ0YBuAXZfXDDPF8EDAbf9Ezwm6ke8x3KWHqM73FNpaZ1DRIaETCBwXz5ZB2eNk6WzAljrgyT1qm8v4hDTz5cdDcQTz80AyHZhtH6D+6NDi5Gb7o3mcSJjJgvTWJflSHb5hAhwJrH3UeRBC2T5krX2vNO8/bvLCrONvJwH/0KyZZh5dsPMDuuQn0u4oOwwaLqmtfr/qdpzhTotPTjQbyxH3ItB7V9EpD3MFzZRCZ+/mk3dKvQXsLHMxT1wm0srrJ30pPzjsdVDtvwSpGNYNaKphTnYVDaxjdyxTlb761HTt68wyo9auXizuFfg6+ltP3gxHcqZiHNDh665EQnY/zU/CMrZjgpPoMOaYG06wZuutJg9TrSJp3UdJiHRU+vQTFs5wrZB7WSMOtHpm8UYpmLpY4P54q4ilG/Ctw8t1csT4Ye5vYX7XGYE+K1qJsEW8eVa7VlN56fk7rXThCHFrSICOZGvMwV+EnEcikqTBhdAM86soVSB1olJJdnXMV+lllXJ80vghSZUzl7f7mqCSIUNbpYcbxIuvmM7bo5crOeKHefKqhcUQTDBmwihC77SM9hnP5Y6C0orwMF+2nIDuUFDdUzTBnNEuQlf/z/aPWzbInPfrqnkN9jodESPDc6lmzZ/k+1q41ByQt+lyw+uY8oDs+C7JvSNLwzBg9mKv7YAhczERQExT39N2t9P7iyG4MLWgZ80y5X6HdjXW14AKCPKKnM/YCkA5rd0rdPCYoOzsdPwoMxyGgrrbKNDHTugk8WmspcOdAgFXAhXkDu+jPhMz3h7VSV0ecN8w7nTJ1YAvUUij543vK9/+unkChV4lghpUrGYus42XqScbwo2frj+wDQR5/2a5GhiHj5xybFXTTvZl7aIh3Id1igiuA7RbpmIXEXyWqZWeXm2FwrVIDQsq4bKi49NJSAW2vmgARIeuYzvDoYN+339hMdO7fqmYo+h0PUdyIJuvT7HILOVU38yNfTh61z/J7T1Lmz+30VNHYoN4BAfbnxoXFXwN9Zx+zWkGA92ysRrgNqc04tuX4xzsuK6PqQQmkstNc7pG9ZQqgbFc0DJadThIXw==
Variant 1
DifficultyLevel
591
Question
The triangle below is isosceles.
What is the size of the angle marked with an x?
Worked Solution
|
|
y° |
= 180 − (25 + 25) |
|
= 130° |
|
|
∴ x° |
= 360 − 130 |
|
= 230° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The triangle below is isosceles.
What is the size of the angle marked with an $\large x$?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50056_v1.svg 300 indent3 vpad
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50056_v1ws.svg 300 indent2 vpad
| | |
| -----: | -------------- |
| $\large y$° | \= 180 − (25 + 25) |
| | \= 130° |
| | |
| -----: | -------------- |
| $\therefore$ $\large x$°| \= 360 $-$ 130|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19T5rQZ8fAT/BLsF6AMpe8hN44ea3jSE6pXfPcJ7pZvCCl1EzbZW06CLFIVDto3rKulW2zjA5YIW+fa3orc0zvybF+v1yxESsWufNwg+dBrttvfmm8bsJ18WtTuhmR83tHgrcPgMUp6aw/HgXApUHLEfN7IUlGotKHhMEHVH1GmQMpXzPxAOXvNPNfJR8X2PIu99eWmQlQebPUBeCkeWIxadGPRTxJ94OwYlRTQNsbUIeQjR84LtQVYQS+V/SBUllXlI2UbtjoyQXvuOUQprgPlPj0KHLQjFdRx6W6jefQrpJE3ukIFi89N6XRRf/JpLWI/fcg5YqYGIaqeT/5pXoFDxiZdvzhX8/WlNFGIGQ+NbJxvNgCAINODno1iHL8ZuzcFGNwdDA3F1X50BrhqEJ7wJs1an5S7DouBQDg5f8Jjq6BWHzOznXv+8zsRohRBKjxRZE8P3FTfIXCEZL4Ty8j48SIC+yX/OyWtxecibh/+qV3TXRYjinOi6ByDGsL42p1xcD70+ECNVg6nylCwGazW+LZv3OlnXFXkVf324lvm4ZzyPplgyuRcmHmIDcVWdVTq/yrh9JVMWPDak60iPoMfJbE5QGdev52CA/YaQ4t55rZj0MaweZb6PD7VN2tU3us5D6EC/eQULzvSm9uGwezo2XzVYAdUKwGnVCFQhqeZIS+3AqJlsRug8v/PoLSU5Fhxz9/MBHLOTQfo44O8Gh9tp6ZrV6tMeO1MUwVqnUq5IJRZ8GErdB6y3K3otkPE3FQKPNLA0s8dPhvoAMdGqu45MYgJ6S1fjKLbWmOFRgdvosUzKv3E9cIoCb2bjoZPIVmmYOLqj3ouP+X0AjqHst0veRCxZZJT99IbjV6tfOB8Psx7G3FkALrj5fbFagsm4qhqAjbBeIElBBIKnqBuoxrjuXiQipwC2Ag4HDt5P1ixlZwHSfGXyCYr2aiI/iXL4H4pW016RAU6fnbO+QXvifBGc+e3ETmfPQeE7zXJb6sLsqTq1UlcnFbsSmjxYLrvI+xGYNl//LnNRXwB1qbDNitLcbkMNNQyz53w6cbbwFVv5i0tlY18H+zqg7dSRvaDBgBdF+dbO7W61WkfEHZP/TaAdCLDVB3LxWt8jEMJFW/3i+0lnoKimxYiHrcwCDYef1/WHp64vsIvhwF1TNNg0hEh525g3laqI8fOPhjrI/sKkzcO7Im1TP+Kz62qxTJxPejWjpe2Wl3CcyPFzC6kFFE9+yBu1HZZoWNmXbyR6QikdaF/MA9p0C2wwEjUwnm5mmip7Ebv+wWrr/EUnfaVagjpGmVJVylrUlW82SoSvkTVDWMOFhESoIHfNO/rFrTaecom3zGEL1YxmGfCRNMFIUJ/Nyv1YUAi7lirDvawm6Tm+p4zA9c/0SunILCeQmdN9QKeh94LkRGPovsqJ8zptZ64NB4vAjk54jEWh+qXbjZ07IoPaqnWKIxIewCUtJUKYZtMsABPNodNTZCcLR9boeD/id64vC0QVuII7+QTMzAYdfTglJ2dnZlm5n7h9ej7Kpq5jCQxS6di9NR1Uk6uUCM6kHwQ43JZiZB9JrmqQgA6cJ/SxltVym3DUCmi3a0iHG4cY2ergYXLv6qH5pH7AzEISw9hQ7IytpYvuWT2axau3G9mhiKPoUZHs8OS62jrG8o2mdCgVgYLtAnawaSW4qlCwiAUWvGTK3OjShl3iE00g1CG2ch47ibqJSrDkPuaDaj3GP2E9pgADhEjO8b+VzmQnUJTPfr28Sr9t/mTYNeovAChRtydH9vOLfrR4eo0cs8W1IVTBNyBA1i3+ddMMVso6jQLmHBRxQ8qFbjImeykRx+zKOyl6/C7yO5DrU/632vh9f55Jcv9nkOOWJmrM6VggvD+YdV7pKhYSZv3Ob2D8/XOptI9exT5DPeXZ3+iFmW825yPLl5wSd57ljveocw/rTx0fyHppwjGOj7hJN4KFugM11W6C96mVfJvw/87s/BhlyBhK8XfdkkSRuVMNX5ZqAWHbQIPGEwtx9/ScYwIjCsxP2imqMEGuMnoqbB8at/IOGIM83wBO583vDO3spPhE6t8KsFEqGgMAtT0q7Aubp81HKyDERB6//0V3jZYr0A5GePFS+iVX3df6+/YYpNmq+cdrhAt1uaYRpp0O7IAZEeexLqB/F1KiXFmwiy4Qa5D8rkEdB0ywpBJa+fajrjlyVr7wiSQkV6ly7g85wVa2FoMJf6CXBPp9p/bzMJqmYkM60JjH9hMYyaNfsfDFvKfxtW9HTLS3mInE2Ir52458WLTniqmzmQ1M8E8+i7ID/T/C/+ioZSaNDTAZyAdDMwop+6qC/PTTnoijRZiCsCy9PCWrWmyk1mZkOqP6dyZK4P5KLgMcV+mlake0kJ3Du5SCiqf6GgbyQoj2TQ5InOLIM7iOjdqw2d4BEeW7ByQyXKozIFDlTnH1QvAt/rKijYLZ2OeUNtlYst+g0EsfeYbnto7mwBusZLMA39mQHZ2HgYtcA5Z4xi7EeDEBxTbIQlmqGKhoFZ8OdDxOyR7yvXYGQXFK+VOsiNRlTyGvrw8JSsXlfSXO7OJgy79ZDfCkbvjDmboiaEpguqRrkaNlTvkVo+R3rtBEBNhmCAiFeIcT7p+Jxi/MlR6AovTjeV5GBd3W7Df+R4vE342juHmCOnTMtgV6Bqaox1UNRUdG7noTRaIByN9wiSIWYuLy/laGX//Fsxp1AyDPUZ11sLoOxxBjTk+cNGsycSDsEwun7fQYGrNK8Y+HRiUN3IwLSRV+/+Q46vFkO4wbkFnoQGtr8+YxsFWmlBH1T2yHP7IBd7V6KxF9yWjcxQSBr8hiJuUNgvmGiAFp3UB37BO2r0ru+am1HmldH09LOpkuD7NtgPiaXK5J3v34PKc5Czn51v4A7nghQYvATCQ2LX74MCiq7RVIqUkiGx897kz+a5YX8tkIEz50WEVlMX1bDy59wimRqOYpwdYxLmmA2iKSR8pm4jpfVU8qCBzTn9ctkFseaPOKGcUdIXwiUzYIsl4kbPAEwAMfR0Ka06dUIGO8CgPL4eoDhc8o0T4S7gnu8vi//M035QGHo0lhZn8BxMY7ylBfYNK8+T0BummgYKivx+kq7BzAuKp4Vh5r0cnU2FJwFeyc00NqxWMh57AQdJ7TyjMptHPTwVYHTCb76LPw1nqs6XXZZW+ZmTRb134lJv9i4Dvh7bp8uikKMWCUhIvDSPwbLsohvI9+ULZYhGei0V3gOiscMu0+YUuclSiIIrJNNUWNlTjwJvYBRoEZziuzVmjAxmNtHBKVmZQTRqiCqm5V5GQjUBRIX2H9wMAWb/8DJwzCPKdiA34xIJTbmECPI/OXZn+uJW9EbDgvkQBa8D0LNeFzSMQ1MC2R9ia4k+i5lmvxgAK/vsamaTGD4B4iLXn7nAbH5Yb2ch+f1rU8g9ZNAvtGva3oj8yxhVC1SFzRvN0joUfNSluVZ/oO1o/U0Mibe8X3fIrTS+T9rlJ2GVDfNjUBm/ze+F/FRZ01D0XjiSjcccp9gtVn78dyc+UrBcERoIbVBMe17uceFbtILsCIv6+FbYDcpRysm5T/rZaut2cGVatRUwGWA1lzpmg0OXvS6Ejzpa+ZU403g9S9ZoSslxs3dhOQN0nzBQygORKsCRin81HttkiChQZDVd850UTSUeu11sCzkZkS8nsvgWGAa56HE/SFOwz3eAOtrZ6R4gibzi9vsXOrskvIIZhmboDNZ/XUlNKbyxdMJsCySoRRUwJ4YJa+NkiGQQU5bsCxg0gjzvD+8/92mZt8/LsobSO0ApjTDyktcO5WYWr/W4Dv2wwAbHClNXFVgVoNMIV5akFwPvpbze37HhT+ACXB7tlpmJIYeF54GzPxkKmh1Lqbzrp4k/nzBpFpAo4SSPTGue9ZN8EZc7Nw3z5nWFdmnvawBxKvben5WjVEmabc34gYOT9D3Xb/Mb1TPXiujeyobjKMRV4YXThJPoD0uvSXyFPQoC+4soDE88Lkhmy+ujj1lOVgACvBQqpaA5LFIuhDSJQtt3+C+z+T4VNnaxQf1e+oLnyUwGLzlf8Gxm8IAXrHy9oHd2G047HZuPM4gPD8P0JS2+ZdAu/Oj7HXG2gfg8/NTKrQRBIGndsoAIVETvz1LHySNDlthYZTy551tozTUVmqKOFSiWM/c8QehmcQdu8bT3/zFNhfMflUsjxiJ6Ui0odFMELn4ZWRDPuamZzNS+QaXJAVlejB2NCrNHjEh7ASUKYGNKmQ32/7oInahG/DEUM0S1gy123jOJxdBgjMajOoGg8nQqfzOBoBeFYJao8+40KejYZaZaoxJrY/F902dBv+SvHRmLYKgNskw0E9mK0wjj6IxygXEbIkblbeY994xPR0xGfg1szHB2x+mstP4TIJrJyq0USj4sHK+b2b02+ynbVQuX0Ds1EjBoBFGk97+faHcMh1pFgZEQVPklMz/C/9DsRd526vgcWcNH2mgstfusQqRSSn34FI877zesTZ1uR02nEizqfnDdEd0RJnt+1hQwRgkkq5iccWcFWsarUmnCWL8PJ3aiZVfSWgxbUhHgnkAsEbw6kqRKZgs65D8Knn5ikyob5KwGJ5Z3KMwhq0uhCIJRb69StsBmEeGAeBrV8e6vkoCI2e9uAflOAkNOjBL3d/PzFBdZB6viuWwZdjQvfTIP1evutD43M/+DcA0WLaNd3MXU7KMr40e0WgpQTc+jU9CurajFR6IV8XhsKj+HWl4whDR3wTLV0uuicMkpETv9a1QUL4CoFj8+UroGGB5uPTs0AR9lyF/EZu5y0dQzrXmitcIy00uN2ZHcTLEmpzpyfHmMlE75Yg+j3F12U+eFm0NAgMMG9h5QMuNGmLCjjC45KfCBVJs3vyHsvGIBMV1NBjqo+lPIK28H4hOlojJBDJ9N/QwmEPCJLBBtuwf2pDmJilvpOLYGluLSg2Wajkp8mML6+Cpgtzw0lshDrJ1QDez3EutLxB0tuwBKhrSbVBBpN8d99QotjaT+3NwZjagQnP4NodZ8C1LJSr0EH/R0+aI1/8XPUCfNcJYi5g+6qu977lvONvn9/xO0xDcLpaTqsriOZhYr6W1FYl3QEezYITBOMMCgQvsw3SQ26c8S43wyOjDvsuGLj7vIeratScOdFRjoORGS2mWCQGtUNIDWLA027SopNlwrUGfyITnjQV+AaomcxbBqtoGpd7pQqsT+qMIxKzg+GacsYzgtcPbJzolVen6JZ84N4TxoWzJbkGxuCr/cbNwGi9igxuC4qHlGkKl5qhrsgG2s4NMNbG+ngn0AP7FBbPS2EvL0oWDBalqpD71nwa23vNGo8LbkvdHc7o+vDb/bYUD9/2zi7w4wRgPr9XgW5RWkUJxrCl6kSGRALkGOmENhPK+FT0Xte4TadV5RGHRQC1BtOjEMphEmdHdq92mM+uybVeua/wmea6DoOTydgNpvXb/nj1OxjZlEFds8jNTxW/13doAjz5hkYwAuPs/fmWkMgjGCoXxgXgtyjGo2ybQ==
Variant 2
DifficultyLevel
596
Question
The triangle below is isosceles.
What is the size of the angle marked with an x?
Worked Solution
|
|
y° |
= 180 − (24 + 24) |
|
= 132° |
|
|
∴ x° |
= 360 − 132 |
|
= 228° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The triangle below is isosceles.
What is the size of the angle marked with an $\large x$?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50056_v2.svg 250 indent3 vpad
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50056_v2ws.svg 250 indent2 vpad
| | |
| -----: | -------------- |
| $\large y$° | \= 180 − (24 + 24) |
| | \= 132° |
| | |
| -----: | -------------- |
| $\therefore$ $\large x$°| \= 360 $-$ 132|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers