Geometry, NAPX-p116732v03
U2FsdGVkX1+Hpa2UjQJTW/yN9gcZWsgydEvd8/cuqNiuf3SJbgCZ9RS7EZ91IkeFRJH71P6xBcMIEmnuznThV267Hsk3cF7LZAzkYWX5VaHP2gS0jm+ePwjLRasYQJTn8qarOIYdVcL0dUZaBOWcW/jXL6//RE9ZlvaymdO9F/mhpQR4zED08LNfYRzxnUeabpZ6QhIZ/w5KtXMWwtUZHI5fUOBtJRlVQC42Qomj/kHlpxOJZ4Hp7PHxTWVwDD1GeCPV4xZkM1YVQM4xJn7TZeXN3SZG0FfIHDMTy6y5ReaOgPY2lVAE5KNKsKC6xjo7yWAtfWWzMcuI7VSB5+uzkU0b+XnrkbeG9a9H6l7SzmJ8dOUr4h/aoVB6BKTqRPdXJN1YwABUKfyTiiNWvY2BbWRN2uQspEG5hw/GsTF7GjEtZ7NnNjXUei235tOa/qilgjM5hec33NdYQjEEXtXoVcQAGHKuauLaSLx7KUdPfWGtSZ8vbzU4jEPzZqKsaG0YuFeBHAjTCsQMqlnDDw/1+ibMUgiYShKFxcnn0Ka9KtGJjKlK0wMznJPGunOQUZR8LVOmgu2ufrxwUUDM9IWboeP2Ip/irAsc+VBjwyjPccFv0XJvgjnLjwn6DnwIX/cyaRO0fqXd4qlGqE0b8JxFXtzrnUwDNGA0JKkfsvTsLRB8LKgW6XNj5oo5VXBHRz1ScMFMbmfjqH0qYO2RkZzXh47teDeIlW8oWhWzLw/Fs7FEH/dOzUP1Ooiat+o1ZE3zrkR2M0wgSJ4GUhjcOrb4h5rbR3gHUnT9RnDIDM3XFB53BjhqjU4XcgM5IPJifscKWxtAjpLdHu0M+OZD0qo5eckGg+gqZ4QL3l7XJcpzcwzvd+p7yr6kzG2c2o5Qt3tKV1DaPwuV1GqDQdPqhStbFp34Kc0NxdjHJ7N2GwLco6bW2ftGY+ords97JmIHdZ/5xwjA6wmsNcJEXUhhRFjBjQ1cYpEjaQnMKT1X9ZzDJjq4kYuP8BU1Hemj3WM0MSdPdpYpuQ9fqcqn7zzYUCNQrBFTm1c1V9LpGVEJLzo4rIX52bEiV13L1QF7WNX7Yp5xXBZ/Oi6Rbt/5r+uHqeaUSao2Ar9f0a0o9x6QWukMxeVJRAbaoXPmpKqmaB7MU4fXHoD+jp2duYfaYcIcFGgL/QnvCSTntabAM2ZuwbFxxBu9uHhe1Vz1TKbQZhPqQ5PLMqYwR+KlG9d0J/5rm4Yv/KOajp9IzXhuXq5XbI5Z7W+SxaauoLovynC/b7bbT54N6fBlVNNXFWfwdtYGZXN6kPdB1W+asb8urXVuRGR1LY8zZH7VRo0daUBdT2vwU2q5qLC2D8FgJ8OXT0TYnc76OITCJSHb99Ro16IWvWQkcYwX0A1MUrvdy5kh21rcyy84M1HdndlRSQZpxUpuo9i30xhKgGxgn0V3mcuuCNhT5HTZUsrSvuA9uBc2FThm1UhYO8awGWM5eECUjRAf0Udvo8pfUXLH/xwhilVG96UCT5AZxDy6mBhANe3RFAnIXutzNjGyA7Tfm9p9MXm0/zxn5MqB2T+IXG59QaMzfahkMetEHhfrbjqRKKZqzuTpznQvVzH61A4qLkin/K5sDw5WqxmpTrblem7PAEHarOr5GANypxq3ymUEW+Cmcgg4xB+OXF585IufvYNmM3U30Xwt2S+EniSMMt/SUOg7FEPBojWB8/LuG1fP/JrYPeV/cU0PuII5dyIjUNEEK6qM7YmY5ApFgmuOyBR1b5Av++gU0vtifbKmwh6Hlmvvt2CxpaTyuiR2OsjtC0TBfmyLS+tPzoeFXzqvBSw6fKPSPrpmQN4YN6LDjf6zuAxXf7Bod11mKyH2sYzxELDdhN5EPrH2+unrT8emosNrPohysVV2k6Ms9GTJacJYYyR6DQsiP/uwau2VJfv3nYK+z/Mv/9NzZPUVot07bJlkOVpLwed17Lf07DALvjSJ9FoOuhZvJhg9P//nzS/D50801C9LYMZjqUSJg/m8+GWPcxQ3ylgHiakhTgrrrNlu3B8jNJun27cuT0NZL8ASGxUA8TrrqzA+trKLiaKtMhyd+Xf9k9CQ621MRCRIq/flLKf114Dp8W8jW+IKaz3JLHzhUzPm54dybx32YCK7JId2Ys5qOaoaHnmebhTEx4vWj2iCasTjKoFQOhzvCK2CIKFm1IZT4hpsIG+AAs99gUw4d4w11jcZjBAoUMWfXVr6C8m5yBWQtXUvcuFKZGL9IZjGGEOlAxfusPkbEIbHsl8MRamevLxQ7h4umiUBZf6TgcVs9jjighrPHbVqtXCe1tLhyuM5xuWt2M86dnFI7yNSZSgaswOUHqQ3T53NocQcQQbMoUs0w3oYqAVD3kXza6PfKeEd+pPQCPrfjO3oNtlC6vhHY2TPY+Du7cT+JB3+rNTLf/OIXw6ogT38MY5wGYWlu7sRvC71e9RkaY8w0XBp4ksZezlbSlaobk6lIDgTAuaaJhNxDgz30g02hZ/vP0CAd+HyE0mYkUAP3sShn3eEkUI7rXUaAWhzu/tgyVJrDlDzSRWl7fcgDaWNXEnO5067qTDcQV3iSj5E7g6YzWaI8HsffFNka5gU08SIwfblWVMij2jdFxLhiG3EXmSD/292n4IG1aG0E4LdvfpU+mCNFRn+ozBjdyrfHf2IX8bq2TymseIDXr4r3j1t9uSBRI7C5bPes2ng4M64hhFDflLNy397dAbT0APKrAMB3ocNL8hXXuDwdDDsqsG/QFHSgIVNPla36JIIdMPc7FgGQhRt54shwsHCmeYUZBg+QloiZsFQ2bnjApM6vRnLwxTzc6yYKIjG30wv7sTq1bkAgfU1M2u1MNHkxMfSA2SCjmSWWCjLgNttc7VudXqsgoJiajbvpbmKCGOFc8+U6Us6D1M+VA4x3j/Eo34q7bM1cA6wDWAlgo+Z1rS+1AtOkDCNPWmFI9KTiWfc6tvjnUsLSxeq4l974OFWpmnM1Y3H7LWwZnh12f5MBkmn/g6aDNTiW0FHddcwjthXRvl6Dpp8mf77DDM6e6phOumjOiqX5WZ2Gku0DdRULPI6FMKVCi0JXhCH+A/0H1slk54HeXbTbYECNxLO4xhgqyjOrjo95XAdUbFVEQxJFxy4K6456cc/C1rFT5543s6Ob/vHw2KALuImbI05M1gUbksS8n7ccQc1CuGOqodDd0vBMvjU7vknQpuWjHkHz1kWCiPBJPoaw/HGMm3vCDBpucHxnQbPqrQ7WGDyncBtFDlSe/pYsbj39vqqXE1en2X9JQ5/EH+FD8oDdxrF6X/wBdSya2cVmmf4MtpYGPBuJIwUIRJqwjGB4ibaHo8e2XgpWOasazOCHG6pwJgfYD9XhB8QJmYjsDEZutmlYL78ccRjy7ixjuYATLJHiuV4YL/2qvfXl8YKGNZP45/PBsSwDEJnAcXVOqAXElvN09JktNwFskYW1lWtk12alsXaZ/LVXJUSXjlNBOb2lSWIxB1wpnnCJKXBqEXJCPcYqYayW09mibfBOZPD14ZgJs7b2wXWpCmLy8I9+550CBUij66co6lGyNUhhkK8YcKf8JWQdonmDo2CiHse/ACEjSGZGxZC3rFBtPSAZ0G9RH+wGx2o9rLIfo4IpiWWvKQhmRpsPhFP9tLodu5UugVNIWK1uUCzZSlHHGt61i+7VY1UAGDG7KiwwJiyzI4N82K3ryC69h4+YGKq/de+QN92UHcMI/W6qqyViU7f2L1fJu40dwihaeaSx6ALMrj9P8pmZnQBvyx6NdLwj4idxMTB5TfgEnro8J1lN2ryb7HS8OvnQHfpOVn9K5UMrI332r9t2k+SccC6HeV/sy3K+20wr/j5qAAJ12KRFvp8mUFQwy/y6/5bgHKKLYtdanRGkJlANq9+IwU3ORgCVERz1fpmWIwx1RTJHzowEFnUdPyTOHmgyxU1vUDU0wknJNUXf87zibbHr8rVsAiseM/5SQyMx+93LO/RrvwwW7dP0Kx40Evp5vmF4di0p9/7/jLzPorW0tMKpvcbzbb7j6XdCtgl9IhP1mSZAhJ9S7RLFPEpbMeJN3dUwM+7DrRYlIbaoT/8v+Ul/uf7OBOc1MTumb+DfLtkbBXSmdaHx2Gu+3aD3ULR8NJfRRdiszFS0dKp5rK7mrFjNb5a1GXt2GSiBZDZk09F99g47kMg01aKVANmRzy1WeCobKXXLRas4px2kYVS2wHqr0sOjZBd836rJyeYCds4mKnEcQl5g+UsCsa7ki97YoqBINb/4uDd7nMS/rDethUNroXnE1Jk38Is/CDo/i+dM8y5Pu11HY2W+COz1n4sjYLKL8Z6Ll+5/jJrNU2IriSUZnilEdgSUYMjToOmX5CiLTj2AhpWfG6QzX8Xly9BtO4Ln7P6mv8vpJ7wzH9BfUxGl5RUC5vX9b2P0syeQqcKnFdr/ET6z5cUVDXaEMDpxeo7XIFIoc4XwUUCsTawzIJaMVSpu7dnGNT8mFH3IVajriu/jeLvaXgMs+z0glk7zMgaucZi+8HPjLUKSAsv3Txue0JoCncqWjGGye6LuhxBcIjFb8GqXWngl8+aOrpHV3+TNG+/xX3Z/Pr5fhJOJiFartiuWhd4Uq/cxNXL/p3JrY76MDrfxyvVyGDm1JmuMlZZj6RX2B6FuGHpkK2vDodHqZUOe0FHfaFcSs9/sPJvUOjJY15eNY1lbXJwsCbUZz4fKaLBORxeUFxTsanFxGwlzRZtX+bDa9x7QjEoHkwRHaAw/tb3lQ7SE9wDOXwe2t6k0ZIppnswjChOMDkRR2WvimOj5766JunK1XPrkz8niL7dDYeZmUHzOpk1dVQkmWqJ5lSQoRFUqjLnB2gxONzKqxQEGfE5oGbtBq8eU2DD+P6I2bMbjHlN6ZV5Rd2McNd5otU4NgMz3kto8gyXHsr2OxjqI7aoWuQGaSIgqrjjD9DRVlyaHfL0hoM53w02YgFYa8zoGIXUOlmcYwUaZM8ZawIEtfnmin2JPgfe6IOqqJmtdalWkZHBQiywglQ3F71NYkZmjP8EA1Qo5gUb60jaWWbn9XYDERp2P9pFKLc92wUg7OH5Ynie9v3VV90gTFMTJDS0WFlYQl4b50Wqf7Fq0fQqjyt+sJRz+jOpFry4+yxb976noV/DfG2sD9NLEd7fG/bxT5MhgmDINu4uclhgqlZ4LWjKx98RQGFbwa2osQPq/eicUFoZQ2iCOT5FsjxU7TUjXUDn/JB7DXlrjcahshtEnwAXffc/sIRXrccbumzqnrtjorBu1vvZj2ipjVeGoOP4jgFhgFFG3BM9prrV7n4AciZG+QfnD/JrQH7wGk36k+6gpi7/jfSA082/SpqIgJSXAUWtvo87ENqNskv8mEKmRXe78nuYyzbdrCeq8JafqzEaQu43nF3KjHTGGHVoU/pSzIBSYHukHCGU2a4lhDsaHGx++O6rEnsCgkx51MyPTTixPnOTuMHCvaJk8tEiQAM9VH1ZJqefR2Mj9VkbFVD6feXYwk61JXK34qvry4qLQ2ayCtF7AU+x3TuKdDAI5Gz/2UYvhz43aAluGXLk6B2EOGAQc1dUUfApl6ajkwWX9h00tlrBE3QrnQhJHvdMG+kHpIsA3IdrhMP6BYyjI37tHi1MwdVrKIl3j5XPMpb9qWChYQjtAaLJXmFqG/XToa+Ks75lZwCoOaIXaR8a3FVRo0U7+Wef580bjYutyqZPTdiaEXc0LtDUIrBSy82P531JjK9xoB1c2l/OLP1NytnRI3HQj1RNLFAOeFvF2owBK78LxzsmDpXRzdw71mwj7JefdIGVL4UeyBsYg5BDUju5FCeFi4XDZEGTC104McvyBCUb2euhCipjl35SQ+YEdVlKZJEo8ZK9GpIT9Klxqws8THLZg4myHgFdExYQ4ssMl5SdW7JhLNIQxuprxBJXhU0WuPgcCcbpzdN2y1PMpKq/1AJkmPB9uk4UUrRleLGnZa/kWX8i6hr1r9lAsla1pQ1Am/pbmjuhfG+sk2pdIXTjDKirEnoi/8jCDXOhksih6AeSU5kxiYQ3booplM1g8fGSObB+Ja73MtxbeftdiBwPiRk0d7dhWq4327nTykbDkSP57BoQRyc07esZpBOqxDrVMKG1qFLOsnxJ1uVDhpDG1M1l0EfheqV8IJG47DZi7Rd/DyzdF/xrT+n9pyN7FF1570xXAi7JOMiPB0hBRZ57qSjnf8qwysBSVIZYbRfS8gC99q3zhNdF8uwfsfiQYhcIkTJST73yquzZN26WSEBA+kMTeQRoE2v9tEWuapLzUIoTELozuRTQ2SBsjxsZ3BIcWFIeCqpQeYahQyMF0r0mJ1/G9KthxNwvhm7MX7CT6WdH06YriQHsFLFB5cJcdRVDhlOoOIhrRq8JuBwiYYC7oy3P50s602s9Nin2cUorKxq7o63AbS/9pbf0nysTvy5LLoILXXbNJytUoIkzQ0bvO4mrGpH1o7QupIB9owvBd5ndzjfZNBNUBxuXxiBYjuY8Kq58hJQrH54aOwEuVLwqC1qXnhtUJMayhcTIp1KZpMTZyKqS9NUnNwDi/gOWXbrLxqKRGXsck+CqPn/qO2nDrDfGIKfUKUmh1aHh6ZSCIj8wGbfm6A0MmXcCGTPJcJM4mVIwFcdVAtMFRh2zSmoObuTEuk5jS2ZTzStCI8z5SOPOs/1aTiEnnkT3CuROuni1xzuKslHb1UdbjjzRFgfIP6Rvnon4NlIZQYSVI0oHPWjGpBUh7tXlBW+NgOQ8rGwGtYQi4+Z1fJ6OiDspeQZVNuWyw6Pe2VnlQFFiGQ5/frc/nH2jGDmGj5PIeXao532j+gc2TnWQVqCUKgN+vLG/WI/JLPspJmFsEkupFRtXWJbZEV+C2ghCu7IeQyCpXQ4U7LpmjUQDCzco3ci+Gus2YZ+0JpZYRhhR6nQrhCzvuhiAp2qdZlE0x5tjzRBPlDMCim3yiP8Z2PRX+ZQ3cP7qn2ap+dlk4sqMoOnzRJfBFMX07YINd132+Zh2pz/qPWEDyJtX9Jv4263qZlZcaEDUjpKNZjVyiyx+0u7e/JLaYkka5VPW6iw1oRPRcyANvshjN2RibxT3gtTE9JHQkerIN3XczNKO01OU+Kz+hvdpk2SRgQ0PzBawyDYiNww61DbJno71oGQlUXgIETdXjCQo/VvkxWD4APhOrO/BR4agqzsUZZoyUv85pSRwE+7EP1VC+xe/Xg+vcay/FHZYaGa2x8i7HAN3+BbNzLX4SCHut92J7DBTsHgPwMG0nSiURBAOkSgEm9oMPDf9FhPtXcS5d16/ARSgNEogKwhypNqKQVCYCjUNvVjpOUpCP83DmBZny/QoM7ioSGeU4l8X9rXAYDIOLbkWWc8EsdbdQKtXUA==
Variant 0
DifficultyLevel
450
Question
A bridge is drawn below.
The angle y° is marked from the foot of the bridge to the diagonal support.
The value of angle y° is
Worked Solution
The angle from the foot to the diagonal support is less than 90°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A bridge is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/04/RAPH8-Q26.svg 400 indent2 vpad
The angle $\large y\degree$ is marked from the foot of the bridge to the diagonal support.
The value of angle $\large y\degree$ is
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/04/RAPH8-Q26-sol.svg 400 indent vpad
The angle from the foot to the diagonal support is {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | |
x | |
x | |
x | more than 90° but less than 180° |
U2FsdGVkX19ejA+/WSavZ38WWahITFpBO0sW3u+NSeIhU172z4Fm9hv4lEWKHOgUGzRKOImNl8b+lfUmY5k9zKFLsipbLfZAYxuPIrSZ2esPf7qBGVQRdZPil3pOIXZ8nhGIvVh+tzY+eD9/2IVTfR38L4kv4WUtmXR7oqEcZrQ2llCPe6hV+2uerWFpSa43VQ3qeKZueP3VFszSV9b9T2ekoPpSbQqOaCc+HhGu7cZWPz/qHX3JOlWE1+mPCvOcgPncP7fdyDRcRfTnwVcdua3O1jOhFw4VS93MAZQztbzjA2o/G3LGE1xpgWKycmq3+wvTSPjAIXHzNqK5PBN5Vsd3AMfpKMM6I6RHpVCr9n3b6zNvaajvseYsWbJ75WygDmf6hawtWbDYp+YlFXQWF81hfG5MNqk4tPtn1b7m5qA976D5DNvvYDbFd2D7Og/EejRO5n/pOQ7pvYpVtcakzLT1kSCzYrXl6KC/9h9pQAfrZ5k9jddXGt+6PJx2NcrSFgU6sI+TVXZkQfRdmIHphI37hv0EGFq4AM1tA3O8hYyTMomv6uoYA1zsHPhHFoGj+/F4WpV3d6Go9MDWHkDcC7zRq6AtjhlbW3RcjMLGOqoqjLEghQDmnDzmq/5G0QM9bM+EDmv9zgePpTH2ZwAaSw3FPLdn20f+RdeGxr1ClZxzQhpX6bORrjRRWAw+yVisTvEeBq3UvmQc76N1r5s0OS4Q/Z0zGDkpbMsQ76T1fxv/SD2w7O1gF5hvKC1EthIRNY50PuB1uHclwEmqFwZMZL69sBCbX7zrA6Erk2TDQXtFF/Tlee/ojU0yLvIjDE0Tg1Pu/esQiECJ3YkkeYtqjKpwvd8IyOTnE2B15OT225VXlDJufgZIbbZeEethXm2LgDP8MX5FegHR7HQOjpe+QxKWodhQ8Hpt8MzF0Cpt5dl7d1gjcbqJ2Ly9JG2dpj68DLNGvS2bucKnTW3LvP4gQE2rakVWkCUaW0J9Iy5tbIcg2O8b5tGmLIlGPAF/xRWn0Th2PtMYiCmVYybp9VNgPZ/ZtINqqaNrfbrc454O7V2BwL7kRU3uMLv3iubf88ZTBgExmNn8d6Dge35BWbm7V7lRxvGwLZBxMK7Sw//0UWcBaHBG7N+OuVdonZGv8pCWNckztmyXoRzEpJ6JtHlc+DU5gJy7QwPKGNsvDAweN3WHQDVNPB249I4LZyEBKN94YuKdPvBVafgd6btQr8wuIfzXdfkd8abLa/9WmQPvsZLDlKybkiqi1h7TFg51AptlJLsYyNyf9OrYPEv3hJ2wL0L4Kq7b+n8trgO/eLNTYYtoI3rj8Ub7Sl+eohkvCjJ77pcVnKYr475QQTdb2CyRibNH1sS9ARSVI1HzizK7l5JGyFx7/ko2Le2HR2M+mE5zkur2ixlxlUDU2Z54X0YdW7oSGdjil3tjeFzzjVUFjVWWdT/vHjiGKMzMMgA9mlcdr5WxcbyIZ6CUFsdiXEDp1xY5C9HJ8AI7MK4/CWagQPB/PYg2QmFTMDe09b31ga+lOgYu2500b1jizOAaPATgfimySD/+dgSSDVtaAiQS3A0k3QupRngfeKFdvQiw1P8p7aBfR7jBO08avxCzNHk2+evDidAihFC3Lek23Z8x2/PDeHDzfsQlF/nkF1dqVV36RL0gXf6bsiuzMnOhVNSL3cKmFfIE/5KCwpbqlosnJxI22BH5cn4y7NcF7adPKt01UmtDaQlA9Z76DauPLFMz+L5az/ZTme36MlhrUggHtA0i6SxBpSjMGEWiATSOUBoeHqJJgv2FyZXYZQAG42aX1Io2AeHyuqtOCxldt48ELnYsGqZfOqXdjKIdccEajlI3kGjRRoWH0SIKsrOHxHVIn7ktbpXVn/UBl19udHC46dJEYZ+3OSl1ea56nSYBlQevlHt14JedpE9LPoN6D5UzTVUMlYr6QjrEh121GT1muBV/ikkLTBJQnKqFZdEv/Im7CUeXTKq/fSzDszbf6oyaifkgldhM7MVNEAsz9plKWF4WoxiiVtDxl+SMiSv/YIKb/kFDsouB34w96pbXv+NA6fXeRmKS4ZCriSCpI8f0CNzimRk+DZ3MCC44ga+hzx2A0g8agy3r8Sv9nOp5Q4Ps9+YSP8Yi7G564+3q92U1nP8+bOV25Ka2qFO2NY5cwcU7RL3WCmTPYm0FtAy5H3IsYk6CSmTVGV04Bb07QtnaHQtmIG+ZN1Mn+W2LxeGRs4pu+elMpKIyBBGGMszXxeDlrnImABePvnOPAflgb7CNyt77bNsOeSvHkKZm2mRiu9Oa6rBZNhjZsnKx8TF2qgPday27XxfkpYwTecd7PEveyrlRGaU58u3X47MNg7d3QwknQKqox/f8J+Q6Oi2ucx46JRUtWoosLMBCG8ClN8+CEPKZa9VkL+6mlVZS2ldfthccsmT83SNRXZruxdoDXDvOfl/g7D4L18iupy+oAzJc6vyt+iJ3ZHcttmR1a5gGaHe8WQb7Y6fhIxujup78UQyLn7236yfNDFBY37paTD9Iqp4AlKwTxRorXWsm5wwZYcZOdatxh7IcwnDCwyPzk1lcWOwJ4BHxcLv9Epq6/QHikanXR//vR/elzeSlu949NGaa3cyme+krAIbfYzHLrMcfCOp0XKhqdnULCdyJKQ6naK3wZ/T23pbLkA6iDSdWxUPDCAkQCFX3tSzmBqGvF38hS2klRtaM6AwaP9xI/kqUGIc71RR5nxkuR6xqrae0THhcS8XYWJQWO3F5zE6ZXXvzx/m6dHlDtWMG34DbJqcNOGNJLxEXpWzMn02quSFIdbohL0psoaRezqFW0d+3QpWDTJOUQtVkreOkL5kAhIYO9zdJwZP2r0lRHcgEae9jyN9QTk84Z3UMF2Lr4IGyiDdOh20TPX5hge/dHXS9d8lrVVLp6IIKfgeQ1mFWzR+xm+oBjLnhPshO+WAp0kqOhrrzMKUXfITNJz5nSmxJAWDMTE951k9SWGbgnvox5GwQ6blB1weSmPBbKuVMvgqt4Y/V5R5AxUHU6WJ+se5QIi2NH69b90Oh1pp+8Ia+J8XeJ8YREBNokfXUWwhLtuWmB19jvaZu58cMyrBwyMQMXUT2k4I2JtVxzCYi5baKiTaFAQpKQmps0SmRKZvcsG4RalKveCEFvRDZ0G/VFtYDBtqihfpI045XCcUhquWo4g3LY2MTJrERvXzu5Nn8RMl7Gfbv3SHF7koc83tX3EWI59oMCq6+BbN+tU6c46+sepOZjT/znoXm+2Mqfu7mv9OoLWHYGFywIEAU/KR6qDIOwO1bN0cU7F9JKDP2IhJ7/75Rq6f2dv87AL1ANmu2IdEtT+8LAeXe0B7+wmbHYD4fUBo6V8re3BTexIhO5T0tpMvEQRfWlt3HgHFBaXwaHqPPsRCTaFHou2bIOn3+bDHuqv8nCuSbNVwDep/VEoGGJgr9qsfOlpeicvkparuCugJ5Q2+Ti+QjZzrQN5ZqVfGIufbsSEGZjtYK5u64gDBELD28quEx8nR7APtoPcP0g2pPzCao4I3pJ189nNfpfktbNtulHscphIE9RJIge931jJbdS7VVBe91TubdjuAlGkLVjmKMtgo0n1lFyWmUtpTBy5kO4w/LQeVtt18fKoAIrDjFmzZYElsm/DEFOaGC/YIktuZ9iZKmADnVKDxdm5PmWTBdZ0eZMXNiZKyLOoZlrL5lK+2ckDfc7GjAnnaJ5yUCA9zqpIcpmG0QJE+mKOpzwRjx+cdJZJ7v3KzeT+OD+7iR+PErbwW/dTkHGr9vZ0RrYRUDKuDh8ZumqsdGeMc9MRD+HX+ehHF6bFz+5/nmmsuYrF0rEcFAY2LTH4Fw6BJ1cIezjEaVSCl1dPBNxb/u2Ny5uPsJWHedbGUOGzCleL5z7ynl3TBY3+Z7G4Uleq610AlNvTmqwUxJ6nHLLverDEA+L/QQiCkX73VIFqnPeKvB+2lsW7RqmZ5vgkp8Bk5Z8IsM5aC8bqZ4KrCYXf6EBPWi5qv5S51bM6bgbwfaH73jKm3h1DBAwi+pk/HYLvmU7dP2N4hjZcroEdirsnddYnQQMjuSvJNEuSKILnv25US5LESagJ7tBTPeP2TzmURhHWY1hWtW7PrSjRQTBQ9Dgg9PJsVUyMEPqEWIDJAADPt9IAOdk0QnWbJNNDmIcTCBUEe4lKZXIxkwIgkbDOHHyCFV7Ado/TjswbmllDKYPCGv/XVahXyrSCa3efWF3yt7Ac7DEH/M22ETX3s6vgESS05I36sSoCbettsd6xrbmyUM+aERq8QUy7rL6ETg9tnDVTZl7QfFSbFNAV5fyG9RRXpC5+CupFe90IYNY3FVO4vwsDf7LwYJUktfyGz5GT7DCX0esWssJth0UeUgHRryhHg604ezlqqreN2AxlNK1zILsVzqclxT5pX5AMVqFK3ukS8jySu1MtaORjr8dczTjXUsY7lnwOuxbxFhJ144YbWLcS4LhVrSSYor2M0K9Z4l3gmsd8KvzpGgwDodEE9ya0V29o0dpkDVi5oQ3pJ8S1nFX++ynSqPHJ1B0WmWSLnHjarh2bYPaE+9Kfk+9M75my0S9rRz+YOoB0iLe/AjUGLkooyYz0BIiyfwZ2Rwbbvg/NeB7UbyrsOItu4tws3TTErFik77a8Uh0p5B896+GcnO2PqT+TTkgIC9234D0UT5GOdKbiYgKkDVvyQypqaCYtsAhgUPzNi56qbkb4VRQocbqFB+rn6S51L6VEffNmdBQgFyk+eXP03a+Tt7l++2DRPdKfAfzJeZzmNth8lJPhbAqw+/8zIgWlEO3Lvi2EE/9IlZ64r+Wxaq7OqgDgnD6FDupcihT0B9YChN19MMBipBw6U6B7skyEcjC5yEv0V2MZQagMkrYaAtuo+HfkGiVa2XSZq2mGwCETmafSbR3Of9gzzxUpA10notodMxtQzhDYN8Ig/W32F/zwrpqkYoC6q32oI71w0YI9V3FgwmG1eCr5lvvQOz6mmBEPbYikMiIKJtEimj0Qr9lnBZDMa9J+R0OzT3Cl9vUxBMtyKAHZjums1e0WNHT28dUQ+lxxsoREBte1RwUpIuq/PVYpfYUzmyOAuA9N7Pns8rUiPLU+x4Ecxlaa0b3fbJc0I5kDaioILhMvgZaSJFw1lR4Qh3JfaDlKV6EouTMKUjFz4nWDFfxPYtV63D2QN9WYTfwQ41790czTUayYhKHnZE4KeHaP2O7EkLFAAP6KCiUIbj2JcW1xEunMHUnGN3zrnLdqD9iEmeCp0n79Qywo4XrScbOYlZsNEeN5J7rPXlWWkg4+6JHEaqxROt83T9ZpAG4VHJ4SCjKmQLszGJkV/qGF4iTfD17Ko/FiQA37hPaddJzZcubLaEk0D1p8PR7YJz85XnDXn3U0jMNI+25iJLShQ2wqS/Z2ZenH11ipuVqKQqJz58AnqfzJ0yWV5M+vs4II0qAwHajklwWjXhQc5cFRoyHObsol/sH26F2jm6rRaqTnuwbex+MB3rTy/zlJRTTe66pQQvdB51Zj4OQyOF0tdLKK5GhNeqlU3nSDcqDb8fybxv40CNEQ5kKqNvWj4cw5btVAPARZ6C3zOCjkYnueu/tfHgnTIJAMfeHGZAsgQ111W2SAyGJ8XxJthigaVYhb0P82u8Qw==
Variant 1
DifficultyLevel
454
Question
The angle marked x° is
Worked Solution
A right angle is 90°
∴ The angle marked x° is more than 90 degrees.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-I2-13-v2.svg 120 indent vpad
The angle marked $\ \large x$$\degree$ is |
workedSolution | A right angle is 90$\degree$
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-I2-13ans-v2.svg 180 indent vpad
$\therefore$ The angle marked $\ \large x$$\degree$ is {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+wk/n1dWlVtPrVhryd8T3uo6P6NNw809h9e0ZOcPdu58ravy5TvTeDwkA1aa76p/Gs4DhrYsIeG51CPzll19oBB9S6rhZfrIeF8iR7gQShq8GSsKI5mfyi6PMv/OE+ic/0Hr/jBkrq5F0nvW3ZnolTicF58BUAfSqyLstXfq/662yNN+Q9bbIMvF8M4rJPpQ3kNHCo1giegEbMQgkYGKxwuprfnT9yl9iqOAfDtBPEhiVd1zxOtXE1G5sqtLUWV3VxEsxwgvLvyNjJ30Zq96KA5E6LRN+ZcYDieREMz3S+Wswd9BjOOzkgDmfVeYUbUs1k33K8Rj85QxnaKzEdUCG9hNKWIKfUjf1H7fHjHqeg0K9hrhbXZoX5U30ELDokQbLfRybMiaGUNgcFbWvBmoCzykzWBtBTPYFYmyX17ijDJdEwnvBlDuWgJgYyAq0VFlJbbcmu1rz0dCY4a6fip5bFudtlUNuIOafBPYVEPqIzRHFpWUdMgW4898XGc9gIGb7eljeeiEHFMG0eN2iY5t4oIjbOxJD5fdqbIWCU58WLh41uIdstb7ITl7VLmhrke9/aILONfehyQOtH+POcLNEkvcK5JMxguMUehz8xz+2+Cm5wZvg18ZaBgyUDsMqKcs+NF8he8UqQ3oS7scCeyU3nTSYEJKWO15hvqZ38+lEsHi7RlHNxJdqrhtA8R5GCxlxBdhHOrm815GevCszwPDAL3FQfMJ7n6L9gH2+/d57j0LG3K1V5ebdNY6qWMCBe85+KY3bd7KhWflwmX3jVzfse8iAhSXeY/ii6RX4gMC27OwAgzabrnGFMIhke3WRNLlvaki1yJOOD9yNrUr7l65XbrUHoG9nfDY7wYCOVCOAAiOnxHNzL9LtXAZegM/mAqqEZQ4qiq8Clqz+d20v2OsshyNG0sDqgGXuUn61vtQrSk23Y1UhbREWxt/zJRbjacR+BPnWWtjlzUPDWXnQkxY7WWZ01rcEAOc0DONlxq0ar7cU40N8PAkaBdT5+XHCU5RkjOVTmgrZ9xTlN041kETurUfyB/sYSDYKfdt+QbrX9EIAvpwJZIJlnBFuaB/vHxH0qOPEuuyE71aBcEazbClBQepVx8LBVM6/47ccHA/WGLEvKmUZ9NnRpR5eQGkJYnww0RCBaMPcvrS9JvmNBAbiIHZPtFYN1r74hdgBfJUhD3N7Ks//TnHDFGtp1Kcv/DT8i/kTa0C+iCzO0sCWzwEh8n+KPRI/h0emiJG/sHSqZEXS3p4eXGVGPIWdI1+fwrG2J+LnKikggPX1hGewSHhiJvROZ/kkj0cNzEIRx0MjS1WcGWLFiRVfadtUTLpLrK9THIa7EssRYBBHH8Mz8G1ivUGXP6QjqMXkEKxhYFBq/HY8lyFoi45Itm8+1GVSsWgWtHUinf3eMSRTAzoxlB9I2TPrVOgkCNz12niNBWCKID+L4G7it4E7lW75Hk/7GWHiyH0X2Lg+6D5l043velYPyPapLvyXpQZaoj/AIVCahycWeXT4hd7KXR4UjVQsI3Qgh1zByEjqnT3mLf4cpLnIDe0Jy292lKIeqH3v5LV/Q43NQSG+ZeNOfsD9E/ihhEk4kkK+suJaT5w7P3/TIP1iBkcHJFEDGWOTbAI9Ul99MjCN6AWgS41cHwXm6JnztPtSt8X5AlhoDdihmRM2rbjZZ9hNda5XbXR/B6/R2wF5T93iXgRbsvss72OGwWCp0xk6/zSJI//KmPBtId9Gh78M9ggj6Iy1hXHEWNSg3KnuCo3RKDEXHoKtyi+aPL7ai8k1/AwQKhPFr0GxRZwCqDZ/xKsX3/1h3kb9Hsq+Q4fU9Ht/rWZuE+w8WJzOA0mwtDQGPGFuwU2SNepnN2jZGNcsQzdlb1OTCmYAObnIJFVuiIS/5Qg33Yij/rGh5t6TUQug0c6NZeAYN8A66q1Z+PwMOf33mVG85PRb9DeMARpiVFtORq6gBG/9pZO2cqqV3fGXaaoDwddqQ590ncEQ6Ue0FAelnSsh6H+oGJ1T6qObBMHvtlqInDuMqsqv9vJMiUm6hoYg11X1D+7AAhfGakn7Is0ToroD3V+jNFpdsqaclzitssI80haLEUhgYi3Fo0V7GlnIaKo7DZ++90dhIwHJDi0XBSsy5tnAQuZw60YW8CqYD0of8IRuED619e1qJ9aquBTqr87qmn0I+1DcgNYQU1ott/yMTpa4ZVGxCQKpuA+iDgZNIHRnmkoEc/OsTz0uMBI4IT4Ji4ZaiMcwdUsyn2M8MCTw0Ct/yNaYVgiTDQQlHGliGiVIW0Uein2x+Yqhvt+PALddr0mIX1YZmUYh1lXkx156YTuH4OjV7Ckh3GFtIs1FvQLBeuwdE6qB6JpiEW+0Km1JcHJtxMxLZCwcgMS0ND+qGOuMZBKLv1/O4O/h0iyYzf8echdwWngzZrwhyHisjhW3p3Wz0QXRkTWT97o7O2Rael5b1Lvydv/jLItx9aJ7xJC0Yx/Ypdm72SYHMaSYEBP972zhBWCRi7pWQ1K+1OUQU+4Hj180JGhloslfuqOJ1xJ3Z8q5AUAqsQflDojVFGOK2Y3H6yyG3G51be/U9SqEqdUsgFLpG3JeBwzkq2LTpEM6FYBu2swnAQWc4YDSf8VLQtf5yoAw8Wo9QmF9DYtUkMm5eHgU7G9asC47T+Hga3VJ77fb1UiR74TlNTM/mdq6y8MDSszmCAHUq8mc2YNGdIOhBFqQaVGCirllPWNSOmrpuJQQNMpGAQaNFmkDpsLk8Bxvn8t4WdYUqjgyC0NyYMs1Qca5HvxSyXQSei52zjZf+Ujju3hXmnqkHMADAUGp9Gq9xQ4l1/EQ/uT/ni4gUD6JR00tnRHWE2KRpCvVSdgNQuHBxC5hh6qk3k0yhD5i8fGfhYGS/T6+9d9fjWFWBtpy1awctCDKfGBWwdhD9/o9VNCGJQIXLBg1LzHzxBiGnk3SFiO9auxByg1RgVmAD0mpFn4Hip0MLx7At1bqXufLSNznzS0BCymoGBaGZhPjSQiyOMIR4nnjVNy8hk+1/R6uXvG9MEZ79zp2wtj36BS9TrOnqHxby6Zmr0pITFd5iP7zf0iq7mxxxKG4EVwqxo9XsX+3OFIRgg9yrefKYllgd3nCBQyVCvd9CpVv+DBO7CgvAfGqy02jzlnBo+LnINxxvPbVVLeoSuqZMKyW3dyfLnfKTNdLotVRHuVEkax3/l+yFlCmLNe7qj5T2QxGUu2jqyp2n5pKe2GH2PhRrD9v9Pbob76lwXn8LcrQu0uJ7+Gw8zdJMJerfsk7pD5vCyyoSdWmPhI78IheOERNhHcbN6d+E0iY8FzVJOpoMuVslfWURUbuZWoZzAEkNcm0WWXbL2fqsaPLKl9Ipoy3cRyXYyDvXG0/EgA70HupFnBNXxL81Qrijefou/EVBjfojwSA7iLljGDuxFft2IjV86IyNBu/XjAU5s0BO3r5QY3kAJc2OADWK9vZn8mkch/FGsU2tcw0AwQPHqwd0JTmbPljXka+yr+JM1YffWgdomOfLRJlFxGSish6bNq4v1hIGgKcFT6YPiVNgLIqLaEMwaDOyVORcfLL1vXjNu4P48Dq1DKTUZA5AtJyiD6hcftix/tD4LuChrHGbweJJBG4uUswebPd1YLR15Flh0BekKfV3lzvkWnGOvkZUTJRtyowN9Jzpi3A3c2jkKSqdwSNMYn+WutnuuHbBvdaVfop24qtzXePwKgHhDxwbRMOdIAI7X733Uaita6JZWtNbwCohRLrBKSbgVpgJ5aP+oS/o03t4l2Ubqd3FgPCvV758RC4aEuy3LkqmcljobfC30BJWmh807updvOPgR8s3XuZDCEBUXGiE9uivilh43XYR41RZ2kwV0iPjAxLUG/pmld+tpMx0pDMLc6mBLGacZv2foPSKLuEY2J/fXAHHJqf1XwpxfFZN9FiIRbc2VEOz+ErmAlDyiWQtyiJRu76bnXys1CNxYvLxlvN4LgQ1ijwWfQDm+heKzs24kajYgFTgs5512FRBg3fuaFe0k09xsUW3555xbyBgQXgYdd5oFjvPvirK7xadqQjuwpu8P0Cw0lAs8rsWlj+jelZOceEVWBc8Ux1r1Tyda0OaxfFZvIqqhABqzyAuOoGyxpBFKE8Zad7kU7wO28tJMJhB2VddrpZgpO1gsFq7Y8hOx+BiE2tkDoCUfm24yTC1laUkrwUp9hnX+CN2BLVYG46TyoIolrW794Ld90tPw+FrB5AvoIqLFuH4Cz3lkXSGBG6KFl/wPTbk69dBKUpfg5lH7g6i0zZCURX+MeqgD6Rhy/YrxCkSawYcw0WL0Sbx6E6j3EuOhY5KiPcTzW/+d+k81KKwiYXQRS6dthW3TfYbQFh4alukh2CZTTJMLZhwqRAy+46Rd4Ta9vqhc6PR+sHpBiQu5CJATzGotA8FWFLNFiAC1EtaogWK3XzTEM7ZznfCiENfVtSYpe/RQRa6UahGGgEKzLeKzI6JuRkht/7z7XkQVOLDo4PJEPrTv3OlYa0V+7OtRO82vUFJIqfeQoRwW4skBsT94I9GRQmeCHoWjDlNTWQPdPX6F0+3IM3LJvSTjDA7mp/wsg0ybzt82DB6bhtZCDjk3FMVWat5zQ/4zlojQriSgHsKJxkyVtQNddNwrLan/xoHSeErI2K+Z6XWioTlkWMdK6hlDIrv/s54IGg75xsm7fj689ddzO8IC2sMLM3RGoUWYFdn3NpmzSkTvdIpGzfDzynj0+MzAt2pdMjDW5qEHVKej6hUlzNuGkKi9xULuQbk8EofncnLu8bEFodbRsxNofBdwhNqflmq7mfAGYZMdSJaBxvz8nfu4+hUf3u/k/EkY5/PDK7NdaFUWLggaKjwQtIgwOQyU9KXVBaBFYIUngEQ7MAtD6+SqXx3mJfzUeW2gssN9xJnLpZ6Sd5iyHE33gCtDS7GV2Dmo1YcC4Pgc/L7A8LraffLJQBm4/SmHcLZXbc2AToImjCkifkYP/gtbOsSZkN4WJzpp3GbXDwX02Gd9qTwfJvrmN038iakVaKRqW51mpCHfGapUmF8N3YTJdQItACujNFFWqImcmn9dh/pN0VMwNNXaNvlVnkR13abPpOMAlP+ZZlvdaBAzhKUxSzBvGYioFG99Yr9ruEr+Qenqj28d6IXoMN93TklSBIZT07jRpihMhq/on85VpWIQIwD9+05wNmLrgyswepWa5GThA5Ez0CrGvjDTt51sWxtvh6k/adjU91OiAS2HMtBVMUiqMwmP/HX3F6jHPWXMONfWC1LucJWM8kF77hTS8GbBIlFMRUqjyruJwvLtci08+OtLP2U6riOTkjsYAybyv6Tapus7KnMpmixXMREJ9oZOMr213MJU5IKxfNgQcExEG9lydmGJqSpzo0RZN4egUGhxKDn80h4wveYHaPpcgopjtqyHd6goPGRRU5MDmujVNzCPIFrF1iCdbI8+qlkBlCfdetlYMWrnSEoy0ONw1pv4i1x3ZjpBkb3O8r9mQtMWU/KBK7yPwdQX/napB0/zmozr8tSSuA0MsQxir8tNsUXjaFOTUmG14RSxmeR4uAxw/d4O6wPsyJI54NKp3omgECi++BBUoHnOzTgM8zmL9YKeyW5A1TxrrJtptOb+KQCtZKMRnDu2TA1EqQEyC8nGPfwgPsyUQptLLFaRHDwCeo4mDy7Vnfik9TfFs9ZeKbOkAoisWRTH9C0Zc1Zilw0RzPuOSfP5y6O6JoYDiRTF+2vM8FRzMsiIPAIVkqx6RygMTbm7w==
Variant 2
DifficultyLevel
453
Question
A door wedge is pictured in the diagram below.
The angle marked x° is
Worked Solution
A right angle (bottom right in diagram) is 90°
∴ The angle marked x° is less than 90 degrees.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A door wedge is pictured in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-I2-13-v1.svg 160 indent vpad
The angle marked $\ \large x$$\degree$ is |
workedSolution | A right angle (bottom right in diagram) is 90$\degree$
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-I2-13-v1.svg 160 indent vpad
$\therefore$ The angle marked $\ \large x$$\degree$ is {{{correctAnswer}}} |
correctAnswer | |
Answers