20124
U2FsdGVkX19WF1pPNF7Uea1vNlL/Y9ByTZByicp+4DLU16EPgqPN8F19c1xgwBXRqIAIG0z2isyZOpFtoeykhxPaIUaWqBSmPSoTkY1HV4+Ulu1sk8tmKk1N1bpXGJ1zKhTJW904DNwbbFU30xQUJz2L/CiVjWL65X+Hyvaj8A9cXze/WIsbpVoCWXSL6+N1aW/PL8JD8aDSfdsi8qE+Qs9+DImlpV8E2kVD8Y3yo8hHp1HwoVNIIfg99eg6NXp/LXyDeBok8+iq5q9YjlKVFnCexNfbvfVO++Bv6XZqAXvtSVlVbCKmKYScxSZlE7F2wo0tvfAOVnpfAVLmg8igXykecmOw5/bO30GO9W3JxQFIVmaIeO5Rz7lqjdQSawnHyX/RRDltF8PUrpcuENOUJy/H5oO6UfK61J3u35Cvm4mnVpx6zl4OXeQe7ejnySi0UHXSdJ/Q8ca+IQh/KTSAjAxH+YBj0kQGm3QwpXkfGXL+d/ilXWw8i6AXwItIAx237xDuuZvEwHS9Ss5I5kjHWg8IevBNwUuzfGmP+YvzRTpgcsyy8LT3uv/7QY4f/8vcIEI1QJJggHOVtDxfwP99d4XqAF/VMsvdf30ARy4FNJAq8QjBhq83ldraU07Sfyo3UmzlYm9IpXOWHOZj7FN1e/JvXU3zteDWomr023IRWjILs0XtND8/UnymbuZAbOHYMbgA8XwjJX7stuj51jG81kiFjRRcRPE2HP/otIeKymkMjRJ6wSOk0ZiThD9namHy/4dcxDPJ0tJsfvblOIcviBN+NWVvwSv+ZTcbYlsnFgDkxrE+iUdKdC+5+E0LR6sV8OmKp14OTaI9Lv2X/hT4EnRb0nc32UfOg3lK4g/bjMPaMUsqsqwBTafK1W7tY9ki9fJGAjYZ/f5IGuWEURLkxkCFVz6AYEdWj1UZDIAcjDkW5/RITZcJDB2FhcHy7/LrjtIvf7sfQmSmxuOLvoM6wJDGhGIYPLTuoGazXWkHJkj9DYEru7NhH52qBBNBxn2rUX3XPLdYxq7Y4noo5MA78d2PAtIt9nZfgCMTA2Zkk+FzBuEDrDKbbGf/DMIfhbkoDV7W5da/+sEWvjwUdL60bKcJeMmuVKAFO7KwVeoj+UrfmFfNXIyH9HXKEF0F2nsd8TNuC7VgP7xDvyBWL96fr3ItyJHzVMvmaWYhY00SlNarKkVQQLJvGs9zy5iRyfD4UuWukp7sOAsf8WZFj7dENDkAW/kGy2/YHVFSDWFXeNqHxSQanQmpSlO+QBGUEHmSavq1dJa2z6pRfZQrccX0S5Mw4x3K92B+uOM8FWSazZ1+W1pFs9/WvqL+7GHaG5GG04fBp922Dz5GlW9YSmhOzVpkH2iWatwrHFccnGbjR3712Iaa6YOp/Tv1dVbrQSp/EvIBtmQCI1dJ+cONRS3J/Fm59l08VKoWjC0d3mlxP+NiQP0w555Kep7J7zzkSaZ4BDUjufQo+uSep7A7KTf4qoohgbMsKLS2SZcuuU2zvYVKKJu++38MCF/vGQwT00b2rpdp45DG9sHt1GL2+7tm5bCgWc/CkvkJTzFkxItWzMMakM++/RZS5Q+jg1i0UB1h/KFn8HgLhlo/6dwW2KJVo7eX3+h9f3p4AsF93pas1NKYTv/sUcwDrA27edxUcOqBOoPvvNUfIi31gnNoqkwRQLASQhoRmJz2Q8qekX23t7GMi6sQWkjkJVbG1Nfmr2AAMWXjGEZkMhXaNi7EDiY1hWNx8wVOF1LQFrc8ROJHnQWnJviUPRL+Z7E8ubLmVPCCJa0yJdnIfYDiIheUgQVPrTFq7/uQoZZJzD8j3oVkU0hd8f0Yy3oO24DUpL6Vo4wTo40oBD2mTVyPH7++UXS/9URsrBGo0GzHumKum2Ngto6sXI06ium8Msl11zmiVyGpz/qszMZWu+SI9fZf/NKLqTvqJuxGbIvX35OeLdYUKgN+dVFSGPY+APR64M2c6l6Lj6fMvO7G+nqGEqQlfHup1ckq5PCM0+Oy72I0oz/FsK6qCXLP/PgxvJxwWDoLJIAOvzogoAlYgda0FGfZRzVns3AWNduVUzDstdZzeN4WSUpgDa2w9Eti8xpZc521P0Ie426ghq05RVgY7NybMFkgTo9ZaElC5gxUgbzqGtsO3L3sZdzZKPngC2G3UIWlYsb0SCNHcQFiB50EWPnu339wh0GKVVqutedJEABLcsYAe48h7U9QoCI63ZAceI6E4s26zrMkK18AZfK5uUkHExlPYtvW1KE3ZyXV7zCss2BnGaHheLfsiv+KtQW1Vjo0FQnAjnrxSKj5PGi6mVz3idqR+tC0wh7pHj3obii1N+DtEw08SELyK3k1g0uIdcQqV4AL0lyYkcciPDbLLlA0NXLgK+CmwJt1nzTtIA+12Wh9o9h+8nepLrmousi8V1z/2WXL0f5R+vn1wdqmsZloAFwLX1PnTyaXHdcBT2e4ZICdgZwEn6V5NnXZckGiBvueueCSCQNheRycZCDEc6aYy/plMEyREa5S5qMgr1+eAwhEifNORtku8RV1FAYNCoMFbe7G8MS23uIm0PvxWGL6hyaXnirbsJuavyk31jlXF8jd7wDChaIATyvvHHwBLgmNi/jMrOglVGLRHGrCoDvp2vwSo1Bk3oFD/bXL9AytKWkPkkHlKgd4nDeMqdHIJ5wc7TCyz9pPJj385brAb4lwAL1+61C0STZC0BLM8pjBOXT6hMo8+K7ZDGjHhBgmPM6aurPE+EQv9XnEoLuqFZVaV6Gaul6MiOZKpbGa+VJnGXCmZqQB2322AKkn/OGMcScX4FFaNBfzAOAMYf4LV7zee/cuETOBK/jk+WqEJ7+FKJtN6BWqBUdSjRExnGJdkM8Sk+JIwySet+c3pYNjcLnPIOBXkKNxK2WrEFLutijgJtxOA0kFfnNjItS0TSI1HFIQtNxfkmpo16nDM7SxEykHY6561au7A0WAQOQ2o+ncEDWYSfRyqJ084YFi+voL4SDrsTtoHM6iB4Fmf3QQq0hghBO8gk5ioJ3NnPrWy/O+A4L8qKjstT7I7jtDe2QQkBfuEXargmi3sjIv/eBO4yI8wgrXujTOmTu9tAu12+f+Qpz072Ojs/5MW6TcN+36jafYSzgD/MNhYaOXyOysLG702Aj/9W5YimQssq4X/1fNO0SLtr2z6xv/mn8GHdJktxOL1ooNWkHN1vIsBDKYTUHvVCLy4vdiC2aD6P2qjaOsHlaKvJC5tUdAdIx69KpziorN9HC5vIyo+iuYP5BESko2yweEgWLCuBAeQnpp/trTsCh4upk4cZ1S6d4QPI6wB/waNWlhfgvYbEvWp2LdaC4w/oPypzhTK7IZBqiEEllXVrw16shDxEoVX7+/J4eFsKD5S8Ytv6i9Sze4GpvmF4B8e7uTcGin2YUnZGbXefgEqcQ083AoeAR/FldjjXEhEjpmrW9CFt64y5wZ5YWt01UzGhG//zZW9Lt5TjpZQks5U3Hb4c6H0r4uYfCTDxspDae2qCET9qNQlG7h9xxWmviEsDo+aLsUYlzXYLG3wotDiL2loJI1l9Fa3rb6umyaxrBqFMBVVhfP/O/4HwOBHgMxDl2tzjTgU4ksiUixvedZLPnIH3J/1Tq7+peta/WcDY+YCPzPQxdrR75xKYihgNoSH7fgIKDwbURpe6sFtqaM83UmtRxmJTIBDgGehaZH6/EZY2ooPX7nkmrjWY+qyMVzkcr+gDS/uglONWz7GRxywytSHR7uf/kdpPC/k3je7v5NvgxJQ/fO/+YiRwVP8uWPv+3i34UbxL7Fzl5u/LRP9yhOQ9R0SzLw2wOzSnXQLVKd4gQUTPEFFLyU6MeoMhO3xsAi/AmTKskmbYHaOhXyZfVObqtI1Otr8g5B+6b0jQkPFTacxkLfugCbd3YjNo6aUGfiY5Ei7kdHzmN7q/VecXsY7t7pQUl8xTBqAf1BG4cRnteLCClDMkvE0NWa1N7GmEGjDkIeXWeaRyusuPho1liCej1iiaUn4dkYSzd9QTW/CYx7FerfW8/TSIZAh0vXmOkes9g6hZJrcnIBZEoGzFe3k7P6g9472gEwoh+mrWLzxeeXgzQRSKJUMK8F+fiMu2E7ozJpe1kYBLZUJvwcqz3n3aCezPWdBNbjBOu2sdsBcedMiuEzgHtQUW5XcrpltG1wLRdhOhnqloHnh0zVYJXZdxJdfbHSvk9gADgS+lcE6YV3gVCGkt7V3LZa4/+DpsHpBn8u/sBxxCmDjThPgtrI03S+nMIlZxpsh0u+j9M6TWrrtE9m0jwaMAba8fHEVHvipfS5UL9UQi+U7/RZjeLOsn1UaEhg5SN0WRlIvt/r9MEnCjgEuJNU5hhb9P2mIEQxdJNNvc4r+fOCnkUj0q9eREI/p/P7vrifvtN7h/5aFx/hu0sf7ppvdyAsSC8oTJUQ/KKKKR+hkFt1JdyhdsJdcz9E6tQLMpu5+uMi3cqZWPe+lWkefIWcLiFW+mg++t1Vxs4hixLNPxf1RHTCaOk3sphhora/sKr4aVqBH5QsPV3i3c3n73UajmxgWjMrgWLsvNmuhXqNZhKExq7JAEphwRyDP1GrHAfXgmMxw72cpdLUu8aGrvmZ0fvTeXFc4RriIYkVfJegIbXGv56zz+6WopnTP2xhr2DOtcvw3EdFMKd7B+KGOSitWJc+/m0Mga07J3WXWX1Z1sulkKnu0mdqNufsh28siFMh0Zs7axQs+iJS5NXqiJMRvSjg8f57/tn0eO05ywR3B442yz/QBP+qZbID867yzAdpFSlXhRbqsOWpOkx0+hbA7964yjxgUZZu5Pe+U1EhTENaqilZU0T/o+GvCMkwAycS61WyOP3rIlTV72oYj4Vtmm7yYZ7D7TWszL+QWEH780vN9Ozv7OCSSMCDsudJeC19b9LYHnlAZcvKoBoZrX0/LvH1LMW7lsLG05zJhAl55dppkMptPftaTQ2WSzH4ZnOzlBgX+U3v2WPpDnELHCaIDD4y0FJdKp+BRmlUSfsB5mLh9yAI5he6EqwcjLAV+qmi+eJfaB6VWj86gTLPB2KEzDdHgz7EmJim2c7362IcYomWRJ7fxikcmZLlSHlmlgrLotLVkOGYBP9U237if6lztPFsK6qAclwSqQ3QKL1vf0b06zFOnpINchMDH/ff94/wcPeoUIQ5I21h3UtqvSx7ZqjlGmc9FfhvvZiMLbiObg9dDpenI3j1dxDvxmSv2RVOTOWd294smYgMNnvw3sZUpk2PNe7Cb1SY5Pqrn+YkYYY5hNs/YqL5p9cVfl0Xw9dIYQ0gVRA7DAxKD7lh9Eakh+trzOLU/DTfpEvj6xKOFgRBV/rq209kW5G2+MnYS0rutwat68k2oJcTVVuwJNEysezXHOnfGqLkfiywxMoq7OH29od5J8wpp2uroLe1PnUVaA3FdFQ0HO6zo5Wz8jHYSVLYPxl42yBAF8XhEGLkfOJQB8eByFN7aZZsJVMQsGstsUg+XJCHvI5LtIJum5q1EdD/m3ODOmDZo5d2nfYctT/9osSe+AOXlpRWmEnkK02DWw5B8twk8eWg94L+VfjOOROZ3hCq7acAN1mbPA517oHV+LQQYRo4n8ysJbpTkbdHHgVhUbEXYgqBcivxAiWRz+fSUnppj7z66rY+/A5TcgECDcqsCPYXrBMqGRQ+edkciEt+k3+uFvG029RtmG6uh6vJ8suDN2DLPap9n3MEOM9f4zU1aCEz5oUMYkxpv5w6nWG9dsBHdrd0NaeVqJ0DYWl5Za47kcy53bksgtORYwh9nAIu7zaRe8nhbqfzxLtOpcSSLU8eZuPBvvEoJlVqp24uV6Z8XArQ6QpWHGwDv//RdxZyrmpyTBqOha6UdvVrxc2L2QixOJ2imk6gVqzMSVhWmM1gIbIY37D1jg+pc7Ob1AuXZ4mUhRW8gcGueEvwb0In39zM5qIcw2K6RY/SSHK33h6lY5cq6T1ookao/pb95cRLBbwhLssL2qXq9Tq4okCFf90mfsz5DtuW1ZzTa52pN2nK0GT8GiNDhYBdXJRHyjn+29DuGfx/dVkQCT1xIGYZDboAdVUKNcAxLewiDkx7EhJsVNz/5Wpv2zRMtbGn1n/faEY+9KBA75KBVvfHWOkqrwXEQdGWtuUvnYaie7oS+peenjb4xi1AhHSYGaDoIm03MPYAQpcvXgZxX8tZwJTKslYc0Zrc8EbH0qB+bA+DdkLKjehnnxoS/RwUQce+3TV1WDCbQ3jU/ucaucMKzyPhb2dddi89+hm4Tqk2+RkU0t9JvfalOJLfRwKL4n+SuvXCOgtey9FCIt558gKMsB6zhlTEjzTXecrydgUI74S3gdvMZRsJRaPrVOj+1w8QerNgGxFLaNOn9upgwHz6JLznFgUgff5SFX0L6HWhIPXHnH7o5Ux5MXLxw3MPIJIEgbjSPzpU5xZd7Bj6TtNtFBs1ZaFTmsFhB5dSWF6gehITMholY2UmbQEr3fa0G2/wthUk8nbCKWznmcH0Sq+okT/kgM/AyAMLjLsJ9wBdeASl5TmE2pNffIWaeZ1mnI7/2LDmLANBlhGHee249i5voERMo8heW9WRVex6RypzaGvHT/hgZ/q4F7zn06qyT3bdAuwUbQiGPdvb60uOA2HC17kfmQp8dkACOBklmIcg124YTaAwEvBtPDKudMJEvbciTjnCKmfZO30Q3Nr1eXZR4QGRvXfbGQ2wTDA1Z6nlFeVmXVCCHVzmJOwgaJlTDwwTF1/4wtvFkR3SBznIVRS+uNmG/jvfj2CzFa/5ipcIBRokgC4iKWK1uYuqVK9tzgipciFWbqnpinCmHPA+04b6RnfQhK5MHpnZ5V/PxlBHvsV8oJ96+4JJInABtHX79oZvFaDFFmb1BgHs9z/BtO6n8x1iB3mn3v9STVY2yEhnvppH4fbT22eFItDIi09vZeKDr6dcM1eWbYaP9HdGSOOH4fayRgYimKD4Mq7KsQXQPKEdFHBWwkduH3AYB7QXrj7zwrwf/ALIKQMpvF9n2U6ujFQr4N16+QvqWKMNFWZFek0Whap9mFZxHIsGQZz9o5RCS3DZaQGmH+Vpr/geFtDhruRz0S/6hXQt4JNnsD+CUGPWMrwmi/HipIUbpOUPAmTXnQUuzmkSPRCvyM4tMye9amYKlPUaijc/D+AVTh2dQsN45JWMa/ou+84bRb+m/UYJRF6fxGXkTeHNTx8pdbYZg/mzGJ1KsQaT0fy2/Z3LA2Sq1OCyEYPtZ1xC+S6P22RaMfnOuU0+q4Lh5H/yBQghv7HxWTPFVyE/ecriq4JZOMz23Oh5y7Vz9BvOpezEI9bJ1IlzNd8NHCc5tNBjprUzVeTxqMFpCABDt/cbQJI8svZIC8GgGyR6VNQcyGSyoNXnn9qnTlh/dsftial3NDaDgosFUeLdsrhia/JtIKEcRKOoozrrbT8PVNTH6D0CO+JYjqXuKq98YtesHDJjPX+J2mZXbwOTnvuvXci3XIrqsYSwYVt2GMmeThJH9DbUVyaFlXeu6BJCLu2VUW0phDLn76axHC3Jw/nw/pACojWBlzbM0w/zuLMV545G+rQSiWAcXw69R5/okOl7ZzUYxbW8NgWwDk5MWLHNArO41Q0T3up8f7387SsY07DSlqe1vHHFBxz0TGO4ywxHZknKZusFnccFLLZFUMmaFq8ITvHF88JN+0A2b0u+Hby9nTwI7XDceH+yfdRCKDPH/g8YAU9rn3bjPUZ0MA8nIPjSh1LOepYkSEjPSa61GPH3tR+LeT5/O80AA/HuWupH4ogSl9loDzq4y4ZKDjc5B8Q/XN97clKRRpkcAYavJOMglwv8TSyxeqXOcnwCLQN7hiZ93YExvq2cCPj4S8XQYLYmFGOFKcm6JWcfrbnoKVI2pzxm7TfsRAEKqcg15uDqKXVInsQtwpc8uNgZnA0faRPdm4oMnuhK0J+rK/tpMLhkehEssT7wKoKmnw84489SpEA7vBhHNQE8oFyf/U6bQmrv4o4CQxtJLXy5+w4+VelvxQf4CFKppMUV4Y/wJwP2qzc37nHYn2FZAy37u2lhJ0o/Y57wxXjDqaJSQ43/2bzRn6sb4VbrIWMz3mKbGuJFRKemt00ZpKysu+/oUG6TVnPxgpO12MTAbZ99L2bKyg8Ppdch/CD7PpyP1Nfb53Y0dxzXwL1SfGedAOkMz5OYL56aHroppOSrW2YPiYtgPU9p3xJnT/UUkHqO0c2Mm4TwunkXjbkhBHI8dCdBREjCYcqQROGsrQ64H/CkirHrBUZIqF/4k8ObVod8xMhKBEkkj0NEnafQxjOT54u2h0hpwUnjrxtXkXEnyqIjW1Dr9Uj5OiUrgYPtRlwLhHcUtI9LSK/qpgSqgS/8pCPNDg9O03XnhVM2QaHuFerUBpZJCA6jhmTjZNhaty/wIBO1i5NORBvCWftf9NiuyBJdbnAQavyZSVoMcKTPav+YVzb3BRQ3EkoC7x8pcABEY1T7EqjXlCBnIpfbdL6kkZk3cISJGMmUnV//uM0IT7VYMmHKYlOiz13EgZeZv54HTRrMqL0klINdOpuoYDfAm9RcVeGzq0uLRX1Zkde20Fo221QTCJk2t25xbKSpHKFm6y1XK9no+XHuEyzOjEo34P34hr7kGPWL6JERPBVTMtxHH0uEIg3H04H/KTTAMcgwzG5zwV//Du37AUoioNAJennX2RjwVUvqR9su5vESBzFtawOvTg6Z8jqD6ouAmnW8+6ZWGRtyauPzHC4zeshw6tKuhd+TjuttlzmxVR0PY8ZP4yLUn3jc5/oCWXKcVI/XK+0HkbzPDwMMtIoIpSFYZ6h9s7RoPauTbjc3lJHdYZ2vYV0jS11fxGG1nTu+Xl/LHv4XdzvGAgFnn1PF0EUjrlsf4RpSIeFA25K1LYZqUNGxrP1CzMt5Ij5jomjAYJ+y68dRUhtJ37OZD15VEogD8LEXEX3V6YYVs1rDrKQCV8wvjYySHyIEVwKw4v0HmvOFZvB/GWdmqz9wnIvPeKddcRaHBNGKBsnSpm6qPYtOZXMfsb4NODzg1ysuNk0V0mkmPUei7oZHyT/iy2GRsIZdDF0v5fMetxWEHGxiSvyWCUVvPE44rBr0zPY+7Spb0lYEOWwynybdEpt3rPFAdLqWqnBc7jHjZLyA6yIFtQMNHJx+Vx8BaQayjbXxcDRyLGh8VSqc8IHvGkiJvORVdmZC70Cl/goRqmeAb0rwyce5nHAXAU2gTDl/d/3WVr5Pqu0knsfGtoLO/fnNq9+9g21xYrQAhAPkaogCOi3MSS3nw3zwOTYtrXuFoEMCmLiVnOiF5wFbTHBfJuHAUJimydCuK4PkMCa5V9E1whVGmYioA8d2yBA465Yz9mg4hgzvvM3f36rqBN93rd6+JlTAjGFZWzJbxmWyoDdwCHvdGx/L3gaYF5FD1v7w1deMOjPB5voWirEJtbsCCQN6h3F8jnc3BphPIR5HGx/oBIQKUMqu3RlydGY5+/LG3gkGCZlsWWwRYcMuGhnwP8JQt4/wOUlIg/y8V2cxCAsiQ9vRXCYWd87N8BRW15OgPfWXoeLOK4VoH16bl9qRx3yQT6F/BAGOWNOUb3alNHialNfXhjf4tNcvNc9FVVuKF37qhSIEb6lqnONJOzU6Fpn1G3bc9I432nlVqUpCD43gi9iMhcHpbnJUhUepUeIzdEkyDkINbF+dhm7GDFVacI2hsD1OBen0dXQFi/07ryPCKlWlciGJbPYgayMPbirDzcNjuItok6zzqIdkQEz0tX3REaXfJOEgVmMe3GurTlU4LXXw4fOKY66JHRy29AbXWm6XKyHuMwWno5TGvr62v5n8oWBNcwvEhHnxWRyCptciifPtU2+RzEaNZi2ifZER+qjIOsIZxQjcGMU+l3uGg2awo3x39KD+DgdHrf3n7a2Vb0o/Cft0jC44zIq0WHG//i25UkNIzKye0JWX62GaR56FIN3RRDtCFxv/db2WQzLhTt1xbzRRCpo5sm37rZrMcfceRaD0k9nGQ+/TT/yqzEfKmaOvKlipDg8AzYvsrpnob9bzIE5XoSsJAg6SPEp0PLDWh/Lcq1p11NFuf6g0dpdWpBttl4OLibEZW84vuROBObv0Gf/bRLwvL9Vv4eYFdOgMYA2pKk9abbRRpSM2VvVEmUsKJ2eIdDh1Is0iN8hbOscQRdfEhxEPBXPrfTcrpskpMe9MGJT1jpj7/UvTGEQUVPENKq/Y5SrFL0LqIioMMVTswzTGDAC4558vbHNvmXRcgvCTJhK7k0qaYzNmQVxJmVX5AgXv/meC8XzAaBfdyFciKg6Si19Jee7eccURsbrwssTKbAeZjl3jcTuXQ9DOrvUpVIC7FKyDrdXglXT/Hot6/Tdpz2Yqj6d4H2MA1vFFOcrK+USNSFLc4ptYb+L6Fftvggskdf/2+iaViW/Xr7F2AHvsDFLdUCIHmRYJn3JRgwJNXexhUuMHneDYliGvrN8gXf1tXoADpe0pgiazWPs/tZB4xC3J5V/A4vRXqUgnjuVIevLLYMloDdR0Ej5UnbJHxRX8BMBXv7wbuNHGMgm4AEj1vy4nxMYTyaC2SMkeRo0esxFY4KtvJrGic4GKA/E+tUrvZhe3u4cfnfyJeLztLghVw9qslzRU3y3jKMnxdC+RpQvDwGGoomzJVrbYLysI2SymyK4mHZQ6U2BdplrVjRDlspriijF+EAXD5GAU9tTKnGrEFpaXWAiW4sXpQCmekZqAGB6z7lMpDogJOdpTdZShcB68uof0vicHuCPmyF0/TldoSg5uSgta88n2Qb9WCYVdIcHlji8NE80mO5MFS90BIK3ywjPSuSy6Mct7Mx5/UxrGeyomY/98kNm0Ef5pXDPpCHCcPmcHmzMYfL6G7vDAN83RAr4oJQ/sq4dmFHKCVuYk+9XejGLv25nu3/7OKFZ+90Igx98L6/LJ1LZK2IWejFHX7bJIztFZf01X8z7K60x6Tnl3vTQF6S+QhlZtWeqqrj39VgmJmdEJowc2UeHt74zhkL35AN40h5oDtAH4BY+Pgq3Oq3SGdwJBkeYOoM43D0e5PsLnlOSpn6h1hHd5zhh98naa0qTRAcwrEBIR6y1lOfQZZTFkLAuA/ce4buBA8EEax7eVWEJ1zC+Raz/YhZJcVGj+DDqdr9Pl0lJGfxaRjcR94O4Fp0w5NlHAin34u3bSQzV2kqjqzdPlyWjrabuFjyvnPtp8s4kY61fF2xXqJrBGVA/FupZDzMKU8S9jb+YlT/iCddzAwR0xGVXfHIDUTagr6BealrwR7avOkwvdolnNCTzfeqrF9yJC6uaJbd5Bp6EFrY8Ra41uR9htx8B3YSipJVLYlKV+fOTrwmGXy9e9MV6MchAvjaTeQepOAQyJ4mOdukNXO1AnYAR3NQjPC1HFFgkithLp3Pv83N5lcjTXbSgagHJdXTYzZUpdX2kJAbk9Kwg9Z+3Hb5BKHKicgwNBGir0hx2fFbfaDALwycKCZZtln9yQ0EvwITnMYd5zAsMArzPuuT689jbVJQHALERLSKq7y3E1TxV5IzvTLr8ojrauUGlJYMiOV/ju9v7W6T4YKDyBwKGtEpCpLzCRAIfLHx/ShzKQdCX4+hhtzeeD03iWko78OFUHbVFkJd2wz2kwQJ9YKGsjf6ZeDJbw9X22+nwJcBIkgyyU07+8s49IXO8mNHoSKRygr23ZDRW5J04xGxQWLgV/nCsciCzGkt7qqxH2ejClef/79zOpDlwreXzvMko+5NjPxxXH4L3UIzASQw+H8Rv51I+gPdM/yknoEHyyGPbJnz5nDV/vO1iSf24nacRivBElEAeCyy/caNSLeUwSZWC5/1i4tkRm32O6m8CcN/+d0Di1NRrml7HOGRPxpF0zpjrAru9vuFtTFuq0i3aDPjK0C4IMf/arKaNAsZywa0T5EBO9ao+yNabh/KKqT8ZlI9x6py7Yu36rT+MNVFylUqx28TM1KudSBaoPyKfqtaznvCHmZ58aV8cgFCGASvjim3rIQwzWXz4/Gxte6Z2MtHwjsWtGXxVBpQ9wlBOVN1bEOIMXSZgykzkno6mvfbZuZ5IuJjPQMnUCA9wCAmNhaVoJ+fus0VCXeMw3Ecf2u5b70EpnzE53Ibf3B25gbQ5ws2vF9ECBCNL335yTajIJMzg9tsgEukLlvFDkx5yuVg2BQ0PVJIFvM4L8Ffius/VXrctDPZr1okzEF4dGeezPTuTqPaTVJ+kYLS1m+Dc/H6HWGTFlNEgeNjAh41aRRZKc+Hz7hM/51hMTi8mKUqM9pkMkvWajWTSGQDRW1zKtu6d/1kjV/RfMv0RGWBjGISUmVEIoEgpYLIew+ea3l7NIp00jg292Yj+cS7/jVQFkoTXBLhehQTrar6KpmdlJCWBcyb9bfdny2yqm7T5C9FZZxJfrEpITpZ4gk1WFnifllrrvSOiC1992D9J/s3O2G79WHi/f7Qkltv7yOKAfVPYpuTPi1zJoEZyPFbP9+XGHdMZi/MHQ9wNkQtULLWCJDpA7iMcPSF9v07K2TCiQda866B7pTPeO2to8FA5SJf63IiQTHsP4BqDij5E8V2U5v4zQrj4KYudii9U0Cn7RkzMRMiRLUryjzL/au+Yze/BH4sFempOvYqeQS8NkuDUC0028gr79iksFkWLykgk95YGjhOPUKYE7PV6MXKpmNdggJnw3kHmrQCzbllpzwH0cM6ofLa0pBrarCrp1m91GyOeLB4hAso6UB4WcmnrcjjoCCADkHiLNxyG6mwhUtztwz6jXFJzRs5HAGdh5wg5NPR+x5kWn0vZSzFU9PbcQi7+ofU+VJxRZJrsjhmqueoxU3W49CO/irtcML+x1O+Unwpkgs2MUWv71mYiNaRMdcwAzlYO/1sdfxjn9IjYxLOStr4EfxHMdWSDbPwzfvyew8D8pWMudQ48GQQV4kUcu3WKnxd3jOn60dFUkg02tzR/vewy12MTkM+p/5YrpQOzlQqBp2cGkTUi/EahyaJyPiJfpnLaTwrPCrctRHjbYtUvSJkMEQa1W4ysn8au9RbPp6dVCYBiT6N2+dZsRES2d+pUJMOi42a1w9OLplgZe9zKN/wamcCfFt6UnQ+vjyGUbLpmUi8g6qm3TbFql4bZu4HocRzejbVX9rIV3a1704Hq3D1MVIXWWUkkNIePeql4oLLzZTfpYv5vHoYPyhgi3ilFNtdPqMhXYAo1VQDwNKUxa7jpzOq/3VictQcrGvTcjZWjcwJHvoKipkZNFFqW5kwMdtouCbJzbD6a+z01X/S/3yHMiAnASt3GPtINxIVri5J5gO43mth6Iv6Z5FeT/DfUcLRU1c7S4yoeqO23P3JFF3XFDFrEkDPWLF7XpsPc1YpChVVIkFpNw5YQdYI0NVKM3zhXExH+vcjeqDOTQs6lonak76DuTiG98UaWjSibaM7WoAhn+Dn+FdH/YIoZOeK2esssNB+TkurYl4clYY0x3HJxzGmMRu6nG7Ty3gQTBcnf06eSMLfyJ9IYwZv0rhWZvcNZQfeswVjyvc3I/nO9Qm7zFXRBnGHwTmHQDNbrNwYO9r7+59qHv4b7CVpT4AIG18/KVneRtUZPUlVgz35pwHFDiwuo0lEL8lyzWxg8oekbZYux5LS1SDEES9typSeaYPf8so7bEgVav+WnIOjDRQUhcs2tahnwLJw6CMo355Ia3yZ/65Vv71EOk7xYXhCleptoXfwLttF+MYvsdgLC/QV12Dnmu3Kb2Q9qH55QSOWjj2TSzxsESO1R71klHbTKt8H3vnOVdpzoBS9OvQ1AdSirqKOMguwoILHIFatG63BrQPGdD18TEodKjZMYexNi1AiZnN/GUwSxBGWwoScz4jXb0hIxZSiMBpFf2WJHynv2QsoR8VlTFxKarZmrVWibP3E8SRdlJaGDO7L5cNfobMx3uudkvq3YzcPOkvZWSXMSdR0fOT8v9J59hvvqPlJNatxQClCRk0JvFdb7o0GBAK4Aeqp5SgIMn7wVToTBIw5GmJbxGV5cFIzpXbCEn3PJId8j71HzG626JzZES0rDeedqMBtdZNfPAFAVCvvKh
Variant 0
DifficultyLevel
570
Question
Worked Solution
|
|
36 × ? |
= 27 |
? |
= 3627 |
? |
= 43 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 36$\ \times$ ? | = 27 |
| ? | = $\dfrac{27}{36}$ |
| ? | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/xHGTjlGQY1Uo1HEKRRaatz9qfKTWwH/UPYYtpM5R+cLpEjj4kIIlu2gon7aBF7wGyhAnLLgsLs8CB5wKHcQQJ+MWuTTLTTaD0U1IfhIN7Oe3uqc2gx5mLgfSkJQYrSTnA4XTbW7/A7HdaAjaB6KqRyB0rcOYQJ6nrUgiIb1HLl+zPsXz9bvz/t+dWGsAkuu2P3ZkhfCYzgfLZQyux2ZRMG1pH5OsFkEzOJdzHyyUW8T5FwmxFKIMhOY8RrNbcdffUW7k+TJ50eoOIrlL6ZM2/4ImuiRnMwEf7Kt0E0y82B7cf+WgRT2VeBLSmb2Ngale4Pq7FuTJcKV0CU42ir8RmYRKpWgFWdrvTE/L4PfZp5zjY2FM9d4bqbTn27kDAPXeFu04c8uN0aWSbrCMGFzJyIAlN8XYC76bzWEVdUwqLuswXUdKreP4K41Z/4Ja7QbXgWouduJbgzOCytHx46RD+tMFddduDbuN2zyf5NMVeLXcBPSL7k8DH6UNXoSdDlqZHqAIi9h1kia8wtZPSi23njudLx4NaYwFkcU+ku1q4voSofUC/e+JLEdTPltg0BUmb7xNBnts4M3MK7HrQWDDzEOwbS2fezgRrvVYIZPTE4xOsoGIY8sh4BG96jkGFy5Uw4FVFR/nnq7UQvOjJuk0h7GPWoccy7/BLObSYubiyfbTNdRXS9YVic95/pNO1C8PNFuhIKhgWdLO6JYXPGn7CVxV9nRfaFbkLnixxP2i+dtEL6tusvVbHIhYzlWlfM66XxkEJQ77/a797u3slx+ZdfFp1W8jUVnJhNN50ijhKkVtYBGP75nFepmigWiYK4yQMmtMrRC4i4Z2SzyJ2/IRvvZ7P1Z6Evn16wroNjhi573jPH4RkTvThkeQZy1rH9f+C2I6KRBrPe4JVcq6J6sKXId8Sg+XmwsSn4XV5bKMIaCfwIDyUGold9hC3HEI8nwlz0MbdNjVLJvOIe/KmdcKr73ImYyVfN0q11krQfA7ndSz0h2cp9R01n8qqKoVud5zkyyAvpXrSPFZ1MqlO537Sfby/8I7Cl5DF3O3s2WleI2xdrlxp+b+aCFuFXCi3ghtRK7EXzc8Og6ANags0WPuYrpRkZe6SkvxBM6sUliM8L26fEgVwe01209gYfcs8dyisCmJ5L088ArVx+cuEp5TEp6PdXt5YptWKLfNhLx5aUb6sdTIPWDunawp6bjzoyz90B/31feFAIxHE1KcYansPQLfBcP9YvCVo9vhmGvoVR5YUB7WWRiw3i2SBwSEefo1Y/kKcd3WHnDB+a6xjoKRt9ZSp7GgHRCmzv0P0tzUpBZkpKYJQzIkGC9UzGOXkO9jZC3rjAiB4ps0YDhyr3L1vIpBbryuqboknJGvZg2IJ3ugzS3MFQQccXCHsOVTPOgaVyMhfRV3m93ajFKilAjMbLAzEizWHnK4nsydIz7GD0xney8HImFZx+waGloToDX/xJWUq9zA+C8ZZXQe9GblftM/jf6aRfuERyPaJbOTPc4gfk60yJpxEFA0NtjS9ZAPZgw/73uLpbIKCmIdItVb7FfJ5qGSFzEwbOcdmVHrfO40b+nh+2Vgf4gmzi9BtbXBSZy1sknYdQsz0y6m4OhXoJg5P2cJ6WehjY0gOt0S39BwhuaiHRV5y6GYZgWVnaV4e7GuM2hRTUkLIT/D/+1/DWaU6SevxeO7rcT+mJMJEjrl5eqBng/N6ZGtwD27hytoMGFDUr6pdKzlk5x+g3FfyZ3IYyVFNw/QASMrjPoL35AxJa6zEm9bUmsoa897ARhLgnawmGkHO5OeQY5VDF5BMesnYm0Us7+4nl5T5xTFOtCEbLmCAQirmQGFuLWAeXvELoHidT9jXBFvWiFsY2ygY2CxopYYmcGPebB5AAHE8S3z0wO+hWWTOdns2mQNUAsgYdm87bx6SRSgQPcVmY2M3ox73kZlZAJm9zxS/8TB/SwBRBptryrlX90VdGChg/42nj81f7JWzUFd2VDaUAwEZfv6CW98dpSbOXBkXX/zg21oDIfk8AUoyBeQz2EGZDKFAQO/ZdTXnKV6gomlZyFAlIqnywCfuW2Eelb1im9TLtZzxpAADJCHmtIIvt1fHJgeiLRFnXGJfm5jxtsRK8ZFZVIlsvDbp+973ejzoJMEiCJKk9tZ669PM2ivvsb8ShJUWnAD1QlSFqeVm/+PjGM2XKU/4rFvCTrRwRaHqkF9MggBQ1Ief44nIiJUFnq71Mclk8YyPYKPwQbALMQtooGgf8m590xVz2SjlzUXrTAWdc78sVgqg7yV9gadxYK190dELpEAnzfvZxJuNVbcDi1vK0aY5HXx/vH0lL9DbG5BmKi56Ym2CmRm4cIwXcuOCiOITBldw8tSX1jrpLl1sCRZPp5u6KJlu9UIpasSpsod3VfdpspoueKHRgzeCBLm7lwU0dT+aZ7kx5E/FNqgs/En6tw8hBq4UthyXaLGlkGFl/gAYhh7Z6dCuaAArGDrb/8AQ8i8TkT/beEwht8IuyrkxEpWEkjnFzqPS4SP2H1hrXoVmdzElIvePuzTH8mkycIUbtObdjxIiFmcuqTvqq6EFo5XIbNVibFZyrDc2Jpx7lutCXQVVxl+3Yy/j33S0EZDt7zFwYtiZ7Yqr/ZRigcjwNtG5/481HzHhdRxnq0F7WIQzlrtosJPzJ9R+O/A4gFolEzq2EIlX7yLY1jMXOsgEODcXOV10zSgpqV5ZtOxCULk16F1u0yMR+D5LOGnTGSvwhEdc4FWsy/7QRy3H3j71wN+IjjYpiEota7Yy9ck1EjxbBpRU5YFkX8sj5A6TABFythg71edQ+VIPgezCzHfD4vIAZF4G8dXGN+mnrRLGcN+qHZFiAIMIeqvtMPJOHthFa9c5lYbYRM1G0yu/tOIVqbxGzwKckg1xZWnwKW6UsyOfHnXLV+G5p1JaFHZ/0pID2kXvEd7ub6YoukIpdotrpN/ECx9G6J3eY8geMaikg+2HUZsofUBobcDtZaAdbbxGrpDQdq+xPNSsLfztIzi/Pk6LZ8wsoVaX4Fg7WpUzA/EOFuu7B5NVQFWXwhqpijgx+9t+3Uo3h1m1XS8p3bco5CNv5260y/MX0ACccQzYlSlKg+9wdxp6RknX6LV+MnWHc5rT3zhvNgwzB57QMpYEhCkYF39Wv6RTdTHry80bgsVvIRRedjtyRzNK2dmxLZr4DdGrz2jABUxDKXs4LzJjCilGFjCsirvCYc+L/C1tSvvtnzqu6Qwk5tHSsD/cv1gGWIodXC/V42aUFTCEIzFcZIF/i05OQmqxVsCHpnB5O+crxzZATXe8wGvfvcfpTbS/ljWyybBTjlYrkwvVftjkxtCB54/tQrXSnLh4PHQMtgKD6SECZk5B6fL8G2l5WLkAdbXIz+mkzS+FyeUePwmwTT2pCA17MqX0mK2N71Ga7WT6W1hVs15fj0JJ04Fj/VtWz4Cm0xSv2JoDVA5HiINrg/K/32GuVE1w2Fm87nwaG24ZkrbFMrxAgutmPCAkj72eC7S2YoO/hZV0IgiQ5yP9b7Zt0mna8MG3US50IEpCtu23QaBtAv4huOdZHmKkhK0T+EPeTcMctfHEHld3dJJduml9IoMMsg6HODro//fyUxH1VZ9kRZbeCvTUq7SjM9y9pPzqxWxisYtUYHEmb/9qGopHub0QIMgyF12pvZCJksTiVP/DBiBEPT8sB9dhD/yMHN03QUQAMdOgmiiqnnyXs+2FJKDbHJGGbUwNYDQfwhtGkEi4Mu1EmEdimEkfEX6/caTJZnILTnfcVPRHaKl6UkVUyiX7ycpUTQJnwYP40yrS4LJUUEUr7vgnJcEZl+stQYdRYVQ08CB926NvQkkBx38+yfeQze5cUVD8dUjebrL4uuwStJNvCQPYQ8N78bLU8WNxfLKhNQZh3UUwKhly5TSWg6ZW9gUoOJ2mkc73WZoDqVMgqg8kX5a1PHo2Vx0410H+sFl7wS0rY557/sBUuWyLJ/bCLef97B3GMkU6RNC60oKSUeFrNUafRgjw/2x9QvHaXY6GFsAywepJTOo7E2tqX2jOn3S3oi1VGA4VB3DWodoiXus+FwzDeqbIRfbIj3ypUqutVtDpok4sLkiWhTeoD/i1KS5VQ2FCewTXbIYrR+8LM7rGLyygGh9a8glPr7zvwKAg/dxC1F3rzwVnK1+gcgPPsBlNb84jDidUsx5H9rMUe60G9jyBDvcVEsUwcGd3CM34fWen8/SEBW70uxycT9RujxWLD3nVUOVlr4sbyMnMX/Y8pXyr8PnqKiwTstXbf7LfnkyszH/DCHZ/PkQVIInG4FEqMcKPNF+A2bwVgdirVDXB19wnQU4wnHdygUnJimhCpb4xyBbXi7/sh86guCDwQwKG5wPXS6eFneRO6HPPYTI7h95alT6JhdjhBIThG0OrkoN/n2thbPzOz/jxE6j62IpaSQBozJi8R/ZzarLs+1cv8WCafZlSqy/RYfLvsbSWi2FQK9GQ6sWowyztVa9ugUoP8qcYLjHFMzLBgb75c2n6bHLe6CsnYaAZk1mXE3SzYEBKb0t/LJ3LStiBFjvvl/G9LsWl22S+oNufTbgtQ9j0Q+jxrvwL44/1FSs4jzDzzydyaxdpcbDnL7CZ6ySzh8L8sH97YWZJX9GDPVVy8ZhyzdxKEDILv8CVZfBFYm+AY5snEVnYcq5ph03HlJfucAyYfPRgP7KaGoXn9KUJfz8+8Is816oY0vskZMH8g4fpPXcCw8X+cn3P5ngBMM3vnTce1JQy/RBBowcL+PFMNJ182i8goJdMyiwcDR2npXRV9KAvJ6KHqAZvSzzhApt0BHRlNAyW1BkXEGMMpG4vLbAsWgo/+lPu5b79cdKsOZbszbD/K/V6AVTDeEjB8ZBhR9Z54emQ7QWpZLW8wLyql0lGIv/9sLd1UKc9eW79Loyuc8I1KuP/i9FoG3YmAhmbNzgU5grP+XidtcVNlBApzSQeOrmOYhDvTv0Ti3Aafg93g3V36+sFNh/ty3WUv1aBCBNyNPbtlHg0Nti1YBocaVcrvyoORdU0RnB5Ar9r9PuyGB2Tf0dRhM9ewAHKTwwZgxPUZpgd2FY5uyU6hZHHBAKy5kfzTFf4eV5rZ+NN0FReU9YME95DBJ1MY87LHCWOXSL7gZKCychK1IndFKuQl1/kggqQJNd6xrSzEAosYWPCOzHBXmdeV8W7H6B1wGmRzZi93pJOWK6MwsbxoOhDhaMTaX0WM8i6ncqJlL3muj01RitPuHlKoI2bKnM/aUsJPjuLzJTtnUJhmdBZlXd4/w1pC5WHH7vx2Bm0D94bK5rnw6Y8pZy3RUZIAM74OML4VXCjJrwZKpRXgxPaEnnaj/79Sz6vqGem/qrtei0lQ/vSyNyJtHaeXSGJDJN0s62UFrJTj2kkB8STRBwBqxgT/xAIszbu56/vl0KbVbkeTaltOaYAXsaFCyqBJhy6hvnUhKJnjUC4Cyrbm0sQqIa0jxImBREry26jhrcd7VzkyQGL5L8q9EkOAlJqiv/HLEh3DdTeE7b7VjISkTguc4WL+SJZc4mbIcVBi51dVyvs0ZWUFLOlFnQqZo+g9MK7V1aoFwT8kKUNoqPBx9W8FI0j1umTMTkl0wjdIvAP08erXuiDMZLCzRtu5HyrL4vEBjJC/KFciYSx74XIZ/PLrzEDPqmacz1EhK+Fr2pFg3n2jXbBQgvb2ZkVAIud7bgnIaXwx26lQ7b8JxLhahlYlgMDXxWFxoWOnUqgbm13pNlXmyFUj/i4DFLKvSqsEpHxwqWsQpQnQFBb1/rYSRqLFgKB6hxzbEpSO6dEzKDz7cZGX93Cy/DZoowtlCrzOBiB9LPi8hJe7Z6wASc/yjbu1Rtj8VD99DP7FJgKvpUmQ/wy5BKx5dK3LTBs+rjCzqA1Bbh7lN/QPey+Spoy06jFd2SA7o+RKbdS+0A8vKkZLo3rfOWq5sip0JD5BmvjYnNsy9fZXvD1uUapDlfkKK1mMrYKCaiDR96w7SkrslMXZJ7yxZvC5PEvMw3Xcs2UqgTNP0cAdZEVitV9hXjtZhbZtPbgA6MPQUG+9BDJ9OyJI6PoAehe0/YNheVeqZJ92QqdXwex9f1EdjK+X7ORQBQjpMEtXgGaVu0sbqbcuk0Mxw9l137QNR0b64fUWVhh26L5NiNV7avPBKgdsi2iAKvKZpqeFMUN/+ZUYL7vCrXgGCAYvATWu5CQMLR+BaRT58PMMD9QPh7kTJS0TIMC2xbRLctzw76RtwAgF02Cv2b/UBFhM9LZABeAh6kwHcbhBkqKPFnXDVrbW3Saav7b3/bKFfeN3ij/u7C5onkA7tRxJ/Zdyfn8Hk090QmCwZ0CjusakZriGg5x2YAIRaeRXuM6ISleyOEbrByTXEceNkyaxRsykMB+sDvKSL9zdVAHoKycB938qMMfCXzS5WYDRe3lcT5TPsVwkLnpsk7NraqqZduf8OgfQJrWpheb9yLf4D/mm9jxquUXHwjfFFFCAbUVD9cwlJYiycKUKUXAY/uxffFKiL+4MQuzrLryIZan4POfhuX5f/kCMOMdSvFAk3F52rICQv4AeCAPeRI2U5PAC3jFgJiUYTJe6WuWGYWxLtd2RAagHMJ5UWzCuOo7GQBSFTxRTHpA9DMcWpi+wJJkMpOm7Iw8l1oqHdxMyP/MPAfRffodck7q82lvQRsXZXFvLaGLMI4fL4sUontKQd9A0N6DJX7UV8Q0DNqXQl6FS5z76bZWPoOtEe1ZAmj0CQLaYPnh8NK+UgF07bC6QmIgz/pGDMT4nylCgJBSTPH1a45AcGIO0nAs+geEMBMqfCXa9QWTy/qa6sxD2zRgdXVJnubJI0p/3HsNIahNxM1o7ZImRXB4td8O7jkZeGsEclDPosCAWqllkOjgrDKGACqokaOYhYHf17ScU3nWzMWAlLPAxWDtifxkmQd5FbfxYXKGw7KF1pmYPtPJllWREqIXx8SRCaggnb1AFtehR5ugLFd1DnK+JiK0wEkHVxqxg5XbV2BdLbWKQXuFxrsD91GT0fknh5TESqIVKe6VLtKZSIB4Cq/tMtSSejtpeg3ZWh4T0elAxDuWCnkIFI2hnMZyTPR/olxZHxl86bAUYkruddQ2SznZwLHufI9/MoGPP7u6E9dKevLyE1kUgy2zBwOPtcc12fcVP/q/Oueps/ahcQeeJ2IwknberchViSielhlmR0/tXvc/KtIrv+n7aLfZYMF7fSD1NExw6SvkyekjEK1splFf5RhCpFl4+L8w36zjeivD4OHU1ARvyDKStvJFud9wf9jBq2DhKC4UyNkVv/zusln0rZg0tLnh/f4/2Z2D3N6SjXX0ReE9w2j/bGHK5IhgQ3073OmkhvBqz8qLe+CdBP3sPR/AQTcZg2yqdNnOgupjtEJDEd+UJ/Asid8OZX98KLycb11DIuVAfo/JOI/nOQ9qU3q+qx8oblIWxweuD7239VW3sY4OuNsPIHgODNJIshFoZqaC5bCJIsncHFo8QcmKr7Gp2DMWUN518EKXyoFB5Ipgn4YgSdy0E2gRxPGb6oXfNDHfWZnDK03aooHVx7k2FdbjeOG11dN1CmtaEGDxdg4BvJRZJDnw3UDkAnDgVIFkMyQp3iXgh78lYJEz3joSee2NY3IQ8vVC02rt9954ZiM8+NyBubl3U+7uKZinxMhWXh4e8AQJS8I3Z3VZjNX1lDbrQ+KIuPXYfmtoCCR/PSjVpu/aCZ7k7U7b3lV22ICq+Tp1BKKxHWMNXJTmkE/t886FaSQrFjye9oLkBcjgMmzcrpV5DklQrWYchm+5m5cjOCmMH+tc1e47IGM43sbj5OWbrVo0o0R3QnguTaKzwE/C77txJjM5dD/xhXOmG2Iob5JWX9whn/FQMVmDTivXtZ/46IftxpWyTaR3JfC9ODlImDfY7WzClvqYEDTGgp9JCZPeQS3pK3hZOvwx/X7FCJghYIifoM2sVZ167fhQ7FAgBhns+oIUKKq5VjWWF+xkB5O4q9Xe9WNngeZF9F3u2gn94hi2qE7cyjB4/r50onUUwF4H+cOyZ6UEuwXW0cazee0A3yahFwvUFYTuhDWgtqTjkv7ehC8Sd6BUcPCWci/1+rmTu8vHozkWrtIHyz/NK3gKl9VMEaAdVvcUBWwJQZYaq4J+CrPw8Vgkew6CcIqwzjL0HgUGbCvqpEN5Y778SrRP2xQUSqe1q7XGPIg25Zg3vBCNqfs5OHUu1o1a14JrKNwk9vs9Bk+sjnSANEgCrZPuUCU4T3pllb4GVg8CqGs9NpF+jP9PCoXyljmKLjy9q+gUC63mT6szucnPWBvJ2BsTSr7bHE7jhiI+GAU37JvyU0YK5wBjuwxh4sp0+/IfvfhYGRPwzt9KQ14U/2TjQjhcygDGQCm0ubNXmRtrb/RBnMnAnnAEjyZuiawgdSYNJDAIn0ufpAFAfzs4xcJozDdtjbxdSBic+M/6/Qz9T5L7y+6hCyomCacmbBiLsh7xdFexC2nWTcQ7jdrqWfd9Ky9LwQE1A82BFO+TL4eQmJ7Pp8u5/wt3HbkeOppeqscXT7RsDrYYc9IZTkHXZKvfjOaVfXJlF+HY2m4QsC1tfmMHgIjFigPJNW3YX74QqOqo+yWdAVaUZroWG6IwUSzLA0HvLsodFa7WbEO8y7OeeFl5PVi4CG0ndR7W01EwIJBI7VfqU9RwIa2IAVh76lkPuuCwRgOWfl/bNpEIr/o/ETKmYwgrC40oCUgNik4TYDGNhDXV6tbPCtHLHVi5WL1PhaYT6w6tGBBE5bgfnqpQaD5NFSW/X/hnsMUBI/rQQu4u/eD7p0Zooag44tLDu2xu7n2kKpWVNFBj5FvAQMC2Vby+J0IIUsEuOx2jmX/athn1EZGRobuxdW/VweIKBQSwvYUXjEsArH2AML8SBTwhhTfjx1v+x302U+xDJyJyo6oZny7pmb+hqtT1W+5kU+1vIsQ6g7VWj4AW2fyZhWefVoxpIfo/Avt6z2pp+cqlHYnzRQi5QWV6BxDbmAL/uLkpljl+VkCkNOJThKvYib7ZSBhaOELwv6QkM82XTYZvIwtS+NWmzaOGVVR6w5v32oGDCLCDo+24KFSeGg8onBbI49NI8ngcFt7Xxuf2rhgPu5HcMEZ//OQlZ8kAIJytt0RRRhEipzDWbEllPI9WbQYHKY4ZTR7roC6IGG197G2qePWrb9woiqWShQZMmgNlsSPoEsAhsOR44dra6dJb8g7+e7Cd6WA8khd7k+gkR+Mg3/wcEjM7oSmDReZ9yAo0l3xEJRFtKHli4L3giwrdFrZUIs14fd8XMzmELJc5wIAZEEFLGh8ZCdc9HMAL/42JU3F7S1ODsiDM+xB9EPr6MZXXMc2Q0UegT3SuxYksyxh7u9aoHs/qMdrVyqZ7pFAdqQ6k+Zij98dpc2btasbu1nBdVR7XYDGpm7qe0fWp3eJ7MQ5sl9JHIHlt9KOg5OApyUPgc3gRdiQTxt1eFjiSjPcFatD27IIpW6bfWwsOxrI2r41/Y8MyiQ0FFbbxuhT+1sGCc/9f2brUAq1JJ9CYRgswCOT+ON73zpms8JEfSNitsQF9ABLWAknNjPaffRHuq7kBlWoI3nCSjaZbjRhcbOkGMQtQ2zlhQUzi+NfTEnKpqNAF5ItQAltg0R2JKBEQc2R7ycg3N3bNSoUTEW97uA3VEK6h3R99OGSl58k+46kF1vXDGLQj768n0Ph8YFhQVckafwa2aVtKXri6k1TDbrHKuDdCc3lIb53g1QIKZ1izsJqZkbwh1w8IMDkKEFL7uOjwRWnw9KvamFrcqFA35Gm7SEyLhIvSBvlNZPB5Z0Iw0EhpDw0HAhgDeI1jbYNOhQcUtKnp6aLK9XE1HFSo8vzyt+I+nYoalhLMwkN4P2RtXZuTVkKslG+fNiMf++uhcvV6HUzPK8extPpv0hXhXfF7zbhTEb9IbDF/pYWWbwwu/0eJ8DPFYq7o4nBFLvkkegDYDOB/9d7ghI6ZzqtAQRPn5CzNJaqfyWKjBKjjLkc2zlyGkpGzivzmKbQl8KnP+uU3H5yR03foP4jn55aRkqxmVAdTfeJMPx6m+x2dxYg8H/gxTfEwq2JMEFZq4NqB5+n0GCypzD3abhKc/jcu5Nzwnltth9x5O3cUwVICnUTAAe9t4Z7UEWrtIRwUTPM+fPdkcTh7aeIunvOr6mZJbkG0h0pImic0Pi6ySFh83ehNbSk6rWSQk0hk+phBO3hwa9NLs8W0wn+wnIZT9bJFbduoxeX+ERRNdaYxmhCkf+ox4Lxo1u0FJM9HxAAccDKS7n7kHR44BybNpbaFu7axcwaZj0NNXHc/cmdhblJbJqmlPsTRKxsoTA9fIHFpfxCb9ba627w34+9zqCYD4C/ofSQUm589I2ehrqMxwYqDjXkX6dppxr5w4XMc1FQ2Wr77bmKYu9i5tKLYfUK/pBHfjYO36S8mihklUR3WAPqKiRaG1JVAryfXAbbAKtS6Lwhj9CQ3sZ9sBBMkWrbk6itrHtQp9IwkCOA2ipVMdFq5x3cNOExkVMV//wXn67WDd2QImOoMZX0cDi6wlZbFA4hxM9m4jSRfjcPqaCKMxrI3HCMnasvq5u7ZpW0Pskjdhftr/8sg4tZC/0yqPWERvMjOEpwnUYfAdAr5vktg9Xv7/rQdj5an7ucIjB/oX/EedkH4ISrgIFwNHph+jY2EcDUpQGkL9/9mZ4tmpgFHTvjBi6+KadItjpsAF95/1WLv+kcgZx+FWc4twAtg3Sb6hKYYHt4N1C1hdPXG5zZMbp6mMJG6tCH3tox82qyFiDBrgWrsPrXbU1aRbLOsov1iMgiZr0Fi2ZcnLoqkm7PG6THxBNpD4oUmh+CACOwmvuL4pZRKa7NB2V061plR2Stc/Yp/Tv5H2M9yYVsdz0m305kIR8EnmnDXleduff45l6rDTveIWcVaJKNxAmFqPj+3eVuYb6sRrdTizj0qVCo8f9Wm649p/b07gLeoxpKJ4r2WAEiq4MqUgsm86v5tLNdDqH7urqZAqMXYwc4eKuRt7xYVABQ54lbLeonLjGMisnOC6bUfKbkZ+dm0aV4lcqxdU163THEBmELnrJAO6cbgX91shSCCgL85UV6B+Ec00lU73TsJS4ByDFwiUpbsIYJrKvYzzjHCJH2aM5ma3DG7iHN3w82LhvZQPQnVZGAsSpySe8A0z8wMC065FD8FyXx7pbDA7pCdcLSIUvjp2A2gY9jP1V0VYApC78cZWi3AAByhuMEWiRUnaCSzwujzRelx/8kuN9cOZ7UtoH3NAGVzPykHn6L0wdSOR9RFu4rbPavNIpo3QubJTgVUcuqWeI7bB/Wh26OAKT4huq+RzTOV4rsMYSOF27j5XTOqZA99KRCKz9Vd8ceQ8D91S6oKsrzNvSHqLOAdSqwbCm1SnzLwPlktCiHVOdfLj1bOSHc+gWkgphxs78Ti7IPpzVfnKRO+l8XNJl/VMJWdUQZd72CoIHqrEqH6Wnbd7nzsOis5ue3ovZGBo+A4Vtx9t4P8LZyU/dygiLr1vUw9V5X+bdfZi1g8W8zoq+vcqhql7Ca5ySAFjK+O4ofUwlJftzPpxg4PtbpjysvciZ2qJI6SqA/qM8gmJXqOnQcDUpnmRE1Mr0Sm0HDLO9aOOS2nzwT5MyX2vc03ANo+GPIkAWglIZwTjt2luKTIbqYnEJFlF1e+pMDatEnma7lni1EFDdvCfcJz4LqZi6mjWsrsJdeelxsF5BpVgsaw5YWd1HZf4oqlJIJSLjbGHQfsw/Ira2RWiy6T/GALkKkGQqMktsx5a+Nln2Iiq4/C/TOlACTNkO9asdETpWuq8SMib5+B7IXAT/yPhWwfycXyaIgufGUZxVFgtDORIvTKzuA0ky9HnJIZWc1Ko5dQroVb++RJIAgRxNJURoFkmIpAXFzaDKHmmeVGPySNz7Jg8X9o7b3NB2A5bs3CYjIQY9MQ6SPNd4mR6W3wQ0E/NkMqdbfBThm7kyHhbA00sAVfYcIo/fo8o81wmA0O30xP2AHn3YjEnGFzD5UkVNBpqL2MM653Si4LPvWcvUrNUmQSYVlbQXDc+NE0lLjCzQy/y39CKnIwxGYSy/jCdR3JiwUmhqmIncCOLKIN1uIAcI0bRc+Zr5jG369INrHLQGsDeyi2uBKvAS2srf7x2GoYGO7BjQOxJ+QXmtGzeYauvTAUVo6q67SYffcP0kwEKSkykyuBH0AHS8BvHBNRRBpE+FN0oSRqAOqVlOpGXX4i1UcjKAIjlIa43217dVtGFbT+soF5Kr8Q7O1i/SxABPXtueWBabb/b3faO3CXm6GgvHxadHfakTyPwDt+IwADbl5y5bmDUUurL2dbrQMEf/v93V9E+nVaiBBw+HZjAJLpTT+o55gswNSBGUoXeXzdVAV2MQwWOfUFJFSnEJQQ5Zv6c9l8Xk0twZhSFGFk+ZMmVQgpb3wUVtRXcV54baHj8+1vKsQUoiPnoZ5AqWtapBlkJGqK6OtoH1cx7Md+ovoaJ+9nJiwwCoCuYhFk48CVc1yQ4FKUV4s1IZICeY3XKDrV+kxBw5MPHqLXLK/66yZgmY58gQusF6X8yPsthAoYmTZlPHSKMSaD7FFnUl8hzhCQ+fmAJebJejZpfsxafQSXlJPJPwjpEdSaAbsbMaHo570JW5cxQZfBEQSCyMwAdN515rkH0eFYEJ1j+a5hwnN11TLDlvPgkWqtVAWVULkmpfMKEI6a83llXzEtvfPBgKZyrhOch6Da5mJOh9wxL1MOZQ6Mq9/NfjadZlzj8W15j5D9wEGZevQCzc8Kn/EGvSpU9genZyOr3dCV4Obwoin5ZYdND70hbepDch8PeSEOZ9SX9FHHH4l0XnfXULknmv37sQ7M+rDxmwB0Z0U+XOOIaeLImlMh3XHgE19Ediu40ToY/yDBBlQsw9Jytc8XMrfj7uIf5fRi74vsrB9gFH6nrksqVH44kiQCAUVk65Tj/C0n0qz+sgApeSmCkwBfZrf8aehuliemzHzrWlDgBDywXhUIpS+mjmpeLe1dSyNBHU+MefNnlcmC+LIui+ZCLOqxcdoIXrxHiHW8//oETaX34tNynKHvB+FXBHJyu/YR7zadpuX+VsuBCgXI4YBbLlVbcbVq3ksBVv6ELz6geuVgbFf6F9FU2Xu67RwGL/UGihQVpWXbuPaGt6bxEXeS/h/un2Qu4twDPXQnZ7rKK5EYaxFI9dwBpZ0LasyFinQLnQtQu9GkoA1JihPJbAXc6dUm5t5SHykZwgLnLRisYAeSRdbZkKXI2PwusZnTJJerzPcDZY6H8Clviz6T2l6L5mMvU32vMdlc1T1Vfm2lf6Pw2rahXxjTRBbMsc77HrlJ4HMUD8gtwo5uGi+vkmI5aBDvAwy6MYw7it+rGNsHiGvbRgsBuTgJarE3HvngNS84wh9kmd8CCWuYvrn38fF7VII0AKVlpw8yz8/1Y6VzO6Rtm+fj6xMUvaO2/5l4Y4h+eUoWh6dNBwEH8onPnrxt19F+7Mhsgoj4sh4f+GOYWkU+jMwLFu7a5kX1RD0e0vInCtY1+kmoO/s01l7woQ1gxyZLnwBfvo7YTRuMwkaX2d3skS82gDHxc9Veq44R91P69nyjDqLwmSlKhyg7kL1o9hrc1tvH3LvWe/7IXDwggR6GGU/rh9+ly2vromwFLmZjR7iyEQjef0twgFVhQHqKEGYYraYUN08koi5v0JKJm1nj3jkLAphqn+wbcIrEW4tCn/sec+b16/AtRd02nNHaMGZifZQak7m0vWGAkCZqClD6f0iM62WQTP/tvSHRNx1yzNy8AekZGoXrKsMXdez6ZoHSXggHGfJBCwtvE/+IW0hy2kSr3i4PKQG8gFwgqnWPpmEeQhB5pqQxqjlJvQlhwX8xZ/zVECSNspVlU0XBEdsoK4xs+RKuRnRejLCLs4KIBKQn66xaselXVi3j9JXaJpzPwvIBo2DWWmB8EDUoK/rPy86kfXIlW4gGhLgfrmIjIRh8CUEkXWohMoSJtGUtDPMW1KUfn4Pm8YCdxRVMHnvgfQoUp6j4
Variant 1
DifficultyLevel
565
Question
Worked Solution
|
|
24 × ? |
= 18 |
? |
= 2418 |
? |
= 43 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 24$\ \times$ ? | = 18 |
| ? | = $\dfrac{18}{24}$ |
| ? | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/ZHhEPHJegu/XP0cOiZHE22xmaZubGSCV4bFC9ldRBsZ/s95WzR95ETmDkwDKd1+JAmbeght9JNN1oLOg37wF+PzQyovYykowuHDAyHsw9m3aVmnNORnqg81fCSQvnDl/5ZkzFgzxLQCEWOosx0akPpPLOp0i0GjESVQGBsON8ThUuujaq+xJR7RAtIKHsyGZOzInFLeF2jp6U4jnT1sdABFDKSlc7CASm4vKsB0zD9+Y4+hnU26bcn6OleWe5Z/BW+3NrVM4EUFxYrwQqdmxmgGfCd2IwQs/IsJ84idOHDBQcBfngBLLc8BmwnpCs6BDz5Ny//PD+d53DzyyJqjBbIFGGnIHw2U/xNvAlSXm91+3b2zmD4Rf4hm7HOKD8GqQgiWw9yUcI44Vaj7BUnLTdHKySMn72jVwM8GvOW1mmAGX79c0VLDVM9oNQGdzVgKLxtAcB4MzMPpqxKKBjaUdsexM61M8jlWBJV5g/yLwsQN9Xb3SARjKo+nfoEZ/qDdmQw86Zd/K8iHWyfLfSZWfVzNJF7TLMyUCHDmrF90PRvNWC4bULBdSxQV4a7j55vQvn69UcedjMmTwVbq332Z9TAqoYeN0mMXhQx+Z0ED/+BgSLzJzhbiR55C6vXUiwIT4OaXyxyFTuI3eEIu7DWs+KxoBgBzbqf0oY+95FMUziE9HbC4k1gYulaGeCwlAfXTDmbjvRnqVZPaarYaRqBmdXoG9CLVRpjmPMR9nIT4/Z0EoHsbCZ2xxhKZIiPv84wHQsa4kdrw1X3j6hey5KwBtuVtGT6+KaBsWMwDVW17DYc2DvZBIHbb5p4xjQMPCMsLm52Vqxve6OZ4efiZ4o1Wx/WB2B35LZdwakDFiatv6fHxgWSWoBHHhZGgbv6LusTkbNPb2PBYP1d2GLXtJYfcND3q9HL+SoqY4kaYT9o2DNERdQTiYWwOENmCKEgRTdUrKmJ9K5K3eGaSdIQwYq+181Nu4XQiCDDmwvcqi70dy0lSrRjQDrPnK3bL/EABAsJ6XJZMmW0ZkZZknwGEOkbt8ysarPxoz3pyChud/sgFz8+PZvyyVS+34Kr4tP+Q6ycbZn6N51ZNcToFxvGii9hO4Nn4aaOLEhQJluK4CXM1KKyR3ecMZvAL2EJJBnKpz4LpsMkd40fg/evOQzGIXtF/Nj1aHXPtsq+mlL0sxZFbLmhL+kzHXkoKOTCpaenrkJbnxRNd1RMUTTkSEerj6F/0dKNJ00bGv/ygmNB2EJXJHbBYOVOwTCKxCKs5zEPZt/lur3YiPvZrxJ9tNmnc7l76o4lD3mkPPlroqbo0GG7CRbwBrAROGmgsGBiz8kvRcvx8Z7xzXnDcWMqxfEwDbyNn5wJj4RjjYzGBO6vb40Dhms3nCJ04XidlTiTFovLi1nataRANGiPT8MBf7rpZEn7GVvESBF2zDoK8UvZg/Hj3wm5Aa0bFkUUAWh9T4Yro0cbXYsF5ZfmqtiEhTisapfk8y+jp9DoIrJMrWmzvMsnO2xTm/GE1cE1xvEcmlZ8GdQnJMvZqJgOtCXWF2ek0fYk/meeS5Br/IU6U90s7iMzasOV541MWfIk5hTobUFNyayI/piHAc96HuJvClr5temnpquaZlN3z0bw+pnpCr4BMiZgpPzmYIEs6G0iHq16K4VvMirwX8ZVl8XGolHi98kM4vy0jdqKCozmzvtQ0zApaKFYcIlkIOzyTP/M90yOG3g/zc3nX/Zb2PkiAgLJgYMKqwNxDb1W+aBN9QnmonCkTUjxckh3jg+W317jXfayqEn2Qble8tsCcMMAqq9BVnshXkZbtFbwYL2aYvpxZZgObfaD23gkodkouXUTZaU/sJydX/tRrUEC8SHd3jZx2yI1nyZII8Ub02RF7UEnFRogvUpzwcGEls4IUS0289SfRqTmhEv9zI16o/gt98XlSvWl0PrHVzRJb631rs+CxW4ZNJM/F2IW8D5OppxuorErrhg/aDvRM0IqDOHxZraFS8xGIHC6klpUa0jGyWCtNHM9PV/OsUhpKvsUVwSGlNJ+6N94I3a5cWz0obDGbgEuV3SVupEJ0+39mfjhP7SowcLo1r5UBBucUWssF4LJoT6VEiaWablVVbF80dp9QMkRJ0hGq/QdSgqSk0KM99quocOHLHvUDqrUtDR3+0KNnDaAR/SF6AZ3yXj2oxrK6GvfdMiArt0srylaq99+R/HUSt84JbjWQvohfgyeAioVA8tknc6Cw+jmPbk9QOSQbwQeQrDPJRo7eFCgZfhhPU/j8OxKae/1hbJQwTbO34exO4p1F3F6X+wnpPuEI5iPyvQLaGPEP+Q2mVs2PKcY/o8H/PAGvCkYpn0abgPaMFIMELOaZtYF4t9aECPDZ2CXGeISopZld+JlWSNgBOxse2DFEUPLu4K0+KLtUmKZv4ribLhc1tonbdy0hKyg5gixy1S1ONPvSSOTA9RV3km10JEPONCYGv0aorh9WBsmuu1ZDfMbEn2eT8E4ZiDiqL8oxPmbklgfN4n8NEvW4MmPx0tGvt+T1/CRT7EmOv4biCRaNCI4XCEzpjT7YqODgqTUsJrley/ju3kc4T86aQFZmMa1aP5EOCZQLV1wP9h0Eh8o8nduQcYc3pY1vowIU7wLASeFRcqcSU93L5Na7lOXn/q4v3b3RFV0GsH5vhg+croAwhmEl9ob1KI9t1kJVvnwxudVp+VkoCvRyXMxCBpVMeI5U4uP9rcmEEzaCD7AlBztBYvqPuvhGyrlXxqKioPnBApg0QIAl1WO57fQf8+Pja6bWFylZwHc5lE/hFTiAJSoot8biDEmbgCi6jeIv08Lyq6F/IeoDag5g0CU/BO0Uo7LTts/kPQNSq/F0D/8fFbSRAglc83hkCiaSbb8sQh2+7H/xmHVvpkh2QD4Ivpq987YG/ayBCpAmv4eCHkpyi1KOe3Q0IiFru+FFhfrQuiAVr6ZlaVxyy1ipLZcIqnj29U2ibJqH7nn0Kgh0uyFHNghoPlEu+hI3k2ITEqVOpPQgZFN7qA5mNYBJtgeLdEE8cjNNSWJOYOHUEub6NkZFGjqL0NlCWY1DRFbaizChCTPBkbSHo+FPuVymFgiso3ycujCUe91J3Ay8bOmHv3ydfCJnoks3NVTfBIV2MhoYUYy56P0I5CQLskN/WoFAMAi5kXkYqPu6aTzcn6ZAXKM8H0HXnSbIN8UKQOpkeUuq5WWHjo4OpW+XDPAQFklEys0tg7CBn3QAQM5Z92mIkGPg8NgrmLZBoXP9irO4qbKgiBks/1CR9/4AvixG0DeJXYc//DOXHjSDlc1w1hifFnOd54+xZ3tyV3/hE5bvX68q/8fyR8J4o4QE1gTPRjHDUA1cO9ACQcTDBwEPknFUoq2Mh93qMxnw+LjxN3OIVUrwPY8eVFhQzx7MJZOvWsTjHKjfYYbdkQjNtPaSZJDhN89kQJ9sxbDN327OVXo5WIlAWxWxgThbV1BURe/KuXC6gPDNy9smU9KQ5Pn5+UJE3cxQ6clsI95MHS9r4Lgk8I5JDIFvRV6zjwhmN+5UZMKk/6xZ09D5cRag01x8O24sUhrOvOEJTtRssdxxkj9rOTaVjJQHEsUfhOEwWJs7uLLLPeuM93inpGozrx9i23F5fxScBXrJgHwshPWyJ8O8B+Z2J3m4Ub4B36HBXmW22jXQUxGOMFIB32tidLlTaA5aAMBgFRXgZPrNA6tXftS5QNCelurmNOimD3S/TNgeoTPYJSYjJ7QSU/3k8VYm1AUhZx30VcJtK7fGr9onNcsqAsFgnESi4jdGtHtuNLJxd/TYxYMqmKbJICsBASUbrqTylDT4LBfqPY9GE5l9Iw11JbQzXSyuXRrT1Ifn/MVErTuhvKGEj5txgz2q0LnpNZeDug2bPFxNakJSE246XEhitM/3BCYlXoQsYsSNnZRObZ7DMr8Im2xiq1P86AukPR6aoE6z/efBIayVRm9oKU7zVbvcY5WInwkNR0BudJOhUo+qwTM/Mef/+lq24UEcW8vL//Phic4Kin8gtxFiv6h59sl8KvuVr24vtrLd5W15rkhxG92BHYbGAwdexw2hG0eFowoxfMc9R85BmGBiXXKzCly0y0WOyN5xJPC5kINM2Wi0c8JKhplKgCHKXAo54Dxlla2bP5K+zBWWQQoNCNoPjw4b91OTIn4FOAPd36lHoJIMmSZ49/7v529CMJV5FtXED2Nbn4KvmIu+btoJP3UJYegb0QoNMmih4AL704zjwzbLbkFyOM7m+dz6r3ICnrq31i1OgwMwJ8xW+z2ogTHlNKkynmzQTkbpEOSB2gazyyyTBAIn0flmqp0gpOpKHuS7MlPRhGl4UyfDzfvBUXuO/1UoaMHY97dnsXgbWSf/TScig4KVb0kmRZi0FyFZOqPAFkTle60p0oZSUB8tm6/yM8jcsoIH6RkaLu/NwrOfZ4xmXEDKTVGOvhdaGb+lCPaeaaTEQlzmFByGFNtVmcyLe9rU0VW8Dz077xTWeQedWyk4+tjj6BL0WdL/trZlDZoGhtLIv8UTbnYCu2c0cuKRbS/xStTZ0mmtx60HEtQDos1qgIhcmstp70JTiJnOti2FuGdoe1tOgLi1yY7cbvR434OYFfnrpWFTu0sK4mlTiY3bDmi3QHaXAjaBhsDnomC7P7XwOgsfDobhhWxY89RVEWL77YG6RAha13pdI0AngScWfw4r5AsOQqDgE9tWgGUotUUiotvSvXuzhkXoKcZyLryRJKacJtNcFgHbq63/BrPtm/QGiAUvXSzUBFILfklCi06hAsnsPXxjyv0RY3x7WJtKs+HOo0ORvS5DhcdfvQdj4co+5zbYhRfw+J7M+IMrotH8/FKGWIyeusw9/oJEIPlMzzRWrEGCpP/czxxY8XY4ftY07Y7oZ/q8DkxGX4VkEh7hwtrEYdTkK1O//RmCvwGwTVZcTehkGq6POChzlyQnot6jsmCoAKQ2NmrfB0QJk94iVvc+KIRfa1cJwLfEk/6HNkTRm1cxkHJ3eijZ4suFRF5DHJCU131t0kTFeByvbPkdFv/2S2rUrcwyHQNYk5b8OjpcOksvNoSGf7K2CseMBOy6VjUJ0tx7aHqnRK52GPfAwxfZQttAuDG9rx2ou5E87LyqIG/kfqnSremGHOoiJu+hL4IpH38qnIGij39u/3VRqVZvBfFDngwVyqwY7AfRPMe+W9eclAslQzXNQjhB7wVrY3g9XwRkfqyN8vr/MmkUoa8zeY36KM7gHM/Deeuya5FtfJMFmWdC8JL/TWQnMaNFa45J+L7YN0nGjwwOoXBis2NqfcjWN/a4lqxMC79appbUU93aRvknEzZ5DSq2MQSGTRMIBhySHroTTzl49K+8X00MYx/uB+g7+FsPoQ9nPgUTE2YS3Pf2YKphldHlC4n2FD/pDTYJpTyf9/Hw5OuvgfrnyBZC9rPArErl9Z1TJru0MqKgXQdYh22b4oTDKNpmuBMXJlWJgPbE9xpidoAS71QcJ/uFxxhlI68r5Q+Ln/sK0chWWjNqEl/GaMeGL07iQJqp47aWsXALIgHPUmrrUrGTNfvZRWdy2B8q/ipCtyDVSAFjSsoPOKSWDecCh5OET1RyEpdGSHnmyTDq7DFNO/cL/+vQDiejbSM/NHe/8DiAD23BI5Y2rb8O0Gd3OI40t8lCI5O6BCxGTMb681ctQSlbjVoWb35D2/TOgC1E2Uw85JqzLmH+CJ4aYxpwND5fz8sDI/Kis3oxRXA71zQgBfRVDv9u4X4ILU2Q/4NPPCQyAPVoI513dFaB14d8H1midg2hWvN5ADEVsaer/4/epe1d0eTJXY0i0ksM0uF6UP/KCJhDt0PvTul9PDEb09BY9vWkkX4W2utknZ3H9/c9XWFDFJ/o6568Kk7H00yR0p2/opZR4xz/rutkrhSZBKgzzlkk93DrfIblkRBZ3XQsW8nn6gZNfKQqfDh9nT0AHJOVaptJ5cU7yLxZidCPteKpraGk+dxqNPAf2xEVKg20dR+OGO5oGi7oEQk9t5cE2YD9DtgBg1/aa8R/rmZZeragiSWqiUFDmBuqV/qIRc8clop/27KlJ/qK2dJCNw2WEhjZ6c62LP6Jf8wyl5OVcTRNaBtSk1jwChXdwPYdNzUfRHMvF87FEg4Cd21hxTcedNmU7TpYDmF7HIsUwKxRwd0VRtyxQZ//zuwt2OzMnJYus9fGggXgLoXvkEGPjEysikXHzBZihOdFCdtu2C+z818ykUVm2JFVFq01wX5ftACVIQv1e61sODFPKZztJyDHJjmw7kD/G2MpjG9K2knd9bxLJothLnFzdOXQ21XDTWGXPhOkAlgoxJCquf1XxzWFGvKUEY2qxwDbvGRLCk4XPG9cC20F/spzziLpp6ArQhtilVczXboMS2guDMfWxANo+XQ48/+wrQRFm7nJF5584+Vak9QSrjTvTy7tOSmSg042nnboxbSovohtWkSuXh+0xXqgg4WoASEagpx51OmAG5KKo/TNuBj7eC9mP67UKFQY6keuNnvgtikReM9bT4lLo5m8MzDddQdCGtrC8+Z8v4I7NcA6J8QGin5xGmYzSkEBA/KsZqk/wTXb2fClLRvRW1VO/FawsrEv5/EfVhrnm7W6Oa2z17noQ1yAIIKAXVl4JBdMfuEu9kGHVOsWD9GYx4FN5p7zbKztJDt8+650ubAWp+hpGZfze7ixHWiEsFXrGWGwNq1543xUS/xn3LdglXkaE2J/L+l5fvfeYmcv8IFIFpyJC5gfskNpswA8nHKyLFUCX+MAxd6dqjWshMAcPDKqCCsgbPiV7qHnIcMvt4sR/3vw3A5EFl8vL8gDubgDznFvKOOI5mLhV4LoXd8uc0M3ZrBDxzzQ+W0VsJvQFLl8VOYfSwx8ubK7MuaYZkzdKar5TeP9vL2PD5CbGllzKZayld6SVxXON05Ei8/BtDhWi0wW8wx2+HZmMD15SHl2YcT6GwioxjuZDMumgPx+YSwLT2MNaU7xnHcm/8p/BuaE0VOecQFVII/mcGEa/nYor0TaM9ygjTXp1rw/fwZhpSNyKpBM8DsvZ5Y8UsyVvAR1agI1ylOTmyVve1pO2LzQgKZ7CL54RmeyeDj0c3B4YjSqlcfBzxQiMJmEWfzVGYZ9gss8+4PetW/hzISX+/38LgQKuNlqDtbhoSxbR2W15nbh1piojW45IAZTD0Y+G7eAVkocVmbEHrvTfK/TyVYfiH/x8GTihDf1wko1LdkIN3JsxAL5/tcq7uj6d/XNi7Kt1Sp9jP0jvRkBjvkTMQuVnHLvJsGzxAxiYMJo53nWHPGFH1UsLZ8dUClN6GECxbL2YejqIyGDwlrHI3/98/6w+w0D0eUeyejhivJP+GJDNKJaH2POcrzziipeZ/VAc3o001/rtOrpH2GKkOHsIioL2BGwkqW8kAEp417ZItG6+OCH6kcvehBwf3kRJqjs6wL78MV659uFQfTCFR5LHrTfaBsb9iKZ0degSyJIq2phsiNdFPQKafX+8i9brpUr85NizyOO1oG0+gXUS84thoJsY+JtwwieL8DFqzm7O7so3k88Tlf6CVKOFIOPPbuji5hhg54xAV3aA/ja3RR4TNOqVDnrMQp9C58+RcbfhOSWeMgDJaQH1RxtoyTXiNtImRaw2njyo6LaeWr+l4S2pRdpkqpe20SBkaaFXdkaliQKFEIUqpbqYg6YF94ZWHbmMskwhLuAjkKFZEF40rM6Thf7xml7LsEePzoqLSVAUdTFvT/Op4tDyRrzIOGnIBLK0Z/90rY68mIVk3nflbt37P+n4Av3J8LKImr680UCrCjhKDJazqS0M3l2tE/1pRmvKYWIzIn/9tvT2eTVtiJfTJ8c57toNNUQHhBAy443v0wf2Cy81kCxLs1Ks+bHJYzOdEUveW4kBfZk1FtYgLrSsqcGvK+1R+SAB9nag6nr9R87NPtQm8/B1Elu/UYWR5huYHhrKuRFsyGXdmGWRaOZ/JAbMoXdI/UuFGOrCq3ESVhu1ISQc1lX10IXj3lSJmBppzzMdDs1X+Wzm4oRM7MkXONlVIY4BwK8uB43AXEHf6pUzbKdugFmZYF6Y58s9dmYwwImO9zxljAEonp1r66zsOndjSCft6tiCKUgRFURa0lU/kfMnjteaEfa00cmZRE5rxJfLQ/EUcjCedGZP0fNHbYgTW3noXfJXVdUGLF1Fds3b1z+Q3rb7ET6GdxuDDu/Y3eeB0JeP6piJExiDMoGGBkQczU+DBb1JCpQ0g4u8cXv2zsP/Uih+aAZi6aVpRReCBe5spk78ekEOvpwGrPuKL4nEr+CmRrWZ/BNIWJa63syMaq9lXba6fp8l8E/3y6BUbkILBZCOPhq5XV1RLMOeGzXx/Ufh0fyx39olftbew5j/8FGtXP/sA/3Sn7zuz+1iQs8nJNqh24TpYQ31LxgY/viFUCPXRP54+ez+ZvrMTI3JWCkrepztXET0R9Knmnhc/Yz5x0baSpu6xBiydkwqY7ML904TgaakEWPqiXBd5x6rmsqNS6dDnXNSk6ilfXoiH68qkPQ9pOuA0jhI3+5o0FK9AiqGhwVKhr/PRGGOj7XNxLub37zUa5UOZTg2RxcUz6h4IQUSa6GWBAkPgmbndXXB++VLV1COXIY5B4B+QZ+37jH27oSYz6VCoHcle6NfPP+TvGdtSUQpGc0zzXi2G4BrvZXYxOOHVJ9qgRPe+bs6gWCggCJg9hfQZYZzLT4S6tnIzUYm+paNPsrsiqpOOg/9ycTTYcWGhRgEti71t4E7J0x9Qr67B9iQMWCM3Ec+iRmg7Xs0J7HmcVmuIsNECe6hRU6G3aMMAwNy6GIZv1ZWKcmJ9RtRSU5YOFynm2vW9tLhKw9WB11mTJHrGE+WxnqvmRvhGPDXz1AhVEyKi6vcj7STL47S7OO23fdaOrnvBrcPT1rzqUDkZssO7PjSDcyLMFnG0w925DKRkC+C2JhXl820MXlzDCJpOY5V8tuk9xfRTJdQt9FYPLl0ezamsAR88S2Grp0cJ8+5M0/UJd8OXovSp3Ip9HhKf83H07KecNwTz9WAXcLLMmuAcyCzXhQsegnN6M2ReoY+N7yBOG+oYRBtWWFzid2Mx2Jk8sa/yib6X0J7x+rsp2s2ytS4Bz717GnUt0JH7Ud8KFrwyYq9wNUVgQWZ1lDiwy3uMpIIXDzGWm/l1NQq7s2kLXJCbqeboVmlF/q+KbtK54QnXflz6r2BTY+OfLhtCA3NuY5YcHTCqaMmFHB/HADoYr0Xkek+EezvZxmAPegPmEpbkRh5Zh/7wjX9CbUATUj17lOQoFXtRwjhh7nQ9p8vspQx4ubdHUVg+gA5RhnbQvGlT0vW23AdVyKfQZuE5ZKVqTFhshiPtgt19zvgOI6BviynGma0+St3CYcvkm9GNSc6f4QWdZNyTNFCviY/QlL9Bg4rE2H9mL8hh8NwkkDqsEuufGS7r3VldjsrNMwB6D2WKt+IgzVk1Pf+o/fMMNQcUk6jWIzLuSM1p/U1Qb0Ax4YlRyLpShtxiTAqDrdPVC1tpu3JhpsIxj9PFDtetrfutwaaIFk3lYbkAKMksRzbcULqlZsuT4qOS1wxAA89qjGJVmM+AhE23gmHxrYe/8caCUfcTPbUKIyV7lDIeifCt7Zv/1fkZiKKia3KBxDbh9jJ5ew686VRvCfkIYDpP5hjDELtxFK1xljizO73+G8Q/lvgYfDtqUx4AN+GCYbvW+u81bZoK/jav44nDZiZeOk+YOB2rtIJlE3v/SFTtZ4UzQlsDyno+KOnpXTOCDbKklIJMOqDUInMeV/FmH/3vllgmkTTQc7zIiwmTaRWB/l2Ehtp7D/QtMDIBFhcq52kofhUqA0RhU3H3+qgyDxTk4I8BhLaCg+sndtrpht8+EoCjPV9+m0KLsqjY/SvJcNwlgRWsLtUxNTueis1CkQDY5GROHf+uzdPSgOeLFA6z1lQGNQG36f7i+AEGQhKz3Qc8bZl/1mlSkPsmXBiA3+4HhuAbZhOhG0mqo7lalh2OuxR08qxqIhdc04zj008qFPaHsYVCkNIV7of1hpHs2sSzAhZp7TYM6kTCb3k3XyFnbP8ZJ1nm20BNHeO+0JSGWcFp38MnZzqizisGM2n3mFXJPHIpazmbF+LNjNmInnKn82NkbDp8bGs5wq+lecpVMEac1LG38T9CsE3j6/NUn3MnYUMrOuOlpFCBOQm7S4M953Nzia8Phtexg7RPV42RvETkf8BDRTgDdzcuPXVtdpAwwVO1OX9HjkepBtWddbM0fi2xJo69Wxxz2MJQNvAhjIv1MsJM2WtWPBBxgGdxTWEDqPIkn3MKYWYN8fDKDAih5CSOYmhtUbckD9S+vPFdkV8g6KWf6QAbBBbL64NxLwlYxjBavq4zY19tetZnIsZDB9rFMY+zInbXI2PgrxGQmGEdAPJdVR7F8rnZk5XN9bkd7mYcm30IiKFOBkD6fCZS5VBDiTAA0e/jeXwDY4/gD0VbKWxFG78D2fOwWtOwTu4LNl4o8qz+qOZ9UvxUtR1by4tTw9yGzv9vAegabbAV9NGW2LScueVbuy2dCDQpPhCmgx+9R1EZb/v6F7DGeYfHgtl+2Yo+Oo6LzdsdG02gbZ6dmVUh+5TfdVlhr4Ni5vFKBTX/IDtLlFH6jywm241mcYYnKqldRPXa0JDJMo9eySjfXzokcXSzRHjFlzgfpBh61Jncvl6i5f3n2786NeI7fgD0oZm5bN649EavavZ+8nb9iFcWnGWIgRwyFthd19ll/f7ViTVmnqXGeOouq7bcJz1DSXlHa7nPOb6HvaUJ1GzKTVmmr7X5vGZKaLapMr6riVd6PiCaEdaVkF4DmoW+kTwtup+v3EF5sr3mVgzWn3Nu0S6kAU6qT9e+4hc8abDOFtd2YpJUPQZNCB0gJ4LQRnJMOYJm7Z3s1EzvVe2m6OUlVjEqIX/C+JAhRqNoxXp3Vot5KywILRa8QT7l1ppgzKdIooQ5Ca3uMH+KWxGLA4/CT+iwEQGrTHN937r4YYTxJNfG9QwyVEYp85b7nG6tI8C8EOReVR5hrUdmbvaEIgsok0gdYQ8Ydwa79aY3ihFyBSiDnYu/jbD5fjqy9zWu5uUiMYAbnwIQDzQv3WRlNEWVvBAIVq4Ogj/74Hf3rWH8/cjuxeRkLUT+byWd5NsTM4KMSUSGbKEhptRGSym/P7FmMsUhh3b+jZczlwG4PedO4DJzOHORcoZvNPQk76vaKKbkldeuoXcCXPk0fG2+gLqU+lEzzHL0Axfq7Fpbd8LiRJrvtjVRbnVFxPh1SCJAx9z7E4Vj10MA3nvq3QQHbTW+wWCvAt3hmYOHxVeggtMamyHMto9Jufk3cwBtqONhwZ/MSHnArWoGGz/nM+cG6DrE/7z+pO6QQtPYDogKDHlC37Hsx/Sg5gjUweVy2QVaO2t2B7xFUvVRQEnWDeGXOgvthVASuzaCKHrOrt1S6yw8MjK7Cnd2advDWd8cmMc/v2JnihyYee+onj05dxQZh5mPXmZHgdbYXBpmr18JV0Ev54YYB2+a+zt5S/xvWoGA6JiVWLD0Iv4w94aZ0l8WGftx1BhXFYuYn1x+vUpOinOjSnbcpe4pcB3rbJKcQNkl5PU+jP2a38zQZ73v7Q2z/5lgp0/hV8dhV4bKCaI0bULXERAOoqeCYObjXokYhkDaoIQ43txfsU+3vcWqCnno/aA+ETkFXI4BF0ORIRIsQmoAST6DOZ6blwbP9fPxml2dZmH/cgzyNWCGa3KfVtRLZq/QXPsUQHphbJcoEvm9drA8FA/2qRtgPZi1g9pRrxnPDQdvrsBHU9eeaKg3kWZKJQqBRSZ5dwwlR8/8K4trdeDmwSwJH2tHCzmN4wMNhr5lTSAKnoo/qMSWD+AEv8K3gypw9rK9pCtTmiJdEFJKM7S5L5gXVx+FHFmGLVQ+rp05KVu5I+JJrp77+yaH6QN+DWBla+Ua53bLMxABS3jcLguhZ4np+T7eOEIIdBPKOYCSi8Vjfl4tFFGHJ9FtgSTU3fpP8XWs7wUHmd8n+WOsZDrgfiBhUf1+ryXuHkCM/een5eQEPdPLNy1p75hj2lTk94VKpId6VtGPgXayAkNZuGSQMIcdeerTTLFhL7rKGU5Opcl0yV/Mo+fdFqIueG/VC5QwsC72iRYD9Y+O4sDXISK4e4fHW2+POLlWruPL/4/Ob3znrPpCG1cdN1r1gCAfD4CWiTe5MemtH6CmXVFaLKnsqtLvwopgFHfnLiKMscILyy5vgtJwMCqq0QzCFUOuhIxzEytK9mTjSFI1QO1/WGhN6hYEUzGjyK9jfi1ySIqfUoEbSBkH1TeLhlMuMNHgDLbqvlzdRs+nMplmHsVMzCjhVLr/CfO2jrKgKgAiztTPkULoPJarlXm3CE2jL3wr0yByolbne0SttTBawTmUASRFpUulHgsKJFqjp0LTKVkqbd1vBjGODSnLaPEyLWvqTQmG+7uvffTMUPOR5Th3lRUNezL0f8IKWwgj/WtE4xWU2T5WjmmEWe/zeRptY/0+7kJBidd1SQAca+qgpk+f8/5DRCqNYXLlGxsn3BtjJx9fTXHt8gEsWCz3FKyzyI/X7Lio7DDUFsj3I4yVu7qqJD7vlch464CpPzFG/uNu01lMjh9p8+4NoQnlIKgqJK/tHme7j3Rfj4WnilmvYKeaZw9vfynSVgsox2A+h5dHgJEoIZiO35/v8DdjyQnt+UmW7+p3+H612YCCRX0h+s41tXfTvIMH/Htz0Irjeu9tihGVReuDTgzOMgTwZJveZ/T7ySp8mg+GTuseZF7C6p1bRTxJ8O1Q3bm4KkuzrWy2rdifhiXMJR9SZZjxJnZBSn2Y9++Ky52kCPObjxVZCG3RdlJ1rXEyHC+XQHHuDfRX4KSk8h61qo8JXcwRpKB2/xmcdCDM69jFl+tIO8QdmJznued+9nIToFnGxwN5q/yV6G0GPL3D7KMoGE06RruuvygfRomjz4GqDEzAKnZKefp5uX7uVo3UK4VPPbd4G1SteufEYvpzEDvZ9A9D8PIxHb7Q3dfkP8YigEuPBkzo3lEhuYfWpcB6CcA8g7tbc8HQyvxgr77YAmjmsPKDu+Z4p932Ki5yzy9v05hh0pL4t/Pzj74++Qvsd3GN+gjKyzGIBN3ZTte9wX9/MG51J/lBPSEl+qfEZlzVbqLRSWiKYkBLD0SlEi34utpx9bHQ1IRKfpl9v2p+CI4RMpXzR/k2wwVqn5FCTXZkqwAt2CTTinnE9LSn6uM2/RwsIy5xHQnaX2s1noNkOZ56LCL5GOi0dGWWyR3MIu3SBQXHsQ7CD+abk69XUq8VePgThO7SpyqScUOMguG5THMRETrL406iQc01/vvB3X4rKakvwBrw0RF+iZTOmF/ehi2zC/84Ncp55QhnUNexdmqf2zFT5Ll5OQw+ByQxt7whsZWdv4rk6FxSP0d3ucSRVJ51UzEEidhcSpDYrTk/G9fIZGRQevwVHthDZV6RwCKvYPVerPo1s5jJ3Zyp3hiZtkq6w5l77GtV/pjPBXH78x429ayfxA53NtFtfcgCB/k+PPzHTLo05qcpniBMb1Pgo0tep6DOEE9voAKWJLfjVAoOqaKgJFcbNbTvYTK8fStNsNUAwFWpVW8gHhYA0H1fVhEk5Lp5beXZQJWObFzr+cRs4GZoLC1EfqPi4n6fJDJ2ePrQoq3pksshrXfIDXsXE4B5byhB77MZgN0kVqdvqrpHawBa+ky8qiZM20NpbmBVoEnK4JGin//OEi3ewARa8Of9Uthu8FTSWm2krXpJlTwuqRTqY3WciXmMv94p/TvSy1Dk9qe8obCeF1eR7KrgSVcattX60WvOVXbVR+d9v67mr63bEo1dDzNgvT7fjYL9MN9azoSETZEzaceb+PWSJv+q7xzPhP8n40v4vGShsXFRMpeGwYy4tJRBiNhTHv271/j66AtLMYxhA7URP07aa51fHT3y2owSLtdFC8pAXkW2w7zZg2VmWweaFZKafp71X80XhV6e7sZwebXJCZ6uoEhgKNSYfSFgsIsMZxTGZQlbdjwY
Variant 2
DifficultyLevel
567
Question
Worked Solution
|
|
36 × ? |
= 24 |
? |
= 3624 |
? |
= 32 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 36$\ \times$ ? | = 24 |
| ? | = $\dfrac{24}{36}$ |
| ? | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX19yka3sN+UG0Z4ZVNRrf1HCqOzSWPnDBmfei+NxjtRyNS0Lq1S3g3+sKb8LWFmgxq9zNalRmmF3y2MqRuSguwUMhRL/dR3+r5QdpPitflrvysN9g54/4iO0Zfls4fQe4NejlvnsP6qix+FzSlHSyXNxrZqa7lc+BgWr1a24d8aXdidCb1gxoEkYx0ly7D1srydrSQBv2BttZ0YZLE8s5RSxSdKLiqHQle4T38WmzrUbu6H1haubRJawkCNt7KvmutWSutGRACIx8+1Ao1KjIYCCLyMJ4EGEDTQkCNFRp8q3zoEAM5hHE1VWwIYgdDqDci9tb7jOI77KklKz7jIr9KHDbRMVwbeiWkiO+eyta3KYo6DryFcI0j6KEQhb4Kw060iWx+jpwCPYOTW+HVg+uneefVDhSIH9JP5/Yf5DUmPIGGBMy09QVI4neGP4m7mP/zDBu/VAPIKHIG5l046HJceLMi0LfJuLgTfkBRrmnOnJXVCKSa12vYgRpYVkv0e76x8rAQgM/otYfsY0gjYBqt6U8I20Mp9W/w6sqZm3gJH8qnMTR8WQlWWKGybmnjjMIAiYRXLP02INn4bgbnprBu91UdtwAhT8b8LuWVq9jkfckDILTJclZelSV+vzKxcC02Eghg5dqzpwBnjeVbes8924o7GjkaBUiAq9+zfyJobbTL3JolnJNgyh9PbnIEPhyrp0qCUtF6ZgavzCXGigCux+MYDBv3Mp9pX8UtsMor3gjX3OMl2EHDm9TaEz3SXOQRDNwSE2F4KCkn7Zti426YRRF79LlRKrL3LNlTqkDvN46mXb49BKMi60FWeDkF1dKon1TqXqamOCY7POCYACrXqfuo+tjqooSiKP2vxoQSCo2IAo/+smiF1kIJ1zIsy64vvEBb5s6UomGQ2fejgHciUmnzfRd8dbJyaCYfqVMmw0d4ZBqvE7PpFCz2EerCW6L1SWP8y31qalLHOLmORwx93azeUYoX0beW22GTO+KDvefM12YsruZeJ2WsFFzOjSZTTs+roO42Sc9FiYPn0EzP0srDGlN9YlGIqcPmJojpygvAoV+x+Q4R282JYiCte6/G15JfVcFsDEqBf4IQRgGB9/htso/Y2N5FYZxw+HIziaDcQX6KybcRaO8TtNb31Enr2W/vFk7GaRXcFwjPgz0JlBAoBMs7UIT5MJNlSB4/eSlqYTYCBwINI9QB+VAx3HJZ2b8ErUeVtU1CEy6SZkpBCVIVPVfZYaB0vinH3qwkCNYWKXvdvN/9udezuWtM1diQH4WCajoH94RAcpzdDo4LlfnopNY79iQKIyn9F8fLo996HR5/a4tsapekF++emymWjv86TSLAOtY6bLufnb3D/2VfVAlYHvPEi9vXY+kDeGWdftQPZd5rWdN7cnY7jmBWUTAR8devroSSTh30eJ9pOAjLEr2kQpZ6iO6prBtTPjfR/c8n17qL7GwxdZEgYGWSttOK9c7BP9enma6bQu37S3m1+zOC72kRxlK7V171IK/NQ6f5DYws2qZ3snJBfFDentnL2+uNnIbSKm0HwznQpM3XvmKjaGeA6o9z9DXaW03zxLyZjt9jwbCN454R/k8WXvRCQsKm4j+02CdtCsX8FwoZ+673CqKEMw2c37kVPQ6lCBoxiqFwHAbGo6wt1wzwRGmFSi/HvxSsh9w5czWbywYpGzm+uM4j/cd2hZ9j/YqCZ/T1vHi3pVcptSnG04Ru7z2bVuCQrXdVyfuhf6maRvT/MmNgM5jkXDlqLtUAR8T1DNqUWK2Po6BIdwCvjpq2RQH1tS0AHC9RRhWqYB4c08KozRMdRrQ4Ouyunt8OCrIKYhy6EgUMfAhqkd01qk6sZbQUgK/Wjq3a2hWKj//8fQ3TEqZ9U+viFExQWLs+okEcDZ1FqhG5Z689liD+FekAm1j+AasmM1XBzqUglRSUmE2TjN26N3mcjtGHSnfmX+9tkuqBx7ZYK6xgvBMilOaHRDW3ogduAcy00K4rBW+updGNWiXO5qKCRPKuvX2YiDGFSTzyCeCsKQF2CEEq3TGb/sprOJYaGRzBgHFpvBDXrCdB59eGQHtIue46pz6SCxGPHnz9/WkZOBYVgtX8qyi2R4/MibivaQkEqyemlG/WHm8lfr9oijHfMJG7NGDKQaP8d7KKwUEQVB9+l/PSkn+ZTmUbp+k8i6bHtvOByHrVXQNyk+wMW2P8usc3Misz0wRcCN+gyXUdhv3wjmqf55Hlc1NZSoMdXQnf+7GVjZE3yFBB4g4Df5PMjND+HamFKxpuRsPa1qGJcmZo1pRXOPEqV1qYUB3Zi4hXpBHchATQo2NTT20/eVa7yGgLOrxG0F3Dzgyukl47+iJpYqgzYZq79tOCykgr9D8l0JrEAhE6U1rm9uFlPd+3mFf/8pKLxaY9E7bcMBUBlGn/P7asigDDHeSUP5ufSEJrQwTSqqMFFqnN6gKQxFqObJYK8RxHBEd5wVoIcnRVV83Gha4Q+vSk+fSXT0D7kK5laifr7q+o0kMxC2tn52Cy77g4Ab4laOTwyrrH1NjzlzxyCFmab0O2wtMsYfJ1tPgwYj/9ZJ6UIXPBzOhOkXyP3zQwmhU51iQMAhLZeQkXwY6FghiRNATyNTWRX9JULRjfhnfV3P49mVO/2HnKRW29WFm+Jyrl4JlHlTM8hI6SderdrMWEExym74gaMEHDoVHc9MDzmZ86P81QauthY3Udxum0G8qadHFKK4j+Dz0/NkWZgQjw2hgUvR91AM2bKL56HAfvqvPYAHrtAGu/K2P1n7A0qCm+LV1X4LmVfA08YQv72iTdaqukzVsdyiFDBT+KLjjXZmiO7XszA0H6o+03sUgdGeofnHQjJy6b3tktMwcH4L0Qjaxg4PLKoS62qpnqUY+mAb8PoYKTZUNkuUoIwQGUa0xL0SyNQaMnAhVMFPeK3SkZyg6P4I+VCd6wqX0j3lJLJdUtRSDhYKvDI9GWaDI5AHlzmPxtPFQwvFG9Dz1QrB3TXuhgLw4LrMQ6nNcG0YJ4Wk/YsM0rV/d48GzbEWYwjQx2LDmfBYG/PCzksebIbhkuoRMjiOM2R0LV57AqCLBiud02p538YOIzF+EGDRge4U36OoHIBCu+QUJanlaege9XPxybI4qk9EiqNV4btfPrboDDWD8gGA6+hopLd+fXEnRiPf5vip0wYvWfOP9MdwCdvRXE8j/0VX41aDRmm0SELd4yaPXpSbD+lsRA7cdL7++sOxy+TThbK1oxmoIttVJP6NJlnBcwAm5gwDACL4tT1np+s9l5P5G5oW07jxIa6uLYjF3d8U2QzzQfkrb6IEbwfx1f9VAQjwsRo8j3Lve4r/mXCH4eYIO8Pw1SYdS+mLLeVB2Htp0AqY30Bp9l8Unhdb1FjOZtnZ6m+JpAuInL/jZBusEkWZJtpsgGMxsoquFTpLeiNNBhoOP9j2O3XqVrHYi8uBZSvRSZZ37EnnBu+RwyhXuKvhHZCXhqlAp3JmznxYSQQWgwYGXpt3Q157BCiRHmVCgLn+3kJPL2/tDDZIR0kol2czuESTCYL/aZO45pQqgRixZpgIwK0uccLB6jZFzh6DpJwq8EAv2ZsXmK8+3kjHVYqgpsfBUwgdvWO/rLRHohMaRILJ/PTcWI0rykEt04plXoNQpVYw1J0QDYmhPWrlMVwvaggsoRBVP+5tWH1RcLOgpzp5m+MOZW2mChviaCdG/2LIy4oWnlt0g34y6lC/RNrjZ4toXkEB6pmQExuAW7rHVpwPU6z2Q6blhtnM0wuV5tPEk8y5yeRcAZpef9NA52wUnjlX7kDeEDtln5DFzN94SSC2bERIdEKrIP3S0o+brcJPzIM3+zmF4IGGoQ0yhsZ7oEnYajZvW32j4FGox6tGlFMuY4h9kT6taSY7FLLcpAAK20DwA5M5hQm0330PoYmUvaRQSb17TKeeJuNKdFyECbaOxpi4KTEW66WqqlDGRXheJqEy0uSCLrtD+BU9N871JYAxyiupStk8skqWIUCbzEmbHE9pWC2XscuraWgA+cYYFnPoXjE3OXutRm7tTqXZuT9GXwdjr3MPsMZT5BArBEZ52yO3+mhW46DtKIQuQRuWSZrwoOJ6SYPkrzxOmY57F7+6ovGB35rBsYZg6ONtOtBwI1PjynheVL+Qiz5hl3sFk1jdjAOiAjJkdIzWUurkUj/yRLrZJviQQxIkdfRv3sCT7gl7XkfyUM+Ch4fCXBFE7oVTrqmsY0dBGrLBn0iPXU835f8pq4NR9FmXg0SxPowV+iH5mwn2rM5q/F2XQLpZmdhRNt7pM4Iy0GfdrMyUaVQf9MFYSNqIm7LLUKnZ/m4FAIx0BiXYLRD0iT1vJXcvzKtgC19V4183FomEfg3GxG4V4AWVlgJEjqsYtP1B3I4SodG3yPy4dqlGYrDuMJyrLojtXQdjTl+JyHyPMeXymYvB5brGcSFJlAkhpDq3t2LGSkRKQE6zFznTr5t4r6/oUhTPKo7Y8Wy87uDP9GJIIJalWrNUEdMoIAsxif4KHXycPFsW04XCxiWLSSYd6o2LLSDWPpehbeoY9woKsY9vyaWl+OwIGzp5XKrNK72zP1z4oftW9/X0B/cos7XUdSaS8pe9KTfwJugKdijgkKIkwoUETaSZUJcIRk44nQGZ/dJPtftGowNGAqy0U43d9ddmdYV2g4Pq4HvaoQUPoPSsemjjswvzIzrpEFil2Mo3b8AYSQ1k/drkX6t9pV7RIaP/NjQFb5uFWxcSdxiQDhitqbxAUUUYB/IFr531B9X3eBgFb0zYAhoardNefRQzSffRoqBz84CJiA2OQSi6gI6VrKZUjlQnI+vxW11k8pIHB5zA1PvWfIDNIZf5YTcEhkRjgsrkg6lthMV/QE8y39m52mAWyg1o/KzNlaUaxCee9yVjRC7mLxijBWGG4mzGSITOPhLiVXmLE/iOGXsO0hzYsvdEolPXJdlVKpTDbuayQbYuKIIE01DhecyfpigeGj5IWByWmFK4hjnKEXMLjo9Zp/3uX2hWsmdWuaRsXpjnfUqM9mMNtEljOkerBfTPe91dnzNinpjClEb/fXNYtHoQjQpqEjith85vp1kOz+9iP9TTGn+bLewo3RrOy6wuVO0nf+IqhH8/dQGbzaV5Zw9OMiQ/cwQx5Wh8924nlXZEIhy4A3+/q4rieCjVMQpgJrtc7qCnsei8pBJgy8gOOHlne90iRSzOouHUKcx9oPqYRJ47ALcrEVXr1kL3lhrTfGLtkumyZJsfEPHldxErPg55zAkt2umeI8GixTvzt7qlYMJsBB6urZ1CCtsBpWVtU/DuO2OFtiP+5mexGDu7aWN/eq+9bWk6EuKVRYvbSnO2rIZucuudDcNxEqK7K7GhKaEKL50pX9j9g4z4RjxENeaBGppMrxl8qNumU6HnGzjHn3U6osRQS+UV669Fso1OKAJ+S38mD5NM6TyfbR7a/oxlOJDaLEIfuTLLzbH+lMXtngy2t0wCvs9SG9A5HqSbGC4tTp1nSSs7fe1L2uNaLSbNptQoycC0mZMcikssmUeosPnLVGkpC5FC7c2Sk0Vevl3HbrTz3WajwzGViqSO6oHgJ4RSN+erwx543dW2qhPQ8pwxqqzQoLYEtf6xK0swuzvs/5wAcf9mdAgKp//LxPBIF6igsdUaqHyzYs/SCQtW8Ni9tN8PO/S/3PS2xFU789SQKmd4qX89krJsDFeLZP0qwyegvqsJKF4GBoOKUu5fmQ20lERRPh+80v1YEWqJcXZoyO2hNA70AM+CNMNbBD682Qi6CifxJCUfREcEc+Bksn1tZbjhQ+6X0aJDNpwXiw9ctC9bf+jfYfrRe+y4zNJq/UskkgnoKC/RHh36qlAIS7yyQ41sJeDhLHEZa6gyvbpVq/1I+UIIgQXNBwhwuMqG9bXchTFhRCSOU8amSosbIzeKYBciia7Ybo2Jy9mp8EJ9swwUMFwHxAKktKpSY37oABFzuVFUGsDuxIukSxrmUZM+4vc2u8P1IKWOAse/+xUPF6VOQ9Tr0Rp4JNBXDPI+ouCzwnOYh5S70eLbLzP6UTRDvK2AbYhnJRRdsk8et4FFMZ+duuU6z4w/wYyDR7AsQBNSf2Rk/9ucTuQmGMDTDgwViDovepKvzMlnU/fp8D3vVstFwBQOuRXFOmZYsWmHJ/he6k95EfG9bGm9KV1lBfi5XJoAAAg0wik8CCJHELHxJh1CwxUDIaBQAfxya8/I2xIlxuRp08DVL5BAZX2+anx2WuDaPswRZ0Bjmf/BqOuNxJwxOwd+RXokO1ZK6WpUqM4cPGibwj0AjePmCxlrWDGs4u2sNWFqwJAw/+Kg8+QDz5jymqHm0IM2/V1KmAEcn099t0Vy/IP2sljTI68O1vmY7kpljgxqfDDBxloRSOeXIHQr6hq0U/VugkjxN/1ihxcz/CULf4UZmUUin/3Ibe6S6E6fW/tmMr3C9aArEcsvLF2YyxyKbESgxHU6j46IHpfvXkUK9kCWG4lHojaQ+pWZnap3A3DUpaOBC0HxhnE9wjmwoNUWljM+ttGz+EQQFQxyK7wkJLGRaLNUR+x3jiEKBg6vgIYGyKlS3I2JVAVELDwtVaxKSm8ZE54FtnDlDKyC2qCHmK8LkHn2BiacehYntnbUycew79P6eG7dBNjmZDVa+6JZJwaw9hTAUM+cEI7A+37JBHrMVPxilTx193FEg2xhAzHJaZiam4NYFxY08W53qqMf/I+OFFQLzAa9hl9T87FNfTt1chhM9XLxtQPhLTYwiHVIRBctQWX+FMNl28JupoZT0kfjpwSJTz37+4jD0iSJQZh7mOVkMpBp/ryCu39Zuc6VnTjUlIvJUNsDzZriTReN8DghFi6NuRI7TW+e4fpJvctDR7cbr4PPeVAsleFL+ju6ksU7wBKgUPGYVixIgp6EkGMnqHRCSgzAyUgohhJz2NpaPsCBF6pXyGAtx3CorzMDx+kcXHBxwAp7/2PCnHcmhUV/Wo8yNnPuVc/wIY3IkO7IHW4hhwEq7S0WW9C6j0koxSB8PPAMC+euDJ07ZDuilYMM4BS/Rg7lmQHHNVQYAAhf9d05M+rDiPZTHFvf/ukiEGkt8IJZvLB1yDMtvKUOuAFYfSRlZsHFLdVWB2jHwbYVxnPV3/t81jucIhycXwrCKOJILc2w344yP1ln+iXVmyxOdVaXeDszIsDxdt+14ttx2Q7NvhQ+7Y3ml+Iko6koUeIAZ2QbLbP2bcTxtml/ckKI4B1C6AX7s4wyhm0uUfWDcRIsfsyasUv7DhwLFkN0rjN/5Fly2GVSpR+xSzk/j1cm4gbqrC+nYi8sR07fD1N3aEWn1fTudZ+dR5BAIXKNNmeNtG+dUtyTKOKgbBnTX27+Mv/Yw0P52x9dPPPLYbSzK+9hwbWL/PYdWN2Gu9phLkqx2rqBLYj7KAm+MXIP6SD4qhWV2vbU8fXSd7I3qI1GeO54LODhuFiDprnd+SQyqxX2opp3A+F+2LDjD+wTg8d1bNiFw7FNEzgaLvB71NGceWcyHHeHnQVBREnQJAmgilYk3rVULVlo9i42ZqIhHBo4EA1EMju2MfUTEPGF3KixBib5XEGDQLdjLJPzlj3a7H0crVKaug07EbJXyzDkRbXdkQDcp4XihApD5mS9az4Nk19KzWrEocVYox0WAWLxZ9Q710wKOm+rXBMtpWe6b6mtKQEhVogSkN3BqGMpGjWG3enaGy03qWuQ9vv2NcRWkc+vbjYjgbf/P61dJvlo07m31rpm1eFZzQQfrplOSA9+IRGIgyf/PnYbogvfI2nqxUtcDKfE0zREYW/ngoSHIXpvCcpq0JnVaF9fSOmZnnirlS3STsq6naF1yMoQbcYZZRJYKn8gczv+bdTZ+Pqf8pONAX2xyKyr88ut1dMMkiGBj/Y20vbApccKz15i7BZGpGMHEqLkW2qF8AQCVy4loYrVyXWqTHlmuevKY6SX7unU/iUgyxpcUNelvuDInwLhq5qIdmoQR+rfm8zdj6plu2sv3UJ1GZm6tfy7Mt7aUVNd7El4GRVVjd2CrDEWqzpvHVssstpeBExsDQDrj02niOjbIcIcslkOWAfxwnTBmsHvF3ALEAgVAKZA2Wa5l3nqeNbj8DfmMW0+h1RFztUWklo2G+5sp3k7JgQ9+u7vfi41HUZX33ax2FXdg9Knlsi2q9Izw0TV0DjsVGh5jaqPyKShouqdwY6I+MYNDqp1UycJnbxqmZFyhTySr3EYTnscILpr1BZCGlwvOb7sb4xmvqNJw7Q3lOpwN/NZwake38u2NyKVWKEksHEpWme8wl13kTIoe37+ZP8GbFjOHqwb9rO14dVKdAOV+8PVi3HTWuAABN0rWM0G5IzUAFu+VbpM7lsAhebIT9fTbRvC+QkP12e5ccfSGzG4exQqC4SHrG1HhQc3VCXX8EBjFfDWmVHPx6HgdP1SRYvuvIQroRDvtmWvdDT8jpHDmTeeXApEzcLHimr4wGiAdLxzD5N2gCdx5YVDkPb7/wv8VkB55WykmNdgq9heMmJzfcT2JejqaN/Hzqfae0PccRshd8MYKXi7PjbSFzzZubYKn4IuCFgRB2WKpBLw2Yxh9edg5R72I6z/jnJlXMTsME3/aJdLLKrIjGQaT+nRDSNVM+WXnA+tmW7OGS/wKv1bPwLkQp7cnMyPR9jglmThsfperqZV6rPihbipXJP4OVt3H6YST1M7KlaXbRafVg34tYqk7REGNQ4d/1/oqToAcJGzULYrm7vDWT0MercsojopV74pKp1EB4s0BbfFukRDdoYuw+od2q2un/sigahFxpDJOrWlMuA+8s9TVq26MSye195mp6lVm0xnbMtmKUwCNo8vwUj9fu6FuVUt6Zr6o+1roQpq9IiDxR4Wt01ugFcLEvwXlqBRqF0xAvb7gK7yL6gd/bFjS7cMUMFMTiwbiDiBfV5h4VyyF2amuF7zDDbzOfSUWpNbJyuLzlZmOez0L2xNTiBCGQlZmb8Li5ePdsbsfg/K679Q/vKD4YC1Z04bxaBCteoI/65iXeHFFSxhbeJLH5tMnDlzlH134DJUlRbQ0RXl/vIQFzNYfZnhg49yB3TgbOvxCJFXWV9DcKBfRBgdvdw4DoOkUzsklyzy5ohHaCWntBYlHERRG1aj7+geBetNDemL8RoSgP4w6hHQaRVX7B+uxksoVkYu4JAS62AbpYDnvv1LiveFyJgyqgbD2Q3urVYzQm6/sdQ//ZzXAYxceFv8jqf5J4Z5x3HdtzggOo5RsT0pS4mkUZ2qtbaMuwdQgeNp4c0TTYsPMbByjfAyx0cQFatYheRNvWJSPGQ9BS4JFi2d3E8+kZNSeyW+kafi7cxOf3efwX/Q32LTYiMszgssPGAQZ0ouTRN/Ns4Fr7KMweaKxdIEq0GT9hxhL5kSEppplSRMIRRDrPuiDShxHEYk6viwl8uyauL95grYiO0EDt1cZdNW7zbRKiJxb56Q7wEfJoX5ncyfJlRiSaNKurtAfq2BrDzE4KvXZKQZ8UWwXLIF99exkeZMC2p3QhCctBeKhqXsRFaAY6i84zbiNjqWx3iK170nmSQvPXMyh03/ZzD9MdlM9kZYxmr3tyqu2uBuIzh0OImje681GkxtVFOPvjCGqLNj8W6+hJsYSqQ30bLJ5/m7cXEn5JfRESdmuUbQ+qrEY3gz5NavvoreM7YCs91t2kAqDPk83cnVJbnxd9h2dI8arFRThlAURkCBo1flrkfFdl/r0bKFbmjQY9FO/CIEZ5F6+6/sh2WkFL+ZzJSOaJVbVKGMB5OUqub0xn37/Ng7bs/p/hJab5DvC0MlxHz7qJZblqMb8rxWfHoc+fY2Pe2Dn+k2wfKdFOhKyyh6z2GJ+mDV7Yui887S0ImNk9s9QPwGFjsyK4yomLW5/VpPxofI8JonBt0UO8GQel9qduV6GPV+m87/srfxXL8KYXua7k91e/2f3gh/dH52OddMUtLvWxcP8ddR8XVXGKBZxl+tB45U1a8dhkjV3FXeBN2nDv64vwDXSPoaao/xxiSgSGL6Dn4I2I1A5LNnKT+cD4X8aGqhlvd1N6ZWW5PpZsRbTg72nPFIegm/5IW3usLkG22hWV6MSacfJeF3YiyaYfEqlBZSKSL0HXgPOHQ2UZHM7Mymo1bHUSkCWW40X1hrfqY+QKq5snbOMeys757PKBdD1YhFH2a2IlU2MnJ+saQQ1j+To+G3uynL6DKy7xeYUKT65Ru2uU72XDTjjgDvCHK42qzTmyJCdsX0si9b/jEXpQHXEvf6/HXJ+SczJx58vnSh7eYJeX4UhybFvedmpS/dnhxHjUukJRdcnBZo9hI538Kv1Uop0yBvdEdbnNmbsCes7n3pxEAhWORijGGSPd24xUITEiVFDT/CibtJf1rP8iz0QTAeMUpIbW5j5qQ+ImHXTmepSBIW6u3C8Mk6T/K/eQWmAdfWnwv+M1tgGE3LoDGKNKRwDc8E5hVyj2ySEt5Yj6LMX1ipRUT3kJClpKwdDsxaHA94uwF0YEwsYAKqUj/9nODonxT3ezhrD01/vaRUatVKZ419LqDnHNFV+ZYQqpeb3J4R6gvlTxl7TRHldacDDp015KBBdZuSRRTS/GLIC3WeG7Y7tW5QmJbDZvSXMXSmqKvCO4n+4mBEvPlt5pIdse6Ju8o1mZtuiGGmerjcheSWU/df1TlJs8U+F2VmaezIpK4EcgMTZ1u4WSYnWLMQOH0JM2Jf2zzOoOtRW/+7comMK+ssOq7Q6gzZquea5txxmosDA/MC0kajDVoLNVcIxfXN4kKVkJCivF208fXufxTQr5MBkMfewEI1hVv4UMslA9zpM+lU8FqF5wK8WXvkPz+pDJi20ArGB5WQw1btN6EdavpEWxhnN5lfW65B1nsZWqgQ8jZGuJUa+rl0fQQz1IkLUkYH2soppEkV1OOohcjLhgBwUXjnyO053bW8W61rukTFtQw6HWi1FgtvgDQZpLFQSstReN/n4lpNdCerulp69nUsMu6m/cKnU6Zk0rHgDAvcIQJhwc9kpc9gLvZJbZfgUjMMv8xZQCLizzleyAQ3dle6lvd3gMejQS4W9KD7Q/OP7iq7qDsze1xZ4DBKUFXpTQ5DuRLaYNsySrnTCtWHRXrif8NxKg8PzYIXbyrY3xmfIuoVEqSzs7ldptCbK4vHEd7cfmDaFgDWdi3Khze2vLooU4FJubgAwqZz8QWWlx136olaozEiL+ppvaldnWXA48yP2xmNrU/ax+rvuyRumqXGBDaX5A9y8bPZb15eXk0oE6enbQkQFUt8Kuw76gIWoB+Abw9d44bmnP5MDx+HNExatqGAW7dmNGXKX21AEJhaRVVrcbAyEgPEDs5kZO97GDpE9N888I8XC8/rQuWysVCaKKtFm6rmYiEnkTgNyaU7R5TC05ektQA6hrMQkPDYkJKnVASlXBz+IS6XqZ/KS+W0Nb4KBxrGPoY8xHZTQGA7c/9qXSlqmvF1Wpn5YtefPwVjnZVpJF4en5PSOaRmFzWxjcnzB2sGT3ZCUgqWJahZNSu0SMfTTW0AKpRU7zeyaayJGO88LI6uSqGGJF4YL7Ktlzvz12OO5XFq4HkBVMrTiGNgmpYLizOH1SyTFoDgLg4crKMRvi6zD0BR075zNhzBfJn3/0ylVOzv5au+sxVuhI+wqHbvq5LJIo6WcgvqvdTn8mHs3zZsnF8/65VVL+7/O0Ibu/HMUJqwaq39cI+kaUAP3cFqAn0nhv23A+5apNIhyD8gXU/JUSHBbTETu5B6cBOdCw4LBZa+MW4hi1gl2R4FCOi6O//spiCq+IWO2NSWbrZ1jm1qkcY0N3SZPiT0qSrl4XcxPa9w5CDZmKZrDgayKt9Uzp7ZKJwossbe1tQEseuW9rwpdb7xFeqf3ga1Ljs9/6Rwf6DV+pAj2J0Hu56dqGt/RhweFbokjLSL2m1trZt/XOeT3gIgPXmo3opEI37c+0ydWmze23LoyFLfdoVrosR8CrkC1rhY8Cv5uw5EGhq+vnfPyt0LpvJ1Nc4XLNS69woQnygY396dRPOBhB6IIbmtRAAL3MmsSCppnYLWoNzVWn0k+B63kQZ6G3ZoVDc1gBuheAfMaizgf4laxf9TbMVrXOtA3WAf0HEc/CgXZEnpdk5iZ7OiabG7ET6idEBsVF6BXVXSOnUeQU7s0XLo6SPMuz/VR7p+44mM4+5W1LDJ5MY8O1Qvoar935gK+t2zZaxozUpP6aUboAftzGVLyTLWsW56NS4vcaNyBaCmyB9bKC5Lu7pqNoL79J3FIYHLVcdeQfO1u8wQerjTS3TpbKeHXFJX0wwfW9br5LEUusXhWdg0pxE+IKkZ+I2ziJarkUeQ1EWhM1WKOlZqZZ9C32XzlF4lj/mDAET/G/28uHRE6pDrKCxetmekOGMZrapIeDFG7dtjuRtzU31BuUAhfyE6O2Xqpd9FsPPOmJYyJ8SYlgYjC/jLnvQzYGjaV+4l6y3ooYoPKeCyW+if6ZFaKC7h4mZgAUSZZenD7akUENOHsmVY8gTdkumtzmgZLdm+q07NUjDJAA/g3Rz8utd7nSO3jvb95+WQk1bKo1HkTZzleoXdNNJeeyYVgusRyv/wyFcttfQa7VWws7+kyZSZs0UUTpjZ0yVBMeQODHatoCf9fQnNkMq5rJtTO9wGk1pU85MeBTm38lLx1bnmPCMykTDGLks+0l4Ol1gCVCl3rfrYamTzHJNo/T+l0EfewCOyf9K+Y9KtDSeOMnsjjHKMyJ2CbongCh4qtkv0mrmnjJXHbH6pT1Qe61ww24+UKDxazf2rDAuhSYNWBVtNAprzXOUfCSvxmLR4YBAjbfZOXaJBtmQX/1M4JJ4UbRNdIodNm5Q/S/NbqVPBNGjQ5JFk4jwiRnjzDUY7qwB+gZmv4oeDKf6U72Fa8/7kN71tjjxK2yEcJgaP4n22oPgsErIP5r9jSysRJv4JyV9G0Sr+ckZ/1zqhvm6CzVt4l2wL0FAVqudryBrSl57BgKyhuuE45p8RJtUX8fkYE5aLeouysgxopLXnudZ2yjtwFJo5CLbRFolup8cwlzuQATOYrTWBVgLrN41KukHQgXZMMab6A8It3Mhv1SdK9T9cMG4RmU1qbxsN9sCVkHR+D6qgcJWMPVZRZiqqZGdIvV2R7aM7vBWBBM47Xb26BDunx3wf1VXoIgIIl76Lo5Ns3waOtaSVuIjOFrNiu9Q7if+KRnPoF9wiquDlITgkhO9msP1GXZOkA/WYFZqGt3fOtzFnDxhKNsSYqsWp8bZMhuTtuFR8C7oj2QVl8LexITK1cZM2eWTuNIWEYF8F8KZNWS87nlgQMaUAzpPZuXlGO1FR7oku6Sj/+hS9XKDKRirVRlev5lL+V3c8I1UTjmB0W58hlIAVE3skLhwUI0qXPjxs3Ml+4o+JdNfhzQ/yGidmv//T/9Kg1R5delF2+hbvFY/62g17ywdlW1RVJgkIhHyGRm8kyoRVAQU1hyN6NlEpbf7sZOEpqNDYabne5mXkbScG4tivPPi5+2qPBGv6y1v0lIzknrjcjyiXgun9ES3fRNVFyGGnleqDYbkBK1cEnmTy2qWVGoS/ngV2grR9NhYzkXRbJ8qc4+o9hMj1aK+Cx1LUvRHxLzMnASzd6CNr4VbwRLYHiD2sFHk77bXek7fm5N71zSY4PqVNYRqdFXSIpwf2fcN4ZftL5pLAIM7RX5L2Am4bpasgTEnPCk/iVVziJjTbyE35DLv5+bb3/61/zfiNxgXNCktCBkh+Xx/4uiQnidbTXtEJecJk8MfnXeLfpgNf6V+PtEIH3zT9aHgth7E9Db5eLKDAnQceHENBxW2Izg26y1P906o6FESlqRsgGTnp3AkwvfTu+EI+EftTQ6OQctNrY0ZS786z9qo6Qtsn+J/Gyf7F5HFlyH6dEvmS0rJjtgE8g8eid5uuR9rHWh9lL7ibvwEcTpnbo+uxedrqCL7aEDhC8IH9azZP4x4mkpduqLs8RWUxepU6PNHgr0ziVhOKtwLw6VIqI4bLmQVbhuyDtxoFnozMovYzLbeFqq/dTf9i
Variant 3
DifficultyLevel
569
Question
Worked Solution
|
|
48 × ? |
= 36 |
? |
= 4836 |
? |
= 43 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 48$\ \times$ ? | = 36 |
| ? | = $\dfrac{36}{48}$ |
| ? | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+WzmEv21RH55BVbxYKYrZRoZG7NriGefKAf1EzqGky48bgCQr29j5qHbcolFFk5ezqIcKiKJJH85soGgLTgGE1TjhLG5pxAN8NWCuFdRgngo1MqJX8svo4V3p03fu8s1Fonz7VgYG2B2NxuPe6NCncqsWmGMBPpUUNdIN5j4UqHq38cFMr+eYg5hhZGHaFIpFPQPF2CIfD5n+Zn0tkOjLz6oX9daTxoHS6XHyIgt3UB3Iu/k+CN4FKyIpIkkG2T9qCf3FOQiiSsqnqfwvQ+bmHus2H2GW81NWmyGHeizeuTl284gy5C9iOCbkmztqx9BmmXJmedF9wcHy7tanyQlAyYP4onFEALvD2qSKQ3Xct/14FVXRxQKmoQ0xX1ErN/WHKxJhUuvRLO/xjIvhBi35SqHNDg2ynJ6dwv49w5PiXyOUO654O77bFTxDpntmL6hQVrWPdGpAzMzyVv9TWblvfZG99x+bimRxp2ez0a+YF2qupwJgIRY4acwIKSkRddP8sa2xL1EFyhwMFi5IsNNWEa/zSsdjSff6hHwNo4StYU1MEW7I2RjAixC594J0BKEDtC29z2oHS5LNCwUKTg2S+sB3mQmF1+Ray9nVNLpFtQjYu6qa0XFloAsCoCGgL2G7JNGCx0r825+TkHmRD6v323g+QJNdEeza+DHtrxEyiL2Hbwchy39kD6to4FHuuJddP96JBuDTz6Bpl9xYEOHEKN7M7lLPeq3ypBc8ELQZAeoX7QSsfrmucdK8ktSbnBkZ2eUt/ga0FKACOt8IMc+d9KQ3ImoRRFsuRCfxldZ7oz6XHR/Rvr6WtabVVqUzNlhVpsn6leXSMfzCGyiIhtMx5ufL/bf46eCzzumJ/5jOKYJiJp/0mwilprI4nHx4XFHoIpLUBI73KmUq6vSrhOGR58si3miQoj9NewCrIWsXXuNAd/ogR7o7giiqJqndnn3FwOqM145c7H1a19clzWlAMwGI4Ig7vHns+wAgI2oKCiyrlz5FCgAOk1agrY4opfh5OisG+QSQb19dnwwDiUNJEGZRiW4eaDD08uQqudFrLZiYh4XSn+HucRSVL5ZyN3yBiQSAIdpBBAgjJ75pd9R8R7/aqHKhGauIRlRway6G7BMaE/uAxrnQIT74sshD+4iBgTlwnnK4rksLjYXf4apJ/0GdAE80LycJkZhf8J5y+SLQ/LJUTeg0MV4T1AnnpUSrBlXuw6576aBfTKqulMBvW4obVMOnJD2kdOGnGJfU2xa3akyXtNS2sopd56WirwJzRi1Ea+aP/cuf1RZNRStbuBH4lUEqOA1VaVUqVK205dUzOqVNufPsq/DrfdiHNrdOVNoEmMZnYvv9bemohsQRkhx1Pr7SM7HETZlUywsCaj3qcNWzAGGt6+6htGDOQYQpKKqx+BW4Adx4paLajcGY+g/fh6F02EI4nhREqarq6WcSsZF1Oa5hhTzjP1qBqnzUV18/Z8ZfXwohGh/CsugRVEU/uhBaGO3fzN9wPIMvYKpJrEBNwL9OaR3wTgQrBXqRjlPWcckDL5RCkT32QgQXV9qKFFdNvbbtbxQmHuXAKVkTQXJ2b4hKJ9dZ0GmiZEbHRjOCdmVVPbEdTPD/e+TyPSxBIFIdHm2XEWCEK8X4PrFnNn8WJpyAsqbGUW9h6npWgr5vMYGnRrjbSj5PtSNxDirXjKGJ7wNF/7XsHWszjTnDPmnK8xM+gka2g8aT9fGBMeVUAVl+gYua/1uNlwy63Ot09Sb0SqFe2hxjLt/Ir/oLzydbEvTJ4dH+SM1SmRFfd94AI5Oboi4EKSPdidj8LXm+4LLZyaw1bTklr3sdX1y3bYCF/Q1kMTS7BqcWZQqm7tmHCgwygmLDs1NmFMZWo8jC4fln5ika97mPJf/tXeTkIvVzwNUcYvhkbQI4kPquDkkHWkgHUQ/9W+DasxOGt9rU4F+ZRv4wCWXyESwie8De1Q2cN+QJoZtoTMgAM8AOtQ8LMJPdQF1u6eQG6M1/f8Tl3GZxbVlnrS/mbC8jk4uqoqldtMDKVfkSN9QXVzBa5PGXJWYL8fYIPJ6kRawfou8kAdU7tg/9BovKpyDspB+9k6ni+TmVLMooH3sZ29Pk82dYr4rfLA3g1EPQV7SnxzXQZsEoc38QFvacPAdcz7IySFQQl+k53DHsoxfAaSWUNcYrQXoXHc3ELBBLgnkStBjzK/+XrwWdcmPyZ/eSOP68QRbqtjMiG+y4ezqzwj+pqRrEslaamv7jV+TrjjdOdyNHpWvQjBivkxt4BdUH7olA0eFBO9pBXS5WRCUHD0rSPhgb2MGvfH1VRc+mhOSksBvcrM6OStgzAoOmLh+XQX4NXBiGhOTVM+T4UdGnyEEL1ptzTm1PP+1L02Z+GvjTJsrxhGHElJ8JAURShdRwLIj4m8uiVC/GKZjIIzGfohN+Ayn/TDUTn5IpK2MVO1koNh0+OFqQKjzuyb9Vi0RxmvVqB5UZmoMc0U/ee6a/U7J1Vssg+X+khOspmH2l08hg2P9ZJN0r6PNjd0K8tKzTrK027b/6KkjIZumgLnZu8/LGfCmXtkz4xeTDPkSfULSBLs9oZYeDskpj+sBkgdwShoLo9ieFAcu73rMQaFP4z0LN/D66CDs5CKpBrD2/0hC2Lg43PPsI8Dl/XFbeqYX3vfhBEHUzUGfmUVfXlOKNCa31csdcEum1S2ugribkBrd7eHXT1Ue7jqPPGFwQo1i1Mq0NkZSFyf+1lcTVfJ7mTMZfLJ44Wmc0mCriVAfwFpFGhL2um6dG4MZS5wDFHoz+hS5Xbo18f4A6HaPOWDtouD6CMWXWX4Rwzy353W7tkSkPawkMxOXdChA4cYqPrwAs560Xio36X9r968jQcF6HWCArGJv9mR+oYUdqxW8Vq48wQZQR765L0CLO0HzvMlEZ0iGuVZt5zkWQ4eTyEfZuOqclDfYj54i8OdoKoXzFBV2oQdz3v0zsywM8hnZ6UlqUymT02Oj69qrrI+yBIAK6CgoWDF7wFn8TsgVjKYvofKDBQOLU6cjaZIZIiyt98nM/j+qTF3t2YiAHpBmVWd4GSeNlfzxKaz12xg6cuNC5VucNpUYhj5ZTddEWU891LXrt0PbUU8MjrA2FGFIKJPW3USMvcxar+TiwncNoWt8W+sArTE+XJnwW/X0MCHPm4z8YV1DWXK9Q4wOUVNB5NYD246d9xIh1iqN0a2DRIiZ7PNZfJt61/PVyM9M0eTQxMAf3lTSg6os77qQsitFrGCTMMya8GvCNlaHpdjRZdiHRfqZKuT6zaVloI3OGgfUApbte6ILlxdn03BbuxGIiqe9j7qTDzJSwOrD8QFHzLpbevBHI2LI8eJRh4oey+8GhRnl+tQ2QXVkI1GkbkeqNUCF6aILcu0Z9VxrnY+JRosHLohTnIuWDI3s5lksbYntCboQ5cVYSLVcEm2qZ6VNn+Qxe4ir7Idvu5PlwR7Uy9kD+HjQTFpZDnuJW4yWLKs1900ov/3kbHjW+bTi4WgKxqCOx8VfUVObSqVZfC4BU9g+V9AFCdqo/U6lb/ytKk8hzwAxefSCMXMy2zmaEvILZKfMfwZcgRJb5t2PAuDG23qjYrJUTR84gc6fn8BhOEd76TUk84Qf0ZiX+RsyHYS9eGTNJbMw8UCzBIL0Wf7p8tL8NWODLiOQnR5LJ5btM7pOKAhMoortKVYXLEHr1fcbPdYHjNLc8vvoaEFDHBXZ7ULuLn0FW8gV1HKd2NsfZoWwLQTACO0SVp/m4OInmxgvkBTeHkPzlzP58ZygAO9U4muaGZIwMWy29j2oVNamPOusouUgKY+9b8g5pU5W4fJFwTyLeu/siWNrlrfObi8W3DxILfQuBBsZo3ph6yndB88hkl6L+dexmaEEcTVJAP5DqF7RHlmmEKxMXjVRUHnCj9hRqG2nXjOSVaxX5kBpTqEgqlHlONfXziTn7qVdNmkr5hLbGdLh6sHtnVhl7rlPB/Mhc0CLzwP2Hm+LLRi8OnooCECMhPE0mkiD4ye+m+m15Zf7hEHp1R0ExowELMXVK2sCWSBBCVdsFiHEZ7dxHCnpRNwI7/qqJ7k2qslUoDnmtKvnop0vJqR+IfyJg0NFQ9zY+gqssBpyjj2Ima4lD/LOZUzOyCYFrhkWG/esjhRsemkEYtGbGs4g8MM3gLJk98hEUN+F+8O1wHGssvsXpOxc0Di3B6Qumn9Tc1LAWdkcjl+DSrrO1HEz1h7T33lZap9UXjVAtLuwkrbmsOwX31pR3fl9VkqWPCrS4nJDVKJqo1e7wFfYPwa0miqqkHJaRXxxDXko6rTgCd67bkW/kAvg2yhKEyDOtzaMdF12/eCSsSl6EkvuCiJgHMNf+0eKG3DD+CB9ucpVC0CsHx2DG1NmTZjgj6cq6cuq8qTdvEHmY5VaQjynalnH6mylfauv0MywgQ0wOMz2z7wm1f1ClO2XBOIYV9wfbX18xgYq2iBFZyvsgB5e9jUQ6DSEd8gr/FzthMrUCCgQXIZnDB7bmGOYi1KhaiIMIugCdQGYapRjS00NjNHuchnnlvwjOhpaown2IIMPgRXCzznBZCs94aa7Nbx3RE/doZb1lB+C1UEAG0qiQh9ZiES++btqu8ZrhSZX8vP8sVMjsMAcWWQgjq63l8YmHGeQbBnXYS2cGumua9WdEXJ1fJc2cW493MUVMtUkwQXw6CNGzaLGBb/zXMVJzgJGEXmG0752hP89QG1oAqW9YqaUUJI9wGOB5ixuRr9xTZP3gfSmRflXcWvb+iM9CdeV8CAwuvwbx/5Bn42lhxULagClXwmB+deqBBP7Vp3zj4jIbVRj1C4XH7JkYm+VOATgzQ4MiXuWZXgAQaz6idAOUfK7htTwyLJJZkcuAMeLdc8zNR+I6FYc96PlTag19uT6bla+mQ3PcUUWWwChllE9Ru/YJV+t8qctYGTwW8LcjdKkU76iqUeiC2hxS12GmiEbTvk20Q1CqkaKRdfLwPpCKHxMrXjkouvE8jipl4KYGAsFS5TbLNuxZ+SizUGnwgqsdouiIQGc374PeVcgfnuCgWjtitYAB0PBGxLtEIpfYK5ETGKEFW4pQd1FU43rEJnGFt0k0fOcFGAhDsQuTblJh3gQWwJOU6AFX0NZT5YmQz+fLWzImeuDjTapTyJ/s4aaoxnX+aeVMEY6eupUYhhsOtT8vfNjP45aNRHHrE+2JML5bBQuupk5+IyG7zm1qB+wnui2FA0+ua5eP6kWOWtoZR17Z7CDcn8aFwlAbhVpVWcdBfYnWcmtUkjkxiWLKwkMfc1DQetXeNEs7q76mx4QrEZ5C/9dSpV6mygXodo6hRjrnDVQJDk4TS51CgKzHOmW83K6KSRhmx2kwXpO1rEVe82BRaIjy1jzX5p50TCals0UQFQF0qVLdrh4CNfKhWpc0uNDtGP8qA650b5QAVgHd+XgBeohRksnYKMZ3bgurA2R+xoaaof7CpuUuC9dewo6VAP0nnnDHZ8GMAei5X+rkneUMPf9tSLICgXmD5a8cxYoIS/0Glfsx4lRkm8EbQTyGmZDBXYPGpZVlgQRTRk1t2a8+IfF+6TfT/4Jc0wpPDpAo0vtNk+RqO62zYHFSqY1zi8juhYcs46TNZt52Dua/sR5R52R5nYEzb+uzUwjQ2Vfi8CKpTjYJNcC4HQah9n4lBUO5MoXYZqRdK9qUcjHdahOqWc9K5Bbcswo7XcOeM3jLrGiITuT78pKVy4VSRGeD7apWmfDg+T86d72bvREiCCWx7L/PL94OFAGePUe4ah09aYbnbf2GxonWvCa+hVNWFHRXabvI+7+H2wRcf6XT7Xw33aN5jb1Fln78wCJfapLhV5BhR/jx/MdIls8OqmcjkDAKlL+9olo34pZ56Amo6Rp3SdpbwDvKGeW59l5yYM1puB/ZXRG6dMGY98F1VT9UE8jW6R9jzNZyzH8q23H+O95N7MAnUVW4zx42jglYBhPnQAzKO6Gw2fFiah2HXZ8C29wxxo/YzL4zIFFFZo3DQuVjF1CRhQsv1OPslTrvfoEJukrXoxnM4toGSI8ivZqIVMjRkG4WZkQPFss4oEZYY9bUabkVP1jVJMBJKQqEZBz/v9o3zrSQgXheUZcBV6NMr9FbAX70VbuMnpyopaLTwkKCGmpWPwt58+0o1IMgbSkUskDIliquIkHqtlXp4qCyHcPJ8IFe74LTcPLMYXqf++pi08ZkXGf/NjXyPXnOwah2k47nipgrOH7AW01/mUnZzffkAPgtX8C83io0Ck+HK9Uhn6KuOlzLRORJgtX1Kw0uyqwu59xpMNP3JJ+CqiguUQUTTUX72thYwlZCythkdwfkOBe+a5UyXYSjXSeK6P0h8zeHTP2jrMWWYdYyY0KoLVsKFHoqjRHS4ANofcsRA8eoq1vJv4B1vdg4ccU26+PNll4kGaCzDnlXRNuoaD+SEpalraNu5wFL0oCWavv2bAOX+Ggf4k91YyLp0Z8EPY/RRsxUw795+lmouFdx5wy6dLQCrtUIpuk7r0N/nMyWz8jdyiZNtQklMBX+tV5TngVZVx+1noTJnonRWR2XX0ZEvWeO+2tCNR60VCD/C3nIPW7uXD31qqrA3O1seoJlnA5fjPwKS9sPsck5qjJuykV7IxozwGCJZ1XLD+I7e8zrNbHmgeQsBXb1GBFyugwUj8TJNFsIRUvWkn6U17lj6U5RVOjy8OSHUdr4QUQxMfQoRMAMsNbOeRuuOcUJn8/oJsx6XKz0rDreuK6sdCgvbRbMw/73nbsC3mqmp+tIppf9Xlvai5d+wpZa2tJUcvUXsz2fMoUIcO1iAPR7Jv/yAywuajS7s8bZTNhVW/NHnaE6UtPVbXSnnhFRaM5wcJ4IJbl+cGaiUqTCIXTiXH0ncm3hfYA0bl4DRfadaOQqXLJ+OxsAREfsRY+dqhAAexQsnfXGEB9ngkZxQi2Bcx5RP6B3zfdIaTevfp/Vkh3Bm/5sp3cImPmqJkzC7WQeWXSXU9E2nRKA52iHnOXt7dFLjY+FIH3cBxJcX76isFZnbyVnkmLb0EW2Ldr7p5O9xpuzrfc9/1Vg+TkH0DSsKRMgXUsIccRHacRdVW8Y/RFy4ImCwf18nSYN1b9UHSBAQbnutPXbSQPIEQiGZRguSZF3all9ui6x/Byg5E7wXhCn5HlOXy3+PHRWtKz1gVePd7cPX69zdGum3bVC0Qo6qMK+EAwCTiDrE1Lc3fpX0KRKhmbxz596FQR0p62HDbbcB7vF1+nXPv8CJYJ4NVWA+a0ocYIh8M1X5AMRW7semxU/Mxu4w0v/9GcwcgweR2qpAswDkLKJW/KJuHi+rUcGMf1AhMJNcwHLHQeiu3uYT2TrmdAwzIII+4bwggIvnFPrHEUcLIT0/hbO9QOQcmiTdIBWQwYkifrGxandkLtlqjZZSY/pu/sWXoVtbHWef6R0Z80zMt2i55JYDaZki7/YWrz02UsZbsnFR890OqsLfUQs8AoIztCbjUGl0f/GxhkpAmTpqfA5GLHpfnI7eUnO7hSm1dFUWT6jSXZD665odNuIDBRrqOyBih/aE14gNpfAlSWap345gj4ORBEo5ioP9uRJ/wzFtOW19wMj9TpWCwBn9qSdjrjD3Ha7vaouKKuV8DYeteBJtTnqBtU4bp36naqq4b/9F6CF8xfUDWorDiQcD0mMoRC1DDje5lRuNG+E398to0XP6mdhzcmjjK7clKaYG6mZuINupXCxd+mHNAomM7CeMCglJdJZzZVusvtqcUGYLnOsIp+ORgeJQQWtGct4e6m+9hc3jpeJg8KVhNTFZRQNmHKEiWwB4MydtPT59PtChGfpAKYM4BebWIJR9yewibbcveiSsKBEUFRQY01VjZzTsVYdEcB/LVDw9lUiFvBrXpXK/+7abKK1FRMnHwjH/o0VO+tKKV4236OO9TogdrNtqbZG+kPb2slq7RhO1kLtLsqaWgDd8DU8Zd4wEeSdNvJYP2CpcupUuB1S0/yIBVqYwGIFaWcIjqk4EAraBLPD9xg7bkJT90uXPmoMyhsZsDXsJY5dYSJLqiCmjNYqjMLsNID3sm2gcvsneB1WhoVCSHOcjrH0/tDz6xs3ei9qFx6kkZoHDYxzA8uAAlVkfnxRCXLLUGKVvpcOsq+Zgb6WwBf98GAOJoKQ8oTL4uwpk4XaLksgKGuMm6aJx3+6LgSGGi9mF7GKTXrvdtmGXDh18cJmRB8RjYJb6D8PDUw38YMMY4ipai/4Grjg2REll7OJu2NVq1rWAU5m8polk2PqQqTKHtvO0D8yN1hfr+nMxV/ebS9rJZntoy8JZTkJuxI38EI3vs55DzJGx79852/BufjqdimgcU5GWVFXvXRxJZxqfaK8K7fmMv0zjewpAlAjyiylC3dnC3LURGrxfCUIqLqd5Qax+kXde89qm+TYwwaQsV+bxETsQ53dZ+L+kwsHNyZGnZL92ze9A+K/NPVIZQwUqKJ1ifAszXfBTiTVdeYn3YTe+9DHEXSbnXll8DAy7O1IkICmiJw7RfP1pAmyvgo0HwOcOm0FXeH+QQTd+I8WQJUFacnaAufZ5YE7T8o82404kLLVwdnLaEBM2qllga7voDLGL/XI+SzE7afGxBlUA9vfbKmD0jjiC/eiS5mpjWMrkUHuiVoAYhFRAZs2XwZ4dVoqvz/GSIZKdkeQz0xCkhyxL/QeKs8a7Ntj/DIy1HpAl2ecLZYsU+gZ0hgxySbOKNSo8ytRhPZCxQGjmL/zdvcKe29Hoe0YdsAz2B3M4YKBZHNkvE9QfQUM8LANqunt/YkMhHzBY/EHqVCVLVrAbc+K8U+nl5ZHVS8qIXWRQcceK015S4NJCVwrt8mA5+KULANtIM+UP5s/6rEJthHdsRaFJCHIshXKbXdMoy8g9HukN65HmT2g9/4oC6rVaKB0LB04uXdOEz30jJRqJe6OlpgQ57en2+lRJPXNw/iuLR0NXlRXJffYlbiQXdcAbsYq7HyixRydbUJDgovH7wvRbbPj9e+Ggx9J4K3iyceWaB4KLg+ARxjrbGJ3cgqBugtsMYRvch5f1kOQOTwKrG/1ei/mTGEFnokgiZtWyB2YKfCKfbK/7MimKC0UsmHMSTYpR2dtfU7M7AX9rjQbOmruZEywcN0MLQWRUC4j+j8+jT5W2C4dnMvg4wHBDJdK2s0XwU2DYEXSO+yrOrk69KjnCVPMgqhNtqnfnJ2Z9QX06OsTaIuYFrEfOL7Ngc3ktBC0I9ydS6K3pMbDxogb3v15chuGy8IRptZRcVbLSXC9tZeDkpyEN0CldZ7NUNjwGr39xpJFWH9CT9qUIrPzGP1uIAHZvQ1XrRO7PHNwNzEegKBJQbnYSl+jNBxGK/Mk5K2eVRPNfZ8r534ENtDZVgPQ4LJJMsChf3sz25en+ee9RKskHcQPYJpjuXgc/4Rfxe8Gsm5rEOId/WK5m4VtOU4+KbPZxvb78jhzpW7ljpT9rBvo1JwU47b5M/Kos88o2X4pKyGh+DUv2Nw4+jhN1GEPIBekJ41Hl7ln5Q1YwR7KYILAogiGs5RuMJOdFsqCcF9k4QQStmbbu8cXn94C/0YLhD1zMsIC+i03LGUUdgPCVhdQTXjw7DYgi+yjo2fjgVkp9FflbD6No+gDEf8AtnYB0EVkXL2BHE1i4X5uStv+RhMyBOluAhPwH1Deah51f/gs6A13IgNsUcrMKw29K5ifXtYOiXVEvEiNrakhFxHIOg2xjzR4WCyQu5Fg1r/YX6t930V41BoH0r2adLKgtk/a2hPZcdfXA2kdcoxUpPtKqUt7sHTMZ/bMR7Q1wqQ0aRaCBwAET6vNECDZ7yUOiADuqCtQGgJeJD6XSUZUCm99Dy/ttMcJnuXcHcPDLltmBZ4AceuWVJCZYz16s/ckjrl3aA6ocmkHGC1wPAAuOkHccUI7DdBW+h833IW2TlEuYZhPqtWo4KOqAVyD6ZBAMutBD23HvJtg8/+y9bdeZvNVIR42gD5WqImVub2PeiKIK4axkoeYydfK/rYneZZhe2FOLaDHGqUKg1+z9RXam3BhAgKeq8abJocUrIu2LgOt60k+wNQv6pV9x7nQ4Bd08ovak8bMUZ8RWQkQWsGgm8FYBVA6CUI9uN4Aqnr9wVLvTc/iQRgWKKrA14nnPuGINlRcHUEJrcypqIIvcRE2wAH2mH//HIArB5mTZJssBlIwtwUAvuPrM0Hg1DKlnRPrV0nOPdy3nfB0UMB/qsG5rwyKPRUp8pCo/hsUxLahbTF0X0hdA0LLqhUBmLWfmYiznYBVEuTuoQ4z5RH4CQrSo00fs+R5wAgI34sWKPS2+XdfBShARm0y5MTnzOsNe9Yq/06EnjcmiFSm+ZqiwPq5E1pspwR1mVfBwD9uxZS/YNiuwCtqo36xivr0/KQiDk9i5vv7ATwzp+sQSL8lVrLmD2kLlFr8LpB5o1GxcWJhBM+C7iwqdqeU1YvkcEKPowl/QQxRd13bXdsQ+DO1zzM5mztYDowa/l0zbeu+TF/HgggkGeEJQwXAJHqvXum6HhhPx1VL0tbqbazVCMgCghp0Gki0tVHJoodWhHr9PD4wpQ51HCkSqhza15SXwDBglgCDt/cvJrBbRcCDsa2fRFcU03oQ4S73+YylL0Cn96C2rsZiuZDHd/uVCdt8EOFBGLxjw4JdrgmOqUuIMnmR9rk0lpLIp3GI0pYCTelmtGInOotsjKM0jjoe5CxAila5TewhStgN6hHG8bCRlhQnpbQfXbBOYgQ8PzLsDLenXvOx3hN9+XhYxp1MDSH3oehvQxpsy2wOjFdAOYbecCXQfG1qfIeYWGZsqdWAykW8TAOdKc6rS7s6dz6Ft/lgJpjNV2PrioH28nPAVzFhJqH9ooyjLn1yDlXZqTv3OONFsFI+wyJRMHk4Z2MhfuNJr4BUHzM4MqFpzilO2pA9ZZNl8ZdK3sH65RC/QWNsQTIw/iKjdRFvQvwnFm03HzmHtCejE+hib5N0DpWBq+ceXt/qW+mTm1kHSxBkD8LkKTtXs9HvR4Gy2i69mA6RdW2rvGPEEF9XOwU8XnPXg2W7nKC6z9rXr+Frthxu4rCh44KGDaIxcIR2fsIaUlYznvEixsq+v+UXgUrmND7KzMM6N4cs1aUy1d5dpmVNyUUCWf7Vu18qVqGvr9SvEoYhV4Kzy0gqCoZJxrIpGwr7fc9mNGPoSX6ncOix8p16chxq8la5F0svDBotZha9GnuALH78il2CY9l7kzGgZx9p31Hf1Z6/fUja01BOWcnvcN4z5atMgZjz6gYYdPEsPi5K46MgBlLkSwogZW3nFIHErHgZsiccDyiUPDXSzIpVXIS2CokeOjbK5b4MhDHzxmauJrSsf6b7XjszaT5iDR57hXWr2J7OQpQoCxXxge8696nyZ3QVgjn4kPQ/v/ppNCc5jD2cKMgFuD1Alt85OgJdsSy3d9N7inTglu4frRCSP8cYIJhstnSInd8PY0/nNvPiYjOnS0Cthy9WhG7PT8e2rz8aoT+RXgTCXh0pL2QxAlTpSJLrhUtywI8/UulQy9+WE3UpYERBRfrH5U6Wv4wKeTG4LqtmNDtvdTXLh2D+eFWaiLN+4lwBRcx9rz2LMMr4oVxeQD61JZse5sf3YiqMAlDG/U2Jf+5gOdeL/hBuVaOrnzPi9sHqJIUnA3kJ2/RVoTAuU/6oLQCn1KCurOia4Uc6osHI49Jcuo75AqizrK6WmOItIqkRVlyuD6h/JPX/nWJo5erU6/AmVbuYbpAvfnMS2/7lRf1R0VCOBscDRgC8cDTQa8x04GW/BoAdQveSJrFsOqNdYiSm+URt5RgGBXU4WkBTFP5yDFQZmPBM7kujs5mUG0yRN+5QRa4xfmIoHBoPaLPVrOTL4dYSwG45R5LUXPPOwxgfutaF3xgJyJNRXn79nde/hEsoOsxzyc50LJSlTQvfd0eprqEcOifeoCnhPgnB1v6s7MnXdmusAPDS49wNUQFufSBz+5qdIRMsf1lxoAWTXnmRn2aEJHNfpDlUvVlnXIB1ep6sTklpjVNvkfBZ7I58RU1HQPPFgIwHamEhCqFNl0DQf7Qvbbhpv8MO34u0lobVJyp2VGddpN5EvgQ18iCza7Wa8oH88wkJYO4tCKVd0Hd6mAw3djoGdmgU0sXcjkwoprDCSA6g1WBaFFcjMKHG4dXSdOHb370N5g4cSLupepbvuloLKJgFIMWxMIxzkJhTGG6zQQVxstiEmP7985TgBL4+w6jzyka97oQjPiVRQLp7G/lPahdatuEErxDC0ukG9Z3m7VqCNnBhzFCAZyZL0QAr2UvFwDtOrFlOyD6yE7wH/rD6V7GNdQqZVPfEWYYcvn3cKatuQjdH21DDGsZhJ+8gqqyvWU7GW7hL3F5vooYvdD70QvLohzgIGI4TOST5uvxdj43S/sVKo+LK0VRMzTE9Ynqm1HbqyqWcNnmfSLPCiKAKBrC330tPVVYL/n/rwKif0EEUZOVv1SPzsUY7hrSTtaVj67+n1L9jOgybxIzhFhgtEFdCubVTzX71bPFS0DXuHgSgFsPjjhgRlGg2r6NBoDSomI/DEDrVtNVzf9T4AE0cvPWevGN90gOPoH3k3JPPuguacER95IQhihiMXZS9Ct2MBsFjkmvxWcKR8cAGKV9XozMtqCBIlX4jLlDZaf5/TgV5SD6x+aljw2r2//s3m/EhT5MgcdtdN4iOhfyEOzWxBj4l2A3IKdKTjzKfErVywS7CT42xhKoRo41xl1nkMvejBxyX2CxXksy3cDgE4sT8Gk8X/Nrazpw2PmGwEsxW1eVymH3poeLmO09EUvKNVnUJUvqgh2vISiUmiotDEXK+mlnWukE8AErKHxqfUgt0b3p8fnGrkTnhzmY2iXAMapu1HA6pOGLoSAL3eA7xoHcN/V3iYlDW02CTulGKMyBUbSIR7S0+vffBMm48M5fvMNXy8uDlYMGcXUV8ZGtzDgw2frBQMpIOzEQ+P1/6IC0yqnKfNjXceu4+jPaXubVrk0/dEDiVmXxAdoxByIktUAP+79wwJ4ZCU1NNUvmvEf6t2y9jEGa3ncstL3mmugG5B+9V3W5n6G40EuFMNbVgSsZAnUgrHC7QuSQiiegpAHPMrNrGgmqrBsSMOzs6DOUzh/TV9G4h0uadVwu6jqPZ60If835Ni5XcaLbkaTrj8kSmsWwWZS8oBykIcwqbedxsM93hyrkZIUa/0o/fEwVHJwUg0uwtn9HDcQKh+6X3FtMbv3ieyyi9LRc6ao7wtCxiUvvUsDlwjacxRMeJakYKPTqaXPKy4qRqXq93sbWSht5gV8/a11wZS9e4Ru/S8GgRHNPDgmyWgWMpg1ZgAjNWgGoNX7xHTbB2XDKuR6JEAB7rO9n+iq2WaV5w/sxlr79fYglqXlKxkwocJ2Z2410Ctoc2GUdYeDPVpgdFCdLfp+1n7shldDH7Dkk5pZiK6T4GLuW3QPSf42fiCGUzbCTY1pbEXOLSRAX/1AN1egd7SVag5X0G9LoAY3oCYWC4tk/aLgZVKM1v0Z0tFFPTc2IrIssSF5CiMfydttYEGGGSQBcuWftf6oVz1hVrR3ceID/3oBzDu+/ak9NjZzU5yYiC70GDohpXeLJ+2moyZEIb7pJ2Glxtynmnnptl+haSFd+EgvmFvJIpeYX+uZ6Oc1+QmEJMAyhZcfIFu7P6LuCWcoqUbdOkNbsCdQFCzYrQxqQMDM0AmzG/CmeUfh3OwyTuu9qqqB+R9BuNBqbryavOWugj4RJHDiViDm8zQUtxNezXGzB7dSQQaL3PgIICWYr29RXW8awN+4QUkcnupldSc8hXpBIu4eeOYChMNoSg1Pa5AMURGCvQlhVI9OpgIigLoQH/a8McxpyJWxyrcBLwnjG1AWRprjC3w0JxU85iMDB6GP6xEs1YwxmsFKT4GII2DPKoMr18jR9SlUx4yS4Zsm7fJbVR/gRUVpmcoSX4riqZATQFyssizUZ5Agi9W6/DG0FjFZQbXHf+1i5usjLatNb3xnpY+UNNJhGDk8qvVUnpU0U4drmMC/biAH3BCj1onyIv8DpdBdcYgDe/D
Variant 4
DifficultyLevel
571
Question
Worked Solution
|
|
27 × ? |
= 18 |
? |
= 2718 |
? |
= 32 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 27$\ \times$ ? | = 18 |
| ? | = $\dfrac{18}{27}$ |
| ? | = {{correctAnswer}} |
|
correctAnswer | |
Answers