Statistics and Probability, NAPX-I3-CA07
Question
Bennett creates a game with the spinner shown below.
If the spinner lands on a 2, he wins a prize.
What is the probability that Bennett will win a prize on his next spin?
Worked Solution
|
|
P(landing a 2) |
= Total possibilitiesNumber of 2’s |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+3l8J886lI/afCT6b4oCKNOJ5jeexpN63z7yk4Apm6ZMuWJAZ6HQjj7uj45N4eE+/VP1+y8UUyH2/M9T9D2otY8ASmZpBMUPQpT1DG+P3hZXn11Fa1YoChiRZknfvBqlxfBq/V00BpU4QCrXw7t+OexqSIE7MYYa0l4B+NCktBQliyz8EFoRwOZ2PDRq2RNtxVZ/wvkZKs1Ps3v6dB7acK/4ig/7gJqUoEZa3Ym3bOAvyNsz57kIQWAJXEVp8Pp2N6rsTyBdRhfmh7weROQmACRjCuFglHOHFS47wbC6Bd+Wz7iy8AxZ+FHxKtmRtTiLPzlIGUeznvMC1nVFbDeGXPT8O39xOaehxafr2+luwiDZS2jUEr20fI3lYns2TRnUwYmi77p4Q1CEqRx7JjmYljjHnTHUci7zyZRNfSv0zt/N0EI5GDlVu1vBwVn2ODzDe6IT/m8JV90H5QoZUsbxHvGKtq+Xij161WA9J6ILR2tuMONo/e77FBFs0oo5Ht1XXqtALAGICPxC7sQ1Ri3uovUwFbs31a+qW/6HuWFneQugQ8lhTAGAxmTYejocfWB+1TkB6yyKuwohzJop2tV6V6U82/wZcSTnoP487QpIC3kdR1QHd6VeAauITBpz2M3tRn8GEKPXsmlvmCn158+Eu9uOdB0tDg7WtDQsQN5g4L0amPfSQBbpMGotWzi/MqrSPQvykxGiSCw4JNwGTI7thRXBszieSURWvggS2YRnvIuxNuNZzLXPyNKalnasG0aDD55q6kN0qmdStyXomjZ1FlgIQMpLb03z5VUXYNzXHuoigoP4gOHbgjVSv0Kx41UvZRbK26rp1PqpMk4c3x+qZCtvckPsWFXsbm1NqLyRyDBXLg7ekotkhsS6jHLMqufGIuIxXoHhnHB04LKIneXr9lpBV09d0geKSqWgpsufWs2rCpMqMdxdIglvudvImZPPMq+sl/muBEYLu4lHTppfM6rV68ejrDDUV6lADTc7rgjuEBFVVvKrcVQog8qkLZ120TAKN+psJRR6HVq4IW6YopA1SBhUhdJ8lmLG7cSqLPYju2SkcabK0gSTKlsJBN6NxDVF4Kg2uiJj2LpPBK1AQtn/fKy8vUu8ee6ZclUcLzp9tSoUgzUnFOr3oqGiJXKn6SzLnOo6HD4RXABKyRWJdTzQ57X2H40aDGHCdeAWl/xxG3JBFZZQpPc6DcGIxAj2uLxg3wo80mDU/xofPA46T5+L4NcQIiO9J0e26dE/IpZoEu1dunfOYEfWpaSYjjJKjVpvKn+3Qm3HeH6Iv7ECx3kUrkYgF2fkdRJuWDSTgSEUsAj2ek814k1zM/ugJW8aEDjulXvcq9NvsRbvdwW7hkv9oXOWDDO95ca+irt2Cygsuv8+oFvMadHKpr65j90atcyOZTmepLHVUm29jwVTR450lo/8dxxdQJi9/8o+KrcH8dLs3FCL9tS3sA5/vcUbHKRMCWeB3Nbanq+e9mbswJVWDj041FgJ7g3dmDHwfDg3wTQvLkAFBNjxN6LzAyxXCFJtVVnL0m380VzEe7pWJM1IMCRs2QuN5x3a8sEdIiAq9haUmdTWTZZFUApXz+WZeXU8Oxcj/GOFFsJlawcoHGTlpDBOK/FnCADnxK/+vTcV1aIPHuq4CvDyObHO2pDFmlcTClQlEbLmc4Lb8sqxntpFGbc8sfCk2cphE8SdKiVE2HDQSHKzY+LQjZTld7c1OnstHlyuGJF9ujjGo84c6ZcEp8Vmg+g7Knir9+hc7r9wuMOwsEZdHqdhN8c0ppG5JVMQqSGP3tFjqRNNAnz0z0lx2V6T/AE+FjbkD6OtpTEHiDXW6+0MOoijSjmjBdMRT+PcKM4dZALie9iW9HR26pdIY5SyCYwd+B5j6MlJ/b/vzgNvrGTW1un0frGYFvml1H21sx0rGqKpPJcydjNj+w+8xBKwcs6Kp5a7T6e59ishEz+afN9PcCFRq0yoATIAwMjSb9hZpxsIqx5vd3MZrmVj0x6LQXJiODGyOrvmnHmIyMOCBEMDE1APDDDKqu5qpEZ/3MyQfE4j+3YlilMojZlmE7FH+tAzBD/SGrxDskzr+7qzACMoa90pU0pFLS4N5TIdZbccaWee90U2LE+kU+ytoe/Iz3qceoAvNyuBvNWl9rB08iRlRfEcMmTZXcsSNekaNvoMq1SFS/KhEQ/BZDL7imbGPCHTvYMFeEGaW5QmcPgzuq6csnAUDyHF+rgupkYrtLaFtZZzS54QT3vF3NmwEdrFSInf4PnqEtatHb5dWNDjMJQcda0EobCCalrELNxlz40Hgd5HTayiZVutpyThp2fkUM3utJaFtVoQzd3ur05+BoAWyWi56PGHnju4991vwzcgPI2GfyFrpRoGDzAZ+Kl6oPpOadlXTv3hfQBVGSzdS6KLPF9uSvu847bndW1+EdAw7VFF/uW1ew/oQQMb3lWBDMr2lVN0QitPw2+ytC02CxOlxviXTT79L1hnhPSaRbvrMbSMwLCJoZw2Lky4W1yLzpFDAX7mV2hOb4s4LadyTQRfp93QotuSy7aPcO9wQPICuN6fD4RezF0B+Dvu3wpMVLKxVmvqXDEXWz2/lyTM5kCdbxfA62MUC9EQnhZnTJAkU42o2zVVDkHy8wL1HqxzOcrQHn9cGxTts1J0oaBaejXLbmvTdJ/Hq0EHDsMvsdd5HT4v1JIDfcTduQ0C340K8g0aHI7hvx6zjgkxvEKqeEkLGgL84JzRMK056dt/x70dWoIW4UaHCcdOTuHcvHEEjp9D1JOZdHBxH9Z/vInv7Pdo+wWc0ufLNX32WCCJOmQF4OOaeIbwfvcv0Z7tgLJ7auJsi7znAHn/F396H7fGPmBq4BbS0+FBxKOvogU+cBuZEIK32GncX7QCL8v6dojl1sBPpJ3IVWezNonsTw94bka5sO4lgUfzb+lckDVDYj5hUiPrEu+bu2A4uZgaacWzwADz036NfEvSVhvZZkdI0C4B6M0x6BY1bGHCDz/NBhxhYgYkuDzpnlUf/mBG1K4EbMPPQwY93/aFcnDYZYzKYDBhYWDf8MItqVhzE4vl2rbescO4E6V05UcSCT59J9R/G+j59h9cYhyMnj+ORIXRus+aJHDP2lYs02e+5EpcuOcS2LQ384WV2dLKvVs2eTI41q7/OewjgGOzcd9X1PpKDEEj1HP2QXQRQprgqHwtRTdMwEMCYigeL9daYCoEGdbdx8+QXLQstZilLcjGnzLF3hmJdM283CddobCOK4bs807s47wy+vFl/xzSqWR74PwWJTz6WbSMKVDoQai2+/SR2rFh/896LWyIlYpOw0E8eh3RePXmLwaX8dtZnL66s/QClb6wJOuYzext5aEk8tensaYkJ+wfqRARogkFT8jVDtr/OM3fpSZnnDrWVepyFvloySxORIk9ReVNUH+u4ghG5bAjbStCOYsktGt+eD2bc2E4npeRBbDDpyPchKRmWNAfuxGGysxNTE80wx1e0hszbKaURz2zrEuJw80Rm5TQHz1u/obYEAaclqL2+6PJl8rLPlZm5xB0Ock5tgN3plNEn7CGSEV3iQBrn18aCbmsnotvKU80Avc8wAAXH/jPpF5L3T3wtuYAqeH4AMvrWwTBWl9NGze49r01oQwlk+UPaIY5ApNr31G+Q7uGyCG78zRygIpXVCqahaOitCXbroAi/Xi7R9LYx0U7+Pa3eoEVAUuOKC6D+l7ZY79k17eK2yWEP91dCQE/Jwm3NdwM3Y4mXE0tLmTZR9v5hZNLPnwe5GDYR+lwZywqHuy+wnavNyeRPhmqGCAzSrH0oyQJm4BgKEOwCZmH3KHr2oynqyV4neeUig1qbGOuoiWmWheYXmBTQLoi6EchNVZuIvRiKsADRu1DonZBfIGZkwxklCty6yC5fjEM9z2I6Hfd3VIpBw5wI4E/5UVc0YQurz1XEBenKTm07YtHp0y6BmVHFOBFsGScV0g9zELFA5VMM5JqI61z56cod3CNY35cEb3du6j5ePeC1z1KcWW7jdBV6ysbrbW+oVKqhnybanGK3Cox/cS3WuFOEYQ3SLZlBnpfsgcbBPlAMyiWsOBToCc4saNaJhUPtIxKqRtBSXNjUSRiIwgpsXgtSY0GbfQ81Y7xG1h4PFgLzGDSQFT1FGiiyiyQRPZsGbVxpk9NQqFmhyraA3o5H/p/lM80nojlbvMekkJ38gAPE+H1hKzGf8qwsB4hFKj1OYAzq1w1EqoyuKMK6NG6AcjZxovFd9BjXT31xcdYlnkgMvHd5witSlGOryJB1l5qBfXDTvJrRt6imLJWZneqFERyiP8cuiQRUO1vAFipXs5TV08DWtj9TEQVs4v+Eni/iK9d/JArlI4ryqXNftQweiFjMfGGT7hg2DeTwrdlcSTzlUaTv+FBQ2qR3/M5BaV9eXCq7I2y2nc+2U3nx8An+sYP5vtumBDTmDnyj9QBEDxVTzgxTDnaLe+iwaycr7ts3UhAjvW6Z1AoSUTW/JQx6o8lYjkqdRPoLYDIZi//i3L24HaRgvEA7Poex6wLrYgelyCXNIV2JfH7a64qtQsixnx34hEp8zAjRKtMyZ0c5i6Zx0faWu4ld0dRuXEeenJoWklAJ33ns7PJLG6p+WtrpfhGefEiib8kl9XkRrXNbVvaWR9tNnmRh4+IqeHLqv9/V5YhW45OWkUk/Tz1YnWMG4oWbZvNZ5XFQ7Y2WUyiNfYDCL1dHg6rL9/wrFK+MjTzRYNy5FQCLP3eKHLFrvxSfnaAPnwZM2iXJzUUqIslfZqTsMb3MKzKuDqmLHuaXe/dHPBLD8VIowYvH8MuOODqW0awsQ5/EXw4a9FYS78sr8RHxZdKJQvSAxCjY/HUNL76lbHaZ/WFbfJSHRVepcEFt3CyLVbT946D1cfdwzky5TQxGbiCWcrMXY+5PYp6DUT1fLJ/gwRCS9HWDz+/xJonyEDN5zfyvTaOHQ5qqsQQmtgEBu2zfsj7ga1dfVHPwEjMOP4xy9NAY21RdG58TU0D4p/NZip6Wl+hiAXIa6vMhSsceamkg7AgFz+HvNHSLKgXMMop7gP+Xk7lcw6QTLt9O5QosaOCWjedeNX2cjM5+LHAsZ1wn6WBFnevK5Q/v3jr08ta5kifiML8bukP18mFJiiO0fYN1nSmnEsrjToDLOBbyPt9Wmv/Lw3iVqoFzy6QuSDDrHK45IO4wC5boNbndsB9E/i4VoZ8GpJ9xjJEd40KBh3OlUf7gT79kIVkFzx771s4Zp1FzQ9H3lqYVAV1q269BYRvRp5hziypz0NA9bpc4b7vQ3s9qH6WC7GPST+TNBXEGCalWaMK+703Z278/i1WxB//P9X4ZjQXuRKyuD7DPfA1p/O6Wd368awPG7+ad6DMpaAibF9pDdDzdfF0vL7CR7b8lpdeQSkbF0c8gTu2aDejAJUHJ5405tnaMls0Uy1P/3CPlIjFaKLBtSei0+fRVxtJq/ngauErhNzUK7If6y8ioRyI//ZFPD3f1/FEX9v5dryaNPUB6JOztCNUVGneIibM626u+PfKmZ7qw3ABtjXAv81ZJhXmRCSo3XNJlHqIuanwhnqTfw5NdUIoY5/Lg8i7OmYlOd0hh7naLteLpHbxbCO5zXGWFrPK/GekTXE4FFnU0rVw+yPlMSKcML/upQ697rbVj/AgSYMPsgX8xlOMpFccp/lefHkzbiBJ69HQeboAftna8r6C7pTAJT8AWETp2eS+l0xWQGepyoKhnICaZfOX+wyDiAmsLafPdQgdsWlrfan0SWg4I1XjipVq/N471oSTmvP1ij7kGrLRbSp5vT9fu7VAgM0Pi0HSxjcbyjM8g11PTWKRw1fqbZlWgXWrfs8ClY6hvspj4D6CSBDQjo684bFTI5KrcbtG+q/r97dOKvinteQtlQTiaInvOCXUdQAKXAc+NQmJC9xTAlh/lMKRX4A1MgoHkY7UlVb1IMOki3Q4ZGx0OXCPV3NvgNecSUeqwZNVxMOF8Ox0cRLvg0ZsFfo+l2YpUKNAw0GDrOlQFcpUoyDPI4Zi8shIevKyPmM0nijM3SRdmXP16nzIHqCb+XlEdHD7u7GJbN0A91yA1h9ifMeDEpNdJ93dEX2llq33GXX4t+7UINacjYDkG6n6Qv2yPdXCCj6KgrEiyeHAtXb3OwX8frdawOgX4kTZP0ladhmEyn8Bs7s6HciefNZyg4Y4JlDTz01+OSiWacRcLfnUJkgPpZT64daC07iA4S5mvzw+FPXMeEMRboDMSwzxsrSwAboK4cioVP16tKpNMYKPBvt7yq8ZxSQDJu0arT02ft6n2RTXr1Uv4lbjewhczJrIeX0jUO/w7kKqWucvO89qZ2fCk55M5z6S8ZkgA5D5aGLrtV2qDm3txWFghqBhowhK6nECCialfUnzjxTXoFoIGErZBTudksCVRNLp5pnDIahPb/1wEMdRkWY/1dlE9NZ7MfoY+vqDd0d9HAFdZyJRXLuU5ocoW6ze45AF58ouj+xLrZnCD7QYu61FPcZcLVQvN5LgoO8+74BIEIzp983ZhoG0ol/KttlUIvVe3QxivRJJkJ1bLFsoiqutWmZXmrT+8WkKEg/lQkfccuywHn9yqIljGVxKWBjtDdv9YWyz6QZgc6FncJK1J/ibToLKZvyioYYKaLfTqOPZnqvSrv/5NHzKvk2t/LtvAj9oESx+0s42RfMLapaiZ9a8kz6yeMIirulw4AgskWwjgjEmeeyLkHzvwPVGDl7BNnwZNFH1zAftc68iO+SbxNLqHnLKo89xpMFRzjRIT+TZddR2nSinzzF3R4fLBY0H5ICvSXuc+r7kH/5/R3kAKquHhKXCUmgal8upy4R/M8oVOc67CZFAqhh5uidf/5v+t0CjEuaT1SOFmChfuFuxH+4nk3M6hCuGSDNDn6vByABKPv+2aPbOEagZHQQoUXgmvKC1IWyQGqVev4AjmrKvYQf4IOPwhwYnuXE1ONgmIp0x3jBimM+PXUVajMJ5tjjKnYyfb2ml+l09eIDstd6XaHqYwHTVyKh7ImA2J/1A2Tc5ZH/5pst+ds3w3sy0YI7knXTty4LoZ/37Z2z7dKBou/sEKM/9slu5/+pkmIAcdTReYhFqJe11LmM8skFBFn+5sAbVi8ItnB2yKeUGegcTfn+lToqdST0zrwEZ76fcoEFpUysyUeftTzkhUaQZwt/9wVNUSPchjPES1Z0IqWeaf5rsoCgIRAofzsHQhv1Qc13oTNR5LHn2M5shS6LkbT6h6tf1J0g0EvJ7uHaTudI+vQUejvEHXir8x56ZYcr/jgoC0t36Tma5EJYopYNM4LNrxhB23BiwYtrhoS08L1JrqQBWCtNhpkXzr2sZkKuD5clyr9xSoO3lAVDfdOVkaIHlta0bY8PGMrC812IV+cj6DpHzTzYaD7GxnB4xm6RupoCvLqLj3t6IQxXCjuaBsfty048U7HiVWQlsuBhwTnSFA1KGFNtEBM5IBm9x8rpksjmAP/yU8WPOz3lh7Ip/k/E0FZ4KVVDrk75V+H7Ff8NHB3yTzazHdn0kiNmAi2RP0VQDU2dtjAyf34SIt8On9pOgL0WNWd+X2hNah73K7CMhJp6s4iWIU8uVATXa6//DEmyhQl6JO5YyUpJfbjoIPNO8yyZF6ogfolPrf5nxwfNQ3ANLOZ1j84fxwQzskbVCPDma8BtdjqrGNySvUkucgIjq+roQLgaMLWeD+lC1dgR55aaQ7KMBjrSQ+yxrE+ROuVVivwqo6VvLwURJz/sK8r73n0z7z4yKk/ES0NpwtvM0ValkEjv/uWV6psfODY7wkezuTnAHE0z1xO63ZpNDhWf0upCVbF3SQkpkEYZ2a6E9iu2Kxhd5JQOmbTC/YGSrltIJENtM0olTa4gRfP0bqMRRkoO0P9Tet99444mDZSl6k9YmCw5bb0/x6crdef2RgixMF+gs0YI8qvuWneP46gkdMNyqPVsoo2zYSbeEPjtI3kXxW8jS2tRP94BE2J9sXxsWE4V1m2S+tckTGrkf+gvrbWzv0znPhQ1NXhnV9CtUFxQZoYnwNPNbhW/Sp+0S4JWH7i7Hj4r0OOkNtrBKzO1/f421HUUpv0hxSKguDDDMfrnN4i6LU/EYqi97NUHdqYvXCL1KIa7t/GmWmSaIp+P3Yl+rb7Ztt7vtacmvn9y48BKkz+XSQl1N+rW3ahJuzCYe1o5OWO/Vq7T3IsOd3jbbO94MvLc3+NL/XtYK3j9yXEXb7B/TIXKOrT8YeADSSQwPf5bOw3VnOB/TcDBYB0mY1r8K0CTaxJpgGHca/fsdsoIN/3GRHTDxk0Qs1T3CsFrVvyUf1JCgjcy75v7FZv5wgxtiTMwIan0BrOzKAWZw97lTSctVbBR8FK+edZA7FbxJgHaoZWNTmOIwv4aYoZtphrP1OimJKCkT72+JRYhbRwuVhN7hsA7Q1yPIBIfcnOzIj7Lgms4JtP9Vm4MnWcvK+2NJYen4ttEY600ZZ4/n5RPYJRYyNQxeaeR/25rYuoO2BRNG6hcfQ1a1crVX94gpaD6t5q5v/WEo5/JebVvquC50ZIXzBS9Gb21QEA2dtT3PP4HqC0UedewUr37teLZnMGZMqDnh2cUcDTQQHiFo/T1i/2iJxaAdyaRUIQgKWEqojNcoNHIq9YSolQLrqZEt6U1+fxWwgI3laE9qdXFsfCWaePFTOidejBfWywcgoy/4qiyn+tSyNfE8CEGuGHKIQfBs584QuKbRr7K+mLdbbDwyeq4bAXjkvDygyhKmS9ql9mfQiekpV+cRUigiOXJu0ov9q3k1vDJ+lcDjwBvjuaECRSk6Wtid15LvveYMfcAMp/z4N3AA4uH4imHkC1X7XarRBPtk0n+8dVxdniyOvFDlbzHvAcw07gXdWfgiKAZbQRw1MdOLlpxc/O0KI9SXQ5rWUhdzpk5lfk3X2T1kXyssFY0GFc6nRr6tmkodSOUwTUWq/Q7Zh2FfLJP/tUP/cTJZ/sU9kuo4T8ETlpREYSWqpIyVz8F/rfTH7DU2lk9hyj8F+yju81t0qcmMYoe6mTuu20V6IMyqoW9/6KH0plbHfkmwMivhfcXDJ2GLiPJJCKg97CjXeciQwBq0cMMO6sLFEwJ/aQBShaqmO0yk/aG2PT8kJbthXu1rq2yBnF7MWD5cQO+9y8BWS54V97UNgBxa+EvclqdfTt22syGoDTS9wKhOOlSrec2y+fC1ZEkaUCdUPEIi+c37PZfDXhGolhdPVUDs3T5a3gBbkwn7zcvirhvCyRUb4EzV8DbPSf0SKiY6A7SgXh0neJlvHyi9Jhc4QnJ3dXkm+eEBWPtQ4n6to7owVO2oejS2mUd0qSIxPs/2D4JFjEfvCSUYoMM5HwVGn+EaNDDs4R+/AJEt4Dog3Kb0BhzSEDkbLDkVigxdjrYNTYiTHHslxe8nMC5rznwnc1rN0ULC7PiLpoEugOUWu7+OP7nmwQo8HenFDS85NUE8dwG/Mba1xD/4d02pzxyAQfSj0B+6jUn4OADxh0Rk4o/t3wCTMg7T2ZSUOn0ptPbXIpDr5t1RevlLB/GjUyyr+xOjrJShv5Mcrusi5OR3R51jW8AboeTQnGWKjFSC0NfjSmsHRreJYaP9dk2nJENWLnUWXOaeLH3IGCdEnAq5y5GVUVJWFWM32qX+ZautoWATqBPQP3u6qFA/n+tXnHAsu+Tbwy/W/S8o//8pxn+rgGZSq7B01ISoFtt128bG/GCKJnEFFXllE7ZG1P0NU7UmX42U0lZaZHXKuvblE/t06uHFE89G+y9cvV+cMtXtxAkg9mD29dHWtnmNGYXuMrsUpa5eeNe6bXm4CO3/HtkV2EcPB8SukeUYJHUTQmFlnVrEXe+kfNjr3+RmXfXGoqQx+lce8bfdy1LwFsyAZ7d66ehVaqHPBRZ1FpMtaqUEt7seyYtFlZiUJxBgTyVPOC9luDGLTjm8JIcK8ey7hQVaQawymogbEnHtwEyNcQJE2h6M4Q4JTRwRqk1AjLW8p4DFPfYMLJNJV8G2NHiUQHJyLSXqgLwcjGjNrilCP2zvMz0nJnzziq4WPTYRSIPmuilmA8qk7FOpGsBfxBDuznFIZBxZ0I+GwbMJ/BlMNak0hA/F8dCqNBk7oSZK4gnFLRn9gMjDuXLX+LHY/GuOA98JY+0x9oOVWw8vZ7zLPBE1MJgUAeySPaZiiqmTJnr67Uu1sGJ0cF/bB1rv9+8CHMns6dHKVF9DszebUv80dDH/HO3XC2Ht1qZMkMMImnwzBjI8RE7oD65teJEA2PfJ+MYApkoDELejFBmjSLIdkyE3qYdqHVdRseHd1Gh03JBCR2coRLnfPdPhcUJmBkKSkqNJGQZgqXpVISttAslZD2M+dKVt2RgOUH5ds5SYlwDzQ1HDn1NihwYqzGCBdACdeIZKMkScJ33Sb4xMSmaH2IGbEtMtvJaJlOfWk1VVA5bQ0XrjBXzSUNefCS56w9M7K5lWRCWou8yVRD3B74iMjnm9ebVgflR2xsu3r2+YKmYDu7yABJRYFh4oEY0Ck8LJzDQ0WKkn8oYBsHgeC1/FDrK6YWjxQhCqjf/O9PfGiJZm3NK1xhGVRyUUmtZMri6XjSfy9hohBNVdiZIEjpmb8hMrLtMbDRtVj2w41vQTTchONg4jSFCBxLkPEG7DMmE02VvNXTgKpiQ8AkfVZW12aRXPuqfZ8JfrFg1f5lXPMPx6mSyIwyvOHdTNWxfCYxc0PZf08hU6VgD2wyyMjT/q4mm5zdLjVTXki7zRjsWzVzmabVJPWxuzEkhITyX+Nsw/OXimo2mhiV67GkSzM5MHvWPf/ZJG6CyCwZufJk2xffSjfAmSZjRcuKOyf8zA2Cvjv4E3rlvJFP4bzzD18tqiQv5akFrSc2fCSsPZcBfssasm7+m5mi+mad+dpOqDE37aXGaM2MtkG543lB4QFfTfeREBW+XeFiBLv+7LDUVZqZzOzLsAoae++8JIwMFl61SHk+ukz/sQzP3ps38LwkupG1Fdkjrl+A5LDuXV13pRf3W3atXl+cBTrsnaT0plv5+vwzycMxqUHCsrh17yjkUyVw+uIQ9dRosOHznxCkKUGByET2NBlZiY9ge5cfoMRHtYe7m5Zk1cbCUD59eWAHXa0BdZ7Hk5PmLB9uGtB7sQK1kLJy5tvifNIUMNYww+GTxvKFa0bC3q2pQFcIwgeQjI9DjukE7Q/tN0MIWizxOj/g6wgyEIW+VCK9VB1qS/iN4LiXowSs7IyqvkzOye6hrtrQzIMN4MdvXa2oC3RtLmpR23mjPWEZn/OLE91sIguQdX9IwVNOPqXcEhPp99M3btOQdnKI98RQdTvtRAsOIEwGUHp/R3BQTkUxl/jQ2GkzyAO1Ajtt/xFJCfzgnCyxRuDrwEeFlvhzvpT93c3yb//YGrHaaF5PwqOkJx/oBretbaIrVUINSRWrO7jRwr3nWkKIRfbDfakGgA6h2To4Iu7fjnwCcAeXFWgnW66CZ8mz1Hk7Gq4AU/VDKlhb0fBYKnX6ykFP6vkrAILEEaB+ROA8n7cX2Ciq5d/D7wROpgyBeMXWu57cfiBLExcuKWdyUWL8LErABBTzWg/vDPtqEcgsMIXgiOQKN0tKv4eBNFpgiPb5YNXCalSANURY4NvmHksxq8aY+0gNEwxpt6zCAo4fXVwbhOJhN+/s0/qI5Wm+gx/mAAkMiklpOg5U5LJnPvGSUplTHrxpYK3wRSl2pcXOUUzu3OMmv4q7LlnMZ0kQblSZjVoLY/jvOBFVoYY5N09N+IzSaJ5L1Dzf/wn3CFBtUvHzC5RH0hu5Jn923jscejeAOafsSXo4KkSsY3cWHCBEzlC1WA+/GnSYtS766codLR0AwMsC0zcjniZgmxClqYbwODsVusByT8/7cG2pX4WuMz6121gJ0pIvw0ZN00uu7kPqy4HyzAjn8+PNtRpM+yIQXLpzLr8F4WW6Wwke7VUV2taBc75VH0dW7088V4TO/8yA1BLA89u+IPaJZgZ5GBNjw1FXqAiGrXhno7NNl2XYXz5EakA5HNSXvJCv1ogCgdwIuPIivPOI/Hv7AnQ8wDjSuN3PGaEJ3zpy8QTZ1E307Fcney8dmHGgpZ9rl7UqG4NVIkztlxNNgxa8GA20iurL1601x4yaTViJb/wJlyUMnG8v6JkCt65IFZ/Kvlq6TYxo8U72YnD2J4KVp9CWk2v0XL8q9t+4yPbJy7rphGVndO828WP4wfXYDEe4qsWIZBf55fYZc4lsOAt2hC8f5kRzSZpqCqwURDZPzt+d3E8DsbZFEclHwf8xW1E7iilhrAFYsvIjNf92wzXgQ0cfwLvbW76hGh+nZPETyN4FtNNSjexH086wsirheMbpjQzegHb1p47j9vYonvo+GkDvnba+vS3fPqEyqg4/eDlH7Zr+C7t8WGbc/Ue1L+uAwSIWp4d0/6QiRy9962EqbVWw8H1d1TuSEHz73cyyDC3yDPUKgO+WoVjYh677BQccDmpV+KcNmYGeZsSyg6N7agRbh5eXiTTdg74+yRjmpynUJ7i5PZTYgXFyYD3C4vn0PN0rP57oXRR48FQvvTagxSzQayDnWMuL0YMcLzWc+wU83qB3MNNb8yESpjtjZcjR2EkLkwH/Kl2j9c6Mz1qE2O1jWZsS5hmyQX1e7UtSiB25RuzvoJRjHzAP9/xcwkq7tRuvxDsjNhqFLARqbMq9T0gjwGglG8p01fjtVGtt5HbU4IeSy/y/PG7BuCy3MXgqTY4tXUiZVFC+lxjDTZf9nuS+lweSLVSCeW+NyOocqlsexBR4CZvrGZE6igsfc/HgFWXWZ7t7XgMLRKN1uF6HR6YCvyp5uLWduY3nEHPoJtkBFzCMQu1+w7f1ESD/+xqk/sbzm16EIuk7416kl+6sZShERs0betQlHaS/AsqpoOEAaUKsDMOrUfTYzTS/kV+GJw2Rl+qEjayhLLb2agGXFan4WsjHK0oPEt1gRO6xUtcWXwa6DnjFZjsXkFEkYmnV/bUVfbKSCkQF04rAGsg3lKjWjjNsH1AA543QWLBtUjYvfc9SwYaiyy0YMA1rxVkskFtgM16fSE7904xrlyTfeWp0RKpKcICRwV9He3HZQ0w69+bsUOloOOWJ2Uou04XR2kaDT7toriIJ0qFauyKrJfqvicYEpKUPZm6CaHqEjAmPEGiXQVZk9LtfFY9AbUazoCVcbR4svKwhLMbQjUj+xMCrXVnBEYical5hRMMG/6cWW/by6rei1QxyHyXOEW9PJMaF+wd1pcTxkkqQjlxW5gVNuu5mCICX9OtlBZ32/rdrdKUGRMk46d2lVF7j8tAB5otGS+myIy6SVnl4uEc3JrXpETUPxnEIOA2rpQ//HX7KdwLaOuAw7WsNlhEF+cEBXT/t4yhTnIRpv/eBdG5kMDjw/DkK7NYQxaK5aRxDaML/s248vslc8skJx+07+T82NKzVpJ6W8nwMOqrNtKZ3BXyW0DSN8nnXddKarcccIgWh0ygPj814+nWV7W3shZRgc5ReZoIRb76TkQqHvNWB0J7O+sNUQqu3P2Qj9EpPPGt6GFgiWjF1U5bPcfEtmHdCda9l6md0nHOjP/qQ+JiD6WDOAhN9+dxqk1yHWmroWvDHP+SAWw==
Variant 0
DifficultyLevel
562
Question
Bennett creates a game with the spinner shown below.
If the spinner lands on a 2, he wins a prize.
What is the probability that Bennett will win a prize on his next spin?
Worked Solution
|
|
P(landing a 2) |
= Total possibilitiesNumber of 2’s |
|
= 83 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers