Number, NAP_70008
Question
The area of a rectangle is 36 cm2 and the perimeter is 30 cm. What is the ratio of the width to the length?
Worked Solution
Possible dimensions if area = 36 cm2
36 × 1 = 36, Perimeter = (36 + 1) × 2 = 74
6 × 6 = 36, Perimeter = (6 + 6) × 2 = 24
4 × 9 = 36, Perimeter = (4 + 9) × 2 = 26
12 × 3 = 36, Perimeter = (12 + 3) × 2 = 30 (correct)
∴ Ratio of width : length
|
= 3 : 12 |
= {{{correctAnswer}}} |
U2FsdGVkX1/3KEDvfdKfekkDjTjn6XIv5S0lCxDWBjakdLvTOKCIKtQ2VyEeb8/3wrEKEvmNlknfBdLSyWxXIv+2G5tfGmHvr9DmlzOA/Fb4iEOWEawxCffbN7UcB8AOu020J7Neho/CYbhQqs2mq5APiuTay7wgq/suePBhdkRLFU30TjcV/jQoV174J4N3tAKN1CpyahrKt7gECnBQtstpJxEhqsXWk1LmaLmmbS8Vpdyysrb+HBDNeZjpMNFTVhURZvdm6nZFNOdQiQT3YIP5TRn5q4ysJGrDGCRynPKcRO+xvGIAZYCRbgBXE5DO44HD2fJ+HXf2fz5YOmeUkPshoyhtJ8pv2ROKz6W1dA193odg/yCMnYqa4LJ/K3C11dI8x6KjIToQ/eu24ebx//PQuhTE8/uTRXHZC5cLh3ew31GtRP0/WEmQSAXtbQ956hgu0jAXY+pLFnGMGQEqKHl5eBI/L6DWTyCprh5sZ5uTLX0HBos1WYMfLh5WZ/QAXagS9B6nD5FD5CfXhKAUQTN5bqAuPtLi/8KCbLv/B6ZzqsaWLl5y1hFFki9JqYukSXC/T8zwclzfvBlfw41HxmubTb9wfb0m2Jk/WpRCUM6oRcOUCnvKW/JoNIXJpxgAQu9Jz1bqPhupmAoWsFB0QfQIMlOS+clVolQilhs5dKBltFQNiBJyyWC5Jc4OtdMW/zCQAL484sQVRIJdoh0DOkVRVD+Xvhhd2UQJpx9KLAQ5buXpksiZSSZGg3htAmUH7qiCqfR5YJ+ZRkNzwKq8Dd5j1lqGa8xKS084BW4wLRO7t3JknbqnVMN7/KLhuq5eL6LGeflu+hG7zKxz5b3H5p+CoGMkV5aH+j1Jtj7hwoO0Oo2f3BDiLSePBcV4JRE94xCWPjxLcQ55v7pOHxvfLo2XUvW0MspVGs7f1bdNf2cPoO2Bm494puMIeJkph9R7MuWu+Z9CojLvsCkgnuJJZKaqk5wWDrJlQTv5spHRwGLb4RPxCsMNRqdxrGRJcQzz/fca4XtGdsQB7ozzo6edmoIOHF+ZbNX6SkSPcV55SMdOUZbfUBKv1czH95HJamlrteLurq7Ks5r0/g0JR0+LISZZ7vx4BGVuOwbr5wdlWOP/RfoQaZC+l3fVohowf+DsmvYlJMlJHNhnOMQs97tf5AfIZAx7pYw9ytlCjSoWRf5V/gqV0y+syvApRFoMhZF4Rj2TUpeSRLfse4E7eJHbUmF/EvK4uRvskUXm26P2eyLHYXohw8Ppu4NvfD/Oeia1VxjoKjEwkg1Yryj8CrDlhKz6pjBCwGtN9iDo+N42KIJuyXC47K5eoaEo/saVGoUVy2RYKsTu02Zdc1DWqC7dZ4lYsDx/J1HlrVzO2QraOnGXo5ODm5PC6uEQ018T+5qKA3sdn1wY1Dj7CtBDQ/s8rdI/QXqsteRTTup2E0DAL1WJXxt/agwmmoPNrfCVVhXCWEARcnhpu2vxv2+hGPT14xutIz8PH1ymge4nTRw9rab6t5MQtpXc6XZFV8Qqjl+1TLtMt/k7lrG1ngl5mbbuSYREXl/nY5P6Vue4jTIb7Ka/PfNe0GR4h3/DjloVYkla8BPO+nWkhNOsxu/9xUwga3ufay4PY8W7ICQaYTp9EMKamoIoaAnnTpe6mdX0JP/oqU5SQIM+SujHZYHgESAC2YENoE8cKqCMWslPsPOI7lpgutemiEMaWOuVi8ITb9oWDYhcVgQwCypph9XegS++Snv0hhEWnapcW5CPYydaOC53xu2ru9Bg+AmJCUZaJ9k2cmGCoVatXWTxh3rbMjx9q9B98udn/1imd8gsuosY236umGlyLT2b2EnfEIkVSa1pwGJp3C5+rBC62IQUtAMrG5Fvcx+urtwsIzVzzptpcO2Y42am6o8kLY7I1BFFz3zcVbiwRs9kBZPWXE4BQ4wG5IuME4/lr87cQWWwI2nFQFuMFCAZVk1LfD2Hlx+2F9mPJfykKcrP51iRqZnriRoPuSFgXCoAWpb5T/qMIrU5XlZD4Kgt26My2Gj81Oab7IlrR/Y1lwRGUjQmGJ97e3eq8X3a2pI7potuTv8NIgvDywAf7U+DDRWyA/fb9y0PQAHD6zcue7I7JbGcAicG2YumRYiwXzbj8bU+MhKkZ/VcR6D2NoMNepBcG/zgRFyfLW+D6ZCu+QjeqNqSEiVZHVCCjEfudZABe1MH0rYQHgAZ3NE7SsYZqt/de2+pjCq05iJ96NgVaSgFezR7uu/CJ88W/qcCQX6uKM/5A7cPXXHGLKdTHBUwUU/tccSFZLhvyIXdZubYu7vNgJFEmDcEWOj9Wu76Jnj9tw1eEkiwi9nc8ivBTCiQBQqVe0trGpMh/rNE/PWswTadl+hTKi4OK0aLQSF4HWHsTvYURquubvndOlJg9vxYdxEfoMlYzPnwGGUPO9pStP/yMzIzav+PeAHusao74yDzFNZddSHpu+HnUix+7eNsE0hhj4nxOTk09eDQEgCOEvioD8DG5IAj2r6n7nK1r4tk1KizT/nhVCLpGf8kLx0JvO0Rm9WbU/xZTGgyHCYcGs2FTiPPn5RauxPd8iRXZFwaDsvmB0xu1jfp1CZn15/P9gaaYtXmA7/MrAR0wdhFB3uyqazTDsVLJhfAlCW7YctzyhxqKp2WC1YYkP9s6Ckyde/A9eWrdKreweWRBjRCkMBdb7A3KSIM8uEto2fGEkSsZa74q5b+ZMs7LXBSLaO1FX0imex8AtQObrCqIpXlT/q4nQDnQSaDTlqF4Xkcchk/CJjhn0tjHlc2DIky/V1Eoy+YXjzKrnyfMTKKHvMVJ5qGpdzMmE+sfAOTYFLlI/as3+v0QDc0mpz+/G8AFLpdo+qIUBXmmh5YQxUJXWfqoehj1rFXpNOdtMYow/RnnXab8pBcdIQwVWexXmhsF/jnXxUBCYD3fhGCQTZn+C1KysoKzcS7ohDH2B6Tk1NWBMLCVmkAun2Ak8XhplYC+ig2Pj9xNr+uqPGmG3XCRlcefaSnaTKI2lURozfQrrqwE252hBacHvwzPpXbli5LEWx6iH3/HlLan5hubqpQUWsxez33Gaq/20z3YXESUJ4Ffgh3jmUGXVtIx9m49QhhSFPCLKo7V01HTNc+meYHxwCXiUDred3WzJ4mSMQXiJVFtPyYYIATz5DLtncrGI6VBaLeW0BnLIBtru4WnqjO6b5HqvKMbOMf5881X9ZgmESnKCVbLbPa9xTAIu5dg0Dv1U6RNcRKf02gbPP8q+uY+o+2BtftjCNT5p+wVrPgLmUCZ1LG+/jX+lcPF6nt81vMuVtez0vQhDL56xqzJRtKHsvOwpJLq0mkD2MGYYQFvQnJQSppPYMUDU1Cb1LjubfoeDtLm5vAt9kva9IlscOunoRC7DFgRgFxwhhcoP6UGAA5/xZRx8QuJVYLBugTexNbLbMzVVLyrzUgRNUWLMjLG8CeBGb5K2uKDVw67wFrxpnkbiHXnqhAWqlx2VskAo64HVzJCnrsqy65d4TLWkh1OGzQxxxHPd6aI2RBRsgDir09w1pR0qpQy7gaQJ3f8FXnQBKk2ZSDB94bxHzWN89hOZXwBu0IDC1uTMdt6WD/cxWliD0XjfIXDI3ShcaogybE90pgBArCErL78ZbYC3NtBTL3cSn8zK0CP2DcfFVqeiWulmD44UwdGk49hmBHdZc0Ehoku4ZHDwvGgQeh/rMgEX//wwIiYt4fPqf7KgyGi6S6revDFdF3M5e2ykPoRw59VUoAquHUdLqmlPAugC5Ma1M6/UXAKa/H/lMEy03tBy7IUKXbkh4cvpfAIw/FB9ADw9LcBdWi/AK2AioKtIMqAZDzxYSyIxq0VvgSjF6bSGrd3XJb5ZKNygFUIE1OOz+GPllD9aUXwNC23+Sf8Yw3c2MH0Zb708LAVbcK61CvcgWgsm3U2iG2nOlAhDx9pRrms3FmrmRnS2RFl0yheGBgZLK3issldCMGsEdPV8QeSAy8CRNftfWH9ZrjgDkygn9y2DC/qkyf5U3y3otyk036J0koc6/CO+Rum01KM+4hMJfaIVO9pJoPAGSYoIint+qALeiwuYbh5oRl7PULi+Wo4HViHwCgGRabhwa9yt/OQr59RGgQKfqIRLnE2WChoKVix1c687eJTzaDAihiJHrPignE05raFR2pbcMUETt1pbMGf8MKLZ9yh7pizo3kVC/BZLxc49nFoOUXCS1BwsykYbhth6slw9Ksk0o96T3QJzc3X4WRefzPqdf9hx7+Trj7kvS4Wl8gMBMYGAEpnkd2/01if8Nc/9234wfYHtZkueqyORtlHfEteRPnCUV9FBHiEnN+iPZ597uZ7LxBb0hcIELZVx11GFuH3KxdTh3YAMycDOJtRi5NoUtF0jCJ6F7CW4xPSRXQdf+TH2j9LODKjB8TSr1eqR+fxS9u3YBH/43F7IV2ewg37ygn7CMbckqa6XX2pdpyetDNSMCkH5CTJV8mludvrQnWi1raiVZynDueSbOwyJLTajGeXa/PAZiowKKMfvu9UA0GmnZIB9qoqxe9VzeEt7H80GffW7R5AJrYo3hg6TPW3ITm5jZGAs6fNTpd6qm4xDBtF/tI0FAOjAEQAFMvq2J7+zSEDjFbroOSxtnKj9uyTuO52Km/HnUFEod59DPvJpDXJ80GOy31p0YDruoZtZhoMup01xt3YTSD2gRHJSLv0ZO41lrDqJYUjNoSSHsMJdGH62FqBj+7TqMkuJG1FsZM+/xbB2siPCTOpwkeYiXglTh/G5X9dcWlktFY/9Ad5NU0G3jY6UnSHSdeOkNmZ+vPKbGOpkemu00OTPaXvs6mnAn8Ychd/xTiFEG+B+GdFBzzhVtIuce97DYs8/VnZhQMuo6Kq1CuNupyn2Fiu4dNFYTU2KE+ZJ5QHGT23DiZcW8r4ieQqZWdh8yYwBOWjo0RWpzJ99NKnTXgfwkiVqfe7VVEF7/nnA+yPU470HKqNSmHwNRi1gsE3WyydW4bHF6xOeUJ6o0PxqjiJ1GCS4ITtvktif/ibn7oxOqmcM6R7zLTJ7RwqE6m9RVa9HI7f+PlZLnvfSn9H4soOf0qs9w+NrGNWhGq0dYvvgMlTjLMDGYsaOrnXATX86Xst7ZkCipZPAly4gIGd2SKp/HAFPe3F8NuOGBQRYLz4q5IPr8fB/771t53pCcthprEXya5oSrsrwzqTOi/YHiyecT7DEFT53Vy9BEvUMhGKtYRFehVMVXYgM32PHyjIJr6SkeidnQisHLb+wX9J47hLDzLDFhbAunzINvFrqQPkfcxC+K0ye72N9utfHgwfW4wEZwWz5f2yc6gXPUlmRQoz5X6Ue/V827FuF7KkG29Qw8ANthNV9gPaE3QN3GuqGTgJUGDYQIbSy4T9BWj7NeEzc11tXEHlhLotCWMUrqBfIG+RYVnC5QVWg8tLIuFRb9yxdzo4Z97fiMJNGUn8v1bRFR2J/CEJlzEGV9vy7R2DPfVjJzbEQ1NLYWVF79qi0X+D/rHq08+W82Lk4pjdWonq9K3F7glz9Ce2yr3s6EIcx9hnkbEEd+C5SQ6mIkS3ths8qzAPXeVqu2+So27CpLiKgybwUKgACuvyPj5IaJisgfIX+bnkx7zyrmBD+DaWlIW3twjEy8VymIJM2SlxFS8nUJORxbvf4ROqkzi5s07n13HHCY4ODabGuNPXSLA6vRPPrafz1amhJuxu7BjLbjDVNOfby60QpQBcZVSNWXjo4EXRQtonYURmRj9ph67WSbnDTCVW59U/esMuilEZjLknggB4x9LqM4XCIvPPwQy6ywAjRh6jU3ugu8lRYhKlT6qljO02HGWHMJCfO51giNjfYNy7FG9bixuYNrYbZt3Hm3BrAW9APOTvNvC4dfXp7RFOImJJmw1p1gA3fNbGm64FO/hpa1tFuOYpkATohnkqyCTWiEHFXuFRbluqMFGYWv2fFsEFsclXT+ohJ1aR5lIxIA8v1Q8ehIsZXNM/79FpdDX9Irje1hXU7rjMBfLNCdWx66LuvjCx9IeJbocLzzPO4Ly0l4RW1Ori/GArtO0zPX6/RCFcjSDzWCg1nAjAF6PuzLXfKgXesKO76+zERGDfMx6aLzGtixTIUyVV/d6BbA9WSrhg+BYYdO7lfjrIy8fwkixcGmXIi1IWMjRHvOya2rHgDuNWa3tWg2VB3tYVWVnRMsxyAv8eJgdqZT2y+uAg8CRgzkEU25Q4pMtMkaInasvvCtEQLro/MVJJR6yNyKRuW37mMMiXujoFc4V6zX+Y+NmMx0O5q+CAG95kVSQKp+LsfNYNW/Ih0WAY15GfcWqxkk4Tc3XNZPD+O6p/C2wzMO9yWXJCW4L0MDQEqKYqQFAq/TFiSc4RWEToLrrLE34hhrI8rzfAkY1ahfi8eoyBNB2a8l0XIBV568FamX3s5Po49dkuzmEU8OOYwjl01UkIyhFKhoafGtTa6/S2g+m0Ph/YwX/4e2Fg0mJWvyiFrjzm4wAz8W4i4f8qdGiY6AzaFwLv7dJd33e72XlqeSQynLI6u2MK+2QEaTXZqn+QZKS9e2qhv4kbOzk6F53X7jfBSlHJ6cPPiTxMdrMk67PpHBWbyzFyLn5Q+CENrzWf4zhIPFrhnaHtuIkhSp1njtM6hj/eJmcNEcUE6nQx40K1MEpL3bSgd3whuVww5avjfPHcTyH0bn72hSEXtALXFNHq0zP0HnIIPyGqpsl8K9Lg/xkueymsI6gDrk13W+cmIetle4Zxc1K8jYaxtiFVCJFu4e9QAvcxkUcenE2gzxzfX1+FFXLbxGxFIc3xYFDbzFsVKr7GgSbd9HM+Tlrt2QO+9lHle7YB/g1Zg89zY1rIsE/2rqp/jEW7Ec7/xQdsl9KkyzoRjTJRm84SdLtfpmKmarygbw5b+y0MBSpD2hNxMwLna6wA6ATC0OHd48tkU8pCpBM5pNeO67zRlT4bJycbX+it1kLEe8yj95RVxens3yUKJjWYfu/sGoTzymcESPD+tNnEUXj2cLWTyGiOuRqghm6ztnPasEgjQ49FQrNh+uZeS/BHXM5SjXLrRy2wZDh74zo/vxqofYIrq6udK1+PI2f8kbXT62znXvvaydZkTaztBw0sFOFiajqv7PnaQ6ZNuonuFEHTXSMRkXyYtybR159yFsqEVYv/qvRB8VDB5u5H9/jRTYk8+j+3DEt8Bc+eoh/oVpCezZqXFrnLuQtPdGASzHx7iAxTm9rMTZpjqEZMsqPMM8P+CwsALMNhKVtcfYLrnWvY9nYP+qYJY5viDadlrASsiRbAtYJCrGw9kssWmO4/4RjX46T687wkG62UHBUvAzd4+S8pPKY6uny6WUat8hij0h1iG3C9SF++4AE6T1NboGq5fz7qbQvg7Xv2QiHIgme/sI6sXcpS5TwoMxl1PH6Mk47lJ5hMjiFHZKqvtbjQbkrz9YNDWk8X8rqdgy7YvRU4hbNp+4Y2u9JmYU0wK+e1k7A/BvAR9cIBnwcfq7J8c+EqGccCi88gv87xKpmySg+L8Ei6WAZlWwzl9issylmIb1FDLAwOBw9TwJyE4ZAioWVHO3IwBpwYnlkNIdkIMEdKt66bHdK10vnW+db7LJtiVzBb9+ou2yxr21OLK6GYnbtSptqtXU2i3UM9TiHfCqg+MxNlorMfmHeyb+OVya30n3HxyYnRse13RSIpsRQ7AA0fiWs6h6MvTNtqU2fkv5fZEIkTwe2T1RzViyA1o/JN0/sP0Lb85YeOJzVcPM8F615dwtxA//fls8fTCp1J0Y4Ge7RjLEIN8feQ1wVr6CoYYfVz0dZDORnIrctqjHl1xjESdGpG8k6ULWDNQrLHkUMQq0/o54WyOrV5STpIxkhfcfuuFoetgAcQbB6c/8hKt4Tst7nT3Kchfu0h5SpRV9EPL+u7NS8SZR3VGFDbVP28VjhnqW16PNSrNb1BzbZWAKfnZDiW+SN6XPkRn0FwCTB2+SpUPw8+bLEoRrNnwwXPJiPFbtMPSftTKGR7/b5pe7HZ/7JdBGD9YZ7LyesVN43M6OOQCDrtqC23/Ddp/di/EpIxycCBclQ6q+O0/Z2sJMP5yS6a1GfaGJO3KgpTY0iK75Ei9KUDl48Lch2P0vJ+TjwSd4BeRA1YpfVEmBsLVeq9ynIFsd8A/lGa9fkN9rxTOpig6/KgoAuAyLkaeyDsDmGjK0ATpB5odzjSM2HrjBfvCq89JxiGsjZEnmNcCmdYur4Vxgo0a1Wflm1ngsVo9rIBFVs2DYpRfNBSIacmFqyeqo0I27aE7nEuo0xEN4jxzTp/bLjQ5b3I4puevEPtSTfj2nd1h58ijp4QHm9opC+pMBczTwisnaf4kEdBa1DhFcB7SGUAEQb21Nurl3BSYNr7X58nWMM+QP1GkYQzbkfFmlmcZen4DIgIeOHlGq/kQZe0zNA2uh4Dd2jEmP+GXF4zYELCnKIeMblhfOtCICgJdJAIZu6sqYzmmiAP/KSYdYZ5p5ckLdVxaFY3UkqF8tdr3IfVIR9LJMVkS3E+DMXrX+mnWrZQnlz3/DW0GU9F8Fk1sCIDTA1W/6E3sosu14UPVhHOuMBtox9e/JWsxKfXNrIWbSENUE6r/kgpdBUOlRohjGqWPDzll9/EajbZdLwmnPQ6uvwNRR1DnMZjPneT9XCxszrNeU2FE4m7Vh0+WOfjMMrp9cGhxtyK4X77L+hyMRj2tA4eVcaF8vyTlbG1twZJwxo92RJc3UJYh9PH5dizRUlJ7uhUr2ctgK5BJ13hieaxLlS4z2eWX+s1Ie6jd4EfHAm5BD/ujmVCN8BvqN8Tt3x3frQPKJK2nXHkUnzm8oJXH1QHHnpDOwtolghj9YwyESlCeqt3sqeVl7XrajJVwQ/keT9qubM0EKMiAcuCrl32D+Gboty6AqS44XzrpCoBwxVnzPNQcai54+Wt8Hx1qRpJIW0S1nWo9n8F10YGErwFfc+iC49hJdU8S2FUzLFOp/Qtk3LM1UJangGaVB68akWhkcbG5UNx5L565om04g1dWUAtylkDpoiVZdrQEJZUF0oTe2Ovxvq4UTI4jnli2FxPwmQXh8dIIF7X5QrXIUBRl3szMpw6nlJfERkj9KxqJ5vynxcWwV2EQGwU/nQ7hgMZ9Me0SzbNAUgKddoaWH6W+YF4lS5opvTtGT+wz1QD0f0AclIjGgcCDkZrQY42qjL/5vIZBEHvtu5hTgb/shkr6NpzT1FjX6kp8UqxOcDyMIww3EC9NY1Wq9hbEV9ndKl3OiFw1ewyRwiyV/VS0EGs0IhLxbIQuBVfjXwh5PlRYQpe6JYCcIRrhQOTFaOXMPuSVbmvJM44Y5IVbv6HwYFdo6l5GpTXFJc2MHRlwmTz+S+qo6L9YMysHYnDUVYaQ/Vd4joKYduJCdVDrRcxAz5lOdbD9BuGllnnE+KFB+Y/kIxNU+py331p2NXwOof6BtP6qDLrbvyoOPjYo8U9fHsMC/tu1GZVIdXRuxwzQyvKA3aTWHl56nF9q99xiEAFrG7TgTYhBxqt2y9J0fkmKb++EH5Kojb81lmk/DOYIiztdffkZv/XCj1WQ3pewsKY2ktB8o5q5qBcgEY16bFE8RDpfTyTiEp9UU35vQxmwGwoSliBh2ZZgFbXfMhTvszPLjYXfkHQ1C28VV6qK6b3nqrCSEXxOdY2wr16551a897mImRJUCA1//yMZr2NdYMNQj+BPZ1DLbkDp4VRkJ1vu2O1IWMBLp+kxuDnwrGHVPUGsPhy9gusVY/pwBdS40HqY058+B/7QirojiuSS922VXa
Variant 0
DifficultyLevel
575
Question
The area of a rectangle is 36 cm2 and the perimeter is 30 cm. What is the ratio of the width to the length?
Worked Solution
Possible dimensions if area = 36 cm2
36 × 1 = 36, Perimeter = (36 + 1) × 2 = 74
6 × 6 = 36, Perimeter = (6 + 6) × 2 = 24
4 × 9 = 36, Perimeter = (4 + 9) × 2 = 26
12 × 3 = 36, Perimeter = (12 + 3) × 2 = 30 (correct)
∴ Ratio of width : length
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers