Probability, NAPX-K2-28
U2FsdGVkX18MQ+0zJQ3S6n0/muqhWcKockyvGNJL8Wy2l+OvWfA2sKCVJAVh0rutsOQb8GYzVwdlgc7z3ak9XlbxUsgawRBGK3RABrr67d1R0o/jPAic1IZnwAexOG1E3OAXHfh/ataINBV6YaJUWmIWRCMMQD659oQ8ZR1ZfMSMLOLITuTdncKJ+LAFE6FUZcVqckodJ2mth2kr3tEF3zMiBVLUbUktNB/uQ6X05lpB6z6/oAi70gIoaVCd4sJ0jBw0+Gm9ke9SUtFwp+54DlXhv9jI6+SkkYZVx8uNqVomsg7aWEJMXgJrA9ZDSfKsFBLKaMawZELTr7ZHajZ2XB46qoOiPw0SHq3QXmjLDpqlqW+wWhdiy/w+7BU18ZUAvbrWpZR5p4PBuS4Ph9MzpyyNpTfr26oIjx926I5L9Cp370vapBRGiybImK4J1bostq0ojQL0GB8xH3g+9YmYmHtXU2Ci9lCHOAUmxl/oOz/rk7kHTvqEUQ/AYQtHThKbRnJ5zmt2DoTYtMYegKWQaoDrsnszlWULE5e7Rvz6Rq8CEmKrsQGhxrVKcvT2eDHvZe2Eq05obwKgl6VOjJ2xypqYHe6TNqZsC+5/Tr59OlxAV2kKRaTEyuyfdxK5suqyEiFjuDZvXxmgXq/Zc9sOcp2D0qAuJe5zrLJFXK9gTlhOQzliSF0Md9ZGm3FALsfS9EWnPJT6JL3Jl1aCSnPjAZB6e0WmazYO0e3X+YT2hJTyL7VVFvRj2ksosdYXJZmp4B5vkgfpj1Kn8/V1tWnSGI3WiT7yxe4jeq6RtlRdfx/rqAXJOMy1l98aJjbJSYJPqMEHo9zgLp2M4s/In+fCtQZXJmeo1a4Bw3yG1n7KCdXbC2vKKPdZKcrV8fMMy+Up3fLLDinpsTcy7QXPbkg6LsbXmkm6jBFg7rRL/KdG0glZMKxa2wk5GDkKJBTTAlYxnG2g7ziG6hvzK9up/2H52cbCyAi2yRfxYceL/lHaxSpJQ2dFz3/U6qBgno/MKCBQXU3kfW5fyRL9xCRroXltAW4P6XKNdF2QjEr5+ThwRuv28NaGUPY1eW++qgJXfjwl0fQ/wiEsD/oGxQUl3waBhNDYEmDAh9Pd2y6ndQoBO5l+NbRj/LEhe4iKHCXwKl7vEsRmiTGAhch7MZEDdk9asGR5z2GvDDimEWy/hEt92hC5sAM4C8NHhBK5aMh3hLR7tygrHcp6Kqe2psoP1pTED05N6+KedyblLsJETMlU0rXGGnCoWTm0bV4J1T0jHxNAkEeUYmL+xS4C+4gctME1l1Mo5e2CXGDpTSckJlPCvjeuCxrTlltvNtsIP5ZgFhdONevGwHsZEGNYMwavAzoRTzu6wh3EMhMmEy15RR8QL2HQe38Gzl9Rlju4dcixPQc2xIjSjP5aScjn0X3UHAPIC3DLEA2J2YfaQ8j+NSLW4v2C5gFbMVBITva3bC3G3X6PcCxKOPSBQhDtyM28+MionT2STOMDisKKjSENbx0whLP7ghYOBQmGcUmhqoMUdktHOfsFzhVPRr/q6JNB6E/zYo2SPanEhfUWn7dj9LAHs+0etFHu4cxXF3dls92w+iBsRatXdAI/aq6VAK/m1DFHJ5FoItu9tE9S62LqvwtkIaNeokKWjmwi+L181lyXbp+sN51lnmqd4nNSqswlO898jQqDdTaGI8X3oAjCfIYFCU98l8I8QWZtpPuid1O/g6olCG0nnJcfOz4EikBFrZz8PsYEfQ59mnjxO8JO7QjxGbvwnUzlgwrWuoPZgMknxfqptitu6NnY/IvX4ydYf14wdK5biGiJvVaWzUJYMk0D+MtKFJF0lVlqS6fnv8esTKm4UCbzFlUCXD/p8RlloOc1vOpUhlhIOZBjYs0Cn2tTdu+45fqhQQ9eVjYjkZQyGjBhk1NJ7XpbK03jFj67ZsuYDa9vPOkkRzwEbPAB8EtGK4yUUlvrxSHOxL3nUMIzG156fXTPCJojVJMMQOs92c31PypVIZnwMhH8d0vjK9G7BVA6ErAcemujFfQvTZd/JcBECqEtSdZmuomnSN/bR/5pYaPqMQLbVzQXoRbVUhfAwRwdgZ4oCbReOxHh5qC3vRZehmyQ8e9lZ7qhmtIoJGlMN7o3vwLus/Eu042aKxaOtDsTY4LCCR2ZlA94kkh+teq5d5YIOCOlXmHOmfSzZoNorTDwCHBQ1r/2yVmLEWlYnNM4Nq757Ky23YJ7QcwWmOio2dlfi9tarGDVLx9nF5TSlC3UB7RV+aWGJsQhlfalVJoypGF1pdjZnX/2Dct0jWYi6fD7fSUUKis1GHhu1MQXwmV1l5SVcAwWUTIZo3AiREEfQA1NYco0/Fvcrg5mIsyjPpsqHEA5gg3B6V+NknuVZOcxgM58cxXL28YmzyOZOMq1Ttw2aHKNNuACGRLR7tBXXuI3sCjIaic2S7zcnjYFV8CsIyP4HfBz3f9rrWIik+wXlsmnykRiugcninSJF1M8vBja4G4LMxgKqVQ5U2ZDD2qkcMH404kAQGnjc2DBVvg0w1C8wzx8Z/yvrvhyqykPCZAPJlXdLijuthKTGJIxdZi/TJ3OcI4huI5q2cVetXb9qC+71eJ2AsvDYnak5MqRJ7WTvricl03yV9A3a21XQvwTG7wHabn2ELQTqHmZ1Vynfj/sJos7OkC/fxBZ32/8VTcr9khej4TQbjrY33NHldb4R4s+kBWpvws8oEGe/qkoxexRiXxWlBVB5l4kHdCpW8bcb+MKRaNvq4FLhnH9WfgfoZ3+dRhYPsKo0Lb0sDVdgvtVPdXwc68M9hZb5BIOQpdM36Fw2l9+Go3Kxf7fyP+k7psk1mrUnSo29NqINg5p0XHNYjB0R/y5k/OxkICA51l3ory/s6o4m36RhZa2ynqiehq++JBZiUdbjwoopqPlfAaVpD+GWu/pi4lODRaUTOL1GP0mhEBvoraW61jVL5seV4ck11kFg5Wp7PNNaSdcCJUXrept/xtZX4LhjkBNLjAM8A7KL0gSGFLGpm0mY5E5jaRl6CsKSulHNymFDrZXNmuhUZkALW65QDu2Ns6hfJgOuKT2p/p3F6+wUr2Lczx/RXHMbPwkdJBnNow55dj1aCuK5jRgnWgNFRKfTEC6U9WaL/KzARjy5gQHRxkPex4ePRkghxRgeEwynocH5Ljpr7i0yzWHMKp4xD1vkEky7pKPUM0V2uE4m0pd52Vg3ZSnqdZKZ/OrkWvySyqFnE9MyW2iM8A3kQtI63WK5sFKe8fILIi+JjJIvxPLbv985fd2pFCiVdFmdNFlV/5h2BBilj0tV9fbdcmUoVoY3oDSCoPkOEpt3yFZznRSdHQIi0QnEaQ34902gQeIF5S4N+olahBdp5JBQoIb2j8A457nkp1jKV8+RlFJPOXhlT9mwyI48J0p74x0JBNsJ6oIMRyCCDgZajmp2U2lsYiiLmhZ+2it3X6Z8pBNmsAepTAdklSBnu53GVLu/mMthJ+83fPwLrt83mrDha7agsdmHgGW+tPoRYD85Ud+y9eKuecs+c/3qRcE3hc8D5slamy2qMRNNHaLNw6s+E+GHgRSS0eve5qIU4hiZIphL9b0xdRteC+3+s0/w0lmxjKqmhBJe+J9dvt06lKH4OJHYfTn1l21SF6mBDsVFLUkaLteOC100ndGbbFmgUe+HDmMiqxsYIRr6VcA82v4r/X3efZWg2bp61ljHYOsrKstrbuP0BsKRIvyZ8YcJYNK4NJXrzR07EnIqvldbjrTzxxZR/gCASv9sVQavjXrIJKHBRWw19JQzPlDebQ3k17d7ZVO+9gp2z0ntt227vJSdX5qxouUr1EDXncwrCWOz9EAc03M4ykoukbzwnkFyYJDYY0jJnlbnokwtcpgir2yQhSk1YowIYmipWPA3t+CF2w5uyavfMgl1fQHfVyYjo/D+1vYk7msYRbgP0oEXIzchuCx36OU8CasCUT52NrC1OH7NiRpoKI01HZGXzwhsR0L98+TwozQZZiOTF8FHqDEj3zdF4Cv+uQEdiKPQAUbWM1MYbuVUkRI3w9j8C3IDCiZg3afKQrnd51KU/20zqrE8gh2Zh1tb95RL3MKiI8DD3X8OQmK+721snYkQx5Y1ZUdW+mKP9IYpkYciDC3d2yCKZaX3D6kZRuv1vnyIsNe5ZGjL2wTmqrpZktzkRsjnYmMDxRMIPyfLbBvFmm0dmVfBeSFE7jJuUis0zhnQ08H8Xocao0Kgjq4+2mX5ebWP2LmzWVOkoA++KgggNFc+l4DoUnowqOIMHWKXmoKwnzz9J3pRlm35o7pzSoOSkFKcRQCSJMs53ryqNqPGl6fdVc8+BBOXPe40FIFEc8jrS8t8A8VOWSzPDE93A5W1C4ofhEWxNtUdnDK077Gm4HgoEu8fGj9L4EXOCcQEh+682zclM/RHij78q9hK5AmxXhvGUxwBRUCpeat8AX5I2hfUvGmLOKuQ8GPHH/RZ5Y0HOUIsAvu5RI5/IUNiJHY/zA9bzoj7muuGkfHjbx74RiTCFRvXOxC5B7Pt3IkSArHug2JhYp+rJt0AlSIVF8xfurbJi1e/oR5AO9pIFXDYN4Pk549uTUanndHepAnZY6wzkm/QZiX8rDA7i9z1bxjQ0Vn9xL8/Nxql0x5K/VQsEa1tjQc+9W3z954uUXZWY7Ud2gne+DfM3GU6B9qYDvoqGqrznxmyc8xG3Yik6zHqc6olhZMQG8radcskwjKc0PuRtBi+EuRTvsor8ObW6AAeXLqVchjzYER8sxFYWz/2tup5/SjgygzGM0DrH2J3+hzFGvLwh3TtOgVprKfzWNk1xq+4AyckOIvpTc88IPAIblV3AJWhPOGmpJ9BYBX0M65OXtg9wyH4v1kqHxbCGz7hNVIi5w15NrhsR0xqGSpemV1V18WDnNoLvM4u49hFS5cP4rTnBXvTu4wht48CF2LH8Wiy4ZDdHwDnJKsCkfbX2+mCuN984CtiJ/M8GDdYamrqrqHOUw/gdWV5mE8AsCKvwJeeF/rfSzEg3MJDnwHRsUG5pz4vCUU6PdKDpqkCTespKhJ2QiRD/N/DGls335N2eiQcoAeHS/49K9g5VLa6J1DtW0kRhJH89SHd7hRvmMNwx6RHMg7N5UvjhZsP1sHRC4mmb98y1ns0zC4/UtAaYNsnUM1Ng+ys5avMWMgzfgGdd5gF3eRKg9TiahGsEoJ/eDXo7b4SwTb85vcQdBo3irla1iZKQJJRBSCjRpnD2W2DPB573LVLVE4icSgL8fMVJhuViyxVlt0AtA5iDBtpPHiuMskbvlGV6XEP7Vb47j2o3cmnFRK+aMaWP5wl3vC19ZCqk4ryigKxCpT4KbpCX3Ng2b7XLr/JVkFlxhmNmSLkOKKS7jxRX6se4vC6W8VHir2bDfrYgyVCtM8oR0arrph1+pe/3CWEz7Umnny2QB+VYM06Y7PiCSEVqxpuo1t7u+0+xnB7hoq+xFQrJqU6rKWvJP52hqje/sABK4IMtafyfzLTvV8ZvwC6iME5Tv+DZE/qeHK4agOVnSj6oA1QhPRPK5GL3c/IlLO0V6Jf2Uu+UMV2+LVw7rzEfnn9e27eiTl1BR/uTK5BgaCDI2VEpBSj4EHbzisy9OXXW2fs27FUiZ/R9j3dZ9BJa8fBIlrwVJxLLlwQlH6DRRA6qNZYuAP20fm2K/faWDPUPo0xMkajrC1yRpuXzdzFi12lNVTEFGYCgg00iIm8hwJmvJrhZjazMw4ISUoj0UnfacyUEJl8vhdq2ff0IVY6EM+1UAHpHUX35k1hvjkhn7e9fFi5CuI3rqwX+mAsZMqzBZIvIu+aszr+gqlRwzZacqMxyflb/jxgzb3A74O4i9svG8fkRvY5kotoIQCFRYqK9yzD5+KD5mRN2Z2suCVQdxHc88eCirDX/tl1EdUTUM5vl0P9CwxkD9/Wt1pP92u2deJHPI1sFkHrHmwB7lneNUMowfvKJRz+Q+EQQ77jFwr1Ar1als+eNQoct3ZIuRhNlk5e54I0fVh9XDQHfaZyKEcggLZhUqobd1LGj7PLw0bIz3JM+fBsQ1Q2NVdDXazZU0vRLEtZ/D5RE6yYsq0ec6DbsIRDtl669nTXTyTT5lKJ+U9Y2fTDEVAA3n915LyL0PBwrllTAG6bL36RjIwf/hPhG9qFm61isamizkb47/icneRtOl8j/0AhLqN/6p78RLBQa+2M/jFCgCsWxz9YbmA2ZH/aESsLLa6OUcek1J7LCUZdTIoKgPXQadu962dBtxiJJUI80glgEBcaRpfCoNNjfMsdjieo48/mmcvvAuulgO3qWk1sThcFUTtnTl2CrsQDOEfmkrC3Z1oxnW8qkbng76IHLIZHZRdbXWTq7Tq7OA/GMRL6EP8yJyzOobRwPvZRapeSXPhDjnCo0pYPsjUA8sBzNzipRyt9tSEPZXQHrXEo/YWv+lUgath8a+uqeo87TN1ovqzfn8Vdo0dhXdGrcpJVjtS5G3N9VvIvgqKKyggfaDJxN8Y7C6POIsu50KILWTtUL2bE+4PgeAERz2ci7OfHoGEUtgs1G0iRf2UnidEawvLNoMxJwEinEXjQv3p0dkrJ6wfT00RmMU3NTO7+nKNxleaBha4KsRf8PNHzKfQI5+8Au6Due7ukGg6M/hRK6r0pz22uekKAvVD+WGOrZqny79YeshCOKkxXXT70y2TaqmruZKBlMZwXL28lDv8NFIJe+5qLLDoqQsL1qzuLhyEC6arsdh7exedvBCNp8wtm+y5pj64UsybX+RBSJ7dXlGIXF2guBQ4jcolOzA+J+cF4sOPOzl2bHjRJbmZ6haI90Oy5li/TRwE9ZQRFQwYm5KCpUrsPeUJxsfdZrtl4fwGb6kIUXVAv4vYfzo0PMYpraGijF2QHkfQPJJplT/XbCyaIl8kpWTQsrRgYIcznBNh18MNX0L0HJIOqA01WRvozdDv/tweapfmYB0CdcSIYP2L2oESNx3sDmBm3/mYzCHaDIxeifGqn7w1NvvWCAb/pzKiNNRHBzoAq/WaFHaAPTJKEphHcK5hM7WtwV/h6K52PidpgNYq7eGJdrGEHPViAeT9Qmw0lWjjOKXhB1Z4/6N8nAEkHPHJu0zogZJ3ok6a3V4gPC0ydjRylX57oyNxbb/NNXVfDQRZ0uSe1sLCZd2SDPJtvgNcWQGfzB3u2loRkBanINerpyNrC93Q+dZHLknSo+bNzGl1DbRoI6+UQLBwswcLREgd73rlp1Bipp0ULWcmPFB9qW1vaXm1g5qFeMHXDtUOadcKRVbhWsSVSEs/AwGvR5pCFkgFpsAJ2O+qHoY2gu+aGfVTmepEw4IFatLYkuWgkOmqqS3LmW1qQp4z3fMpbPdYPTAKdxNZdXjPNNrPVUfqkRW9r3vx7QCkgO+A43xcQDOlMtuI8MJkmp6MO+TZ0FKGHc2iyg7lRvadVHeowGvOMS4FmQot1DZtTW+Tws7cAXUIFZp3IcsHudm59FKvM6xjlN5r//svB7E9vs1giXtIhAa/it8fkds/GsV8DP1v6/u0nVMMhzVcvr1dg1NM74MlsX3HDl8lnVKRMNLnvPfozW0oTM32K5MFkr1LUlEc1WBeHXpFcncFzdQKOksCFICKBD2ofm36en9ejjtNd60xnparMM2/jSzEcFNUvIG0vg8k5cDJqvo06ZvDX3Noaod+NzK3FZoo2AkHHgAjsD2xNUm3sSxL4sd47j6ioRCw551ptEIZ7TwJ7BdA/ciLn6jhlUlnLmGBTqvT01s0XqK9SV5pRMF/XqCgbfrg8K0LNA7N5ekD3ZoB2mqm/W1f9WzLViV2pejwaY7HOTdBgTAsIxAfKR4GN9faeEZgRleanUtgeebQxAW+Z5Ht2zvj8chFnvAOOWL0eQkWiarpzNRmIMIsNpYp77OzkvUBGURaT1okj51dxZsx7j5j5hrGjidwalClFqzyI+ya2D7TCu+rxxjoc8sQ5BpVLqL8prbQgP/3gkM/0wKXuZan98foSrnfraC3FAn1DDftrHsz3CNwJtKEyKumGk1PLEnNNfycZ0UHdyq0u+3uG5ygyMgwETsueZ3+N0vFXJw8ijRijFnsVNiBNCkfEEnC0p9WXlY00fX0TxlFIT0rBLDO+RQs5xL3U+vG4uSHRV6piGzU2Ku+/oUh561bSmEUWs7NRzDSDflb7WoEwDzvv4iVwB0/2nqYRTd/MO0KGjKrhE22IGU3/7vMOhuom9vX3DFH4BFInNOvbaBZFDFSlWoVRw9qnjCzFbpI86oBLXQGL1etb6Nha1RlQfDsNcobieqZQ+3GlXEMEMyPMXP90N2dsxEBJnrBV5dkg+qSeR+vfia4bzArqyEaXlt3TTQp46eAsrvJZZOXOqQ9GmjfpJLLSqVc5CVCbMDQ4ro42jbRPBW469Accaq4ZVIsCsLUmaiIDq+4ULVodQ0ZhCcIS0inriAlcaLEZtiIshFISzPx3AtZuTY25JmL/baXO8i/MhWCSfh5ihNV3i/QjcYVoMuPcNHHpd/gYC7AFvib3ZS5puucC41gvavhRqrtHC3nojshNuf4pzpBDWO991//+XR2qGePxC+cGPTvWhOBh3+/wQ8du5RYyTg06rI7k3KokfmLgEGSWrcw4ga12VHaiPB/sqdmZtQwpD5tnp9exExV7TA5QiQLto2nNqnPLaTUFQOWQJ+DiAs9FL0QtQy2dQsL4hrJDhFY0ro3E/338skWzP1Az9cB7Vk3/SpjWHeIZiDUKRMaK0agcK3bM1iNAHX192yYuOOJSYcvF9/GDtuGQxtgu2h1BIQ+65lBy9l94SWUMZ+nvUeX4qAUNMlRxAKgv8eGws0cOGuRzZrautazaV9jqF29fha5pJNAsvIozkwNu9qEG/+gib6KIHqe0j0ABlsaTQTdJ46CE4Ab3qf6wW3+THmUJ0kfwGaoLz7dYZAYQzbcc0WZD1fjVVc+U3mH96XS34o1RDFW1tn9V1TDwDuEZU8danV5qJS2ZyenM7ArkbsOmShY1F3bor/5SwjcCBju4LKU05QSmCt4/6+bgPUuOyGRXHSks2RqQCi2tb9BmHIrqIuiQEg6dtGIgmJyFr+YdVpNtRQn5caP3sM5AAKA2Xw/ycKFMuCZnzlxeC/vspnsZ1+/cuaAjxo+zn1hUlaZ6LNCE6OxknII8WTHx/8MuVAiL42+jXn1wa0lBFpTTjZhFoc/ICLpqqb1uFnyGKHFa3Tq7SSvbWgC1hpXev/RbvNEjgf9nAd0tVKpJXk5PB7eUk9XI2hEButsSTngCryrKbJ1kC2Q02PsvtqaXbnAxLAKKGN5YwZryfESLYXahtHBOpXgTDmtjcrJeJumm0FmzjRnP9f8xrFc43Ku1ZPKqUo3WkrPLlVPUId6COZB8KwWVFBRUfEvlwJ7Sp91Efz5jywgiJT1MM9F8KsDYb+4H5z6sfOPEfXCJokviIwn0MtG/2EJDjiFu4tKlg47eYrdK8vcf08joVecScY9//ggELSDNQ07TUEXbh7ZTPNTHps78pbUgPsJJjqN8zVK6gyCIO6lIunAYpmY13EhLzzPHOvxijOh5AHQLPCqO4HW/9Za/4tiZ1zLMy9O5ZvH+8bWfeJPj6PekRIou9wtEVyEjQJ1vAKuo8EAj/0keMh4koJTsifode9LDq0gSzM7zqAQQz9V0s10c20spMc09nhkzgLPasGZu+Sy8wBzmwZNmklqf0LmcH5atLiyE2+WdRtuUPiwdHip0aVwY8U+/890j2qeT4Idynkm5Od02skBgbLxNyYzdh2TbNlqQaBPta3Y3pgCYgR0hT2Ez1vB+2ye004uUK+TIeVBmMXkq923t3K6pVfKAtcPACyy/Muipcmrm/DwnHXM4fYghWVFscUpysNjCwF9dteehae02nl1mKv4eHhgvhPJ7svoJYVjQowgJ/AeTsH0YEhKCqqvCaT8jXvIJgD6M4RwOPGXmHKgL+gFR6jV5L9qbh/Io/KObAi3Ngra3GgDXHOiNTf3kbZjS+e1e7z1D7i8sKfuYsqPoq7Ga9IKTA72qgqLlwuNtBBaKtmb6ynSYr7oVeC7hNswLRo88/PboYCsbOigvsuSfmGYwlLom/ypt/WlxTPSe4EG2jaQmfXoK8koCG1XE6fIgEueaWBvvjRX6yjfmtcnXbRpxXbp41n1/qVtvUhXGNCj/LVuYg3Nq4wuLkol0Jf1nYkxs8YVPq62W6ZBOG5/8Jb6w0ATwtP8fGISXdiO6QuWQ8dpRiD8vzcaxqJKzyh75d7/KLnJkfOJExgXPRfvktAzh3F4wgMNlawNu5mfXWV3enRmPQe+qhBci9Pjw5zNhe0RI7tNof6l9d4FE0Rz71UG4pk0iJ7so0QqH0FEoR00xLsXYLNBfCjPSamydA4jekUnUAAvOF1AOY8dF/HUKLbhQ5TdE0k4ZlzEIAjkletaYEEMwFutCqMrGTlXzqTP0dKcK4LGT+V16MRffjoq1Se0rM/xk4scyMDbKs9MWr2akx8xtXudGn+mhN89Ez6FbHr1JBKPA3aEjN/54UUMQyvpPKNiVhfQ9+x8BOjn1y0e2zOpEOaj5vmbHxY0WpJc/bsQtOsGty0tJQPp/bHuO8/7cAtC/pETRuCeXJsLaUqgbR9okre2H7rwuBn65cHCkJ2U4XhY+sXha1sd2Ju2cAN83U0uhS+BLduL9yqnaHKRyn49UkGqLoVwkhc8e/eA0iLdnFmPiHPa1bY37+SNp+AcyvxEDe3W20IlJKtMArIV13EypvaA+7vMEAy7Tto7RXF9sx6aXb7wsw3kGQLzqZhLuHE3rfSi+uih3Lf53vBgRq0URKREIihl9jSpGefdRug80l8bkhYfLURYwkmxBzbq1TFEcH3qcwMVY162U2tv5jkh64fyKsorb/nLJCkNU3X0IDJyXTXaYkWIPHkC3RQQEfIalbZJgyAV9QdqYvACZcZUUrlTFqfC6iizk7U8vJ/Dc2mus19pAPmmBw4TP1s/I0/vgK+4xEdCGYHav8Y50JxAtK0COetD/oXLkopkySMnDzl3www1Bc66PaMqJfnJejO4VRzx3Rs9qHTgihUfn5mqirUtc941QHxHub49pKPoEUOiLxxIUpCCSh+aa1sti+QbY8ZGU/CwKPtcXvEDpq0dtObAEvyFEnakXpIV4wUxxVuC4D652cUNQMbwcY16wHlFd1l0a6WSpcsijmJMu7t44onMDYDqpCjrSEnA/X1wEJyCP5HWprwb7nvepzM5CAkXnj7oeuov4F50KWGJndjK04LdNa05VAAAxYwniTHAfV37jp87iuTjMAdWpf5pnz4tutj8b9hmJTV40/7fa7UZL8RolA+4QLMNCbzDHySWFZxDkAxMBQA7/WRx3i/dQKrMmDKlC+r1XZyWnT811iLPtEC5Eh3fHTXOT65yn/0OKs2mlNSnhVAzpO/AyWBGmfjk9mvHpcIRTm0zfN5ohUppOlUs7cczQs6polXDMVnIKLxku8fIL/fjH1EK87goUtjfi9LVU72i8qLTA1ymkFPYlhOheqjsKudyP2CkbxZJ+4FdzlfjyAi3nvfCt8x6PisbuR6Lhuw5CdPcu+EVuyNDAv5VHeDzNF4d5uv+rxo0zbnJ7dRHYVBiIk7JkUUwx+bac/S0Z72KAmoC7PBMRfMNGUnVnXGXyrw6ELDbZwtzTHMSxy4DdqHwQijWnkB3Xq99JEAJW3dXsWIbSsq8PNbJpcdKp+P0gWg7pjWVoVr/8oESJkt3EVzYYT1lUtjzzNHIUJqHLur2n9E2V7eDdtLR6mY5iWMtFgfFOazjSJnQZ5NDtapw2KbkfGLCU2luZGd5eSpWCoINCqmtrsAZemDYE8aQnqgsJZnPbbQSWWe713YjlPDUtcw9xKe+X+eHqFWMOSSvCa3QD15DiR5SVoCtv6XhM1FcGVEa7iD6gd4cfAcTqfgF/9an+xH+tgf9te7xWn647pTB4LtzkqbinZTESPNQl5E7qoO5vUW6gJpdoDEx9JEYnpwWpaMsus+I7OTSWsfFh8Pci6FXDFCH7+G9IbxItj41wWYjswy4y+8hCdHhAkLBh2C9mejDlH3JoDvo5dhU8A+S9JIelRJHuYuzIO/AbdPIRWtZDECsT6vKoHQOa39HO/xQMOJuOc41WtYVgcyK9B9Os3r4ximLz5Xh7qwg4nvcA4xt9UwZ9nDn0/t81tz4AT+hV9pVZoC/Xr71ameydvWgoEK5YJ0r1boWTYnvEpBdkZnCGNQejM0o1JC5mPqxw9fJ1vtfH8H8tvkqG9td1O3I
Variant 0
DifficultyLevel
519
Question
Roderick rolls a standard dice once.
Which of the following results is least likely?
Worked Solution
Consider the chance of each option:
P(rolling an odd number) = 63
P(rolling an even number) = 63
P(rolling a 2 or 4) = 62
P(rolling a 6) = 61
∴ Roderick rolls a 6 is the least likely.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/12/nap-K2-28.svg 200 indent vpad
Roderick rolls a standard dice once.
Which of the following results is least likely? |
workedSolution | Consider the chance of each option:
$P$(rolling an odd number) = $\dfrac{3}{6}$
$P$(rolling an even number) = $\dfrac{3}{6}$
$P$(rolling a 2 or 4) = $\dfrac{2}{6}$
$P$(rolling a 6) = $\dfrac{1}{6}$
$\therefore$ {{{correctAnswer}}} is the least likely. |
correctAnswer | |
Answers
Is Correct? | Answer |
x | Roderick rolls an odd number |
x | Roderick rolls a 2 or a 4 |
x | Roderick rolls an even number |
✓ | |
U2FsdGVkX1/tKaj9u+cKqsiUlR46iS7B82JlYS1yfd9HrJgzXbHh28AiLoISx4SnkbYiNreMj1E2z8aBE7E1gezDgbNDoWLKJgPFi7jSBf3UYqIKssoouhVZGVbluaDwL5fS1kQMZxZPgVx/8E28jbUCrrkKR5oNk+uX8cq/AphjkPqe+fmgZqnyKVSJFvDIF3fPjZDl/Ao/KyNzoJPxPoZHDsWJ+WyzLFiS+ccyPnV09lG/K4k6OSMtIx499kHrnuMD4fe9k9Yip+LxAzZNXIh0Y+Q4T1tVs6Dmvl6Cma6GDEuVUydZTfmt2u4z04bgcHI/gk99fkGYKhWVr+LG7Hfllb8HdD4+YjyzUjQi5H5qrUCcroUJQqjkxrRp+SRzDBwkwRxwNdvH3D2ZlrX/WCFd0FbAQ09SQKpTuDyG+HQsG5W8deWPMSzclaMFAqFpLfEboIuvcFEtEfkBwsRkkOPYGo3Z8V49gmnid+zsgrfkgvQOpv53vau6wWfD26sOCPgnhUI9q9ENWqFlTACYLyJxP9LK97jHAS84rB8XfpO+dr2fgNNnfX3EQcU2ZWQl5exb7YeEKLkLwgRj+NJkw3XcfpJQy0qlYCMdGV2BTFAt1ArrYZVDSfffyW3GvEUORBdDWjpcTxcloCTCL87N/IOkdivhiWmgN1q37tpEtyh+J+PfGi7lWtiuOjfPPNOZeyw9Fs9Jqkn4jxa0Od7/hkfJSePduoMpGzsn3gadg9AJUs+Zl+SrleoBlC70094WuebV5BK5qNRhLmz3tfe1TSXN+NDo2GJKDVdDRAqftktE9LT6xpsJgvk0E6E+SO/+BSMGFULp4UCmPtLynFF4mDJEuLrqDGZNcKrFk6WCBmM9XWLmftbjelTh0wjfUQRkRrP42Vv6pnNmQ2TiMNH8EO5xeJDiCy8JS2aMsaHY7gcTqO5r7lcgF86n33SUaVvaHzU4TD4ZcD7Xby1g0cE4TtyYqJ8Mkiik83ejItCLLxsg+FLLHRW5UyNhxhyKa2SQMmEsWkHwbwzwleWYMKGJeI5ZHKL+XSIhKfe+zmU5KKFrjHBZ57J+3cFFGz+cHo1hWIQGcAkxDU4F4RXybCXLkzRpG0v/4kZB25R0GWAI4dl1xFe3Igst8NZwTZnI/ipb3I6ngH3yNaOaWI2CN2EKiufY4zC5kv72qCZMpsEopopYg/kJTT7rXgiecWCPsSWdj1nmdMhNcXRHGwTKXa3drLCyLFYVegAaZGjmKG9ukQOn3hT9rgL0yb8BaymN2rdaQFmcfMaSJivXHD6WmwJ1R9nDjrqQ8lK6Y7JReq5R7cqHkKADmOFlQB85LIvO98ywu4vnPINcERR1dKCIWLeQ02ZfBmHwdPavI3rvJHWUxo5PeB6ejDVoTqWblLSX3JCI/m4mWbCbaBt2gXUXVM0cl4+MLTdyLinL8L/iGyectOvST6ET6taEdwGO5C4NugMmHCcGxCpAw33S2jrkN7ADus9Ncwt7QetXMZGzmPtMVAX0U8Rj5AV7tFjh3FWImf5JFxQi8harbSQIdwbrIcxJGPVwFPLQV6tZ8P6K/ZBIRWXrxbG+YFvoXGdbOkl1x8+I+JseGjD+qkUw75cP/EDLCp9P6UTqyDvJnsB/DPcphfVYVaIk+Uk92SxZGDqZeucW/nOc16TWg7Bvky4W2saJ7sr/5fkuoKxgevorPAunuMgebK9BAii/Rcs9CllLyiIK5gG1EMyNMEQ0ztyL2vV30896rk5lHuBNRMGq0pmzjyb4jnCvopFNPP//jzA0eR6w38COahkLFMj1tMnarUKOftARDVgJeOWPFjc9Sy6deQazQwZjGbfuOWZVCcdtOvr9Yeu2c9IKggH1q5Y0/5J+UaBbNj+hLHZkTkpH+GO4IjSEH1LGoMv9ZselqjPeD2cIoLNauR1TAPzO+pqJrdbx3jeqagJxgLCqPz6H6CmjatuOMbuHrqg0Alb3X8CuxNq0HlCrudGmK9++CpvBB2P8vWPnr1ZUccYhHzfmo0sy4vTW3UEexxzfojP8ND72/Zbi2CFlkyJkIO3HfiUhjc16CNvY31d+Tr7x+kiYpg+ietCJiFpZ8c+K6xWO53XRfN5rWvnFKbgmc/mXZS2DiO7QrD32dSNLY492TtQHmZBEy2rBUnPxkPlzu4vyslOiKHpG16NF9XL1NxMWd4uoO6NckQYfpo1JyyJ8am1ezQujGKwNjnspkm2hEz7R3dZMlloMnUJ7ZYGJ7ahYwp1YCMdwHUXExHTbpyESht89LGZFjNdL5/xexg2sbtZHxKjc7gEM1tK2L965jMbV31WSUoY+ovZbCsNy5kBSGh4Y+1zvgo7vE8sJ2ckO7iRFKAY5RnASZ4RzJZXyf6mdzGduOsy+sA1EIeKdWpqO17esashAbauBkffhp+ADPzXfljo2fMnEsA6NrX3Qp6QeCmX3axSYjWKF/z1gNAfi/Va3a1vtfqtswfgYYg12fT9N/Bv83moFKLzaPUSHiV0PUq5wLAd66pAp9yeT6NAEg2hMmDTauRDHS7vmDP7URM7QxVRgmpo9SxbfSbchCn0KEEK90y6/Y9BIMxmWAarjiKLyvhh59yqSVmIzJo5XeVzcn59B2ncQrkbcdvWfFi3gWDumfdjSCHhKZ2IjDb0ZRbOfZB4VNqbW1KuOId0aCaDAHl/nMQOR3lCMOa8E+hTlKMVTvd0jlueQkiHJqEB+OUpNX5ct5x7g7mFrHkNTccB9+Tl8pzC0pIR0eJn79GYISuq5gya1p1VwzVceq1ZSSln5NjC+5ittRp3VYz3nheVDQUHvs726P0MCYUE+Eyclz6hhmXvYdoKPAOMibzWO1EdCC+yMV/+XD2cFcMZIuAtj6DVTap5SbuHrjxdOVztrSKwq4sep2OwfKvlbcnamT3xn4KiDcF8zajV6VlHooXgyg0XUZKeIrQZnHrsJDkiWOhhS0DrU079vODyKJmbqq+HRwW1MtJ69BPeJR+m19qAbvSuTuJxvJYgRFNulxq8zRW+IYT+sI+ksTR+XZ34GImnVULbkupPfO/QdEyH/FG3N627YqCFeKyARPCRkQAKNBszqN5L+WgLQue9ko7hCp3Dv/4k1LJzea1TxUTsFbbbHXrImjuI+7boE87u6ODBAA0l4/Ct2YgvEM/s79LPV+Aafxe8IqgeRnzAeHKRKfWVTZfgDpWbprngRDhZIXWjEMPUL8IDJcwYjIY2ujvXY6vmnrB2sjncYpRTrj2XCLJU2tyIvaDLBC+5Es2kMJ+fPPF/SDRWqyMg/JpM4MYIvA1fhB/hAQbyqPHW0cr2pQOYd0sMdijC243QI0NLLXXrVtZSUeHLID+NnGES1jg/Wv/II4P3d5c2XShQWM15iTb4ksRaRJbYYYrtFJjR8c5VW4oB7SCTwDOUwOdx5e22/D900Fji5rZFDjm4CFYwiEgsv/u2xCbatL6gnAVn86O5kw5EhFwqTX//vsIhNvnAJAqu0Xu81I+MJqV/6zLbdlrwjl5bmdXytmJ4LWDHrJGlRV3X+/hJq4joR6T2Dl+IUpt11VBXsdN1tNVZZrEWnubxGmV81/sfbrVArHGzHRwXgn2DOsdLjStMTLwOB13/kE4ww8Q8oyLhiYRpmhZqH8TEt3dBFjD1aNtKRCtsEPVB6P9rX+TNKPwNGLKkb6jSab83B8VrTLpq4xQKHTQiqYh25Rf50NoBDP1AqGg22gCrzCL5KFPQYoEzJlNQNqnQHoZKsjVzCAANIVXfjfc8RWqp549iecQmbbBI9msA7FgFj1733K1SqylUspNBTFMOhtMRsfN+/0akArM5X/+wujKiZ+xTj/tN552E7URRXWsxY3sAblp8p5aXeI4VxrRSY9N3UCWQ+5mQLwKKU9P83jhmm5/W7RUO6v3oSEV2TfFB54RpliyCyA4EFY9y43ZRyPi5me8RuwPCNSpSkegXoXY+0pvC4szKZk+gct2C4m/xyxG3sEYcZkGMb+aMvyAgJXUjH3j2rGf/8LeSgAYelFNGAYmKS0zCfZZtMit820fYmFenvLySQqHeRNYr0Hbs6cDyZe5Ah7nGOmuFZ0pq3zc539YBlQe9JNGdu/pMfYIuSsTYFHwCXRjU7Rf0u+IIA0wCxqEykzGNpxlroUKZQuFVz8R7Fb4zbi3x7HRaAAiND4qbTxDqiqe0A1DPuH3pP/lmrhkeM4B8hAUex2wtxBMEezniGFUSB5Ho9DoS3bMJb4XPwDqHMRzyRg7kvYbJ+nD86inteO6ubMhOgzHkreyRoO4+NL7QWzInSCLTQOj0Ngd8bS+Rnu87bRoUqtc7w4zjzafjh01/DUeQn7aqlbZDfOTaw3fgvaF4/4BRI+msqJc0jPZhAUFTOMxXOWKS4X2zDQFI1FP0a7ocRHAcQO6LQXugBr1GpX4ELLUr5qe/d+5fc9QIWDKuz3/IHaMH0+vWKechLrVQh7mmuKmqoMCkWgROkfUuwD2khU3KZYxL4LAUF9+zgfymQcjGrMohRZqQSLGdbuQlstQ1nfn5NFBgNYHLE7d5egfxZEsQQIeTYS4HkaTOuGsaITZM1W5V/twobbSBcVdEFtA8M7DsMX1DDyIo+OwbpNGbcLOpwrIlxsuIvOlRlDtDBWG6ZgQx+geQxWrsk/ADWpTzKQZ0YO4wLxR/WwfJAwF9oA2lw3c4tC+RySW4UXYEatBXY70HAf+4kCPCQTbC7Fyj+EZcymxRSSqeRIwFbgxLoAZfrF1cIgvWp5kJVitwKVPCtjfqAQzAv26q92fzZ8qlJLYPt1XYEzOazOWfEQko2ZL7Q8AUEF0scsWk29DYLt4e6kMoleT7OEgikDCQP8eGdfYqOoinAJBz57YhvddvqZGiuW1KtZlOCht/9YagZgeq5uLaRzPvcM2C694LVJJyNsMuXEkWvEv53NaxgI3+GYpZ38/YHVCArVyAxcBi+ZQVdc/DXKYH3SY3tuYik1UVE1aBXThQzKcotYCpMsD8ZeRPnWgHR4m8W4/EmpCs0SpBnIqs7hjGXClU0Y52LO7acL6iWludLkSAp3QVbTK7AMrkSeHz2z1Nsl3CG0BGFm27Uv4xOxOOgjBmnh8jmLCtU66SIzU5tI5hxENt72VzteHzvnLKUPUtBnMajsu6BxzPUbobn06ElIqCPAY86VJKX+PA1a1W2+Wt7+IKn3uX7YvSHdJWzILr6uy6iWcNUKUfOGTqgpKymjVLNHozJiPiq6MWvh9sQcuxpXZDZnkfo9qrP4tmH/bz2U3+dbErbwnuaRe10G4+yVGEC3DKFg3VSyYC1zyVMKie4Re62urixrVyDaxQaBVh3pVBughq7xFZUSFCYoaNEov36iCoIiK/ci1j23sE9vPIVP9Rgb5GGRmHS88FUAkU6VKtTgZGCRn+nG8QOTKHiKnuoEEzMf636IL05RFtl7N1eT+L3mgbrb8M5l1V31nhi5X5dQIiX45ulpen5XRJDoNMCXfzvptQn3l4SwlM2oSidbIzxm95bRAcnrBMLVtNc/G/alM0fknrDzJa0kWKQttI2qPwEYZ6EBH5gLTCsLoU0DyuYCL9DaSDrtFtVIWl7J58lELZEiuD+9o/2+mpmIt58mhBL1k3aFI/UQ3DB0lrFAqdtb4nL7GnxZAERuvTfcJpjjNDYmCVswMUyJC1a1oh8e6N6jWTKhOhmRqT21qMzZpc9CqW/DpgtLad2ZXEReyCuYw27D4LDs/iGQNaf3Dwr3bXbxaOdVOOXu82m+p8uRpeFWk+WMb3KBxBJSYMcvIkTGOmAyWGez/jkQsJeb8JsiwP1EVPHrxnzXjGTjr7YD8QNhLkjyoBghaB64O97lMBBh77AHV4n+bCRQnuEmgCzhZgz36yS82DzS8cpN3BTEfLV5wWEcCQ9cHq7UMK1nZCFV6weyNMvGqwzsaZINLKDH5WBW9SeQL3NfVgdPI2qesPmJ/cwbDmLB80n6l0nxIoT2jLnNQvNX4F8oBqru8c/vKdN5BB1x1ZMpIOdniFWS8bk8e/z1PgLV8C7J88uBF1v/w41JSfqT5LfUlrcH/iNBvqk5yF23aRL4o8bgs6OUOWJncqdJ2h7bosRk8WmRsP/Q4aFiKzGWbb6YmDY9/8letEBf4BzOX3EnqaxBWTmC/2G0AGdcQIWlqoWsyjtK7iGyFEb8HQYQJjmaNr7f40NPpZu+IiYKitWP4OmD/Iv8X8Ti1Cb6mzjhLFBIhYwKlLU3dqIRDp3j8TYlXXsCV8zkxoRWjsQ7UNwjIoc8z8lQUYGfl/ZDf1FIW064WQoGQbXpmMqJiSxuG3pny4vo9DPs9pfVvesIbAFVqyBfQ8WmzWoVZbpo6K6Z1DlUkPmgSF1moJphRuGxmV/o+8IvcKjOjS2G/dsdgIP+cP0TkjgElK5Hc01SfF/vL8H51hKE0Z4CLZDPJojjvMu3QECl8tVY9uO4pbkyPCDLuMTF+qM5q8IGBV5w+Vkf8skQ0nfOcgSpAhh0GaP8EbgNkYHJYv5BS0qJ7FcjnSJ2hnbLFwZVMUXaCNQ0gLtiLlW+kXTZ5q8Fqy8dd5/KN8l1NuBpoTua49CgntiJI0pETZgNnC5tHq7JUE8We6krKz6JTUPCEfyywAEJWigz/jmG38F8uIozy3/ejU5Xd2AO2Mdc7dOdoxIVVOW8BfTvzCpLQKSUDeILaJCEAcYviaACzTKVllbkXOrl0k/PkOT51EAdwIXlBgP0EusY3E7FWb5neHpHTC7DQy5Lh8suLWkWUK4+TKlv12DCaFATRoMGnjKZFP40Knk2T1zg3EAs/cj7rbgG6jTiGmGz/IHEGX0m+WqswHD3lpphEaOsB+hUYBQSKK0Y5pDO7X3G1KEHixuqI9OwX2xEo//UVaOOvrPBAvqc8V9DE2fIrohyqzq+8t3nfAXAmHdgcbJIp54OkwFgp1HWmkk8lN/1s6DKi4Lzk5PpDExOBC5JxJeCxzjUPmTpUoFXbeScvfsgxxlymN24CQAEzQxVODLKTonoB5/DZAM0P/9qo1K4fLm9/v/wV1MzmhjPcSaM8SaRIexJ8MJxUPDOCFgXaPkhjnZEHEO40VtDGtTWim/dUeKtUPzVnTcRPRProrfpRaYTH7LfDeRpQGBITkoCn7sFa7wKSDhnZovENaPDeQ7XA99OmcUb0zhb/GRvzkUNCFyd/jsBiXARtwYPy5GcDzYoVPdxKlmYKqSA2ENb+5O/OEoXfX7xsQUv7wCjKxpaFODOdeXUAGLJuq1Hux5O98d6OKbX5e5OfmfuMj0tpfcO/2s1MTbfHab/cG32H44wnGBUeQ6kQHKVTmhM8Qm4lyuzXgc6XiVJNsu/KwRCTkx7tZk1o/+WUPwXfnUUOrgx6ST9rRXsmil9W/s9Rip15RcHVB7F7yYsS41n4PjnWRHFlFNvTEvQDfHoMr5ZM7ymdkBs5kSxrhB+HRUmvKLoRckr0XpeZ9TU7DR8+pb3mDqi0uycD7APF1oTlRpeSDWmqYT3vtOf66LkGcf++lfF5/4TYkeuFtHDAZykc/xX1nxtazRrMbZejaPNUaoYNE/KbcmDvbpOhrB4EIRTXR7QoIl+Rf6ZbOiD5ZM6Sc0ANQemb95j0KRRIPYl1dJPLP4wcvEJ04EWG8t3098Id7IWhwOSNq8wVvUBKL/Zvwkq0VdGUvWLc3w5bMJn1nq0w9MooKxBs1O5GWaCdtfvz/MI/K4O945GQ505BJZFfTvgxqszzawnfuoh/X4SHUgsKzP4rdkJ1+gIIL/rygyjce9Pg6M8KF8X0zdP8HEmw9AvJe/gablJET2LY97qDngYDdzJ+9fRtT6jTabw4rf1OtYvYo78ySaNPC+ePEjvTMVgNPh2ehMqEeH3+4jFZfMoxFeE5N3jp9swimT7wh+Rjl3iR+z0K3xXdiVYIq6CFSr8Iw/+g3KbLXi9qeZDa1LVUElavw0X0+Fw3EdzP4ZiDUmfal1S8GyjGUD5DycdL48KMKLZv5SbF3izbIyM5SQ54HPSvDtbXkNteOL1TscmEYLMeMcUQSAbHSGc8SUNwstC+W4+zcvahSzwC3zMT70WQEwJpLKAlR3N1SeznZ5D1Q9ahQAuoT+JONRFK5ZwFuWX8DO+HtsqD4WCkFX6nW6m/chxzaKv9szPct1PQa3iTNQgbsi8dKUEZ61ZkAX8pYWfjuJ14AlllLE5PgtUB27yakxG5xehwmKQoKRHotgKQEAexfCkvlaQq/ZdeqAc434C/2uHEhSHXWDM8p/PBCGjMoqZowesB56mB/8W88oIdIv8cm1B3kNcNEvWIcR1SSrmrHhslt7SnpIl2ZqPLa2+zb48v6yKDAYNWT4G5daLriorT+AzoXk+J4GxwMtutySi0qlRs94vA41lxYvenRCKJk41FnrFH0la4kKN7xUWorGzMjsOp9gYmUBQ7jPYSa6fuQ62Cqd/26HraqP15PA3iPvl4a55tBKF4aT5eynyUL/fWgKanTx8gKR+/+tG45DB5sspzePhYX5TdCVyywweEfc+Teun0tSIv3uQ03rB4KItHTKQCSGrnETdMsKr/GWmYkLnuAKBrZ2S09tm+cc9bSHhNPNlQmarC3dTizxwGxnk7zrSePvPYHQz1swQVf9xE2rnPtmCBEb9Nwsmi1ntPg+AcZ2Dk3vCyVHFf3kpmyKmTXGbyJZPgsZxzRYBuSVmmrFKaGqmeBJXTlNvkFPrhbDWvhZbWK6i2IJ0P3hiOaSVZyC/ghx8lNQ5Su3u5WiehoqPyu9P6lctV8q9hDVRJehlAIB7Ba6Lj8MS0jA1Teq4sYzuFmfuVH2RBHUnXl23fkBRxs5jliqQHC113EhGeu792SS+SQMFhyYqY+PlORyM+L4shLeAYcc20meJ0UkfPDng93M7zAXoboMeac4hu2YsF+XogUeErAGwnR2GHOGoIDIQPbFFgs+mOmH898qw3XBLwCR2lKuep1U58LEANn2BawnDSL4/yyiltpVMlYw8gWrl4XDXpb/jJ+Dm+sDnFaLeD53xiC9ZyDG254M35bIU0HoV+aMxiQ/oZV44d0OWnvgaigU4Tmh0HMLRDTNR70sekbVwD5GOn+nXz1WPuVqGzlxcuex8EUnrd40KDlLsmTUpNot0fg48ib73w6fy3ZmU89wUc9iIGdHsR/WXXsWEY8uAkAKlY12FYxqkDpXpXOUvD2xW/dcyMqX0p12RYFhvppFkM5BZulp1QzS045dcLu4KImR/YLI60SSxkY9pMvuNah7pQwK7QWsASnmGBLeoznrQZxy0E2CGU9w2kAUj1PMqGP7Yu5EodlaRHpjt/yYBD2ouQDpXW61CLEC+60IA8ghnaVbpMEBW+VGZD+LN6vrOQLAWnD/kFjNgqu5BSHP7yrK86HITfTTZPU3vPjmxPbOouOat26lf0ZSPE9vP/jLcI+tFQ1Zwal50SImYS7NSZp0TgjM+Ym4ex8u2jb1zmBOlXMocKJa+ZbovFjTaGPc51rNz96Ey9FPCdRBRK64SFzHgj79KKUkZg2x6i3sAZWspjpimw5PaisEprMatjd53HJveLZvZJChtRi0iJcj/mE4qc3FkrMtll1nHorUWGAmowEZQHyZVzmXPSezA5ko3wRrOe4K6qM882s5yYDKPk3fFbPar+F9HK8CqHsJZ9B7N0E6mcirEg4rqPEy07L7vai7qu8FCAn1uVz0CFAiwQ+W4atkzn4yVLSilZEzciL/UC/sO8+CuNHwfBu3lvz6bcTTG2hGczXOw1QUJWW76RoXCKz0Tv+CCIKQtKmvrYSBgprUI8Hgeyj3IT+uqwBdT1caG69c5R6PmH3gKVlOop/lmRKbXig3aieeV3cSBdLHIZHNeZ2n1yze1DF41C45JDwnASZQo8WLDMbRJMmFr/IndueKMI1qrNuPw5+Y2gZGnMW+2EQMbi7NOifeKi7bcZejUlR7g0Alw87BQxiFGHZUL+x6OTP1WtxrEBqVwnszfd2qVjlb6vu+p2Y99rE2+l70DJQXhdieNtqG53xltj22bCjE12AQA+rU8Zwomoky15Dm5T99oGFYzcNs5irXWjQqYuFWJrh38ol0yjGxub+zAW1n9hTgdgKviBc2kZ1/BPbt728U04Pwb43iFxYtWLyfCOPm9xvAYDXMg5HHgUo+/pmas45UO/7nf66tMOb6U3gHmR/SbksSDFWWe0tUtar5WJBTc4kL5E5qsOl6GsfppZ5rPrkFOBWwfUflsUH9eCjCS7i9D6RzZcjObkksZTkCV6JaT6S6/KHP1KIb80zSGoIocNqu8lOZER/g05Ldz2zpJB3T+zVJnjgqDlmxCxoZlUbpTZCK+zCv3U7MWPaxSWHplxYNiZ6XDIRMYnbzTekOwuvB6O379bP5DL9pimcFQIYJaMXRqQXVKB7ZSfFFLHIfJzOCIDwTCyr7KhyKC/XAPro/UBlg+rXkeuUbWdHwlrRCtz229qZ/gjhtcwtR3loXx5OzXnf12aAbeTTJbuXrFnBl9uS+HDiFRitNzirgdugByFawI2t7GCx3f/REd0ORyVvC8YWN6ZB7a1vT+zbN5Or0JMkpagJzbED6DTuuVQ+dmaM4t3nbyvEl/GTRwWv5XkJkw11o0/k3eYoi25XDLFegBgalnP2IvT4K1COD3OrTNVnDx/mAhrSsOQQDPUtSWe34WU4huC/q3jz68g3gOD6aWzv5WVkxFeXVQ1J4K8/hktX1Ikd+p9BGwkXkh0j8FE5Qg24Sqh7zm9CilwagKQaT6BzkX88p26suA6174+hGn35OzjqTEx9aIZ2rAS8XgakgqRtxzH2jAI06sQxla/9uuB12GA6oZMi0FjcakSTRfjIp5+ENrV6Ma2lW0l10QuD+uNSuPdymNcXZLBVbKY4cMSl0JRePIBiqwcOr8hVY+j7bCvEN4kexqUKxn8Ujw8CaSaxSFJdKJM4F6mAuOHQMWHSfi3iruu7z9nkAo17o08rHs995u1JBJwqd0rN5ADBpfX8SYg1AeXXQNUDXnPTTlJ3K7m7mHHPxI1ROu7tl3YUHkckYl2khtLMEgSyOlAwR/BMeMCKkY4foImQjMvtHNdbmpPyOboWN2l50KEdGm9khTo6jsEbpFwg0ciLt+SsczARMZmK5MV/QBmUB0r3RSVsTj8/2dc9VRKCIT5DwPa6bF32KhNkaotctRJSXVUBn719Ad99+zsQ4C1UzuPxkSWdYolhlf8CN0m417d+tpMKRCeeKlxqdPDVYOlDdVngPHTCMV7MTRHxypzvHpyrRIlIE8Ik+4nm6mSA0oOc5cPp5vMy0pz1pCEIiLAhEOqMQmPI5Mbk0Fp90YP51hhWjeJTnRk7174OyW6EcDF0i9lg4XK6P5N98kp1lnPJD5N6U9iSAYssEtY+Q0Apwqpx5dXHJ67VSDBpPyW7+AOa0H/EpDk248IagTb02ZpRhYwB4luSp1cDmqldosSUnXf+rKdTAs7taqPh/vxV4q3jtNvkxPm/dVaCmFJKhVQ2Lk+H+AlcyjWI741xR/92V9P6mzNlrtsV8LdR2IujER7Z+2H2gdCS0Ko5fChnuTwKxpyEUyWpCKvELYkbeJYzW2PO+sQ7nlhE91XqpWPNPEtDqNpPRBca/WIj4PjJp5zLR2dJY8kGnyKoe8CrMhtWKWQWZDUSHF66js0nz2DGaviQeh1sx8mRQAiuKTkN1h7ud4hTCXW0PmYnSb9sHGs4H7YGYqQrrELXOmpLCgw7Cit1YmP6KkqlBauDprglqM3wn9MkcXQIT2IKBaZJq31Cw4AAehGsEPAcJKH2MxGzTfZ8vNEH1PLTtWqhRF0ofLYKXpxV8iiwdeYsvUMXOLKtvFN80hW8wzleJ+i5eLw0DM1gjm51VCs2OxvB9HAysLp2fPY7hh9l93wepsa6RBuj5sOLyuWV5stxhKcMAcnY8hbNuplMaRpfRq5jCEIOxm2LTfcEgN7vxTrFc476cXbYh/E7BNRATuI13Q6QMexmQuaYiACym7/tpzHqFjME5SkCL6mI9g2zcGUYuS5CRGW/GuLtHwUQPYdombvamhyav5B+VV/Ek0xwYwJ6OiKLNrDrZ16JyEIr8AkSY5h7lbfl9bUsJspXuyAkuSfjcC44Yvp83rkACfXM7IkAj/y8Ibw61io5wIImefDrl6o4NHquBlaliava9q0hquK6D7x76Ox2ItIPSvTQ4GI8qtW/Upkx5Ygtl+eRbC7lTWESOyWVR+IKpmOljiJjSvnoVBAfDlPVRos11K2zEharjs1hRjVpb/oFr7o1YUT9hfhrRyjFTySZMgjwW9SlIP3Wb4K6+lukfWQhYIm1XVgR1L1HVqwT6snqSvoIVlofhz4h/dGmVbdW9NBJP02sRfVg6q5qa9/ejrg6xcNsiMBkeDTwN4Sx6WwPWD1I8gv4Zp4mrbY45SCqXLXuOhXWt9rD0MH9bF7xBYKDZMaeypaTvM0ISi/NE6f6D+eeTIcO42k5vTp7uNDyndrKJPdgTKgRFdkB7SprNNIyJ3yKStv4PKD1KddZ9CdZiZckqf8HWS1mHp/N6zcwQ2Du7OwlWLmSKBqQcUUpc4NvdjHxqJhGO/1YxXsUveHi5LQzzplTePRMPbJaoy+B9mCe0RDh+kkHj7byWDWcZH/4ukFcQ9li+Q6vwoyVT0ShE8A0W/rK1GdlquYCW0yCmXJF5ug1GyLGyR1WyXb2Fn++HlroC7Uz/R8wXIQbJWfxDM8eR08hPVUf5eN6Ls1k9TKzvwPe5d4uoeqnToPPw5snh6V5VbUztXfVDGCHlYrU6/Yel0KTdbw4GPmsfrGedVibbjNxuCzZchR3mUC/Dmge2Cna/t/roZKBEHit6+TJ+XaXgZGdNh3+cECBA/uWkVCPr5h/PJQdw7HcUX6jTOPzjo+US0rjhw1FTLkupX4W24lL7/PtXayrHdeOQLmkCmyw3PcYtKdOqWrv61T49DPlHyZduRjKpuWDhWlPnuRVi4MhBhtMWmC4RAXKliU5XtMaw9SKSbtx1GIu0V09cfnduBM7CSPphylC8VYIlyOlFnbsc9w6RcfDP07OGD8yVpgXCpgilxyX16LHg91f488vRwMVyY86nv3P/SzhS82hG73NY99OP9XtVZrJR+Shubw1AxsnjLLSXJu0zanZn8IqSEsNMyDDzBgTGde1NuM73a4VzwzAFNZWvSIj0EeGZBb4fW682cd0Ayyc5DjfUGGiA71Y1BJgMxKc8xWyg1X4JAIKbH5gaDAzd5gkmn5EDM7BmsFkMlJOG+G487IsD8wbjMDZsSglHSapGvLX0ikZzIfaA0hhnBqCv3LUszfisD6kG4ABLxWdLhhQkDSVW27lfqPpxOJsR1ZqaA8HfFk8L+9kH9tUxaOwp7OU2LjXTrb46L5xsG/BJ856z/wXwyRzOi9qJLw9fyT8Ej/AX45fcFenNFRvhEsDKGVjC0kp1pkhXQxkwKKtdYD7I4+HRBde8mJMrJkeUaE0M3HTeT4UOqVWyn/ssx4t7rYtbdFoDG9a5oBNCZ2rShaew15xELtrOBxTqzki0nD19ivQv/RoLAPbWpHekrj7BHvef9HYmv4Dcn517NcLdtLjn4zpLzM+ZuCHXg74h+/g1nT37Qj5hCfftsm8HGVliuGVbZjEupWh6m2zcwWUu+vr2a/AjH6UPH8NRoDfEr5s1fs3VFwp1VH6UFfkIOc+jfXg8d1eFmNO7cdf12eI2vTlSlp4kej8j6WDOeif6vuPbb2KxzuyGfkm+bl0z997j5MdceTGCgBZqUDi2Ru9FrG/DPQ3abGLiQAoO0P9aEfkMyseAEM/vgFzACluFr+2au3ULFuBVmwfk92a3X8nCaad4evkM1xFsq/TWPtW/GvjDkqQXo9YyXLVGSzNbTEhh7bCnpRTj8bA0OLEkdOvUbm5WtwSNEWMLq7YzvP5P1m5qRPkXj4N3ZeAuU8O39qK5SVNEf54cMhD+kyEj8soPWdiGMrYgk91pk8o1sT/JtUVL7XhxsK4pGIqtwiRmz2zqJJ66UnzTqcyorBCJYoxbgNGIOHW0c8PoXBNbW4/pVuAujejSAxTxvuX/7R6tZNAj4QTxSUsE3nhpc8twiNf/vxh2j4BKjGDORQ0lXEdQ4D5vcZCZgONz58GOtZU2PO5a3bMtgwZxKre9SWgcNTx2GevD4TDKObr8pk+R2B7WqKoSPUSbZMsH+tTXRwlb28E4946HQAk6Ogt9WL9txKGNds5XTJGYzgX2wHF/HM2hRp7QxRhDPzkPzhB8tvHPYdT02xU3cs1w/D6EvjnOe0EqzKfE4ge4rwL09Po14yTnHhlkDJh/Zj9hmEOJVk51V6r+nDYXfbzcRYKpCSfhopgkYwVLb3zPcpmCMyxH0g4LXaJl6KtphtWaYfGK+ctMVUw1gaEwZtbUvh/2lbQXfHCN2BCS0CdHr1usWbIOPH6jHTkRhmOWO86119yc5JLbYOjtJWCk14f8z8CcDL3Sbd96i0FmmXd5vnBGuO2aB/sF1MnAYlIz9v3PYGJPsCo9e1OyJ6UC1No6TcJg85S3pj9scwXkd37RV9IC+CewFbPFO1MewWztPEuZnf9OmlH7vHJ6Qm5OBI539QAXRMbhHTYbcbktbSPIwwoeGSPguqMBL2gFVZ50610FlTT0ytc4wyEOJIrhNt3aC2WnrSHQXETQDUH+Dx53fyCZM6Fpyhv3RnOeWjVR7GnAS0Cf+wW+5b/e3e8bhPnbB7wwKQ6pGeefLiG2AFX2gG8v+3+lQu1w8WuGibHg/S/59/ptlG0bEdgde8oZLUlxKPltDfEu7iHmEs51wKbbmb9b8e5WGZH9UjWn9zY9YXkUGlTcqtNjydbYwbtEqrWIbXKAxgMsUewHDMCYVocoKoo3W7p4rLqNDnOOacHOp07Pe8H0K69i2MR5zECRADOgQW2JoXK9Ki52/1k5w8j7OjjWBwqNNBJPTR6xmHuUZq8n2SIuAqyhlOx97UHiaNPFIKw77moYkLOQei/9enyZRAPGk82ibtDyAmNTS6omKE7zdTlGsyntsE9ngt2gJJP9L66BPMQwMpYEETo1x1BtZ30jguHe6AAGLHP4V9gBvwRzx7B9c2QmYY+yEA8X3TqSyuLN1V5nhXl/Sk8j8qK1QAIl0vTY2rOaHRTfLhdUFhhmtCldqb8LltpgJ8+NsMNqw+Zy/luf7z4PaiK7jXjDTQzkRjmCL00zGqHxSj2I+71jM3W8CGIaqqMqQGqM1aIoijjvzFuUUetLAGITFF0GWkLoZHzNeM+3Qf9sPJ6ZcLh6EUibm6pv61OjSVeIZ5Qkf7Mq8ZUkGmKqc9UECsxd2jxHQDwI4nRgF6MbNvgYUwQV2HK9gOsfc2/MSQn4e88v6mWmOgTCr2JdfJbzZXLKvAhRVjpgGHsLgtMZC43jPmFVZeoP1fa0VeJuBg/B65lN9BFOjE/0DIqK5cC7mHb8vJKkCy24zoM1Wfvf5hgDcKcUyZmBPG0F3Uxz4R8r65S9j3NZHBERIAO5+Gb5tA38+Ymrnw/uLenQnPhW3wCAYkbX1fk30LcFbLlPwmKWUdy7Ge7ZuWBU+oRcWJOdRILkS3lPwL++8Z3bR6SF1ZNJg7pfh0Ays7VGqHbSAJjOBc/2Kaug+wbpF13XsVqG/pxgbHs6W25uMAhZeI8McwKljdY1n7trqZFgL2bUCEEPFSACTh9y73Ygr95l3+XVHPf7xHfcJKuO1PGyBpREv90wMNfTlGw3Uv9ck8GD+uNFp5D8+f4XluU9mZsFUNju69saDibR8ynl0kUyTyKvomAcQCrEfO/1KEhz57vUf/x+fuOzMOtk1MS04HiwYX4GE6o4SdlM0kcvHCuRCCOVQJXZef+a44JWY9jlEEc9hUyTXPHoMyTH4unv/0DBPgWN1my0TY+epcSoGNaI271ri0B0fSoImfvqm7fgaaKpnA7wTOLH8M5rt0NBC2q3/8x34tTY3MnPNK4QwgcAqwcdu3wxTfUBYEmP6Ei9rDmanAYCnnmZz9NgKWkvWkNxUcKY5mu85epq4XkfuxcvZ7+IydoNBPqbEg/KTk2n1z+FZ2waHg3K4+KsMCO2HFL5L8xelR3NE63SQ7OYfPkM5gTiOSmwSvTTscYRwLo8s/EP11BLOQYCA88KCXZv6DdUX8VM80m0zliXnZhXooINQrkkWPHgSLbKDm1eVmGKcZV2LN8gWgZrzOrlsRNKFW+E6ZhFOPB/v1TK5tCBvh9pqcNCQMvQUlHcTlJmOGSpH31tQdMcV8sAMPjEo9jhjSghNNso+Zsp/R9H1peUpAxo3z4wQCDMJ+y62OiE0sR0imdU3vpeBgdmY2b/eR7uQY81PMyy5i2qbTW8Cvkk3AYnqOPBcyZbENr/1KMb+SwiEn/5nwDeV4DTjEw3JCC9/qd/NDKAhboO+uFYuOxTy1WBl1tCKV6OM3e5BBA9PHvnWsCLnBH5vc3n4R1C0ZnDlJitYXd++LlTFAeSXakE53X8O4BnRu5Lys32VO8Av5LT9KXG5P+k39VWA5jz781AX4Ca2XB7c/dNJwJDmrygJLCRz+mclgGa8JeaAcmkfaGGz+qPRJhKiMgk8Zlo3QZ+WykOJztfdpJQA2x7pyvRZVukHm0nytnpiNEvb7jKEVTbgw4TBtG7ZyvfLO23wkXbIuBR6Jq7c0/NB2fpHK2bY3LWB0gJQc9Z0xV95APJTWEwnYK0a9PW28UGeNhz8aJigGCxf9fuPjniKZaOWE9XdTTRGOEZFeK7NLhb+fMzcxvqIOBdUWJ0tmlwU+7ppVqOjKXikzCJ6WDLs0BkOrgBkmFsgeUE9TWK0/bEnZWo7VaDaqDyKkPDZ5347KgMgU5jtLt2+2wmigDUwZ05GhZwWdfmlrVDba1vEwSn1Au7NTHFO6SSg2dAoNnXrr0m752iDjajo/dVvRKj5D43t95YpGgNwwLfEGbe7J+/J0wnXfGcBarQ+ZPPmOPhREAMdQuIjkhHaKI/UTo+yKlrwgLHSXDdN1UT1Y0A+vLDOSDwhBdQi5789zhA4I/sC7sTTw7p2BlsxI5/kdlhq7HRooHqNhutiC5zdE8YMaXBeHtlcOmmIuRfrFwhNBP5BYV8293+3FeB1TDE5ST0VQgypY2uloftWtQIxSdtBMg0ujH7NCKVeJlrHx+QGl7vsTzuxFEPwBgHOTtgws8VzbrhPdYmJnViUKmq4BuRNeC8Q1pwDCfrivwheDx7kz0osMKLee8LOal8+nROPuFhKNJO6tRunObKcwUsZ+VU9o2otv3vhIYWLx3tgDLr7OPk4QlpWqHNdTWcYr7lI/mBnEc2h0a9ieXi9ZTEMQult0wpOjN5efffC0YIFwRjjAhWaFHeRQpLo0FqL9E/1IUqY4/Wcz29h5wILUcQ7H/DFblaS9gyZZeTp8skGjR2QHYt4mbIpL9v6mWU/yA2jG1du8iBJGq/PTtWEyqr40EQ6tKkd8ReAtm6SzX/XRiFfRAkkHjE9tQuB/x8UlU2/cl22oHlxBmP6grO7wW6ghKUum3tSBim3CWiSRrgdJBza6xGfa8icNAX+WsV6hxVbTAdXmEWpb+1FHS3pOXVXrXaIKzyygZk3/sKueLyipxo0AXYvXNEki7b+n8OVqTIHCscPfIIiDLbxHZhvwLkD4fNM5zY8+pJCtEQhzKNv+ItmWhCkqR5QmsrmCXDo+7hiCDN2HrCZxTuRtht6XSsaI0+H3if9rrQJmJ9Qd7ZHngchLZkfTW5FLyW00ukAI+6l6UvycL893tteKvrqkWvgvtlJLZhbkTGCJl+o9shq1ssXyqlfp+KhsByWyVujHabAePKThwR/4fJQeUGIvCniW8BNXNDOUtyY5MwPuaKuLsDwSK4YRStchLVydfykGQBvLcEIFhkAtY8MpD2Bh9sw19noUPlaWnXLbfDUtOum6FO3WC8if6EnukT1YoZTDHd1ZnFo+bNJvYuBmmnxOcJUGU06t1r94upDP22tEraMX1JYj5m8XK/l0pvNoPpbfjnJ3rzk9lMA+0kuyzyO0ku5nLyUC04lBg9uPE1mbd+XXyQ5T9ueYdj73DTUiO4wWBTeOIvef8T95jjFaVNZOzifWaHoTNtUlOy7t6PIUnpllQrls4VMjUU0e/GKUEYCVa1mzQDCrC5/hhYY99nkp9FrFkab8l2ReGf2JkwtoJF4FuSc4hghN3EDLRNBn/EYVNIQrPuh8d/kBYfgc0E3MHcq+zHXB36hZUnWh+mCYHHW9EtNdhHiKJoso1Y5I+yxRhidZu/hlEDG8NyPYSr2DCL/11AyybtuyvAzDRC3lYuxXcfzZPvv3Z6L5VSeDrS/O7hEvMC6WwIzkntjMNc+LN0CvfS8k8c5rHnJ0uMXNT/RmOPaTWSXClN/gq3qyMO5v7ldB7ECFkxtty2pDkTlwRnfro+NzJxoEZO5Y7uJs3uxED3QBdR+zRQQ18Z5izB0B61l+yv/wO1fgXSgWKaOHttoQ+tdNN0s1SplMVE71sZIgrsJr5l9liUmYxKqiBstQs2TEcn0J1e0KfNwS3kdQLsMSTnGPDU0vtatIPZPgvsaO5bOSwVvdPfcV11cY+jEmQRYuanq01Y/T6HABfio3c7IACxqoqfplgKZgkyHO/ygJXGJLDJ1t5Cs3Vy2+zD167xlkBUinovD6L4unoNcp33AKMqdjZqs1zruzW0YBrXPi0OTKwnbKA3mGqb4KVh0xUY2tgUmM8/yiwgBN0dc0BOJ5wofoYIpxkFj+3artyV2+kHdbCL4SupjIZlTmn2Qd2XeQB1E2QSk7qA1qdJV75iyDzhMkkdEZEaVBcu2Zd4dM2ZmbYaitMTM0n4Zrc757GAsJ+hu+Ff788ab8AUXIZghaFIiVQjbu2PU2/n/T3qPjD8QFxbByr6lqKdpQ0jjEQ1gWYQjCcsgIZA2c/uVia7nAdhdR/jfB5y0F2UJJTlgN1NtFlabpevibDCz4EBIfG49fLQDbPed1RyhfJuA56r/E6fjwZpPTdnwmSTbzgqGExtdsUVzIP58M8GjhQkWTb2YP1CzMQ4qyU9a+6RJerV0uc39jtpBmcGa/y9+yfPzA5NmPq4UXpeWroFic/rZSMyd2evmWq2bq4yUlPY1f28Bs/0JaJ6WAqrz9brEcRwJK6RvfPO2dIqG11viPdO9YCN/2F7rYDzNUQumkktNIowyhTwPCwk8GpFwPw0uDDNEbd2WlNTBI+j3BLTp2i8nxkJEaO9AxFsD/R/wpggvn+VFnlD/vwTm4DzTZ5uA485XqfwwQPyhR+GDeDEgn0Clh5BE95OB6AH6SVdJVXTMc0u9nAfYZrYHHxLkGYByt3Q97QVutO4b3EtzTpab1IJV3CRFIYlvgZ6LtVOJigMrnkcCo9ODyNAKQNuI/GeG7fz+wvdccmagnPoIdv9RY64O8PY+O6oCHSmqCpwdxM2yZYnHaAVSuC4SQ0Jba85CFCQm8PUdlHvgjERUhmh
Variant 1
DifficultyLevel
519
Question
Rocky rolls a standard 6-sided dice once.
Which of the following is Rocky most likely to roll?
Worked Solution
Consider the probability of each option:
P(greater than or equal to 3) = 64 = 32
P(odd) = 63 = 21
P(less than 4) = 63 = 21
P(4 or 6)= 62 = 31
∴ A number greater than or equal to 3 is the most likely.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Rocky rolls a standard 6-sided dice once.
Which of the following is Rocky most likely to roll? |
workedSolution | Consider the probability of each option:
$P$(greater than or equal to 3) = $\dfrac{4}{6}$ = $\dfrac{2}{3}$
$P$(odd) = $\dfrac{3}{6}$ = $\dfrac{1}{2}$
$P$(less than 4) = $\dfrac{3}{6}$ = $\dfrac{1}{2}$
$P$(4 or 6)= $\dfrac{2}{6}$ = $\dfrac{1}{3}$
$\therefore$ {{{correctAnswer}}} is the most likely. |
correctAnswer | A number greater than or equal to 3 |
Answers
Is Correct? | Answer |
✓ | A number greater than or equal to 3 |
x | |
x | |
x | |