30149
Question
{{name}} runs a {{business}}.
The number of {{item1}} {{gender}} has {{verb}} over the last six years is recorded in the graph shown below.
{{image}}
What was the average number of {{item2}} each year?
Worked Solution
|
|
Average |
= {{frac1}} |
|
= {{frac2}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX18FHvl5ViczNdEZ9yANq9gjiTUGy4oe+RjGrANUL2yrCMGNjxW6GnPw9S2iHsMnL3MuCz0yLYI2nBGxVMEC9pBiX8Wi46g8JMljIxmqtH8K6+5V0GDV0vE00F+L2yohYlKdCeZpslycq3st3iK8Fcf3Gii+zQqW1tU7I9DyEYa95MW0phRQHdwoLZycfdlr175bQuqvwvMpQp1M8ygTEO5Cgoz4jUmYhfAo6kvNgzgFhL3PIULPbu/OsglNLo7EW7IVQJzVr/PMUbt+aZD8g8TEbv52//IcKWt0550tpbrNSfv/54TeUUbERE9b3j5pOVN95JVBR0Q2arn/G0o/RjY6Bpm6emp7y5E7doLizmBXnw4y+s/Z2w+Qie7axXyBnGg5kczizggLHfDVnD4kB5/rpT0Ed0s4I/4FVg6J//RJ/NW1hC9Ygim7PS9FRXanv+ZofzGpZIPiV/qTL78iMIRt8PO1amW3TI7nc9iwr1mt0Dx6nHr1JQ4gCasp6dbVks34xS6mFmD+RbBQlN3XZI76DKpcKNJaMWbM2kSblF0cjgH8x7A954xZGo6udCkJYX4QBQP8tywJmt0wY4p2xDwytykI5etjuJjKbbf9nr7sd5jPWt0O8nSRwoqbfIg8P8EUHvpVnj+gQXOjCV1PhEsmsWbWa1wkGHvBmNZi5g3To0cVoZpObgyXb6FKKJUkuyxBv99A3avRxbi/F0XuqA18yGWMi8Zd51lRubRqpAjE4dqiwfwcZ09yQzdRk+TBfSbAAT/aWyFEkA8xmFl+r75uFXyZRrLIpxRWmi09XHLAiP97dNfzJ6qinXYsEqrnoALAN/s61oMfE0LIIQaabwr9BMxxs+f8E+oXhqFW8bTZBI0ReY7xA4c04roNbu/xfizMvWd4Ei5EmOh2cxXbREleZnuU1zwd7rhytKalBMbcPndAmoArUgMHfa9rfEn+unnl6bPzbCr0PT3FY6fl/Jyf52UY5h26CN2WAcxIE+6EnU2NoQcw5/+jGRrpXrGWCjQxLqxqRDcvNK5bbTGdwofJ6YWA3ilwAjZGcYH6cDdkWveGnVv+2nOShSsf2K/KuAyQF+hHrZRLXcRbnkxA87PiKg6q87zoZorWxFQkZsFH/QcKE4HzmhP7m4+5LNZzwPDpSvgyabAaK13rKZa+8wBbuA75aDVFhp34b+gijKPFcS/7wNs5nAJ8VIAiFxq4/vNaahTAXsfkjCZcOB9UHJAWGcw1KaG0Q4vUqT2hAFOI7p5J+2OY9e8ePf/LcCnJjx4CyuMrpoXoxK2sPMmzi0ZS9NkWwdYfL4mwpk1BVJQbCBS4c3DUvvUgFafYkgAXYt2Htyytm+l/qcPdyKQWRVWDFwfjRUw8cNdqA0DWHqMCt+g6K4sKg6nIDQiSlc21NEqiE8jlcVwm2nz1jBTqAPrllzSlSiEts+arvBXvYQXTtkha+QFh1rOtY1Hf+myUSXzdUqYTnVQdTdVE115aVlnvJ9W1Wa3f/bOEZmTrhj+Q7ClIW8VLynW+7vt4r2mnMhkcqeHbsihVdhaLuQcVLxr1gBedLTnfX231xOdy8fKpwCmhkBPOSgzzICGii4lUSqlW3jblMM64mR22OPTq7PJSP6UcyhhibiYxsyJJb1X5nCYaBP25WpSZRrQz8Z5gBZ/k5lmDbUnyaMeJl54mI8Toshhc+P6Vr7W4JZb+t9UMA+kJT1vlkICv7F58PjAZCYZiCyshdogF64rJIvRw6BAfjrzaR2Ixj0Rdbt7B9P8oP+kDehS7pXOHMcnO58GS7OgOIJ6kZHNbg/udywVYMSfI8h1gtJMgzYRxrnfL44hBIjXW+jrUbRmKYVc2ryFKcph6wBDwptW4o+IXerCuq9qTkxkNPMyR89nIswO4fM2JWNaGb6sKUr+p92QwOdBpXMHA/4SzLHgrtW+7OFbqynISJ2wTRn+YwlMGZIwOftmr3PXaRolTwhTcgIG2jRVqxF7NUk4S80QI+/PoM5o0jX31/EQ5cN0i4a0zbsTkUFhMoD6tmMNMHNB9jl1YZLJ5S9nbGjIPN4BOTAEnjrwG60s9ogPN+W8PXxAeyoeJG36XhTU/vMNeJnvhkUXCVH6LsEJwnTrqJ9VkZBIyq50+k0vXNh5ZKtfm41/7gWcurvY2VkVm2ykfdg0bnpOYWrnkIrogB8z3H7g8sDDZzjSvFxloFHkapn6OfXsn2TzJL3o6a0c8QYQUjK/CNHTupc7IGmfY1sfm2kPMWiNp85rLRGjQccI+b1QjRWolBzhDdE0FQmo22MnCuJ2+PqoWZWPSGDerKdN4xmn/uzhHW3TRNCojD3GlxXcvV0wxwnrLyc6WspA+fQso41W1OKyJli9lpjW/Dhb2krqUQFK/jkqH/Bawn/QNteJfrrv2SifycG1VMtLZnmpuwrmjMRPFf2PL9g9EJBdwfQePFY/eD2im1HNQ8Kw3v0JT1YuM/dmN5e7SFHDBlnjhj+RD3ZAeUJJCCKSAxedAKq68qhYeTyoxIzmpDotgYdxpJcPHFafQsjUZDngy6xjYedCwhtc/DnNWRw0Anmcw8Xzrha7a00Y0r9jb4Y42Dc7mC/nSBs3Jc7Qpk64OIVcn0kvNItytyQl0KjceNBcVfDEIXqOYNgBKr4RTEfPUHyfDTW1j7RO7ITUuVTg93IjMbnIYlptE5AD1lZL8SWTMkZRU48AxXjEesI+DEGXK3fHrI9Y9iEB/UXvE5c3QsPaO7DKe8t/I9ekrYqgRCnnsOAPDOauT8WFS+Ott/peFFg9OONMzTloswgLzAetAVjKGH8qx0UnqpJ+sEoOhPXu3QUQPaB3hO9bUH7V2oolfuLbg2+toC39j+2SmqkbHWt7h1JIoNH9+mqtdhxDWjlY6EzVNFC8RPXY1EBUtUo03QDKxNKGtlXevqfD1DE/+QjS4iZ1Xhq9XW6Eo7+VShaR6FEht0z1MTe7erzMx/Hjzlk8L5h7/ICQO9prgIQKQTytt2MZH4xL+1Pe4bFEOMRkUHeNDg3T/1dLDSIW7QMoA8uysaEiRQLNnQ0Yv0XLBdmhV0SuIsbaTwv4OGB1NAmywh+c+8advB5dgZgcRnaY0zevhV1LS5KUKPE3sYBP6+v4YfovJ+pw6VBgatdA4kj+DrrsoN4PGPx3Vp55LAeuuJTChjrkFRRSpdxeFAtM6rJlz83YgbCrdlQ6jR6wGI4y67RysCg/xmYbQfJB8DSUIxOaj5ykFGyCIs5AhwFW7Ub4M1Ko1syIXqHgP+ajR856DqcTfzyWexaqz6o/TkH1NzPqWAbwQiN4QYJQX6015zw1pUffb8n+IdtQZnf8/bzyjOm6Ka5D+HcLbaYLzuBPeCQ8HRAsxH8a0YKe0q59KHPe6SVzXzMeApCbDb+oyYc7m2AEQ6NfhOTvkF7SoC1rWDi7l5vuSqo54T00oR+FiD3TG4JCefHUakQ9SbPYB3xSaoY2ZCt0Jo7uiEjdqZ2f0ecyOlhUpUynjxzxe88JHEzjpyjc8IAtQD5gf9PEFibUP8CyAIxV/1AVdk+6C6HKulS9UEUxjjTiaytsh87DZVQrlFZEB4HMqaJ2HaG/pj+veRqq4kB3PnzJMq9LM+LOtfKSRU8wPe2rZsXVludL+0VZ77C1ozI6mG/fEXGZHJ9RW6T5bKSf07HuXMIrpRJsFTP/zDAAu+EkgddDW+7NpRn+b2qU6gCGVVCUvhVvzQuBkL2Cq0kO3Utox0S+QtdT1Du+l+cL8F47AxvWuFdlYozIEeRHUeCrpmTHtMFYeDLRQuIxmcAxFXfUeW6gTFtX/MEVZs22Rp8nIr6xhva4Hzac/4sBIHyLCM9ND5g3aZmFM1SudkfYoL/99EaGO1l4BCqbV5aRSuITjrVPaAS/Wx5eq8ZClJDfeKH5RZcNf2Vq7ydW6hp2j9uRd5UoA/xmN0LwS1i42SAoHbzk+03FhKDQlME5bywHERtAkgOXDvqV1ffl8AhCs8us95DXoh0ctYXaTJi9cLY9GsFLgb2oDKV1EgTfcCLzj9ZrH5X97krI5aRi60FD8/tYYjwWJ+tJUnw75Fwi+7F2LEB6PXXmGpAUaps7f3dc89IeuT/QJOw1kW1TYEDqNTWE2Z4cPIPQZWe90pOFkDzRcuk+7whVyWiTFzx6Es8nQS2ViUyazHhz/4ErPeF3xT6LUYmDYFIIutNADpyxVReo8XLatOWm40CaYnnG+fmrwPORUOuINNVazKTRtKJWqDqYamcHR2YMNk9cDsQQgz5wkxq73VeTNQRV7gyfBIiWPwW9P99kAfmNsTO1Ajrid6fMs9YacX9UoKY1+OjOVplbvnSw/Zj6ZjhFRUYDSHhlAPnIV589OOQ1FipRRudWWTsTVAuUi+lKZsv3yKRA0GlQlgV+CECowdiUhvVxFh61OLcOTeBDGaQLkpq6MwoIcbMWZOCpye0M+1iZqtaNdnXSh/zLCUF4QPHhdKNP+1UDBtDFuRYa2CZjPCpXN7WdjWKfpZt4A51Rk6rvMgMCRQSYSLClRv106B6rSylnXuxQt/X3indSa3Uwm+g3W6TCtS0j48V7OvztTwoT3EFm8VYMMtDJhUDo096A9TsxHp8Jlcv+x+5FPq/5OK0Ot7Y3PncX40x61JO/B8fvssMFgeRrvx15xLzRrYCymlMSivXQ8+gIWybG3xq+xk00dBhGTTPQzDMj2K40Ba9gjB66l21jTw8/Rf9xsCS8dlZpXhHuuGD2mV/kuEIxlCqb61DW4tqa+TykKSmIOAPs12nO0j6djMXkI8WkQW0cx3SYurjqVAk4xc0PiEoGfFfcUN1nqm9e6OoR4LX4DuPNLiUHASVYAjCozVJCID49wYAiHoY9I+zmIAUumyCvaLIkfJUafsv+ls8bYGITxvPYTwWSlvR2IQdQYF7vHe4O6Pxoh2fVp+FQri3Waqt8r3wxy29CBPjbISOwYvQeww9FCWjlAaC1F+nB2EfxggTCm47iSOVNuC7p9r6/3N1YJK68cGfFTDZ0CUhkRTl7RNGaDut/iiTpLpBGGW1ADVqLcUpltMGm+xYBBSsqST5Y5OldkT6pOOWd2+Y3u+/PyRadLcoaszGKbMqbfIssJCwfNyko3EsrRFCmMEiI42n0DxHLDMfHjtd9RXTOlH3UxmvPjU8MRlbB/uSYWkd8tTqg5H5nJyKQtPLj3YKeSabw2SDmjYcXlNdo9f76AR1t0542fYqK6Vu/cfGO4K370lCK7Ky7wwZGZtDrH9g68RED/qX7NKB42sL1zM/nvmWjwxGMzm7imz65XEwDmGKrS1Z7ACYls3edr6VIU3NvtPcFdF9MgGRK8ryLZkC9LhaSmhZMOsjk0O599PC4VZTnJGqhFRi1ociMZGnFiVfx5Ms+DnXH+5WEahTB1sqkfdGAcnW6FkuuZtvF+hdfFmxzZvQ+EUVA6Vo3H7FlIW2Uog3NkuswP9ShGGHsAcv2paTJoiIlTUquOdUQA0UGFDHgyerFm/OrLw+cowgCBXnQiCPB5WjmPblWw/OoJpRqeS6cRI73gBqi9OY31ufvbaYW4TPESy5tmWEUCOeKnehJyBe95sK9BiNyyiF3zGIqWuNyTlCnp2vgb3vKB53l5w54957f+3GyWILPJXkbVOs9lQ5F6GiQlb9Rz8OCcAX5q0n6+vUMepkf1OlSLmXJ0qfvVm38SjxBXAIBgJ8W6u64TcV8sfI9J5XrLHug+YgRbcWrUXc1IJFFipBV+psn4lbLH3yFx4b34C+uCeHjmToqR+3mWvgftYvCv0JoOfC+/HNiWTDJGqrrGr7YCwnYcCoEmYwMKeFkug6tTaW/U/vL0aodCGUoNWXkQPduXXuoIJF1j93G86StB0/LLxE0/FfTAQ1hedwFyGHIe5y3d9p6m3AowdSgI7E6okZlSakUmuWwE38MQtkffX7ZUEVCigKBWncNOmo5eaD1nVKy1jP2KT4wWiAdqVDLomY3H/+Rq3SWOyEObsU/LPR4LUnzgZ8FgGzmy0/9UVvJRKO2ClK92747qrA3j6wIwdsPzZK+Rp/xpcbanEKqMxRcJA68l8aoFDcfxMUwEa9sJEJrOEL+ltE8YmGEAhiWdY2YQJy6bMLYJDJ/yFelEO1OgjDDH+p412PcgkeYLNVa2XtRKmTUk2/n9oGd4mb2Stz641H19DxdVhTBvM11HgAkOyl6WWC/6qQjdIS5ouGZYIZTzdtUaLhCyi3px9P79hhBpYGNQHRyBLe5W43aNlRB9cABrFHWP77S9w/kRMFZIIeI1Fae8/zThpOPSgD1MgBiLrRvwwmEisUShBqGGDig0WUFMyYMe7lZb6zn3b0hnxLAwcbgeVUZowUMULvLf4CpqtKntARBJzokzgZVviYKSb2o0En2ytddxen53efNjTGPV+S9ZSWD8FJPzwGrafRvvGhQUDegk1v+eCOHJT3O7DHWAzEqeTuPGVK7+9pcZvPL8AL8atBi6iYIXxBkC22p0QGAoRt9DISvzNPJGhyNHfOTs1tgU0AyGqTWETY8Vedu+yfv3q4+OTxh7nfjreKAfFvH4PLOoC3Mn/1qLAvE1DkdbrHSXoa/mJfBbgtg8Y5VP+A1uOIBx3t45mmtr8KMR3rJVT3T7OWutoiJstdvH4eQtoAxu7o8qnHr9lYqh7CqXlbrM3+esi2vT/8wTVG9wNUkNp1qNnjWV4t0eSILcf/UxR0qi3pwD2Ks0hLNgGZRSMTkHlmYycnRyQBOBnuuyEfhy0Nq2Iqi5km7WLCmoMhUEcVLojHS1SkY1K3e4kR5vDtUHJ6efCrR96Bu4i4l9ZMJJGDwtXwoHVa/Di6uXKiaNQuxIFMiz3nxMuxG+5v1xsSvEIJ7F4Om9x+Nu6bwxWi1DO3Nq1d7X6McR7dCZs1uNzsFXecYNW2wdcrXnjkqbekhmDp2/sNmu7Ej3ZCgkOcnkDry3RqvxPMEEX43Bilh6kF7wB19gfRi7ISDiqLjvW3MnICK3/ZI3slBl/YYgZeVNE5lixsN29RN2Sgjn8AAyEuWomVwFFx3eQKGh9tXwEegFhfpN9dCEk0zSeNpRQ7xAto5qFJnVNLhKmwhqhFoE07aWLmsKnv7URLbLIGSUPAF2GjYI8fUodEx6BhuS+M9f8VKLDPL2IJHpf1YvywqsEWKxpjVvfkagKG8AB0boRrrvjh7MenDwI54MwAsYVaSvaREOuUVS7TQ=
Variant 0
DifficultyLevel
551
Question
Carol runs a tiger sanctuary.
The number of tiger cubs she has bred over the last six years is recorded in the graph shown below.
What was the average number of cubs born each year?
Worked Solution
|
|
Average |
= 68+16+12+20+12+4 |
|
= 672 |
|
= 12.0 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
business | |
item1 | |
gender | |
verb | |
item2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/q39var1_r.svg 440 indent3 vpad |
frac1 | $\dfrac{8 + 16 + 12 + 20 + 12 + 4}{6}$ |
frac2 | |
correctAnswer | |
Answers
U2FsdGVkX19Nfi5PmL8vv0Ga+Q9FCpHo+d0siTY8lNC0PcO95ChJQxl/ApanLMiYopggN1Zq0/7+5j21JNUDoXg2N8VCqCpOPu4gjbZwZUjfMKh3f5Awfz0SCI3tJ2uvn5W4smspODyUHScK/FbF2mhtIRSfiqp+4WJJfrz2BOyS8jnAMckZk/HUtZoiMsrphHHQUbXopNakIgroW0cHoiERJhCQWS2Z87cAAes33KXJDCxj53asbb2/zbp/947fBQGkOmSKkMFyw+pSzAVhzyi+BPpdCFDE4JIksGiJYvKeF1Mpqz6ypKvBb7Eg6g+FNcO4iEv1kCFoGJDLAvBHE29JDWu5E6QehKHVML4LPY4vCmJBgxYaMODtlek6sFDOaymmRSwEl7nEbCdxQFZ1owNH3XSxyAREbJjOkLwTi54J4x55FUTv+deXSd4lqSy5SLqFxZhPI84w+Qhs/Ri69Gz2qS6kuxNAdSnMrL/Ir6XCPqkQk+iUWl7PKXaRpTPZRtCZogrTLwJdV/QraArYXJo7/XGv9R4/GDoekrtcOn4sNeZbTTXZ5Dq8q/hnttD0BliAKpvCmUDSxouzYRB3E/bSaf3Z7ZXqWGSaQyALQ6+fBjHM6sQW8+Lxfb/0518SLm2ptB79k7PRuKN/czmeerwlDNSv49WuIktBE+SOu9Gq3jVSPvtEXmhcCY41jXLhnxifRF/o61bYAsPaJLYNjMuegAE6mNEAMNrrr++InRiKt5tc0vC8zaRY1Cs8PVyvL+qKKmm8aCO39dRwTpdhxG45x8xN/j+SPhmDa0h4w58kRIydOFo43KV7YKqYRycNAVg5WuNjdR1oG+K4HGcLCxqk07vQ6GEZsMT2E/uV0Bwh7+mCIiKrIPa07isQRMqc/oB/GMoOsU7f1BRQE7oq1bmicrtQXuylxIrMgpVaYlUkr/lnRuit6HVs7AbFJPkNMd7TpAeF+LimOgfj2oAD/oVhJb6XExzzvyEdXT9M6ezDAY+s0v0ZeN6OfxwFDLnowol1nbY5wxHTjuOjrPrHCqK3D1p4LWuIuXUW7ub09qao+/0h1+UF3cOgCgsh8Sv2jUMazkn1RmP2yfdT4eWe2XLpUCrOJvqB+nc+TZGoJAwsQA0IzFz7FqMn7/eL3Kx7z8C69b5M9zZd4jUeNQcvbB3ooqx9YqL/33rH6Ns13F2d/oXYbmhA/dIi331LoahO1KmMF4mmDsQLB6NOuXGUHuYjiw3FvoHHkFMvcQ4S8eTDobDiBfN5C+OThcfag84WzwWq/fa2UZC6pKBJ263r2YXwOcKPYbkl89b8zAMwYb6wmhgNCuCRECAXEr3FomUag26dVUfmUqDBDRjbUmYC5Rg/WHPAq1noWnS9zgg0IZ9vYaThFlPvSrj4KK95JFr2H+98M0OEMUK0nXMoXZEL+ebXiQYxGxQHdWd28uJoxRwKO+yMnhG2rrhtu1r/h6EoUtIN5CA9e371tsIB6l74ldVuElweiQ709pxtgF0OTX5CazEiX6goXqtXt2041qFJw2lZwSM9ElbwzvDIXUBqlYHYyfSt7UX4qt9zGhiypHAtDrzlDOYw5rrpjkYhf9VBDj94fISoC3B3Rjd0PyjoTgo6lmDLeqNXNKSye51qm+NFMnYZxcaZ9uLOi4bLjYk9Strk4XTUTDMnijEZE7T/vzd+wEz40oBZRo0H21XM3j+is2E8tf61qbpl/V55ztjbi0ZyYIkJd2J1ShDT2ZmSATZWfnoJVpefEMcnSJyn8DrU26xLoiF0Nl6XnzSeTubcvl0s0ElO2E4FZadPzz0krqpqA+HoKMLESL0EeTCyFDj9D+ImCYtmH1jWU6OpWDe8sDe8FMDCND56DM6mkZV0dlhwv5VD3RgDEcn2YnaxvRkN205zCSS2ySYBXB+ao0zXgu1v3hwMsUA/bsxc6SCQFojnIEH7VeAq8nmdwVh9TCtUo3pVFgjRX/K0ZVyQoCI9bpbq2wfH101T48fg3+cD2iOxYhugasJWFfsFtxOOufXuYFDfaxNSZkAWvlpP6FoZhGgaWOKtKZWAKzjZ+Iluu3IQuPOecP3gSiK46KN8ja2KsR1c1wRSJ7iAfQwbAgTPRvdSpmMnBZc6ymx4azRg4Lyxs2ftuag3e7N2X2xdKzIH1PFy/KZ2WWK9s8qQrsD3xLuz13e3DlAGy/GzOtPoRfEWdBhp8tVJOtRvVK6R7agS1edDNK818Hv3hvnuqIDmgArmbHXQHeK4nBV6Ym6W0h+Vsxw1GLdsb2Ja8ytZxJG/bEJ6oh7rj7nj/W7rfTUdJGEeLKXaiwlG4aJ+uhNXyLionIcbgAo5pdlrKvDS3BjMLAW/K9bcfjBzSH+FaAGTSkHoOzNl6HoZHlrlwPOyWdHW/B/sXkGsR6SDd0WwFJLCr2Ek+mgFDvEY4I84BNYdBThNM4YfTFxgoUkNqExsFolZ4TFXLHkg9LftrgQtSsbgXkuAuZXPgB2LZ6RJOKz27Z+2MiNWHrAh+wHgZGeQVUy2fD738tRx8a0os5sD2TxOK//8ij1Qg7Yg4oqjViVB6Cflidvw/oSnbZc7B6EUfuTVNx0lo9V9ytR1Ku9VBKFgveC6nHQ+rIECsbs9BeWmiS/MXJqKjmDLhccDg2CWsBH0zfpgSEHjNlsCIZY047Gm4if5OoUOwS5dBDGq1x2a6UvVMGSV5al1Wg8PB8HaatY6Th99UfLUhycVcuBJgInIS8uimH1iBcGc05VLxaKRHMs3sM7kgyeJ4nyynrrtWxRE5g8VMPU7DqMDF/tfO7w4bDPYypDDXtGPiU5eq4dBT2HjKbXRJEozJyUHjDfK3jZFzADJWGuq4x7FcoiEXEI1VWlnUy9P9nLHSLAjBoAUNFpbzj0IeOJbqqX8NlRiLE9tS3cQie0Kr2bEvK3XcBLhWUxJIEgb4Yx23SmDcHfblnDWl6lKlRSavZB4yZ9vw1Gfi6GSKG0JRI7u/7Q7nw9ZsuK/7yAZZyYZ7Fjmf5jaJrtpwc1Ek2Hmcwe7VxYBLk9MouyzAf4+66q2Zaw8RhrpCeqFn0D41C+f08QtpT0kpaTQ5hGcYnW/f13/O+z7XtxR2loxSZokUuXBxwBjkGTR481ME4nXRt1uW80zQwc6xQCtYrmE6pLT4rsmLcCZGvY5mLEGng3tjiRWoDBsitjfWJfILeP0VK5IpBJxwWbV3JQvEAax7HUBCwPGxLbMPq1y/2naq7j3P5wEo8oITB4Ku7YT/CF3Ako7QiWPUXA40FkfIOUoUW7n5BqDp0EqZvySZFwc9bXzhtXP5C+H0IaPF5JUSrVlv9ZJZiDFSswRHWSdQftSlWicMrxupIqywNo7ThMQhrnis3kHxTuRKHh3udlV7Rn3ehpyfBXU1c8Is6mRwjEkO06r7pvYtBLhQSs0slR1CQleB3aO0uueaTaCK1WPmdRPOFHF20T57FzyYCKQqWCsWxEd9dIG+Genxj3fsqGCZY0ndodOzqsXOidr2m1VcZ9PpJpk2OYCfsk4xn3b2a10Xq9VC2hm/WyvmW5IlKCXOzdD56AEjCG1qJwjdVuMnKod865dNfL9G7tdz3KHlmcxol2bt5LBr28mtiJWXV5rWvSBeFWqYeRccdf9n4+jN+t4q7JQHW5pismLeViGurtQVs2+ukwUhFH9hh1aMIipIJXmf4JNf/yNDksCU2zCSfthZov5IcsCYMxTGnIA7cG1yOm/u6yR4IxOVlGOedzhXiNf8pLGQNcrynJ3fWlHy36aMVD861vUw8PWfW5tfRAcEjJFjBpT/ccOWieKbQNxUOATKmrcFEuy1MkOV0aNcnyBIaglVSYuwmiGNtl7Cqke2YaDeacG3pYVDNsMkm5nTDbArf/NkTOdqC7/o1ObSaDJYVVN+56vn6xQiSwBd4jme/wYkPUPP1saOOmsEZJmZx7kpVDPxd1GMxC/PyFBHxPa+ugEmBR+hc00VxzIhLHtgzkH2xgBhpf8S4qllZr5wpWFXLF3esGed6w5GacuUxiaFURAV1g49QLJrDZcWuPLjWYOV7fVSf6x4MQmBZA2b4wjladg4EeMpiyBPAU+NAiT3cIvR3DfvcOFdbSX+Osyuj7TbmCpdKJ0FAYfYLcIoaxaSDl3PWqI08nUsyrvtgkBXJblEoVMxiC4gw059f6C8RaN/RLwvVxw5fQ0v/51tGzOfys1uw30M2OSgpmgFe2g4V8Q8+UWV/hslteNb/0PbRKV8ub0gOUfXiGXhw7mdCvwYW+xJ+0fFSzcZPK99ICd1oLjMyoVQomw506Oh7EkX2k3BG7SY+R3I4PD+Me9rDczlICN5eSxIADGk8zXT1c5N4ZZMMkNrAQPN6MTtAz5jq8jbTCBHHMnkXDFdWLp/3aUH9UGMpv7ic+TsxnWzOrUer94ImnVsqiOi1K8GaCJQ8Nh2kSahjcPA/nQj9GH8TxGW5FBes1W65Xjq6+uTa6pwpgy+/lkFsWyM7dShCb6qQMh7fxLTpFPXhJu1UFbPqAAk1x4fj+QTru5T5F0rO1qCYKdrwQLOT15CO4f5tDWtKLhqvxyLkFR6ANbCXSpMVMZTWJ7YW1wyOS9OmhegcCSXHbg6g7E1I38CgkttlHmIomNWUmS1NOPMwqxTiXx6R8U0IdAdwo6ZqdGx+2K+x5lfba5fBfawzf0J2QCi1hNqh3TUFWfw5WEjzk3UhSWYzc9pTwGi/W/y9RMI8PRqFJifwcPj+1r8O4BxIkxQmROfqgQXZTEmQO+RaeOARsiY+c9qT7LeizukfaKBnl1BYQoJZRphPD0FNcLrKXI0Uit3ba8zLnY1Bo8vhzDOqyYXvsVrgKsTjVfBVO0lBPG3Of35/iT5gaQcBA1UQ82l5qRVdXJhprit0ik2Jt9RQqGSvIJpJBtEt68iAsEZcLAXBSDDSchXswAqMjDdBsEzZyAqnOQYjjiDFtZgDlmEvezCwkBw3VZqFAQdiZFZOOCY6Kxnpc/pkDtPIpGe1Ad9YlA4JKNToHHYMP0Ev0k6makjIVxnUZy9rWKmZH5yXVsN8ahlnrwUogtmJgp+VyzR0dl5sUPGMsqFbzdDSeqUg+dAA+Hw3ETy5WmmWZCZK7YKxDFi8xUM5x3d/VOiCkySCahKL2xVYmFh304iUIhwrgSKFSsnm/kkc9JdNhWcguM2yLUUQ1Vpc7Gm9ASR36j3IOpebb3LOw5cAH/pRcKBrBnGXnwRGkMH2ERVfFgW5+5RPXchBdnCqZhKA/cOUlseMBe5ZpcTijct6KitOHG5nlt4LeSTq0+LQmkkONrr9RjsElWQJyTtxOo+1DaU/7taldfnbb9HhD7TxBDXXLJ0Cos4S6lKssrvtJ0y00o2kgxJZucy1n8KgAlSToUu/EC6alIbxFmuOKxxJuZcHIhEw8KnrPaswNCRdwcclPNJgiHVziH6Vm3iGXmCRbjTd7dnVm/TuGasjzemnKC7QUrFRa6mMF5LEXdby+wLsIQ8WZoYwPRNUMNlVVWIb2NhkTDU9dQUJCjF9rfnkjlXmZu2uihvBfJIRxkI8weAZ5dJ1Gzv59acTesRxN14Og+13gBNjsU1OJWRnCdsrrrz+WMYveuIG0aZ/DTGs8yOCCH9oLUeaWIohgghj2f7iwoodf4LHnNo4+KC+gYhwqojPqoZo3j4JpvYypqBEJmUxzsJCER+VzYSuqJ3VSIt92/yJ7utv4fS6mR7ZOd3OWBeEcurd0TupN7tbvY9nLAA7N+9mjIHQ5da/ZLZDZFQk5vn16ohtlKLDKbu0FiJ1xrUjCfb4yc61b4AC4yFVN8071aJk27Rdxtn/O0hcVZ3ZEuJyX9W+WxWU1VOcORyLzDWpH1uWEO1EapaO8XOHJVrcu6P4WcATY+jLQoY2z27jUdorjlLx0FD/ILemlZl+NpReyMBUyquHar0zUu+tyK8dWm5kyQ49HXR5BsVtaf33T6Is01zwtuEBtihEipLrBHx1AyBtvozfwmSZFdm81dvcO2zxE+P8ZqKEefGM7ozxRgFzdz6E/Hmx0Evph5Z0B8iGzhyoy/dfb08utw3TcDoeBk4E4Xwr1EW0l1OLbPV/bD5o/bgU2oWriPqUu4JH86UNPFt3eV/1HmgGnRprbjHTPXwlqwp2PIYLt8D0caVAcBtTHlp1d3rigjKbvxy1zAHmlvPZOT0mZAUSYl2I0PwblIXsD0Pn2Q/gav0fvmLdHqWJjw1SJ/WpMtGgfyDpIRr5wxtT5QwAYyABcoKHKBUh0TeILb8XVQrNj9XG/Cbaw6InR/1ETm087duCnBL6RUh37momfBV5G3h0IJNbPyP/hWX8ug4J4UZk6N+CGaooqeb3Uma7KyiNvgvwaIfE9Kbzuk9cBkS1xz6hCYwSCVWtSnQjIqkuR65Ub2/Rp2SXWw2byr3CFio3oCYOAJWYwG1431Y5AlRaGVBD7PCtQJk2tQNgbW363Rp11CNWi39i8ceANMmWbI8DtiDMMZJjxqhvjzLhG9ugTzIoIVkuqKbXagBC2fkhKmnez7CtU70r2nXJx7goBGzg3+6zclelM1lgJuNgoKXmug/78toxogirYiG8OAyfW8nQgDI9B0IUDnOG1Epmd8TIDN5K6oiGsQjVC19jlIDKfvhyI/+RysQoQ/ikgoeCcI61/F7vZzRQAFIwe0C6rm1By9KCwx76DyflVl8ugLKrsDRSWrcNwXTXwaikunvmIan0dNw6t/gEHVcb+meWqw1FIdgtk0ZDVVsfrwm6yzv3kN+tyR8pKbeBe/jNbOBWaMUuGyGOnzLkD/tGgmhdi1cljMLX/s7VVQaC9J2KseUm+JpIUXFlbUSk7ujOtIHEv9DDRBGUjQ8hkwdnFvIZUw0wpwsoi+TwOMYhgL1A0JJUnLW3bPcULDfwNeThekhpjLE/zlNfGbjIjscg514obrGQKYSLcVks5eaE9AWiV7qfni3q2h/Ane0bVNdXmnyKicWcj6uFAyZUdrs9AqgdH8rbsPFvpcs9vUw41l6vrqVvfQVXKpVXmKgcIT6k8lLe2JsmOR8psy+/dFyB4hrWguDlF7wi4bnk1S1JTwf51gEgf8IgIVoR1+43hSaxaZmITO6/wH7piR4sdh7/GR3/7IpwH1YaOIErjMaQPg2pjVfAUE1DET4w0AFolSNwlk29takLDbcYjRRS8vjP/gudy4twV4mwLtnQ482/SNmkWzqghXeBvGOBH9Cw87P0/1va8AVdrJ0TOT60pHr6lZPTaBy4woQRJ7xfGG4/cir+Ac/88cqGJhK0aV7TC2qA8Isp9lVqIFZSBD3oUD
Variant 1
DifficultyLevel
551
Question
Byrne runs a real estate agency.
The number of houses he has sold over the last six years is recorded in the graph shown below.
What was the average number of houses sold by Byrne each year?
Worked Solution
|
|
Average |
= 610+15+10+20+20+15 |
|
= 690 |
|
= 15.0 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
business | |
item1 | |
gender | |
verb | |
item2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/q39var2_r.svg 440 indent3 vpad |
frac1 | $\dfrac{10 + 15 + 10 + 20 + 20 + 15}{6}$ |
frac2 | |
correctAnswer | |
Answers
U2FsdGVkX19PkdlUg35a4H8aLJ90yiDoJmUCLvSqYPBZlaN5zzZrBCq2V79QIeOHYxa84H4wqkWeBGlkwCjHN9pw0kVlParLUego6y/h7ESZENQvQZN/KUnMLwpnVxijIupOma+4H0pj/rgLozpu57BtFTdjo/Zls1iAVpdE/jIEE9CMRjV6XNTCgm3L38zGsr86OUQ0sC/nGmzauBS3y3pxAkFVyqNVype8wUxQcRyr00VgHTn6LlpTKhVqWJ6cMT5yZjlsN1dNZOM2RAWKVwG9ncxHIJdsA0KFyeS9i4InuGbH3Yn0HoUXMvvptFP8aVlzEv9ov5YswRmNQTpaQujjZuWVxuOyF82fAvbOfiChl/Ybfpz8pnA7U5+eABAwl8F+5lm/gsVuTzu29LchX5GX8kP9cakn+H1iaj3r0/Sg7TkPTdBKfoo5Ie6uE1XWs4Pr7P3roZ9HG8ClTocp2AuY5cxF9GkItEnL1AlczoSglehI4gEEMEH4CWNTdCiOeH7D4RULhgDlanyN3HSnEcEbxyoO5jfHLb3V/gEMcUZiZCYqsgkVk/B6ucImXhsPU11Qjm1G/MPviqSnYG445oSgRV0WXeTgfUer1GyZfnCdDvYDAPiObxYCwj1TtoYomIDUuzAX8UtCBbXl1su35ZzTLPnp4/r5fTg3wrfBd9NQazlSC4nG71qaAr9lnJN9VrqcX/jAOtkeA+Dp47YBPnxUmF7oAjUHsxop5EI+VZJ3YKMrYAaJnpYWyG4BsZNpNvOlfrhbekU6G8kmh+zVXH07jGbkIxOtbvb5YVX6r0hnWCOunL2H3NX7/hYOlAqzM0/GVOU/JsYF6NgdvncmsrvC6AB09Bri+hPn2jLncsSiztap2xVRbjbW+NVX/49z17oTG3bylTZRuwzxsLxKzY82+87KJ0xo87/6oqNGvNCK2qC1ugIbrtAJWTqVg9aEcVahEjVFQijwKnvw64iCGDKe84moWYH6Q2TLMc0amP4fWYrRnqQl2x7Lj+kjYy/PF+TLQHawBZbt+vHwOz7pgDjyJ5YnUbjrHlr0Vnbv7ZkbnG5pde/AeD0n3rpEtdYXkvqA/2NxN8si7gn5B+ICM2ABeEaEgKY5T/w4Q4nQnZfN1X8f8AU4KYCZFULGA4u89EQ+7TnjU3/tMxrE37oYCdcf+ko+FvVzTI7pwMjy3S//aQM/n9rjGiSEvlHOHxAS4C9Sd/ph/IxxXD+bLtz0msO78CRkCE7PTPSO40KWlakruFVI5ZQnaZPRb+lNHycfKWaYOqO7QOgJLy3IUa2H3ni0wTk+txQDPRx6v2vXmFb3T6TNCzrPnTCZNDRXZoHTlscHp1FqJmyNyV2mXCoDwQgF6SnJuCKeZ9Fka1OOB5qaVez/LWqg4qOxgYFqh8Eha+OmrL7s4KZl/LTNZDswrypKlJ1cCGXCblH65Q8Zo74tssfNslOe45U/hQIkCVzSMFgkm3McSfAOlBi2B67hXTyKCQDPDP7aJwoo7bRFRD9j3/SPxACqsEK9Ubc0YTiob3djzux9FI0OzPMUMUmrPFi2HmOjxIdNKWlVAuJnqdoYSPdgV0B4mGjzV6MreySflh9nhmF+P9w3XY5jp2pJeE2Hg6NvRsomLf4N7JjYWWf6OD4aDV5o21dHc3CTXljY7vy7NA/wDvF7qyWAXzA08O8e4727pezuOVExjt+iLoS0fdJ2Z/C49v03xh6YCA9UjqvYq1hq11JCtACADXjrXmu0wntJL+d4lE1fBvBNbzgNuDHPezoBiO1rmYcctUJ60fuM4iMgnOyKfddb5oxLyzknP3Y3ysba5n356PL/EwtMGy1mvN+pQ+hGKdfKSJPF11ozABmu8XajodPQJLmenpBC+LRSH5Zwzk93U+lL9zgi1pbBJrZKO3p8A8tQQKCvg0fbEpA1deaHiogNjXNk1mDEq4a8w8MT7inJNM/vt2aVVaMkiTLlPsplZQ04rfReN7Sr1n0XNi++aQTRDrEpl2sHJxZaK+oHS5aqXgXlMlCX75LyWd7BcZZdgvJX3kq0fOM+8gTEXknYXXU6aaOgaO592OqGX9EAkhZ2ubuljCZZ2g9cMtFgYafje0olJgIYtSXKyZfcxnr8ceqa44a7CagwVEfX2fYqnnJlE93nOvzufj/WAZCo97pXR+pg7UGPYW/MI4zavYMwSRiwEzPprrvW/D9lDBdiuDAheFIowq8ioxxyySas/7GCariToKOYIJ4V6IVWK/Wam9Yx4e81ZtBQwF7A3TMmufgMABc5MvYCXOrIj2XIfjOyU9CW/wv9kX3daomnHi5HwuV+VVfhhw5HIhsSNdDRKnU7jzaxU0ndBcGcg9c/56b6A/7k3PgD+qFekV2RHLQtYd8CxQvTZtBpKPih8el18P7eUIt3DLRFo3l16yUBAWdbtsck5Vdeb2SF7sHkIoJ4eK0vd9+DhIXOuj7rqwDyBViKnicm7d9ixRyI301Ug8/bBVlW89yKcQW0TfBL4lFkTcWsJjkRHl0tMyBgTNi1Jetos121aidXLggGNn7GZyryPB09K7AMstKOCRkECaMfds+5lBgGRa9xs96s8XX/hdV5lwK+8UlO+AqctsVGeB78z2R3qWBDaNgNT0fXQMk3uKY7sR+DOokcP1tRc6WtkvTp9iWoP71cVMm/pbjWQ6AiwFpxdyXLbFAjogKwMwZv4f2oIr4h7JcIWV0p6VjAbKbdXUiRd5+7b+0l/jH9JcoMDeiYpalB8+SGBhH3R+oqgczemb/xPMVVyhsuaEilbJMXF4g7pjnHwOiuX3DH+dfj6mJiOYL4HLnRo9ZJEl7+5Fr+BxUIiswN9tXRdxK6YNYbiye2lfG/x3mcbkSObQWTCpAzfaPMqs9AZ0ZZF+wkEesvjVbw9K7x9Ym3kL/xhN20PX9fQW5YrzMkfbZXVg22HcPfGxk2v7f2ivIjrLwEKgXdW0d3uOGhM816xEzZ/Nqo3WP9iQpfqqB1Wh4tTBy1ZgGc7/xeD7Np9AzdM2vxgXS2K/7uGswkaHA4sGTtH+rCQW/pO+tVlgFSJ5nVzex+bpVE7Cjuda26CrDxX6NHeLUrhQf2W5LMJFAcXdaIUo27MSLYmLlGstMxnhk+6AP+KGMRJIqYpbiRNpkUPp7hwdLn8TmMYY2OGVq9d7Lg5Xk2TMhYA3cPXVO8GEO6lwh6tNRftOFfxqI/USHZIS2CN/eqvNXXBeegrffsxsxr2PW7wZ88o5m4sW9XLbAQZDDAy0eznnU3qQVTw1BglO7wH2R7rXqErHFfUSvqEdy+BYl1Ewu6ND2MOwu4ZeR92YHp93hKB7FecXoLRGKqFjlPTD8vQ4vKn7yPEHsAzh7Q/zsRll4/FpN/KL9WP4H55qaS1Dhk4UwSK1y0qMG2a6WbGtPsUgPJo/B2E8gbnNHSZXBatCrB1dlQWXfegow2VIi00+C5HJT7i/sWSvVYQ4ySnKqt2+fnUd0k3dtPgckpRRXBuACyFjttYM1ZJ8+yP1foceZxrIKQ1ZktoeXsOTt4AZy94gFh6inPRhPL7ltMTQ6iHKFGceEePEvfj9TGXJrQtX9G86C3YYgYeU6PhSP1U7zqeIlVJ73VQrnBT8QPodfrr7yMoi8AW/DqJt42Y2QlAqcuTz3frhM1QaKlq0tHqgwvWrshDHPuKgOLEpk3HILnPCXUCN8a4FEcC4fbCZwypLp7m7ML1mxH+E/ULVkaKDk1yuPcoOalzgaCJu5rXOa5kwJPIMxoZg3U67uk0Y6BeScZfHPWimhX3yXltrPVsN1DsGKik3445zvcMdesXvR2/vFMFnKJfkIbg8H6LLD4giQI9M3Scrh2SEqTgzRGU6BtqLFYij7TOuG7M7T1PXT5JbNfDNyeoqlLYd0soMsEHfM2A/n33WRl1X+vGNveOf0WtcHSysqBS6aMpTA10CoVPsuH7VVjyjS0UOwW4QmioajSg/yZNQfWCxukXzd70itP3IwrYaCf8TKtnuLKIoXZ74Oz+I/2AOC8AogxjxWT0HsYiqN0IP3yOMfOiBCcZVceJnolmE/9NyCVZRaPlETVEoGIbJAIaOnZVYJOvM3WP+F0O7gqhg1/DyCRRFRp8TMAYuoyBCdeXYt8w7Cc4fvTzOeQlG7amsDU4+Tx/hOXrIiL3etpRItD161RzjzIbC4leKADYkcXLNtWQsZhHccTBwkVhC5WLnR1yashdrJRhWoSrSUhj507Vie2ypoLhRFKd12ioUEfVSz05Ot1W44OCVcCEZRjrknEfHvAz9bvw+wpXdx4QfpyNAEi8IhSeaXWZxTaErcRPW870728W0Pco/AJG9S+4XlxoaH23wxxKvmW7bg731U1+09UojyQSmLjt84pF6QlQZH7lHpkT+CVcEBrTBz8laTv397ttlbXq22slxIjkeWkEtAsZLOHtGu8ZK489btECw6k7HoLhrD5+zrJpRK2ydZ4VMb1Z9volIGABE3uIdXpTzG+sbr3VrRc7WG3Ra9y87CYqED6UYXphwyjt7Wu/SwX4miQYBdUN8whbFTOh5yANQllCHYLP9SfwsZ7T26PzyNck1vpXnfpsH5vnnvsRwfZoNKhIFx+Ol4Sa9DQf/6Z7TJvW7RxLlXDdoybZ4QsrcFtim6CZoZO1aH6UmwxpZ1y18IPqn4/66Rwsj7jrorJeEuOFDAreAdxwkhc+Eov9ZzBKYfGIoxHnYUXXrUkw6ZYuQWSwxD7EKQT5TiHnlGP1A8T6+YGWRCh2S+w88zbrP6AhyNqX3PJl2B3jw9IqNoB3+65KJ5ec1Ppz1tsUOrD03sdiUAwopwhUUMH7J2TG5D1+gMPvEgoFdus9JaTDHItl9EYvwLgDBUFyrb6m7KrWvM03ajOR/mQB6oOByqoQOjjixqrSDLYQc19R7ih69zuh1aS3DZ937ammP5D0XEtpCOslrCYlhFCgijFLTOgxWEcRemfy+G/clAoYecsVx3lEyk3nAkUOXhWKk3BJb3y57fIEr7ckIUnjvufvjHoYioMziMCLk/9w4fMfDaOqMaiZpA870Ps4K21nDjfBM208NskMjtUPBTiYX8ikFHbVvloVQl+5yU2qyRG45fchMCT+p6XqKpxS9JHlV/P2VN8lV3PNGug2hTDE4R1aVDUK8myZTKP0USU7OgznbdcgxveJZTDJT9FGPBJ6tGUwhvMnEeogmD31mAUCrVI8wGsXVZTkxvycJNy5qL44onj2UrPfw1v3mPkSvAqs4M+GvgUK2+rCbf0ZJWFTQ5tE7XxTQlEuGDaA1npveyfRB9Ri1OjgIpZreOEX2eRl62XapgqaPQwvHd3qW3yWXmY35hr0aIwf7GRcH64LS9R62REOkIfKiQ6BSfD9jzt1xMUXtFfZriNmLoNBkMYlvDJku/NThBUF9ru/ED7Q1WF9MaWx0JD9zkGdmR1Wds7l9FVyfMOyM22briGy1HWVtD7Q49tpZjOb1pEeTnEFCS9/ADLfA5+wXke4P/FB3x/p1Lxa/7UvkUU56+sRdzRflhXf8y9R4epujq3QunLImYJxJBb2pTE+duJTMH6UIlswW2dLzAkb9S06Ra/7JnoLkYMBypMBwfGa1A6ABAR9OKpwnZcSO6te+o/ev3jYcSWDUreMZXUElZM6i74/lcVH/bY/61g6PmYMMjMdLrmvhXCGn4rnbGq/vuVcuatOkjcLv6GSK7WSDpYGOZMW6y3wMJPN9F1Bo4wTCgQZyoTFEoYst76xZPa7u/7+atjP/VmTV28sbfb9gekXxXcz/zv3gB1PIjr04RcdfHXe5HwwiYHiczpnu2WxzOc8Z4/In3mrGM6o5AGf1FQA/vNrQRXEWZeJxVB/CYblrT+aZsOUZCYXodMMc+dIihrvefPDheeTThFKLMLWSP3QpoEP6X8CbI0GWycSvWwzFFRA+sly7vJAlY1+K1FxbIWdhCNN6P3qm4ONKPD6KsnRoP7PYat/aXR0rWP/OIZMlWRIakWz5IZvoZK7xpAEkqoNK8KUhg9vbiyiGIct8XLEfoAnbJD1rbn5APbaS691sYPrFOdW2tFBNwtdxyheX+zjmAxFsRep9wNn7kNHh/RM/NFTxzE0e4ShrmkUpYh0qdvxoBxOQH/Hg6Dq7Ug4jIXPNHUrVDiNcKGlYbkB2lX0nQxixe0geCc1amGO3wAGwW7wDq2bFPrxgTcufolkZo8zbN4J22drFJknQCFS2dBhDx7NDlobfEPb6kEnxg1ZjnsrPPjaVCJdpHw/Xm5qvX4xEHErRvTVnmUXk5QHwBni8m6tye5qHJ1UfxLPXdRpkzNFlYyH2BGOJsZisUdJAYVXs0aYzS/jR7dsNZvXfLHKPzpyiJS22APsPcf/85hLucU686rs8CxE9H9WM/isCoEBFG+j3kGtDVKu6XfeXXluWvN8UTXaphiPmg6Sby39FjWREoP5Fw2PPhaEDZ5sAdz0SZnC/CGOYmVpF3KJeFBoxw/+VIDZxq7ClXdtiI+EX9+OrgEc3JbZvE0Avr0w6/kz1rCjmALw3a3hED4xoR53/wfxYCfKASC7Co8HDxMmkn9N1v0nM4P9tVktg20qe0wSDmRyWNhgtMxqZQS+JpFQriuApTbgn9zDPSQp8fsSWHE0+sLi5c9L309BlXsO+jn7z5vFN/DO73uJkQ7lkaxzgWTWE+yz3zD7LHmMC7fLp1Rn55WjHumeWmb8wmdVgSTCXDpWcn53Uvh/8m0L3Wa+4igc4rr+YSrNNJPw09Ob+d0RJWE/Lwfnp+EYdAL/oxtmixbpzY/8YksKwhGmZymVB8edNBF8/Tbv9Df22bHMkubqZeiV1RE4deFtckEykKN1X8vMZbxmdUpjBUa+agQwpumuiYJuvFpj9GC0rzQNujgM23yXLM142WMC9WoU1rl3GlJ/1xcPvYlAJpf4VvaMfcNBAiYvzz647gDjvEr2+pLNrbfx6P7vKjOmxLQGUiMA7Jiwz4gyjXLYvxVDOvnvl7/aRqIc9RekLrcwHWf4hKoxkmoHTOOe01lyu3GOpXcEVyA+Va1FORq09FxdziA4j/K9HKfXHkI1S1eSbAxmMbF/IPHMedN/WSiT8O6YeN8VDUV+ydx3WzGl+aeOkNaQnnLW25jLf/vUYQayULEIKBDdf1Uz+36ZL2GF4NV+EnJ66GiZ+Ief77P8rBsPzcoNYKDLfX7Us4pLF3LTCv6tF2aYG9vj+6Q3zw=
Variant 2
DifficultyLevel
551
Question
Denis runs a ship building company.
The number of yachts he has built over the last six years is recorded in the graph shown below.
What was the average number of yachts built each year?
Worked Solution
|
|
Average |
= 616+8+10+10+20+4 |
|
= 668 |
|
= 11.3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
business | |
item1 | |
gender | |
verb | |
item2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/q39var3_r.svg 440 indent3 vpad |
frac1 | $\dfrac{16 + 8 + 10 + 10 + 20 + 4}{6}$ |
frac2 | |
correctAnswer | |
Answers
U2FsdGVkX182iUt0PqQV1blQrC77iWSahOQezDzijBXt5VK3klKBEcbev7KlKt3v/snIXc/io6GW5Uvu/BMnhyep5X37JEHdGYWeZjwnuS+qpir5sOPkbkFADtdg1wvCG7I48Z2vlETA/qMI6vdL1+5ekfhANDTh38Jv6tF09332+aCFHcMmuID+YDUyUa30yKU0pbhRYAxgxhR7spxKFoUBE31Hv7POZ2emb+mIyEa7BEwuTE7TQDsSopc9pAhFx87+BzYj+qqFv8cKitAl6rbIIBvZZl4C+fUWAqF6lcpoGwh/UY6qUgntdxoPeSSK6FSMupNZSOW3H3hRXq1kvt630rEIY/LVf+T7Fx7Ff6kzbRTzYXvEpG3eSg6OH0oXmEbr+ZsHE7EUPDq/N0d6jASINbpRL91bxSGEuysbh5p5LOZVgHd2ZNeeaktVQRUciX6rMQPbkZVyFXBW2M+xUWO6GsrUGmpxqm09pZKrIc+YL1DpKH8RjbADzDPgu2bpzj4syTszcf2QglzQn+3OPrU0nLhRIpd8udmRCgqfqrPAd4fDz7PO5pQnls9xREL1pLpyfXlTm4avAxPvg6f2Y5W59ERh/Twf+851vVnoefUJA9OqZMQrzBFCuNUlnt8RqK4XBJ7fQsOYmeGyx5cY2RPovjG+2raclSHAgQ+HpyH7Q6MC8aQ2AZgfDae+7DaTpv009An+0QZF5UL/ifi9+3EiBz4wUal7MpWLvx4z8wjYnt1HBhJRJm9/w06/YoDK8yzKc9Siqp41X1GUm2XZLBF/Xk7A2N1pHT+ZOSU89yMO0bsg6GECiPU2dm8AQiemm1o48RJ424LL//1BC9h84KK/SIPvTuBXTJLl0voMrN+57s2WWDIFwJVv+7r1uOG83XioMl/uQsYpQ2W5+JuNzBNDei13JPfZ7Uv4IgPUG0CNth1XFfNVWx6+GGyfMalCW85GJIcflsb+rSIH/xYMWU9wFRjHdGA1u6ClnVlVIpahKzk0Ul29BYSQ/lbG2oraMIQVP8L+Y3/MzVAjByRd5bLueAqb4vY5/DbTRFtQ5IQDGk3e3trR09lJlPbXHAvF7Q/pRGsY1NHACbjzN0tkQZdak92EIKH6dOHxe8SaCncBw8A3AsoRcuTbvb9LneA5/7Hlwem+mEmZ54BcFbfuK2kKIuR7uBis3U+Cs2Cvc+Ez6G+9dr9obdOWb5f5q3dPqQIBpy7FLwtaKycUsUy1qkc7sqR1Iyft0rRXFZnioAsaC/cpiD7/MWYmORtrI3d6NPEpkGZrgfi53R5TNAW1gQG5fRPfczyl9kNZfwgZ2MTqV6+alxfiBvATI+xzpETiC+7bBM7lPCkgbtcihoIBPFaSEhHt2Q/UpHGUB9yvWcEPjK0jcVGLB06Ufdw4K9pG2UfWxf91mHV/p6Uj1x0l7Y8BXYkeOP2aC3Kkrx3jqqoSMIfCgfkg4gR2On3+2T5BrWKZOlHM8nVhLtga8lf7Ui48g0byf2xjCa6QeF0ISBJwVdp3tEGsrEHtnPUBG205w1UddyOBAJf6iyolPOW/muoN52cbMmZlIf2VK0UZeaebMFOZSTYuE2ZTXHWLI1Jek1fYKxExRowSs4LgeuHtMm0/gBJVMm9MomW+Ah4GxaaIazY79sIJZnqSMVw7rJcrPiazoGkaHWQhvjC8lQDCGziecw9lebH9rvLzfQJJZIwylWwZwcTNuy0C8+C4GH78R2e095B1BG9AMqMmBQRu3r9CTErZZ2IUvjrdM2ytWov33GPGuEf5eqMATi8rCM4mFReAHH7qGv1hze1GcjJz1MPzFR5b58wFziht3G/M2Rd+ZV8T4ub731bNhiClkronNMKa0A7Sr24T3xEz+E5vfDUVvbU1kkiSXK3ofwVKYC49UStYkI1kk+OdacMKkZFlNFlz6eYDGwMm+1U9H/wUTUXDSbJuzUU038ypKcX132iPmq16EerTN+E95PXltWIJYTFT/qlueF/AnTYh5/WF/8jEA0vCXUCjAFku9haQpk+Um+46xkL+gmbIIborfoKiUWzd1lXt/z1hduG9i6HV4Lh8GpEirJXGmNc23aD9KhiR+bR0t6/CCWpkbKygtrCjZ/a3x4MVhKXCAxvdbO1WR/zeUX0FTBGgjSX7lvNzJo4ZhIqngnKW+hyR/A9OZFmBfJ1gNuN3et9WITG26U/zuei0Dw+MLq3ELowhlf3mfXaO50/itPVFS2It6aqJtN8z8NVQ14gByLD8YgZ5y6AOIX3RoIlZ5Ceo5LH9MR7IaA6+dbpFY3Syo6h4TP8hbArtXB7amP4AvIh1I8Jc1kRAScA1rMMrbrDYZpqAEobhiLxYGAZ1M2MvW69qxs/glCm/GjHLBkKMlstS7xSZb6aaPB7EQj9Og27OQWGB4+pAyKCP2EAMwApFIPVnLHQLqy37tIh9hvoaDi4dNmNQhqTg4HJgtjmwGdc7nusuW8ukPaZ4saAiiWuLE/s0PHNm1niaJ+KHTgleoK+Hjfcg4A3PG3Vo+vhiCQo6iq7SWgTcvlk1Dh6yJiG30MF8JA/0l56MzktWAHkWEdhRsjN7M3GU/clSoVMOfpqNljiRn1HdQBFtTbwzzvL5t6RusniTFo5CU0iUXZyBogHhOYyEICAW37L+A2qw+tYLje+o4qnM90Eq9Chz9u7WNhmgtVRFDghhy1k5tetUXEU7vd9XDDIGOndwZWPnZGAV+1FdLaGoHVRJq/5AsQoUMoc2z7tCl59aT+7yY78/hNgMjHLVonsebA07bJTsOqxV5xCxbRsxGuD9M2ndneMdi3pQ8MAL1t7Orv2mqthch7+KFBWMeHABHjcDJIfonO1vEyBOrQlriHdA9x1FAwXyRW+rtRRT+SK9VuwKBCkR6aYxMhGXmtA7w65bX9EZqEnC7lsEWhnI0CWLT8Qd/2aKoKaDJULvi12oXNwSMa+o2srR84szUip5RkKUTtLS5h/gEFjdPaPfCqiq0xDEr/wu3x9CElF2GudF8hr+5NdefQqU+X9w569PoAYg3romu/ez3oKQTL5froeWMPQcGpXuNqCA67CXYNTeNZnlt/vEsUZihfSPwx073wxp9YoLYsEcEDU50ghn4gBwnyk4omvqNGsvPUmUox+3U5qUvgbBtLfGgKeRz8ay1+n6DrSXB6nJItA6R3BbRgZBvg6o+shaytS3T9r9uC+0U3Bab+e3CbtbFywearS5Q6ATZx98TQfDu1k8WfkklYotMbZpi1Se0Um3OyFnKPkh/PHoniCGV7NiGRCCszF7P+o/429kbTjJaFASYxSpJWtYonkDnhRXUX0puUAoBMLxkL4RQUfK021YWli7vG0MFvq7Om8TY69nog0302tWIgVI2QnuVN7J1/o0n7Dh41RvvWJk0pfQ+6o+YsaSDP7gPP9dm/kLbAp3OqMtcAZIuoKaElS91PfDx20N9xOHBxDh4+nFbIK5pIZRnC4sqrGJMC5KCkrCZ3TmNBoYykFt2Qy844IFY5RrdgFx1rIvoSEvZo+mpe4vdVHuhuUPcZCOH4TSDSfaYysY3pGZlXKfMzi1cPsogzjF2JWoKt5DCmNRK5+VBEWcRrS6IjnjwMwpDHgu9ekXFor5fi+VsrUm89Ku6XrfR97U5kV9wAwRcQk6crd1RmI3M6hhaCwuY6qA32gU34fHegIlNEGYlYhWCRyV/AmZodu50QK7vorSFeGZKu0HbW9pTX/Dudd4n5eLb6eFhCyfqqUJUS+6t9CPT3zp0iAcgkDtXjrZ+J5vQJxuho485hYlUVgHt+mTZZwMBeJlW3qlSq+vjVZLa8p4U25Ho+PgA29JRTCDsGaMSYB7o5dNIK+QExii47swfpgYaE/arhDvgwOqiF/L63rnZm1BPYuBTHcxfUnWP7qvx63tcyEdlB9UN5Fd23aSCDAnFILTzdFIjqXFMXbyoW2lNakdRA6dWPOx652UCmMYNijuP+viEu67ZZtxh8cl3b7YV0ogErtqtS99Rlf26ykB0NUElUufMDvzO03TklhY2wV2dii+c5dQH3tcFu2SMIzEYSq8N8T14sauQ66rxK7Y9ca2dX17HD/Jml5Ggivx4blryKls89prYSNvERZPOQwgDr1opBsf9GwOcKVQb6aH1rdbaVxXRmCSvTD8UidHzTIbP7Iwu+1S0vAK0nUBwRxn/iv1W2nOg5dJywq+GTTWqY5V6LhjL7jNtPwZyfA5NUB1kjugedwhtM8pF9vHk0Ss+ebZKEC74xFp+G5ZIHbfmH7Uy7Jyya/U1PJHKk5vXR1akgbnZaqEKwXDLnyD5BMl/YASNwV+pCzFAvFfeYtSfpZM7w1BWWv3JtpfqFtbS+vqJ1hoZRnMA9b9RLKytlrftKmv8mWgsJB9FylrxBJXie/X+mo0Gxx99KNKQQmdcP+Ym+KbcOcIFjvV9kOGkFHb/u+hPtUTvPlBTfJEVo1EuKk0QOeoH/nrdunH9gR+H9qFPrIDbkUmVERHLVQqEcC9/nwrdbhSdfXXVMv6dnXWmneVYiIARalwNTfI17nVbdxzbohiP0GzODlvguiQ9fgGISo+9G7u+i+fhrA7TVVNpl+OnVhSy5FC9zuZwnbAZFYlkTW92/bafBF5EpTk3mfhTpFLzyabwV3GG+IGk6pbscePZkCakD8P/jax69pvafqP08fYa2MSqmsbCLDLX/g9JWF6ehy5qld2WJnbreCNse7KJI6Xl2UKVBzbpFiU6NKMRrFLK9NP4mLvzEj918FVOIZjXfJKuZHOF88Z67zCuUUW2EyO7KWheuXbWIE0sUOA4MDo+KyX6M+exGGPjXcjePlSQXFGnr7K0dpXft0ER0I0shjsn6fD1s+yTpcGjjHAQY5N0cCeM1bTS60E5I7mSakGpyGtkM/BcGzRxnwlCyA1DXp1UdzyvkHvUS9Vang1VhQoBUtir0+dcB4Wq9nVtGqDHqD5X4GZRuMUIy2y+x6wVehgu60UPowFZgLu5Y17YL2NevyVMdKGkag56gAzwSmEBH64jSgl819bJ4x6WqJL32qCdb0mEG8GWaYN7KV2hrU7UMXH/9BUeSPKzUWQFJ0Yf9OAcaCq7dgc/q82nsvw0csSCIwufMOoR474qYlqSOb0lXCyq9J4rB1b7hKocUWpcbwYL/pzLiLFdWZyzwz3Nr1tHSMm8oyGwKglzoVZ/Y26/h2O+Dp7G7VYB8qLqcW9wAn0cBJ24R90uuECi8zxX9C6HVwm3uzgj3ljrpqnBA14EHaCxoIJr5n1JTM3Bf3N/hUzI824b5JTf5xouz8AItxiYi/ISInpHPx9o0FoWjvIS6lICBuUBZizBrwwFnU14v0vHJZeB7P3lRCYE9tUhLqGuAOFJF0w+8uTSGH61rrtg6wIN0RxHBsg1wmiaNTnVsKQVlPx1h4DZULRMtsU++qdCi/eAO4Hs9L3ARxtRGLLGshY6rrqA8TYc0viJJF5fHoLKSqQvfXjDP4LFP924PuofguPUHR6ednHhMwcMHKxzj+mn9zbvG0frIH+Uut+HQBcrR0ijc8Xo/i3eoRkIMkQ1q/jr2cMdIbw2hxIiBeJR21DB3jNIFvNnPEt40dQ1tn3Y3EKAW4puC55m+gM/e5z0eSaxluQCoTnY/XhT4+5WQwepbvRF7m6SSYesDhwQ+c7x0zi93dfLzJNztiGRwoQCC9O4z4hV9LW1qp55k9Q5ZhlgsKW7HKwDblsSKIIy2CatwVKJ1dH1XxKnOB7qREKk7GNfq0k9ckLocVEJBvcg6sEJCR88FKShNuhnzCwDpgXY9zPKDu+tygPkYNpdvKFTBQ70pF/wIn6FITLNTCjtgPVWAyR+VbDIIETwd4T3nz0z91j6xAQdxihqBIk7fdYjOm5CB7JEtTiCiTR2Z3UIdsubo+B0OwBlPJs2QkApHNXkgIp2gtg8HN+6pDWoPCGDVON5jGZyYprUqG1KKRQCF/yuzDAA3xpwymitBKIrA9wh4bCECusxjAZFqi4kAu6AhDasqLkf7T28pyvLvWmu5tishauH0snBq4WCZC0Yyky1vjhvheX0dkdpuoRr8uU2jLPl58zcn3SAhED2k5iLLAYOsZq4DFIsqF/6wsQ0uhcO2+StL8bXnwZsEzUD/EVCYupnTsRnPYCNDtfMtHwNTc1HZ3EC5jFnzGu+myFD1ySqogfw1pZslRHeMJUeLT/SiSc6v0S63a084adPpOEmH2m4b98ZRQ3bzz0AL3ju0xxIrbSzbRZ4cOe/TWKpLJ97xy4muNiBVO64YRYbWRdT/6fTj6QtMfAluA7Y5sOldlCytEkyXrugU/Q1DL4ExJRrfekB0ui2pi6N1EBDVIhbcyFSa9F/omDGM2PeyuaKhzCYKomW8nk67RrbpSdJfGBbdtefhRF1rcrKiU6TvOamtHKmuO5bKFNL/3FO8UakWu2NOWwRV2xMAyowrDlprceF/QlifhrWcXQcOKfyC/TQL7x/7zEQzeV5XBp1jy16AGCYnMcaUQ3yizNzgv39tmO3qaLapYpuGSMfTVPznkXFE+lzaJGiQthw5QWv2QLziaArldmdoduBMOx0ugpDLNqXhC0pHR9sr1ugWWI0lI0RRO9e1XSWmzomHIhUcoQ+Y6yw61/JDpxo9oZhMI6D+7Ts3+4r4NHkbnnquQ9WRAKeHylzBdMRMhGPE+dYgFmXWRkAL+vKxl6nHZ1wMAnIf2PS9sx2aleB8QvhoaGDx+v/bcZtUiJaDTYvMI3S5vW3YoW6i2PyI6hgl/41FokNTWIiwDFWPn6FapqniaoN27hOHBOUJmmAjGvNx96OyMeXEt+VRBN/AI4oAITEJBr3x2TzHCvSPWzq7Pjo1CGNsVrKaVBqEt0/CO+BCInVB3FfCbuYjd6vVc8QxpsNnB4uKNVTRM4/peI+dD867aaun13Z1K8i/FN6JUt78Bh7QenM3nO9iwHGm0xx29SrxfnZZUDg67qz3G7c1IspMzN7+YyK3AC5sGIOQOcfbBIh7ruzq+XJs6tvelaRgf4hvsoNY6d/qoa6RqNqYX8DnnOIXVrorC5mCwJy63KKsZxNVMECS/aBV8OpvzVdnnlMEkr0dHXdaU9fAlyA68m0He5g6dt3x02tv1gOO5ofYyZbYZk8JS3EdNuIj8+HEE0cZIlCNC/WhmZAsHum8ddRmrTlD4GKvzA4FSITO14ReE2qTb44PH1P/VO0Xq4Py5nCdY=
Variant 3
DifficultyLevel
551
Question
Ben runs a gymnasium.
The number of treadmills he has purchased over the last six years is recorded in the graph shown below.
What was the average number of treadmills purchased each year?
Worked Solution
|
|
Average |
= 65+5+10+20+15+25 |
|
= 680 |
|
= 13.3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
business | |
item1 | |
gender | |
verb | |
item2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/q39var4_r.svg 440 indent3 vpad |
frac1 | $\dfrac{5 + 5 + 10 + 20 + 15 + 25}{6}$ |
frac2 | |
correctAnswer | |
Answers
U2FsdGVkX1/ejhcHu1odLblFKhj3gxoZbWxB8TmnDHEFllj1GtsVcBlvsQRUC3OtkFiJfguXP/8SoCNaO1NO5hKywpQxA+lDI1UsNUYTc/jp72hb+4g6O7UEZe+9fG337YNdx8bTKRaEZsnPemz7lciRJi3fxrsintkSrdhcOFI0/ElCyVoAt8kWr7tTgXRG3GiK72rNpnbSXXC9PbNfikN7wBGkRqL9t3pLgsFnZCQ8M4UPvDmny8Z4ibJHgx2xrpFxrGDwBSJ/UBCsgeUVkY++9P9vLfuRC+i6CsJz76M3y2xyiMp465kGNwOIX2WXCWxH1KSi6V0unvmJMkmPu1Tb6NwsetFZpJO9gPyyBd/x4qemhyO0sEJcFy4xeIqSDM6WBjHFFMmVc09fDt5Ey3jkm3D3BxIBJM9i6sAwWGa0/Rq6YdjPTEdlAcBwnW78tyNUcZQS1BxmPv1CWj/R/2Scj+zaC9uCZ/zg0FckzQpSPe+cQEParGvm/1oF87/WbUxlsUyzuAvGCHPDHZaKOSUjbF0TIJDaRWCGvaRT1GCjW3i1i2o1enD8DuPbQxq5i0qyIUnp/CCXboIYjoV0ac/Gb7IaWhH5t2BwkfWcSS1KrkQk5LqyimrcRxteTaluKErSd2N61abf5OAz1TR1421CsNssExxPDW2IazdgbzYNoqBT8onIxV/bIXkAut3wu0Zkj570UZkRPBDzQZdCjToBhqHatfqME012PzCn4DNITpHZwL/38ygMUabkvdu+fxn0NlIEhJrJfTGpgzcfbP1xN4X0jKWzRJml4q+E24I5Qp7fNm4vOAzUmRECpl0cWjI7WxNWlS2iN5kLaeL06bwIWuxwLnXdYf5W6Mv2s307CS2Fm8pejnr2lQRSDzqC1peEQdV3gzayzmxjgytebiOIeT3RejrI575awahcfAvGtPOE2duMXN9nu18UugIJIKj5XZsE/o/N2JkUye6R3hHkxIc1An/lRQWw4gNGO1AE+05k30H7nAmBUfSztGTjEIruIEw4v2PFNGl25ynUKVrexmQMRPF5cQGQpICC1JkIEHYMX8ThrqyRVvO1/jQ2/PXwO0Kv5GoQltFgVNmR7N48inXEKGX9pYTjI245ul3AlQK61uM3BDaQT6yEpW94tqWBLfSLkgsKmg/peR5fUhHrETn1duuJfg9heTS6BoF8bueMec5tyGfv6Ilf1bwZ7onN0BHXpQ82ST8g4R2nze7qS1szp0loa56Q5VJhw40WtscS+UmiJLs+mN7Ln3MORGpD4WZe0X54GwzMf7NEDu9Tv7gIWI6/rflcOvXFj4zy8pG5dipn/M7gnyXhI0FpWXKs8+icqQZ3mqw3ZsiO9Bky6LrkLyseiQK0cUfa3wdQjW/GScJspVQfAvqaS3G9M3kZo4yfAIPEI7jIeyG34g0q2taK1pRv/0hTKHAtgCEUeZYTWOonz97Wg25aNTm80hIXjsaReaBfEreGf3fbhjyv+bC3QXHtEVbeHhhLHnAaFA8/G1Mz/W/qJ5uivl7yX5NyY2a7xvxw+jx6viLyGdE4aJ9V+2KJvXmlxJvg785bQ4AXApJoNGkPgkj047w5KSuRqkgcCM4sCp/dit6DidU9jJuqxLP1YWFtJVyu1vN5qGeDe7Ay0P7X3dnaPvujL8ZiPE9y8iDM58kiSgVXXbgS4IWp18yN9Lf45tosEfKP6hiN7zd0tngWebrmPqDPRwUDDmg5YdaR681mU4XYYioe+/5urTmzGMdikeN7khH0Ug224GnLbWNjIyxgS3t7utn7e8z90VpBb9TNIXj1DIGOazqoimOpDQeGL6tl1uvdbPfYRyC2YDJXhhu6maWVvTCDzNsOgut4dGt3ORpo5lutM6knY/fytt0G+QLTE/NGv8xJkLCrY33wJwgEGlwO5t+3BcMqjpDUk2S8KMazvZPwpe+weKLkYcVIHWuyB/ZKbB1qCUXQsBJLuEZHoYJSJGwoHDzQq/mrO0axgpY0tCTR7FEQA473x6zw3NmB+jobNZOhqyD06iiEFybjJtJVi+x+3pvva3VXx/B7uOeJGADdPoS0twOqsqG/WZaLZyuCiR1dH4nyqL+/h0Rt5blAbpwYijys20MIbEfpPibgZ2GXjZVjjSSnkdVCjOkWA1XoOmXpBMZiZ8b3OxNqp5YPSGPU70Vd5pGGk7Aw0GUFt9CmkdhMeptHPOBkLBi4ZzERN9fx1h4+uogmK48UBU/eRWRSB4a+/6vddEQGr9H45IvkOj6iYXMLWa3KIUjOMVwmdwE1r19r/xqaeTEEuXb3xQMoj8ySeRUNXlOehUv6DmgsoZtjay54V1/+n3pGt55VPn0F87FYKK/0fxM8gEPV39/G1tnziXwSzeYZirs4L7IsHc8VDYjeTxd7JaO3bw3EyWL8lx4LWqv823eTgRgztGz4seAaZml35RszHVGoS4we+jFfFaDnvEJUMvBXsIKeZGXJeij7Qjhdus3X3XkXlPcsTCJFF1fx74U3q/kHwLLsXOBgcf7TJtDb6lcVuX9RzKCX22TCq3MUbnRpIlDdlJo0t2xKf6f+lTcPYrapjmKfsyb9WtpnAWIx0Bc8cWpYITDLMS1Hq+QZPN4/uSysmJ+YjX6+8HfEHCpqGM7NaoxxcGM42qqxuJKqSc8cx4YKF9B7ZEtulyrceUHrPiGkuhdCtI03UbLukwsR8srfMEQMyGKm6AXYDK1XGtslj5RJus6RvxdzJAPhJ1kH+Fx3d/T6vWxEaoORywmfrwT6BOOw5f0d5vdDnYwAcnXwqDXXJK/pVo2yB506kify6RUr+UuUtk8t5WQhVk1K/qy4Cz0DPKcnub9Pk3ITUBMt2o1H91x9/ZEtvXPHNE4j7uk1OjeKF4YDDO+Nabg5prygYmilwrVKgktlvTTHvIDOG97TU/OaqHlliFr6KaPx+fFHrCwiGhttPboGuIXfcr2AYecN6DshduVofzYUNmh4GxMkKSPlotuPqF9tEev3E3b1LM+EyqjLt0KMkcZJzVVqx9XjlxinfXPOsLGENk1B92fAtbaLhbLA9URJ1YYu0+E1gtk4ZGutNAMnEO31m5XNIitAPbtMm16ZAXx91A8BK4aDsS57R3hjn6uM4o6vqWiVGcEad4GbM6fFlbfPSNHYJN/3gVEHJOaIRm/5X6BJek5vBxk0j84Aba1a5fxWEJW50FinXhi0prDP7rO34X9BqEQj9dWV+PcUTJzlCRlZlOb6K79LOquF0n83i7yRaH0cS2pILT5UhMFpoYCdvUD74N/SgfqIT7RB5GQm7qtUvpoOEhZC26e/Pa2Hh31KAsVyffdsV+XniOzG0ugyASuVqWxELhbYne+5ito5KQjGvfA5N6jsLFoW2Gq9nQPjVVvgGSY1OrXvJAabJnxwFV8d7svJi05954gf4t5k3K4w0qUz2cF/tJ2faQvWHFxheX4qLCmujcDSTTxniFVafjwwG/ReXZ5T3sHWvtROEhwPA1RBF/hMCySB9AzQyGHof7DmYn7md95Hj4y2lpK2o87wbGIh+MuEjXtcDB3mDpiurhRLDhXCpkzbvVhETrUH+IaNdIVkwRTSkxHIEPq3P/E4fAhFvq5Tv1V2F90KnHTcWPjI0+mm7OE/dOhUyUwtuceojP3zn0rxLs32ZNksNGtzmLcGtCDRE1/YBYIfoUFsh10eKfV8HE0uE+5s9uTxoU5exEDKcdbSnGfZ15P/8x/lPB4/pSO3WqNeSmk3Fb1B8PwfYinb4Kq/Cc0iv1WEoP/5PVOrcQ753pKWMTpU2Knh27ikXvp/Dq46iOhu4+cM7dDmf32JhlAttB8rDgGBZetx5DdkVK7i+qjAUdZxXJ/jBY+TDim/SzgA7DQ09EHaCnUde/daTnYnhfx7FD9YoltYxtpf/nt0hr6PiUNS3G/x3aCtYNNoByCqu3Z3vQyE5RqrHOmfMqjgz7/ojLRAiSq7fm980VRSA1PeXVwDNoNmsKshHN3lr5XOdF0hTbAhB0lITYIbN3rQy8zPiGAAF9FwIbWv3moue0h5d1B2Kp63wnDI3WWU+tFsIuB0s9p5oOSffKaiRv/aRCO+JiVGEJn8WmBNVWnlkrVVGd9zrh+a2BAt9tlMrbD+P1li7ki63kJzlw7lmExcKt4vkfq2V19KanEaNs51lTEduiUP+W0wtPGSDYx7MaUfT4Z65LT1fX9WYqrvcTVsRwmz9ir6o29XHSprb3L0lCA//2Zse5M/tdKnv4oU3SobKMdWBr6SYBbk1pjaOdpRUJQMb03i9nX79KtKCyiqjVpFLLo16L32xJu10Ovocw3Q2zdMx0d2JfCklT247chZdwuP+lvo9KZMw6Qpt2LbNSfGNfJxWuBp6UuqAb0YrEvHhAFAL5bskYSpWFexRKtEghEXmKQUdg2ormsoLOQBfH5L47SyCLpcBHNJsqcCNHONSyDWlv1vCJuMP6xwc9tZccLA9awYsR5icbOi+Rw6khLZWl3gsUnkPBxhZZloHyh/SHlD8SSQeTq2aT/yLtwBWMFDoGGhOsexra7mz6JfJ3NvOTKrF1dApKk6g+oGCuH3juQND+UI1466bmc16enZDzNWm/24VqJ6Cdm7RNPH8+suA7mjw+T3RFnfAtP174ZwZPA9bUCwesy5V9BDd8Z7WUb3EnIonYPEizb6TkAgb1HnKTIvy5rNECXKyqxhPRp6pFg6SkkL4yfXk5ThDAJSVd+JV4dvS56jb/QHiDJyapxt3eK/G8/iAKaFAtchf8hlB23TnnGFFe4SGtbQ6xMHRDVEExIlil/JQwTg65EqWlOJA80u0Ny/qpc822BEh6oxjghxdNQQxXErJBdOL1gwOXsFhXH/FFVkdejn0wOFdc89B26PuRZH/1wqX8vVYQ0q7uKlgvMfsm575JMbDbr/AKoaRdwZC9kVb0Pkccr+5/O4b8UgGHFRNsvepuSF6Ir++MfNmn1p84oRXpj0bDXYX2OQva4k+IPICM+MvmmBAqLy2nZJj1mbeJYUf/oGO+djARwKokCWQQ89AiySXicjAXju8KzBdt7dMwbeYPwV/jXlPEIZJDFMp4k33rpChFxndTia6uK2b2GJINP/eAKSt+JNmXUbld8ErVqbPRwRZ32mZU12F+gfTPPDhAId0k4bkZ9zJrzw1teLF96LoZgXmMIslZfY6x2907PtF9EZH8rqE5Kdu/FLdgw3z4YFhZwk4GqwWhAHJVAxXzgyI6WODFyfSm3UyGi3rpxIW1GY6gksDLoERBeB7hiRKJtzhzBxjaHnShcawjkurGXwBBUKEQzmY4C9FLB9kOzOL4qfZmTLSa8pf3JvnGDl5YdCEK4FN5ZH4RdLaDnq0+Ch+WDeMQWjqV5zDCwoZIP6k+gI24e23LctSClKApGbLs2hdpNBHw47Y8bt6XjLWStB/TF8mpPA4pys7BiPQEoAhMWb3nDAqjTYacUNlem5Q7FHsUqEyVEKmz5ddMq2eEXxF/5o0+AbOHu4G7ewmM6B9lQMt6pgjaknB68mn37ei/rOe3oeXJYgO0ryBcO0LHMHvNyWQGkNnWiG5/BjjZxL9H2VuAh3fJZc3vcozsZVjC82U6d62GCUqN9u2G8LBa6p0vuKHNoUEe/5DbsIhd8qk3a01XLmegxmQHG2r6ikZAAmlX1m+AnTPMgLCXW6LhzLZOcA7nqqUxGKKj8FxRcO0spsbeZVWXDwcb5HrdWVx1MfYC5nZfb4z1hg+tgoG5s7x1VLJNQBS+7dapEM1DkR29Jt3uNYqcgwLP40Ir6+UPE/EuCjL8NkZMQxI86haqFJNazC6Pm9c/o1K8IIkAjMm52l2+jxZutwibTf5Rafv5zjsQp2vvq/q3NASkCgmQ+7UTX02+Yih1EfQAsmLvvGn4J57w43tasP6fBiMffMyDmAm8OEzKo4Sy3y2yAIzvpkEUGOuBoFTZ2IyjqmxJdn1T3T/cxJWB1g5CM0+76rDuBhh9OLuyTIlDy6HsBWCSDXaw1k1YHoacRny0y2LcC80FaytTOlX2SaycWFwCTMNrwmOEvB8Xeltc2GpHoLv3sf0/cUMx6zbfnmQ0+4330AgNgh6RKMoTOB3J4nm9csECo6S3IIXcWYUXcFWXlROYaJni6H3w03j/bjADxe3aqdZRjbYVabvc4oVBqL4m0ZngKBXxcDqJwcF8OEed+B8f4UPpQhS5rBp23SKrAn2qEjW0cFzFCGhqmbwdHgPTaXx4pIb50iBhLSlwQafNa85ROPU9wb5ee4z60vEwA4acq7pv0TTntoiCQku0qEtJavDwmBN5/fcplttao+XSGG5vKmA1RrZ1ba2/oGNvXn/NJLsCWY3Qx6hyRzTwOCBbMHQeuRMcU/rJG4tkkQnJIgJk9sX6s87Brgo4kT3QKQvvY2WJBNRoDE5AuQqXUoclI8OEhzwtZtlLOrBktqzhuX4do38PAVhPxrLYHTZVkTEamw7WDU+7gUuArGPXHScAxDZUScS2jQUSzEb558ED3jvCW40sEoJL1tPfla16ZuwFlHEVIZqFZYHsZHctUHgxh+QNGU5M9PWLUPD2AoIExKb7dSomtwjuVyCqP0+bdy4GKYRzYZZ19hRV1+fBuAdMdzil4fe05PHtXxw9opVWbR4JQAMAVVR4Ny9nnw8bAI93y/sP3XYUHi5qY2fvXeHa9dct1M8ZjpYEQMY9UZALOa/UxTFVVupLrvdVmyWOMekr65RaNyaef22H3713xH7RTDPP3rE9gJm8S74DPqhPVozt9kV0Euv1UI6POH8aNGiRMNCcSW9B5asDVfVgtP7NQ6CwbKKE/zH7EunbrwyAkBzt6mNKDuUYldVuhR6n5Ft4Av2PPdS9gjeA/NdbXkajQzPeCwpq50RGiK6YJqsUsmgLSymvISQRSB7As5SaPw33/5RLHfpQj/ScUA+GmMIav3ObgKT5Qu9iejezp8gAyR6awGkpkqK9lNp2gMXYQUzMsyGQQAk180wPf7WeIudzMBL3H3kyoN0msyqJ7s5bUi3h8fA5qmCWXXloueWhiVqt6LOEsXhoUtCDhnZZq+wBochOpZI1qXiIUnNxPqx9CqzgWvYyzfEVkabFB6Q1Jo5jooDiclaCXprZ7kwp81j8L7L32xp1yfWhOevZWLJrROYx6hbohNymTUzs/sqdA6M++y7uScqqpJ8JQAk7R3MAwUWNSaHauvnhR4BCepfImWfDf828y4B0HoREk1FIhmyB3DlmzJGgBGqqu1pwIA2qTylFnT8LppyNLUtQY2ycydW063x6YqHzWXxAqvbPfR+E6uupb2/L9nn6BTY9f6lw==
Variant 4
DifficultyLevel
551
Question
Joe runs a zoo.
The number of tigers he has bred over the last six years is recorded in the graph shown below.
What was the average number of tigers bred each year?
Worked Solution
|
|
Average |
= 625+20+25+15+10+20 |
|
= 6115 |
|
= 19.2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
business | |
item1 | |
gender | |
verb | |
item2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/q39var5_r.svg 440 indent3 vpad |
frac1 | $\dfrac{25 + 20 + 25 + 15 + 10 + 20}{6}$ |
frac2 | |
correctAnswer | |
Answers