Algebra, NAP_70081
U2FsdGVkX1+XHXFHKzvbl8ZlQyrNZ7u9hBZDaEc2qPX3tq5CCbxNoqjCOrVj1AJehZPMUQNRdm3EiFTYXWMw/rbbZ774Lx3A6WpLoWreoypQuE/uQgTPZMUHwH4AwvJz3G9j8xnqLj02/h9aAEDE4aFeNzU8LJw65qZNaVarbKTiYK6IenawHeERbZq6tFyd87CypE/VzyQHCI5SvblpyfKHZ0FFUQ5iv6a7TKtGeSb6HEZzVzstpVio+4uiQh7BSrEqckJX7/donZMHSX4NEpxBhXnJB+iJKwnyGRMeBMWkZvq5301G9p25430BTh9fzaEIBXIoo0zHRzJVVP4k8xb6JPa7K4PRF518HPDIV50N5jxrzM4oSl8W5N92eF6GJ/aBAUGh6K1g2WZUjeDjSZMeAL5MJxD0KMAdaPYVZHq6EZFr5UD0DHhO0kRN8a2A5t5k62ZG1PGefBolIIXc3p//v8SWKdJK4R2iWFjND4gIFcKvOJMYigraUxx9aZVmyWRbjvprIIKCWMA2s25qKcNP3SGVfA9mcm8xFj0Gn2KNyFcwCI12QG8EAKkqxf9WqNdx2F7/q0sM/j0FcGFwge4iKz3fVmte5467M4vD3NUE9PIY9tvIlsLp3Ui1JItKJuyVFDwRJ32UE1ylIA8PMxi1L7dJ+3oftqlmLUSoMVr23jrWwc4XNMIT8S/OTdf8IwrMtONjDhKTD3rQuHK8JHGC5aGhpAfN+w/W3FZ9LdJu1e114ytYa3gEyFis31wps5aoN+MkEV0kr9ZPKBjNVZnlo1xkttfgbfJ+ycvB+tJBM7IKjE9jIfA+9yxG4T9TVCbJQMU8pkWZNsZnJ8LcjACbyyo/ltO3ZCiuAKh5n4MSH9yK1jFFNVH8Jxl4UfYKvCib9DxNa2dd8Kil0VY2CC2XogYSd77N7Ymspt53dW9zfvypmroosOYlNAHmFtC/pdnXXJUqDk/idoVQtUBm00l78ZY/KmzlBU4KK11qJBoDd/pJE7bWL3vMvoS1cH1XNh0F1dR1L7LsZX+7dwmNiailuIAH+75V3C6CjbUoCA1k38wR6oSmI4jsVt79FGJKZ8DIl7Vs66AHGXzbyQFRPcxODVHYygRuf3dUHbf19ffoIzp+TNOzYsRrd0ua53jTkvEYXjj0s8k2cuQfrCEVcjsGDn7W7s7NSjdxq3/mD1+YIXto39Scub1AeAwTk+LXq/QNoXb/A/1PlU8RluqPhxaVgEbbst5djtDFzjbUkm3M9360YKHkFAmkJtQj7Q+d8QqRJPoyBpn1TcQDg+gmpEUrijEQR6f+RpXw+ePv2kdN6RHOCVIOTr10+qAKqmR1Zb4g68eknSXK65ubk4JXN9oJneOpQ4ssXUFC+NFpwA+tXNILz/3UgrdIX9XUtfbAl7SbI27pY1Y1TGR4nsRv1yt6loLGx7Cns3GFQrgkulkhY7hrk+CofCBfGyvOx53XwWLX6qWFenMv7QQpv9PDGA7jSRsPFO9U1FOK8vXAQW8ftDKWXLy80eIBnogb4hUa5MsufVrvx5/bZGFc8662EZMWyhZ+gq0EdIcSmzzny4RX3JKmMc5YoNN7P+FFKwC7Xkq4VMXL+NUI+msiWgECDhHT9Xnbhv5i7/B5WM9TKDtPkUy9DdD4SyVKRmM0tUa5LPUaNsoX7z424BeH+Q0BopzvFt/rtPQEFMZcCOurGIedqgkHG3vrkGUxs4Fv6W2glzcwWVNmqQXKpSUf8MoOnXW9IEaTTJXf3S6EbyLdC1QFtZ+LIezKhoz1rHbq429JRlZFDSUrw+78NZ08/49N3b31KwMqSgfDQQGRaRqYyFxa98Fg+q9GBfDpYV735U8qNtoXViP6q6AgyXWauM8YxVA3Ta8T1+rVCfGapapJLzMyAvj7m0Ta0KdZJ2je2fuT895rvdAWlciddGlR7KHibOzgXte/7t0AYuku57kiLqJgda3xarQs8TRnHyCHBrCe8pnOkdD5YIh66lOIeEgfEO3iSTSr6d7zC89pHYgNAYC2Jl1J4yKcfnDKo+x0jUDxwNHzLt2GYAdbnQd3wdmTv9xtrv2C2YOTkHWJdxN42UfL7R5Zd0fZivu0EFzFX3SmmjXiiWpqzJAwYsv6S4K6nrZ9XwQButCug1JLNoJXNk0dwgRFv+f2Jo4n3YP/IFPnRkRrc51jzhvvDCBbn3C4bB5TDYH5eiKRnnjKLSV8AXCiOz7bLX9mFG6fP7ApmFCiK1M/uql1p9cLazILr1p/A2K4H/hUz5V4f4/hVV9LnbJGdOcOVqbiFH26AaV5jeYDns4aFAbTmq3Aga8BrIl/6OatGr+SZcumnkxIsfmULnLq+/+UghQNGuUtr13Fk7ZxAYum29Qy/H/2anwjA501qeFUphZA+2dhkpApqJKuEwVwGKlY7dR2Ps/d92V8RrBdcmC3WbHcs6kaRgYDTr/0tPnUZ5Mmc9pxLsLT7Cd+0pk=
Variant 0
DifficultyLevel
395
Question
These numbers form a pattern.
17 , 21 , 25 , 29 , ? , ?
The next 2 numbers in the pattern are:
Worked Solution
The next term is found by adding 4 to the previous term
|
|
|
Starting number |
= 17 |
|
2nd number |
= 17 + 4 |
= 21 |
3rd number |
= 21 + 4 |
= 25 |
4th number |
= 25 + 4 |
= 29 |
5th number |
= 29 + 4 |
= 33 |
6th number |
= 33 + 4 |
= 37 |
Therefore, the next 2 numbers are 33 and 37.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These numbers form a pattern.
>> 17 , 21 , 25 , 29 , ? , ?
The next 2 numbers in the pattern are: |
workedSolution | The next term is found by adding 4 to the previous term
>>||||
|-:|-|-|
|Starting number|= 17||
|2nd number|= 17 + 4|= 21|
|3rd number|= 21 + 4|= 25|
|4th number|= 25 + 4|= 29|
|5th number|= 29 + 4|= 33|
|6th number|= 33 + 4|= 37|
Therefore, the next 2 numbers are {{{correctAnswer}}}.
|
correctAnswer | |
Answers
U2FsdGVkX1+yfxYnfy8VosMe/0YZxMvBCAcip0Eobcymtc/gxBF5Gn3aw18bF/22Nsbfv+fiR9JTnXNOK6zvL8vT+tF9ZbvQtbs9gicUxZFjrhHMYS7c1wP2R/PN8njuIaBYViq5f5LEImaY7edKb0r2YnIKQ8flZ1Hd4n4uD+k5b54YLkojMobk5pq68d+LEYVQgdibk6/0aBhkHQ2UK/vodyyVA3uR2VfbDioH4X/w8n1HaraCXzP4aNwiyBbS/de+52OrucdayL+/eAKxVZhFZves0UNHiIkbCA1l2lIfSlw47+MVGJKAjC6xA8YoarcYVfHb9s6mGYfwY08LqplxUqTfbucdZ+aCR2l1mUT6sRP7085BArVZre+l69SOOal6lUggsR9Pfsdv7nYPD9kZnaeWWh8pICwRnNwAtOpQOH5LkKyQZPId5SdujzHwKzsgjLuHJZB1xxkXlNuHnsu+b0PHfxPU0EtGaTB0KfkQL9rYRw5gOmBH4XCA0jrVY/6R4r0gEzfnqR1hztKEHz+xjRmXIySoNkZd3f/kqMbf9sTYDwojto5ze5QWGplowtSzDOzFpBXA+o+vpGqRdYGDm1jpp0ZDChnnDJC1pu3gewvQkM0bYPL8/4AIyP5Jkl6TaLp+AsSw8/MYrDls7n4x3brMOOwdjpMbOown0YOLudE3vVV68SN5QUq8A9kgk7Xyt77IiXjZM4G3w/BHgcqdUxwceeVkI+OGVG9ee64C4CUHDD3kDWM4HutLvREhbYvJDogWoc1QD9mxRFurWBy+WlY7bYIKSMIq3AHNXg1TvsyGzxXV6LBdNEgtxuN3WE+ta55K7ayQ+wLDgAULPFaAA4Uj49zLbAya+c1O2nPMq1ur5s8b91N855tkXK4xwptIamGVRyUHF1PPt+oSzp7+UyVMWgHxOwZvaPrG9wVkBkIfkn8TMoHYeD08+rH8figLliDlfVV1YyhgQHNMNy3LlyEcU/lyUzUniM0Ay88EMd8lcZRbwJC2pGuSYcNy6CM8HE5TKdU+2ljoODBuI1rwg7AiQIA4D7xHPGZjzBW/Nnv0brsGMp5OyT6Nz8IzICF0N6aXHVO7YbvTaxk99zH9wBfrQQ9thz78oZa/1IwcORhgayDH598KJ+s2FfI1LrdRe2A4Cv/Em5p5/wvGf8Cy2WMVY6mbkr6sRjhmUexmfRHt/NCV55PHSszrEhfbde2wC1//wHl0GUkKUd3nu8GFQl/wBIcwnaZseGkL1Me7qKIpg3u3DOSOPYv6cbxkZlWJvraW9scv+vG4OrFd1zFhC78ONxhTZ46vGlBlwXOZNgjyBoYs6FWux93MPJsfPLEh0MnoN6Sc4424XilGd/tgvFQXfOobd9+DXoFYfEhavIm0dWF/ZR4qETJxo7lfRiuDK1xDcsZjhEnd1eTSGVaCEdxMtC/c9B8yKmYAHiIso4pqoPyKyRRc2Fms5vB43eEp5QNAharm/RMp98qJnTlKwYXtWpQFUTci4/hJ6Y3gciNkHH4J7wQhBlCNRpd+oS/YF1McLAfmCSggK0ORxU89Hvh0pKrUwk4j9ZHIYXSihEYCjEIXZR9PiQLeY4V3RxQ0G/+JjqNbUwj1RfOyyCOBfdTUI4M5kWTy0ttK4H8UkH1jrJNQFtv+XDctPjlF+NbQD/DeMAGG7122s3M/qx0AzxNPlTGtqcBKusmcJM7FyChw7Qx0v5j755+HyhfHF1eHFw+VUnO+Vmd7OaqxfJ++tm6eqviUV/4CtXBdXgs5++0mo08MC3NlamSyNoNZ8zZs5ZU7zWbcZvt7ZeQco7bfmKzMPG/dBPhn6ljSWhYhEUxCBxqCu9+8WyhkQ9UKc1SlxSo279NI5k8eeF3Ek/GLWphvWZXwjAkrydfVggVfJbZMllMZW1RIyAppwmQ/tBdeZEO52y2QuX/V+/0th7OoAdVuDJ7jCeVCOcJYLO60DzmUK5r9Ph6bb9xJitcb6LM/o3eBW8qyN9/EXhIa4m1SfRfGi4La8ojh5BuXp+pd016ViM7TiCHdaVUccpCjp/V6pz112fS1kyZfgvs79pekpIdIxDVKipulwfukSgZjh2cNo84wjVmWOy845yYQzxk5z0Zc2o/FRGtpMQTTWNNXKs3kDUbaB7C1pDJrMZZ3hHv1xRLIHNQvHSXQeMKhCz796Js94XGq7V0iyLotLQODG3EgQkJnRLiCmkXWfS/sQ2p7rLGvYajDs4mNVaNmuDFj6tA0eQhDEcDdjjDj/tauq3oOoRXNkKheiFuapdgTJCYgxxGdBHfy5nI0qIDTED7zpy9mhLflSVkSrkUIojbJwnYZ8dKuV3lT4ACcRWSyU0ztXwsn5afCgrUogVW8Lfoh/r7nQeYsHARA0x9lMuhwMMO4LZwlQFpu7v87Jfv4G/DwhkdAT4KCwPPB5/vtf25E57N26CU/S9A1sXvIZac1nrwoJV8LBdDbUjdeOhwU4TgL6bg5yFWoA+9EGK/vbCo1L43/cifiWFQlUcd3S8Z4HL9hjll7vbfN2lYWMiGNKQSUYsu+n6wmwCadu/TW99J9zn3QxSykRBfOctAEJyqZiYaGHpBXu3Pj5mmxBWgQuk8slEKq8g5lsH3M+4kJT1PjEXhWJjCKzZRTcZuBwuqBcukbzg26t9Kwjjh7YGxK0bgoB+R/vTOWtlol1UtDmS6S6XKQxtkxmu+q3y/u72cx4ZZsvYpMJCreOs6PkQh5hYlDEjW/cfA9FgPXYPyLSMAMoxoyQrR304izhHJkPu+IaoyysIzpj7NZpDp2CGKeO6M6wYsD0cHBtcq2Lf8xoOSVykGpJa9ej0BiUOMvEsKoB7ugeFuteIr1BCNVaW8B8Oe8eFYHJo9Y/pBhtfSSO0yaWPryCCn05rjNxhyKdGLKZxWzSOH/Xiu2lLYOsVbGpAbBGQWEalG3xEhsdNHHjZ4VFDAVCD0/ZYpFdgKOltSTyttM7jRUFKN9XIrnpRIADUuK9rN1T3FWaFPkYjq7tO2H06WXW050nLcmDQJE6BO6yRd7oJ4KuL8Tp0E5coVOWRKlfyD/CIHsGrZPl3l/Ia8n2YkX1RXZridA+Lwa4U93PrgCT9CF3VVquGEmeRaX75O27SmzFBtV+zL6Dfr9Wq569vvMRv611CwzGt31AOHhvA/lV3SbNq1tEiBvbjE17dbeqKT/mtDhiSWJ9uvlZvW3xl6WJRUZ08iaQhXmsnr+miUZh8qIJp8ZB7p/v2SWuubuyZT9LykqUodpSis3ob9L/nn7Wtg90dxiz/GhiNMpG+FYWJzXvkN03ZXbs3fS+yA+sd8xaOuB31Add+b3x6NZk7TM06MDwtAs53j9WG8QKFxbiN2VqBUleOwA6mF4iyULSEEXo3LbKJtiqgaRF85OSrQStlcFOyZ3W0r00IK6Y8ctOe+39XOOQeO5G/Egw0z96l7CAfI5gouDPqx1ScSPmhFE5HA7m00PNSFXsOlHuxMWepkCnQiXYnUc0/5xtUq4fHxEuxEbywWEupB0WEvfeKKu8y9zl0XfbQKIDT6U3v2RbmB7+ccUrIqMStJq7exlENZSDsNNillAuxAG3tZlSkXoU1nfRvmkFB3Rk2mqt/ZYQ0lDHJwf3cEc93j0auiBGLyT6TTvdMmv4wHKut4m+8TlID5BOPn9mrNczcRBK8RmZkyVV/Lq14LTnbxYzouJinGGxc+GFJsbNvNMwIhW/0+nlJQ7r4KL0+0oSeQiI4hTq2HanpgRDYG7zp8/oUmwVNQFpMnf8ajIXoy4q1kHOU8WNSNCb7kdDnIqVeRgdwVQ+Hu1N7EiW3lS+XFImZ7zyZJXYsBxb3hnPJ9PG0BPJzbQVfupTPbE2UmMEAbgEnoah+oepTb+OQgA9ppDA0dKcR06UrlQKAbJgl9hMBJag/nDJh7uzezckajnGtW2UiU+4pa1M+/bCJLtHwyXHH5utLnHZvzCkNJt9JY7yh4osWnDCfFB9WpBc7fTyGy6gvmAfB8cGQdEpLpMZD2pVv3l0snnWDbQFg+bpGu0t4OXVwfuqfmb89gu7818f0iyxOZAjUPMcaKq3cEHT+GPfRtEb8dV4q3Tjbnx7bxoBCzhJvUYopMgXyMNZ9LzXTFipbrMBvW5c/BYkEmlMuBqiFGlfyMgRrACCG2r5Tb6uvTgWK/vpSpcO6+G2WWIHxJeXfWsvrEddVSkFZgSAuTzqXJxmGm9vIjUTuLsRuhyYbp4reinsf8za3yEONdT852gGjHgrafLfcq2DZb2kOfjNKlzN6B1cKkX3V5CiTPeMzvt84QQPE7rhC9CfxVW1UBKVneEA3MO6ZEauXNfogyn2lzDakSuMEXLZS2Shea2zvaItzIDZHdkDTO0/3VBzxncozQQrskXA+alttmnRrXYCyG5TticdZFu1j2UUiem1lCRAKhN3BwGq0sWAiQWj8zgXP8Q7XV8txU76/Pt067AzOykzZz21iZnEp54LsUk1M9pgacZkb/JBN9+A7uBnwZWA6WTKJEz8lKFqA96BNGi8yC865s0yQwuGXXRbXp1pk9DvJqj/zn0GJDEVHPfnDHlyBYjZuzYwTAklde8ZvTbbBwQR9XK4dhstVoteyeCHIFn0WBPe2lhi4ISKMLGUgdCcy3sEE4KZFlLv1sEUwi1JmW3JUKm0HSLkLUFN8TwplVr7sphRDOvQNm+HroQb8oFT4poq3wk3b8GajG/S7wD/mioj7OcqbPQVIJo7MJjJcvFqk6Kq8kG/i2HR21CqaEcHTzh/vWxXWP9VWMwfIZJrV7DT60eGY1gSDVcSB5aqTX9aiytpRzb/t5BIWpM2Z4P5tHPKRRA9WcW1Zjt6qFd1XMiZvhuosExYdW+YVB1vPmuqBwAb0xCnuOKOUOigznPDKamEOBWe0O5zIk6EILPFJ/yT5PVgsfoGAHw4S8p/7V8VukfBkjlFKF9u3EqVL+sAKWxla9GBkRKXa5BnIEwjo0hjuRhLzuiR8UB5pwS0EgRVrfd0l6TVvX7lsYU+Ed6eswxiIOHKe1NTPnFulaIvrVQZDbX1mswCQ6dJd7LnxruHkUugIU6bJXeKSUvPvzB5prgVBFRYTWNGWqO95PeXeyuLnFwUZjztuVeVCt6O+RafgC7CmE1e58/4gq5AoI/FCpQVr87EkOf58Y2YXtRKrrabtiwIaAoZMznhIEv1qq82wwsYqhPD/enh4PzPdrFs0wBxRoyeL0Fmv/1vLAI6fYdF1Q3n55vUWKfpExBOCLpMYw8VNCUMRL4WEFMcFbBMs91DX8iWbpS++wSpIvteNHjzuPef21+HjE5HOlmGqwz3AF8NOCHhc5AG+FCjNmtEpLIzqWTkEBGG8SMurYzxVSG+y+/uzPQySLsc5Zts9osgV9dvo+S4IUzMfQwybn3FKr8wdpsO9N37sZswBgqfkBsmtnQL55Uk1104MbT7hqR8gKUHYDuIZV3oAHR//Sx/htaLnAhx/zpcal+KEzK2cpOEaOwVkDv+bKj6/IfrIfv2gkeP7PkTosCIj151mOkOI0UYsOFTYHl0CUDIByWqF63uNiHMyP2CGK9ZZoo
Variant 1
DifficultyLevel
397
Question
These numbers form a pattern.
23 , 20 , 17 , 14 , ? , ?
The next 2 numbers in the pattern are:
Worked Solution
The next term is found by subtracting 3 from the previous term
|
|
|
Starting number |
= 23 |
|
2nd number |
= 23 − 3 |
= 20 |
3rd number |
= 20 − 3 |
= 17 |
4th number |
= 17 − 3 |
= 14 |
5th number |
= 14 − 3 |
= 11 |
6th number |
= 11 − 3 |
= 8 |
Therefore, the next 2 numbers are 11 and 8.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These numbers form a pattern.
>> 23 , 20 , 17 , 14 , ? , ?
The next 2 numbers in the pattern are: |
workedSolution | The next term is found by subtracting 3 from the previous term
>>||||
|-:|-|-|
|Starting number|= 23||
|2nd number|= 23 $-$ 3|= 20|
|3rd number|= 20 $-$ 3|= 17|
|4th number|= 17 $-$ 3|= 14|
|5th number|= 14 $-$ 3|= 11|
|6th number|= 11 $-$ 3|= 8|
Therefore, the next 2 numbers are {{{correctAnswer}}}.
|
correctAnswer | |
Answers
U2FsdGVkX19fI6Fncvc07oIUrY1Wo6NCl3M2yUGDcTIMI0mK2ACbAX0wJ4Dk+YjcetZJgVPL+Y/3qJQRrf2IBpAgt+3mEdyCCHn4uxCOve16Yx8jVeH/my9FO5Gh7dT0m33wTbeh7su3tLHIlchtoVu5xFnHkiAg5dW/LzMUtuWTbWNSjCPj5AVS//LSwJ++J7q7M4An02suy/6fUpf6Qvjss13igmAHO52Mq3jG/ximKNtNVTCUr3kFxFpI4OKcsUPtEzRgtpUSHMj5IWvi2HWEOzccA1ySet/Y2Pk6HuRMVsJ3KJcWF6AFGGHLiLK1bW+xPzAPXN+KzLjhiRQgOjwyZlpAR9SdVkMuU0p+4rhS5nFq2L36NPVxQXqEXbXcEbEpI4TblIcy3HUtUiGTfz3z9SvjRYZ8BXKXgbp1mM24kAi+9nEGW31nwIlxvvJa4b3i/xh7s19HdKBCNG0AfwERqWYR4XLB8lhRhnqBhOvrqpSok+qdxmFrBDqzERBWY9M5QqF2MJYoKCfgOVqAs8JerBV9cT7JrZYaYBtxNX5UDeewaTJXSOwMSWUJTgw8+co/TKqGWBMWrAojVQ9pou1fgxJjikIv+Ws8HV4li1kpAj0wpcsEHeNochhaafB0zjAgPDrXqTF6XaMTBCclfkoTK06x5WaELRrH9HJkXQliXDC99ne9Nkv0MGP29CRJM16LkGmPcALxxmWSYoyngD9uNGK7ZCCwNsYlTAVZXhh3Lf+5n/MfBaSz+PIzNTPCFF5yWl+0DEw3wBIt33YMsd4DFcE8e+6me5YzH6j7LUrsuABgRMGI0tduxU9Pduks9gZZXos9TWDau3WykN8dPQg1hk6h92ysjf2isrbEZYJku1EYS+AqiTBK2WSlm719oNmy7ktToCLPhWaLVXF52BdenS+g1wzSZm2M5ATX5MJXccNReWP5FPVkTx/93HMHcxoB1GtE0zycA885OwjTL90e2h0NY86OhrqNKFrpc8+zsHgswo1Vs15+rOyF4t+RuLGhdJ2C7Ot+2mNQNAS4ELJfJ/3k2A4Okgo9/aXJzxu2JArbGltNt+IFtkMViyXfYeW5vu1sZsTw78RusqlJdFLUkQ8V2E/vxGFbWMWwGcmNoRYheVhvi52wopRJp34PDHEg9liUqHAMSmeLqZ+LFNNlcvF4DEix1orUpKHJUNdeoKFJIG6+5zP9KZIF42DH3ng0WbfuG1PKNhJVMLJYDSU+AEgiZlM8nLkwhMG/+Ijxr9/iLQ7wZiclLWVYYPc4p47ZkdRDX1p4tNUvuL4Pq/R97sRND7BwZLXEA62RbhzN0KitZ/sK6B3pBxfj2u2cSh5uwUOwBj8+rSK75PfUgZDSYzxn2jK7zRFhLla+Uo9b9XIMSKiS9UmaMjVQqJV0tGajlXIIW6G9iA4VTyZqpB4fGd7tD9i04MdCTwBSNpXfdNGabKS6P0Xp31bloeguJXUQmaqf4G/3lyAnARzuMqsIRKxaLvufDv4QZkSOsoUyBcp1jjVrk9IUuLLvrchMNORSRSft/on9HAKpBfx0hPNAs/rV8q/01xTnPz9K2LVq7hl0U3N3cfOh1dAYtm6/9a+6cfPUyqryiXTak6CwNxTOZC0ggRoRtM/nOeOzXtnfAyaOUy1G6/50D8EI4rAPJLk7lQrDZV+oxzJDkXxwi1tTIh+JNq6xNKf6lCPqzOMTdWDuQC3vNNJEn1NNKapWiHuV1SKW3T5fUqP0vUQdhroXmDs955m8R6/8cgOubwpOmPeiT+D3I+bbIgIBalRWbnL8XSYQjzkyLJPY+xESdkj0VFl9SMqZfV4EPrwtRzsP6JGww9mYg/CyBH6VnQIRV8KC/Ri113Z4Uf3bb/FMa8miwVggmJjFkOpzofDhU6q45ajzZeuAhvd6ENPGrI1MjREy4kB1otCJEgFbeJScnqHlP2edcBJ9/aT4lJV5XkizGmHmcQb4Xn6Clee6UVoznroorPXuWkioV8uVkuXKYEtygO0a/8o1gVQ88X63B6Eeg6qQeKwKeqOSDpuit22QY6LnCQbEX7C3hh1s/0r/Kd17qn+HFUbFbuxFYos9cPa2MzljmT0OSz4tL+pXUu3KEoSXdJTbnqumsAqmtJKg0Azx2rbM3DcqRWTQSisthpaqHT8xJ/peOwUkMKtwc103dqgKDT+jQbLMm8+tHYb8rahaZoAP4z83xPWRLStfACDr8Z0Vl1ELy+N9fR/d2RcbG16/EhnU41upqigZWQV7zIbFrz3owOYGKXTugxU1/bB/onicrcGWklA1znJqQBsiN1W2/+imSn6tK/woLEJ/aU7gVuaEeoG61FYc+vtD/hjE0RXVTkQLlePX6+sDSmvFlqMoYti7GzjLVrE+/4LYwZ7KguHbPTrNPOeXHApk+Hey2NmFA158LcxfsnSAKHG8x7zacqg8oCNCwQ80/CYttxqIQy82m3McKIjPH754Trw=
Variant 2
DifficultyLevel
399
Question
These numbers form a pattern.
9 , 15 , 21 , 27 , ? , ?
The next 2 numbers in the pattern are:
Worked Solution
The next term is found by adding 6 to the previous term
|
|
|
Starting number |
= 9 |
|
2nd number |
= 9 + 6 |
= 15 |
3rd number |
= 15 + 6 |
= 21 |
4th number |
= 21 + 6 |
= 27 |
5th number |
= 27 + 6 |
= 33 |
6th number |
= 33 + 6 |
= 39 |
Therefore, the next 2 numbers are 33 and 39.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These numbers form a pattern.
>> 9 , 15 , 21 , 27 , ? , ?
The next 2 numbers in the pattern are: |
workedSolution | The next term is found by adding 6 to the previous term
>>||||
|-:|-|-|
|Starting number|= 9||
|2nd number|= 9 + 6|= 15|
|3rd number|= 15 + 6|= 21|
|4th number|= 21 + 6|= 27|
|5th number|= 27 + 6|= 33|
|6th number|= 33 + 6|= 39|
Therefore, the next 2 numbers are {{{correctAnswer}}}.
|
correctAnswer | |
Answers
U2FsdGVkX19TWCp1RRp5a6KDFTFNOcG7/6LDTHhXOhybeRuMAyA1iQzkr8dL+1LXqgj4VPaDj4bM8Jga6IoZ0IYrHqWYyDDOVQzTJb+R0TKO9F1oCrhYP+D4SN+vHEykDKjml08g0apWgEaR1Uyo0rXHZFM5pXs7WK4MG6KPm9KvVkKu6T+c406KkMoLsLXra58mZ8n+XIgWEiki2T5cPRS+iSb9WLew1uNBn/jDE//1KD5KFKCYg4Um/PxDvRZtoTaGnv/pfjaUTupa2EuFBV36mNqjSkd8UzgM4jUVWbM7pPOXEk8z3DV9xNTnEjiRfRRvUAzJ51JijWLbnR/3zNXMmtfIRs5UY0wyhiwCmwopfbJZf0e0f2RalWqwfqIEPytKRLP0TwFizicYF1xdoyFdhpTi29k/N/dluSPluG/1F3xDM4dmfZm63yud/Pi/v1Yhu3AFDyEMAbDXWXyvz+Kut67ue5G5VqWmAY7Jftgo5/MHMc0dbQ2nw+P5UDq+BfxFXKysSHIT+jYByfKQQEgGeDHkJ45gKjIcOkf2Srk69GDRVY1dMOO6BLBpVEipzjwTef/p3OVWlU+4Vi5QXQ9kE1GhlJrr8E2Nzd1JbScm2Hz+UXHjO38ajNAcSSIBcQRUJWz2mvFC9W+Dp5QmER6jhR4MCTTsIGQTT8maSlm+MdBM383fNmLtP0zOJItl07W1GcsZcj0Y3Gt0EFumWJEyDEY2yJaZdPkrcxaBrpqLLUlrsggjhWIDD09iHMCMw7w/LCCGYydzu1EzWtPZNOrm5W/uims4dCRlDZ/W6CzFcgYY3UKFquLEsNB8Vj1+VauuIDI5A2scIePj9TpUvYY9Iv5jyekXQ+PEjZpTiMoGMCQT6yapvo1RPA7R0KZ7SZgH2Gzj4d1zcs6ZYXWfH/JqJW6iU0rHF5iP4dHxET47dieZDyOWu+vuzEedhMtKdVq59jB3YXu1Il2W4FzEym3CKXLxFw9Sc4igdo1FXJvLIS1zHh6zut26fqr/8y/yM96JZToK04cvu73yytdbcrxbSkhbJKLqURzNWZo8+Gsq8J6ACE9aT758v0j6zWio7Zcpm8z3vQDshMHFM8lp95wQEHbY0GLRGxNXW+qTNUzU3O5rjEA6gE5iavrGAN6FsBk/8woS2J8a2IJeKlyLKJvpLSTGoemaZfpRXxdv5TbegjBkjoxfE4bBxLCX5Ms0zHHpvDdRJghaNCH4OBALDRuouaku0j35rRIWVkmXkIp9LYcFmhJRMfRAUK4BO0snJ6x95c3Z4dWsOqsVV+JnCS2SUFYjnXvSWd01x8iAP72wdLHqg76H9V0L8viKxrSO0hIvocSb3DuZZ1Amc8z9D8jueMpgZtsDAunJykIIWEjpW2mwtbGYVpz4KYRlqbWNo1P6ugYuf+UZrZqO4heaE3pLD4Dxs0LrgD9eSFAONmZXCosxiFqBrs+EGFOg6ngpKs4bypPV32BgcQc24msQ2TzLbjyK79N752lGAmFeq/NekC65mtfLhvl4n1guSZJVaMNOS/SZDshOmHdoIBuY6X0p6knF6iVxMa0cmBrN3AHzzinbeThZ+TKaV7iWas4ON6QkblZHKp56rFYCwU75H13ZDOS0fN3Z6YKyYQYQ/WFOs/xBahLojJBNyCd5x3lMbTv8rcFcnK+L+m+bJ5mtqdDlU4zK6Tpb5Nu02W0P+Vuk/iHAxY5eN6bwF/N5SdvhxTIk+31WmoVTcNcf5xlNwDCLNAzJ9AA1Ou3yhSV7uM8IwiQ14H/HkNgGfu1X6zkOJf69cPhd9ixHakp3ArhsyvxjFwosH2g89J3tQADlA9fXn1MC5K/v6JXZw+vrpFvQSrhYh95ozlC1W7AWNZZz9DrR7Q3mdvDzPqyj+tYVJwR0NmMlAy8MhSNoM3UPwLWviR4FjKhJNq2cP4YPBQ7gSHqAmkNfvx1xD/zlXt9q2qzgJSZkuDgoUnSH1vW23QnXDOjvwXDcXC/daVVhvuBc+ZtWOPB028EBBVdxC3c2qEdNpu/ripGyti/cq/vEQFdNQM1CMDHg7UUCSeT/jfNp2tDhCxf7Op4MHP4BDRvK699P9/TsjNq5U74l1e5bO/Js4R8QY1nHmUnRDGoJ6dd7w1NZp70qrnNwVKH946ZRCR1QhUmYHz5fA7rDBv8X6RDFhznl/XaFHrf3RGVp/uHUeBGNZGsmHZI4FlcgSdUmrY6urhxi/FDc+P+/J7SMfC4XDhYZgjY1wcqiNDecnGnlyfzHNatJfj75QhVjdXmYeVx8txXgm5k9QYOf8AiHfg927Vh2V7x+BZqIArNbOtDUOEDPfvQ759uEaRfnb/x+lXKJxTJk/PckeJiVqHCf1m/P57LKTBMLimEN8uCkVPF5HQgR5HFraxUohJ/CNMmyF9w3KywjT281xfE5uaNdl1DQlIH0gm4rMM/xSTEYXQF5AuUhmbFmXb4K+KcBdIqHYQAPulum3LFMqDGBbpiTkHQlswXLNSQfCOo/MAMO5FaS++wcXiepYLqvcvJu9VS+qCHHARksooyWBy0K4RFRyXYsQ94+iI4c9wa+hNJfQ7DbwOIuR8VmoO9jUgQuI240jYg9BaFL5rgqB3oXt4ewm/3Sg4IJqNmPWt5BIFkhuV3pStlCYjlfCYyPsAlSDclMpPLyh4W/7zepaH51D4SoPEoseogcYZchxflIHAV7r/qdtROEuC5dAXiawLvg6oCHkycSHPQBMONZpgjNeGTOxrmOf+a75w5DN5W/Nol5mTobr+svJ2GJnrEnCqLyCruHrxzQIcmuoGa0SZ7+8C9j2pWqBeN7xCnfB/27n1uM+TtKBf4U6Mid8hgw9JOGMj9ViPUib2qcAPy8VIcYxV2NI4HraXyYNSVRRIAwS4z2c/He6d0zNEqP0hzgu0vIyC9acVkToBt8uIPPPdJbW6Gej6W0IC4208NaL2Gro5yTBr155JzyjpC59FiHuY1Q4gmx/NRY7ysB1hxVSODHz6nEkQXXeDjsw8F5nDqGnW2ebXzYEnpNP2n8IB+v7or5z7fbGy+pkbpc5eNRspacRvjg02Ascded0FHj1RbXEAAKmcbU/of7a9goGIsZStFfxQ0H7TjhMW3+lyKBDKVRO1gF0MMjEt3rsKzOx1y4RXKkvG9isOixoaGJodP7p9p+Lo++8yNgy8lY5nyk11Ax/KU/b2EivkToDhuCRuJfn4NvyLAX6Xe3W4jKeBSSw2GB7Vu+k1YUOObVEgR+NzHMT0khAMIiXgtLXS8c5/cMUwSJRhTtQbDP+li52ktt8ps/YUs10hPLuvs+sorCn1fVGCEcpXw8bA9QRbmFRu3Abn6mX8Gt9VEh4VWzgOtcVx31PiQ+b9tKKwXl2nrNNdkDWVR/9cyxzPSoich9+qN9yCPjC5hp+8MUN8Ou7JPvnRG+LIrb18Pi/gt8cFEcxwO1P8VHgvXLjn4gISI/sA+bcZrA069e5rOHz5LhrXmKZn6E+nskXQFo1suAQaUGUoM0EtCpOaAnsLRRmPng7ZwseHyz+e5qR4VHbjOcJM83XFwysjcdI7kg6tqHJE5Pb7IxfcOEpCamBu1adu53ttJ+PI2IdCakyHUzLugeAl6PCR/Shz6tBZF538m3nm1bSZ4woldfLJFEy05HYvdO1kKrZuFu7E/SZGgvrDkrB0RkwfryHsepdSq6URT2vjB6h89aKJo1O3WRVZMMv2360BcyuJw7wBPI1Y0lwZz7aT9zTsW6En7cj04eoTbC6akWjCwM/4EfOJrSEhkgNFFT3uQSTcCp2q25VGWKSlMe4s9SItCecGOGv/PUKR+kKqpp9kHUfEf/SQSAiAIDYBje8WTqXm5h/4yxmDkfjXp0YTTOKsM19xmKglS+4KzFuAi/QfHZ2VYRD3aWy92aGM463SbEVOz3PziK3OfQxI08ulNsy+2oVz9GhxA/xAfNE4WXm+eA4AaobB7br91AwCfFoLbYUxrGTvgMN6z52AkR46iGiujEiXEVT3NS9B0B6MVv4GBj8zmLZeLrtYaA3+gA1hmUwkoxvqmyZptM3akQORHuHSAJzYZfUQATyp/9LsrEJTGqVkzwBjet0tUVpEnivkIGT+rdWjNehT9CXZ+dZvcwdulLC2gyNy1TUa1haiPQPIpWttBy60Gowkt4jaHFCXGCV0cwJZvF/TsUPlyYiXxIOBZ/anMfT+qwZUhyd1AbHUOm27Cd7pNMfXA+a8xtutmXqul/7NTdUQwS8YxfpxA/zQeuGoQLDd0MxyLIcFn0qs2mtGlB6xNLHlNfh0LPShDRxDMZi+9qR1eZploX7T+Q44oZ/2G9mLF4avUOZ3Oxgr473aJ9dFLyXp6bRKbq9wyGQJMmX+iBjsADrNCQKYE+8ZrTSCVTNj6xV+DkHlmMrwhLtHvzqMfmg/hCj6n1uCWlUKdrv4Kwbe1b7yxY8Mldoudhjn62YGM3Mm+mk/+gvcSpk64hy7ROJf9DktIoZmD1P5yhD+75Fk1w04dzRQstB6i1cokaxMDw+mEVqUrWybXOf+aTgZg60Xe2Nj4y1goNeLr3vSglrIN1oAAD6GvQwYwpmdWTE63yl89DjqZq19DjqOWdVnIkVBSDothdAI3lmUa+MZDXJaOpmHszh0NBmlE235btPjx3yllFV+Ca70zlcPyf8sbNw78e7BRBb9qqAg1AJixiBMRyB2eKTo2bgkGexQVueSpWqlThuf/yM6rdsV+CWYIcBNtAesPeggsxcNrSRLEe049l65+0HsJMrA0BCyfPBuEh4Um5SwQgX2O1gjiFJdy2ofWrWcHJtk98f4hF2wPCJabZJ+3iQg2fQ+37tdBCgTXuiQmL6UamghC7a9iUblT5rAt4H9Rg5VchosxhGtEMaiEm75n9N80gAmGIkActPHYljFWrCSEX03KCdbxSqkBdS08HvWOLMiIepI49sw95UuBrtUPU2EkLohki0N4gMAY/nkZyAzNeEtb8jd/8R0EDNpRH6hhNAn+h55rq69dao5GsEP9967NAd6pbxeycWpumB9R2cYFPM1ylsG0Uelh0K8c2JxjF3Cj3ZirmVMEJYKfxurfsMw2yD7tB6sfVWiBvOgVnWMcFFnT/QtLkYJDF9STjEDJ//qx382jX84V5BZJpxhbeZTiilMe9Ppq9Zhx0tXI9up7uB7x+tA53/ldwXM8gporsLYziM2RDWnoSLrDO18QZzZ/LI69G+79EfJ7Awnk58xcLrmoWYRfen1j5WOpV8d+gfFOsPwOMIRDauWF09dUvG4pjItHjrSaNpK86gpxscMzzU+qbVyCMPGPB2bWFE58JDyAbNjUaZsSfU+pPDXBTfqgVfvphpra1YpI2lrUQRmJL6rUtfn9L0Tq4t8LnZfA8QPpk+EuxBd3ZheSMp9gpIJ25kYr3F7FUVQaVV+nN8FU3WSq0wFk8/4IGyjcItMjAVmT4BmRdXp6sWiWHvqrjmz7ItMGfUi2rRTm5J9L3VUP1FeUaeelF7E8GIGs9whyOOn35D1PdvJCOJPzVcuLZ40RzSiXty7mQ4iCDqmwPFENu9Jf1fbe9bJ4z
Variant 3
DifficultyLevel
401
Question
These numbers form a pattern.
82 , 73 , 64 , 55 , ? , ?
The next 2 numbers in the pattern are:
Worked Solution
The next term is found by subtracting 9 from the previous term
|
|
|
Starting number |
= 82 |
|
2nd number |
= 82 − 9 |
= 73 |
3rd number |
= 73 − 9 |
= 64 |
4th number |
= 64 − 9 |
= 55 |
5th number |
= 55 − 9 |
= 46 |
6th number |
= 46 − 9 |
= 37 |
Therefore, the next 2 numbers are 46 and 37.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These numbers form a pattern.
>> 82 , 73 , 64 , 55 , ? , ?
The next 2 numbers in the pattern are: |
workedSolution | The next term is found by subtracting 9 from the previous term
>>||||
|-:|-|-|
|Starting number|= 82||
|2nd number|= 82 $-$ 9|= 73|
|3rd number|= 73 $-$ 9|= 64|
|4th number|= 64 $-$ 9|= 55|
|5th number|= 55 $-$ 9|= 46|
|6th number|= 46 $-$ 9|= 37|
Therefore, the next 2 numbers are {{{correctAnswer}}}.
|
correctAnswer | |
Answers
U2FsdGVkX18gsnlEfXAXO644fnA8UTQKmcgLTkbSnRP5J4CFvH9zTihAqENLARo7hq77x6Lr5hIx85e7N56baY2Jz8ie2dmkI92aBuyqXJIvtEDLSJFf/QHAvq61H+wkUjqtO3bi3Ubacm0Mntz+qSpTqjgtsWedNtpk5adtYjSr8kCidXQhdS58cc5uKO3xghTdLD4HfsFE5CnoQ48UBNvo5+vqohw7+w2UTTYNAaLJkUaAk8+8ZwSq8O9MGBEnZpBuLLD3y0XMPIamBYplihpClzj8f6LLS5E5SdgvmQ5zK0CxiG/9WyXXY4ZLKAX3e42STHvCwtFbKU0gMd2TcUV2XXdCm4r1lfD+4HnDfKH8RmYuNsbG+42PUstAwP6PSQP6aulDzlb39eYdeCN3UJh6cFaoWyR+rYu3x3HE922Vj5vwmZbU7IMVQlHw3QFxO0U5oVgIrS6Hp+R/lOwinWbdd2lrX8wwjHQL3BUAQyJkAZtr3quK9CgEaIV43UFkY0OaEf1+/gosWzo7upIXOzIx2ei//WTjr/UEJtgIGc4o1uvvdgL3rl4uFxG3AVu12xw2PVR+A2AmLuTfKTNNswNn5hVDmeTgNy2UB2NwrN2NnFP0eti8p1f+keyAd2r7Ya/U9rTxPjlBNwN6nad3d2XgsuzjqCYfiNIH6yVT0fZGtF+lihHiV/545J6AZMPl8gwYrL2iTXhfuACGUz/JWHRNSViOlHzu6zA5GQyWdQGnmBmc3fwXQNG6sIOql05wZ1jkWLslxfA1kVn3ImnDfbr2iP5OK+0EzpBnfgKlNHKkXZhEMz+Xol3jdRepljlXzkOYkR8scyJ8T+8zvo6PteQq/enJuRl8dRcgdVrPYfeWv4bi9a82XTprlK5iwoyH8X3dQqwINXUcPcmq2GkIovnmFft7hEPqWAep53Y5ELaqFllLfcnhfaGVeiTnUl9xEDNAf48CLEraPURPEM1PrzF03SvpuPZDFihum1NPyuYegdsFW6hMK8IBtzs564al8wyilSewDnKHjs99U6YmdXkJ06N6D3tj58DUHdIeM7z1kVuSq+vTVqHKggrq2kRfBfjp9AqiZsxmbtuA4bakGvloh+98M6wewZ17lSsFQVMnIPL1stlqg+67urSdpU6/lRbF0Pmfg2txDs3K7F/Pa6PMZFdcZrN9RovjcO5lP+0KdIDRjJXLk5NyIuJRlzBYAYZFT11CDECTFvwrm/yGVcZtb9gZ+W96Y0jBepIRNnTKCyfyAWvFPjZDDio6f0f7X7Zf6Z7QxSNqJMD6c+zchQ4xuUptBoCpLk1IxRt7LHXZSaVs9cK2cdDv4+Tc5P0WMRNt6FvCJbbOVPsKxJus90xVdCpWo7mr6IM5QDke23QrwYY3NMl5bgieRXtHZLO1FgO09vrRgIBsZZKtwa/OmjF4FYjc8li+cGqm4oeWbgPilyOBjRf6gb/WQjCy6tFtBZj9gdYCroDLKuF65M93XNCKI4txKoH7kXSrHODpGWCVrj5ZcGHb+7NPkyDewiMAe0ZK8Ky+OHzhwbhf1kM39alh6py0rF40ARaZ3V3R8gu0pMQJcZazHSk1+3o31Jc0aSzyuUGzbPQE4LwJAiYne20rg3apBhlNZ7wLuNVdAU6JiGGFvdjrgo2IUA/U0Sp7sEc1LHX1qqSqOqWP8BtcZ+gAiD8Q/O3a/duWEE/h3UqYaj7eWn60ZI49HRGTaiqjewEnGVpPKX7uhqDrIqpUiWE4yL3+xrSHL4vA7/d0N8GEf5Zy0o8txp5zxIQky6kS//L+35jasvFVStqoPtrGaELE0jrVQ7gqiyoJda/Tp/vSYwsP6ODJ7ToC5J7ZxPhem51Asw08Kb7fWDAxCGLuK/i2Uk1XeDzvQizpsuhQGbn6VHZ/8MUCvjfyQ+vqCbuuJo/DzVwlZG/4QGC9kycEjQotf5mE9DSepbtOF/RgoNCZ3HPeIfzsiG5eT0MC+24rSn8JbRxetBBcH7Udy4GNWvR0dxcyLLCHfjwG87GSL9L8exJjxd3BDliotkEfP+sEY1AR66sJQT8BBMvDpssn37KoS6FUYa1GcOUdfCWrw8WJ52zGF+NhoNFZDKi2Bw3drR17NQGAsu0SJSwlXQY8FHBeg+mkqGQ+uEh0FTu5DsTz89P6GD7v1B8TG6N5c1Kt8g2US48D9WrbMLj/mQXIpZObEe4re4jw0Fp1tMD4fjNer/PWMfq/Q4Xi4Wee68sgdSgeHO4lrC6HJ2TR6YHkP7fB3azvIHVDAjyzHvUnBw8T9v+Pcxei+31LEhxT/aDPd4DaXZfPc1cfyxDU0Qj8LsSZt8vxlwrZD6qWE++uX+05T2aUaagID4I2tVYTA9qX8xqI4Gswbn/3SFY3tZZ+D9rYlVKAyIs6F8naOXarNDVkcBOXyf/Zb9HNkWuwA/2D9LSwUj1W2/NoaiLopbRNTEc4ZLU/sxBbRyxBJ9jmKDTVsDgETTXZvuYtk0jNkO0F9dcuGx0fc6czac1+/8jjQ3VTmqmOVBvwGWsYKuQDsI4jxYEe4Y7KzgNGq3L61NhMr8fGpGQudMOaweX6rSFOuBJeNYg6nlMryGrdCDMp+ZafPe0r8FkdHdiNaQA02aqdIVPJZVCwEGoA5nv6qNuf/CFUpKjkWIa8Tbc7Glt2hXR9AyYuCnd+hmatbx4HmUvr2eS9ssQRnpPaaIBiolA4fBZiwLkGARP/VH/u7xk8xTN+cs+6mid2LBNHoPJXRGKz/zlyTU/MThG/jJLkI7JmuFnr89cqbISracA69oYeOZwNNRLZ5F8NhEj5D7d3dEXN1ZClfSfZrNrLqLQOqX0wSsbaYQIPN86rIF4FalgOLaonEuKEByVAuIZxCxEVQcKudCjRXRv5CKNHqdJqSBTKgeLRadMjZ/4Ou79o56YgNwJ9DTHvdLqFtWZzYAgwUbxb4pkVhpnQnemcJg694medUK3+mVkIMloLiezychG7VrQ9Y52HhrMaHb3bAY59xcD0GlvHnhuu79jtyvYshWYjVTiOHBZ23UHn1BJEsOH2TvKrmc2fbqqN3Pmbt+eJojz80pqcRprkWRPvrifJK+XU3MgfSvuJPP3JQCQ5IUjGoSiIv0MDt8Hud/n94GaUH4Kc3XQ3zTNld23wD4uLIlmJbewfhbuseyX8EvVNYUh2x+CNY7qzH9+S0aRF7DrAYnAyfzw0Ny5wUV79+8o+f+vYSF3U/HAT94fMqUA8DCGHCyMfXravENICtpwFn19I/6a+z78qNblmU2HDS4VPkQOiFboxQ/F4Nm3olng6qD6EhQl4g9YlV2m3KJ5iVh9gnw9PP47/sceTyu6teGRn8U4SJ47B73KPCBaxbjvRFnCnpRdbkaKLRMvTgZ40lb7IdLzkgDjn93cmFIRVzPVQgUH50WEv8QTli/vcY+iNQX7NSJgLgpUqrAoLyfHvS0auDlOhg0fZZHOBglXnS/lM7+1ZJy6o8a7ZKSimfKJrsMF/fh1SFdIS+mt0oFl6ZQeDgmJEqvDuyqwTY6HaY3d2eCUveEoKCrqDQ0lvFj/yNBz9SGLUAZ9NSsxopH6zsr4zLXIzS3QmxkOnbxux1m6vziUmUVS7R/bt8jfEofbhY8zsn6X2R0/rzc40rdQLsfBRq7yCrTA/upWtOuEw8aKh1SM70hUtCiK417CRXM/pGXrZ0aWqKU/Sy+D3atUWXDsxhwtvkFkj4wKUBTsOwnAmxDVxJgekKQf79ABFakDj9HTS/YkFosfqo+wFmGUSdZ3DZCx6xgMZbqXO3xXDvMAFxLSGJb6pAzW+tbI+VfBql5m2YmcgFyuBM163u7PC0ECyGhAAvNrFcn4MesgtbxB5mL4kbmVTykFv8FOXIAewu04EKvwLkysgJlifaJjMEYb7iLrRuhoI3SR7mRpW288oUaxBuZ9Xttcg74khhvKUbZmQnFnNoJez42/eCApPJlEx2Wiji9v9/GvSsOHr4oa0gVkr1M6NrxpziFub9NpHTtLDJPCE+w0g8sk7FjuMwphdlwaBDxc643Fsnrq6D9Qfvwc7WuDf0iI4IDVOJaad13+wgQc0ojFzf/WnTTOnvTQIEiGqkQcYkLym8Lmg2nRcCsE/MtGHSUn3T04Qx3XSnacqyjOQfuIj4D4X+b/SjEPQpAx9MX8EuW0cLF0jn7ENEC8eNYnAaKEw2GKIgyEzrZgT3rNnX+HWAkfxxLksnkML8a5mIKHDuBYfClJ6zIOhAdK5L5xRv4L6f4sm30QuEpMd2hefDX79ve9h9GABSIX9KiZrI8KupZIsKTECq0C3OAzOB0B6h4VrcvK+lYuA60fg+REjvyXqgqwovZboZ83Eku/6aVxbwt50i62BzHbZ6wWGc92MAcrejqnHfKkjKKhWsLwAX8XbeNNBrjjz7r4NgSWvCilcR77aQHaAiEjLUL/T3HKTCXHmprx9sq89qxLc//njhe8yUJ4sMuoJv5aiMrTQ99w1A85QDItjuWc5orrF39jAOuY5VlwgXUDUm2UkRYW8t3EFVls9AuMwSkridYXKwYLPVqep9Tlf3OK5iLFRUxo+fJ0lRj0VzNQWslZgCCWzuYsNZNzy5oNG/aawG0jO1Wy44HjlrIzq8T+35+0s7PZHPi//yan9h1zBWNlWxG+Wc38R+vU8X41NNrzOuaKI5kzc7wZkvUdDxYemLDWPeWdlfUpFKVfhN7F3lnHN2X4GR97ObFcRJHMp/sw+K9gLM/EdiL9vikt0sB4UbkGvcejIhs5Nnyjd5pAh2/e56poE3ve9qB0mPMjMcSrPo2fxibWSYtp/mSm2wjdf/ikP25Q7ZzNatDXzH6bfBih7s2DXVQE64w4IW/N7zl32Axihnl60TyxTKM0bI+GohelEnmBM59ilfJRqdkVF6zhYWXj4biNrNtYLVYJ14P8Ntlreszf5UDhijlQWLrHASOQ+01nrd0y5goNzwrzByypAOnQ2fJ5ee35UzDuLFFTXTFBM2ftk9cNOAjN3DUymwL2Z1OeeQBNE5OvktWk0LiPijuMcbTnukL+gfe40/YsErDxzY78o+/M54Jz6Q7JnSwAw84iRI0xodvVAM2/9WMdMAU9H4iKJ5S68CAbYv1OHHodtREf8+JLX2lnPDMriVCZniWWW5OQYorcm9+FlEbaTqxOAtUXU4Hb4fFseOKJEHkzbAqeh5ncxrrJMKEomLiBG+oN2QozRUaUeiEMHF1nEvuLw+ZXFqr/8/OcQSgzzDc3+QqwZGV5fr5inCd07Uonu4EEZb7Rwjr8LGCQ4XwCJnzSqve++rRqnLdLDLGKSOJEXzRLV/zrWHcWLObNWoFTHlBJoeBfIcE/kYvu6kVsLJ9SI24ADZT33KR/j31zqD2CdmjOL++hFSQO9Nih0KOgLNDFXmGQKDbYXcoXGXFncCsoVXBesgJpAYok0IKvJqh6OUCX23s9PvO5gqsIii7GZdSJr3eZwkskNYMVdaOdlj7u7uqBEzANK74EBOQDHq7xzSgRf5QmcGp3u7VzMJqXRoUz7XupPs0jLxdsmrpJaeb0Q9GVQqeN/eSsvdKKDchebmn2O4x/dEynQBeIUfxC7FAXfXX/ne1ocD0/ZGeN+mC8=
Variant 4
DifficultyLevel
402
Question
These numbers form a pattern.
800 , 400 , 200 , 100 , ? , ?
The next 2 numbers in the pattern are:
Worked Solution
The next number in the pattern is found by halving the previous number.
|
|
|
Starting number |
= 800 |
|
2nd number |
= 800 ÷ 2 |
= 400 |
3rd number |
= 400 ÷ 2 |
= 200 |
4th number |
= 200 ÷ 2 |
= 100 |
5th number |
= 100 ÷ 2 |
= 50 |
6th number |
= 50 ÷ 2 |
= 25 |
Therefore, the next 2 numbers are 50 and 25.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These numbers form a pattern.
>> 800 , 400 , 200 , 100 , ? , ?
The next 2 numbers in the pattern are: |
workedSolution | The next number in the pattern is found by halving the previous number.
>>||||
|-:|-|-|
|Starting number|= 800||
|2nd number|= 800 $\div$ 2|= 400|
|3rd number|= 400 $\div$ 2|= 200|
|4th number|= 200 $\div$ 2|= 100|
|5th number|= 100 $\div$ 2|= 50|
|6th number|= 50 $\div$ 2|= 25|
Therefore, the next 2 numbers are {{{correctAnswer}}}.
|
correctAnswer | |
Answers
U2FsdGVkX1+isFBVMTaUFIKr7iopP6SUa2jZTt2N6+fesvwGqDTpLc6MMhTC2kkcPSjwIHg76I2AHD4N+XCmL2V7bzp0PMtLeR3n4FFUeC7pboRFgXU8oe05RZ3Qf+e0koeTlgZuaCYWgeuwsBDf46onPK0oPdMltFiUzFs1h7WN3rfjghuwlXzyA02RMLqaf+6VXznE1DYHx/RUOB4iVCgGCXqa5oUDdjeEKMv8cpbtKnVe4zeU5loRTnhuZPyk9oUvzIIZyFKOHS82u5QPJoy2g99fJF42uJflm7f1/PxJ1LXKCg55CUKAl52iqbbf6+owPDvEWtIr1yd0czHeV/YHZuLM2S70g3Hxkbkte3YOxIrwI/119nbCuU73QLrHS2n1uvfn53T8xUGBhQmEuxqk3CE039ZF9e87/tJswM8zxVr0OFKWfG/paLfXtw7JvQEfsWOMf34tU/l0Lqz/WLDXjyYBBSNpCMmLa2mfM/vCzgTG3Z2gl16iGNDS4dnZbyYpJFiyIT7r7Fwh44Fg+ullQ2DHIyfHVJ8h43mHl2CPqxg6NwDYfMcpf/a2ErBAAWKtiFnnesh/mXXKo+LV9zdrvE2nmeAyoofkcExIaseWQddsjb3jsYCAdISEOoT6z8xu49NO3g8RAkR9AtbRhOQnlZyneHZxFMDEDO2tv2ihotsR5txMdhNZxiQ5n3yYEoKGUg+HeGfM8FhG4D6wpaYUqvbvZw2EI5GpQt8MBnaQajvFBsP/4I9SJXQHZpLefV0UdshgP+RlU9y9UDiumzQrV531USR1CWwxfBTb93FcIRN1HnhmxIZx1reFWKLzQ/EbfULoeU98bYRLjidRuwpbevrWDpeoejT36KooZqnDii0/Soo2CPGIe2rhlEfy2sgZqU2JKy/FW+1g9Qay2LP+Sz7G4oNGkZfXE6P2IuAcoYZBnYWWHvc4rMyF47hy+k01WgBLkuZKkkHMJlZrUTaMbbQhOlkMLy62/ol4ApkfVYURxJguUh31Q2Nu7oP4PIA0z3657Sd5JeGEi8KNJ6MgDmo9M/uQi2zvOqxs7gZhUG3ZJP/bphwDwPkQDosgn1uGXI5K7uRKjy+XiCHimUnPxEEGucM3IksMx+opAsOK+YxmQtaqKqiAHk6Czs928jg3r6gwu7J3gzG3Y7ri5OVnvOB3uhD8dWtI/vlHIXMe23ESMqpQYYUNCOba2wrplyrFyBrwvEJBfgDpzB4Fz7962vu+nEzgeY6RcfpdrwjnoQLi6Vi0v6cF5UDiSV7k6hGBce73Pgt8KwkxOpf9Lzhk7rNs6+VRLhM4eeIGQk9JwkU2Zb9JYzZJLqZ5dXXsrFY35CIhwLwNHVre+S1cd1w/YmsAMKLw1sZCBmn5RQ7IsoZTBiR3zegHYC551f4EeYMNJAdzab0TxIJ+AOKOeanHdNU7dKZNQskZuFmhQG5A9h3wdu5HQhz6plKcijRwXOzvzl7yosngFhoScncQszcY67qLE+71Rm4fnaNocbk7k/+DpwZ08lAPuT+D8opmfW2il5boBGTGfX+rt3320YPwJbJ/VAwxnZDh4CjX+nWzoWBrGNjSah/t2EJF923iUMeOrBOk/HEvCNTMlrNPZHxqWwyUP8Hdu9xKHtzOAdiQCsQ+i+Qn1jPYbRza1jTz7fev5FaXhGVHTdtKXv6vSRQYYX5gOaJjzOic20j6jbCXgh/ZVz40JbZrvx+C6W+esnB5pxZVicc++kfRmiEESgIw/zyEq4JF8gvw2DGYoq8V+q60+ddfVvr9PUsMjyHsiEutgYiJzEFbZ23VfstvPR3shsYqo/Y0ACboFWIIo9Lv+xsXaUo9MQOv/PkD+3G1xr1NuDrkX8BbFzc2W/6+1TZG0xy7Z2P3+s5A3ZNxIY/hzu8H+pxJO5lcKzcJZ1lkfDLgOQIlbgLl6h4iEupXxGnQc/Nkyg6P0J0gcE9Z3XxbABsJWrkViDbSm5KI+aKTVV+umfV6I7Wy/FSEFXwNZmM3Byq7i/1/dSHH1MDUWRzndWQRfTLKmabPrN7/EFjXzSYL1QUpqp3/kne3Qg95ZhFggrMHPlk0RHQygHTheMpIo+Dom5DYbj1wEavsx6whX7JPYvWdEDFTfd+vmhXvPG8p1fMGuRWZMU2V4VnK5AsBPZECuh+xOVh7QAyNuH/gNU3OlDksEt2VpUeehyx/PmU815wj4YMM2tcQ/5S7k7ygFqzNRXku/E6XFeV3NxJuGy8Dn4pvZXy6dYyWVQsplVgFzj2FqHB/GcpjQZPJu7/dERM+4APJO1fUKapmP4CiYjEDXxQNLcXPhUSvHieMtjUuIyC56WFLxPMC2xu+MVFWoX4mCLZR7pgoK1LdKRejvof216rNR85kKM9ONbZ4GzYcci06xk05w/n+fw4a8q7zYuyVbSkc5PFkqBEnxSCihP6DPb4wKA2Smi3EIAYpDr0Gvc6Iq0BEF14OASTC2ocyVlDe2PCFd4K7BgpPumdQEeSz/Rpte1uLDJgOigI7KbEHcSrF0/rjDYdJ9IR1vqJbMJKsphpY68RKEOpP27S6njGORe7/X0KS8ZXyVsaSH0jtRqCHj2ZihtlHDqMo6K+3/FdJT0Bpv41d1q0eZa1RyD9R8goyBb/A4NflAhVYnSqfS1LXvFRodzFQKrhh08mWSHzbqmtWjkPY8Qt2jiIQDsyEngjKRKxxDXQtB2Qa5/Q9Qp3KjHFVZfL124OhY9okTdy3kEM3h3UWDkTPlPhW+43f8jAaQ73QKloEbQkaHdHrZYX3EgMtzDjfMgmW+NN7bROWtGo76QWYdObhOYjmT0OItsgS5m6CSOxje8o1NG2zZqPvzz7oZhMq/pYsnqqTOHTm7PujF6tCuDVSboAfpQ8XBnlWB525B/Tr40rP/8pC0pTaPWDF5Synee7Cc5gKIQqXPkgKzeQlefxVYJGL0aaKHtOEKv9gbvXpeE6kSDB+xKB3B9CuNCgtZ4msV8F1PUFbnCncEA33YIcyQAIILvJNsnq+lcIYoWNwUy9ntCa8ZTYaSyDis4D4rubkOk8UVvZl21NZP86S7doGG42rksXTDmm0xlIY8F4uckGNRqc5KyVZAEaFJ3ekMszDWgthEM3QVoLZAH/20oU4tQ0g0LOWnzeYudbrTjjALeB2lYyX/PP4zTF0v+fYLafU1yIXMo5Zd1agwzyDvflQbWqggmq5I0j7BrGvTVkJ0yyRQLz63bsO+nFjpQB0fIAgS9dmxc/l99dizkQMjfaYpg/GeutmeYHnlGRelYbV2GRs7a8j2iXk2qSOomw2Iz8vdgBwK5Q1fIuV0v5oiKUuiTskSjCO/icRM0H+moYgrwkbhe0Zh/ImYeGKlH3prEFLMfvym8ULWPZjFfy62ukKkG4QXhytS/BszIj1QBgcl6XuiZ+EEF6ymoqcsk63otYpaNVMAq9Sv5dAcHNK1kckT4P7LSjA2nwQkkCNXuJbfs1JXR7XGyIMAOoQLRKecp2AYnTy9VAZ3Xr0Rn/TmAyohiu44bOBgAAuq0PtaNnKjkKPSax2TsmURf8PhvAUrZJn/lN2Cmc54MzqwiP7CKcAUKmCtJhjrqm6i2eWJvuRiF10u6LGlrV6Fc1neR5UjIZLFdc6u16AmGFuqeDlrENBU/C1NBg4GpHiCKnUq4Ooj2yedjPXkdvDfiEuST8VkO1KEKFdHVyihDYG7rkm/RmWAoYXbgNWauzdqyohnqLTRKkEg8+cBBzHO64NeeseGjSK19O5+5yDWhSVHKdS6/nGnYSOpV6d8jWUxNHFsfK+VE7Hk6HZ/8mpI2c6xhPeR8a4d8viBAicioPDRoTmRim9+3ZEsqIq6sc3IndBi699+PN8m3FGR4EOovQgeeo+zOBl+/gleE1vAjC5Xqd+u99WC0bFCxAb/50+wmQNxmQQk21pVwhllBg0DuBpBSoC4oGx6NJjJPd1JG3/OMshrMGytgVMPM7uoU3l7CpzRlxeliidg6DiNkeGfCzHXb7i1AqdUWuIrTjMQDg4SMP49Ik9KBj5NoN8pZXTLJJNlpHlVkWbdKIrT+f0wBWVphu14hcM05kBT66Mi2kF2vXSYV56W62OKO1y8kOttcp9rXtpYMZauROugaWBziEwabnn++YnRgUFDFbxBJFRJ/jwSf/1sEToeS1SPM9P1liWtwVhfrhwRO85TJ6BxoFjY0cHKA7cHp70evHIGJA6yPl+aJTiXXXOhgI/zLaf3fpqFgaHh3gY0kqd6NLfhF/BUPYvSeTGOr8rh90bfY9tvsQdbxH7UDNMLu1NSC2kVkvLGymdEKbChq2eU6Ynut5fCxLijzKBUlUjM6f3Fjh0CkB7CpYnvHsexe+I6NvHei1lRRA4shzPYXcIHu9ST5ocgMt69jZSP08RfNc1UoGeciqq3KhK8eT+HOxMOasAPVNkDfK+JYfp4Ip8MGBS0zZ8cLAkEKTOpMBpINeFNkq+1tVeHw/Ut6u+t6872ovwhF0VIp7Ej72L/W3VfBfpxiXOn3Yq6JNrai7jRShV8w741UpgJhCeu+6bm6/7F/iYxGWWEbp8mIDGQyxu9CwTgZiYd+cFourebUqwP4OJMHW7IvVPVJPZ+VT1yojdtshDEmW6PjfIoLb6QU2x/btuBv0hivcfm3pdBXmtPtJOdYxo8rIeKjZJAhb6dEXqI7LZ5F0LUc7pG0I2DMtNxHGBtLRaeFR8YLZsuVDp2cCKFUu+F6Dit7FDSLbOyw1w8inFtc+TK+HIUVXdgFS/gtu01HJOFmfl2EcNBi0A0F3SI9SuA7aHOJeJOG8Ea66kTTPKZdPJPCyYhALGHshK0P7s0iZ+Xb7Q5xR5lMAyRSwRcTJgv0dNd7d7ptZCI7hDbiVMG5I+EX7ExyT4YnYz/K4rTvgtKIPZT3VOYZwi1B2xHupy0ZglWRG5DiehjfC0R908RksmA+zoPbLkBMrWCUflGZlhBldhcu5bdgVQi1xVqg8rXcPwllIjj6t5O6/0CfyniWTLBrdlCVvYTa6qcysew8r4fLw2UjheF1YSsc6reYsGkAunuBboiIMDYpi5SEQFSc3cR4bb1jfBOzNl8x1gznE5NRjEYp2l/Y0Up5Dd96L7zIDSN7HeSnUDLLIBFbjsq69Z68kZhmbnYOaUrvdZ/nR7NeEoH8AnqWU5trkBPq4NzPnGE/SXq8WnbDko9erVr0c4jZg8obJD4HhnY+3BUdX8J5IB1BSilT9/uLlgrtrPoDJX1oqBfnquvXVAd7QkJwF/nZUwdrHSkeP5ONh2y22gTt0o8GX2UBPkAbbXwrVTeUX2j5/AD44GxQFXivRZbmrhfrknWPnpE1TIgZZnLELsiePtcxQa5DPxUazdDJQF/fxc9tiDVCLWolPsxcJSmgyrp3BMKM0bqV8HKqZffR3Z1z99D8TIesM8u6G1cizU/lSnF9uTsqgDIKqradzQk1QICFGc7s2K+2zbCJnz8A9ecwHSR2xNA7uzvZ+Q+O5YaDwrU8ozE61McsKln+Zw5dv4n3Xy0FKh6uxXyF4UKBKDBImgFC/7nLQpYL7slre5dGa2kw6oU+yWpE7HLuUSrJu+vu866zHstw==
Variant 5
DifficultyLevel
405
Question
These numbers form a pattern.
1 , 2 , 4 , 8 , ? , ?
The next 2 numbers in the pattern are:
Worked Solution
The next number in the pattern is found by doubling the previous number.
|
|
|
Starting number |
= 1 |
|
2nd number |
= 1 × 2 |
= 2 |
3rd number |
= 2 × 2 |
= 4 |
4th number |
= 4 × 2 |
= 8 |
5th number |
= 8 × 2 |
= 16 |
6th number |
= 16 × 2 |
= 32 |
Therefore, the next 2 numbers are 16 and 32.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | These numbers form a pattern.
>> 1 , 2 , 4 , 8 , ? , ?
The next 2 numbers in the pattern are: |
workedSolution | The next number in the pattern is found by doubling the previous number.
>>||||
|-:|-|-|
|Starting number|= 1||
|2nd number|= 1 $\times$ 2|= 2|
|3rd number|= 2 $\times$ 2|= 4|
|4th number|= 4 $\times$ 2|= 8|
|5th number|= 8 $\times$ 2|= 16|
|6th number|= 16 $\times$ 2|= 32|
Therefore, the next 2 numbers are {{{correctAnswer}}}.
|
correctAnswer | |
Answers