20346
Question
Students were given a survey where they were asked {{question1}}.
The results are shown in the table below.
|
{{object1}} |
{{object2}} |
Total |
Male |
{{number1}} |
{{number4}} |
50 |
Female |
{{number2}} |
{{number5}} |
50 |
Total |
{{number3}} |
{{number6}} |
100 |
What percentage of {{gender}} students {{question2}}?
Worked Solution
|
|
Percentage |
= {{fraction}} |
|
= {{working}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX19Lu8nB6Zh//LmW4IC9kKkx9SO7lS1PULHxWAXJSxkRgkeMxNhD8y3w/3jObKMSTJJTfJheCXPELLNTojmSCXbtmILaGRGd8p7GVyT22iwWxP9uf96uohFQRrZKCt91EFYls3t4qDLiCaqXe1LuZ1KFB9I/SzleJSvqACikXd90lU1Lip/V8fUv1Rss51Vpl3NcNeO7QYcbtEBMouK/MYX71c8CPpC3KjZ01tmXldPVP6YFughWpfB6MPpt+yrH1Oq6cisHP9Ts3mPqphe64HoPG9AXkss65I/t9mOJ8hGrEDg0oEmzMlZyRsJQHFmMr53PTAAlMSH5BML9D6omWJ7PoT5lqRg/ovYfN7pYrBzlWuuwbGFu0vGHRFsp1wZR6Ak9wRttOhTAOmBCCVsY/13WTCJjDx1Qo8pljK42NymoqVDQBTMgu0NxSqy0CpMFvr0qa6gjCCQfjVEfcIy5vj+dwEcoVyQfD2FBc+NLYCY+8xPVGkWiv+ctrzTq/+AK1rzKc8yKL686cmJcdNXIJPpr4ftuvCrqrmpBeMbzN5oqqIra4JywjQHi6QcN1Th5Co6CtkoY70zYrN6PiMgWtrkPKJDPfwQc0A62ax43NrUj6qTO6sotFKJA6G1u6DDiH98TOKD2faqzNZ3a8iJTtTgFw+49a+AzuOZfyBVaVqF/fbxY1HyLZYanuXM5t6epomIqcS2LC19fCTT0ENJ1d/qusNIp14KXWbFWdNwtqEuCJbF8CAJ604f0Cgwjmdk15JQHUZ9EiOg6PrwJ/7daWhe1KEghuqGTC1c1qyUtxGfNKBbwVefSQeb/0jxZuKGz+bXHTr6+oKeggqWkh0fYXAiL6b8X+kZj3+TLegG4ymSVE898o9bDvOpMDWZmmS8K7P9cdencf4GFXy6LoDiQSaZMtIGZSIyrfPHc45bitpVb+WNV1Y/qOtj/wDLpZ0R5iFZISO8a+XfM/EAY+FjyPTzjg7e3m31DCMBWqLy1VlEwwAx8ZbSMczXmKbtsgm9LX5pJweMIRYeHdSv5N4C1oq7vy5clcoTbQdLLFCIIz8tgNomKrWvuzk4iKx6mzjqxhM1MLtrIftRCzVo6KbScRBlaabRQl64rsv3mZkPxPdWtl4oNdEIZlEMqCHzFbGCnEwniKRginwizkOs/50BtiXRUjWqtjZ4u28vXnNMNfXe267prUi1ErPKqzMWf2Nj/st1Ky+cIHRfLQUGGqGtOmZoC21N/t/Hj7epg5ThAaGsPC8AKN46E4jB6b99g/AnDJswKToChyzp8gR99UuswiLeq3ErJDPPAyncuhcioxH7ooUP8pTzVA4Wci5p0ZsLD12wzvLC7nA6piQGdm1X9FfPTv5lUMZbaSZsErTFw68H6Vlvd+qG41o1/T2nMQy5jCsQFxB3JUkvgkEH9ysn8vsVFgE676jTBUZADQ+H/Q+xPtuJMHTFonr+csoi6JKxqmGzJHPE2nxVPRbmsUYVQ5HU010QgEagUtTpz+dQNuDpit6xVK0kg+O1ry4HVVvnRCLXnj3vsQ21G8ruyH7xCb02qmtesMeua4Q/Krzlg3VHLDrmtWwO1JxAJNxV9HvV3XI0M8L2veIVl8S8EeYsifdC4iatmSsUy1mSI91kt1Ud88kRkh1aWk3ep4vRumyqkDHjB7TZkElo803Vf7XiY1pGTVlc+LAzEruz8fvGAHdjwUt1JVyfdE4C4BsTbCoRLzTl6JmFG/etpP0RiSHpimyBWVZo1yV565x+Vpan5Ij2SHfHs+qKdGu6CeHlIg5HscG1NQoUqLtbMw4KkWbaGnmkDZn2SMkBvtaXugfEdFscEvU6lQZIi9bvKpVSFL9px2WyKXt7UM8dAS2LZNMJsMSFLi2Jho65Q5cFtcB46JYqlt2C+QRUiWRFbudyXEAqXhPjVM8d7ik19aUY1vnp724U3aeLS4qEJCePqryK9JPMw29yPnBltsj7/rdw/bHC8nBtJP+T+FNU5bKuEfUJx8WIZaJk6Gc3VicCWixr7aRKz6REqjHRS1NzUszchm/J/7sDuAyq3XvRTXzqbpIs+KTmR13N32H814RZYDmkdvbSHs9o1Z8QoAvRgkgnbnG3EabTWmM7MWCZzB0IUWHhyTVRu2FklT2RKLxvdmaszvk9H+1+GP7W+gvSYZC7t3/4tSyD5GMtvomZwSCv3xlHMgYfynkBS8coEkGGbnx2ApqXoJWnxBShNtZH0mC1HzsJzaoROft3wPu6X9UA+UoeWMSwA1B54GVb4ghpvCFUkbYc7TE9js8ZHxLfzPX6uw1apjSUbpPw6rpxJFenttd1xL187t8/qhWXATFTsnKX8qpitMagtP45APnpcfneiV8/H5opakfad1eg+L4u3+Hw0q8OgZGXCXT+TjFMdBEpzNwomZVOe2IIsrzltxfv5derY0oCySvTsu8S536HbTISCBG4ChUT82ZOc2IbwKNRF4myjxdMvJDF5JLnkMa+T0vnpbP+NXM5PlLdWSgRpx8POcIBNaLUwVdDNieujCnvKNh262Kqk2+1uyCbAUo1XyTOhIkR3sAjfeIEZ4B3dRbUAMcUzlATSRrG6dtcqk08TzVqQN3pt6dBWS5ItpaOi32LbwkUmjgjVDR97/dxNpnwhNbOPRaEchfYtunXaLDAXRRqaeniS03A2iJrHqtUd0c/s8ocuGlpP1+brre8oS24G8X+dG76RIsD2KfVaj6KspOImrXDDfEqYjFAX5UxyRazn5FflxgwDFpl9k1dmRfXNqkSHAXS4FaNU8PrNY96MRXQLAO2G4VvGtSN05MVPzRe1Y8jerK060XhljkqB04lIt7/8QEayqeL8Zm0O/NvNRVxoV8SrUbwHSEB9TlZ1C/QFW//VO23EKnzqIxX7vr2bCWkzqDburlSMITCTkJtWvh0fevrZHo/6c1roAJIKniT4peheOBs/zd1TO6uEAbjbWCdSrVJee28/xTF7G/1/L7OsfAFZyQ0Tx78SKMuRnQGi5iZdUN9MkXSKU/7cK97sFE+mWKRDi49hJr1EylG/cJcdZLIdWfZqJx5vvqW8KtivvcsDv9XJaIE8P0RD1tf/Bz3fBjEeXsEfJGCdV4vhqk1ipg5ZpLDXE2Rcvdo2/bx7vUg07WaoFYAWx27K9CJDbbcxRr4xKFObsnrVPreXTWVvbK7LwPxs4ucxsGzMXp2tLNIPjMElDDbRdDULSTsikLdka0RiVpGWnDVUj3aqlZ6AupRfuJ+EyJGZkXWqrqdsSfd57bBEb3VmDn01D5hhmF5R7cL1QYPveAfACrQ6ibze+c7BirwUJociUzQ9Y7+BmMwY/db9b64SzKpTD/8des6Dm7Zj1KGJAuGB3GfRQyVp4kteA7rLVPWENR5K4FRrHkIXjogorrKx/EwOr43BNOZhOHJbMT57hF4aqHGiO4sC1mXLjRjzsnmU/BasL3c66eULVswg+Tf/2gJk54QvqM8S1PrDaQk310zL70yTtRDmD2mHkn7lVDc6AqtXK8olqut3uW7BmwFhLj433RuW0BiZLB1FsF/7ghEfpHrR/m9kZegYyFnunfQCcsvqQcXe0LXDJuRP7WMrKm/idnMLZ017HWN/TaIPxImXgy1yeX3RqUzHGuXeaBY8D6UNjznML0lLfmdfH6J99bVG/EJzlt4AmL+UESJjyLHjpIN0fb8BAYM57LkOofhxXyi3EU/J7B95/UHknZbELjqWbjGRlTABDQd8qWs8n25GhZRCcEpECda1fiYSEobi2cD+bgQkK9Nr2tCUtCWymXwADlaT0mjU00VT8m5/J+kndvChEDGEUEZnr1cL00BcXP98vFoLh6iR/eS3CZ4Y2JWTZ3E/71lUP/oUGIanqlU8n3afTyq1ISdqKkhmas13fjZydpg2M20ZjrP0SbYJLYeze4gMXbYld6yu3Oozp5461MU4SHDGPKzLRgPMUBh5Y03LC1mJmbfTus9R13S/8wwpR8qDEbZrXFxzmJ0YkFfhm/ES+lxj9Q69SytBVV8xMyw6LEAckosCY6z22JJbD46xWKrDPJ0PbzqMlKvIHQOrv+3JIXfW6cnA7qfhxJ4Kta+rfxn95ECdSJK9/ZOos6X8H8ARF3SCJ8oRS0Dn3HGEXKEUf3lKHdp8hvLsW7XIIyPCFWydivBPN0aE9KKM9/LhreXCw1mPyuTR8HwjR64fdmgfN901FPTdRzwtI+9PinbuXlb0LQkhiEQs1yaovk+ePKtfvYtYOhesl77guao1MzoMiW/NWqGjQ0zzXkuML2sWpJsykE9x4/bJJIyzMCNCC4+b5p6Ku9fo0Ti0AGy/vOd2CH4NPst4FNLDDAlFCCYnZE6vDeaDd9BAog16u+2+2342p3tfeit+zAOGQsaQ5nWVXxWUlYuu1RIBh45ZM+LtTllrAkMFKUU5XVa1RykAzr11dtpNCUrIEzsw+WZqIhp7tohIwfO9CtpvrMGXLrLC0sOxpYwP4loxrh00PpbkgbiQVETcWHCWrxjK/7tYPrW9mXVemSQJ6FzkMMlJR59Jqfqm6NQSv1SxnkZULMNdvY0vFCuC6ktbIoZt6FpdUn6xaaCn29FZdg0EtPRahQ/c1MAXXrud/65KDSJNQQhEZsxzC1ZyYMnbzAaO6f1dVG133fJcP15EPk8aR8O+ahnozDYFcqmWCpkudYtUZN7sV+U+A9pU/JCkGhnM28U9BeMmKngDPLvbmv/qj0jGnyGCCQ40zVr0QGw4PHBfkEzMzbvqzMkilRumWRVqGanog9rUhVF2O2txvHV32WqJHpNuAzs9XrHw5fAExdjk9Lu6IPUp28uFKjVFCHW9OSGdjWwGFpA93flAxTkuHZ8wmQClZV61khBOOXQtHmUHMms9RNuJ627IWP/NMwbA3YNcfl4v6PXrlubX0lnrubXvxWiwizf/ztUI7L+UeUFyCXIm+kp815D/98BZwbmMDCtta9fPVsX9XtPqEXnPJcSADutAQ8f01JdGZ6Ng73ADDOdjAAW1l1kAaw7YYPin6SEfcVy0sIRhNEuJfgEodD7g2eIKonBNIOwxSNgLVzebBTjkoz4rAiihsdTM4XcrsGRx0S1CxJdI5ejw6UvYMs/soJAEjKH148Kqs+PkLc8vB0AWS9ie4nXf1//OKUBvu3zfQa5/z0k+skSqA6qz0yyhSvV+XQlYiTIAcOpBsQ2z27fJ0nQwrN5AUoa/yLreVPPQsDCyBNH8PN1KHlr3hIjB72EZKX95Rmafe5vKB2JEJq4bSfJrBSxf9WG2sui93NRYpcU2vG+9qKU9bPQFSak7rJ0IZqBIM39RtdModZmsmshfMkRZ0g+5EVy0nhxpSuaSZe7wsO+gLGTK3XKciklFLn/h2sXQq1AiRdsOAcYntzG/pAjNrveHTSZ2CozydLfRMhbfGuXKyzhNinSTp8YoRC0iGRY4+sthRKm2QPENAAWx5vIiKEYUSNgTySfQJ9Q/XLCkvcB1KljLYwK3wQ2VD92VUBeB0soo4jG060TY09KvMarVBDmtRd4C8sa7lnTJ3ud1eHWJyIKDzGFRDCxexS8d1V2aRtmg7NynE3hmt1rbGpTuYK/dc2ENULxsOSWFPSbbYTfdDnjhiC6g/2HHRpBU/j+9SYwXhc671yczEVZJED/iLOOLMbJJQc7VeDWWPS3S3a0omh0nL1SNWAbdvUw7pG+QSFZA7oJaZPVdicfiECsjSHGUf4KiuuuRmZXutpdEsbCXmDtV4N30j4YUoXgiByKVv5kw+9IOGVp94Jox95mqjZ/SJtrJo4aJrpNPvFZjtVTJ8XPTlI8ixaWjGb5F+JQSmhdlu8JR0L0NOcG5qrPiCzA3zozEfiYA4VIRLRloAh/GqgvdghQknY6idKPMQYf9wAX+cFnydW8Hpwpj6lwb3/KSRUsmMooJo4YT0crTmbjq9RlZI7KZ+3MYPhSUnUg31JgC5hwLppv6+41z5UIWtaxZ+AzQ75hNVxb7lehCpqdLEILANukv0mJad9wKFWtkuG+yCOnwYG9704hfDdnQoSNTZzLezhjgm4IxRNPbFthKpAiTnRiUSTRCJw+Ng5zfSoRuVUSMedsSewNifKWVlkeOkVs/A5lBYL6qRnSv0WI/+KDr2qelkD6WUIp7VU4BcbYFnMFvmDjWATLF4UaLBwdZGm2XUiPwfe83ZXPbmCxFnX/z7wJsxe96e/CcQdw7FVLn7DU2Zvw0hzDabOfDNTOKg8FSGHAO3gdmyNrb7DT0UgsU5rGqIwXZqTpVW2zulKvAXNaJYAgwLcYpHSu49H6gMgswQ950qKIf2atGKZYOSLJW7X1kqaoT70wlsir9vVMdTKy+wSNUVezq+BrHTdvMcdyXHf/S3Mn8hKtR0a1TyeCtNHeIZgqIsRiCDczUFjfzfJ/39IyfqHcvJgDTvbjec+QIUDsCNr41CN346OIs31gvuKxqOyJO/rqR2xrWpbiLtL99ieqM3EWD8wImaN7y2Z3B0tQPhX9TDIvWlO4jcOUP//oriHQrNMiKBo9Inybu2gQfYPS4cfWnssxu9TXyYASi8q7UPC2GcD04qKiSNXEnWHrfkdsnblPw0ulL6Zy76SDdbTtgWKntgBrRy3gxu5ISR3LzkCCcklJ8BhmjtA509gDOu4EKkvbYg6GR1PzaR+jLgc308rAIXCwo8bODd8x1Fjs9ltCmudovllIQQxC/QBpMTskZT+L5oCV0ExNrKyRkLRmaiycJ6b81+jq4ni6fc0EoYEdmo3hliTtu5lUycdntq/G3txKUfmcmUAq2bBxj8wVg1jXaqRyXZf4BbORYxQ8BUEGRVMykPy/60Y2jmKqCjBBf6OUWlDl79eH9kdNxIVk46gcAGcYFHS0LBJbFJHSsMLDwZIQWuT0RTEasIrJ0+rYXZFBfmXxcJw3AmSozaX2hQk35VTKP/y/2d2vAneejmihPAtNvSRpDxa4SzGJZC43Inh9Vgvch4LqqGeP5/rphVf9hPIAdnuGCgCz5M1vsrfw2HjnPqMHWHUy5d5ROu4UDCoP2pjeUXPz6OIwJmjLf4DYv99got8/LbU1aQInspMk+KHycKk/oUU9jVYkqkTsqqL6L1vDb69BnCVi0xwxK1Gyisaa6ipD0JA5Hv7M2af2XMFmodXo1pwUAMohu3+03A4TdEDp/sJQUhnjk/mMZmKqKFerM3GpD17jpEarGLKqAdF5NVt9/kk+ALZvO9ckYv2f/rcvxR4lmEtyNaxnAHCReMLxBtQWG44RBSGsoHC00yRP3y0PfJTGAFr9zsjWJ7fEvERoXS6BDCtd1Ww5QfGqzmZA0EsxhxWvt9fQL9K55dPDhOulo2uolcauoJsIQQL0NLJOLIsXYzEWKpGzKGZ39KyXWa5FhPU5004tzMAcy1qZ3imTHqvxfaXlAO3qrOLK9KLIJaBgLAGT+6CPPGJccixQwm5+I34+k8CxO5t8gReO6Fr1/zzUowpGMSlaoWqfKFUwFH+lWoTUZ1BIxREIGvt+2F4REWvfgxOPujx1vo2lVyJIJIovmGoWWeBvuuosPWpkmxxYpaYj7O590xjS+/yjSaM1xeHpVPGt6maKqEucG3stXWpKUxo1S2zgVISTIbO0mwUsy/VqGgRtL65vfmiSVABV+EJKzSoDqpPzC+vValCKpN3ipdbE8z96YqbjtjJ3muNHRdai0tacW14ppWb/RDMBDNYv/9f5VIYNmZvzdIp9NQBia0VTTfwx/hQTgvpU5Cy7/Fj5seTN7cNipfIbbbE1XQhomqUK/itkZcrgwKz5u/a5l5b+vQO3Eug1rYv1I96XZDlNKMErSGNY5w+H2MLQzzQ+yXM19u5L5DRVrkZrRBOwKZuFScJsyZWWva/WwUPSjkBQc0vo8D8YGnrK21Z6J137Ke5M+tt4foBc7kDnpES/kLbIsevA46EKoIg23hI3rJhviqH/NH1O5mdnWgOPjJeiehrmCMSO9omlpznjYn9ldF7yNhh8AZedMJprn91VxZhfpyzp363sd9UseBrPYrL2dl4O9tO37ROEazzziRO4gTB7xIJHwweusU8hDltxTY0IHgRN8wNbJP9Q4HAa95NYU+POCf3/onVv7B+j7IpFj1IpLBCd/D6C55t7vOrneuQTnx3JhgL6BdolH672EK8lG6wGEcjMZ5fHy7lPqNVCsMcA4SOsTq1PyGewyM4lc/4v0rK/wQ01hKwkXityidA0bCK22Nm03hVhrlN4MdVfZIIzkJ7r3KWFrQXrY0G8wCShCbat5/viPzAOgBg9cVrkKensemPkzIXCeT9FJQNe7Pp7s+NHcEj4FDnvOb0bN35Vzv+oyEQZnz/t5fdNuAw1Xk3Q566UilAhQZ/KMzjN5GYHyA4CM5TnLEG1rLf2So8d9XrcBAf/9EF69Nau8poyfqaEf84IXlkuNo/8o+zKqIK53alPnZR8IE/vQpXNe2+Pom7Zc7ErBpY8bvQHeM9xSEPY62eb8PI+EUizcsvn/1TWWFBPxbNCgUJgys1eqgP9Mq08stAV+FNS+wLHD2tJDNyK92/GSxnc11YHuqSXwYxMEiDTD7h4nRl8kKalB5Kg6F3x6cyZgP+qALTNlp91bPAjRT5Bw0PzFdP94K90J+x89hvyL7Uw2Zy/ktdUJzt5PbYCO/c/xHZisHJcUhgOn71iJ1GQBue0rk0KuHCEmMcgsSadZdXNsU6b42SRxsDkw6qmdATzZvk5gI/g5aA1WkoYP10l6vPRazbVxtvjv3nxX8qxtM0abL7WCyrwrLd3ZZa2L6iVBcNHdKyspD+YI8GlOwKkWjqxk+6e3+Sco+0gjpK9O9PsBtWtSLFXsLpaNbKw9+iaYUoKR/4u948QxUSDikqCFwwPslq0R5kxdrH1W7eCUkjsF34UZeAKyBT2Y9h88a/qEZKD05tjaOHeT5UYI6mmClSniqUz0Pz4enJozQWIAQHfGg9V2Z3+RHjdplSi8lXecMzu3h3lVxucxZwtiSD1uW9cx5F6pu5dL/l3vzvdiBLkyR3t32lhFozHqmkA+FnS/mOkqRpGLH5r2XgoUwOaR3YEOM8ai3GTw10ZGdjfatHER8IgBpgzKkoCsLGtZqA/ydoD6LEZwIKaBw6i3GIiz4P67q55HBK9fC6czPQYMpJ1b8hcMLg+vwIfM9oExXNfwp28eBvadPD9Y7DA6ef4Cc4doJjsR4KhCV8y53sLKucEzE56FHgS6+zuvF5z6s/xE09mMS1EjJ5c+bHc1A+BfNpMyJv9saK83hmdUAYKSyunp1OHmQC02uVlNtj4wEs0C7x4Y5z37zyBLapmByRHQXN52ebQHC9m+7opnV0UWG738W43AG/dFCQ6bAT9SazAx1m6plOztTtLW3ZzUjuNml85vsenZoyP4EwhlS2e/E+sUUxsSsudFFGumduQL/jqHUPKWORmkienMURqC3+tOz7MUdrrGYa7IT58ES5NfQFQBIaeZATVQD9Ixz2eYRPWC96XCN3xGIAPSb3ly0Cfl93WA8AayPkBBtLwmZrFPAGLzPZD6OV6rYaLYI0A9zC8HIVex57e1OniMTFcIzbJ67Kix8vTdbNM94uAK+mNlZjeddBouwGOP2AK+MCBqhSneJvTx1v5I1wPca77jLOzd4e98wA2kh3zM1L8i1mDYaK3VMGg3dJGY29bnIKdv+O59ejHROBoO3Rc5yjiVkdJglDBlUneOMvMhZ8TWJ67Z/MZ0duoxWrD9QaCQvuw1tGFVNR2k4QqrcLxjv2FWtRDKWyTAuhhErCrh5PUg3DiRXdXFnIggocF6yP0SezWJEQq08fo540mawcgcilU9Wpio1ZcXyUzS6WM+PWOlhfsisDopa7vwEFhAM/DHIkVCDBSul2jFM6g9D9BsVyKIgsHDtjfoVAZUvaYy4kKE4HMO7121vSHPNp7yzSEMPJbl9MPGnJBklnd0n5Q/DBN2tuMBsKjDylyYY6Ltk8P7GB5jOk8fDpv2Vh4J99nmtz1W7QvyR1l1hzk8svvT6WgZT/o25oHGV23GWkshwSkMwPFyZNNosLFDCr9HsHKTr4rqbPMMh79fzCtJiLB4bmcuqNWZD9QHgtjfe+HXqjMYzjvn1tbqCal/z4MVJW1VkLKiGlRKp9HLYaWI5UHFGEJ5oBtm5EKWwS41ExVmQ/TG79EYlU13/Lro6C9FveSMWPI/Em/uU0B8jaRjmGQgsMTQDpXNy94pB5qDA1jPBg2hMsX0fFDwvSELkNIDQN53RXTFClty2z5MW/q/lpknZoZvP8Q/XjeVdi+hfmegLrGBxRlzFFnD19OjfNMtbNuC7xTSOHurwqjXcJkI2bRIRrLhMo8=
Variant 0
DifficultyLevel
585
Question
Students were given a survey where they were asked if their house had solar panels.
The results are shown in the table below.
|
Solar Panels |
No Solar Panels |
Total |
Male |
31 |
19 |
50 |
Female |
33 |
17 |
50 |
Total |
64 |
36 |
100 |
What percentage of male students did not have solar panels?
Worked Solution
|
|
Percentage |
= Total MalesMales with no solar panels × 100 |
|
= 5019 × 100 |
|
= 38% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question1 | if their house had solar panels |
object1 | |
number1 | |
number2 | |
number3 | |
object2 | |
number4 | |
number5 | |
number6 | |
question2 | did not have solar panels |
fraction | $\dfrac{\text{Males with no solar panels}}{\text{Total Males}}\ \times$ 100 |
working | $\dfrac{19}{50}\ \times$ 100 |
gender | |
correctAnswer | |
Answers
U2FsdGVkX19KWCuT8123T3w2oJXhmMrbbIlyLA7QblslBDKo7uASBaCkEhJhVieGHDnCxHtjfTgkzl65MbEVAaTzN/xy8iWZ3l3aCWfZ6Fh2I0kGMdx6nal4ytH6/e2F4+WwHeTqiNielgtMu7Vvc/oVqlGYsNjdaPDUJ6UnYoSUMOfTnvPlqBOLK17grS8zKve/O/8RrlBPVQTVNZHQlf+ZN9m2OemQgE18MvjOsnY+nDMmtCwCQHmz3EdtkmcAaa7ayOKfY1uaw7YUD4Z0rOT8urosQIKrCJZTyu3D1S4UPiv9Q12i357PmkB/+vidwkUUr+hKQlXkRcaCR9KeBD/BBQPpsYKtGv2H3jPoeTVq8307IEVngERUefHoxyhZzUu9CGlNzfuuZUt/9dwNxHAHLtnLMFIqJ6eF1C2ocT4/GdRREmu7UfrsVGvMd1iUzdwwO9n/tpYgmheVTlO+M//W5+bm4wFFqBgT/hO3Gk1ICHPxx4hcXHiI0+LoQtBQRWMUZEADGeLE2aMZoDd+xSIS7YQY9W/nLLLN4nxHOqCY+J4leWWi4ag19N8YPeVNgsnnAlwNyeYBej1PhpICjV5AyD02iqjCI1egpxFj86Seoq/LvlTcj5hZCva59GiVwO/CUyhKteJSvo7GK3xvJPklw3jqQzBFKFlm6FoE/6IF+g2iG25soukbTZNCeCJpinwMdqGL3Xn56XsrrjTPSzS7idYYN8/qOkK2DCaoOS5UJlXPMVrfAlsqtDUZh4vGPjv2mIFhfki7lwN+eOpsQ+zPTdHUSVbP6vwF0NUhsslSR72OgQT4K1wXZBUUehcuL0omlY9BBMaSVgQWQSMjCcQc+TQc+VzNr3m1Eq4WdpJ2kyOIscmZ6MJf9Y7gNeuuiPYWV7/NBRSukpopXUMfnafO9BZGDZodQVl9OVNs+g1K7kWZnxzbvpuv9VajiELN8N5j6J87RiiB/YJNA6h2ecRbqPJQUbY5tOPzY+ZWDBFoO9mYTbyCDwAKnU4vhSh7pXRO08BBPhx2t7RQ9xzfz/qs++dsKWT9s5Ei4C9bK9a8TyfBp3d9kkQuf/K5dzL0vjAGLhQ7w6jf1RBAW/vDwHb6ll1yds/TzSCUQh5tMpcMQkftaQbk88vmxA+OLU4aRg+zVL6XgovDwaeRVEJypVWfQq8Z4LvK9nKeKN8clhHIG7o2O1M1V5KFqhNfqOrY1QzDzPGf0tkDG0wG/ZyzquetyBMkCYotzz9jSjCuOHm8JNj8Dw3Iy/blP26AFKA8e/2IXrN/80VSg34NqAl4t8zXhp9882kOxrPSRWuqElmV6JnQD9ulPv0etXSOZDaaDDhgi1FbzL9ntY+MLOl2UeZ6BtULa9SevV7FTorq8uGfuIBW4kHp7hiqRDyuyvuBz02udeNHujia6Qs7Gh520QNnAQ1VJrKnADRNcROOQoB4rFpXdG0FgpJmNBm+O/IEyjHPvEn6RTt4Q2PsNMwHZCrYdtA9byUh7sIQZ+nyWBVCYTEBLydZ2mn1ZxzHzm9532ixzc7g7YiaO9oxqrtc+C2HR3/NGL+0CWYHmd8Iipc6Mb2/2e42pGFxBOf6zNz2mNLFfcIaRaxaBdIvT8KJef2HFi/qsI8VhqoC0tlavBtSFztPONrLW2Y+c2uN+uJpDX7J0CaMQu36P0gWlX0mMuZ24j4AViV3385r0hYz1FsQK9i1/mKifpuNd29MqrQupArL5jNow1cDyhMeOfA1NoaJaoO9lPmurU0a28eewqAiRIPSd7qrO3Ngx2t+XtKFC6qJdgzmiUrJbYkMFl4sqfJuqJSmlk0f1eKloXrRCXnA+WRsFM49RdCa879aGY2F/qcaU/thjibvpLd03nYmFT5ctJfjkPmIWcYqziKd5v9lF/GOwC3u/eMd9da4Go7ygt3E27z4a4SOzlrWm9uVc5mtmB9lJ3n5VueSNHg7sK51BzzQQhaHNb8jUtGY6//HszkoJoLs83TMJuui9UAnzYxU4jdL72gUO8bB9FPEILZatv+aC6xELz9jVURWeDQfwKbytEK1R5rzCMhRuoUeMosJX+ymicxFH3rctwJYitKwKpYMORlN7ygdfLl91E/aGPe49wkBI//aJ/FrwaSAYLoBzbJIHWqe2fwoWoA/jEiPthKJIsmfx6moP76YFKlcPymznFsTwyqpFJ8477sqDmddvpkv3gZq1iXMpHVl1kc7HRnJpZWo7fZhnLRhv2zu8HaBhyGiidEx6/Gd6GYGW5ATfxllICtZHblLL6nyDSQADE9rgV76rv/VLyYV6CApIrrDycPk1o0Xt9x7++FdSnXf3OJ1wxcBPMjUiUGkB8d4+GaDHXEZeUmwPRyhekKaHKTpd1sMt8bjODXvjoJX1PZ7Y/K+2PU3LUI2LbdDBGvgJgPlH4Q4e2Lt0MhEOxX7TwuLk95zEVEqSw0gc997ezuMd1fOG/bI+CkG1N5SjemBr1G1YVdaYZ/zSSB9vea/catZqL745rpEwr1vY9O73COgQN6ThF8013IqZ+2KuDkyKcKh3KDsND4HewYghFHypy7DZf65gg+SKRcF1Y67FmgD1Rq2rXvBG+EZPpGhGXDQBzz+2rS52tErLGrU+ibnXUT1x9Np5pJ/+4uzHto2IbMU1gDbjHcwhQ99OjQAxDjkbsO8pxvSoPTIV28sIgIZraE1P/FkN/IJaMDEZH59c3DDGtgl7gJeCG4c1rFGCh+A99Za5TK3kG8fMcweCzbTbvq6XBWQNCPsJWc0r10Wnv0D/kfch4dYEzGWZzgKLkVlJO32JBw8pmqQ7/Tp2WKaOuiHkTaHZbuKPwDplds6XAeO8FuLFRZW0edqVplnF8DmvN8NE6PqETqfzQalUvrKgnol045MLKse6kj1M0/AowFs8tOLdIai/PZtxXEjDjNRl6qdTr1mIAaYAJWT1li/dIo3NafhcrP9kS1dnTxIy/u7/JDTAmiaHQtT4sbvXdDdX7YRHIiUT2NKZSm1iYLGQGLLQbyOQdxtWcz6tBz6ONo19QCLiWu1jYy3SWueBuWmzGjAvGpkNTX/I8w+BZPFJLE+/eWcjqzS835xLci08eROSjOzA9ymXezkh0HVAEWaiP1Om5OfFUr7KRBLLmULETURNT9MIOzqigHMxe4YtSYbAoYeQ9+sEkEhS8D8cMo6Fw6XcUvve4eR3sZDOk8pWJHpdrB9FImX7b2uf3Q3JxMWmORnRERe/8DRoO6wVFFMZLu53/Yo+e8Lgb7IfK7GnhB8tGq77SPs95ECvMkMC2t8JJrM6G0NNzinAl9rmFobXQdJ9qs9QZcQC19NHBqLdRBQmyNM16bdhxQj6rcLHKqYZ8J3rDQ8y5waOrkn/ebAFqvcCqAk93JcoA3lNX7979B3resa+dvbds6S4Fx+5hR7jyHlXtHMzMQ1bHeVkz2XZ95sykM3pK9Hgs4v4Pp1PVelkRby4fIEWaitfY+grGPPrN1w6F0zl0Ld1sfr8+/VfKqkt+V0Wm3HDFg+0/DMUFYyByN1LafojlJPTw1RiXj42YhujnyIvrOUlMvxTEgSEXLV7Iza+/e4MUFOXwVvV41TIeUlQflYujXrdB/exFUWxfJFgrp6i3NcKi0YGlXL5Vy1K7dR42ZzJHVKnv3+6ACknK9pmzD5UsLcubaYvDego7RP3h1PD5E4jMV6rXx1MHSjxCN3tL0Rpj4Ji7o0mOLDMJ5DjQQjpU7/I3Eyp6u7h+RkYo/pKF+6XTwKvYh1JPrOxLRRCvg5MB7J7CiItAElpYR6uxRWNLW3B3MONuB5GAeckJoIkSdC+n+5TSY/Gdq98B8y/kEVUqAiQZEq9grhvHYakll2Y8yY9PpUt6G+FCRUfOm490ktLDmsGqxPU+HtlYnIqRcZ4c9gJzkUhzxA818SMVC6xCKpS2g6Cos6cwe5SNwvfq0xxmR1fXLpY+e8OnMmzy/Pb1gTEJ6VmmE8fu0YJ2Gep6WTKvaga6B4vR245sgXN0KegqqEUwy4gCSkKoojvVx+dQR3eDTfGaCCxzfGbPU4rdFgYARQci6dVxwFkuRBxmsOyKXnxG5dTlImI6sFK1vf7CFcChWc4XS1v86Y/798GeOKh5BR0C8IF5PpYY8VI49McR7eFU9QfNiVerZiVMKr8HBDw7U3/56eioQtqiR0G166d+neQ3ZojvNkg95FdnzCnkULja75DfICzzo79uFJVPnyQgyqLUqXOuKcVZqpbxCk1JAr5WbQFsfh+4YKReDJGCJkUpn7BeMlX5k22oQmoHUaKxdawUYT0zE+FSP4ip8afOKfGnrJhRnVEikp1LpJBNwHIhfgn3ZeaKNPeeL6g0cBNVVXrglQmzzodS4TgD0cHN0FZhrEWxv0W8kxIkD5ql6MPEJE5C6sIf4f/5Xff1ppHxV3L1rA4eTd/Ov+tt7oNwXDY3olZGvIRkyL2u4puKlrfvrdterjeekDhMyNtNkyic3n8hAyv8fPsrhUB54ewXkfAlHSM0EYp2ZuVWpw3xKiCs3hEPmJPAlxmccgz1XAxwIlaqiGyI5ADIO6b7IGx+jYj8DW51Go8M/nDnv0XO4uBVQhqR4TO5t6joaiUzJx/fGAhmVy+Rn8bxqlvCGTiIEibj4uuhd0Vy/SBseI4UyHK7yGhrNI99EgCXlLRmXqi01V3tpZUwyi9yobG8ikaJ+Vrj82j9XWV/T7ahZDTjEJ0iM1neIuFFr5KHK0Bs6Sc6P1uoBtanaKTA4pCTQp+s0bIqOpY2hATOTMyvt9R6Ed+AbaO0JYhIFANjuPHvb/RtJrRS5yjIRL7WpE8MJ7EyGs61AyeCzAqbl2vVxUuZCBWQG2r++gv0DpfBELFOmaxFtQ5CvBVn7E+rncAdjAGS7Sx9POBhbQLVi9D2mdUfUuh62/HLND+pWZVui7pnL07iEXlNwzCMFCI48EPkTBWlCh6MsZRwwWkhVtlIZDkUeDT82Bo7f4LZfdFIi6HUwkiWzJOaWBL4Ffvhg0yE1NouL/5zlgutWC5DKX7UGP5dQ7RmdTSkpHUwp9VHHuVHHXdUyRLrJS0081O0ylipbW0RApctdF/gVquPIYCTorQRP1c1tHNC8dZurXEYxzBHZmgv5Lamrj0CPBMQPfssOwvmwq13WfoFCPaPOgSCMzLzNLcOktsJ8uj0A7TyjCsWzbou6oIvnQukXkhO7XX6STilPeBJnXyaas6zR1kpSdab09hgcQ4SNMaUvY3nvIQlDUoi8/ydUwdRNrMR4kvLYWdU/7ubPiv8szKQv1uGG4kNb0zRzdgZXMjG9HNP6ZHFZouVZ8Y1dzNHJSQrV756kBnHM1NTdiKAVnTYD5DfOcc4Ad47L7gLNM9UoJkfm28BmirTXCTw3q9nRGmdqzqPS2UqMP+5SHj9FHhCujiF8gL/a5uH6mSgx50REYzF2r1UFqsyB8v311P3eI710kqg1Fo+SlYoRGQvBBjgiNi/w8OCbcjJj0FYmd8wwvDj9mRD5SxvyoCsIsf0AnfBMPsRRgh/jG4wUBvgKrUFla361vtUuO1yOIgA4CobG+1UG5YLwCWga0HrusCMRN8kFEFkH5pior6yKtKlRDxGO07/RmYZq4ou0Kvc/FNo6hu5eaTqYpjACChKsvnqNLi4eGW/ESdQEXzxG1wfk8SQxcK2fu6zjPDmNIRzIOvF75bKnZKn4h0YRFwc1Nrz6bsZoeipUtlCmkvWckrxNKvXpri70nCAKBmpjzr3MO1RNaTlTNNgNAngOFXcRcawygookRB5b+ekg5ku4cUMRfEIud+L8wx56fTNoSaQf3+68ZCHkFOcxkh/1PLVS44T1QUUBxLR3t7hziarnl+C9vS8vRMCzD3gDCexNKoVHXPDnmqAMGUwx9QDXKKe1KN56dAHHrRfp8wHcK26HwQLcx4ao+MZssRN1Bbm7c8R2cC3XcUy6OS0flc95Cy8nLsNbTkRHNBqRGR6QxyxqFlWxKBzb5PCqVu42HYN+LPjUcnX0tfP5eznk/ZU7wrWXoDP5+wrgUgjMG1sTGqMievpQQciaIHH68JD1zOTWTB41WIyAkzaIVUg3wI5g9xvXa14P0gGqApFBUXoucHCUMoY1ZFSIMzptEDU8Ba2/6cns7igIyetLRkH3IBNcZhuhBxY3mXzp5k9SAJnBxBk0f95U8wJP9Y5BUJYDcY6rQ4OR36djaemVwFVDgSXNlh+C4FtTUhuMQFvbBXOP6TSebPAOEKLJ+Z+v6xPwuq7wFU22fayqtLUBQYvt4JiTyVC4ZEPqkuQJHPbqiYMjvuLA4WdApP4JWHOUK0Hj0mBVedEo0atGqEYr7ObcYJMMQeAwmp7ILeS8wNoHZvCTZ38ckwCe5M6FNMX+J8tpAfUg1U3z5M54PL6FpD+93c9TqunVrgY7TBBGMkXVNrt4E4hpi8LAB+OCizAz44p8s67FbA37fY5CMsxoGSotGvVy4V2aSQgik4lfb7pMHCUacrtuS0pDCqacFXbBNWJfqbGElEjn1OUDdAJujV8tSz00PGZm1+0TKmuWdq/6rXy+S8gqq8K2qgdlEC9dOIPEH9yi8IgEh2BSTYRuY0td9BkTjYyqGrev0v5bPDSnsHASuwrXknhmdWvnHwdUAQDiEaox7wvmsXEY6AMe6nRTqtjCOKTh1zsH+q6Kn8xyw3sfOd6HZYEpG6HQ75RsaG6Jq2lqGUYXotpwLHuL9sgHdoZS5lqXedp/LFrV58fywpQm3I1Uj0mSdi3qej2Pr23sEnyxijam+H47IflcFQzvhAAhwgEmT0IUHnlYYKOR/uz5zbpS1zLUUo5ALQ+wj3kCNI+f/YMfVrCcUDtCUT8p944Ww199V574b2huQDY9vbNY65G6PlhHvg1vq/eQJHZEaBrbSH94vJoTwmHbpIGqH+4a2uyGnpBZ3wEndZOvAdXOJK48Xs7+KLN0UfWR6E1lwYlGqMAazaYbG6lANyx5IXqk4FWSi/dtUKWV/pfwlE6ymePfDhinhduo10NliXPJwXydDl6Ky5p2O5ItU6UkS2SSSH7oVvUAXfANE6Tkv+2LPcbRk1aVej2vI+a1046FOICZFYTHlZJ0TpX4wNO9cH7z2ptP5btQHJ29wJR+Gs20cJREwZMlQKXAreNnfwZ7RmnBjyJZtMzMwhWsDYxmbFHH9YvUOXJPTH1ql11JfhnFiFqU1QJLvhFPbne+N1S0DXY5erVCPPTUOrTYzD2cyFQpRHWTfldwujiVMkVY2wP9Lb2UgNjvY6F6InoIC7GKM08GHpgMyhuovXUTKqCK8WdsXBU39LwNV08aoOq3Hn5V+SXXmmV2pq1EuiPaLWy+aOE0myqBDj6gncGzBt5EGlreGOYRAYvQJCiQl9zBdcq2qXDrfMgNLqJPDFc6+J/ftITfAcYjGFo99OSlNAiSLUzTIhcdWGRRxC/WEkIP0qshc0RovPvoV3LcmnCbEtqFpugnDbMpkQIelaSQauZP9cDOwSVzgOgOH6HIb84SaPKrcHNoqlQnX4/KFn5NIlvxgBl8AfjgqI7mcW3OyxDqpkzZgPTZBZEeV8vmVtzqB5Ue2+QCdK97EPhi5QJPGAUQ2rIHcZlYicrKscH4GyuaH1K97jBvqiOhI5GF9UMwZS60ovanjL8Rp9r+UtD9KZUSm5zi/YMMQk1t3JKUV14ktIwOsslVRyZoOJmNrRqz2gVFeWUQ9PpLUUN+d0cxC32INptwnULowwMjlML/Jhsr4C4kcusIFEzzAOjhH4IqxD5I74OPyrwUPN64tRkUgM4RVnfr40PXaODTAYF+Y1eGwnuie9BiDLjSvU7g/D17aKqVf1pRqsoLd/ZtIqwLpy4CMh/5ViC8je9vNBa3x7pWOmDzcxfZ4Eu75pVG8kqzExGnbQDxmC4URWrSa1EHkKsDChyoqI7N5JxDnSmSl7+rSw+EIDtpUm8ERu9B0ZdWimkBOudKYCqqqCsuvgfK8QxyPZIHsCzm4b6I1KD+0PagT/dsOMzw4eHHcV4O1gzxVNK4i2dE7Rc/plVkfUrQMJ8VNDYQZCyW/5Vn9/FL4fqfqV7Q8dV9LZMkkQW5M6D8EYMSC8Vg4Hi50MdzNbHDcOEpa3+4ea8nBCnGi5SwXg7o5e3SF52Rb3oKLfMf9Uu4N/JsRE9BJ6kbd3jgaO494CqnUEOr/KQSvxKj3fyWv8K+GSMpL2eeRC4nl4o9toNP1oIV0hogJTTZO+ocIwZxGgWO/KuR7ogeMP+XIU3Yk5X+Bo6F5j+JpI9moG/V+ja41gPOlvpDbcsqHhjle6srVj7g1EjJIjR9A6QcWLPJDDjmuCaCMOFFeZLDPJHbdkF9Kbg4ld0l3irj40WPgVWPu7/t+UbThqEW2NeYM2BmEfwVApD2VXJ54h3gViWyrLULbbsNTA9SLbwu3HMHh7+q2STrgSW29ErtSwIX7QNfUE3YFCTeUrq8nbUHAdiXcDIxVIy4qnyq2fqrBzpE3NaXI1teIcstmSWbgMqRx8ZxId1XEJH7YSUucRSu9vaj4j5N1YBpagvLJuNLhqnoajmQBacDwYuzgUvNRJFmeO8R+lUQXUCxyqnb01AyAGlBZbf25iCJzBTQMnaL8CVpwtIitfmNnip8oL6kKbl6+3MtndIr2hOCI+I2qqlGADAt/m7ODrPzHb4kxJeNBIduZt8wopAruFcKa1XfiA/FdOTfidYNYcj3TNlsCFq0LV17IXRhW1boL5I0dr/XI50gQssCHZ6QqrKz5coTz1UAqNDcM/rxXV7FU5cgo7UHsIW20ZFOsNmN1IR4oAokmITjcOj3NBLZse6JPDfpn+nuQKIXWsBGU3V0gcfQMPYfmLRbSpcY1zwAxPIxePAr5aOkAmT1IqWXka/CYuK+MPDSjy5Hhee8MH7YajDevwSZ0lS3C9oOWqT56FcR6tokIgGIMPkOYalrnE35OaeQo9qP/ZpC/CXAv08C33dcKmzZ453NTAYkf94q/BeeERNtK3CI6fsht3KxCUrOXlMjzb+Ai/vZVX7n7illeCZ8uR1bOMsm+Y1v/LK+L78wzXi7ZAyyi+klmM2j1ygd70AF9GgsdXomIgUEENMb2+9yc3OGMpvCk4F8P+Y57bbSfK0W75W4/fG9TD9Dd76JwW42yAH1xEl7pJu/9AKtGWscHjxBowlsJY+sx+MOYLzQ2FnwauGMMZHSFdAgN1qvnny4QZIKVRC17YCMj/k2m7fVGZuEv1Qe5LV6Xugtqx3Zb6lBy9KDRUGqRaHgFQbQbpeHyUoJN+K/G3Igx2zcePYAjNhJto77eTGdHdTYsOUibddR7JyDQvKqYbseoQYwOPUXxlSw4PnrYcHdOKuKo8nTU4MP6C1aWtcsVKsPnEFOcREa+CHQc0DixGDQhsMMyRc8mXdnYb47l8gqk3Ij13PNCLJpHq7MaGQDbXTvLetSenPleZ5oRkNrfksESgzZyzTkCrfh7hzRg5CdExCPpu0Utc2HRcpUkeBI3IrpoqyEeKmTwgyafG5IcnEIOSJCm3mrsJNCVYxd3mMTxxC0UqV0ZwzwWwSMcknb03w+6mTbbo8gLFaAYskbRD8LpcDr8EAXGA15vX0TPso0Ga80J3JU7BPqOiOE5hYYDnhsrJbG5bD7xebk2f+GzlwliTfskbAsK/GTuY9mXs3Hox4zbw0rTmtHCvH0sn3P6OaLHZzyZiOWsItPS1Pbq1spZVdWeDy8JvVnz63X5zw5xaTmC9/SHL4C3a2qR8zNZhAQDiWa2Kx0nuGSryWBuw3HTD3pozrz9cL0fKL8S7d22myGqi6O25T2EhZ9NJPPQJ+s1/yiYtFglvAkIe4OeuZrIYBBcZkyyy8u8SPO3JNiI1jJboZ42ZGIR8Bbx/NahO8Qsypom90RqeYRN1OTaa66rGcPL3hsTqP4NVe/gXrtwiBqitee+h/Nyqzame3r47UAQramfNuA4JrfxVdWvvT1AIiInlYEHbhm6cM/Q+2Q2u+JxtIEnSUfC/Ycs5qwK/An0L+tIOexnWlWR0Prl8PVLh9HiaWTI7VR031fF9WY18iE3gl5lXrMgHzA883fsAztc3LUf8QUpAEeO6kPhWnk5m2p5l2J732KnrTAx34W6QInBU1D876gXu4qwPgYy6gSvmsUWDA43qpH/3ckTgwBh/vQPhcpxiEzhbCEAV0X1jTJPNEyOS/7eB2NYy/kYmdz+nU4eWk0YIt5Mv8pbsK/AWEU=
Variant 1
DifficultyLevel
585
Question
Students were given a survey where they were asked if they had a part-time job.
The results are shown in the table below.
|
Part-time Job |
No Part-time Job |
Total |
Male |
34 |
16 |
50 |
Female |
37 |
13 |
50 |
Total |
71 |
29 |
100 |
What percentage of female students did not have a part-time job?
Worked Solution
|
|
Percentage |
= Total FemalesFemales with no part-time job |
|
= 5013 × 100 |
|
= 26% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question1 | if they had a part-time job |
object1 | |
number1 | |
number2 | |
number3 | |
object2 | |
number4 | |
number5 | |
number6 | |
question2 | did not have a part-time job |
fraction | $\dfrac{\text{Females with no part-time job}}{\text{Total Females}}$ |
working | $\dfrac{13}{50}\ \times$ 100 |
gender | |
correctAnswer | |
Answers
U2FsdGVkX1+nolDSBiq/OQ3Ip0fFy1umWWKLaHKIIm5hjppZ9jpCf34EV5XsRtaLs+NFU4ySNc3DpYUG1+Ywk+uFyZ60Si8dgNis7jaOqypEW6HHnSGdrAo4pfehEGJ2LK1gFKE52KbIC0SpGDRqkx8XuMapaUpMLNX3iVDj3uwQk9xQkLbWJKL5maUL/RXlh9+H/MOpEHeGUoXxCerLeI8zsg9x1b8Yvnvo6OQRLeXtv+Dt2DbuICRk1eAMl4G/r120oS+Wp9E79c8mDbRULA173v+v1YWD/IaMzo1TEdijz5nJwkfKUPnHx0faLQyVjjDvFwphQRK5LO2bLofmdw1UzNKm86oPEZuK210YgFp2y0D/Vlu04MTGVqQmoYgvfavjF++fjruc2xNVFzCPKvxogUIs6JOeDz7VZez+ikuG5gmpjCuta9Od/+J7wuaH1xTf8FxeFL55oJbhkcZKnXh4LRYm9AWj6i2n91+ItqGyp8Rod97KY+fRv5QNNX6KFRVQTR9PN+ael2WiMNH8ADRh2WeReyggPzmXLatt+i8pSgl9J7kq89RJfAQRV0+infM3H9KujHq+QzmgdqXTiZduF5UjgwQ6LkuHatEEku+elT6No1pnPoP9s/h/Y7tDVmJMgn+aS6g0umtQ7W68Ozq49XIl0nIbOLqp3qO1SrL5iVHBWqzKQ1uCoZoqxtHLmmCA86PSjcKuBzVfd2EnElVSYITlQ+gvf19U72vOtYiL37o2P4pSCEwdUq+xIf17l8vgdXkcr1vWVZMnLoTMuA77B3yqP+4yqDXADbDMK1IGbimwAEFHSZxxfagWPebSe40NE5tVPowd36IRIrLzb52svsn/pMXa9K97pVV/zspY4ca6cJJ+k9QrRM5dPTgmY7I0dZTJvr2BC1JoSaRN9tHtfoWDU+PRIJ07ogfD7EqeOWtlMB4n1SLsnoReUJ7O6+YuWX5R4Dsr+Euign+xWXsx3+CgzWhAV+HNx/jjNTTz0yreRhGW0MfSUIiqdcc9brbAkcqscF6plnKw3iyjlZJCb5C7Jc0Qa2uSt5Lsf/X/6GFAFM0koU1+HkSgphu2rbm9zHjqo2bFohfSmi2N+4rNw0sMMFvUXx7TOunj/GrmHGdr40Q4RePtelDsSDwhvwMLqQyfoE1HN8Wqh5pgveHA5qSWOZs+25V/xKICzhrbNdFMamGfm7hsIi+FpHDwV+euP89qpdA4Dmi86Mmh4G5rP28g1fzsuVzUy0FR5Wc3wozfli/+Wz3GMrxAw8KMmd+gIxKc7sK5G6pAeOBJQ+HSx4E2kj0SzmBdCsZExEtLyTrtYVd8OykTpl/gq241hv+Q3sJt8NullQ5jesR1APoJBgglr7flCMmtPO146N3sk2ziGOVN3dpdK38DTr1bnbXmZA0ynY5qMnLNogMHIj7uRJz5MMXCmxfAvOS9jt9SisIdbX8I6V9eAhDl0nmuyatuXkFHK8R1KyYcKatU6OSQhTbbE77grtpd/KaQ4j1Ogkr+rUvzwoK2LlMdWvrJbKQWlTDZ4KvlAvFSKGB1tB8DboqMlnBSALTExCsanZxqTe1W+LItSI28yVwupEa30nXhnXrh2tkMq/vSsA/TG3vTvBQrlQfFXMr7IHmYgQ2nav0Felai301R0Q6/8rOVL6CyWolkTmsR2ydEDxC6LVhtTexsTofUgHEFLem4dGfIrPem/2E4QiixzfzI8XqA3XNJu5LTuG0FUZ4n8Y0+BJnl36VYVFmKYF7SsCQtKhtjrZv0K3H3ww+IVOSzrR6UY/V/bklO2xJ05Yyi4A0xXZxi2SJ84hwZk46oQFxBycn4iaqbE4dQ47blAaQv2cBsLgFMZciTgsX+t7EEumIIIsy5Ob4b45BS0DUEYmUTt/FjDlyLgLqYjkdaUirh7XOqpOZnb+yfEKBc2Zd2viLY2/DdoYLIlc4IjSp5P4kNCxo6070HPcgEfpTlCAqDF6SU6W7qPXs5jGigSXXbmmTunLOGwPnhfubmq9008sjolVHFy1bqLoxTXZcmKLHKxUV6D11VZMuAFd9cdH1LrTPJvADnp2VRTQFFtKTquGsqgfPDiaqjVeRvk2+OPFbfM0EHL+qMDaHjAUr/H1nxAIKc9vy4rBq+5AYReZrQpFN1P6VNmU3/J2mAYt5MWu6GkcrECXxs+IO3n+23cOpZWhoeCxNr7PPa//c8EsjCjW4cQpaGr04LHz97oF15MP6IKjBSinSraLwzgNX1Oj9lzlaVOdj3uGDLTpyaW4dWc3biAHDmk+WxGj1PQDB8Ca1CaA16DhMAEP3rBGRHllStQ2Sq15KN2DC457okYjJW/Zv6iGizEku/eQo/vkcYQW6aURMV+0/GHmFHdX65vVOezyKFJBvy0rgfNx/a1IM/ebWefeOGpjXFK6D/KGAiUXg/UT5gGFuIf+Vtzc9l/tEwALj8s+eM5qua8zhCgq5yQbH3/qe7/7bBN6QWPuzkP27AWKuJILDUSdx8SH597RdBrnj1eFC8aU69tewBtFC9vmSDZ/DQjM9xL/felMHVi+efAoBGyzsujEAwPbbLxCi8nq1wV2ywq7HC9N3NrGw5Cy7Uz2QBEmKNaOXLwKbBby8xec4D4cNN9UH3nHCBrx0TtF1n5iLRpBKPdombBbhplqNqdX4Xy8Fdc411QKAQ3UtItR9X04usQcWM/SWHVbecGWqXuv61SdVBYRJBKVTR/Vh95KKZTeZuZG95PBgF31rA8hz73Ewgnu2ZY3hOsL0PrOxZxmzady/q9/l0hbzD2CQdrHPb4Y5+9sFqK1asZK4sEcQqqgT1/xpSnpfHBhEf9h9fdPP51kPMeXFGK4g9gdD/HqakHgLE4/BwmOaX1oWV0GJwDJA44AUGHD6OwL10RyADmSM9Ln/rxRgF26Zm/AoBbQaTi1jZq/8+ZI9NgwOm++W5Hc3t4zoo2xRMWdDuAopN/+JL+aWjKEkx0mcbpEibI1L/XTfhSSaA7zC8l4MEJkUfcyz8Vu8MSYrqHntULv6hOdXpvXIEE+dMhCuItQ64f1+yGf8c+j4Pq9PTTFlTQ8Lllb3lHGzgfaSbWHUDD8W1D6MD+zZbgsKC04gKswFnTkXKyz07l118BgL49XodbdVIEgwiTmcLXm7yw9/W7s5nY57VfgGOnD0NgmUDU8/E82tCUnLocQ9RA/X+t+/4imMsv4A4x1aipEthmNTG+a+DFFSNL7kRoo3hIxXv2d8vLhAz7oaRr2WzIw3Xb2RoFdKNVtla+mXXwNuT/T2LUwIrphJo4kn4aQxScy/gSy/NUBf5UNQFkbKmX30BudLuP7ofuGbPxAa5tXGmJVF3AVC0/CzRPax4Dw6GocpsD6eFOpChxkkonXExy/w7jfenC+g2aYwXElrJmRGazxTR18UAbHVIY555zr3TFF+z4MKnT/HAdCfOxfhPCj1nYEDMVUzNdDRVaEf+VqL2MQq5+G3uHBFYJWRmCMXDcLIAeDUZXSWCuIKTaImHNzGByZEOf9E4pqAcUwkh3uzwn4RgC61FsCUH6Vkl9AwwdaBUsygN/pCUxIWuw1LUM3R11gTTmFTEHWJh6d+Rg/VSnPvYUM9rbzke8uWnsrLg1K7ClhPm9C5FA+VFmowtoyRcH9rF6WTNUq/8zz9N9GGd77z7ClEvJT+/M8eG10oEhFD/3YBbqEAfGdkr0vbOSQbFUMm9dzWiavsPElzf+1TiA6HUdubeImqPyfCnvvBNbPpTXQ/BRoq3IbfEL01F1lsrzdYdgHsNd6OlYL0B6OFGqJ9CO/R9ICWKuK3++qm1jygus+p/6aYY8KyikK3BflmWg1sC9Try+2QKfPEWTe5JejYxPZkCTyV7swZs+wXQFuru+fYcZjYjsDbsSnMgGl4rO0rhze8YX5RPoMH47vKCfDotQams47owX+lr6YTmzHW/VVIAISL/qZpSvV+nILhzxfVR6kSVnTRtrosCBn017BftGswrLShDv/wXecaiASN5fEc+Y3vjC0GcuNgM6SzGTCNZvc4s0AssnkEH0mtSuUQqkMr8LuAPMvFizvGCCDGwxFNPqEJM6vm4IkvkxD99vo4/SoxBeTa0ECFDkQDnp7MFOlwWox7V1q3+s4R7XeNhPCqyl1LbGeYcVtJeEMH20sv9p4kmviEP4u+dRfd5Qh8vZqb+VHk7LLWKyz82fe6+ZxZR0iKlJJV8NIrUFfl3TUjOKsH+ai9Zy19DjmeCWT3OFceAuASBoNMePcvD/Hc4g0WM/9abxPNJJoQFgICTK1ZOIBr1iYqOPAPChHUlcdfTFpa2+BgEEzy+Zk0Of4Oa6NXisIwwp+X1yCSzubfPiXCJoJxHjZ9Fzhe3IMPxtdGiYPk5BYoBDoOb6ttS1i678CZy+whLjynLAzURs91YSFbjprAQJyLCCOmAR+9eWDzkdNP4U0n4Vq696ie9IH7an5FhPbU0CGGOL96qa9q8dUuvP/SaB1GRrERqdDqlhR9HZCNLTYXkJawl3ngwWZyLn4zUQYPL9nY/uC88DfFMFG9ZW79Ir7pSqjFAdXerBFOlEQc4n/fwZomCpPd0lM6sijWv54L1sSFrbHD/fzMtqzxu9iHdFHRTuBHeM7hd7Y3ogkfsORTdu2J6dwF0mz3HhMbMmo3qFkIWvkSbfcpZR0kVyXLWQJXsCM2Kso7U/HkoO2LzORQStxo+d7lMKuFVHIlZfOu/4ItUvLCQT9o5XilXFAAgOqaGAMUm8tml6y7KIGwE2pkVZfAcrTYW6/f0Wt78a2tJEh4sfC6ZtsD6YhAnKlfnxdpLKK0hd0QmBPYC053K0M9BG0iqDdOMj8GRXkcpLevztjbKBqrAQQu5AJU1FOQTGdUtdXOMKHo8F87t3ONGxV+9OVoq3PCj1tKiWTJVFoGfeJNVl102XSWDvdmYhvbBlEURSxNDIdPewUikAvCycMwT5pZV1Esys0p1BPkDW7lG1P0HlIdR0SaVdBYg4rgM5BVHkuyNmfB6Q/6LHbNqKyWW2OcWH832JTsDdVmMbUp/arPT0Wm9n7smpSTYp1cwMLa5RuzLRgQ09s/KPRCFg3oSb9W8kAx+y/JimAhShmO3aKZz72iGaVHSpvzKNranzSpl5+7XtqArhyzFksJHj+Rx7q0lSbakw0ksXSfO36OvlRpy9WMxZOjHQMByVdSBnrHP2a3QrPK7jcgzBHRUMLOB+AFoMAEbVDx/vW4sPr6yL+tWm4NWb1OipJ5fv8LqwWAZHkoiXbYrszKa4T6MPAtxiy4b+02YgDrRwkpnBuN22HJ17iN3EF7Xs2RsOk1vgyCSTzSVfWqvxQQT+TpK2imEnbFYx5HQVCQVa1Fe6a/lSwXzf40e2uqE9RdL/rZs3A9mv7kBglztLHUE+79ztWWNFE91HF0Ywo9eZJaLd2ZfEkSYNn5DKjHJxygHLxxY5pIJrNkipyMM5IzzbyY5OczYs/eMx2zmpx/EwD5+8cC7DCtwQq/rPeoLWinIOxku8qOtzzZUSbe+GVIZYX7h3FnTNxbBQIrmejStSBfoby0EIt7+HI07iofFCl/UpOL6bLa8o7o21jSIY8/scfn+HLr2tL3H4aiuWXBJTs55ruq5ZUtkBHv3hR6HjebHPpcOGTLC2GQqjsln0oeGLYH9PihOna5zU3FvPRxVGsKfXWHNE6EIjOyp6c61JffMByCb9Xx1jKis4xiCJvCnMTPnV4zoXgeBxXB7V+c8aE6jEoB1ZOVm+sRZsoLlPbjG4QvhtI59jKkeA4YeGDyrvpqVPOqU8ApuwMYtUXv1P5UwfKV4u2ZtNGa9i95M7tz2hPDOx3wXtZezgs1Rh3yaedUbl8jMskdC1WI9lFlDDKFPXjoe4DQhCSSlPWb2aywfyy/tIeO+OglaH4Mbi7LfAo7mHak3VDN6zCYhiAJ+CNAUUrrLKIoO1MxEah6KOxzyv9txotEe0MElnbzROOkZNj9UoepUeuleaLrIq3M5+0nI1y42I1VOHDe0X5PnMyoWL2zT3Nn3E/r+/pHM+iP16MFa89J3FVEskKXUys+BC+vLDYFMBdDn/Rb6iX7DO2snHF9IVqE5UFibVIjh9hK4zBs88oMaJrdJmo2Uz4TGbdE7Gby0lgMgwYjNWFucneMcADqlnuBtq6J+EhyuvQjsp6hlX7ZiN2Fnu1EILWtSTmMNk8OE+HYvmJxl99tG22KLzo1sbKj7gZIxpwS5SiugI2KIGz4wKgI+SApp2uzHwUJLqrWDCOmWF6XbXGYARtjenoxIhbY7xAYG/bQJtPdkRioEkh74l2Z00utqYsitJMMR9o3juvWThx7COqu/qGbCDBlSrpFQ2MtY0+0r8i3nQQ1l/wGg07WKYsq/UOzOE78O1+UM4uSAVR1lBV/TWu04h/N43wIYRlV0vnXKiavniKsmsyNZq/JUErx2PB4CP4ts11i5HRp42+Zo4ajrQ2pH8sdO0RmcXuKzxkIJ2f9/oIhavEZhYB8sERBDrjPAFZ6SXEvJU0sY7byypCe/tmpE+WC+JFYLCyfKuVrkp7GqLnTUNtjWq0zBs9lqhg67oeR93v0aemLj0iZ+WCQnK0/NTRNpgJ0rZaXvP88011NA7K6EDQbR1Uih2DxA+YTBjM5aQchBZ2SKukppaDQZDGRC2aJOiLAPKvUo7nEU2x1rdLNa7cfFOA8pVfVNBF2ww5PPtASvwZyP44s3LctaI+xgTzGKTp5hcce9bbk9vit9zgDMw0BqkznCB2Ii2wjPRPPUCmC8UX8EX6+tAVm7fYZ4V0FgYJmQzOiKA8NkV+y7vcpRTJZK0Mbc5TUQ0hvH1Z6EDfONYClY2sduiEJbGAJbQmoy6TDyNEetCBqq7BXcLDA/Di3tnRa2cQ6acBRhLwXYh9P2qTJP+BdXZ43bghsn8QSPUv8/9NvHu5VcuibAS3iRPo7Rc8YAJanR7yBuqT9NwKJW55h+dMMzR2ktpJKY1osZ/lsweQw+rJji/p7n7FPQxI7bo3q4Jf35KU3C5DJI6yBx6ZPIG8hXtM1TmSZvzExE0v872+JDY/Y6al5ZmvK4AVe/6Nh+ATsgIvs0QMcgt7XQPPG6qlWzQkZcN2RNSKi64gKoK+egz1CHgfiF3eQPvVc0TLEzVw61xeCR3dgHS4vnC0AD3UoMfzhAi2EpZv1U7EsUlcnALb6LKKKLk4ftJl8WGzcebRLKRzCUs2vuEwbLdpxzpCtUt+ZW/OFAZZ1nMY3SqRu8rhxCTnQTbUOPwZtG3OvfD+KVs7uTsC3hkZbdyjLgEri1MoCIik+CRs+4t/iJOpqhE5N6Eg/b4NTTF1jU7PYN7hIKSNaH+HZXTD5IG4nb+uzcYWt5zzOv1FRV5W69bg18Ul8NsKZ+9DDwbBKyCLIP4dGXm3d7zzcLMq1CESapZ7l63PxzCcrZoX+La3pkwSJ+L12tcuVILaRTFTUf6P/V1feqpIGxfXUQBLnZko6kYB0AFhWaM10QIDUNeMUiryuSmLl10p1aue2IgezpQydJva1orF0pdZhzzhPKlf8XCDRA2tuT8DKhkFXkxDoaj2dSbf7KuqQFhnnQA22HPqhOyF6APVyvHDNwlVxxGrqUk3oq/RBxvkUwuTM046WKIXZWLwK9Gts7b1XN96BYeTlCIS33fduFZyhkE+PPyObJVbcAW2LYrct1kkVnnAl2ey7ygveX4i+KgCgbphLD0b4lEFS/Uj9kOomL3YfZApWUhf5aMZIH8jR4G/GtamPa+WYH5h5CUilbm5anSze9/SzKalrliuJiFH1QPpunXoJFV26horjl2xGoXRwQg/7WdGUOBpQIjwyoFGIkv013imQVCViKB4q5ibeY55kcuOQelQk1QMv1WOjry+2qlAr1T58xNbpvJfxoiVXg/o6LdF0VqLCxoFkzIbK9PvneiAN/cEuZJLqbgi121e7cUmNjHQg9VhhKPNebO7xgaQYx+l5K5sYBB0x76QKYiLJ6CvSVlm1XPI29ARXI5xYIytUFYDtlXgRrBb+t4deXuo2Uh8PYKd4wOJUVTS3BERLXQ/jGP9r43KKHxBAvNXgZsN+qI4bjSwOL7/RS5fnbXHnRvRL9MzJnAzN//bmiZrsjZj7JMyq/JZM3I9y55flUmEU2aITCSAj+XghJp/I54HlPWxAAN8Sdbn7sqa7Ip1uWN/LBtxpG9v6+1Z0qNcenAAgQkv8C8wFzI42v8sGckag51r7IsGgxUJBWyhc8NS2NRy21QGjphJBkQHwGx0PLKAvNcDicCuaJgZt21YK+g1ohOqpyqjdO4ZPS6FuAfz1cJIgveV7YLSE7X7+Bbyur4EdXFTbtP3AzgtSGZHkYdPL9CVfdowYkB2F2QTZzrnbKmRk8URaGsI+/kWK6sqeVdgT5SJhj9FpanWeFL3nSQ6s+3nl1hbsWw4IK+U9bbL3AhUsSXR3dmIkhmf5sxgyYsg4cUlt36jGfh//p1Qbo99RqYDQ7+nDKl41o1PsZQctODYrbAzRXHZh16p0u1EByme3tUI6hOzNBjf0uUqOEfNtX9YCG2E17Mn4/vo/gVYKdc9IKvFCimXeELoEa8Qk5X0l4+MKx/acr7Ah3WkHsycvqVxt+2LotK2OpOt/5Xzfc4K44Z3ykjDoPxks7nNpWTkY4zYAtSr4nDE4MH2bbKiAOuhfnjNG2XnXO0Vw6oL2kr8HjqIl20jjBnpeLHaEqCzwFPAadO2mK4j437qObc0sn2+aHK7rJ5b42odFE43tM3mWZSEFMjQGzogZpUQp1aosabkH6xcZWNQFGDItHOkJgQc7NBUGKRPAYhbDWuMSspSpujzg+sOGuQRBG2pi6Bwr5kGTs/ZrNvwAzBwvAPRhE8ySgp0J99Kbr8ZSB6taOupW/dxa2TNBx3wni1xeAn9lvk6vOt9kzvEwVOyogVwaQr05+qMjIVu2zGy/QS+3UKEpRBunVSjR0HDTxKuoptoczLhJJD6XMxnFEsc7T7VGEIvzVuOp4mSnPIF0FCJMMZh7tU/lSJ655+H+sontv+o0tgQTarRkBzfzp9yabhKSjLFnNxL9B+55CIYnNskj1F2gTj2PIyJ0eyOOy+Vi3nmeigtSD1t4hqDxIXs+h+mc5+1HNeX5G4MRAoveVCdiqCC3n20256gFB6cHAvze0jBwBrp7KiE81RrYHzosVThN4rkPnsqxFR0tRWpy5WBuIByIfMmLllHMZOE6Ggt6bdHW5trJOJrCtLLiHNDoEYBT3HMcNMu01xwhF13mcHVTaJMRFyjzmAxFe/NXY1ZiZXGs+U1/DtdYFM+M5ad57fOqCznhL7NAT9AoAe5fHT75UhZU4Tfpec0oAmTK/i4G9xr+m5X5smYlo9ZawjQb82cMX2GsQrtq7NyPVOwufadZk9HZrUrZ6tANC2O5mHzofjSw+V9dTKGfPitvqs/myBEM1j920jtXWB7yJGWBCyvH5pF/BtIlsYeHDsW4AcRfJLIdwrBcw71bi1kqr19bttqHBk21cMcHtyg4IF/wCMsp4pm/lC+ly1XhfFIMhF7Pk2fTERXX15UhTkVVWGSu/4iF3fKq1+99TkPF22iiZopcGGhpFdzYab2egCnr7c4ZBIlgr1qdajCT0DKq+oNFUDnJm2wL3mjALpxz4KpZkVnnQokqfipnMTCuHDiNfkbH5YenJK74chzLGOCRmo5e8MLOmr2wLs6mixACE2k/pSDusXLlYjFVrBxBN7b6BcdQgfLWCy6Gh5shSWv3wN+K9CRA7gtV6kWEBNW2/56Ff6PyBcaLqrv3xbcWiCJWAmIPc35/GTK6oey5CsYFQGr/2EVyQa5HbLBsKy7r7DgrTUYJSg4X8ULDodXhKMlEd9rbDFMHUm9nCLn/umylnlCRw0IoqKuwJAnSWn4SxjNOGpWAcMqRsTTSyk3B3Ol9lpwI8jIfWK7mO6Zt8FJAnnaLFwFvGe7G6ZHV/dxc6/vlngeoGtYj8HmBMkU96Q7X/I/IF4zF+kIqd/DhMhnH6MiQEHhsRBMdlqqLzcSlkuSRJFjC2u/Xqb9b5URkG1yKy/+2ipq315ggmmlpHj+2kIfG3fCh3SFh/jsJUSfDQBJOU2C9OqbzHMPb6G8KPT03M2WBQjyqPy2/kMurkrMTVqhLmgg==
Variant 2
DifficultyLevel
585
Question
Students were given a survey where they were asked if they caught a train to get to school.
The results are shown in the table below.
|
Train |
No Train |
Total |
Male |
24 |
26 |
50 |
Female |
27 |
23 |
50 |
Total |
51 |
49 |
100 |
What percentage of female students did not catch a train to school?
Worked Solution
|
|
Percentage |
= Total FemalesFemales(no train) |
|
= 5023 × 100 |
|
= 46% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question1 | if they caught a train to get to school |
object1 | |
number1 | |
number2 | |
number3 | |
object2 | |
number4 | |
number5 | |
number6 | |
question2 | did not catch a train to school |
fraction | $\dfrac{\text{Females(no train)}}{\text{Total Females}}$ |
working | $\dfrac{23}{50}\ \times$ 100 |
gender | |
correctAnswer | |
Answers
U2FsdGVkX1+InK7bU1VMrkV2gAtNAQv5M11/HsMJQNzkwRzOd4XrBH+oNMo70yHZgKkJkBt31V7TgLkQOMIl1ubaUkx0phuYGlz7tNIuVTzOLi/U5ZeufvZaBz0QDoNmt4QPXPYrtWRdvO+yLA45EfxZZvH2juhvs+lzl8eZjgKCeEYAoRAbkyApVbkAa7Fj66h54+4zcz/jcpp75eojA86wBgGb1f9Y5RmChvNtzdcnzbO3gTBmPXRI2uWwS8B/r8gy9kktioxcefaLo/U1w3GEGEoDwG4COwp15SCWQ5+tF8EkG5OFs36Zg0B+ajiAm/ZDi8s6agujYAt9l60Xo0ak+H1uTEzrK8tngNlGMO7qYH9j0YC3XM+JQnSpkmrW2ZqoflDCruQOdAyZ0q/VKhawpPuSpLMq4ZXlD7N1sXSs3g7rQ7e3a6Dfay4r5rM6vyDkJ/SM7dUNGft6sq4Qg32f7E5hymjXEZukOmTcUgBWI5NnIfxaAFKDmBb0W6QgRkYzZmHpt+0IvIY00aXf1tNp1hdvJFgXYMN0SRkkcSHHjZopHiU+i063zg6ENis6zR0XSrCcE5PxmWe5uXxWcEGLFny8xIpYHRDvnD78KslSKkD4GhSLR57mlaPtD7fnUhLjieltLxuocnIOuwARqKQwGiol6yMo9010tCAQJICNM7lkHmOxe89iU1T/hwk/V/0T4ed4JSkcQWFiSTI1s4GYsbolOV3Vj9Zf0ZkEU9osD3hGrp13tJBLQ6io51S77knW7HFmFQVsBGdwyIggKB541ZUfV3ypP0s0sE/675dFRnsyJll88WphHTT1Fofx2dx0U8zka8pMxdiiA2HWSpLaSZ5jISdDe4aaqxrpVWFEDsAnIA6dB+n+T9V22p9iYC83DDFowuKIrAs6pfNTYhsloBslBDXWkzCvMvHt1TQZamxp04GjaRWkQaCmxXBy92NZkXEt4Df8TiCDgWJZXlV6N8kBdhCCM3NGoaLelst6JkRrktsuSMC0FVeTJe7z9i1FRDG+mA5j7BnexI8C2phLuG3q+U8tt3rtZJjWRkkcaSBZm1PPZDUMLlE8lO669VFoB9Xq8rtY/EeUBNkNa+AUFQ1hvWom+xQ2f3KIZaDyDLPXBAKRc29KRcgq2KFOynP0nfxrCqOsJDzUbxEoPEZivh/Pf+umQixGinpfqSj0ufZG95dvzP6MPzZdc4BtJaPQ7S3Y/SCT9wucmyVm797nCiBozUho4O4yGnMpw1+sSFKfqwdahzx/2k1Qvc6oTtUIYeO2idPLxBSQDHajMD4b1PR78eOoE7LTqfemRZjWO5w+BUEEp7Mqt058LA8nrvufQTmdZlKE2Nvh5xKh4bzymB0AeB/y//BVxCratKCmEohrhCiXfDJbqizpXSEOXjTtmYcRld7yoRlku/mxPvulxaw/3rExUnkjGdxSfe7tjiNrGSzo2dRnh1auz9AJABFflv345DPtzUfanQUvc7m0PoKYroqExHoUscUrsHfXu9rhSeiFd7s0MCdbLtyJGs1tPtyCeQypt0eRDONUO+eELtMQS8HCqGTRjMKBjFhKL2TICWZuDIXUn2Y6gEA6aHs4NI//ZNyAOQ6wB+aKdse5W+2mHBD0hCsAbO239tzeLiizQj6hr4osxP54Yrb++3N+t/0xipYYjrwpIUFT478WgtmqHdDC7WPd4VjdonH/Mb+gXz43ZYRZ/UgF7xQTR/zNBGa6tMhTOLyJy/4WEMG7oKkYb67SSgbH/KipN9sfnkjRv02qLpVF562dPaduaNOH3EdHb56uW6Oznzt1vuj033/BUHO/7vnv+AsINXHWkg3zA5z1Q5BhDwhdpqoCbgCNJnlcz6/s6CsjXCF9YkOcCw+p8cnZA+/7AvyQmDW6hEiwGZ4m374xz7GNDLyNQW4/qukxtqgBy8/hrftw7v/6J71oU3+fXP53rf7luL5/h2Zp1CJE1ws6PcMqR4mGYRx5K5XA+bc9EloUOOwYtD4XkOfCwnP3g6Dp3TPSvOXQ8PQdOlf+OY4HJMRt+Blbg49mHuFEU4ETjZ5qrcnQbxIxmtw6W9A2gY9OKjn8/WK0SfYXaBxvkJChHAIZyyUJhAnYT6r0NTLe2DnlUeflK1cexn8YTVtKweEAf4eOr4yFjEaVinEDGzAScK/z7Anpeuq8SqImrripfKS0D5rIDSi00jnKHzpyxtiI/A0cP5QMcFiw92YQBX8fQO5dClqhLNHkXcuddlm7koeaGIo3rQLDnYdNqLz6mJmo6AyxIgxNLz3SdUBi9QzWnsIDON7OHbgfS/27QWmzv8zhKr1u0CUXEDb5GZB3pbwUTZcyMexW8aFkiLW/ZH8++ziqWbAKUJrzx5y0IxUKuOc9bXLwj9T4gjpHELVkQ6bj0o1yt6RGhi+w7Uli1TQfu1xgBNFnkvoo9Qp+J/WGJ59o/06T8z49DXJaEa8bViV9CTzBt0siLcgooXlQfh02T3senq47iyt6aSsepaDS7V+9ZmQrTgUsSl6U+rMIrxtmjde40PeXuNamKalRPan3iQhZcvwj/goJKmAKekOj76BIa3o5rzQNkV2AZl+WiIDLB1CM2+L1DlDyWKBOuOmoZMBWfDOmNhBkKoK8qQEopG1sC05Pjnx3783hFWnK4My0mYMbypcSRSRJigoMa1draAgyxQFBFmJaHuR7iP+3PnRzVs+f2uXU/jEPGwfvJay6pt/Yq1yIzxNFlbi+aJOBkm0BTC+mxjhvJxbByuMGS9iMI3mQJCiLivsew+sDp6WqpyD+J1XPNeKtfPoPvxjgCeMzJHdjVh+qWhFp6AoodjBuiD6du0KyGzcZB7f6YHUVHZDi1IfF83T/JS0TRpikix97Sib5kphs8B7joGHadwfA3UxFG3CfcPNQ4uWgWaPAfhsbR9qguKahDZzPvNntK53A3Ge54LLxwg/bJu/hl/5eRP4vAol9UykfF0ZvrXrVRHjm3NKV5vankZcFuGUGRpOu+6TzF/7xNglOGEMNLLAcD7UWamn8q4vVPr5tCgv5so5EoRSgiPsrkzTCoHQFj0ZYeUFXsKk7IW4aV8qYNn4gpimKxcDtiyxw8FA0W5z1N/Q7usvwVEhjGb79cJ0XuEBxegFjuYNqnH+vd/cbytiGGmDPbTreRGlQWpvYK22sHKRoJFKl4vuAJ8ZIcCXIKiaJCYLIG2BNZwB+kgDDiYrBiianmUtp2IY7nbhKyD5Dpv8Ynxi8+duOShuOm/X6m1Eyja4wN/WSIhCbFfFPTrFW4ZMwxUx1OGrfu2u1ranKgyG4cv6KeADdJpRtceMzUU8YZTOIDGih6QpiLpCJ92CWSBJeHffvLlGp4wtl9vtSUBIvpKnpQJOUlExTV/YobXOYuaVP0G7BnlsXNgHE7CX5nD76RO3xto/amxs3R3FaeVwxp2GnNEytR8btIAQtDW6vump2JusAl//FOjsNGDR/cvqcfAWlsE+Ug8edEPxGH1CJY4Frk/By/kdOxY7ObDFzZNRWUhlxPurgBtyHg+eGe9pKWwf7o8kl/CW9qHztPJNi5Ua5CqvIFGovtuNlfvXynETjS6NKKB6LeOPdXT+c8277IAoc9jOYr1KrA+9OcfpyzEPVclIGc9B5Ty7ZMj0ihF7WLsKV+D1s/boe61OBSSY38S6sajKUi4KeUckVrP/nHw6kG2AO/y+ZVOxdvPr8EEfo4mLAORTrN6u9eN9i4I7+M8u60Anzn2WT2MrSD7oPfzt6wp5JtmhKc11VWIXuQVoa641QdweEV0+oqaI7s1vhyzYHEvi4udPYIf/e9k01CxS8/KcFJwgI8+wR1kr8KIpNxonh6jZylZs5+iPc5NIhQKlF17SLDZqli7FXs0X5BlIy/dElJavkMmBcWtxQt8Fg04KpVHY0Uh+3WeI+FB5aSQYjwRZPHj5hl9CMypsK0GUn7G+rdCLLv+3kDzKUlvOGRC38VZJ+wYeLnFKBVP+M3zSnw17ktUG92Z6fdIYwHEKFG0C/+HMOxw9Tn+wIcwsyeCNaK469KOYCsAACgj6wlPmPXAJt7yD+Ul9FsBaf6YPZaeOGOm/YhdwJeZRSVYEnchulb6ckCc1LcBBBpgr3ETbYLQXq96n7K/ot34pkqnMOYUYDUJ/YykcIg+17TpDTREIl77Y4B/cmz/QZE1Quis2+/45wQimMr2KybY3mD0Ts3RxJEVEK3a6BMpUPO0zNqAStrmr9z+kkQXLyksoAtHCK6ZfUa3l2Pxik6h5fAqAyvWYluT0F7FXSYVZGEez1MriK/+c7f9cIl8O1roNRzJgpcNtQTgVaAxfMIFranxguI2VlDzYxm2WSRahvDYHgs6O+ua5UsUffuJvWJlFjj7D4HCTZVfjvg7bTBDzRPIso1aN0USnEl1IM0/P4DoKtQFEP86PC/MZ4/3V4sp6fsdn3s81izBbaL13K4pqaej4TpkkpaFxzTgUApZeIJN0zkkXeNT7pHNfIojIiXhJLXzBeJEsepTnR3KlxwxEcuQtb0IYyStizcgxhpg5NdLGTcHltSXJbAi4SCrcglqiPtquB396I6L80spLGA1F/B7BTiViVNd+521O5B1vqExGsOL6JPNSbT/lwwy4sWfPai86svrJ4kD6bRNkLs3kDwKXzwdnCA806EtMFq7Rceq+WmPkV8bV2DWQoDdkF7RyENjxuz8rvDt3J0hazB5spCzbHekv6rdPbmi7wqWlouAbb9wUsX23Jm9j6yWpzw9s/AzTVn26g0Ay3XsPYRXk6uroT0JeihiMmTfctEuvfmWBb4vxsfa54sJgf/rEavZbyuhjIBGW6bi5ONAZl8CJXLHN8HatljK6eExEQEHaVr7t6THJkj9iUOeWpPnDQPsJVc1jSPgDeN15VEbW1PxYlIep7wK5+eDS+50zWC8z+rfPyqu/uGnvb0uJ6ZW78bEPobzysqE3HfK04yd9M32XtKboToGtNzrOStOUfQqOQpTI54SO/sreTiYEhgAPvGris4qyTrMpYHpDZV0CJy3h+7WNaUUPQDY0Al6qPzkmfFRXxLEhx37vNqiqUguIlW3PCz5WmfhOlH7Z+7sxz/xggShYcaRB3apGWj80n0dPTcPB8C6z2FQNFvuywFvDuiZ5Y5uYXmKqttGlaOhSCyZQmQVC6FxiN4RwJU/L/Iq8Tozt6d1D5mRpLoWCJupPjxdvJdGEh3sd5Qz68Mg58QXt/8A1X99DaTfKHRdpRRoO1HYnG0HofS2qU+KJbv1rRQVqC0O28U8lJEHQq/ATBWd8qiU3AzRoYmjT7IKoyv0vqGlXKmGW/pyXcC0JOP0RJO5gfetCByYbW66El6zxTAySrCzAti1e+Kz9UsBMFTIKQD8YpdjOVVls+QnmPoHpyQsoWQNTT78/SrCmZdEs7LNpqAYkHduAf//hlQ+/jiW9qJL0b5JKYCDLFQWJT7DgWN/6d9iZIC6YpXFuKFlafvjx3VmFDyQSB1ePH0OciutW/fYmmmtBHndRdPgxBZy0BmnelkJluh0JlnhAqV2bDq9QPpxGB8FB7ZCkuKDQKv11GsfHxlqY9zekA5LsFkYKoKkK0i9wK0jmD4pyJLANKQZRP3KHxOWYpU4xu94gWbdmNkI8/0q0Gq5EokpF50MX4jAddMd+zTDGZ+dtRfWk7FraiVimPmJHXf3jMxm4JLsyLJTTAEHDYB4IG8ATILFoHF2Y6LYVPAq0zvY9sbX5ztBv8yDWQryuoYTFKlXZs0aTdbwG0S/6/RaHJKXEbclD9CetsdIK4pY/rUvVjLqPnwVw/NbruJq3X/eJG8BnR8YyWzwbSSDjPCgGMoc51OawCB2r1jS0b9/+SbaLh2JyJWW5mCKO8GRMj6yFYJ/TvIuYQ+ykYnQgpAIHRhoC7KoUMz7fm7AdMNakzlwtFDNsj61l73+j5HOFQDs6JqsCOYGj1S0ryswdwxbM2eoM07iq77zDTuOOLU01Ra9/glkWSOtL7orDuwi2xjSG69ypKfox/dfXsrtMLwEkBV/BaFoMD8AADOhI/kmrDvp76xRekU3Nsgo+HtMDpSELKKfyTRR1xzd9yJXfxMFHn5yF46zmUnJzjQ8iRKl6L3JXkMSA3pijVocdR2OYEe0r3WOi0UGgN+WNY+ki9wmyMzYb3gRS9ueNakJH2zw5QfXUXgMHdEwvJk3tHhBDEHZyrAbsV8Gpu9SF0clYnLG47zPc8U2BVE2BE6pyel8RnuYo+J/3crmdBonX3yJ/Ytst2EPIV/QI05bFHe5Jo/OZ2iWxFeOgdaBg0MRxEazZBmelv5zmw373H412lAfRjiLvslqjsP5LzD7euhegeJZtt5el3MDpR0zf4It4Gd9mZIUA02LWaokp/DYzDyDTOJ6Dlh8DHOeUZi441qDflP9oJZecpmzvwu4EorQh6+2ZzYaD12GfGNSpIML1OTpHC34OCK8wa6ht+AWWgzrxvb/4TulJmec49mTxOHCrQS3JkARtzsSInLG2eM7ZNEab3SmbQ7PIBuGGGnZltVu+dBwxWT/oqpSt4N9j+TK0QB9S9DZZVZqLIFWJmbPcBGgGuYQsXR5NBuYDAZkaqJAdyZhWXES0sCKE1W5Jo9wmGF3o+lMTXUVLUNHCU9+DkOMmfmhKRQeO3D8rbebFzdQKUFFDjL7vVx2m88dH6LzK8FeHw5A29wijp1UdHoDDD5l5BBGwz16x24LdOAQadOyq5oNihzUzZ8GANMJ6ogtTcCXWjkKLGHG4RQtAboI7L/wEXmqaBidYLKxksejGgQlWSQGf7NraEyEaNl/0ubuISGNHgsPC7Dj4KEkaZ8b1qvvtzdK5Swoex5c6jdA8eHN9FDl/x5TBxCMR3w/DPrHrOxanAJ2XOh1Tf89rDAFGWxSb6zYskWLO1TLLsrPMDpR89+PS8pD+3PTrSa11DgkWg8fRD7abOYPnTozGF0nd50tSydG3EOKP3lhruTfRFr5RfyHCD/GlRpk06PZpwsTVD4bxGwpc3/OS/72lZqQAHer55IkFTe5vZGPq9rqalRafAm3M9eEYDMh0NdulAJhh2vZ7YbFZwsa0Oz6R6wstvPXaTQKO2Ya4y8VVAKMWycLHvrEoO67eRHJ/J4VKvCXbhvEkUsFPq9pB9KAvSl4TXdiuDEIe0+k304YiCvz7G40BreqS9BiV09QhERtFvBEYbCcoTVprfe7sKmco6/WX6FIChoBx1zzY7DMZVdhxCmPvTT8qfDROu1gwTNTvlsKj0h6OjYSg61RjZodEF05QcFUohju4bxOZXIqKnGMQ5cMNLiPjlIWEQIAJxNS0+Li+jh2wYFHF9/dMfhBm6g1k/S8vvyOrOo1/3uwvO//g6zfRnXg6OhbuFjRvbdRAXA1c2wIVGPfgDkqUvfT6fsJtm8GLajKwx6i3Z8OC7kWqzuinBd6woS75Muie5jbLlcJngbPHJa1Kpl3UX9lWU0WhJaXOU/7cli8vW+Ge54G5L66RUn45IpavI3rygg6V7bjzt7XAnVfQGMsWGLe/M6xgXdOtt3r6QjJwgYn4LGAS6d3MqCIOXWhmUTv5v+Hkqnlq7Cdf/gENCG/GYR83i2kzPjRiqeaPBo5ABgsoTV7NoeuqgUWOVb1I34Ips1b0tnuM0xVaZkp6O9lj4i0nKwjjiCXB/Xsaogh6T5lIYdTwzMcX1ae1XcPVV9zviQUzTRkJQIDGfIm4lXazsZf6hS++wQoQenbx6XDBOtFaY2Fzelowjz1CLJXRw8RZTkqqdDdZfeYw1mdvbsi6VWK2i2DZUP8dJU+hzz2IxaZRDhoHQ+RSwBZnhgM+rOKkii1mZujBIDfU/AqykGVVfT+GReZq+U/9SVTG6VVAgwTNmOOaTTykb9IrMnK9cCrBMUbIPihOp6ovjF15g8hUVSycFY7DiHyWX2ggRu9rlrdarAhs/HhEoZWPxxwR3j+TZjGh0bAV8gZyQkIVDalZIgZ27MJgTQy5xtxrqvf1uESLGPe2S0w7eIkbd6ElJVdAiLo7fyXpYhxvHtQvh2Nhu5CmYXsI51z7XRW6NcG3yMHbAHmOUyTSF6nC49wqAfSh9zwydBRADehr9OsID20EFcfAvOAJcYdMTB87U9/CutiBkQJXy0yHDSx/myamRQ6cCc1mmXrDWdozpiFqQh90zA7k8LSMjxxKIqWohbVd3e1hbo0L7aOzz6KPjCTO0UKfN9vraeUroVWKMGNXs2y80eEuvVjYFkhrpVuyK04nRXFA3ntJjA8YvmMoIas4FaYw2L/Ubmn1IYhlzZfjMcUJnAP+Qz0nj5RsxHh01Z5GEXOONMEk80fqkzQ8+49+ItxKEnrlnxQIiGQ0ZZG9+BKkpN7IDLAimPjlmTcKa/9NcsThc29nJphJYl4MXMFY8fSlnNdSx5j/uIIRMOukXu1r9eXtJxS0DEcSunTiuhIAzxmHrMysrwyehjJOw7R0z83TF+BbRTrbQxBKY0fZs08YDCn+b9E9EJe4JbCA7q72CAx6897fN75y0MXY1t5Bkl6fCGvqDdYl3iSMZRywgX+tgcbORa7fkdkemUqMSGGL89VkelY6dHq7C3spYI5thl0+aBWif1OnD9CFAhxWbXSiazy+vPR6ou6HNslTN4EHnJFsu3bYdiGeQWaQJOxp94jjQQ+DcmoYEzQ7ZGpsixY0zmArrNRgwrzgquCfTHLWFaB7SFVzGPsSD4yiqAt0wI6Y41kng2RKxWYGSv8HexA699N04OHZZ3wuv1JZ9QiNiIsHx+MjQ+tsDApA1QTgH6e4SzBDQVXKYA+fjx2nGfZPavUUTPd7Mt4bWZgy2xU8pL2z5kgAXDOgc4mcUV5mICiUFwWoKRXreG30JJ5B8rRvTSm75DVg/iI+oetEJgu7GxtXeXfvQosmh14IU5Yw6ZJe5jZbD5bEGipxyoj8jkL+l+FicUnWjJnaB8Xz08FO9vxP4zrAjSET8yPtVvHOJbwg/1hMkXfwc34izwzLBX/ZAZvmy7cBkrF9GDJL3loPunYdIX+0dGS4OJBTkPWtKsiJQ6xrWH8JtP+jRF/tdDkuEU+Ek9WNiEAQcIahHTLN1Kdo33phsEomceKtyf/YVsnHZ490FD2YejQh750QFPG9jSzQ+CZJrlmODhwb5TbffgQNAVOUfYWKE3IPJSMABZaxJoKQwZzcwdYZSBihFcMyv+WpH+rOcTwGr2ohUv21vzxaAbiYRId7DntPA40oogALEB6MlvVS76Uqhu6ZT9NYYMLZm4LBiMjfMurZSysw+DY3ZMMMwVysJf5enNbWaD2ElAsPg/YSF9xAOZCf2/HPQYEj0ag2P/5d/hJAXszsOEtkzTi4vVWPwgzoY+7YgQJ5RcpczyhSsL9PgZdR0tfP8igFVT+YaKErJdz0Gz+A8pOvekHOtcel5drRINqpzKFI4jVXg7zwlpzHv2g0gB50k5A/Mctd+1NYwoRAarjwb0IAPx5WcVmuCkIlD6Kva8nXSmI78p+W2+DQRLsgUmIg6UlIPAYlS2hkeVuiSLMt2GW8E2gRUrTXA/JTpeXiLodWjkcm5buM/eMi5gLJRIfhTgYltERCWQMY0xnrzuWhGFzLCh/3KZTmTrYOBVujkwzHnzkjk5dK1CHiU9wV/8uAvUMjYEIInHf0CkZOycCwJvjT1Jim1C1YNmCHqx6COZz27x0fGqdh2esMTvKyciQr1+0Vid9j7Xe096na8E5JPJnt9BzVx5dA7EaejqPrSeVGozFNEsAaEX+xuyl9u1fpb67kDgGmpbsAMElPAncv4BXqX1t2/nlcJwPU71dyM/BYQCO1vgYbJnIgIM0WYCjXOsuJM52F4eXh4A3vexlSTXPqjBZz4iSWw3qo+poq0XOTZv0p5+W6w0iX1uZwIB8xt9YuH0klBj1FZZ+3hxqeb+e2IG7ahWBzNEJf3Ce6HIH25Hr61YozLaWwQ05k8BA33hFbP3aM1UE8MqLYBD93mxw1M22F3Kv0ezfR582+RCtJ0GLgt377MAdxs8ap1EkqVor0U4qaWuuDfM5LkJSO3WGEj3R53y4iaykZCPbxxVium/293blqJoIb3rNh2BZ/MX6keDVHW4qOXzCSAujzMZbe8VW7a9lAMbc+rwxzu0rmfwXT8MmsfRrf8Fs3komyuDLzgRfs=
Variant 3
DifficultyLevel
585
Question
Students were given a survey where they were asked if they owned a pet.
The results are shown in the table below.
|
Own Pet |
Don't Own Pet |
Total |
Male |
22 |
28 |
50 |
Female |
19 |
31 |
50 |
Total |
41 |
59 |
100 |
What percentage of male students did not own a pet?
Worked Solution
|
|
Percentage |
= Total MalesMales that do not own pet |
|
= 5028 × 100 |
|
= 56% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question1 | |
object1 | |
number1 | |
number2 | |
number3 | |
object2 | |
number4 | |
number5 | |
number6 | |
question2 | |
fraction | $\dfrac{\text{Males that do not own pet}}{\text{Total Males}}$ |
working | $\dfrac{28}{50}\ \times$ 100 |
gender | |
correctAnswer | |
Answers
U2FsdGVkX1/YbyMIyCZ2dOnFkgoOIyprO124O/Ky6UloLa6se5IRH8U9wGKY5QlMtkiNNvLZTdre9FSTnjgON8Ot9nzXQPVwYwVPrkJ7wJyTw0bFBLm8/AHrnIdZqbyB7Jhy3sVS86zTndbBhZJciKMWO0Vwu31RSPHmYe/qaFFTnUE3sINZhIuF3KGIwXyiyj9UODglQ3z0rLGWZiB7Mg9MZH+an3CpsS3BJ8QNJHJUBcFKJnnkjI9xxeXVmRXMdBu/fF3MGpIQSyprALHLcFuUrTirTAXut+XV+vw3HYtA5EsT1FE4evQmveSJuxwHiNe2bTn6NT0nw3ltB0w74aRBkU1NpnGFSkA5ZVjKb61Y8oVBycLs0cxhTLPqwzJWwrH8bwfd5j4Uy0DXlkWGLBd6B/zvECVkZtfU3ZO1Hla/9qFnWEqhQP5imdqJ3/yFmUfigPnj2XU5y0onylx+6Z1v0OcX//z5yPBaETIT2hIvuJMmLhIm1qHwH9kfVQ0/ezEU+usXD9Hi7J90phvicSaOu/Ib4NBiu7Ihm1OvYoPYTYPF74akf/OrgYSpwzlpc9JxcsOjL5m7oxnLEAzO7Hf0NEHVXtmfKyVG/YFv+ZA+mKZILY7N/RjZQBb7YP7ej207o6wrvG/03+MoZpk+/GHBybejhcoYW3N6ekhJQ3ZhzR2TVRPiA10AbuDT4P9HEvk6cO+doQI8hzfPsk4G+TMRTplCc2r0w9dDpskyjbGDDkhmvzgRDQlm4GvEMhxo2toRTgqvWCXPN0AvnOcpmkDXePE0hwTBmXrhZ9ERHxJjfKc5BbytJwCSnUTZChoNmiqFTBL1ZhCDelj+rUWRYDNNLtbbhYq7MnQZ+evmi9pSxif6xSdq27b10a6daYMgDDpxccXhyJCHRdwC4lsX6N3/OhilW3O521ObYATuXqRI8p4QST0rz9Fh1/RNU67TLmiH2K4r8pR0TQmvkk5yj8/+bPiWVIKVS3o0TSJmLIAMLKhgVkDz0fpmNHDvf7mQa5RMh4zGMsoAMkSqUBpMV8tCush1sX8Bkgs0MGoGqkWpKZ24CPSX4SD7eB4U+Ge64pFDGUZR6A53DqQgsZ/dWQo0xiRhx/o6sKdDZJ75ul+aXn0m+bizZ52Fn2DOesG1WjHF7dtwuG0SsYj1g4F+9M9BdB6WZTAyq8TPRMF9nRofgXX/k4FxPGY9yia4ZuXFdeSQIYZqIXMrBFz1R2nIGQpPB9PqTW/n6DTDbhoir3vHB1ZnULZqvB7uqW2pwAwAZV5h9drW4Y3K3x/A9K7cjbbwPMInrsCydMwVzZg0Nx2IQext1K8utSSMBl7Wq2H9cAVFgfwNpEVzXh1O3HwxV33422VbOUKAnbdEKCgG8u6GqDpgSTMoRVFpO/Tms0tfI9aEBmSrc8EFl14tWRDr19KPxSB9h8Ni86/ndZOLTFwhDu3FN0Qa0Za4Vf5UsgYlRQBfk43cShY8yXYobHQUjeQaM+QuPWJGR1h/gD6uSUb9DxsYb23K4Kf8h+yMVawJwFovVcQGwWDGOAbDcdPc5lu5aQI1rfq3UUDF+gsz4s8yIcoShwyoiiRp2Kk3Xz2kGefE63Q22i8OEcV3ufT6WwEmdviY8BlqUc8JvGM1uT3Mw9on3R0Wbg/AFJv+aVQxoWtqwAWpLzAemN6p9bYu+zr+PUuB3HK/N8UeRm9QaJeONCKYX1xVC9mektupjZR4EORIyDMr+OhX100M/zuZKf83P3B+Q960yR50qcIeTmOetj8feEU9P6g3jkHriR3/SY/jrIlmRmTKjEFhR45VqRIBbAb6pbO55mbYGeg77+SvC0esYXYJufpe/Ofkw7kJrGM+UZp788wCEYmG1kCs4VjX9vGP97zGma1d5QfOBjPo0zYfXQ+dWYEmqtOILPu98U8cx/wRVJkaHwdEEX0/YkitfIaTuRQaBlg1ZogT0TkPNFFzSCdBPpEnqRQSB3nIm5oiFRM7+TD2mMrs8i0YWadH/29FpCH22WaruHOTS3HA/qwYdElnJtl622owBtxsf1J4RM+qn8mJEwrB4wfpp+Wsty9yWFtzW/z/7k8Rzx5xaaa/EScUZBFglAL7u7n7S3m2zPys6h6NsJuWR3RsSg/Vb0O6G1C8u6RDpXKRwvSLotxIh2RVJe46r9rD7avd9kezjDY2j4N2u7DWZvh+49A933pH9XXrK3zjw1j+Tb5v8HHaJiFmiWUC9CmaUSpG2RfLXFq97HvMHW0+htBVNoQmMUNmUZ7M61Zg4uf5TFcDpE5F4fOI/2nvl8icfJgXDTTVmMJ3NbcD+nWyy0ejRkZDgboMmVKXAAl0ODO9rXNGYx0mwxmgyZ1cVx8i2qy5hjyQeJimsBir+9Pdq/eEKYDKecjO8jJW+lhemoKSg2qS3XY07cmDBRVgnKrgE9OEeY6CswTf0tMasaa7vUC4rmNPWMhtNoHXOTSdXKb5OaPRXKJ+XzfW4JN+41xjfJA34Z6iWL0vOs+KFZBVK192wx9Aq1BGCTDLKU5jD6IwHEYajl1XSCNLciURZRuwqxwDmx8WHb5dR1cY4SeiuJkAhqopF6i25tEBlnNAs5qvkvkuul28ntUJJBlmhPKXNQj7zUOn/sL4lLIadlrbDATWmKDPzSljJstR/pqoCvZcHrBOddqHE4J2zqetOI3RK+HMsxC0HpS7TYt81W01r4b8qOII7t84k48UrAy1LXBRxA+MOzsy8TnWmGz8hul2mpRj4+mmBF6C2omrsxDUbyn4vNqJOgo/r5Chaf6mOElir6ZY5y0olapLe89ynIWBCxaGobdWvLZIJR4NqU+ibu1aaMIuBTuQqZlGMpUfhxF/y+qWMEYvVzUv+Guv5okDpfpYe7k9DlESsnrub/2NUQ/te34ivRa9Kd09RXfVu2sNaTZHiy5uwG6mU0VW+1hMx6yyCvqjaSHluZ+Uk3ikitKciPejEEfNSkcPk2XfNEDDVOQzlpjpiACCj1hjZgKlKN0kx+xYAjJm3+GQpM26KU356WEAXggrFDBppsahRNmIE1OC3GNM+LIWUCer+GctPmRlmOEplVB5ujdyz1SrIK04DfR8wtpk3QNfxSZagOy3NbO0esg8w8WzwSwO8s8Uoqpd9DarsaYg3vsrUK28rfvhMZSq2UoVT3Mt+z4wW8ji1Lt0nswBMX2VMtAL5sSRqysdo8lk9Ahm9kdwt4xKPgkwJi3zeVWFF4Z5KK4/em7uqvPvpsNbIRD0t90nOIvmaXyxb+U4Vn9KY5KjuLaaADfaeR4lJyd4uTEkBAw4WMXyIuPFT6xcsZx+xZl5QrrMS+fXS3T9om5TJHqEd2dRAq1nqJWB0JujV7sY3nmjMzk8aSarzzRSAIyL93cvC/3v+lDYQk5PeaaJ4i3XITTjk+SC0i+uJuTkTRXkJ+LzfRRVzfAJepdufzebtbQNEuWrPivRyRc8d/iLKIzbC1kzm3wtBQ6ZulPoV6XqQiM9MO0ugEVTcgQDgzBjzYguBNpuZ29z0sEllpEkn2txIQV0cW19IvxDHW9riF8Tv3/6hxkFnonkfpDT49L1TZvPdjd6Is6TYyjN8RXsRnXEFY7mY/qHyFThO/pN6pqSGhODJK4jZzdVjaRZirGZ0YzATQtCvDMNTCLFDNqNEGo6s9Wzq5/lR8L//0XhmDShIhfRO8dIiE2pdPLiuvB9KX+am64goV4LQpOEUKgwHLBES0+szMwE5CnilsawL5Z1VUc2fGKEn/MZ6GGXC9E1Y6DYKFEX0jm8yVV0b2258IJKZfLqvhnIrSKb+CbDhHVhp9wNPdFAjBbRagn/ZUAtNlP17lIZQ1EEb72Hzyd7H3TYm5IG17iv/6moIIRmoDoIo2t1tdqWoHWnlIFYR3TyWFnMLfioOzqReucqU2LoZSN0u0FhwfqBLic+TV/Ggs+lWjdoeja/fzTtfGkSKtXBpaIG8ibzWHrtIrrJerV2aYksI8hnnCzWv1ktHiVaAeNXnIZlP/vI4mk/AnR/3lC0HvwvGuDDBJ9BA4S/m0mhn7yoJI/twm0NMwku0dCZt3mOaF8FDbP6Qy13xOT3SIPi+n6of7uzu84mRy9miGJVKknBNaV+b0uFQQBTWGhdq5grQN1sB9KH3mg4XeyxMrS2q6wXX1RbzxxfxgdRdMjq8KbZKOJuvl4N8K8d5zdJ1FDqy3b4QKLKxmNp1oep1UvY7Er9xg2J2N02kEYibaDiBaAj13qK/f1Dqu6NdFMht7+CJivIPb9hnslZpBz1kt/eseYIi66Ia5fHjDjfLjLqyFTqOGlx1Io5FMqDXtBYsyYbT0fnGAiA0OSgMtBQ59lbjPx5H1HIOEkwPdYO23LqB1tUI0/oKxu2jsu4sT4p4NwPov5nWUy7J1Fz6+xq9FI8rFRR4wfzPmvTrZA/T0tjK1YLkbhpnzHTbjFe8yXe528OxITFqBWRUVEC2WheWfkiO4Wwwzkp8smtii4pytL5Z3Ji25uXwPtOe4HbUQYfXWYJh0JyZJifS1gsdmUPMEted3h7lQRLU+VbDnu8hivILSROkKRqRwPkO92FBFDvhk8h29UAeTSFaQWpMm5JKMGqO5qgYJAJ1dwyrpVeVoYSfYFQ39dWU9cCTg/n3LuIVUpMOwAfxuv0YNpy+zU8sejdf9ApeC2sN9FxVPv6gQ/oA9zes26CI+MDnbRKoPPPkX/Ccnkdgs4iZyBCrIXsRty0FbKdDhajf+vQL0aySmAyxeop7XSTDOWpS8bJfJfQeu3ADxBszJVCarJR5TUsuKmJfRREDCt69i4TkeCPu17nB7cWAyM7aVGgc6yYwmlhOszttX2P1D4YH7p57xzqmymlYlYGSTozwnKxE6/awkUmRaR36xZERpFqfCUx3Fj6CNd+Q7K11se8Vady9VKfBaEY8qu/yJT7yIaA1TbZynLmReiFsRwCq/P6OjFfONgMPAExkUjnr3W7KeheeHzDzMVhDXcGfTwQeSD+ATrJjo4RSTd40y4sIGjbyQIpGdIm4V2eyOgxzkCfEOGU+IjyIpe968VjCqAweH+aa3Oj8JQbRU4b3HZuVKA/h596Fl8iTpJlKvt5eqpZLbQ6VPo1fYUzsPRz3bJv6sEMiBXQwfK1soeA6vn4L5xRuLxIQdCMEx3ULYrgQo+8kDgplCfqPw9RDMfznFrJiC3oGa3A0T3JwKHmtYUk1zql33US8G1DWCnvFC0LQ+59ogtBmY+S4AckWvPY9DmDvxVmf0Bg1wk3fZwwpmbj8OT1o8eIh4raNSOp1yoGEe5ruoKAUNutR6aypK1l7EJFgHKUzxTwl3rxEse1Ci42eSM2hjQEoRt4AWpDU5CVO4qpocr8t8Zn3E+ctibF6vxhyyEDZQ7YpT1B7AmAFrfLJ98fUsJyCGoRNhG3U94/3Balb7eI0XQnblE0Dj97ajdF6H5wcs15+GiBOBsYOq5ggV4ndrrLtB3Yjv/AkJbqjIadgj1LzmSeCt5Bd4T9WrOs1H4wi2knjTtXgWpjEqndiK0DcgOUKrsFig8yhoKowdePHBZxEY5+i783P0mBhQApZq37cWDUv3nev4wiaRVsoIvTT2mg54r2vGW1VoLHOAm7nVR9YfQCeKLN7Z+xpmojsd+QIZL9auZ/hxaiPuN3Vq5x6JcDhUytOqy0VKWFvnQ7UvRzJNz/N866M4qOoR4maRW7lv/4Ne6o33SuDyNbzIASWOTKsccsA8fo2U/dRlqPDZSDxKHcwGFXAXOUVjSwU5TdbKcspCyB4S7JH3b1nmiqyT7Qe5yHZMDjKhycmq/3XolYeUGv2knZhGauUtLCKVygOwCQGOMT72Ji4uWa0BHT9/n9Eiyi3JEge31c26x46CjmA2iD6iPgrZy4QzGi+LxNYurVHc17yzz6qzbpENLXFlro6u/Tlhxd2MyWKnuuR2PA8zd5W9Xpx8mUx/q15XjcSBZSFe/Y6QXtsR8/Lt79o7XqDIjZSIfreSNq1Arhxfh2KiMK2a7FHZZPwbGdKunDB/bTWPuBwm/YpTnPYtUiUQo3twfJaJlsCCa7GiOCdZLZKgKb2gmEOtTtnJ7OJ1A8Gf5SCTRz4pZx72TGc3HJl5+WEq54yyEd4AvgcVmbNUSKZ5L69v/NauDiQMnDdL4cVKjlWFDoQPcbMY0gDY+gsb/djWXH6nbEaULPQNbAYHZ0KTz89YDoZFfCqS0/KX6lrYzCWvdAv7tFBdwpa7HfYINgsU9WBoQmkDYmzRtuqP1gQfwmwSrWuC7zrxn7Epb6XSB66+g1GIpA1i64sYx2G9O4A+tzhugMD5ztAKlCyhETmqBohvyhxR2IAWGRh3+oqvapLvstbws738eLYubGdj6UhxS4jbHvr40UFrDd92FdNajSwrrqIzFi31Lm43PeFinfjPvfaK0rrmDZYzGavUTTbN3VEDToXs5ztGwzyLP5rA1s/pFvGg7fEVtd0tN7PEc7W7pToA1nUHFYUgUI6XhhpF5scsQNSzTvrHQWss+e1BtYqsB+1DtlgWZlUSJzVCGoP9A7Gs3kuUVwNJoMa4CvMnbxhrBYnerWljrgd8jzBQhq3J0d/Yu2N1HX2gzdvmSsovVOmABohgZZUk5NwJkkbESpaOl3k3p2RslugACb7Nn3PlJnupkTOAo7mzJSRKT12GWjlNld4MITf2DOHKSYDfiJ36cr+hq+RD5/wzPAx5TVxLev3VdDy7gOeRtBkW/5deReLDirE9RZgxjl2YRq//1SJyo8E3DsKXxEihvKwOQiv/+iClo4sASZmMJOaNVY7WgZli4c0VoknRa0m9CjpxS8eIfg0GX8n9gxjbKN9gorsVxfzcLtw6EcSvOUbl8k/vVEP2ifbqQh13NcZGWwWVHkEiCfBniCt6XLRHuD7NJvzU6Xfmrj1apEZjinEB1GFhDP8miHF2gWJRDVWheeBJtP+WH4qvi353wS+uXyaoy/OFKseTl8pyTbHCJk0zZNxbpkeFA1PF29Ez65mv8yz2DxeSlTKL4TKO8bqQsrJPwCBBcXsHHSlleL1zSlwe+p+fuZXFYpiNRYxmuK5atwrCNJuL4rlbJ+0wCk0yxvC5ISiG5s3tdBLSXm30VpJPSzW7966jL7w4Ems5z74dk4exkaKy6A3X4RdaWn1h06sJ71gu0146YbCb/1HGvGuOag+lnYm43sgHB72FcVmmw60MLvs8/i9gv/F1DNylX9DQ0QGk64y9cdIc2bS5zoOhYQGxLqeE/Dbrgs7Gc7Vz/z3r+K8uuuEVqUiWv1tqB0yVfCgBUF87RNHavQpg1SiWObMrYf6IIDwMdY7isWh5CDvFl/qG3bF6VQSCUACsCtgKUxFSU5+Dq/OaRnSgVUtOlV8cfYUS2Zs73w0I5lMS94G7PSoGZ+/Asm+6mUxgS7/SCtsQ8j0XTn6z93/koQoXWy4hcusZstvWQAgi3DEaJp1MhTbAf8RrJeCUzuK3iwCu7ygmBTFZCcfKcS+XHdJ+bNl3+uTpVDweJnEmCO2H9fX11EPDg13hkNFP0ot86ThZo88jWZMZcOc5IKDj9UPRpZ6m6klYPfHx2BtH7Pimyl9UwRokBJJwbOps5Q1NlB65ta7bRqwdU+jJ4l2Q88U0j5wsaVs3jGFDFsRoY15hZMc9ImCkqf7SXX4rpqFSpKxbvA48z9PBsOPGmoofvNNpGA6yX+DD/ZhhaYRzJ4Ff1MoX+YQbk+c2S5PS3YGEGxabktIhao6W/Kz4La0GhTHI/rlkQuJL3vlsME23yW3/Iwv2ccjFppwIuvonGxf1DJouGkw0qwDcfcwJln+oaR/Q6f8QgOmdF5VECqSj/UosrCFXTch43Z7fCKeH9dweWwutfxm+vq2YvpGJpuEnRSuF+FPAXgk9DAnble6hWpONHI9p4ogNQrCB23aFxfTn1tS9qsokPPvLkLuXhM1alll8MUjrYvk4Ojt79mMzTgH/3NnMlxhqDI8bEajYy3Tq5vTy19tKI/GuNMyy0iT1vIz5M+Z15EKCGbjyDFksWY2qVg9LZxD/uoKX7OyeEBiBNqbu3daE7JmZFd5B+1Cds7RlgeviQiyGM80cZJekLWsNzmxb4JzkOFQjcV/ZjndonXiMQmi0rR+VD8xQm7P3JskaLy4FbUPyzMPVCCapa9H5DMGbuMIaQRRszcu+MwTN42aH6loyZ1QoK9alMKg537YEwfHSTNuwBdyMo5D2RrYS15/9iR8TtFB6ktq/Bl682xv38x/50Tr1CxkCQ6JDz7P+uc9vN0ilYSLc7kN9MiaxfZMYH+cr2SAe4ijA/+Z2XJyNOs4tS7VgfCf2MRo3G+p85V9xlLqvY5S8u2i6yKzX+Vb5Eh3p7BaU+7linHaYCHleBzVY8apCdJiYVxxZJnocCjkLAPGRpgctvpyOQFNNBlAlCnDsI3wBIJG6P/EUcSkIKBjAAe4YXZCNlnwNB3yhQ/kgZyc8S7EuxdIxie1Mq0AMfJrsRVST3g0wxqTYVVaxEthBFGDuroxt9S0/VZnkSCuZshmDFm+5wER3RTypYzW/Mj8Fjg+xaLmwIEsPQ9J5veN91B1s6bjfjm9Q60GMWrMv/YuYJttG9UrdpNYJLWzYxFQijlLy0A0XvUvnFSkmYYbfnyBhmIp+3bLtRHe8/NhJsT5rC85YOsM5UPt/XCJdvD8ow8ZccVPoqR1HKuid0U+4s6KXjVaqULLVwRAld7G60BaU6KEw9+f7dW6DHQNb1kXvhgPptxfr5IQSflHQbO07uIcZy63ZTQ2bPu5iAsu7pqo5KYLYT96fBiDX8U8fwrTKyOF4Yl/wa0jOVucJ5nu9/yYS958ht2kJjkiO/pLX+uBfmpEA/9ljPQdaWcwOAKndP/16wKg0jOvCEwkx0ztnWJcCKMUDto4PCB8weWe+I3zrCL+zbI1+d2EhdyjobRscxFW3guRa2aWA9v48ocgcxDOXXP2UZ+8vSbbsHDvMJ3HnTNt3LLU75gM5z8rdhwLx5XEZ4PIpYP6nkkYG6w0UVdaK1qYCmnjSsRRaSJ9DfmF/49v6sYVNUu+sZMpJKprMJsZyi9SrZ43q2ATRt1ak0OIofKchwRVJOA+lwkoQ6zimx3rK0LR0+XF7i8+/9whKFED9HerqGDyYAq1Fj17B/xJClXeJZ3t9B4i58d9XraTrbyy6Ys1LBVvsThhpHW1KFQR3t5S1W0tH//yRkMn8dqlhjv1W3dfWiPUwd84bqLCVErylVYhTKSHbh7cufuHuPRtwUMl12UZH0cLXsGKT2ttZw3jz0bOvZIi13HFeDRsgnnjjG8Ovl2f674bhOX/nzuHmi8NcLnhCkVDijLTyJ342MK7nh3V7zYxtaKuBvPE6M/bDFLfMptEGrsWb+7IWh51FD7LD6M6TfejKlaoe3ad7buDD8+a6OGWz+J5oJ5WZzLu9S2hrpy5MfZeWGMcTb/qkp7xznAUF3mEC6eDaW3M2MDliuTx9adgyU4f0f250c4bvUk+3NqnGAfDBlP/b4Ulv0RjzmYJgu6Hdwmwi1dCx+2FkDmqWC+sKqvpbcNlwWa1YIMksB+uxY2SrFB6syEE68O5wKOXPJ5qMbwMT+mPr9CO7XRwabmp5WaJRlPvbQhN8RW++YlfIa3gVUSVnTtERVN9OBJ0O0Z8a4Qiqc/+R4WbNRmYp5FtRPQlB7RhjAUAo4BAG4JoUzZP/4Ph8qAHxp32XX3OG9p9U0Bt+ouZTIYf0s7URuHIeI2q+4dC/6J/rIPWyKbE5xwm770xo0G6I2opx2u+qY6an3qtR4ANxlO4BIW2+7gVVYVaV1iKt8s2rtvcj70WFitw7kNQlpy92o2tT88g5xVtoKV1foOHh1XhDh54qhVqGVXgg1R8e38kFNwScvDlJ1K/IPyETB9PF/XangiWvdX8i/1J5T+QKbKcwlT00lJ+RUSIKtz6SV5F1adsrdRRdlA20EJoFnWyWZo6WrDP3vKjb5w+uNl2k7okFPDVRNGKTTxUJab8NEAj8HhoOOxJ0GbMAeHGJYDLroLiRIz4C/wq8ZRVQVUOPQj6fSThMT9JgF1mVDyP6VfA9ExigiEhZlmbwOA4pqFY9HhaLMoQy+KhUMENkjHZQKcPHBD7kXS0tRnEBc5Hq8cs0yZfSaf67dQ3625hqhqCgnAbMGB5eBJ9uSGk3vddDW+JrOqXBmp
Variant 4
DifficultyLevel
585
Question
Students were given a survey where they were asked if they study Biology.
The results are shown in the table below.
|
Study Biology |
Don't Study Biology |
Total |
Male |
14 |
36 |
50 |
Female |
23 |
27 |
50 |
Total |
37 |
63 |
100 |
What percentage of male students don't study Biology?
Worked Solution
|
|
Percentage |
= Total MalesMales not studying Biology |
|
= 5036 × 100 |
|
= 72% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question1 | |
object1 | |
number1 | |
number2 | |
number3 | |
object2 | |
number4 | |
number5 | |
number6 | |
question2 | |
fraction | $\dfrac{\text{Males not studying Biology}}{\text{Total Males}}$ |
working | $\dfrac{36}{50}\ \times$ 100 |
gender | |
correctAnswer | |
Answers