20228
Question
A shop sells four sizes of chocolate bar.
Which packet costs the least per gram?
Worked Solution
Packet 1 = 200288 = 1.44 c/g
Packet 2 = 220310 = 1.41 c/g
Packet 3 = 125181 = 1.45 c/g
Packet 1 = 350497 = 1.42 c/g
∴ {{{correctAnswer}}} costs the least per gram.
U2FsdGVkX18t4nnvHBrgTqnqL78JIYjbB16iUFMCYBxhZFeVpPgEOEHpGGcxI1ajnYoBQ9O92sxMCns62gmFe3ORWQKFizazNlTaYjuovDXWxeedAWc45Jh1Wo13HGEhO/T3A/hfeCbN4n0D8m9OUioejiEbebEL/rc3zAcCJkWuEml66ASe7L/PQX+0iW4CYo1tRZwlvfakAj2hyJrIZgB9NpzZlc/Pko3EUavZzkBJowxS5aWFDnTFdq5+OstwKU8XxF0u6rQVnlr82oMOMh/fI4I4QjSxNFIloe1F5PSiE4bPFZiJm16l9wD7Gbq7mNSPTUUSIFtA0K75JxPqghN91ku8J21F//enSCWRcZgfh161qeZigMn65uMy9DCBy913b88kXT4Jz8GTz/pHcPuqqMqnu15I903zeQiK25/5ODUEXDJWiwsR7wnlBW55GhrdG7+0nlQh87LF8x4pcF/WRkHNHA9yxWvrIYR3OByrSVMXv9vKaRpRFTB8mKlYRbWoKnbn1PlBMbiF2JN51eYAL+8gtpfZ5+3+8AH56AoLQ+ejsaI27W47hMtLiWZklVebACYYdQVdaczPwreU6+rdr+kDeXODmbDc4LJM7OplcEcewhjzY6rvEO2M5GHvcQw9i5dY7/5FKlkSpO/LL+QSZ1Tdv2uXZN6Q5TWJ9E9g6AOmO94G/Jc8aBbQ3fgHNxVGjYlX8DuxVxQa98wxjWGKbaO6PPDgXTyuHDk3iarshdk/ASpsqkFFXyJN8Q9H4aqbnJCT4gULd1b5KeCQ4w4mAfeixZVMdR1LggaFqdha0+nEnxhbthyE8pR944gih4SQvCm8NiXR1FNTESJo2EFqNqpUmj2VVLimHxdALWuO8HQhFemKtLkuDnOxre7RwSWClmQ4Ia8EBYS9qgKpbuFBAdhpKWUL4sXKDkI+vCS98F7eJfEBeWUVBkgRGc6gkznhSutpL8Z6qYgLDAszxGRgm0PFTGZlu7M9kqOXofimJYtc29UQ49vReglaRfVuJvHQQORxINRuaurIngA4NopDNFkwmKrt0ixDVM6wRbHT8lmmWovxd8rxwCeMysF9Mss6yHY93zdj89zpm3/UYJn6GpTr1qQTd2cikterw3xupMp1qY8o3Jl4NsL5aXEwg5S2fZXa+JQda4IIsjr69xZPUyAGABaaQ4DRiOtKE1MrkJL6hgEnCnhv3482JEfnP5jFf/1qdWi+DS5b7ZjujBpvizqHSmh4fyVnfJZn0pj2jPHh09XrW/UELIQlTOXICY8YNCTwLxuoJ6kQhZR9x1v0NpvGfAEqrjEwvvM06nmDqTBPr0fCjpmMaiEPCmztOOlkVFGvCwg0w5ulhb6GXEi/udpiJo7M4PtUx45+GdeWPy4eIXVBvbwbvEXXvVZVm3osXnX6WfUtSfNvAxxlFQz6PpaXnVNf2oDCXOCJXtEluZ9Zi7Fc6dcugnTzoEKu7XKL/ac9DSQuGRq29AKMQi0cWKSgTzW/XzNEfGNDerBN+WgV+qHNpDtwzJBaiC76tjjRj52koIsgCrcGFFy30F+f4LdrUHp9vXWCjEQK7AAoJPokJnWJDHzkhS1v/YZ9RVIPamQHMqLwYoKn9sUlrjt8WllI7iwZne+fVQyMyghJGBVq0dQHkE1DYpu2068RT1hY5VhgCxyTcN1gjgNsPWS6J14E2L8KYOWdfF6XeRVcrEwk5L2DSe1cIEIB6Gbv4lsdLWo0xHCrr2v75QLZTh1zYN2AN0oMe9DR3ztaYnducMHu2X4NR5J7Oou2aHCX4jgJ0qivQkEgmmNJ8MkfCgAb09is1DB0/RyRgE6qXk1Zdej5DT3ZoQcWoRisFOilM5z0bid+s/YHJBspxxg4bxIn9JyAAnjniy4DNF10QUh3OgGQKEYd33yp0bH2DxNd9oh3KqSBDOJN7RsawLqhlRvteXUDN2P7PtO6EcIFosIasjLb55szSNZ4BWci+mO1zQgCh5rs5JplItJZcaxsY2Ny0kD6cR18BiCR7HrNRJVX02kjU1kFSOUVaHnAkaL1VfTxltRjYSmzxAp2fhOHVi0yB/tHcgfK8J1jBLdJ6Nu50Mm17KzvBgGHJpIbaK5XksNTRbdv5kc3tiEsC2AM7FmRBj4SDNWqbfHJzfLrLn+Hcgb/XL6VerQ2AFHL2SbGy/VxLXq16Dreof4Y4TDgMty+FwMm/0WJZ3reEf5Fh0trVZJB5gXcVAT7YVXS6qbJoqpnVl4BBt0bPPMkSugv4OeFjaYIf4hguiIijOtuRpJpChppraoFR520+QBJEG/m4/aVxOQwIK2sCRvGO2OvF8F6RaL21VmFOBd2QUNs8wvKP8ycExBv1b2YJKVMirtnb4YJnBAPJapHGQDpSTmhQcRfDmTKkCUn/HIHysvP1KG75dGQAtaklxJlIPCogLUiGHcCdAhxYksvNg6SnYe98eYQ9xBWTtNZSPh+0rKLeQONrSX/88T+4Wnw/MqxkyOIt0IDd/iYjvtywMTsaU3r33+kZXkUmxHPICFXJqpoFW3pkQx4ZKCz3verKtbBhvhIjHuIQBHZsn8P1BfOACnTqlYhsCKOVksxGti495ckrbik9CdwkvVSWZQbqWbCAOu5Z7aW9I+SfL2GhZyM7KlxVDRLkROx7KGwMHMMAHEDBMqSWiPuUbQcc3aq8ziTLl72X9Yv5BdoHtI14GQKSyYwl+zE/9oRTkL9sKEZshZIkeB+KeOjmCFNlMe0g0KWi1f68eJ6HVHBSKkDZ4HEvlaG/rI2jncwPDnOf0Oa3ATSS11P9gR9eLR+q71mSrz1eXMZLApXhD4qprKsbXLBpqMnYOD3hX7rg32B/ZVgPx1tP4tXjihcd/zz/6oIQDAYVi59S23z2fT8eGLln4ACCBQ44oy1cSYDHQ6gSKblThJdv/1uQxBoEczV6yJi4ZXq/l5SbaotDZY17JtCzcwxk1wZJu7FDlOSie5xcPsnZdatt8iaPQ29I7BNFK+euDvSVPp9MEyivOdz66+DoOrUTEy48mif7zZJ8ZExNIn6QcDYF6Zo45CTbUr6yis+GsLVZCIMQW9bgIOBIbFnZE3VTkFcVQ3iqk86pOHc1Gqtkgnj17JT/QSjfY6YgbseeRZa15MXn7KSpQPNheDM4bgmhgTVZ4JBWFoCR9sD7urNzzRZ69APCWMJdksmOpIyOp7SMLT3/aC2HrzNbctCjQhBtIaAC+H0FaLl9gIFULr1hKoXfrO9+ircGYDKnMAOe0eDyeaPHJWzsZhk8+FjmPGceAiNBvg9WbnxGGXF8arbJQfBm7wo4212j/QPftcs93zY4Gm4MfJRzPwVzVK0S4tvOAxkA24yyguoQ3AMAgkoJEKem+eYPcNSdYlAhZdkoAId8/GmyFplLumfSY+EUrq11Rhz/4uj6mFqfQToQgi4MGBhVqHiIw4ZOJnoZ+QSuc3vva9BsrTQnDHOvgpypuwxoqb5YN9mvpPPvgjNFDj97cVBYNK5IkJhKWo2bypg2YSuPFuZuUnvbEvvQvn/Wj3mWMUYviwkevFMQ+6q5VBv7A/olf50J0qGpzvGlNStFnTya4SEuqk0D8uK169mL3aZP4np1lsf8u8jdGmFwKYgmTdy1OZo1nKPY6IbrALCA+GhzDRisEfuSGxVN7hN5QJgFWE11fROMICGlzgDhBpSL8W/HuwdUlaC6Ohwx59URDrmrxMi/Rn+HIlRoEdUehayZD9kHCz5OYVPJQcMaShdYaGWCZXMTNpaS1MmOE+Deqn57o87r8o56cApUF1aAY+y/Xq/MHCPsZel4RlajElSfc3nhIL0fx1W4i5KwXEq5wJqy5HnLXr7en7O3fivqdTr+Uj5FMh1CuAtOcn4aPTOY17PUc1ue4bmnQ4/52FSG6QkfaNa1HupFxat5ePlzLfuJ+KNkGLr/GCjXeMx6JN2Zna4dVA/OA0YA8pp79AYtcU8lQ2bs4L0IWRO8OaR0w9sAaADg3g0GblyaZNzr6lNnvbULA5IYQVW0gmk4rMrCpkdtqqiyLXi0oWETMk2gi23B5M8j+2P+r68uxSL2qGlKUv181gmACqNaMoXFJomXB8kz7Byor38GgLT3FuQ/+XzHgE4xvbnnFcWOTdtUg3e8F4c3elndKdLZVD/silI4WiRe6aUICuUqThVEIE/2jb8ovXCVdss/e58ieRuitDciAvl1qtEcq0WrcS8vdQu/X0Igka2pOOAhOW3DLNanbQvhjRlAXDDCAOvFdCesRNBScriKNFFQO/9J8rAZulc328YNzdXdoHg2UdLK4C0OuoLQENwySks+Az9djsnP37/fjk4vfE8TBre2j0g5IsKoifIyA/sutxLX/a0paGCsKim9gw50zQBKGJ8FPzX+GJPIexc4muIAWUWPm7uVBIF6958Cy53mfVVHbxK2OT1GUr6M+QkU1GqhYaTFNYo+W1JnCOp9L4UYAuD5o8nee7ALkfe/ay7CxFTaluAAtEqRbGphv2IGSpyxkWmPT31brf6egF5qe7umeDzA4V3KXJVsn/YWQx7AAK6C6oS5nUay93ZCKeKIAYVOQk1HIo3CDNKojSV0BH5i1QAuMYOg3iDJ/ndNkQkQ9T2tG1O/sRaaLToDMdKX+RlAFCdPnajcepxukwi1j7HLqv5otUkb4IQlxcoYWdoR7UFgAaRE7iQ0PbaS5Ot/CIuQpCuf1vRZoO9egA0B8HaxOV62+FpWuBZMveNs16WuYcBRli2EZYWGGo/peNe+B9SwY4IzwGM30cZoVO7myR5YkOThYsyFuRE1diIBrOsXUZxzwmJ6dutANqqze+oBIgMteiqamhNiwpWLtbAwyzf9RyRPTtg0U8WrvutQ8+gJMeCCOUh4UbWf4/C2jv1EwF6L/r9z2bhUnIiPwx5z18tMhgQfmW3TpH3E0pl/KQVyJ5W8kqHsTf/ZEgS1rVQZOUoeH/BrcZ8v17wkFMeJKhLJxjHZE4z80144q8zfgqqy4HxpI1/+96UxBgbl1YlWdBlqqrKJeFKJAZRew0G3O3s2pb+jQA1IBFXGDKQ9bdlGrB1gDw5HMTs67LrnBblWrhCKjZSa9O3mhB2GearU66Fds4IO5FhNxKkQHWKZcOMDCdQP7dUYOQBj0Ic8JJH9xd93bBosVgLuIWNNR2RzbyI6w9MPJU6vYB+me9Ch6EPBk0VY5pkQcFvQ7Hb1W7xAInw17BTpgy3w9dgo0B4ZgZoXSYmwPdRIqAfMOKOvAUPJKOx3IrUjtfvwxWjFpV7K9qOlydSi0/MEn8TEH7PNymSpb9XFr8nU5fGuOkpGPPzur7Dv4jdk15uAk4WPfB2DnP87G/BuAAMzpmx1TMsyBPhT/+wENMPeZCLPsUkTv6EpxMmhaYhd7S9zNEVVW7LeGaSH8QIYk8HFqpmqv8Wn8XTIB7nRyGfTE3uKswOEIeHHwB94bQWJKx3SFM4rol2gbzQcEOE+PwfKSij4FN8oBMvdZu4Ej+tnINlymcpCoxiAZhi+iTZJXFjgfaJKINdlIEpTDS4DQVxtZpb4nJ6RXtbNELRxob0mQ/UGkEjDY1MN2VczQ0B82G1dUJqA3IZbqEMD9ZZNYJd1Mr/PX/Wm2LydY34MpteZJa23ALpQH2+SEyxfPGLfG5f40izPp26+n+zoxgmeH3iBOojEA8gUUD97afCzzBe1FXtJvUkBHDLoudA4R2jzukzLcn1muXESmIfP1+pf0GwzLJkD+UU/C5jhYguvy7zR0pF8WGOuUjyk1i+umWaI0YQoBZSL7+lImr1dmnE/Osd+VKCjryx5ECrGFbc1KIe/jpRB0o9QLgRRTczLPPGwfRz0eOwdKvbVegwGxAFJinT7+0S8cwYPS4w0kOL116pw/pXzIK2Nc1mstCcOxHoQOBEzcbtlpLgZFlLQgkhpIwAw1VsVfJ7mzG8K95sRIqWpuaBGQQvGVDoSTl+wMuY6/MmSyp39kOIQVr0C25ShjDrAhNX6qzT97LecaxWrgQ9cBwiE81I19PaW8PdUJIhos+tPU65WVpWXkFJq9aGmfD2rEkiojXnWbQORjj4t6rXv62QKgqJd8/rVxyfobEWaWv0/HK3SmkTr5Hpi8NZd0Rm3DWLmIgHEh9SQrSw5TfQbY0L5thy2XQrxaGD41bXq0tn+67sY87anEAilWKotwZswEI+J/LZpErO5juMwpp3k1hYRS+9HJ9gJlBdAUD+FQeFxT9bi8mXIMXIwH+knOCIEBxZwm8RqA90C3kbydDUe1gu9kOj7yOwKMwS6w9P06CLJzNZBmyobclMH8TL0pO7amMSeQ0/ibYNNCWcXFaTiHRb25lMZ6p/czVEGR9OPW5DT8RdHebl6ivWKylH48PPB84E+FCs5P+EIwkRqCohxE6yFknt/doRR5Joj3W5y3p/AWR27XGE4ZRsEI321lIISo29zeUmiOo0zGNb1LRClJUd9DQFksPudIBwgwjGUWVK5ljzEpVoi04VTY+FstR18WxlMnl0Z9PmZsHRxIhzKP0Jb/aMmjh1lr6DQssHPa3Sx/ykXWfmZ7TZLfdORkbDTtDp88m6V9aNh9Q4i+SbMKfo87iarY+Olizf2gXvW+JdNwJQcLHpz+umrMGuAt0Z+7qhUejwQClhYSQuyNoqWUmhoXJP74PyTZuZ16oaNe3Q8+OwY7O1XOTaerfjQCRc8NKBJtM4l1wr3TwVykLqj3OkvC8p/YGrY+2/h9qFc5OxFNgFAGlENSh7Y6IdRCxKo3I/KFdg3kfrqfJy5Coi67VUKc5uku2+ezPqstBQp73sflEbjc8UkTPo7bjFNYopFmEcJMWbjVbBxrw+hpvf10xWjRLSyYAT4f9uubpvdEIo7XaAteUQKYEUhr8JpfypxukL211P6LqDbs20c7PfrgLJNp/AdGcbg3PBEwbe07Cz+9ZIURRy6vpTSSgSoLFe23IgYa1RfmnZrl6bTZZ9CUbAk221iN1QxUxq+hMi+EXrxeYeOBz+tt8greCilUQaiITp6Unx4uUP18VBrLl6ZvC5vzn5ZiNvmk/7OJ4EAcHEskriB446oJmlK/yFuY/sAZI2YzaQ5p6Kzi3U3YzL7vIY5yp/pzIYXzoc+1LNckuknpfICjBbTtrdCWJkzClOxxQ8WaJQktPyXc8gdTYWgb3c+DXVInx1vFjjFX3tyokplfKCSNue82TP7W6SJF65WasXvvwcW5u4O5lYpcjyt5Hv1FVYPckUulHrCUil77gE31oluPLeOs7anipGrejOrXWsWK3+l4r30jAiwIdSn31cgsACpxa3kTFXsh91EAeqW8l4X0+inIzw+DP2gQ7mSqfhe0S4koIysMqKAmd5cbyM0T4KfenQqBjNXpJ7ZhmSy68lv11JrRjfO/GPEq0lzaxB74IniKR/cGeGSqkP7LD/wWeS7Rys71C1ZaJ/Vm6TLBDwc9dK+pbW8BB1XRh3B6bIsgIkfS6J9kwpDEQWDVJ65GI7HgC+WWnl9G/S9Y+JTVAS0VTbtyBBindmyHFNGTyVWrmKIqOB9wg+y21akNZDaD21264oM5D/dL7vRBEC6FqcqKLJCx5DZyL8lyvbUeT7ovilUqgALNu5CrP/JlF2pklFxzYA0UIx9Czrbs976gXaDZCVX9/BamVXpulnOtHvkwUAzdsKc2uzJ9kZHKsrmJu/n6J3pn3Wd6XTOpRZTwKXvs2wk8s7LxInL1Y7n0ywm3yokmusGOoDfc/oakjgTC7Lfc8Imm5YINz2EKnPc2zQWIS8cry9+H35R2PRP5k83CaakIDCKaVUomSo+0dLnlRKXxPwmCCE6iKifNpbcC4CrqhEbX9KHjMXXqN10IH3yWq3Uyq9rBh/Vmgy6ElMPAX2j3wAKcKm7JWeK0OPCCQ5jOx7CvfaqcDe7/QxUlhO5Q5m636mWOcRjgLsuaLW9Rl1KVXUYoCarebEH0lzxoV+4w23WfBtaUg6V0964KAE3EGIIVOhAUfCQ0yFIwjc/ed5Kxl8U35NhHzME7q+jkzMCqEdE7w72gaPmnBnDuMbWiKV3o4l42fYxkvnhkA5XHNV6fn6i34bg3E/PriKv27GaLf+1YEW2Un1KT9VB4bIA6IZ6+1Fts+FO47SygBPtDMHiR77H7lFYHxE4f96ofGTzWj6Jn7iK9cwriKnUV/CY1+sXzO2VTDBWFSQee3ijksrVODC2HIGWELi26cmcVOeiDo7HzOMxjZSy/qjX/ynJd8PGNNJGpTrvlDxutGEFeWHkMxarvDGGVAm5dG6GZI/qPLQL3MdO3vyUCgLpHum66a2c8lRVR2dkJqvQnYcnAbLjSRJUcuXD9Cln17NVtAxtQwaxDJU6Z6jkalEHkHwF7rqTVNBauuAJfIQqwi3wu2D/Wy5ZSux0NnfVw73m94MfKwjXvWqf3pXjB2An6q5kphbYolw06S66CJ9NYbFEEdc7oWGdVbHsvRxoBVUDWqmO1QE9f24VVJhJlHjtdg3JwAKwa3a6ZBDA93AtqCTTwLZSihiSwJq4ipd6OqRxH5S/Crama6DVXofdXAYkp9rX3zYzeiSI/vigIlZJ80x8QXwGEHaA63TMrrD4dpIJBZ1lDSyEvnqiBbSDnby1m6W3NLPxX8KNxw3vwNtpOTc3tCCo0j+H2S/Lp8ewnkGfJJpz95n8pF/xdU++S5l8KbLfrkN1H50nEdN26dLxhiGr7e5sY8Mv9kdxFCBUqIRjf2WbT+MZORrdqVSGywSHKtqEi8GCWifLWq6DT680FMSEB/8C5/dXYhpCSc3CSmRQBVfnJxabAjS31Ly2Np0UBllkTXY3pbAwF6miXJeF8GROjzGIc31KFAhKPXZ1SbPb4+nFIcPXZRNXT7D8iiNHiptdFqzULRFEpgcez2gQCHnVo6uVEonuUk5GX3mYyLtudu/93oAgwEWpu26/XJo8te0xfhyRAVqE5fwwVR27VsgRnq51uB0LV3xM46BMPFMIXGd4irKigt991wu9RlE5jwXrK//yv/XrdO2QyK0KEnKFHgAr79Ou7I7UzHjhmEFHBzAyRttrHI3QVxoCs4ay1KayPZsg40xuT0jdLFQB4w3SoLuB3yY/hugvZp9rYzLrM+G4EaHaxGrqCL2XxTmQ9qiI++sQDdarERWDOZgM7tl+q2aeAQIHF3GQ4+ZIhKP36vHJBsxc//5SLRY2NoFnfaTKw4a6fGG+3ARRgzAeeH8zaoI//36c9UgzwN1X6FFu/MUFjwntHlMnzRod2fciW86+4lhiDSvolZk3TApDevHWeNOwjEcS7WOpvBFWlaWVsPrTnMac7mXKo2q5BMjRyMXle0dAatyQUEjB9wZipap0r7q6rvKhXfJYP9e2iv64RmanZbOZWW+Aalx77Hos4q5/wrKDC1d8SToLM9BNgBCMVC4QEcmilJx0+LC/RC0kl7VkZfi8RaeT7FhsTKWpBEl5Q/b+5vs/3cycnkRiezvU8a4TXqyCTd+ZDTADjIdg4vQLyrLpj4P4K36K5CWDPPWqwl3ujAy8iLG7lxc8Uu+in/x85Fz4oNk5kT0qlARhohrrVJlntRRp+vUMsE1vz8UaGIT1a9N5nnj0/od4Ock2wjQDj4SNFYgrcEI+xjmjFYHSq3+2rxYSCFuaxWQNveUmyUiJBIexC7Ebd42osZXyJQEn61YLi0Y/IDNEAJbFdISnZL7rla2MrPu5/6TOQf1bcfvl/zbHnZGCPuVmiB9qo8Jrb1dGDge4MUxjLQW5RD9sitAHVCh3ZYKS1TmeFO7U1NYd4xeI7P2mmdD6qr4u8zqkJ0uM+zbnsKr9n9HtF9rf9a5IINHRqNVZH0k6gtAW+d+S7dJG+kNuCnd5gatiAo6DsCYAVnSS9Ou3BLQLxG9YMAKsoefOZq2Nwn4jn9JXHV8W1B3omWPv8rhbvjH62cJ12q5X+Trkh6YAu9E/rjKtPHaMFc4isbP8SI/wOz6X7e6ibUIOoSJ4NLKrxvNKna8W+e3R8sMEg63G4VtPXzeMTgZg/kFtUmn2M4RLttaUcYdBwxFp+gB/ZBQFp7Raq/npZ0ouHDo2TMTeSoK1cs/MyqWnWjI/1vj99lGhn9fmxuHfQ6zchUqNXhZMOmFVvLxD8nrAkfVIPuuYYjCk23mGPCDoaczREOSMfoQ59f/5Xi7xGYx64XmGoOgEzZuDox3F5ST/se0HPPtFerZrUg8t9wfLPR5s7PPNBMHC3yLA/9n/wsdT1ck2eXS/9S8zFlfT9yElL6WeG6r+McNDz98BXe7BaM1rxwhjMAReEe9bkjTOC9iNijTRHLke3/oi77TXGSi
Variant 0
DifficultyLevel
678
Question
A shop sells four sizes of chocolate bar.
Which packet costs the least per gram?
Worked Solution
Packet 1 = 200288 = 1.44 c/g
Packet 2 = 220310 = 1.41 c/g
Packet 3 = 125181 = 1.45 c/g
Packet 1 = 350497 = 1.42 c/g
∴ Packet 2 costs the least per gram.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers