Algebra, NAPX-I4-CA31 SA
U2FsdGVkX1/YbDsOElm4Dh9b3UgNvUeoccj96E437vQC857ALknVqtX5Ceq5EHB4vICWycJou/YoyOhSOKHzZ+iGBNvxU6unYR1ja5a17SYqBJdNXrJ8g5G30SVfUgPOwA0E4uNaiskZONfY9+nP4xkQfHALY2uSvZ2UC5ztWB5QB08cTjYFsVw8LRWKc2uAityvPXm0/J253/6To8POCqLAyynbXO/Mq6o43bEcbdbLGgsqvHeqI/H+oj3tVzJcekNglcsYJ8qYTK6L4a+KSGuB8qdZgULJo8Dpc2+tlOtKytX92Zs1AMMdstmk2pUP0b0SlBGpoP5oNXCG9liZ9ZrFptbKGoWWGxsH+9ywByV0aJFecgu1wzIvdXMLaMqmoO9dLpSES8Fm6eFPqYeg89R64kSbsK+R/d7EBYjeEE4cBvLDyjafNTqormpPOU4Fqlura33JH3Jz67gbW6pAYQigdXzEe2EFRDTEA2WlI3McIUfHoTfO3o7By37vxFlK2E0jBJgIdUIWXMVZoKY1bSHdgYS07CmgG7Sgkr1r+QpZBOiGFjb2t3L5jlT02+eee8I5wztKr+H5Ih8iaIIjmRuWoZRXCiUVbmvZqLFrbPHQxrXZ2SODudHdwXwAJOlgEcFiKbJboLoKqgllb7o/22X17mndzDci8UjSVuTlCFYD/w4oCCTNnixiCLi+YbKdsr+ew4ZTYNlL5wg7V4nTBA3h2agDRuVU3EOuVoDrqbllXXevzeUTgpB2B7Dz82WdrFjdkRihygAdGLoXOdHg8XeIrevhW9lzWnEJsVisvFd4laeogkLZT1pRL0kPzVhJXHNTtmUWCaOm/IWeAqAZzXKtul/mYNKj5f4HO4G4crXESav8G0YZA35HUcEINM9craMbW6L+9Hs/uLrpfhmp1JgcBtUR2Q1a4HmHSTRH6vK7utEPXnJit7RxjRYajHrIFFKWNaSUke/xcU3P8SM6dEy6By+t1jE+iYyeH3TOh3Owmxl0qoaFzfiXSBQqwJM3+KpnzkWC5q0TxSDFcFjAHSzZ6Gz17UdJrbGkkwcRKq5n8+A1tWB8+lRWcYjVKABUeJG1wLClw+A9N1Fz7WhhSflFlF8JfDFu9YvAX+oWVTyAbS+8aUBnDSB21tKzdRDzyKU3PGXpe9G67gzAU50KfO/ke4HEB0LhXg2hsxNDZR5Uu1ZGL9P4sxZ6yabu6jzNedblTmy10gnvnkuapYch0RlK8A5LRSHTYiqLxasXZEGggN5aZvhSlICHhY97CjUw/MCYviY10olrKRaLelL+PjFj0fqMpRY5H5wl1xUJXHai28zlB8sN8EaAt9A/b3ZuftkJh7ehqSxSDVNiY70q7sZ52Efis0x7uYp3pZgkwl9lHqLuJvMcfzkodtc5FgvbPf5E/Xxvci3EwF0U9IgBiG1xdG7JRBDRHwLHCt0NAJZti5/kBI0XVQ6mJE9kZ9IdqN0HNHx9s70DhA9IxIirlPsI0CnqNcLwTeKEvl4XtsoimRjhNN5pZnAJaY8Xqx4JWEr8S9IlkdiH3XgpM7K/ilD6LBtJDKBe06DeklghcIdeQ3asoHNgn0bLGTj8ZgMGdxbnoMZfHg6saO82HLc/52egw6M8NYIo9Ly0DiCk9yHqCwj40Lrki551RpsuREduMNkpH4PE/vAse8Y6q5BXbe7/iXESvOudZEskCuMry6AtuD1hJD5cR0iQ4lwqdwnNJQ+0p1l2hb0pYifPxWowKOmGfQSp4VSLMHSfO83T3rGi7ygaEp3DbLUERc1p4C0+Z2qSzJ6+jAopGLujHHLr/V82yzUoznu8f9ifMHfiFnpZ8qInX6ymYrp0XLVqCzYP7bF4Aqax8vSUsMh4aVgN6bpo4yBRwgZmkJJbS9Y4DE1v1E1misOoUvYNUqZsOpSeCI3EJ2UEk42nVrl4eaf4A+XSo6wYfh9za/lVXUMbuwsaoRRz4bIUw8uKzJJ8WD6SNyOXXWodxo/g1TxZvmLq+XYptPUoAcfDr13x6XvCYzIzjFZjnb/7xml0Z6hA+KW4Lc9U1RRyw8Gn6+fBDhIs4eHCpywn/wNXOONrZfuDSFFyl8iI98FbJr8vzgPaZvS/fZv7MUfJOC1ITjh4Lk01ybFWWv/nlgRj4lok5DZgHFjZeOOXP2wd06ByaX+JJq5u61Ajra/JFz9nElsF+l5VWm6Z5a2VKs0z7op71AdRjm2mh600luZ+p717V1kqIGuXIWd40CZFzTJN4tZLo4WzTkDRdp6PImLRYKfmoqdJoFOPrqiJtLszH9Ad98KXiDa36qcTk3wkw0EHXyQxCk8Ho5D3BdlLARkWwXf+5U0VcVR7h2Ir8UxcZmzulnXmY4KUV/qG1KO7tY6ykYX1XuPD0lVwtb2Mwbjob4zQdBY8ooOp/AFsigvB/HC+cBt2JilLYbgh6s+W8SA/EVwRUUTMIno3KZuauiofEPQ0rpg8JJ1jbIHaoJJ6RqPthN1tYIeo8hNnI/eSEPUSVkW5NdSnUHdxmCeao+BvBDpeAIut8LHysq86O4hu4IKPFH+gtig/YQhVNW4Wlbsp5sAZ24fHq5fz7NQPJX3Qrab86HF3gSenyqlc9gGxC7hRWLsc3GumZiY5BTqECZHBzgCWKlKUiNhAXpPHgIXWAtPi3JZyk/D0jkmJcqYYiVZqJH2q708OUs84Jdy5xd/plSkONnD2lLvesRANu7dhM1pHnNVfFVw2lYu5Wu8LD8DO9rx/BEbuwICErgzjKdXowf0DaQDwLwBkMeq+DaXiHeXqliGZkqPLCAAQX4mjgSz4eiAFnGnzrcULiEl5sHrjA2Ig1BS8CU19NVKPPlUft5cMwi6bv5xiQye3hwhuX1lkQQDKL8zZsE99tkDqOJj1rEhHwZ42j+sy7g+rIz2c9Ho67Sm8XCWt4VeD0gYfU8aZU4fYjFPJViSeB31i6lBw0qgEPo901D55FZYZLGSxBTYqRoleJCjyi6CPIhVsYmfV10hF7jF6cqVfbfJBuul2t/pFRx5v8k3hX+prBR7cYGO6wqBtYvWrwwE569gfuJrS5FsLRRmMDcZMQaoTqXH8ULz+PUCB1E6QmMnhqzAuN3znVE/V8q5ugNPcRnLlEvxpdBjfFQyIfhoc6mutYZasHrrFfKxYYfwI5GkCR6xbr4zgzAgyHJV/EfJsC45VJ9vis7tuaO6JAtfaprJ0ML7cT7YUZHKnF3l3hkrYBI5HeTp+qDrMVvKPYlDRHRBJ1wFg4+bw7sl0FoPrrctN9ERCy/tUZVMunjJr656rYPjb0udstjSo6/0rn0TwQ4MUz5aw3Sa+FCTLqThBtURbf7tZ3uQiPZaxxeN549lW7ZHi54Lv4FBbOzUxZiO1wpIcA2NWwIB6OHxBmegzOggOp33Ocf+IlesdNtBPs+VAQw02qw2qbG9BJ3v0vGtx35//CY+CMUNslBv9ECBR08kGSAcFqIplQB5mbAJcNRRsc69r3y5UyyDsqGVAZDRFvO01L45x9Lp/6HvtKoRf5E6juScQjOhlpNoKbqM/hHsUWGuKs8TkdhAjdDI/5beunWzLG4v+fwCX4KyHiDdyvztyYYFL8oci59oVHdluMYNHdDZvPi6kzcpYHk9n9NuJCgbJvboOBafpyKcHZEvPqM0QP5md2esaUrtyqSBwsm74ya9+ZFZzQBmxRQbr35qPuYEG4n+wWXpaNda8YeRptqoS7v1h9fOM7ZoBrRA7lPBHTgJHRBsdzBrZe8rVpGgL08cy1A0JZ5zFAF9457kQmVpNXL4L3zDw+Ov8YZHfCaqaQyQaTymXO38cz9eM4SYcHBiyQXwig4SBF9K07svZHxBiyg1aMoWbSnvmOR6TCUrBm8jWVYoVT7jsfCay7AI9lJ8Yec6DTxI8PWKsPcIOM0V1FBgAMsO4Hb1EXfTve5Brc7xk0fXo8fnllXgdfu6RI7igzc22q1O3QqlbDR5IyNdfyz4n4WXqmHmpGALeTLN758HofO5gwQDL+FjKYx6lq/Kfqd2vDNdWychRvlwomcVkxwrfGvCGPJmYVQ6cXJ4+9QbbpPenvkY5Xuj87FKJqfFI/lJvI1IcIKQx4HENFqPD9bntR/mHTR0kAs5XkXpeDDQxgpsLUUfvZZFaNAPg4fYNsk92cLRMNuKfKx5vcib78hyXkeGipvUz2dEJTqyEiwFujLHhgMjoRtXQv05enVtcq7YVXT4rELagIbS7osKrSo7P3t2IKfiGEjY32ea9xR9xKue5+sNVvOzS/pXkph9owuPz1T+z5ZOUm4nxmyhIIRfijSMXh8BFQOmdOMTWawDxRS7l+Eo5V5XYcg68+q1MZ5oaQ9E4jszVk2AmRCO23NGg3h/MtEXFxjPanTpiFMRMkY9zBV2RDdYdUQL9BkZW3ho1FaBlqAao9+IXUcSoyLHfMJiGORWvDkniDIx6i3UYeWtW+sBsLXiL0F0zVDfk1/pZtwyCDMpia13E37n1rfFOnGbAi09Ufdtqbn6OkwAxmlIqpC6HHscuc3URcJYXhCdoNPJjG+9pKAb3II5qM3oRpbA1MX970oYypTjnoYdNHVkVFpX9Gu2sNc0UloBJQgUUrs1uANZs0lTDEZJJWxr6UzUSaCvsp03TlTUxdIg9FXhHWM0qhrxGwD9fC6auf7c69KvYG2SwZL9ROglVWrAil5VqV3f8PpfWb/7VDjd/bGZ0kJsM/JLZn/YdfDiya1+PCaUTDsV5A3RPVmDN2Ml3nLfOuEZ3wdkVCqzwgWxF4wB3T3UFnmkVH8pPR3rzJWkF48T4AY9WMHc6acCjG4LdUoFLss7B9wannzyApmXljJWy4yR/GNVPjmwx0o978jZ8pDoQ7KjAkQJP9eLTQivKAw7dteZLvONK40jWmDGEdqDUat1WFRUZZsJdAWOvrs0jEC+BBuyyriXrvsuOhqpr3BkAJk6Vka6FWuSv+4lDNP/vhpHdvd9KUy8tuokb9EPFp+0Jyd+Z+zOhi+1c8Fi+zkM8tsWtbGAZbk0qdeCNVYkJyTkpfDaaKvrEbrWurFIrDwtL3IaEVnCkCvp8sQ7ZQqE3yjkUGhA/IVEuQHG5Cynjjr1f8y2RB5s4R+g3/xR06Mb5uiGa6damt2EL9lQNcVZ1xlP1xYs2Z9sXQ8lmuGP1rcTkVN2e4BaRZHgM3cTFUFzp++3ggT9bRGN4I/N7JBiE946dDduDMvi1EPgtumUdwhP7hqYsTtIUkERRCFVyscII2c6ZG+k5Xt8vckcy4qXzCIfQt7Ed2LfNfZjMNZK1ViIxg6xH0ePep1GyVJSQf1h+DKMgpj3A0izG38F9CpRMX4/09y6Djs5+A292Hlo/OTA/RPjRPbG1Vsgh3fJZCNjUZEoqhsKjkyFfaFTzR8PJpjJB5GMHm0bzi9pGKTgmIoJQ1tyXtfLhp5l3eQnfJFHZOWM0j0tNigMs2/KM3TlLrr86ffpItWyxJev2UCY5nJBlPM/rAAQJDWxfTTxm9N0Rt7UfMwJYUVU1qhOUGwQvLrrR/M4JVaYKEF4lZg9ZhCg4jQVivuPptbxA4RrtW7itmijY/8uFvQARlzW30jbRNcjfZnfs6Vf/m0KkxnB0GpGUMcJM6el1qV1GPF5eDG6a6g2GZOGEWAERN5PM/CN3TApebOY/z0fz1PgNjtHLQba6FhpqQ9Iu1KtrtsAUC7T34FQ/ah/KIJ1nB7fGrizthSuftXFb/Fji7sWf0Qi6+g5lyGRv814Qm8mS3U1g3lYZ46SY2XDWdiSKL7orJ4Vf2VLdl28BwwtnOMk/NYY1JrKLnpTuRV0AnewbTWGF/BBBmE6Xo8vAhdhDOlduYPgYYBFGwZcr1vqOZ0BiA94+g9O2c8VHhG7CvPih4TpEWrbunUTm7f1um7UNyqbTREhAzGUeZqYfHALL0fA9Tdet5EhOy4vH5HdfbJ/dq+q3S0Wly4bcQMW3p6GDuflIBK3jShDdORtIfz8WjLSxEUQALN7UfZ3LVzW9VToIKPVZLTASYfDaoUZHGaT0/xMEYl1u7bGZCNjHyAZLSzbOUoxqL+fYj+qvJFrsAvCrKjugR/IfDW9a+23KRsyrscykkvjXl6xPsSz3mYS3q8FJ4D7WHOErb3aknByorbs9LtDeTx+ebEVQzJIvkoyB/cEs4sbZ5DEGkSpnFzU7yUVTGg+GjhqI6Sa8fOR0nsLZlHWkduQADOmoP+H4Y9oDYvGWlnqEecIjdh386bOflkSo1TKJgY5klkU3kEpZiqf84/vUEQB6n0xSEQNr6iVHDOapLKDEmHNTUNk4cMNlnL6swY/Whpq2Z+nA++UMowz9Q/xGZ8q2jwX61jXLLd7V11txWxe/EfLypUEPhIlUtYMditT0MtGQdhcq5UTVyIxisKazAWcEm8XBmEdLhRJntCbLbRbNHKB01tIRISn6HbGNq5uZhqLUGK5AYuy40jbptORGHK6ID3yVca6zKDsyVlUdYnej6CyprF5WUaDa1hKx+9jSb0Nqv1xKNN7fr9SZbTtHrAOLLPwyv33OISsf5Cn7lnRwiCw1JVR5DfZxBO/uAfjJsbL6ZMxfOQTpdfaAYZyfseWZNRewzC16hGozJSJeANMOvHDqp1iXnH9tMERZnUjjAEGBxt00vICHjHKju/k6cAOpv06/3nwuCLO3m+112wjCubA372Gkyea40oPtAsWTyQ/gcFsChACQNiMiCoYhA7QO3hC3qQ+b0YJ9Izoj/+cLR1k7UoAjCS937kCK5E6z0vmi4xW2DhZaIfmdHN0VYI8Bq4Ex56K0Q6ftefdKv8hb9+ObKvJ31dAtfOlsgRzPOGuoj6jTW5ExnmksIo4ML64/vmwb18zc/LWYxKbj6tDMWHTuecIx1Y7uJLJeizX2Dgdjt/jm8Ku9LjI5Slu3OwQlhVuF+fCJB9vJyrf3Jmc6LxgwHAKlXGbbFKTr7Tig2jShzfyLPXqE6R7sg7GD1LcV+rH2s1Cxv1qVj5TJWRQhjS9k7r0rRV/vrDiI3BH610pU5p6YCjGhtOSpntD0MJ1i0ZE3pT+S59Xds+jBq9yEYvpdGesoCiw61YyTTcUgdWFJvJw1CrooGrnDN0UgKGPcZ/i03xMJQxPsZFgKNz0dfshKRJYEI2tPRFvtzxoNzjGtUuJu9WM61Z0YiduHg7yDdUUEi/QzARCIvdFkfR85EKD6NDjwzZsSMRSKPUOWCGIjqFQAnusbpSa5O6ySuCgTz4hdhb9M3CwSeGU8IOzz10VmzuVMKEdcvhHp15iaCnlz2SSgwTPgBExucljDxpHT2bwsafQfxak4cXqxG3Ez0gbAyYejxjXEKMIlybt5JZiYqikFSiZt+nlhya/VM2re/X8gUE3F/Hk/GTwBuahQMba4f/aHiw0mADJhKWefbyCxf5urPai1ear7w2KnSVyh/q8GG0YqyOraDzcSo74dEgeUJM0qz33q1j1p3j2ped1SdOU4FMnUljRMKcB9XkSLN2E2hsufsDe3Ud5+RtMo1XiKsf3OoduRdqc+iHhVWv8uc06LZ3biad6MEbOuklS7mJ+jdsLAK6jW6U+XXcMDpweFv+xUG3qSe4dXgF/p6zGyj57zgqRSNV8fjLIow1P6WfynCqSsvyJXm1XWwtkZkHs/hzeS8cge15xw0shJ+x54JFf3V45hgMYzwBDIx0Z9B44xR+p6iuFxoT70SEe1ykBvRiJl0sawPeH+pR1pzxmHRmfqePsVbMyQW7WU5j0mxyLFlnQCqeZ0HZHEXzoPC/K660jFjQbutUj+IMgd1Il/ieV/lo30oZtAiaQTorAI3MG0VBYBdyqrI/SlfaBZ75ffgriYzuoNcopX2qyJUZSMit4lGx4Y2g8T3S4R7AniQt0gJmxrKcfwbUt1Pso8YZPe4z/YdwrHpit6OtHbcVnJnBfJbYrQVgYpi4A1fYoyZIJ+qVExUAQdKyfs6LQjYXCgKX9PXrU2nmSmfRKwQScKrBbt6VgIfP3MTbhwY+0bKVVgfsZ99WO98ix4UQR5HBrI2NM+y22ItQ7vo4NkcY6pOSeP1QuMl74+zYRp8gsHYzu5QxU5vCP1egIsSGZaHBJaxwoRnim46D5dKbVZiPR7FaQVtvXi18pW1p2GIIFyX2vW/tg3J/Hfkck0BiQ6oGTH9A3HbFC1MmxWhkwMsAeecBVa5PSKpFBWftltWKUBoysgQyaWMRjrIIdNUvdsBn8RG4tMaSj2KIavd8+RkM+y8dME91qrp6L9WqJJ+aw8zHHU4UkgYGwJfnY3PM7adCfdBnpP7uYC1cj53MOEoaeeaGhGMbxGBxR2VD5BbwbdMW8eAIi1PLaTqTiT69Tmc0Lnm1fNdIdPn4DrBwbXLGQlodQ5JAGc+HydhXb3Z/sBWuc9A/B7ZJtrl7ErS5tgbPwOiAin3PpbHJcSiMnYZ2o1l0X+ksnV+Q+4KN69FusPVDJIK1OBFHh4Ib3++d/fbnSdzDY1FnlF2iQRMX5XNWUnCpjFN7nLEizyYo6xviI+PCfjVt8pK/ekRWDuArUp31nk2oG/3IPDqZA2XJTyxoD7aJrOPdDdIjNAaNkzwXWhlvYiRMgLZ1b99RxQ0JFf+6E/lQwMhlbJZhfIJ0jGVEVCxg9zvwZgNvLT4lQCQKoeNG7Yc6PdB4/WoCCUBSey+/gT8taeyTm6aMHmNnc8oDvSvE8Y3UO1raNdRk/zV+zHpkA11BatRLlKcFhLYqFfo3zpw/qNCuyGWe2kKG8WnfmmdC8vQN+CoABEiuM0HpXvPcgxoPxJBVuc0tnaNIZ8FUpBmNwydVTnk8TyjNutg6t0nuLW1nM0zNslMDNMpC0rWTFAnGDiR9WK7Rh6QAplAZ0HR3hBk843TxiauzjbXwUxrAbZeHKuz7qiQKUKnOzapSFSCRoUHRFlkxH9cQtFsrjGg9CllodgIpTNQQsZ2HyLsEf3R8KGwhq3aL2LzSEgQQlx/jEOIiuG5Er4TevCFc0eOgP6jCuiVeCmpkd3br+eNKQYzDypVjmBda31IuXs6fWnAKkXnr62191UKVFMeWQjUtdpBwLeftBF9Hvgl6p+PUEZopkWcevlb3nobQSb4Tn/RbnKVIrobMaRiiOSryxxpkfV0I7zBY+fZb2J9k9HQ2q29ae1/4IERJgkf4YhwxYdi0n23na0IFi8yA9JvU7ebxU08q9p9AEFMDmXGiOo50/RkYSgFkNKd7Pfora9ZUq7iQgz6yY1ZSAiWVF0SNOMM8E/58YUaFqScQYDMToHsZPTZRSiaBb1vjfegA1k4R+Pb9cNnGdaMBTWY/8trThKnH0UOzWxw/T+q1cLpZ83OBkHae0bY/yASCfgvzWS/nbrPo9X9mnRQbTsa5SmLjwCKMBHMhOJGBf7aUTevijHb39NXTecDLv8Sm0tJ2OxqvxhheBjBPUV4MdE5gRTQsUBUPkx8Dr7BMJuJYInVfpjyqc99E38chLC+XSydo+Yu3Ugi9SPycHBeg4bukler45qqRmF0bov2z0xCqOBUdvGDGb4WvnDWG4EhMTViQJJY/Yb1YglgQACt16SKO1bFJW+cZc8e43rlbcNHz34fBpJOVdVTtQbY7m2DzwxRfTuc1nhOSuADvzWQm0KSdbtx6wBrYXVHZA4b5XoEB+KJJFZ+Q9NEJXqomnZaaucTxBdPxe0uEM+m+LqmrXJ0u530eiRqh+hdSqq2X/amnU/nDbAFR3WGQFXEvXaKELByqq7FEQJ5IQEAomMV6EzB+Z5cjVGS/sqQE2a4fLyQrDEdLELaOoUNTAVdxz6v4TXludGPSEq/Dz7DCl7JYUN7Fbkkf5bBAcLiAWfLAg6wDpxCmmNSkoWCjXCwRDui3q0CB0Acquk/9+Uh5EM7wjuQmMXjyO2o7JYLAR7RXSduQoMO6C0XbXyADdkCVSjmEijt2Y2LeLuPsxXn4Z415bnyDpWiuy27/J+ebBr/vwiqDyIJwTmFwE6UHkWB9rZmFSQYXsX6UPVkAm3nkTp6QGtvMLuLRiYsz6nLmlQ/dbzUFOBa/CWB2FJCLVvLfxNS0U0rFU7Gc17lmizjlCivLB9/cPjXRk3jG5rZGoo+19/qbkSKWPgcMw5D5Vpr3RG0Z72kWZrEoJfij5sbPHIJOFdE+WnzMFnXyuvT/COdLr/tXe9XlkDtucds4PbQ9CoIt42WmoZx8Gr6SxARzjyrHgKtZjmLHNYih563dx7hzuYKF1F/ihTUR8RZj7bjLmHVspen3TMqVXVxxrn8zDxPFj4SiBJ+K2tkbvq9cMLCEj2Ko2HbEQJADnmXMLRK9rc6v6cpM0hjz8pSPfWb8ihba1ld0eaMGy9cOdJeZbA0uZI6GeSONIgQYfJVVWbKcVZXHys7sIyeSbr5k0LZIxVizw6xP7jfZh8yweQQASq+LpibRjQRcmFAvdV3xcN46T78tH7kPJx2Kj6xdhUjMSMFX9bQdve39pJXRL7inTgyPyM5uLakG5atCe7y4HKnc2CFtpCDKF52d9ZdEQsM1MSxhkmp3CuVn2pWUZsp4ZoeMILXt6krqF0IFSo5LmWKHJlA+Ws9w6BL9560WSQ94SsFFXT5zcoa7G7NVkMTl4+Ddj6DqG0gDgoTwCat3ZRNcRPlLQUT9SBBTJJutC63dL0kJOfC7JaLEQi1XCmFfIpep9LxnVTQslvMFxKU+uw8RJfEdyUjAZx6Snz4fWp2i4XjrW9OlRoglVLLJkb+K3vDFyXZ24BYGo8aRetKTCYt4aE3UNezNshp71YUADlDSsjFVHmXROJnCc6PJoDBes1f7JzXKXoYw0n6XawnvuzKee659w47AZGeCouWkqB+KXjoQCpVoDeZrRxMc6B9jH8ATdDUI943i0h6ArlyVd2PTNK0L1cxY/hkrwhU+r9ElGpTAtv65dPsEAq7hG+ok70MOpeinWVfpku1Bl1cHw2iQ4DLaRiZ3oWFfibu690X3GQwajflZGipiXoD2+L27psHAbw5oamtE8NuyCn8NkE5TpHX99zkWS3rcnv3YRVDpaRTtN/fp9NcFd6zHDErdrVMKL7VBqei6DP/scv8gx1ftMhkptnEy4v8paHJUNsOf0J4lNgqlFE0BnjIo/dqwkq8KlujvuWAiEaUXQHnqc3PKkdFpysvmg6J75pP4YUy24KFy1kt28mVHgk86Yim/NdrgVDV6ubg0ewj3bTgLy1uuLBD60ZHkUnTiB74QpMaDQEfRBVo7/M9Bfg5TCI3b0f7kVW+3yF9I7x3fWm9ksLSuP9tkapLCmhXIA+FoAXov6ozIy+LlAI5V8Y+IMvWI2q2jkrN0m0rpxGvgMmbg1RdLWYUZhbZIvrgNmJW+2lN1q/3d1pvV2qMgSoRvFF5c3MUB+1p690yVvhvdiEubCmRcLRfIlsBICS8obEMShQj+D33UfJDt9pC04CAZtVQyQS3k/4bCbcjoCE28azlhl2A9S72y+NpXFnxdtqf3EPYOUWy/2EG2oqoYSSjfklA5fUQoRBkbgTNhMkNcR1en0MZlhu0OGOn3WjFBLk6st+OSmKExZ20j3sf6b9sf45qDIM52YcV9PM2pKfRLaiHb6JNa4nTY7MCWTCJb2X92nO5xDTimP8PWwvSLjuBLEB2bks5apKUuDra/Xsf55m6LKjopjbw0LxOImNV5U8HXlT4eh3hKNPr+eVLDSkjAi/2tELFcjGT9ugty/lgQdbDnxCA0cfEH8GpUfV9F6M7Bc25VDk5MhEGtmiHk4ZI5AIbIU2+b4EJ6ZiiBA3OwhbFeaevS0LOVNqfpgPAH+jqQCsyAnleqrzal7FZGvZEtbvaz6Y9fQH6ZCwpRWUTjY=
Variant 0
DifficultyLevel
721
Question
What is the value of x given 27x + 7 = 4x − 5?
Worked Solution
|
|
27x + 7 |
= 4x − 5 |
7x + 14 |
= 8x − 10 |
∴x |
= 24 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the value of $\large x$ given $\ \dfrac{7}{2}\large x$ + 7 = 4$\large x$ $−$ 5? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{7}{2}\large x$ + 7 | \= $4\large x$ $-$ 5 |
| $7\large x$ + 14 | \= $8\large x$ $-$ 10 |
| $\therefore \large x$| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 24 | |
U2FsdGVkX19P5PY6LFExGbgbPHyVdTlUZJVUZgQ6TcF18cRk75Vq99uajkKC8bkWFUvTLyYPyup22B+kEaIWNvnOaW4Pmzqf41aQCj8Oi6uWn0+pIb4W1KYcJKUem15pDfsSe4uC7zzpt0IvVoWHlo54kbFzOOdAkjXpNFiL0uQXM+QX3d2ovMcILQXaCuK9gEG/GCogHSZBODp+j8OsG5fWwJRITk483GcTnnb7aoMIoAv/BC7NQoJYXdOqEUod+ZeiDFBGKN2wbtdnnbfLyUKexXTrU/ftRhieAhVjvp0k9tzB9lzJQRF7xZZrcG+dIkt5LlCRTDo4bTuCuXR884Zcp6krwbYG1Tq4QwcnpDK4WPRWWU+1p5CwQpMXsrXYWcowkuTCnWJVEQvufemwACRMHIKy/wneSZJU+R+oiHFEXIrjWmrY6WotdnZzYAc2rsDQYWQQ/tbXPekI0qXqZEMM0cfK77uSgMCslwSEeGIKq/vsGHlua57qF6ktcuXGtr7gFpVHL0m1Wu48s/RYkVLxuDV0+u7D0x3C4mV30oHz+f/uTieXPdWDVe1O8WgG0Dl/JglXbVxEciYzG6h3FA/2ObIlIE+5hSFzOY3FcjqbCBclJ/8dmlusREoAWczUFZJFk/IRww4bHY+Uf0W3X3Rof5ClAQGUZCykxVCqsrI254iQTxkmlNT7vDf76f2zdy5WcBlCnw3k2YihOLz8TuAnita/JpZSbGRo5yWmg3xYqvhGWsaaqVrPqS1xt2dvgaVcodRr63gGlTLe4UT/x5dVzi3RSf8DNlr27Mpiia26fJ+0nM8LxPi9m2BEBN40ywqdtGIrLUkb8PIfs45fGcT9jVJNoby0PitCoQK8NYmxCyZ2vhxbCslsR4aiOdZSsDdKyaKobhSOcXNFdWrXcQ8GcMQDCvBnutQbaKnQ4dhYcz0BFSmPOeSijBqQC+VMSJeJP1jsvAktnHr+CMVtyWv8C05M6vDwDYep2NRhHo84ZgKM27hoNrOoCmEEPngQcsCvXoxG8oWK+Sdrsn6sUOmj1UL1lK/Yfq+pqvs+mFWsPCcJZJQTHrUpbWj62wLYo3mDtfSJ25mte9YcfLSwigiU/fvxFHywlQcIavmp7+hRIfBhcMy8qfh1XHuJvP3kMPtE6rMTXF0wyTKlv313oaSuhpCJlb3ouL8okIiJ8H4LFJ1ZmMZO8d8ctHX4h1cVr0WMqtko05dyU5aNum5rCiAUNdas6LO+8U0IhYf1LGSoYinOqa9cVfUlU0PjXkK9tPiyVIAfGR6O6SSlw8bEDOeREVJ/biily+2UwwBFGoPB74yd+Rp6cQnKrL36Tzs7xohY7C61oRH8E5kKtIaJ89Xtzcv0LB7HYNdB6bC5CABr53ZVoPiPsz129R5KzHiFAsR5Bu6v26rS52oO4gXnTVwAujywlZ4VeIRmSRy1AlKtxWJzbmYBrb6Owwk/qAvsMycg0vgx8gVVB2C4Wnh51YRmvPWoUSmUybEiP9rmdXOTJN8EZWnSWRBgs+VeojlbgIUQgves/YUfjeXwlJu0pi8UPiG3mLov72IS+NIx1zdYr/jV4lwcXgxLWwj2rBdK/mwQvo1CtfNaQFwfPBXQF9YIPlWc44Pxauj8zGQtEcwpluwBAcCY0H0Q3hJDnAEDj5rA8HSSamF4KwQjPDuV75Rb5EWQkZ+xpSZCQD7CRzqcIdeXI5pN+9q/hD2qh0heTDVHDNRMWij6BmfqZXmo9+TqlCJ5+/wqXqWpg7DUHBPFZ6QzTzoa4tzZa975ZOEHNZCQZb5FHSRMs/WtKVSlUXPnucjTO+OAxam8scDXcXDH0Qv0ChPGOjNIAmyiTkGXTCGfmWBwlxc5vlUokf++x5VBztpTDX5cHi1Q8Hge22dwVBFHbo3OmxLEL71tlno0S15Ut9YZxLhKQHqmxaWgGXnfUF659vqcRpE5/T+BiVuqJ/Sxh0runAWEYvuZR9vIrafPswWjSALZ3qRt09Z5t4rr6l2QtrMFO/PPqxDg4du/mINNSqlP4jmuFGIMr99PrwAfW2SYsPsaoL1lQ61nWrOR16CpX9304RikM70RLg4PaxWJMzoVowzcdmk7g5FRHLOplN8MfEzEnyo92b1ySIQ24z4oXfgM/6mfFsAOs69/Bx6EiVvDYKY+gKs7ieVJOlBeglGlEAkTFwjb6m9m3hKdF8ugmv/mYEDl+B5XT6bj9tMLej8to4TpR4SwHO9tyqGsAGK9HLNEHDFTipYuUWk2SEzlb0jiTG6kcxE9fiXqcLALB+3EL6GDdBpjpC1hnbpcLWojjYY/MCZQo7R3XyJEm86Qs7+BvIlaPAy0oZ3ZiiexO2lF7wcmI8Wh9EwyBVMDLoLUbq0Ae8qvDoAyQ2vW6wtYjBFGLNsbPCCiTlVX8CGTDrevOUM1ka0evdiuYZ6jhg7ESE4EY2IFCFrSEZj6MrVa5K2p6F0Kw9WLdGC7kEpmerzR/2d+qkr0UCi8APo0tTFX5qWbXhAEL+fowwAvMwSqS/VFDl3IQ1nvIWLqBxYZoyWu7fLxfSWz4Y40poNNJ43DSfC3xSMBXLNYEIzI5DSZyrAYvtEA62zHsR11PC3AwBhprdMhEPwF7JbNDR0YsC7zv1rKPnxpuWNki2zpNYmG53BNfJXBJaIjIBPPvBc5Aa4c125jCsgoCPiyhwxVFKJTLMEdHdiHUE+DQsdkHZkEFWQvLbvc1jfwakQuTq3N4RxgiKhYo67FMmvDk6/XO1BjlhfmIwLuI00q2pb+2rcMw/kHXtGiZXB0DMBJDRYoFKLpm+/e6N+OoI4tLUUE+4n8Wrr/Yp/rjTUimw5ZjKlyCm1Z3n1AaMRBkUq4L6ax46ot87BCkrpwRypLJyD4VRQxcD51eSVHkSqLcVlv+EYDcTVWe9cQulDmhQvkP+pTpsfw+N24fDVHuFb4pgd93YA3GY+5pQ3N1idM+ARFC/Q7CSAJQS5Q4yJjslKVs8kzYIEQTxQrlK34QmNBWTQ/5fjP/nRVQlXHfAE5w7p+j3YQHLR7hE7Pqgxc0S+hp35CWHQyIcZlFG6RGqkv6VkbMGGl6e+RamHII8qhtHG5pfLaxmqjX0DxMIuW5Zwy1VZcabNadO1MSx498CJ9yfPfhZnfIsiPTrQSeAsKS9zfyJCDr3Yh7op4mk3zCv+9hX+9Yp9I1D6SFHN4PspPs4lePqQRjuWxoD/AZL8LoS3XfGwYvTHF34UWzwspg+2N6UVDfy0mbFtbOEmPRrXW/7wlznY8OYXuN6M1e6AI2+BUGe2a26yld0iDH4iMulZtiwZQxHRiorIV0aPXAXszI0dLBt3xRZQCNOWzhnnYIjsnwK3Qgwff+QezGexzAAxaqzMb7alTeEEIZ+2OK6rQZkK2iINJxYJ0ljkiuefV8RjFY7Brs5UwcBXpSkij+LOsHuPgbRd43HFrXWIhB1Koj+SGjtNUHiUYXxEpxrG927DKsH4+buMNUy4lRLEYBq50qoidX+pps10Kxuh+DsM5girqfWoGwADCKiDzU77qLCrV1NGW4qpFHGwS/Q1oCf25oFEsd7rL8fW4M8+lMyjShhqjXNAktsSZ4WoIAxq1FSQmCIcG+JQuOWGfecfPuxAq3eHG+CZmlCpJvXAJ01tf58kIcngK2L6EEmPp+lfJR+iqzrK52l1DJhNo6OWmj8PrC8c9SxZe+lFMDQdPAnq8JMMPem1N70sOoUtKOmx9LoZIrKLIrs69PpoZXUvwsCB/gy/egfCzWdhiJ27KlZo64tXd9os916qFJZQYOI/qnExBg4YUKORH0TvTEYqvGGxpNrjmUw6OtNikqrzT7+PKRnIrGIrjfh2bhuw+wx52aAwr70jIxYuyHdnZeQ01Jd3ZAcsS2qpptaiAdOe77uUgRAxy1piJhVNsS8Ci76G+coqHU9qdsu6Dbu5A5EGSE66W6cLGRJCYAztwnWKmVVabYuTnDbxNtstD2PzuO6cI6OTOUB7MMmSS+AelKr8KbO7mXGYroMHCkqJnenS5VNRTTarqCC9DmdPMnGVYd8xNo643T5XVP9dx7H5buAPV7qIybkP4tlHqAzB5uNiamYV2QnBmjzrIG6JrnXox2/ZTfrPTur4dhYkkd/0saO2XtovtPNylAjkWnL6FGXh4qGapHfpgX5dKY+cxEv38CaO5EVNbQq4JdIiUodB0uuHpWDJQxCYuAsg4cd5pww2HDYbHEmzcE7jcC6ia3BKyHwdwnSqP9aMchCZUk8aR73rpwXLhVtYNULk/98Z/O26p0X7BNjhfg0rzidF4yqaxVWHuLLz1M39/pO0obLbT7q+YMNaYWZ+GVyBLH9BgJ3nTPvanzLW5HYrm63RJPzf9fgPg+OyDUOLiA1IA99slpu6YdzDYsKav1Ho90wsWFbj4XRuvXuTydrF+avotQDPszez+4iygcZmhNvuvXV5tnDbOZfsYl9bjNrcBSAejN07Yztn63ASfsUjYXE1q20VTc4LP2mpXP3XhmvRl5DsCyZEr4Go87ywVcBL03PblpipscK1ANtgh8H2ZZN+6dz40Mp3WTMy0jMwerUR+dUzY14LyRG5nWBqU8oUqUDi4PKj8pKTPZBdkQ5cn4bRcZzOVuspIDCpjtCUKeJiecqRd/Z1tJy0qtdJZ9CcrEY7trtF+I/7VETy/LjZJlqvLtdYEyYd5i4cdpNeozphEWUETFThdH5ogtcP97NayGLZK45RX6LE+TeO2uAL5P2a4oenpuq5OK06dRESEfRmj36roTp6Mz1SVXvQ9fXlbxHJ4NQOKV08yMsaGoMNEMU/eY0HGs3Ccp9Pb2Jn2reV9ZGfwhpz725hz22Kg2IVR1c1DFI2Yw1hbQLUCzhFmmnjufdvdYRVAuua9VXsguouYE/GoA5xvBHCfIKhKDYinK60z8YWMoUkAWtCgiSu4tnJ9PGs5/2ZmhvzG7Gxep0VK9zn04dKuE7nC/StEP2Cnnf9uXYc8Aqhddlz9tkc5IF0eTGxOKefhOvjIYlMDIkZ1zU5ZZ/dnlcb7eehGkBpVxsSt4g5IotOIzDloCwQXNT7iV6Vtbuk5KWT5SRgoUYgIZwmudopd9U1NWdXNH1lzU1lfXJF0zqlhMNCT5uwQep66vbDWiHcfHM+dtTwn/6Zozo//wrRwG+9joLscRIYOVDkCcKWEGK8UqPg3Umu46rFd5Ij5aUcsUwjw4F6UTy559qsXO8PEwyVBpejyrPPIiLl9MmCket8KcbTIhOIOTB/Hln8LYcNDGVLSGVET3XFmoUvUBV2D+3Zj2Les0l88xrD17b59aA0wO3wsqX8/yvM5KdICdOHcJ04pSFr7H/ppTrvLun7UJHLKpKiZ/qPd8jMN5twtLhADraVOKNQdFHRaUundtiS0YEgnahP85VBUTwOREphsQKnnc1AQbzopHqBQEQc2ne6pVzYQm7ZzP7WVKrL+ePcITJpZ2yaIY+Bl62a/CI7JF88nxZ6oWJjbq6X/zxpWBMK0hoUtAKGEALVilyByjlJhpavJBdKQPrtMEDf1fDaEvLpRXHI+MQ803+Zg6bWCFsEZTKAprty+XOn94XT/fFoG1l3flygtCHAKmM6ID0HXU+rt2WSykvIUshEG+8TwDfteWDdoQRPCgq7pzGj7v81uo7u7NlGLGCVbVUFArnHbRJMdbH2aOD71cpRg1WLjZIU9mS41Erb5UT8WS7HElVgvnQuGuVyotUxcIL+ZyzMsOQ5cALuXHvDlXB5uk9JGEz+OOCU6XGz3micXPva/lglrRbO1NDZnSCL7O39Ka0l+N1GQSYXQMqHuwykX7J/vggrOsGKy1scEEYdClvqFQr3+YbqKUY2fGhiQtmWV4Y8Y4FWk4NbiOpD/bEy5TvOmQ0GKXAA4Jq0slj9zSKwTit/Efw4M+A3hlF6lQHIm0luTlpOYxihWxfLbmsFJcYrfCcB18OMbnpMFKqyXWc8wrzLxll8B2s/5XIqDi5CA/mSm5WzbuOZSrcOsPMJPKHTaMnExT5ojqQxxX89ixfK8zFaZYb2M/AvFhLhHX6bQUa0TDJLe7igoE3zB1UaHV8HhhQAb8a9nnzT9QgnMnlomGLkycAmdHWwiAOVNw+HuErR+Pjxvjn+5p1DCm5MBjVDWHgdO1wzof4QqxR8DqMB6n8UEl+jd/aPRMhrU68zHZU7s+9csIjLYWQaFeaV2ocbKuQYd8UMbtwdRMEmlMfD9gjcaRpoNA6JGt0JWT9vmw/dLiDyklpm7PwApz950KmfAyNOYbmuFm/1SWykRYhmTLF18BgdZvcb7Van5qv2GRSqnKkBVPddfsE/nApCHx87kE91CYCC4qwkuYsii9RND718bHcgbazokx8MCl5M3iOr753m7Gml1AhfFINT54Nq4E8/pqPC60iiaX0tZPvMdX4wQ9sd/6ibldb/P9VfmtaA8vJNICSarmoNBbvTO6rFUgjvvOrYYVyJivlY0qdN4wYGDQPXLig0VTuYOM7PIA27yppzDmwG/DJZpZVpaRtB8Zoi4PvvTEaM8crWIDkbuHCvnmRr+ktEwErcPqN6eXHXPHs5EjVGosHps8BQsfow/ALgjffvKS8RUW6wTaZ3lPW1nSQK9aqrOVVsvljVl4yXXKTNvFkF/5bjUIe1vaCcX4zNhD8/nWMVd58S+p/PaKdhSFFa61PKN6hO37i7X+bzLu7a286cZCbPZSatc4ooexLepn8/h14RUetQo3558Wkjw5gSQ6bsbO4eKdHU1zQ+mHfUc9I6aor+8ye9ohm3KGy3xWYmSoj37VDa2gNMs2315slWpsmZxt+gR7ATWMU6tBgFPOaLl0eWTbqA0R/igEA7d9njXVM+5Ooe00/1qRqNRlx39U12dEC7wp3oy2mKRNsALIE8uMZTlkLXa3t92uQhnipjHws9RmW6QSWvZHWfWEP+C+aCkz4Q42kKfa2TzO06luZtfVKS77eFPVmcO+BN7y1r6uXvrWTpyREvuOxC7Trbbx7TE6avx/fvtC2FGomKepvDF96HW5G8caVdL1mZ9jwpIuyA3XgvHj0+MzUUBsEzozchIev14qey1FrXr0ABf9ffiuvSY9Crxijy4DZcuzcKp34C0Av81Ms7MBukvaHTqB7No5ZHJBrZ310861o3EFbDzuWlTdrwg1O/XyzzZoU0LLFuEuOEnVaGV0jTMATEQGf2lro3gRq+wtgCQh5kbdJQBn2NyYFchm+guDApYfeGAN2BZZ4lMA3vaYcWwOo7Ake4CwxaZnHSyAWIm1SPtqwya51hzwo5CxvZYGnA3y0pZFBDZoJcONVnjwBi8Zi5coQFY0Yjr1swd5zF9p+6BQYW/QD26viuXjat3ITSZwgeL2y/bbr6TcfXdiWpGgBnkeaOTAMEGVU6H37mLeSdPCtm+rbPetA7NF4sqqNpoYuvSr6rRK0j4KPNzh6cvWAgPKylFTVRrkzBQsAt61V8a80TPQIgfO8f56R+EPCrrHRN75P1phG5n5VlTXaMzZvEAjrsaLqu3thZgMHIg9xj8rgFqB4jWBLxhWHyYfweeRqwvPxvh/OGO82S2sxDpXacIPcu5jIaQdF++cjOzLDGz5bFdn/G/I3YADxML8ZUYOI/8/mg1NG/E/Nfl0qplk0k3NcU8oxpK0lWSUpI+GVZ+nbc8lchdE451gSgtOWa716cxvYs5tMhbdL2FHvBct/fOsQr9cnrZih/u6ULMLAavCva6Zu3CeRih3su1JNWmMXA4BMreByOY4+/x9dcmTEfpjEBnFsVaHGSb2jnVh6mNab2pDpFLkaNIkKf8IUnDRcUqhzeqv69ug8iYhRUUk+R0K9e/ah74fQeav+ei+N9y1GPSPD0vUrOcV1GANz6vuMilaVNrR1jzMxY9uwJI10BkkKhZCckgrgVeyjZazg9sCxKb2facL59eUU82BGwUbC6Yi3DH1plufxtH6CQoTt0/thuSNAm7l0u9uHKqCFnGeU9opSHtXby2pbRwhpYRydqA2kttuOVK0ntJC6Grqzj0Nw+7xCvzqn5+q+U0F1kxNv4uYeP32t5TGW+1JHupZVHjq1Vaa8Tv0aeCdYbKBZxp0Tcnb92QSmywf4qCmeh111tIE9dD+259EAvzIlvPY29wbW3GLjiN4d5+2RzfDlPT+ek4z3UzNXAi32MGIMy2cV7nr3gm4SMcVRHte6wDpmczboRNIloBkScvzjRYYmt7+Z/J/GpRSpjHVJ2iCjKUx+eRwT4cMMEAYmhp3hF4iQFUGNahBaqg8CLjzgC9agt5EswUUXjhzH7LWnT6+gorYUdhIvdaU9xjpNp/bruYIHkPby2ia8b6e2cHzP557BHixlCelXoILIB79VtzfzyTCf+9yOURAuCan6JmGZ0U3Ps4rCqCFIQLaIGxMYonn1D5ydtQOfPGRs+bkgsgzGawo8BGeynrYweElOezrOLojIBBNNzqKNmbVP/a8s/j0b90RFhps5unVnjNuOv/wCgcHP8JlDqZkxXzl6T+BsMmFtUSaB5Orm6jEjsCSRY3wRvA2dqPwREUXLTlWTJunhWMcxfq+JBqUNs5onIWPdpbToEKJfBkXpXiUCU54743gjdD01maWJgd1PHu5AFOX57AE+ahUJaQBGPqZiZH3+jO9lno/Fx2VIZCqQ0keS8GsKWw6wmMmtT9dhhV1Ksc3vwQbOyI6/KzVr0i4NKRFnOyctJ61tO3j1sCPf0EiCkIiWg72dyXkG6gXnMBhccRsB3lSswwkSHykwz/QmM2TZ4KGRAGNJxpSGsvlwLq3T+Hsybqlf/Yt6X5fLdH6iXiFNJOoSbPn6XEErcg8SLFClAbBKOcJ3wGZVe9DyjrPAkmgWv+49uhoXMDdKVELxfi2WWQaJ6QKjrmVan8MR6YWyY+wXq4OF7+Xjf54ixvpjC3rzEN0ihid0d00eZ8fsEGdquStO2hZmngHXlycoBp5kfrrHU/TlZcV9W+acJX7OMP+kpfKxb77ftl6EOzyYjJQd8iZdckqA1aOdrlqd3dUZkI46VwBwxlB6FNEdTNzPrkftok+sUmRG0R+e9S8MdTdiBHlInX6QhW5RdJXmGa2KgBjy6YBuRy+i+Rnq5gJJz7s8amNXn+vFck6R8htvgSpy9AGI9DaBDVOBaXAIEQegAXMydGQDSZf8Bs2WzXJTm5mE0YhSGts1zAmHaI0taoRY7txVwaqIJ37MCSWnph9rdd8BT9Y1YWXzBKd1ZoRZJ/SAHwoIC9MJy9Qpfk2Vu/qjfWq66rIyuCOBzpBdjxF0WBH/rjBLYOtE9a8Y7AUOFR6GXA952Emfu4YQLqYzFZseLL0YbA15wJqGn6edraMRDgAHqyeB++NnMaRVxjnhGMCSMHsMa652P7xIaU8LGWEKP3TGVw7jULazt6/gw6r0mXzpjg3/CDI83x1A5rWL5aNCQKC5nP8QUCZM0Ye8EANK/yeFeDjFy1hD5oQTk1upAcxfB2bnbUYIQntC/LIukpKTmvVoFu6WLURmLwOqUObPUI1taariMmmWxKE2EUDnh3hhX/vnITyC4NtTKohcSoZ21vy6F9kfKjUxF7tAE7j+2BfBVqcY1VMHhmvl1EyxPy4PEZtFCsi0faZObWAjHSIGSZl0mVN9Xuk1XA2dRWC7G4ZZfSJqBoxfCoYDQVmv1UFNYwIJppUECkYVZsBSVOMu4X+Cpr1Ye8gu9stE6GHOe49VAncb2Jage7cIUVcl91fbpuVISPgMo6oyOlhgUVXUC1UQxSEA1Q0UDEIYOebpLYkCRGd05A0ypbPaSbfs2TVYfdnIrvVGTmYnzk3/neaGGdWBEy3uZ1nV/S6yUIaWDmgKaPa2WrDhZpJb78WeRqqMD6dyzPTS1i6UpUpg8fXcRIeTCRZ58zBzd4f/2r2knQNU7XPSzlZnLoMZsxlAIT1vEFgzAVUufQLT1/HGi2dOPuCFUq/wdB9epJ9ah/n7uHVj0/6G+ngKhHysbleQsjDuQSvMo1JBLKkiUGOYRVoq31HiRSxTLv3XxQDKgK1sFHRGIjDuHwzK622supTkYEjBvsR0taY5+0C711RBEO8B9rI5WLbMv+Coy4SgNSkPhYqlHMm1bDOvTKCUlWqWHRfyJxkpDT/Am97BBhyTvY+2T94yQ7+QvXhi32cZuP/WsY8mjZj9ptuqiq3+PwcJ2SOTuUH+O29p+WeHnkJRxQxBY2lxKzo9Vx5x+miNMb0LdQ64ThCehpNvo0SYJ1DwHcUwhxnH4I5h5G9Aw+VKLoj1JUZ2cRrjNCQObueu6zlLqD5g/pT59z9fPkFD6Rh9xxrdzlDmJnGicRk/kiGRUVv5DOXexsEkN2pw9kipRojy1PlIhcFvNu3VxkWDX1Q2EIwwhcadOPOlkGnnSS23Nkth2/vxFiWe+uZxcZi9FhJu7oS9cGlTF3FRDRJa+IyBcf/0qaObNdv/Vd4v2BJ+mchV3kXr135WC+DHqd8QGWlUXlQuP15ZMAa19TyWCHJkiMGla2vpTK419CwAzdEPrzyWvO8FlIfb2MbZWx0jpvo2aAykOBNr0PuMHLobLD3gU4d7Pcn9W4kVCQ5HQJle1Da+3X7hyAdvEtupXU9anWFhxr8CpKkzvdd/6YqohEWQNylGPoe3tqFxihGQSKHm1Ubbn3Wvgk1AYGUmMnOHq4tCLm84dRSWdWY2UPHMzmFxhUJhiQDbzFDQcjrUNv6jXrtUKHgZz14I9czBSyOtDLO9bSJv//VUjAQzXlok9NxFhaOFnT1su3T3ItFD33aSGYUYR7a4Kr3dTLlJHITA9D7lso+wWBxWlk1K+nN2qgvJdCXjzUD/UGQui/SyaV41TNObMykykV91vAXYgLdd8VNEkCR/1755mpF7i+urvwq8S55SCpLppb3bLF9Tpxfc54qwCZTtbI1PFyvc0P/GpRGnr/uCMFwa2yNts55H7iKa60rJG8MoxBmJsGGBIazXokfckCXQtrKi7W0SWfokzGGGw9fHbipk6QUKNHXVx1owNrA8MNo6mr6Ela6gNtk+80mttfW5zlPHhttxIPhQg7lcYUqBlU+J1n6SLkZY3sLemKSv9FypRx+hgZcnxgjHIG673wQ3A86YjNf0EmUgMUfHigShOaVHVH19I48uS4flhCdoWlYNMGbTYgxrN9x06ArLQqPT0NnHAsf+bnp2MQLba/FyVYMrzOXbGqu4nRnsUdhAtDrWT62XLswjIsCc2f2u9ygWF4s41BjBFsEnU9yDRNM79l+0zj8luNSrwyXNh0Nrh/Wp0QYrhWTPPeLVDSuITIsDe+0TAafukZOb37ufa4tbZS0vbDkramax58WM4OB88V4oYhg5XmLRCDpJNa5WDVvqz2nvicdG4wGgaXoy/HUY9L+MUvGuc/Pce5GpLHGIcLPWqog9PeR3hc/nh+z/ekTT92ijpP2TxC/QztThIEVnzwWovIf9k69bDUQLfdbtdVne02UwXthHLwal5eHZ6xbaUmOZLsLBmViwOB2F38lc2eAsd7C0wbT0IIomd+uU8EJxChd7fpTXOjjZWsN2N224DggclO8FgsXMMlLYfB+rF0CgRExpRcHQVi7oG/Vkf4QS5Zq3QVgm0bNeAjtmCJk8s5fKl4NGaI6y/e2jy0KBwHe2aKJot8hg5oC12lFk7gS38rc5xB0wTOVnDtDHbnwAfliDb02UhRzRiDwOOC2w3UzCGFPporcrfoCrascE9GN32G9cQQEEqErs8MeAPLPZDr9sbYnIuQBvM9lYePAJIn7mf6TFw62QXW5lYQ/SuPRQvJmR6ApescbS7kf4I71Dl8Wk1FPnV5rRxbYEAarfnB6qZU+UFqCBo6kAzfa42MNXbSdKCE7DT2CF5SFFEBdyC1dy58shgwnbKlJjmstyRN1TTQljsIrkKDP8RoHSx6T90nDDgMgP18eg9fbaM5j3kKktwiuZeB8AjFzp3ulgXQZn+ei6rXRtzEmwEHjsUakT1ZybbCI8MLXTuHKrVmshUjZpMMYHFnl01KwVViL2ll0BPIkiC6gNC41MJyjirRfE3WGBT+LBYUVRWE/3r0f7E3O8QT3omsET32hE/yyOYecYW5onJQ1tPfgqSH73yPrF919ZOn+Qz1E/vhGknb1db+yWRc0eVCHlsuiXq0Wn/Khke3h9mY8ujvd86HhrnivQ+tj/73tVo8yjOG4V+0Kik5gYDObyXCpD9v1BtFt5h7BIDmTX/ESrZk/zf4bqGBug7sT7GkjhuKe2nGgYGYP1/KHRb0a2wZBNWCVlAa2RLGYhwmPGlXqc7QMfP3a8A4CfRmQb8Ao6UwGHyRnUxBaWcvV9boZ75RxlIqH9sXMIPaW3SIaXMriY6LJG2pe2zkmAnzxxGGMl3933Hw202TZUAbLi0ZAmoawRCpgBpyEj5MUiCkDpQHOC1nqaGJIcjOUPFundYbktglw6K1eqAjUv0AgkLiTIAu23vr4q9pO23Xpo9C0EJXmmqG7xDwWXnq+CZwDEOCu+A/qvQCSxv1nJLq3oiu+jvi/jM2Op5Fg/y+MCGS+g11zJlHHg7TGJ3QCfnql6d25sGXp07g4xDfxpyjjlUxxwvk0yxLme/nxDOiIufIGtRovUs0W1OIjC4EB6d+hbcb6WplKMWtzQPqcK5AJVtrZLTrixAtb7MN21ZSkr1yFfkGQVePzfo0xOeArC+lGMbTA2bcE2KuGg==
Variant 1
DifficultyLevel
723
Question
What is the value of x given 34x + 7 = 4x − 17?
Worked Solution
|
|
34x + 7 |
= 4x − 17 |
4x + 21 |
= 12x − 51 |
8x |
= 72 |
∴x |
= 9 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the value of $\large x$ given $\ \dfrac{4}{3}\large x$ + 7 = 4$\large x$ $−$ 17? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{4}{3}\large x$ + 7 | \= $4\large x$ $-$ 17 |
| $4\large x$ + 21 | \= $12\large x$ $-$ 51 |
| $8\large x$ | \= 72 |
| $\therefore \large x$| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 9 | |
U2FsdGVkX1+gl5RP0ZHpY0erCqtlDIf9Qs54BIVw6RAxnpBCwUuMzzMefB/+umfl3HUXeQfSfTYP9kUrAYYcVBEljATE2gEJu9w/qoiNw7TiTnnU9efTNCmzOZMkbssFsbcsrVgoUU8xfm8c5AjgfSW/aGKUphmIk4CaRX/Wjf/+iZlQuQnpCl67woxn15qa8TsJw4dUiZaTPvng6alwugu1zbosbesmmc0Gmo5zK3jCv/u+r5x5ng5Cbla4z3tjPEJHd5BsGH7eYgnMbmqiOh3I7G6E26YrGQIu2CPP7xLDN2ligtDZgJGGypKCZFT4yO5JfDuvoZoIZdflq4aMrsij1etomriz9OE/ptaPZE2Y944QfNrnjOwkRLWrDaRUiyJQC0WSBEuVXTfUeVgGt1XhwwBXf6bSxoSwJh8X2r08w1sUrmlS2WunxnocWrQklrD27eveWYnnphKDttPa59QVxDXN1MuSltwj581HUp5M8UOwAm7qGHgp/t/Ky8XiM1EGk2mrKbtbaOccczPJ3LigNiyyu/ZYy4t60sGwOzzbIyu/Z5VuejI6i8Zg6MpdH5zK7ihuzZ5x+5a5kjHN803JMu63fnzST0lkPYSNce4VYdHDW79sYWMIVPWk8vnePrjMDMUQ8hGjX0RIY10FCmbN2RCFwJJ7EkcJdkl2X6yaHoPwwh+CToMc0fWdgDVXgs+vA+IVwDGaSB9WjcmVsdb7Ocx/nR+FOYmOJAeCeZ+Tg2nGY0B+qrOe851ejrmqVOzKM4OJpA1NYzvHfxu9f3ckCZ2gV1kXZ0UqadQCMSwZxvTtp1Iw5/dSQP348E7w11yxfUK67T6wavzVTLVQtfEWNdk8BRfBILQ7lV3tDIuia0jLT7t0JiA//3B7d1CnM4qtCaPKS/2bFFZI5ifoQ9QjpPQkpylBKvngdcprFti28Ag23Mfk1lisno1wI/8hoL/nDYNiAVJjgdLwLK2eMevmKuk08BxaTCj4FSPaUwLsFZidzpS/VFTyMDLOfLlBncaLWZS9TXtD/RHOzu6W3d0nw1nbEiMStT0tVwn9tcjQrUIv/qglTl9kzAUoVRbGur7LsBOVtdF3YTKUiAZjuWsilNmZwwLBcqM5PcyUsgnOtQD13HC7Iwdv1lWmDyW/8IxvhH/kqoufYf8hPamyW0toJpnqfeIxIW4XsAId3f/yxpSm0uJUBS/M7y2WsR/0RikHwPog+Z+Y4H3WzbHHA1qLkuixAy6xynao3tnSRZ0bIEkW9P43GLliFwMtYIhD5scwoJdFqvqnro7Vo78COacZNx/mm7ET74rUmPquCdunvY+PBleyVR8gIjtOzfY5K+eQdHNd+ISpqaZTFZIRmnxG5ilbt4R55lrXVE0CLvdAGroq36OJmjNZtk1RxqGtezRF19vuWfi3dga5Ugwl5bxBaVxkhJ4xm7DZaVVAi78DvqGoNDxyvm/CUtKU58L0t17DUb4lDTmXZRcDSU6GUrlKWRIZwu4PVmz9HNMQ/7j5Q2SGGuYazJgaoXVPTHyjXe1PEUxP5noafMV/UalExo/4XCTBr72hu+WYoSLSrZidIyZtiKKCsBBYIdKO/ItBeZ5xPqGe4jMj9SLFskxJK4yjzE3+XbQJjiTaKwG0erKaN6viT2rP8CcOykLmbt7wrcEfnQluK3XV31ZgUZUn+m8uQ8wTpiRPyV7oU+hHAUxvOkVpv7qfj9+nRx5gGAJvgdJqzwNFxkJx8WyMx0zcii4gSLWcSLgD+s2TnYVikTynFBS5Wh2uxBYydljJCYQiU4vHWppT/zINW4176UzXs3Y8PpX8oKLmd3GZTsNrwMKJG+EqjywnMwkLc3bg1+y5gWcKbQs0Bnm9/zA+v4A+iRdOOqXSMFQ5tfoa8CNCp0Leo8NyykrcNiVjgr7P8wI8I3U24C/F5nIrIpSWEEIv+rFCvBbNNOPMeyhRDvcqFVNg9GSlha0X8LL8hhZPB3RqT/gGx40FqCwE4dwOj05JqZUcf5UK+Uxt5BHbHymzjI58DonZPNs6kTO/NVLnXYvCqp/MVlpKGuJEGJ97YAcilPOCvBHq2XAmy8EXIp0zhHuWtdXi0NR2/ihFxPsp3NODSfS9iquxUy5SWC6ELg0rasoLzirQiwiCmMeUVznK7Fjgt/AlarucRiIZD46SkfSdGtyhwDGgpMvTmyz0t40lHDSPdxHws6L5ypmGCogvvnKBsqdUvGzDRdg2WQtC7H/7sP7lZah87wkVEl2s/aIceXKGDnipf76h1uR+aeQ3RhVjF3UXnGVtPbPUdiGyTaV0SkVfpsWLMmBIRbhWpRUGCtbZkS5Zqk+hexVzxQLFIK4c6iR5CCD42ipgqCzSaU7nrauRzSPmbwEVSJoJKtURvIOAiD+NVXjRzGAxYhHzLybKzf12fH8eVwUUH+k0ERJgQleGBMu7ggaJ472QuvI2tclKZdh4VyPbd2xItfV1RcxLGwXUvziYvEF57QuT3RhSt38z96wXHwH9x34651Y8biukztK8gmdGVpTI7o6TAMyMy4xGOzXgYZSTA0CqPPbUJmLILzN5gKYk9iUme8a8B1tIgVJLLmQDWZIZ2QGCBEAGsS3I8oSO7wfm6vPzge5BXjl/OqeCb/n2jLeixCx76Io78XgM+zMPnV7VYwKg4fDE8iVV9LIwNB8OHyDIuBGcRKCmcgOJ8UHMiU3DIv4MSJuQ3Jif2zeBgpKC+KGZIAqMj5Y/6FYH02DtfJBT3KHFLgogTr9AvyOgcmGA+GgJVgD7Z/cTbCfR3Nkn8Stuzo11iXiCwnJnmgTVgSqGTKxV8aeBPNsfp638X4fq8J8JddfCC0v8LhBbzSBF6bvER+/zGtDtNoE2je82wOaEqbBG3hMEWRerAu3WeCODzqxhhwi8faYVPn9+g1Pxuv+5y8fsh7Gp7JqXR64qtPYn4HUdkblk0BU2IyWk2VkuRQKnDkJhyfF8V9HwB+eBEYyYXpsA/gVvbpQpJS7SbVfCkkACA/PKWfJ2bIX36k04CIqZOtARFHiy14jr02rpeiBvXCMhpFoKSDQp486qNlpZ4GP71jHII2aifC48ul9pEGvydNAMiwTFn9NWn+XdO77R1WpUHqz3McNpjnMEDVtzkuTnLdnGWytOPlf5t+UG2PzBUlx1CcFvVD2vlpFm26Q7ZD8joApgDDI60o9wlxmR9P4CD+JVeMnKS9/7NtusjFAui6OdYpHeuyMiOJRUaivpzRMXNpgKqXsM2TccvBe8qDFoyzHAxsE1enNjl97P0Ra51zn+FucaREk0/K8MD3H7/toQrK5Ggch5l1l6cFAeWF1rkbYsu31+erOdmjO2fn8f6bhTSkolRTEGRkLre8GcWGznuliBLOfecS9GxbCBLWMDLM+J733KtivMSl5R16Og25l604bdumFdSvC2dSnE8jf9L7Dxfwk7L72Qg186J91C53o5cVkCq8DDqU31GhABOw8lLL/65RMPUn85uDxUGOcX//KfDAz5svAT6Eerl25NznRiUK8dZprKgQSvtMt64te2/Y+a3S7ooJ8378VkJ7zPOMK7108Di15pdlgAHz3wwFfyZaEkrVfbVw7zziTjvECEXN/7UIL7ZKooPqg2hX8kEpdhC9moteOb14razZu+dFPwCWGO/zW7afgxy90+uvzTAPApTtb6Bcp/12Phfwj52l8K15/4i2JC/ilGyPQ2VTgqJtx1oK21l0MHrGTT3XH0dSOuLspj0fRAAUJmKt/vfm/vo4GP7lm2D9ND2lyxf7s8U4ECFxfhXKWmKyqEvoxGHwnc3DMTQ67E7v3ivpDGAQot6WOOv+h2zfDnblHylu6cnYzFXgiismP8u2A4mFOfW+z/JmRpyE15yVVLUT7oWQLWQozCIq4A9AfuzSRZve0EYROCh0oEn58h8xd7zXcRkS/IpZF8MKgTmRjzBNqp4/EQfIZcssCiGebyJYcx/+4drN+VamY9nSFyq9tKSiw5OkJvaGlL+A1e736yz2uDik6HwRnh2syAlts/NU0zEpr+sl70q6BoPB8rdflqy6g5Z8ZgBqzc3dDsNFAwkQF6u+VBkUzz3oM9rxJAqI4+ilpCvGQCUXFigaDTRTEC75UEz1RrBHHNxlXzG5CKjH9/kIY75unCzLPsAib2Uawaq+B+vmlmxroL9PhEh45zCdB06MXH57+v9rRsxw4rMpfUwylMjI2x1jBW9z0iMCmt10fnvMuNnlSM3F2BEu6M4F8LuAhzUKwlSwXxNdm+Uq8YRBErbLaN170ryyyocxWkF1lgW5nGrU269pIPKoIImcQJTe08wX9LEeZ6U4Oq5Go+eNP27bJtIXq3pMDxKJVZxulCh5XtuwUy3fUfsUNrb7I29fEOnh9I3vWsx5W1V3Fh0Fj4yT531uwYFS447I1iZOMax7JIJDtAbQLqIJhd0jSvejv/N5mJRHkiSzd90QwQvReYDot9PEQY+v2plkhkD2llI3t0ypxMRo1HHRcO3JwBZSAMTh3CKo8WYS0Z0WJ/1DzaSdSibs5E5fXPXNj2CTb/WMUWW/8NugqXRvYqceK2lHfRZ6aqiK7VdUbo6MJxnacdjeVDkGhnWV98RgSBly5/W2tT1gIR923Ia+R8fZKc4ebsuCsbxd6Lo68zasY9Fw9VFyqZjtdAhblzQ16DJQ7f8NeKZImoLN1UXWShBQdzoaJ9S0hcSpnoK3AeIgMZBY35LFtPMYIKChjPrAyraZ/F7NBA4wcKDYMiOclfnLR2lFEHZhfZD0Lu/XfF90CD0GoGMyPa1u1JxA5Tc4NrOwdx76EUEQO6HyxvPmtVdjUcD491WFKOJY5B4N7+pY9EQ84lghsDMPWh5GXXB3+SPdXkjH5rcU96n/s5draWu0RrQv6alGfl1AdX+2LPnScuHI6DM30de966lxyR+7w9FdtwfqdDmP3j6emBSiN6SczJZ6dzWF2vZbxo7tTw48vQlwb3pSRPcYPfCPZE9I/+TPfRrLIjVrKKWbTwcVwr9qYHiYlSeJLakGMYBiHIVT3/rfmK9Lt1J9UjpyKOu+NXy6Np9zb3K9GLDjHE20R/vANCJh6wljEV3QQFNwXkerGRVXkB8P35YfP1yG9nj5GnlajifUb+SaH0YCfXnncHcLW4ESNoxXCgYNXP0Laz1TUxutV5ePTVOienwFPMFFak9bgumjvMwjaNNVpQ5S+Lu8C7SPh6Hy3uzogNF2Gjd4sx0/BlyM0+NtkLHpYC9Y1D2lvUmgDM+En3dKCFTdMXTlhOewTR23tUn7rtiWsCvGxgiPXkvfOevzx2W5Ds62khy/SfUhodXEVcqM3l0IrQrtlM9Y241Tu/Zjq9nJvYkM+p38VKqTL8QKEo97aAMA3bRRREnS7IvJPcV3cN0HcRBMHodjkuXQ/WBpCIPrMc9MwaaKJG6zs4W2kWCoePZJyc4UsC3Ol7TYI8PrK/av1PwqouIpT13U2XYB9LJGCqYl/ZiVutPSuD7gsMbRbQ6Ldpocic+7b3vez6ypU8MqF3yUMJzJsIZUBRRhjeDGnwksuJrl8QQZ++T/LpsCKWI7k2JU06UDfv9X1N27Jm+tYhvLh6YDPUTsoiEyctGTZZwYQHbM7LFK9BhRzG0Rgnf3GWIjiayl7+XwBGLM8hzdNm9AvoMhUjRuWsG2S6nvT+ADxgWBhkiZEwDsJzKYTlFAN3w178B2LrttWOMxkeVyiB43W353j4gEFIiTHKRBYtfmDNEaKZPE7PdIlqrBTURV9MnGColbTcgPRlh7/UDWQ8oyaIwCzL1aw5Mow6QGUxiLAksyzGGEevkYgkzwlGhJJ2KCgluPpz705+UNuJWDNf+IhjbkI/u0/DjEqsJagzB/W2Ay9m4HS5BuU7CJZGx33evG2nHfEu6MfJvbmkH2ivfHtTlxCYLfFRdXg4EV2sezXh8VWpU0CIUwwXpYzm5ozYrWfLyDtzosB72tgpRK2lEtB+eYSE11bFAG2XfMJ3SGF+5UWGBGDWhAaKzgRPM2OqpoV6Hzi8i+h4VjyK5Tbx/qYbWiGP4nVKTepAomWE6fvzJIutJNwLVVy9Bo/s2h01ODo98D3P8+aItNRptRH83nwGY/CMw+Zi9j1czf8UnMQc0zjXZ2jfICujF3WelwXxfw+CDs/7D9H2juVu8/Iedhxm2WGUN6F8PXA4K1OipXcgnBGdp3/GrmVQb8OF4VeWLCM4cCLIMzPr/9UjUpZ6g45ltSy8ZE7lwL6RsohlFUxXO2NPlqF1wlRNcKuYqtPcL+O3Y8okUMb2UWapbs2aFmI+q59KX4AusAXdgA/QhD1cQDFLTggTdsacOh9pYlC5j4OCsKB1bequwB8HmjWtn3so0wiNDrRJ/f5Vm5sHtGfAP3Pz0nBJIig9oqWoXcCVJkkw4vbIs6Q0nZzrJuBqAHRJUblGMn4ksMRF1H9Xw+rJlRQBZmHREt2prLnQOz+1gwKBfUVlBV6qG5liiRbQEajcPrQiPhj0XqnGYRpZCrRzGIusJlD3KqBEbh0NBSPFqYFXZrtYklAOq5BPPTiuP91x7MIgxas1rS+rhtXz5JaDft0TI5Tw4MaVko161dQjOAnzOgTG3FZIyTw578ouKcYHX0qy2DcNhsA8QEEiLAVG5z8Ai2pYOAAucD9JHtuWrr2YN4nNxJavA4Pmgghu4/4DEcrqMHmvNVBQ6wz8mkSLcFflPCD2ZShOL41MDIg2ata2dxaascs7II5XLc9xXjsTAxoTiOo3s8dRwAvzv7y03clYybF+OzgJligb/d6Zjrly2mXgv3JgMCa5S1EjWHRBfEXrL5Ub789pzcU2KscvpLta7sSl9HB0kocCNB9/IAKuslLei0P62pWxGBxUuRjo0rZ8YKpJVKscPl2gBNvhVp+v5+HRBeToe0QCCBmZldJv90PgAt/HHfzTvDtVtUoHkFk/efWoA/ffMExwmNs36/QXJ0aFrDs+wL3E9q/G9WZcAj0PcdkbQGHLCvEv4Awbzph4SlFVTE0Z+f05svnGNi6FRvcs19r3IcSGyL/XDqEX0DBVPiDWtxToSgTe0JVH7wQ48v9bF+IJdYE31byQggi7UGrF34AIrrEj7N0G3bfZjCcD/Bb8ULOC2SmBeoZDhzdnOOcQhAvrHmCZJZY5rMtQX+qO0rGpFq62GAQpVdinpzm6Vu4uQ5t4kL4Ug11SYjBfu9KC471HdQzkw85Hv6DGH78MBw4hnbsRM2n+hVaF6FJCy+jD7HouOJAyH76HNQiSnLp27bEuO/wgnpcExqbFNddGPfbx5d+JDKFqPIEAgf/HQvPhV3vzt1fpJcnwZaz8OZ8fdMEXXoCpXoc9XxJn+fVKsMJrAK3R8EbbqOq/4br8la8wjAcEflH6oR2tD+to1G4cEVm7+hWdduM+0H7RF+pxr6+syGLH0w8yGReGlwkZvtgvENqcUbmjbd2Tk43VM39dFvOkUo381owj83sjwWDRZPgOzpG3jW0fcssfOMbE9avFREDOWberXcIQgRi4PNqNFlV4NYsBlxeNVO2jPO+kiCo3S5NECCHZ+khGglSvoIeW50ZpStnCfU8TJ72YgLqKTr5qmDLJayrARrtuANvLt3qe+mUlXvVUoroWst+NidFgZP0D5F0a11LgM3qEmIIS4CbbIFo9DVbZQUkVzuK+oLPDwhZB7exX2JxPtJSGU2gzT3pBr4ZmAfgbYHZDed8x7gpFdReWvlKFiEnXeBIaBalvZYXTi4QlcNpJZ99mjHAE0ep5w5AfRHXDbQ3InYmj8eqB7tMLIezBZfy1JasE9EA4ilwLj2hhuDu9q1Z1MqWW0AoE5cZoGTghedCgWRJ+00UAXmyEJkOVdZgS7Eh8RA5j1mjKkwjmy7zPSSxzeZ7qPgUx72sGfUslQgwkpT4DB8BE7xpop78MPgpWSp1+MZQiaWx4/A07biYq2+lB3w8sGWHbs8tEguT0i97eDtIVmlZhn9a9xaFg47pfpKkhFVxswLvAFV1grsXszRL8uKRHvbUCmCHEGJFTbEsCZrg2C6j1siqSI48MFntWuFe8uSZAsfSQcEkpwWKGHAeaV7AMyEDq+sX66pXzqt+CcaTOKc4/NvGbVMi9tMvfjlWE+1388I1HXC/ukaUW9kNsuN7B3il1Wm5xDeUM0GY4MtHQ4+Va9zXfKC8qapt1RCxZtjxWUGhs+HZ0oqmgUtNUgPE7yBiVXnVXHSz1B5spDdsnANbKG1As2Kpmi0D6IEheIv5aui75kT7jvIfdfsxsiBpBrd2HhqL2MO7PjhmmW8qNbhQ/zvqlRoB+a/xwwD43IqPEa7VwSbXhdyzwC7W8mW6s/3KhKAS96a1gxCiNL1L2O2IiWmgNRjvyWt2a4K8Wk7x7hZ1gwEjYIZDevrp8xl8M7UNm97eMqgAP6/ZduPl8nA3gwFIFuySStcWvQUskB9Q6XNC+UWFElAzarGvlQ8iiCfAq50LVP7w+8ZLD4C/d16tBXvVWbghRnmQkWH65WxUpcKFV0Is2ctkrYB4cef5JlcYZLJ18lqXj2GspHXY1H96nx7e7rrB43g/DOLIwmsfv76/a4iN+Cax+dE+Vcok+YLYsVAys+M51daIhetbUgJnINOsaAb47R+zgDeaXxoyuBSsRBu38anlJ98CzfHyGYF1BHYYYLx7o81oA3wmS5leuO4GSjEkkxWvKRcJ1Jj31gt5B2+hHdtFo6PvCUjtAeyxcxodsSijTXcIyn7HCW2BvFbRzLH7qbAW+6Pi9SjpKfEDpPAek0PMqRbdIGkfjjfdaHMIATGnr3ptwxVTtt+FUmDSZkD3ahFU3i+80YU8gbw1FxKKstGHgoHHW5IEpUyNxrvK+LervJchcG1Lj4FxH0G6JAsaf77Quyc0jOUHaS4wVPfCaGRQU3C7SirGXprQYPQKha/hgBGr9pnbxoUiuyabaDNAi8Ja//y4V0mPWU52TJjMangGhZHWJBmTcPFoYB6sGutc/6d1yxzdtUjbqrzvkKIvqMQBzBMvFyRMAvAaCZVvjAQYqrDHDFU2qSLoJwJBWM9Id+q0aKmYxXJiRW1tJdI/N+UsABYb9hA84MakQOYUfGF2zLLZ1b2w8+S6b+TjxJCHlQg8HdWR44iKI65kIvT1EpskZJcXeWaD61RqvBy4lQvGTXOnDmDNkEE2e+xutaFX3sODoUrl74PZHgydbHjfFuQKhZet5Lts30koOIWTQRQ52DiGVSP3EXvcpkOIornpyG3ZtKFWQf1AOdIhotskQhZkyIxASraSdYHZrF4mI3VxtYa55UkjZiZfj80LX56EMeR04Sc/hDtTWagkSEHBOQV3frEd0iHBUBsDVaNZaHgU/ww6Gdz+if41mKXejQb+ogF8oZJCjo3PrSf75kldnFbSJ+X7Qo+8Vs/X4BSkROH4qqOY5cLgi6fWJ4Vmnfqzj2WtRcOo5hz9kQGLqkojqW9d1071JJFM1OD6FzEOqWV/HCVvwP7EwAMny/xdAkExn+/MubUbzFUWat4N61faQUYC+ACRhKMdV1UlXY9kMsJzoTjOFrvoJMrn/zANjLnKhlXWV+1ySk/mn/cPGjABlz5DIW7918YmKn/StEu0hz0lwAHz/YsTAJmlG1Cjyo7KSWB6N382McBSFEnE2VMr4RZaKGt47ezs4DbBzsp67azr+Q3UTpnRWugSbnX7muY7tSoBQZmw4FbMlF6RWyQkAgyGX71YODGdzRDeAlEsUSBf2jnuRCUy2a++VMLNLftBqB3TdGfWKgkrDzEiPtc0eW85pNxeFfLQ07TXnhyT5MI1LlxDJCk0+dhcqXuwVIUZpW/Bh8rwkDHwgJHAbTriavfNaOsI75FZ3TUjwf8h5eeF+vazSnkcO5xNOSe0uU65oqJ2TV2X9ECsu8ppStpQdgsVY2fTaAcMD8yItNrQbd8GWsQamRE0KDpfvjQb0v+/Qsy9/WspmdMLK44Mnbs+accrCAGqkxuC3UspTstm7A4TPRE1qka6GGAPTKFbmAZL8b6MJXm1/not42WznXMCQVXtIhmSTzAlQlvChrEchDPTenuxgO+N+QQ6L01fuiTxnsKHYdBkhFz9sH3nY49dc3d2TsoVj4hsBH3Pfeaxf7HmH8vFs5rdXRhIseSSDFWy5qDW8unP66yGLp2hQG7gJXaIPVhjBuyqRWIOQHH+ngaDE1OUhl51190kzIgFTcypt5p08o2XPVBys1MobjyqeMtUTeIPjPvwwB6iCMshnH4JBsdB2I01OoiYoOwXmT/nNY2/VSgdXLXnZdyjPOPbUXRCR2TOSy5UJJPkGs5XvcML85xD7CwGUI4DVhmmnCTvJ80Z+hbIRFduHWUKAXlv+bcKmqBodEsYXZVY3ZUc/OO3kHYKE8NnltJspRlZ5a8Icwnxf9eAw0GBcO6r04fMEDWjlrVLVxwaCUz/x2WTLwAszp5ApY5zFapPyAmSuMRD0tsQPlhuRKNK2KQd+JUGXJ56962qVSxC3CDrXuPeR8jmljrU80LeOiWd5skt6R1vVImdD75V5fi7Il3g0EgW+XGxDQ2N/ZLppY+eLZKwZ0Pn2sBnbfsSGq+jlwubg4TsubMYspATpzjQSTnKGzC8XuaddDn0+/BpZMh0jfKJ1jVMt5d1/NjyLyskGyyV61HG+RKPJFCzuPdK6KKDmf2wSbga03s4huYQWvBKaZ0CxX4CNCiwIF+TZzfmaazWszgPLvO4V5TvZjaUN/Vn1+G/RX0e+uRHmbOmEE5RdQl29qsVo8GpLczc+1sop35wVddMsxmdMOr7JaXtS1vetEjtMekgVyIJl8mPIxT8gmCBHo7DX1MebW1WRIqFFDcq6HZ3oHwHlXMziQEPq+iFwE8vyZk13kF9Wuy0tbkJ3oUuz00ju4B0CYH4b8vJP4EpstptoxOpamAjYNmYUB/Xl757hGPVnyrUoDwZzmXzqNfW+nAVMvmvq/h5yciS4hHuV2AeaWiN1PWZ8u8awybPQf4VwZuToFmrZc5Pq8VP5AO0C5geqF9t8H1xQALXNMT/+GyZADEBhv+zPK26LjdAqZqxcKiQ9j/H4sEBOg/6qQjzmqim3D9tZhr8Jw59gJe+5uYLFB6m27Gp6WvPxwV40MhRrOE9p4ymrxIDsp69svf7acVqK42Ayy+PRr3mq2rDxu9tuxQhtNZVLSKsR3s7WUScuArHLfqORVoK+m8HVKoYICdQB1FxbrRQ0/Q/9MsYPLr233bjiS5syYDdAr9ddWvlCGwKxqZ6mLJWChNKLNEeRJu7rd9c6aM5/aqUFcpizc00Tt5sItV6MWoLhHrOlQYA+PPQfV+sAqE16qseyB0fHNI/sYgVsuWc7ngraPO40OSoiKmJo5OeZ5yzevehnTksS8L3HMle0GKXc9c9MarQxZQPuITBcBKlTkDy3kJug/vY6ynogg9/ggomiUKb8OnUHlWO2IFAM8pL3sb9irHyZpn91RHmXjmI3o6/Qd00+qRXClWIYQCVl3vpX+OzK270jWfQ3Y9O8EJxUch6HWLb0kmIjwufB1e2U0Yvod2mp1UxEDrwghvW1TeyJbVoMDehy0VJhzq15eAm8+ivVNcdkfqv66aFRLNlRbWeGj3FTWLWQM4sXYGojybT5y0k7F2hd1/0KWWWKbx4oV49X3sJ3uSw4kkZtb6LumyQPQf+nZGmaktKl05pl7Gb8vAfb+g0CnmPJsXs4hgR3ytfRofY4jK7GMZDN8muzOjsvzHJzRsE0j8/aNlD9wD0nqOTUiXLdcpoFQX3d9fyllLV40fRxMuz056BkUlcfKSiHDQNFBcE4cgeZFJra3dVetRPExzaNLMG9CIB8D+UWAIA4Il2zr5emf8EZCWNjpXaZ4H4Yu+YB/p0XSm/D9ydZq5yjoP9QvnO4a8cS04/MBHFuh0dCMmMuHC1ZdLxjcWUYjJztjROmxv5j0DEkRwuo+T7nAtYdFGTLdIbE1OmqY1EfjRh96oM892xvnNPp00l21N22OQKuIIE5i5lrfnm3ZOGPycE3GjE9bhoioiOHlmCRQhpfkSYbtBi3TlPS3KmN5c8Xw6DAC/2hSwhgtk0pY+ohTpIpxV/w5VRfnqQ2a4Kmp6TLrIV+zVP1n07xJ0TxkUov6ReNEa17SiuY0i9U9gmqCcCzIO3buqXAsRKEL8405BOjFmdYFLJ7/9qJZ7sQhqWWHRc91E7cvVh6H5w30/BXx98dxF/dzmF/Pq9qTj19cJo/UZo5HRwhIJDbNJO2PuBL7Gew6wcDkrI9e6LQYBsWJ/ZH82HbKwA9iVF3THtiQGVmAtwIlAlkKRfrcLY6jTq8wPCEGBysMqPVLtOa9b7Ym8rUxL03WUveXaFZ4gu+2pBnf5hQGLfQ3HtNmnCUrBmaXjL6zPXEKkf7PyqrmxwJHDHmvefHuaq1bb1DDxG59Wai6sy0MB89kr116DB6BwaeFOuDvWCUY6ADUZPH3s7HRYzesNbjNxpd8qgNq8r7AgreTKdgiCYWhaolY8hJWgGEvDVxTwxXENN21B9vA4bHAJEYkieOp/TmsooGK+HshrfB1v4KnYHKqQycoowBk3rgPEoBYTo064dasys6xHQG0serXx96Xnkh4wfKb9IKwadpveEX0RhH14ELF6csjmUQ2c2+zGbANRQLhi89V0sNGo2nUKE8Z48GOnnGyUWyOx+iTJCrHbmlcFVNH6wcd1U2QlAGzxmaibLHkJPZmbWzbnfvsNi8lWtm1V/7kAm0ZmlYHEf5NBL/Wka6KPvXH35mnerzD/wA0unf4aWbVakxemwCy7nOzw7VHzBKJX7CbvqZOuYji2/yEJm60P2DNCmIMgTGLKR8dzAgD8YM4Mmdn9ZD4ZPdEdhjOc+dA3kbh+l/m0Wf6xq5K1o+vph6d3+21AvAXi6ehlFH341BQp3eQjGoEBidYpz7sbvAKWndwFGsj4mYnT6Sjsfpv2dhRf/d76sHT0eIG6GQzAoMw1X6jj3IDiLzicOknDGbSlIVB145eT0OYRSi5QKB37jzigXb+nwXLFOrAZHDAjqGNKvObNlfUH4LUtu1zybfafGl4GuIJrv119xP+VdxdEI8jge8PnC+NfspdrV6Jwro/M7MGXveHQ9jNss3IEvUaw/iA8RsncdwPBgK/Lb4fHJCdrmWG+62zTewQiYbF7mV4WdgeyIetXQ5hvHKSMbBDRmzmfrDe8htKGI7iPDqK6D5y3IxtWe9k98M8/VMRxyb/j5IRetZ4RpScc5acmvASi6DLqoTjx+Y+ifXJyzNXgO/D/zslESyZQVwKHNx8tJBwvXV9cuNZKwEmldcaUTbmCpO7ji+ebmJw+U+fROpuGVziTPq0Fqw3+dgAuZN1SeVPBSbGNuLV8FwN50Ofh7SKT7SRnk4e/D2YJcpMHusGrPj1wWL4mKzEFaRD1RWvLfj7zveRG599uuqz5sFD4aKjTMgWa5oRx+U6TwDLEr+VBaqEeA7qP9apaoDBklf8HHkSHT7lM/pklACgr/6yqAv6V2tXIdEJh8mplILrdXuF3nEDEOlRbR+fOrLi0GoRZnhBZllQK4/RSBS8PMsRgom+eaRYHl+kUO9Hqk+LtnYVlcs1DJAfM8O9TExQbwqPS/nYlFzRIw1ZLauOKRpGDKHn3DrQgANTPBswozJVcvp30GHBSuNIYPn+3ydJGtdP6orkTQTf0Twck4yePVREKON9YlougiSZ5YFpCkRtlKoxKCBInN/C63VPBNzIDN2MVGBOkkojbtOhqCChD9xL6LIFDFp6pyigDvK/BKwnf7Q1n5iuC6C0eMdp7UeHhgaRbNv/qfdqKLZ9b+cuskmroy3OTD6Hov+SzuYoDvs+0VKnhu7mg9xKORLIn8BL/JzPZ/9xDhuHbnlZPu3OJiGFaIJqM1l5o4Vega+pk0lhxjocCSG2L+ITpiUvKljbuYjXrPkHSH2vYtvOmA/nT7Cawu+Etuhu3FESVZaIXrNm89gm+tTgUeERrBx3z93g0b8Wzr76Wc9qA+Y/4bQGJyazpC9FG2vCck/Nrk5qej/s42QwfO9FV6WsfQ+TGU8IgHo6RmTN0MfzIoddZSMbRwHp/cZ5N07yEtvcTf3hwA+Ax2DVufyRRG+L8xGkbMe+r9gfYSWf8I987rqN924Vyu6l1tPLcNc8YGeFVQu3m9k6LvGNt+EfNuuFXR8IQYsWHMcPhOSoL3DJSsLpTlTcf/VxamiU/S9492eC6bxVgNJ5SMwtt/1MWpcD5S/uGRMxFZ9psrMJGcE+Ejtl+zhztC1nXmJ8jyoE3JhkdyVhjVxR7/isUhLe9VZ57BfrnyymZL3uE6bzjGZCuJ2cawKOTn4tK6JHgigRdPBRSxlvn0hVBxCtmi2MtcDCvHLFiYOLHO9c2hBLdyH9bctyucRJCpe1rItkdIAKpS9fUfbQwqGzQpV1Eq+X8ea0a0aY+hRv5GyRY9VsMBCcvw=
Variant 2
DifficultyLevel
721
Question
What is the value of x given 25x − 7 = x − 4?
Worked Solution
|
|
25x − 7 |
= x − 4 |
5x − 14 |
= 2x − 8 |
3x |
= 6 |
∴x |
= 2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the value of $\large x$ given $\ \dfrac{5}{2}\large x$ $-$ 7 = $\large x$ $−$ 4? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{5}{2}\large x$ $-$ 7 | \= $\large x$ $-$ 4 |
| $5\large x$ $-$ 14 | \= $2\large x$ $-$ 8 |
| $3\large x$ | \= 6 |
| $\therefore \large x$| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2 | |
U2FsdGVkX18oqibDWBl6JRVf4TXYoIccM6ANdYPUogYmOaEc2L+1LOZepjiErZtX+gWVWJwdxFmYSCVZRUm4tubre46af8jx3SZOPzFfRGhirqcHPKI1dSov0G4Gk+2sVBSxhVm44B8H+eX4rjh22U36D2a+wcBNJfHoKOXrWmN2yt8GduxLIUAwJDzIzZyA50PhKhvc/XzlMehKtCnSHe8uyAenvSUO3AtuEAHQMZPaCk9a2Dr7jE1XNwcbEFVgDSONPAycolvrlmUV56uxcvbk3QfW3P5BPaiFewKjt1d3HczEgYRQhmOROmhCpIFzQuPg7tEFLGmSoyTkNvdJVdp8V0W2BJs1whxBBIxwDAkDJ0E3Z8y/zzUjyLUN4cbhRVKZm4fEsyxEDCSymuPxn+j4TbjPSBOGdK5uPR9ESqLx+Br3Cd4Hr1IjlUoUhMgoI8+tlPKbXIudQ50MphISm88phTf43VlKvyewJWhHexI7TCpo4XQvvUQm95mda8syE2sk3d/yDD7lnGCNy/4fwdY775Px3g5Sk19DQiUIpfPU2WvV3Zajj2jRRPCooPT0cSZRTeRV/MN9k7N4TgUFP1MPLpBCtlGHNS2bScUezZWynXBiJiiFZgvee2Zw3fkIqVJBSy7ZpuzQWCHQJl2s0VLVzOV463eNBEGuPH8v0DRaMOtifojPqPZcEUXVwECqhCLp+yAnRDPos//cOQ4WzNliqcKYqBBkplpwEqtQ5+gbVB8rWItN22nRJ+7Ks4ZlTBN2Jhg86yv1vl+IoEHjzacZYZd+1ASI3KfX+b9VPafyXYZjkSovQ3AMpPryzWh+0gON4KKp2jAP9eQGH3B2o0V6fK2ERMkeaugxuV3MQwv2X+lB0dZgegQgO0E55fnMu+dTMww+BKuZDkN1OeuOdhMACqwbrAMtNc7Zrfbm10u4EWCcTrWVaYaHK5JB/T3D8zRNDlInXCNSqF1UIUwXgvRUvRT+YxMaj8HcuO9+8DIb9sZpF1RRSsWfT+9mJ1WFq8Dunp09PQZihf5fs/iVBpX4tABqiK3UnPo1L3Qp0hLSJpFjBZylNlfJzg8vEvTgP6JGTBrpWVFKq7Q0zcDIzYDrcIc/bL6uQy+aL0wGLEKm95VTMHgqKW3MgwwEhpYda2qT8V9PeqYCvDdrUSnL6Re2IaNVYkM6jJPk8RDe+ugfvfBLqzv3VRXRUaskulDZSOne+ATWXb8aVlaiS0bkylE8xq8KP8hs7NgFWcA2Ah4ifnglK52avLUp0A9WA4HaPAYjaC48xeU2KtT9IABvC2Jn+ayo6YjgKnZA4FpxqmMZVE8bPfhWlPcL4QQiaQnPQEN4Ucgld/A0BdadhL/DqoQ/IkssKUxIITy2KTdrHrSVsoA2bJSPlqJB2iP5RwZpYHt3NZAQe68zVVWUL7ddwMfUmq//aX2QraFexb2dZjQtwdwOF91RgxGT1xPRFBnJuPG008aiJ5iEdnyMHFagksWZWFPFbS094qOrDVV+c2QZhQxvXs7sEvZjjA+XSJDd1y3bTd0gUyiAOYmC5Y1I6heV8YxkB1oDRl9yzvvUCx208cNiQoHlCkJFa0ap5C4efb0c+pk+L6TvaANMjq+IrCCDsXVbgCyO3WUsmrdACK3QWFKBsVarY//C0LtJStH1g5R87wXWHd8+1UPP+FI7QlGJGG3IHGZ+HQvXHMaR21O9Ts4uY/+zdjyG1nFFzb5CiMViUTdI/H+bhZyfAmU+BXuDGew///blLDFFf3s0VrJRfBeNO1XUToC1COtoE8iru282wDSmoxoNCCvPpBIlt3/H/xoVbgIWckZExVPiEkUJYLyxRMdtB4hLVoHXk7+t1/IpYyVrjF2qKsIYAqqaVRcDZFst3EwCIKI0J4emj/OYoQy4kbSA2dYr8OmBz6ue5MVUWisRFOaFiBrO4HP6XDTtnSk6cC1Fd54NR9d8zHwC0CgEmKyc/k3BSqVJRftU0FlcdELbGxGz3IxWaybu4dhe/b/p74SsYkls3I0TczPdLo2WbLkm9FmYlXkv2+JY+Hw+ZznLn5ftSFLL0tkdABk6PVMS99sPb8r2ixpHj69FqrGKjGOpReDU+7nihQIDnIZKKSgZ0Ngo7YaShU+HCK2TU3pumZqWa8HqcHLdNTwBfuzuo3vUJiKuio0/X+DXgsYkpnp+FqnNavZPuek0H4frF0+eISX1Q1ErvGams7e4JFMIE8XLygkAlrkPLGICOWzjlzEL1o05XWyABuqShJvR7CuiCcb6xEyuo9vKHUNxweZTdi/4KCGlzkCmGihp5inD3c6TKgKMbMeyJnxVDMXawjOjJf0wL4ZnOEkC6pz1Hm+6HjBJuURpTiAki4t1U0WOG0+Vdi2kHPGKdSQgBJ/QcKyk6nxXGYJu0zeOumoUKM9ZerRGB0UiyLd4L21LXZZHFQ3fEbfnncSzc1qNrSev1rUsXPFxqEq1BIeAf0hXiKl4js+8cvr3zLsIZKYNQWhAuw7td38tWjSA17ROs5vtVHDEpDXERmmJOmj+bmBpGEoztI2XUCCRswuF4qi1BFdBTankWSbF2sYXAuRTHIOUi8qqhwv2MCSm6FUWj+tTK49sEcLdUOsaLPuyfE7PEQ4wIKSX7f0mPUQtrF1TTYe0+Hqyob2g+yFJ/Eg5re8nAPHXfylfSblNokRGEMGnN9or5tqLxrmCrpg9SZfb17HkJbq3Zg5Qlc3GP7kttUjMdLnmtliJfxS91VHf98bar6ULhNlJu4cqMkFpWwNV1+4Wv6SYKKiuwHEAZemCYTqn/dmgoEI1ZYBuz/wKe5V+2WCdhVyM7XCL89EWJ1MnfqgGmnuc91EFIJGeNf4kr8VbGlmIrQQJyV1STTbpjL8GAOOajzqod1Fn5HKk5ByUAK4bmAkBpV4pCE2aRTUbSqVdeNH7TJjUu2yrznTL7n8IGqNlcZTNARONlZX5kjihw++P8NEo/TXqqOsqIWJsjFIRYW2t0QhYbczYSquR48xcLFZe87XHWPEgWrxCoNbMTc+8lX3jJ9/v/nr6J/5MBJ1CZGSLIyK77olJZLY4P6vnC3etFFRyQLjPXzRQ0GHFLv83OukBfyGVgitoNBXTzsf+GzyECTxunt7rNxMP4c3u9Pf4l+7w/4HtCStTz5go91hC7qIuegPuK2wB+jR4qK00NIYbvCoVHY1oj4zG6C+RGhBqBQgk/V30Qw3KaXX6gjv3Sm1V2lZonUkcaXqWK0oDPGXC9GiZK/RTj6F9WMLVD8xayb7TOi/jnYrkXQRwjGg1cq0AB4EjdDic0IU0Q3fhQbtEGOV3rRnjoWlheUrQfudE1Wgu174JyL1GuH+f4vIHMZh6/K3Jk4pQYzBzK2S2hWO+OWyhNy4NtUpTRNWwutyiwu35HBI0E2z9vIUJqpkVt2cd7Sh3oxfLA/+CMlsJ+1J0pVF3W50xzW7tHW72Xr6/pSMAI4ni/rNQyD10becREzUh3EYLZuxpPdVax2vTbNQ5VfOGcDJHxxEDcPCcvjsNy47b+1FI1qvY+VNWqoJGkGJjsqnyJgMY7scz7d10n2KkicAFcQmtRL/dxEh4cavbx9NNc4ddlr2NN2owxTZJVijRLVUqCRbi4kw7tWjJv4NGnqp8BaeGLDWLaX2jxFZeo0er+pYUS4TjE6YVi3kj0hC/pfN1DdgHF3vzbs+uciuuHpSGxwAgLotO0gTQXsNrKHDodKjYJTxTLdt+03ELDYk/6kHHksXxzu8orx6ODsAdco/TZnksH3zZJ8uuC31/YC5xj/rS3T5SZMAlDy3qjcCDJewJnlEi3sMl3aYaPAU2Q5E0epUG816CXfoxbtY0dQUbrqwwSW+I+k4i5l0vkG82/i7NL/6NABb9dGKkSOvxxUC7yOMhjcf4lZqNfsAgmn5UUC4tydU9R7p5WQS+wsUqXfbF7rbD1CnMdjvEtkelkSMobGL0W42LexVBOLWPGcGGkm6NLuDQc1NZEvnHQhfa1UDXOmC9rzKRpIRIqEkWmfebka6CTYlRLPY2ywenfZL6uC8sF4OfX2IUDRG3R4ob0ayaeZzZ+nwBqhO1qS2lS9DC5NxDWQoyox5Ekx4c2MfHxuCVtUblKnOpOGmxhKbtHQdsrOHq2DaUnF/90Uz3lJuO2AA2aHkML+t4J+nCcPpH7UeuoqmtPzEhC79QqistM1IsLNsIncUesPBqxwO4wtRtEfUPp6SXO7gn94LwDD5EB6F26y+z3hYfsfx6PBsWLb7za7+P5zuiYvcE+FMXB5vf/bN+/n6IYH3nyGGIQbMA59PzBTXhel3xTmc+bucyH6y9TBNJIgvEMx86vzESxsUA8oENr8zL2chdrlTtpty4uul9ZzStvFIzbcwxAKBN3R8lBI27BakhytCB6GpfFxpfC6LWKqwIzkge3XyOGoUJ315vulp7/MHh2j+g+09YnOcgAzKnRHrdMnMZ1DaQpNvQ2L3jaolbPlioC4lRNfHyJsfjPySIbqLO5wCEhzASxuhvOgralpIAY79m2Hchx3Qxtl17gY8UhyXxW3OLqsiNckX9kXtWATa7leTRp6w+FmTOtf0i3KV25YTpkWUF9GvsyZzySaP+0vJpW3ewNxvbEk8h8U/JgaGMWBhhcov5E4rf5BHGFwF0UeZdU0MRqVLXpPUCIOIhDnlVJm7cV43QqGQrGJ108VXVPIETskeDFsZu/ZoQD5y0mUK8DyIziTE/NwRlKE9Z5iYU4Hf4C2r9vD+2r1cwzcEXza0UMM7MPoIRBlNiAgH2V6d+w5pqoYwYN5XDY7J0EvOrdtWOjbJJEy8nCttmG4tdW83bL4Zl5EwG/adXUsrq4+s3a1vcAdWbTHFHd+l4naXy24C8YI59QvkBZR+uZ4SeU199J6AmdPV211uHLA8HOFdtiNQEaefnR0oVzK9Q/r9ljsu3i31J6u0lX3yZCJIEgnRtdlhJfVTBM6STWXZ0vKUli7rzBDDQKcAAW6Oe0gQR6nkbmUMb7neb5q6stoNOGqR27dPwD/ept99ckpe3ofW8EA+z56r18MiPJIwuou3pXbpF7nNuiOXhTJYPhOjUuYImBhBSJUHbfysqba4Oika7Lo2a6cR9HRUApdChx15sfxa3e7vQCXU13omqwtoo5KMUsmsUBPHAOCQWoOuIpjJrpr8yqRj9d53FX6WucLIFbqf/D3UGRe46Fs951pv34srNiw+41UMtlGwSDVx81lfO45Eha4NB0eBU7rRbhIMjAOlTKqYA+g3YqgIRpMpUW7qMuRjHkb91ygEf2K2dSkTgZSxuo+BedS+zciiZmdS+RbdpM+0YKn+QPWEgstqqoflHltHdm88iSSdHrP2cpVTz4LdvUlriGnWwd4WjwNzNnu9rih9NVeLhrPPFLEXY/E+gMG9DRx+6KoF1htfC6WS16chF2T5HePpUZrlbegbFMcEMvLarCDWul9ahrjgXByoYXdc6H/oF3tX+aUSP9roKgyTZR8YBLa3xpT7mHPUWuwHXR4KCyKrwkCS7VJh5PevZm6wfLKPa53FtjvFcUuli8ES1yce0wmV0HDAOVu8E8caGIzrkNoXsqIwC/NsfxH5Bma8IS9r5qPgMiJcjtfEzxsahfj5FleWW8ScHbB5B/tam1ljVMNnDhO5f+shcEmA+C4ll63JfjN7N1LQfeprjsn1kr6BzVkf0T4cO/8P8dP4RuyINwLA9HqefNWbEZWTarEv2/shTeIajGe1rrMydUroc++Yd8c5Zu09wbqgKwv4oIdGeNopW244OIG8mdh8PE+w/uR8p7J9RSyNLOD/1sWqMj004lx0dLPl0/gn0O3b+cQUt0x1Bo5Hjt8dAEVTdz3mZhgEVtIIiJmrCgLNLf/hWEOg0pK1ZxC+/OySu+n9kYka8JVApdWf1xDrLArjUSkNYvyqctvX3JqVf9ca/Kou7DSVRt7HyoeLY+AroyJ1hstK/h6OAGQWLxEWKnijs092mpNpTulpwv/673JWMI9qQmkNsOdUJU4jaOl9/5aYCfxDslZPTTs43jDpTMvyNcmQ6kHc+0aSHrQmbpoA0+rzNw2qFC/tQ1WyWtrqDxF4bcv5LzEuKuLqwc/vK++K9izZRoOrR71cGIRQc9G2jop+0sR3YFPsMm5kyBXOUp/Q/4VjRwM1LMTl/E3uxUHD+YQ+xWmQr8oVV/eeLY/2cRvxVH0ldeD/eX1m6Wr2utKH2zPpWN15CilM8md91GhBsQuKmuefD0o89+pfUx0O1hyG3sBuLIoGRWGJoyjTAD1iOwl1E2yZpEU9tpfAEq+I4sMj9Lp4vikUrXC/Be/8ZFVzumI/oQKo3Vnklm6tFCspgqRalDP+Qm+yoa9SE4xMEj4h+y5j+U01sJ8JwXFAETlxx9sg2HgpNHrvC34Ngv9vBdlVjSPgaQi+tHMz9gtPOshbcCyUuo7g8Gy8NyiQvoEkhLewuDll9IVtnLSO9Q+9S8T/sAkXaHC6tu5IbdHlNmJOXI3Oj7wX2KWfnpGPyTjvZQSus8dSgGvAMxlrw+rY/RuRfp2bwQbciOBgho/6iZPhwiacBA+QGTC5JUcrhOasfh+yE4r+COkKGmxuO/6U7h392rqDTk8fe4s6VdlopwxlaaxfXLQQ3ZPGG7JKqOPdwgKTL2/LPMX6n2sUDlrVWTHKFtmFBM7WGuwWqgOn+rAoA4pSe7AVVHhx3rhB9MNYVXHqrII22G6ztckEnKwr+8IGE7KeMFTy4l6fUxsij3bUAKoN9MEdo7uUJIms/j4WbYppiA9KWs7YToYjyt7XPw+tnA3L4q0BTnoC3gMe4SvVPrOMxPsvXR52eJ6WKPQE1j3ZZ5s3oKu4HaJzK+xaGqTqqbO9FY6uCenvAAUMWPGk84TU7LszISNmxf5PEtoh/4nGUhyTeMcA1u2BkZ8yaJC2H4E3ccsMSzs5Vej/0TUE5OLt+lDoLaRm+TIb95GV3qZvTTxzKIIng25gjX4eXQovnQt6GFCiJBUKn8Z4lwqr6SZF2CmBi61UoK+GZiXKqM3KkrErfZ+wI93NfAqQQW/+N3IYrRjFrmAXv1RFVscTC2fg8NKpY2sUoHmz58uOoM2kA1T03tK9nrsTOMagkHXMW2NxKJerSKXCaFVULL85kjjFNo1blAeY6aWUfUOXJH3fJV8BcGcZFgZnjScCZapCRtgKPoTKOZuk9LcZbgnxFa93yD3b/NP7VI3UbuU4yLem13cC0rWDMASU0tOb992olrDQrg36pCF/Bv/zsyQnO95fyEgaEIQBAiMkYkcYo2AazkAdCOR79RXgyLbS2W7bCnarmyJcdFO/Jr8/oZp9zzpJN1RWI3Pr6h3RtI8RoHmy15TZ/FwmKjQQJf+LdXSgaJoLm/LGd0xNkuL4nJXPm0CLt1aX+x4HiNJdb5IKYe3IjNkrt0iAU8YHLTwD4uPnmtDfN9wWwY6Ro6OsdVRQeePg+mmqNxoujUMAn72/5pFnN8iueUUrhtusOIqlCgQn4caG8PM31J//SjNUMcLA569a9K/zErWuhtmxjZ0PtuSW86ZYA8dbSfF99pRi4KsuHXevKkOzuq/DaxXDBhPPK4lHqp3yBklOeeRePfzpXbPFCSVIho+X5cqe/0yBAsQo8NN4bYn/5WPf8DmfOz6QM63+R2K9SG7lpZ+12HW+XipMVD2V+mQu2Ud1KE0m/KnnAJeYVFvPCr+VCzQzvbxQbDwsZeY3nPjRhp2u3/npShJISBY+EGnvNK9ACOA98bPjpaE+EoODw/BrQGaDPe7HEwFARQJOwP4BLfTHpylnguX0xxO/XLUSNu3QfWAd9tXJskVkD9EuCxzkxbHcS1YUL0lr7nAjerVPggb7zmHqPpIY2ZOs6rGm7KOizuDB5qZ+vFFKi3q5dAasG6MiQ/AMrvUKN9g6ya9ShOeN+EfrdTWI2sJN1WCd/H+Y8Fdu2GafuCfX2vmwxl5yxfQf2HThJ5RGmsXUslzIM/4HWVQaGbgN5t1uGbskDfD/FR1ckuiMU2I8aaiPTgOdvbDCfyRyy+7H+4CZ0h+nwrIQWlqbaDh5GpCbEwvY0oV1ZZUnHsYX0/uRmIYAjdQthCWp3lCoVidWx6XuddFRVoG/xhHEOv3ePBhNYemeZk7mgIf+JOZ1MxvfLlIKg/EOa9yA779R8XI4c2oG3NLlVh0En6dW6tg/EsEZ2MIp1p7nshdgTzXvE1j1W7eJUgOfRI5O4X8er2WbTX8Q6xQzrpZ6M+zWANqp1x08KvftvMXv97qbB+5BNFlxy/Hr6qP6++7B4HNxhzl92PXPJZ5RL7Em53ZHN4gC3TejA/XNxtoHaxxgr9p7lEi7Qf+Ff8uqpVCeGoxYFSrZz6DyrWCEX3BpIc9D46ldvSH40QNer07GOrqwqz+7ThhAGgU2gcDeJrsFJIwf4dilsruHeqUSKloYsDpOK1OjoZghvKGxj30M5eGBsob+5U4BUc9DZ55I5BcFhP1L816LE05YuS0ePLaMbSCE6EGEb1UdUo+hp1JxIDsFo718B8NXrybiJJ6xXaivlh4GmWOCjLxv0BLAn4Rvx1mOco7nzYM+NYQ+OpAxBvNmhLRzD0pSiAoyN2J7i9jmmDIT6UIs43wVMSSuKbSu6oEfLCnBqeH93i2e3hawvn3Bvd6m/0VQfMbhIWT67WDHLdLreGkNI8Yr+SQjgYM0OGBwb4ZC9mAm2MAH3akDGciAV3F7/t24j90XEcfE66f8pUocwXOB34e9vuPYrXG5EeXEA4NQblbycE63o1jt6BFdKTGR70bBRRM4/2mb0RNBcNkU+WsvZjV1IhzxxN9tTVGsQoOCQSXPTbbJlh64KxCKb/jEKWDvIRUbktOMplaMsQ5hf+g0Vm7P9CG5IELBJ9sbMutncht5l01TUPh3aMnORUtcKL36ODZstVJtK1Xy2Z+9MTG/yDNFEB7U76T+orWpk0bw77WQJo1H0V8Libyta7uGvTiydjW6aZRYa6PFKvmV/OeFXYG51dr5PYOGTXNtX9OLTp1oTTsTdSJ4kquJeM8G5CaeRxstnh1ELu8J0cVkoEAu+jG6Y5hz3peGQl6hA+MjHBcfM8FJtMsqwo4ZxvAvzQcDlutPI/51q+T0NZDtM6fnUIRqMFKLU+XJcsiOBvzntlxQf/gFc7mszo2tB+zcJkh1/4Mzk56wwGxc+YALwapV/vttrr4O+c1Tgbnt5xe9YZbx30sYLgYBj13EIGeIrH0l8wtHjID3igjj/q3s0T9fVPGOXwJ5wm2oirgInJuyzsawC9Bt8TFGrVtcA2D3ffiKszc/rjeNm3v61/F4ibui1hlkuT5HY+djGfcSSlBhMX6ctTInLKXe26sf905JHzDykj3NIhA1AYZaX0FY1nJFp0mD9zp8f4TO7j3XDBJABV3ihGBiicr4CMJ5zhmD63DeUh4lZAnRRVMBW5V5NxgSf1G1gJRnyXmm6Q59WZ+fgRhvVL6nzKS+j8CoJ3j1c2b8VhESUlnDgaQud0AEqlhx6S3FWdYx7uu8wQlqEUq9hl5SG5V3j87h4u0IhfSJ8+Gy1kgccQ0QGMcDRYB9FZQHXODv2QHRVtbt/TfFwqgR/d25W2o4HUx8SJyqE4tm4Wmezyrxlh3m5aWjewtKRGR+fqd+TbzYLL96NHfrRDHYAB3fnwo9v1CP5KU/llg4vt+RbRDjn7jlb9ZIG6gYYZ3LcjWHu8w5EuvU37ypBqtvT22m2wvP3h1dI8/aNsXjpw3ge/JbLYh9zSjLu0yCpuYA2B1N9sX7qIfPUnttWlmwTJyx4Z1NB4jG2jb386yDfxzftmtPZI5e3IQ+vE3YmtdBM5xnRAcSf+TuliSSxorOX6Fi8eUCnWV7Wzk4MLSy/GBpZgt3QDhmWCKNHRYjE3afIRoTH7NYiH3eD90sLkyHtP0l0NeyO9gjlJnU5Owgeo68iXXPOiQQyEw==
Variant 3
DifficultyLevel
725
Question
What is the value of x given 35x + 3 = 2x + 4?
Worked Solution
|
|
35x + 3 |
= 2x + 4 |
5x + 9 |
= 6x + 12 |
∴x |
= −3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the value of $\large x$ given $\ \dfrac{5}{3}\large x$ + 3 = 2$\large x$ + 4? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{5}{3}\large x$ + 3 | \= $2\large x$ + 4 |
| $5\large x$ + 9 | \= $6\large x$ + 12 |
| $\therefore \large x$| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | −3 | |
U2FsdGVkX19FvEQbvtOjzRijINwPD+WvhP55ayPgmrl2rZLykVU4mq8MBnaQMyTe+/Sl2cNP+6vLoe98YFJH5sI4vqHWtowamiFo8ErJjfcxqNMIhPnuf4CVmRh08P7JlccjGeZlf8FndPs5tRogo3YszU/b8y3QZJiX2uxEDq3/Ojw4cdUAzo3D1z5wrfmi+yCe0xfIdKJr43szTpZrVkE4vrCM/pgZZG2VgScPvAiHpDT/OGT1pVZjaoLLa7yQr/pof23RAbIoNvGJ6BY/oBkvxczV8vP9Gz3h+PyQifnqLq1xDjVXA4OqiFuTJ30xHtHWN3P+4+OaK670UoDjEkKOa4r22MPFJriBbq36LyyjgvEzY03PfMrQPf2k/ON+hbvyztPPKdOl84tSeufxQKjiy5nHFxH8dn78KSBXPHw97pb2K5qZMr7WQ5tZXYXn6HMLnqV/XYHsUrakAITcDnuOLrjmHzO8mz2laUjbyj/LjOOz95atM6YCux4jEDQAW5GbymYB3dQlEbvjDYMx5Tw07F2YWSXUyU/sCoInMnNdUXU5jSPiNqXQkSMVxsA1vavi0RuNT41Lyn7wOkjTkqtGQf9pGEdtXY9jBvaYbQkGQ/FIQ1bLeqRoY/whS0eFNt8k1/WM6X+mJimx1eO/tYjZ1UHiWDuY8yO1UcvKnF/IcwgyCAHXptqGfP+wwE6q9pPXDbWktoicEZJtxACkhE7aFfNt397pGmpgf6G2z60z0RLQbTLeEexJZO/8US3UopMtGU5ll+aYMgDa7XxY7fKgDpHMx4anDe9X7aIWkY8DkGTZJgBug+xXXJQQJP7/0mdW1+AO7BAO1ecCoc4kA6hYAyS2znZomQGIl5vKzE2C3rzcBcf/hze7MmnvoP2Pqbv/EZ/k7s+//k/Btxo40uRaDq6nbCpat8c2G7RSBCpgJpk2+TYIrVtaYcqelH5fBaCOAjsBH6+cGCe5n2eCqmAaWSmRKEw8+PoAL/MwJzg2tN4iRCjJHNYiT6N0EcGkHJ+dhfp7pyaSOm3ilFAYGRIQnEWR+UQWCg+ztS9BWZTkeZulyHytl+y1f4WxkqgBSDtvXqbabPcrEzjbSLG/ekIouGwXLS4SnWyrAWEThsgNlZAiOYTla+OzNv849BNFE5pYn3M1gkPwM78kS9CMLxexjjuYhZukZOLh7x8AsTha7jKbNtJF82gOkrfdVYyL/48HBTwXyyaBezmo2+M6rxqLpgxYQQWccSHcRFxoMDnCLZN8ONKduXSHO65jdJ6G+HdGWMq1JHdMmW84ny4CO4JrC99sByUgtWtb02YuYD7Po5fTUQlIMfqBg75E3gt2EEOwD+SnKH0ufjLXuP4sqRCZzT+4i+K+oBQByWMw5piSpoq2BATsqs2TbJEcUtK2IEDMYy+79doEUePxUc/302WtgUYYZ4lDrcjyUCVicYfdmxRw8IKO0PVLFfmMLKHbySHvp9khHBNYD6Xh2F5sEZg23gS8pemKtf5Tpd8mG0RW6VwqG+r+NulsMtY8EW6KR+af77bDQED7hgFpCAKUi7/73HDjNfCoizA6DXItV4p2PX4RGATYDmEELziw+HrC0Tjf+nyKivhmjK4esdAfote5nMq6wM7eGEdsJ9paDdY0AQeIyi+Ob1T3AJAoHlRfJ6lrIht9DQ9S7C+yO2U9yE8FGXuLMX3AJjuy6maQrttK/GB09Tif/SUL7RnAlEklCD9KTFUnbHuDT6/jpiOW20PQYn6rAQSYZTrJmQ3dyfn+4+02l9Gh6SBCm32WAHxN6HJrI0yIUp0jA8hHN94E0PEwKZwKEvwtZpyLSRgD0Jal7kaVEAmwxHGTvayTkRr7ucU/R4rrZtKjjPBC6SI3m+BFyITB/+ZYZBK76+V+2MXQ3lfWjfTmaoSxVqK2K0hCP3yrYjcEiVRlsFDDUYDnMzxr1IYrRy5t+K9AntiaiIlph8pyHYFZZ+hR6lXNdjp2T7ybMqzB2U9LHUPYEPQGDj3hqGv1RN4bbR5bd6MGNE0/asKgczKmrJW374vIAsEtEjWp+Nll4THHPQXq1ZrpJwDOpJkVsXHOcQB+P2WVTnNRMrVi98MduWXD/kz8PchcBJkNZTBlPSylFVTzlcVheOoLIDzZFgiZkFWPXdML42bvMNfy/trZtPzJicp4VgcGtgxss/vg52U3VFIggV0wMqodrFpiwytPvo28rM2FSm+kzABFHmWh1koxgDrXvyJtJTvLglkfSuSIF9unBGncMWT3mvM2g8kmCjUnPdib/HIZ0IhbAo6MfF24HTXV+/TIqhiZxql1OKhcJH7gXIF//5H8s70oNZGZ6si5+S8V2YfnhziKiul1ca+4i+q80mmNXo005kHmcuwGWxRXMB/NyFnnfP6QfZNEJKGjkP7gd8gqLdSEgSLvXeWXafqcVCYXexXFDzg8vcL9+PmipQRMcEZCZBjR66TkWEyL+x0Zb7hbOhNqOdniR33LqBmnuk8Y8rDeuLR8E50UsueO3xBIDbHJJ/qoprsYwvxSeKDLsGTa5Ihe+TI73J6iQ+nbQyha+O0IXljHtIhXI86flY+7D4SJB9Y3QtpIq22B770a3PzuSEaWGz9kSw+H0StnSs0Sy7Zw3KEcSf+AkkmpewnUB6Zsr1+tlacwVe2g05mbuTtdT9YbhmBlSpBTmbtFRC7I6KrhGb2p8o5LssXOWr/fPvvpOFF01AqvmUkPYVEj+i92blgbNkFRHn9c0f5PbFmNewsMxsukBOftgj2/63JVc841zeVTbLRFxIy09V+QOI4rCafFQNNTWfSm+o75SS+gxPI1fW4M5kb5E2/1kIEyX1g9PZNnGVoHQpR9iQlIv0mx762M+ekNmjwsekRKt0Mv5Kpz01Sy6srT1TOxF6hI6WdIDcjlMR1bvHeWdatk2uSn+poeNwPTDy4AUFS2U067413WXhzSTBKX4US7MuS8dQxVL2stqIdOaNM4yHk4gke3R+q37wYoxqvX8a+fo/qM+DPLFgYJBP0zOrDTjD7q1d9kXuWEMde0dZatyxfF+xvw3ZpAKQBAniZYr24X8Dcrjas57JYXN25xIP1h3GGNKr8QXILa17y6tq5zbcenlmxZy+JgHS2ZgRoGlKLsjEQBFFyKNnGpareJTdyCI/WYFYnVLusXP5rwU2CxMYwXx1DQ0stiQByytaNK8SlWpayJd303w+/T/Br0atXqLArxnLW6rfPjtarRyGOMBVRA/pfAyLnLBF3a8HipCV9vJCr54o+1MBzSQqmHXGhlqxaeOXVwMEdFjhLHBxNrahyn8VMFvQoG5NSVCj8bexTwcXonoAvaN0UGgJ/XztdvE2F/JmQ2R891zkkxPCbv5nwnlvdx7wLS3MEx9tv0hJkArxDwq+wWmxdv6QtscQp2LlDW7Z90gpNhNgZoMHZNjm/vXgZ3VA4944msa1WZFECZfv3bCvA5zcYZ+yz6uIDsd+8hocvJgEsapohCpgzsM5VKl0X/NXamOJD1sC1Qws9AaUscIOyhRaAocbM7wSCVwcX6O2L3dR1TCm0REmo7UuPzUUtKFlBARQIPO5OEjT8Xv6+j3UYt6w7sg1x4YKDOmeLIu8ohLZJTBBaAJcAlfumOT9FYJTVLPsqma03s4I+rSkZfbtVejgn5EX3rqfYL6ACVXU2/gpCmgK/mujTLga8u79MkgT8jQuci+JqpBUudQk5IB5nJPOayFpKAMEqtLg09SUZZQOj34g8yzRPD+zeGpl4IQDa867cDQOdIO17ZbiXXUrysne0g1Y4SvqP+HwHX3zgL4wp65NZ8UJneuNXmGd0x9ZqWDdtNbOVmasG1jXA6K2CZTlZC8OHqyXlmvT8H9BR2FF8I9CTqsGt3piztlpigaKkPpoM+62+AKKblviF6Op/+k3wdf0u7CYmYXCMefpUph37RMcz8VHJ3IdW5/5CoHpPTwYuceKuMO4qmK2UeDi8Y15/QMffDlzg67Ezk6eDqgETB7ELgUasofyJApyMRFcyoVa0VZWj/bTvwau8nuUJNGulZUJsThJk9q+gx0JE76HxMIfYavMjubBUWVfEtkrS1WhI3mz4VhAFaVNNSyFV1Q7TlfC24OfaXLmgfw10kFXSNWRwZ4ku2+F70n+Usf3KZNprhOhiJuqmCUi981ltXaSDGPMN/SHNLbirOnQzx8oUeCXORFRTlRtoupe9SuCGXmQ6POGpFpoo8QB8jKSm597Mk2qTzmT9yQW+rh7ruCX7r8AQR3apzPy5dJfgCSt9JiOE7Ob/DpWvA9igFPLCMxsB6MWpWrgPP5/RFatHKHHAY6bJtPbz6y41dwJJp1cQ0HVurbGwzax8ybX3aWA6FR/EmpmaAuCEulTR4+V3+sWqvzIdqsSptDrcK2HMspq8Ee0pE1RAgoFGF2qDfeJeFRZ/tm0AJNOZGHPgOgo+p4iXPn8NvP1MY/KnQYTKc4MI874lB/tZpbS5uPC3JSd5jvpk/H/jESg7emJxGSwmdJG6XcmaGg9bDvw6XYFMosLW4ji7XUttCPVWksfvfouAnR5kGxWh8erFxiEg6iTKddsa85vN6u5CnDFYBkQNmbCGyELbAFm/o0fCiEnPCpPCDcTGrmKBFo4wcK0K1OLUr/BkCOn1cp8zYLJdzK8UTj5NRiZZCNcrCS3XA8ahynNR7b2jFaIKtIjYK3odD1Ma7U/bsMZGs8xY8R68XDz/ABKNcqt5a8abMGmHQEpR9xOp/smcpOCsI7s2/wjnokgZoq+ySlZ/rB4ce9d6RTrkbJvqSTYH0LmKUk9OjV8Gghbe81Bk3M1beVHNizQMQoYLvyPxxNuQxMG7vpg4OSwMgcMqoQ9zBfrqMzhwZjhARf44FdjDYv9SAb4nXFfo5xy3rSIUoDEjkF38gGGCSxY6cqLMyR2bvUDS01w6BBJw6Q3Px8vE9lnLo4WtgEyLHwWcwnqzR4S+o2i+ZzuVFi7qZlrce+ijO/07SOqV66oSGNCjZRRjGdqOnyKPfOo6tkJvJMQbdEVprsl3TKbgwKzWQJ9iI1BLfuR5Yjg1MQh6y5dPKFKicLstfNzq1l8NiEwgR8wuzU8Mj+b12I5BThbpcG2rlQNDk2PZ1GBWQRA4QFj/ltZLYfqB1+KKPhZigx92g7JfkUEf9vx76voH2bKfYwOnVeNfhbfGntjPpqxXTFh7uUykM0a9MtFNTlqH3bn6J7T/yIR6WEJ8L3rBadUUzqO7kJw7Wr4osNndNv4+SohPAlNZalGTh/0T0u4AHYAbPmuxHM1HidzJ8YDYQhXs0SWGWPEo0UDGaTdn88IGcH9x+v9nP7G6/P4hm33lSpXIkjHUjBVGmY0lS9UmzFn+Mf9equagl7PnCKrZXVTf4oW/q7r+DiTsCuDp+sE8aGr0o8K2Oa3VcNeQ1QlDbb//9iekJSXgOPuuHXIs8/0peFKsGmnedjUf/hFwKEOifu4WqIjNeG4U0xTWAG3LZpj6xaLJe80A2VAiUx9YnmQF5yGvu/YqMw1PUkhj21HfcLzcrOKalbPqYVCRV/N7M+cunkwpz2Qz4kgaX/mldUIWtZMQxMfgmEA3ZDVAN6FaeVAxWFOnyvXkJETJQYLV5CSJM7VmkmDK5gbnqIhXwWMn71NC3hniOL9XFwCeT7asXTg/im0UbC0EhLFrCA9rQPZi7SjPmqOHUQAuEZAcu7DQk5xPWmKQgpEjjtt+AOJq21jUE1H/n6CPsK3vHcO7f/Be6eaEO/sZEn8O/yOLW5z3zwmsjNp6QRWIS/TYL2718AhIm64ATKQvBmbS9wWber9MeRVZwNa3e0REVHYACogJToT3HwEEcHD7bvb6B+v+DyzOyrHjPGPaSvYbreq9gS7zHGedn0iTgQFWImKCtcohdRtFHPzsTwDcNj/Wj+eRsbyi6K0bgqEWrISAHxauXMhzyw30PuBCQT8/pH4xJxlK6T0esRLrx5SxGdFjflchHLySt43sody6H8oiyIkMxAUcLEC2RDqVI+aBO4WtdoOyIssN4RbbfRt/RqHTFvLs+uvb5nJJG9KO09/iR36tHX2Hb+Otg9EI7Ub8AOq8KwbTfJ5go2B8BQbzSRjC8wxM9usfjp8KBubgQGHl//N0oI0tdED1PmdsmEGOqqeW1t+LSDmdZG8cM1CdQHwKjc3qUS1BYjYQhnUXo7/LrpLKoEdJHqoso6KTtE0cRuCZoiqnlDc79RnUs3Ytvy/LRCNNZx9R1WngkMbvAWtxknSEk7z+2wb3Dr234dRRuq1RH8SvxVsF3S8+QEbjdWCm/jnAgwqi/kmOOZm6U30qQtKrA/B/bAoRHY9yNbqboVwQ0IdJk30T4fYaX5KwL8BzLLvr7VYkDSNZH2aI6ZWFpQ1hNC58H706H73rph2zSvp5nIgcJqCgUIBTFsTE/+ERJJNzeSrpkCt29pyuh7y0ro8QSZ9CXQ/Wg/HUtAJYmKTc7TuLOHLhaDSO7z/dyxiwy8H0CiSb58BJZjYHMTfe4nNgfQOQ3UsQbNt3LNt7N20R2OBHFTt2tC0g3/D5s1VXfI4oiWgHB84Z+hLD2YoFju7knGG6MAk7dN73BVuDQJ6Q9x32EIecfJpbZTWZdkN+7w5RnI1f3bnpIcaVR0TFchayL0+tQk3Jv03iP1jaanaDlBYPohUnS81rmsDc+mYJOJTNfQAQLFGIVCfkrNz6s2wXkKQbN8F5fSqgSTZ4u9vR/gcAjjivpXuBG5i52AmGndwYOdFFW5wa+csJzwWJkNZ1reBhGJQSjjSOgseDUkQWnG7Uhcy2esnAcW4W60zoTsKOGVMvdQejvdJtcc3lwOF68JHUS47b7xLlYvmmJ7g1j8v0OcBVHt68C5+DrAuUC18lxhKqeAAOngIiJ14NXpbcd1AqEB3dF5iotyIYvgQjpeiFNRcgsq1n5I2zy9wEq7OnYEU0yqyIjFWXeNNnQ7t3dEr0K9h1uOd4yr7Hi7JdImgFsFXJI2DeQzE4SF6dWOm8gmMys6aopUfq7Ue2IgbLarocjXU8kWCNhaSChHUuI2hAVZ7YcYD1JrvQFj1V1lKuUVjw2+Cja0w5IbZUDDoZWAnazQ9MeSYOhM7U7Ig01LcI/DQ+BBeU4PXEPs1BXziIThjl3nOiSAT7w7sAOVUho4t20XwrWWRcAxwnqIWeBAP2mSTuLOuWNTIos7GmbNeyrCedMuzle8u7lwWzK/EGGtsIuGsFLWGsxSzH7qglB8iUGbUHslPlPtqZdYWMsMXr6SGYEjAsHFea4k+nGiak6h0vTNm6kl8akqsilh+TnG5I8aZwL+w44PKb7ezPZHq75i7wK2pdTA/ETAgzO53Yx8jDxcqyahM8q0SkjoB8rv7JFs6xWEjnsJI1I4wY1vAF7tXGDCxIfUQisJM5cyYe8AUgNAZ11JuV+9seHxdLfehUkI8FCkCsOKTME32A95EkAasYQ/PZ0jKHhcqnK5+rQfPhmlr1h+6kD3vKmiDSz08UDnUgEO0CxQDi7E7+qseT4cW8a+cyxKnZ7ffSjPzkiFA1STk/239trpf3DK6IfR5EipQ011s8ZnzoFvfey4ScGgVm7ZVk1igY4ujXvPJueyYgcVhk7qXLcC4Mvs8tT2Y6i4YsWctlgnZ3IGykFJ8tEEVn8mQ9J5k7w2oIdQBIdJD5EPMqzAgnS9T1IGoZ5o4dwuoG55L5WA5rOClC551c52Soe4H9Dm1XmjeaHztm/6GjHyhkOt0c4tkLhZvaY7aT7D2D2Wq49GCG+jyMBdU3LeHvCQwtjekyd0kRnSrLKcIIJ2Vw7MonhansDFMpFkXE80V5RQLbTmW3moC6BmZpM3KKC5c34xUFbzS/WzmRiq3GPZio4eSgmDP3ndipXkjNSQ6nCDwQZeQfoE/XDVcwqugdVyJjv5VEDWemuk19EYz3FIJIS/rsM/DCfaVbnzLLRFdMyhOf0beIeXLWDEvJNmubhLLdC/4UNUQOotbMoGAbfi6BW/yEjXxF8G6a8BSBBXVVOFKray6e6eJ0IOz3FR8kUqAHM7bDf4uwusRiACYUQpyRusHhXWXgYhezpFAn4OnB9fG4Lqp+qR+9R7rvX2OpljWXSvUYE5LYTebDdHiuTnQ7ocK/GAp5v66atUHLWs9T8yLPrvSqV+OzOoNXf5JceGdFHEG6RsagPoD2bEjR7Gob5rsCXjNzxiY46QM0ZRidwRHjd8DiKALbWY23VClm5TtQCZnjuMT17M890nRCdykKFuwEbL8sa1i2OyV5dnvrZznUi8tGjlxgSHjxN2eh1CWRDirOfwMGE1hn5b27m+15RgKp6kg49/dmjUeYVR2qCwsHTPs0BpuOmI6O71+G/F5OVwbpNVHwzojha+CNUkL1G69w95pnkC4z5cXy2KIX0syxMSSpWwphOAdhBopapOae5kQUb6CTmntRRvBP1c5JKSmIYS4fGsiIGAwfxVJFJn7s/xtIXYuMw3eVDr6Ip9/5DW7DleR75Lro7sWlcUDAz/uxvYC8H5CBvmSDqCsPK6446zuSDejkYNObOAVwZY9VNkhsBgep8cwzkhdi0jkuWj2lWwIO9L7+BxqZLqy4A9JGxcb4a6dp6yFKMQZD24niILdZMGbFPORf4o1c/FbuU7pGPKUjFpMtYHvCEQ2M/HJYcDavQbFzjuZ5r1ZrUIDV/k5JQRcZTUSr65dIep6r8MKyNK6bz1gm4ZlZZDPHZxyPK5ScF7b4gIPFA/7KjLv9cecl8lVr2MjTOXu1pBc/6ZI8P8CiQBNSz/MCyF+rUm6z4tH0YVMZ2wbwVLgtpXRf+k0pTTCmrmJLUHbHjSSd//g9fKF/dyJIPDvUyRtb9ORTgSVtQYAo1h+SsERWeErg1+ncgVdTsjULQ1r96biapMm4BofcD4+W42Y1an/M+UnpB7SnJu4GRLpwmIETf5DXaWQ+JDpyGy5BYKQzZbZlf/tB1k5NzSjYEo1hpxo23KL0fXBaSMnRgbMXqbBK7den1YSGp8on4I65nYBiUQu/vk2ENR57lkevwYsvi7V7YNlloSB3hMSPPCCgnrHWYxa54K7TWpEbxRCbPplckhQQiAXGQu3EAP4WWL+C1l0Al2Undw3iYVSWqbHLCsiTVIEJtZmLevwHYTNeVIvW6LhhM9TS3tuV5SNDNLksJhJO2BYtiMq+8FsNmktpqFqSGzc1DwOOg0JpBkcj/tSSFt+WUxK2oG9P0DtcHqx2l1uo20QdqfR3sK9LYQ7MAgAMulkp4AgbpvYReipWefWKIe5vG75USQU73EerJhiJNWBWLsEI+p6bqXcxsRfOQWigyTYdMoVkzw4jBSvAHo4ocffZKgQ6csgCKM6GJCk9kNSRHxgzaRjdb+G5U33oznn5xw0/HN6thApCF/d5+nIYEQDYNw+12w97RX1v4cSs0rKwOLCjU0SvFDl2x7a2iKdnvmAHUcNlfCFPlEVsx22g4/Di5mBbHXdLrRl9Yxeifz1m/jCFNL44Ir4avuvS7Hw37LSV5a8tJWpcmkRlPE6IA5z0FpcbJccv0k8yN0ue19Rt6Thb+JbfaURkq+W58aSM5/Rht1G6I/KSd8qe6zvIzA1wpW25QZ2FGEIx/j0BA8zOuPP6uIEvyvY4yWfEpUVparoo1zc5w+XSymB6zbEKypMu87VqNnDAVMJobMSXFclfH1LvUcIA8ScseyTquk9tnNBsbnIPcRspL7zuE/XH4BxriedS0nSuvOjAVkPhcHTC6w4lDgjPfJPgEFFULFh2SJhmX6565qUDI5O3t3KRrqkTn/CeQW9+3LVUTdvUc1eKcKCgY/b8ppkQSaIPlRKDSMhZ0ksdpjq3erq2hq0M5VH7qFg+50dJespveCJBvRR/FGOBFYejXH5jGRFW3zcJqbc55n/eMpoUewW28E0OlpnJGDpICjXBe7aBQsFVU8fNcaCPRrNGDybL/8+SSbttQv/hN/cd174EnKt8rYuZCIz2QXF3Hr53wyODionOizJnIAMaegnPcaP91TI/xN2mAK6HGJa/g8XvlyVxsebs0NhI9WZj+FHCyewDpMInMVsZ1He447Bxz+ZOhfLmC03RWsUpWzm/euGBZn4uK7BVHbfGSI5v03XLvX/j4ngLjRN9OE+MJbP4Shh9J/YWi2PX0QStktu5Ag0uovkEvsXFcjQryP15ZV5BoMY+GOO9N3m50Q9eixgsQNjFY9Y/yGK6e4DK+wWl8MvC5fvBnnu4gZnipYbWsgdqdOv8a02Ysnx/0GkoGddcub2OOZNDMryOxSMlZPL4IDKRN9mvsZzS47HMFSByQ5Fl6VM9KI8XJTMAPqTXHnCUJd0XiRdbuLzYnUmWDUnuERtL5C6zwf+xFNM1GNs3c2PtDA01V+uasqmFdAzuKZSVsESrAFLKnRmUzxdqLFD4piisEMRJh4EjUFXoOgUEtxqBCPXSVs4psDykWc/3ovaQ0d1gXcPfRx0BdA7/YRn2YYm8pStpaImemUpuSrAXIEX4UU/4/oz54FbhBjTmJ7GdzIknCbqQ4koO6IveKXRc9gJQDyY2ZFhpAgEucsuPE9FRXHgBpyXHf+DTgufCiCu7LoqNLj+kX9e5PI13FUdrW12GuONG2Czv4RiTQLDLUptfB0YfeZnaSam+R4vIy7nNCDljRq1W8XeLNHw5yzzrxAOy9joGq7oHOl3+UJ9fiK6FsrQV/+HY8vOjiUx2cYKm8gkgRRE3hD7BsAB/nAXuJZHXGkEFQuUWtD94Kb8FSBMF921MUvK45DNFCYLKbLL3fNZyDyajxgjaIxX6bLy7snbZ55M5jVfjYUvn/q8q+39NfLNR7SWGv8syK833U0vWYObjIxlZbvx7QzkN5PINvXNLI974t+L3SfuR+q0gJi1VrK3S0XqBTjNlz8Evud879wPZeHmLhv5nHXw8bURy/VdzmFc8UFjm5K322WqpcZRNvVQ/EHjlFy3e9MAnk3xAxwkxohRffT9Q4jadt7p6m16Pd/DyZFiqYfAyWBEqtJnW0zhORxOZZOJ8Uk5KjQNkYu+2CrWNYlID+6NeF7MJoAz5aqo/Dn5glDkafeOguJiPufJnNIvjONwZt3VTql/bHZkjXHio3Vdx7m1lRGjZAHkBQdXpBtxPt/ch5qUBv+QliOpjgsOFMZCMUmtrSQ+SVsCjTyCkjv/rdE2y/FCQSsY1CHCM/aytQ4ASmDGt1LByT7tfvB0CM6IjIwBpFhC33AbTSXmGONWRI91xev8/o3LMrG23YQUFtjIBTPQ8gqOfFBKGbft5P9aZ662Nnan5AFCJu4wRxqYNAlKaUrcIulMBU61O+5pdwkLxqx8tlVfR3uazTcViHFmWrs9GbF5UICvaxeHfCuK0tmb53VFEvmlBhTrnY5yFyEC9VjW5JIA+Rbqtf5YQUsR0TjZROS73uJVpiB29anOuAMf28wraFGL6zsJn356FSNVbZkQzerJui+dKYMFJi5YZ9F7tW9YycIChoxxFfI5Hd28t3l56bEJXMjvWN+oCsKJnpP3AqYIBnorEXWdfCBE/hxA6Dn3h3OALQcTYecznB8rt15TTnaJD42bQjmDueUi9a1W0xv5Nzs3xwT9Pif2k/5v8RLQK4/zBnHu4fK89SY4FCo+JtuP+LYRYHQEozZQIdKAAx2FKrr7Kb/3PlGDVC0sE1+OdMU7FJ4pbIwAn2/hdnPHMRlMdFpR4i2ODFtzvaHqyw+2QeZ9n3U8Pt6A6TQMTBZDZk5+5YpvkpDVW4mzmq7wuxTW41+LGOE9kuFklmlAQ28Y+H8bCMDkbaQu5idr4l1L3m8BDgoOD1p/s43N3CDFlsFtSqiU9LHeRmdOo3ZvbjA4RKu1PMBWwSjXIz13rM8yhux46l5/HWqMXMjUGIuIZuokV2TtuHSLNKwGY45y6fz7esBBouaiawRbpj0Yw5j0O2kbN6FSftw1hBhdSsqTDbhUt0WWZczKxNPf8nKrJ7IybdfAlsvfNHH6Gu1tvZOIwM3H1m6xlM+V+EAVoVwbxSXsgSNQ6VmCBucg3PJ7ukcOG0tJyEAKSLEyJQVREcSN3MUdaexl8bCenpFdxdUryJOOEn2wLqlXR4KGneeJIgID7wKd6/ogf2eS6fkolowd0MWSuRZixi2c5p6nl/nkb1rfDOeKDKN6slh3V+afk5Zd4gHRHnpiAOwOaxCBMNwuRSnGkQkx+FlXkBH7WWRsOyF+haSYNT7tULyEQrtYJ7e/y1r9NmN4cN6GUSA20+ta0CscOM3wvleAYFoSNThPQE7l66btJr0qKYtzTdgHeDUCJmmfeGgsY0zizSRBjJeSkMIj+TboKQaCFc7v8G3FYAbsMisOvahgrDxHlHZU5QpOs2DKUvWj648n8keq1Y9qLnv4l01zid7QFb0AXkaZeGA/v8Pt76LAawkiGrZ9C7gYukdlfXMuj1mBq8ijp+dK+O1zySNObQ66JBPgvbdQI0ZIAjY6JGX62qxCAgBIquKcK2PMUPdRaWu6s8YK+suqo+WqVPpA75oR1vun2Y9661RdDC3vkxYfvmitWd5byv0NSZCNvVDg3qZVfRcVVE3C8xXCICi+awWhCsCquFIaWpZ8DtbZs1FWmMOKmMyMFyk/TcbCXSljYXc3fGJS4mst2Olh9z4CMoQSe0bjYtnPiv7uSXMw494GvGWaThfNyR1TNDRh+GwA98j5lqAUtAxIiGXwKhhSd3C6jw0rvud6Re9BfcJ8tJ7sRZS7IIiOkPF6LDQOAKgJe7
Variant 4
DifficultyLevel
723
Question
What is the value of x given 65x + 3 = 3x − 10?
Worked Solution
|
|
65x + 3 |
= 3x − 10 |
5x + 18 |
= 18x − 60 |
13x |
= 78 |
∴x |
= 6 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the value of $\large x$ given $\ \dfrac{5}{6}\large x$ + 3 = 3$\large x$ $−$ 10? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{5}{6}\large x$ + 3 | \= $3\large x$ $-$ 10 |
| $5\large x$ + 18 | \= $18\large x$ $-$ 60 |
| $13\large x$ | \= 78 |
| $\therefore \large x$| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX19yESmZ6eHHmP3zJ4tCrCZawUkfZwIxIdF0/6AqFPJIlNVTFFfZ136Ewp7AQhDov/QiqMadmXSKJjw9V/0DOFpTSb0p9lvuB8mae+XfY7EHbBpZ9/ail+GihCpzbv4PvmRsZIOIEXU7rn2a3qI31gu9UROjjMUs2qVFDTqqUz9ERDAbRTd3Dzu7wOmgxu5mk9mZimniBQIJkAoYmJC7Fp2TPgOZF/QbU0eUr/sISAawVs35HEV/Asr5HWyglQXgPbnUAaWGiSo3uJ2zFeYf0c7B08B3VD6nkomjLbtwTf2bE442bx52r+nqAMPp3SVrjS7WBhCFfrrNnzGsW3kvaqjDJBn99BUn2zYdNkkCuunywZDfKT0Qv0aH1WsWasBhFo9u3otHuExyCfMTu0AX9EbiM7/8N1RR+48X8lJ2XqgQYy/GTXgdm7xM2A9KGLnMf8EN6HLG+vwIjEvBDzQxGrWqCaxOIaaEnrrOvTFXXA1Dzd5ujpHn4ojDkcZOq+w3wpr8s06y8R7GhbCqhmqYhNLi7JdIptfkHme98+jwYUxvy9VlnBK6pkO7v8m6Ov21ejh74EuBql+lUal897rzOHkWYynxS2SRrpEi5FBy4W8kGwsqG9MxJ5y4GwDOaPzSUW7L58WHArgujWstJYI1HRgtEem6psEPBwHkteUKh8lqCVzuN9nrI/DDKewyB7iUo5dbP+BF1UA+xVYWzPCZAlb6aH0VLzhc4xHDpkmBCoZBt2eFQClsI6HQAzhyOMskdwNMe9ercqyfSOSPXOMN2CUJgjQwH9S78DMDCMTZ2hVt7upKjd2U9X5yXj8nPEqjYeCvXqtU3eP3t5oYhlJ83C/0Xw/bDqJtUHPNankmwc/D7hHmnjRfV/EWf7lu++xWhqriFpsIWVDehTxHRJCEFB8qQH58Gg05erFpsTbzIkEKPbqsugsBgmpcPNAtg1idsMQ1tHRlp75yXpgBTj+vAyNOJhUHkWBDQ1P8TNIeUHVjDZwAaUH8AWfqi5f5+qdyTEzMIiHTsFnLuB6Jkf0KU6R8E/TyCV7YG+HcqCgXkcnYTW7IfxQiraZB8rJ+GJ2Q+qDtNJCd8sDtLnrzQVLUVF3A87R+q54lCEk6NeX4uxiIih3qokQc+sXxNIOMdsGbWr4p+WiZWw6zdjKyiJR9DVm2K8GXAUMGyXfdhb8rqdQd0s64kpFTQE7AOM6Wmm8vuHcR05YOIVVeZVJy764h0/wbxe+cD7KUd/DLmmXnenQCbQgnLstWl7k9aWQpe5pG5iPjc2WmVGzrcAzFLKMS4KBpXPVax9oxigFOxpBcJQCTiC4a82yrLrB7M8pUrSiSxm3OhGWGsG5hId2tqziR7xVkT/aWF9GPp8Cg1RAq6Em4Sdg2pp3xv0JjSXxM/6sE5bCtbVO0WpU8UK2dleCAe8/aLzWSsAR0UBFfDVaz24iEIhID1XqMQis6R3Zf/wTBm33KZqHfI0YZY0Q0Ie4Zyj57xfqyfFC6gUkAPplO9YK96WmKmMk5LZhssUIUDVLal0S7h/aoxFJlHyYwvNPUPBb/cv8H+CJiFuSP4OmBoxEEfGHw5foNkoM26Dyflnpyrg6mwBsWKjInSCUxSc3/on3/zl+K/x/F73Cz/YQUoKudUf8qDovHbKGv0xfa1NxmfHgBHZLg7XR70m2vqW6CS5FM20/rkntvW8KM3rw5EkjsuZOpTa8Yipa0wuGZr2ELHJeasXQPCkLkUs763xrQAjMtjDf+RrItlIYLbIEbKt4cotyQ08K4ggbK5Db3PQHWSqIDW5EUWRe1Xo9YHXO92XxrYoga0RG+LsT/K9MQp5tU4wFz/S99SOBxs1kT9Y+NUYLd0o54PVXgLPa+h2mVhvTSyr4Wp2+0S32a4sDZCtVeZswva97r/97Nw7Wvx62FLzzLHjsaqTHlsFxQt3XSlvTl1GS2KC+2FYp/KJ+ePbcFhzCIpoh6KDgYEVX7QItN/b4mIy0ZfJuVJfD8aohotWob8vGDVwVUUaFcPZwiaagL6LH8jwkR01qtX+39YM7WHMcJaPaoaumHYbPOG5OPCdmuQSFdOd3GeWnd8GCUc9hUeFBMwUDoGwUwfUcNy0UPOGGqml54tRKCCO3vk45m1twXNMY/clbv83/UUTNRQj7rK9Ecfv8vvn1JIS9OEnFAD0JlEsjmIOXH/mdyn2TISykVSul9uVNHJq7DTCBFUmfxV61gbpr+diLkFNCq0Qeb7k5q+zp+tj1QQBEHkS+BlUlwiZEY6ssX6qzOgtCZFraOSekHP9Shhq4o+9kmxEjoKpyd5F5QYle0h4GNRcc5+DvUb46lMwQFlH0pKSBozNOZGntW7zjBXUW5Nm31VjLVQhW/VBhu8CecGCZmCYnNtO0yroEfHzb7k2ggJVtE9qwOC0a3lkWFkJ4U/iX4hq9Coo7PjUt1e7wJ2PdlQel7mNf0nSkPvpSUXbgIhY21Itcq7ztwGAI3uCcsX2h8Egqvyyjv80oqJ7MAVU4/1625EzhDzaSs5pKI7yJTXpsomF2ZztNaKeAPaJw5ll6smkqy3SPGAYTgw7mLpfIatzWqjoxVWQJW5t4kfoLIzzmVguJdFDVEXXYRgFsQE78jEzokf6PTV4REV0CzlTSBAae7h5WZgQh0iD/W9415AqLFzxp1LUBBiEzzzpEoTgYkDhYgrBaGVoa2qQ8U/4f13Ge66GjVotDim0D93lpaad6dlJMc5JsTUQ5CHdmsh87hiVTbOXSPFnvE62Or5pwxzZPW+OvwSzKeS1eiRbjNf89P8UXpuBAPqV7XAbOwOCx+2scXe+Y/NlFYMjl+ijq1csnqmR6Ey6MhaMwQIXzKwxLuoU/+mPMtCHaASXAIYZxVpoPI4ZpmUIXJIYWbcRXeP1cV723+P0E70njUVJUMLMSWXy+lQG4G8+KD2Lhc6A+Pw3TRPuS1IDgVElb79WxjeVKMl5kJfBqbt2+ioiqTZzy4dLNi7SVySvrhHvtFf6urhhlsP9gUa+sWbKEDevBjwro/SQFLiNjS5m/y3Zt1kbPa8hx8AKo2KIYJiwBW5FzuggJdn5jTMq8isXKDQQePATODmsf+Ac3k168s5NMNcgz8/pUcGq1nYzT7ZZBDle3gGn0VtD3kNk8YdlUpBSISuYlHD3c0pdc2ko4taZWVBaZPYj3pj8eE+UMZ/Ktj7PLlmhaPViGTICAsbRI1S9PSeOXyoS+BzS7KJRgaoOM6JNktf/jJtS2RE0HLHcxEeoxxRe5ypsOHF5ArLdmIevYo3o5VMsV3KBIr/6kIJv1dYFLkr1uij3KbhpKFdicNIgvD7ImQf+Aq5IgKNY5neWzhFxbuwmpjlt8euRVfyHqX1nT9aArIuyqocgZ0j1hpc5FYxyg9mc6ynYkNKcxLULzizqqRi3hRay59dRsRgCv1TLlz4g4p5cscwJFoorRo0tPZjXhnAHN7lsl7W/83DgiunbwPAZu2BAbgoEj4nVtLopTeyzWIPMR8NfaZwg77/yNjyuRpRpOtXQoOfRs8AoHx0cTCvdwf07qGw1WSXfndJkYnvgCzE+ldQdC+nWrHoQwrNwIyQocr9zqqICUCV5OMfM3hTOmgqD1NkkoT+RHhDGtyod+nCz22Z91IY8n4K9ZDDMeoNKAXc4XSVuSAVso14sNMezL8R9Wod86yiLWgJV2QftpPn2rQIBbpHPlYL+hWQqqN5w2lGxbN9hB/Ik4BBgDgsFDaYrcdOdRzb1tpOlCwIW08yYwDYFk0XC6v+nXjozLuPg/0HLvz5z6nMmjCDYQCdpDlZIqeCkHZgrnh1/GXaZidOvGpYxzrhStXyVtPutDJ7f/7pqHc0XuuVW/i+kgUUNhFE4ovwG5ZZWrJ7S48UmTu2rzU5t32LiCeUIN5JNU6hjKYIMHtkup258uqGeAWzDUiJCRvhoWAmgC6qEAiPGeuYrKB8Qnbz3FxMXbWM2fmQlEU0xIyogJ4sVQPkpom3Ys2wzhT84a0GR7Kiqxom7cggYKovIdQV6lt1rn69B3Hk+dtiOpq37nAW/BBW7I74TSkWb8jf9161eU3TDREY0A5K2jcbFJjGqm1v+NcLo2Dg0XMmhdeG/EpYfjW2xLd7eaYQqJ+CLPbPMv5A4F9EwVNFttN6GCD+mqcXUbJj2u8h+2txKJMhVTtAUj4scL9+DRN5zb+DKVNNR6IKIGYKHEDqBaQtZqGDWOye3wPVhOqjcvwShhb3fAymuDu1pI+MmlqTWVsK63K11EJGMpAJHcRX1gqMr8AD0OAKS4OcbBMLwuoKm55aVjR2Yn3LInq9h6LHDga4RPNiqTsvhn2ssUy0TluBCHnlUYwbe50vSmR/HZ17Sj5jLegVfBYJ16tA9Mi3HsqgbfkGDsxH6Yh6bzAaJCTYILzak0VQefEZL2mndsnEOVrHjaY6vgs2XWYf7pdQp6l5pHVspN6lwe0AZxLlH6chT29mWHCiNSgRkUdP7K3SXhbC+dlXfQ8JOS81uSutvzwGaGlB2REG6I0Ezeibmzv4aT0v5UwQHSmNapOMtV47mvPDrW3QLpZ6YNlf94Yq66EfisVsnHaLgNO2z9DOhgcuEwdlqwgF7fpVLPC5P8IvKC0AjAcvsjvjAoFur1J5+RtRbeL9KKjElevXTAkwc9f+8/uQYMuGPO5jdvkw2AxuFFu4LzF+tjfHZVWnzBgXwEp3ja+APZ8QnD484WFMqSEs+Hb10S7T/tztrv44YD3Lj01eQ3XyOhwZ44LC/z4BfD8bfvHHoh8ZZxkOahSTqsHTa8qTXO97Qt3vEwMJT5mz1WL5ehFwP5JUAuOU2VBE9Eob5ku3wimvByE2fVPM93VaN9Xr5kU2AcmdCMCZkWPhd+r7DdPSQ57tGYTk9cZRAOSEpVYSz4BwEyrvaUjtYs+vOPfnoPKTSYIXgeTYdJLpuS0x5ELfGbEeS1HPHRqiAZG6MWrF8V1ZzVaw1kIM+rB2leLLJwmSiT91s++KYJXETkGXHj3Wlx+BBne2pZXvHrPPYWB6yLFSh5NHcfbsbtca8T5sM6f2z53u8+iaBhC5ec01bIQi8TvLarPTecoANEtHW3Sbofvs49Rou6iMEgKZchWUZDYv0WRkloVk2egYdU1kqYQRG7piPe9x3bLHtEcWcw7VxVyo2TThTkKiiFRL992KpyG18ZJBhaN72vSiriKEU50kFCKaOVQO83UNyW1CQ81Wni1zLqn3dtq04d8Iik3OMqN+Z8p8iIwg3PLrctHLzceEm/1i/MV0OYfKeFF1pTo4Vk1aPbLfUacXX80xRE5Ks2srtWNLCEtqf3lHvgt90YH5+IfAz1p0l+IiFkgAV+VXN2ZAUApoW3VRkw8VAvSOu0iuMOpWhYmpq3umIDFfRHKl7dITT18TBKRwbm4BApTYhtRx9x4QT+ie0VJQiQ4OXo23CYTzg950p4m3VYsfiZ5MnK8ML7W+xveEi/85d4tW2xCwHgiaUkeD1LEMHyyuefJOKkBHUDZCJ/lY4k6szqddq/77hlQQbVlo2ci3hSeSxSSePi8QNA35NrjQSqQM8AHSYsxUtslk4HbbsB3kX2CeoSxWmayDIopP9aTpF66Yzy8Xoy4SWRqboFjucv1/6KJzc/TcHtEJkOho8JUADW8FasRhJhO2OagXPZeI/lTWFNhkTiw+yE+hYdvs0bpmoWo6RtVVQ6+qjyxceppstyxGJAL5jT84PU3Lyei5vkeew26OYG13DczmdDHAy3m2kARTu0vtD167ZBsyAUvF/2JULwEfOz1wY5ymGGptP6l1qoqwdx1diEkZYvPM1bh/cygKznNpjZEDdvPYR7wtYjMN4Vg31Y5xQfhHTvM39BNsrMOrEligFQKPu9N8uvi6ZLIprIxgV/hI8j5n2GNezSh7v+PsBX08qeVqnuNG/Xvy5rxfqMWrbewEfhMRLkvTbtMYRk9t4ZcdjpO1cME+Bu3pjUI9VNIeaD2EDKGZLXgL98aaBvQeW66w4qhxSewQHcbo+Qyaw0YD32FrHlF2LI3jaY7UWr7pGYbuWGEueeHZKmN1EVhe9YMYpOx9IQcI0iEfE8r+nQ5tQ8yH7/jDz8tuhKfF6f1S9406kdXtT+CPUN3XTaxQMe0pPAisPKGqRnnqSH9U7BgUFK4jCUWpE/izkr6/aJBA4Yznw2vQ4FMNvzHnQ+66mhpObweN7oy/YmaOoVYIgs85YCH+PIzWtJZR9t9UWrj+fiXqI3cswBK/epc6SCMFZdtsikZZm561q+RWG13UB14CBCHpRjry+ulp6Y80WHbGdI0hIbhDZ/0YUzo+GYiQum1Cf51kfD3L0AvZp0G4Sqyyt1YrKu0rgXJSjrrVKYgIMqNLtHaMRWod1QnVYJaAdrYPlOxF3MOwCNC/Y3n6TVhpUxIcCwNAQhuOK+AqZEuiXmijOG8x6VQQuPUntLCQBr5fDfZIYtbqZpNU5Q9lPWmKWoeO8rE9gKazg62NIG1nFgfSgojhH/eNqIATW7EjEOPTJPEtknMQLxSZsRTNiTMiiRFkxRyqcY4ymSF57bDIl+9CG0YhBzyWaTRFYHFsxLMgc7fG34VOn6EiLYznHdlddIEZ2LaZ9q7Eq4tOK6x8Dles+wXWPtKcbEDbAZCg+SWUzL78s1sE4O6pNpYdFJtdiZxcfAaSKBKJAYzzMV9c2jknFZaxZmRqHbc7aM0dFHA4KiJAYNe4ssY3rbCrNgmW2PWCbWyPPxcnmATtWv8q9G/UVy+bXqE4u8f2pPsXKcKT7Ah6oFum2UFVVp5mpiO4hg4C9WUZ+hunOiUwazF4mpEwqxiu57WXK7IUh8J6ObiDxjpJFrqloKI3eOLNINryggZjUmNTmnOp174DfAPJRtXsginPEEJY00Qxh1W0Nr4YRkkSUIo3uT3bbOMN12RQJAEt0loNtMmJh5sdqqblBQf7YmB/CKwar6R7X5phr3JhtklhrFVsU/fC+5UAd2E1quxH+k3DhmPgdZ0OezcpVershiXHcHhV2QQ1DGM5BhJOYAWjcLtcyW32TTQDf7MeVtnjzij7C6Yqw6E1Bl02lIXTbsAn9Hod7Lt2rSCsGHsreN6zxgq1ZN+SJM/5jBmrsqprFybNHiP8y5tg2/bS29ltwi3sUkOLROU1TJlnpgt1Um9oNMmt4WJoeRzxkR4xINPDyDywTMrBJwFUPCoGxgUN3UDVp2T0zOtjaYwaSh7GMc5qTTZkFEQBdW8WYcjk1Dvf9F/W7dp4CHWEAZse2tm/z3Z4R5/V094fn2Jklr4qM8XpBpcZPkl28uxxil8ohKcLw36pcgTWEIhn8sLh29vOx0Ia+JLZEOqoGwlBv29XIOR5Hr4ETOc19cUvC93GrH7KWlYegxWSu0xCxdRZH0qr2qfLInWVDZa3YZFlSjytsIheMDWULO/H1QON+aYkBAkd+/FAhIkDtBlEyrH/Wt+5vEVBqYTQuodCVTT3x/86f1rnc8keeslDR6jaceVprFyhkyJqWpXtc2aA8eYTw0o5I6w+sa3YAQ0ZzbTZ30PeS+iml7Yl+0y/dwZhgqI1nW4nAjMpN/s/gkUaUp4dWLREQDGbi5IIUd1CZt5RKXPfu5fYRzySx3Mj8od+NDTIc0ff3hU+jTiI1I6BQo7dNVdC9FJEcxjKKkKXXF+1rJS9YtZpvsPHmeG7UwMV+MgBiiCFuV/33qtdAuV7AI+HFP2ts+jbh6ish0JNzq9/BmM1vuVGANsOd82/4DY9wvrgSws1DW2oYqX5U/4R+MWalRwifdKCUrXE2GKKFC6YFrGZjDd8qtgDieADW+gZErDCbCOUjnq280/Vb5jpguy/6PVTpmMf+t2qoFaGtxo5RN+6KF4gMyOP5vSBcwOTpKUH2lpZvllBWqZu2KvyQmybpT7s6jS5/XtCpUiFKq4DLaVbZ0NdyKJSyH5FN4NvVVPYtSNdyXv/tnO5YnuQOdDKqkcCskioGN0pnPWt1dUpwd2u3dmE6cwDaVfAvFRhsKz8++wTxvJzUB7BzRLXWBbIFuXzeapbt4reL7UK5VWZheZgWMDCf1UkqPFqwOWmXQcu+ZKvyyPNwBspP5QadcyLKO81MqZYn31urtBGfA3FyBTDAjwqi/ZnotJ5onKSQWijdPC40DsoyISUo+6fdU1sC6ujKAlWM3nGFoBaZg6rZ3Mg+pvUeoiBbwgLa2V8KWtel2IB6LizmMsC/gCLIFKeZbEQf44nt7LXvoxX4DB3m8cmnuFM/xYk46tptk2vb0E95Arn5FeE/TF/xdui3hP5x9Rp4TVbtGB7bPHwIFTgapojq2H/sraxzGuy/VCbrxZdVYi3ELT3dPky2eEdH7/39iwIbuaR4+X66bnh9tBEBZK1ciM90frEc9DAYn5vaHiMuznelNNbEz3oo+PvHTHzQ2m+7lULrAhbJlgISzkm9GUio+DhYAOzOA0sFronwDfGBjd01fksvaoyXZXZbHWbQ/ImJnhuhAXM8ISu6r1nuyfPWs5xAMUOezGWvnhq+DsNbBf+p/10tGVwOCJKZ7z8xjS3RovFES6UGIK0D/KzZYyYvJ/UsMsXY1v9nitpTK9xT+x5dhH3VNV5W9/I7pSnOQTMl0H9n2MOnsJLeuFUTFlS+6roeQQZKY3ea1owyAuOmnrACV1Tj4cMl7T4nq/SIdAAxpygoQm3J1GxPq+xAPjsN3Q/Wv2zVqkK9oTBObxD6dDTsJDn0CXyxvnwJfUK2LX40LqipPz6ejC9Zg7js2eHBYwJoegqO7CFyXSkwRDB3yXX1/ZS5U1EDSaZggFpuSiUzTnClOrz4TxizDVQjmi01yuycZz9yXsxZFX1wiidZrArhnewSsLumSJmzVBHMmiGEC0/PqTUFFlXvZS4VBVklILWhH4CBFwul5uaMoPnH106O9XaryCiRxkxPnNk9iAZiRNiA5DFL3EPSJFwAEbLENRZ6t/TtzI8VABcBK3DY3M5/opwAW3GxWvN2bxbsCYAQEzmu650FthM4nf/TEnlsClc3j1uGAWACy+MGeclMpG2icMzaEFtGpo70s1KKNQn8u9N/AwV5joyKj0I91IK1VA82wYkGZZhIZ6rnEOhXfrDeN7Qrfh0mAsnsq5TcmSU6wxfYxydiomVbzTTkv655UMu5DyketZSbjyztYxN4IK0a9BW8DLe11YaDjeftpVRxMG9T3C1qQEZbDKUT0Kj9shzhfbku9bB9l5HHgqU2O1NhdhP5Wcwdjs8M8NF9XwPuRrVtW+0aUOW7cZTDRNthA31Oz/1RscSeRjmy1uEmh5JuJlB/ezk5NBFvTtMQt0LiOPAs6euEPA89lj1N5DK7QWwvFUf2M7H771wObwEOlA3cewa2gCMpY1DALb/vZvPCM9cWyo7q6GVBg1+AJzUXrgWUVeIoRAcaxOrumkfQOoLYqBfp3AAsMMY7vl3mLngnB8JadYHjEmHRwCXBTnnMwthIMr1c6aLYcyt9xSSDUuk6kvvRpcMjKCKDx+BxVvXYDYUhiWULZV1j/LuWJU0AHT3cTmQZZKiM5BQ3yHec7ZReYPca0+Us27LmbJtLZJx1qivzXRj1U/LiEs9MM8zVGKaLEmrqNxe3cucGRWj188YCD4uivXLDmFPYga4IdWeQYDzPYD1uh0AM6H9XqpytqZF5mpWQstfGCXtscL8i5KzWKEqUAUeQ6S93wVGJUC03SmTsR4i3efZVVr1kxdim4K21ftIavzcfVoz1fT6X0JRwsigM4tHXTnd3w4AVBQj/7lf4dssSUDD8GcSzTzC9vDIjW+s1sD0S7IG2G3zI8kzNgLUKVyvLXB6a8hv7m1ABEk5W/mhq3I4m0i/Ey0v7nM7M+1JKRNASQs+qsCOg4HlmKbE/W5Ftgb3YqMeo7eVcUKOthvtaV56XU7BbE4vZMCSu1o/VpRYQkXwitDMgO1SeiMfnv+JIbfzqQfDZ0C+jZmOm+ejZ8UXy2oeexcU3rkd2Kqv7fQbz4CtF1EOZ2Y7jBBBwKeGcnpNXsrBOwMg57TysT5BO0tnM/WuiStxh9SnZOybri+Atq/D7FniaQ6EI+N/813/FSYSSbKjz44zgyIFtcyd9SN6eqHn97lwiS2NkWOwlEmVVoFWtNbwGAl46lZeRgkqbP7DeC/4hnIeTQKBpqOiHUBin1uWPFst0S59ksWXVT0JWgQgWrobE6HYlTQ4b4Got5tnbG+n3JZbsBw04Jy1Z1kSAOy7VGlc4IRrVTH/oIO7MpbHi3Q62fshn90JgEtQSkZmpyk8iI5HSFQf6dfPP1K01MPZoiNHH+05Qvu0EdPcZfF7S85Qm0KTJ1w4+biBjAcLGdNXXQpV0LbfesdWoDfu/wbSBMmwesnksqbzG7SdXaZjGwcyhy6hUJ5x16QyqDM32176/fL33YbrJKY6/TlVa3bX2Y5avFq7YHPbj/MQxYNiY/nMXFBeggg/5bzEbVO6UjFdfwSCcOZBGrl1YYup11MuDN9f7le4P5bnH3uGK6c5ih37R1Jwt4sLzrqXf4zk7KfB73zDk4UBg77dmNNlpFiEDU2Q3Zw+XSGdBZRnx1Sx+CD/UF34q7O96ANZNCz97hT07XfiIELwEmcEcJwIYqz0MzyJi99Zy2Bz7iPpl8xXinY+t0EejRAg3APfme2mSHi+C9G9Q+jTdejvB+Jer97/mO/B4Zk8/vLAgDTOd4DaFj+gLxQLzIcqNYY2qhwtJsYNU2WaidOAweSktSKfRH94hMZp9EZTdK89nMhpfKqsG5ZZ4hlX9CJrXVPKvwEX+W4gvoO5Wzq9Wo/Y55apvSKWThxY0aYlmDGJiMePPJAARDKtxSqH/k96Q477Vnx0AtkZnO6/QYKod7VpUBF64gJCHNn1EC3eSJBWcJf1HUHiauM2V5aceqThyVyS5XK8vC5Wm38h86G/3UsqGhOfskjg13MiGPFHiJBbdEKC5sig1LsQgGRhbA6tXV2KKior3CpV9GKmoRn6z13/4C4OHfKdaF+JKHUY/Waq95kuE25rv1WA+Tx0W42Lxuw4W6/IUoMZt7Purqv1B7AMMdWCglz01C3BO8G8e/q9q6GOKdWAg7vWW5gMZNzhG17tticHo7MxJT92rVYmCyk9VXduwY7EW1lPcF/zUYv4uKOAv5Y2oKhlvxpZnhf2dIoahCLvJiMhBzjBr6gmbq+P3vSQfjaF6lq5F6K46DJWASzq/2iMdKg84OJTV7SKCuc5iEyfz3RNPLgcpMJbECYseA3QztOQtAKRzfCPiOjcyad8qoK7UXIezuMu1h86ajjjKjeFw/yJgus8wrVEDQTl2u5k1eGekXkSSeDu2fc88pn1XOGTFK7u7xw1OB6WpMIEivuSeAfmGI0tMMO5/Qw/yP+RQ0LZzkE7xFMk6+jsRx47n5zXrKyeLt8ZpSp3ydkWFxubL/P0HgRSSLyc8wu8n6FUkEnvHXauzq7N9JUwyW8VTlQZwjez20MJNiaWJmQl+U5VUHlH6j0S9KUN6wlNcFuWZmXyuQKOpqiJHMyCXd5t42JyyEvAY6Y/1HzEgiDCZzmpB4iT9oH5Pj18uWDL9giLfNOhDJJJ0pXFYXyN0sSMF+js1Hj23luWGXxB3d3LiqFnpYJXiX4nvuNhRjDrTyRqSwSqwpbplp5Ua1W4QECXVzk5/tRoM1dlWulGdxWYUWo04jaIOgwAtWX+jB0KVvsKt2v3ZYBbOYSVdKrxkigorffjtLWSIRxWeJQnIOBIcRQGCpi+iRJwm4ThhDayDkNv2I1kwbUvrm1XUHjWI0mdp3+Oan5NviKqBHnsiRjGXDB79zGcdqtnhVIN2m5yD46SXGJWwkDBWCDMiE3fzysD1VZWYgMLwdtn4EE2JdJIXFnBnd/Ee+4Se/EMGh4qWkKuOHilvkUjZ+AFerohzsuO9zGOj4cqV208UjVblf4kvyupUPBheFjHPxCd+sysoJj1Vpyg2+X6tnCEScIn+rHCMFd1hMeIY2ck0vu5fw5yf/afztLW9cFiFdB1Xs8sTRqFyDIULLCTeO/S9fXDT4uKovH4lbX88qFply0VB9yPXNvC0cEoaA837LOIU6CmkNCki4EVegClnNp1btFoaFT9osFt9TBlirBp1Q0Pzr0p9H7SfvlmL2Obm2OX6eQqkGKZsBHuwTMx5ApbDWbJBs0v94UQFVB5u06M/JzOV3NKXeM3LbPScgc6p0/DUV2f9U+0am4+PSNPkN5kDkCVPh+UsmlUpdjzRGgBrWuOkvV4w0X+D6sZmARZLul2ywr3LWodg6vUMdqv7uK3VtavEc8dEmRKsk4E4oXL88VPfYFtLcAzYTe3Pr7qA1nxj/08hGbue6YgAuxyK4LMc2VFt+fjW0vhgMA4haQonaVGTMOhQFm61UjrSy2OB0hPxHdjYe6E2oBBjII2GgTYrPySGNZhcmk49cPVyD5QoFn6bowOe66qXpPPxTvNhl2FeOKHa77be4XDilkvPydxqAHniRmBG01sgljhZs0sC2hwMNW6NpYYw2Q6XDI/uAEN4cFxPW8mqLb8/tHthlMe/bNqMVCHDFmJdup/gPTLcRjbbTtBxTBKq2DsSGPxmT0NdH7KEgY4a1vTKa4s5lCenOTBTQ+orlbNfFbfWW7ndtsY6ZNf1YPmgUT2NXi1oqoGvAychBOkvQL12UulnMl4kqbiA8yYAydGcCB/SG1m5WzPBPk026Fp9A7KY+DDsRiY90uYmUecoR5dSS5ya0NdHLasbGH7tm1lrzrV4kQMZHvMbpm0MZj0sCKDGFT3d3KK+21JiJICCzKk+S1poZcag7DgZx8ct0rbZulvhHkZQsMayQA2Czx3aEO4gemehPkOqvH6Z9GmUV/eueC/13LK9hsTzS5ocb9r/ZGqCRjPfEFiU3fckj2kggPBYwYeFd6OzSZz/6bVvKp2KdJwX/ONRsRdEVGzJ5J6zMWk+RNq/h5+jF5VJmnyvO38KmDxZOqLMJsnI3nHIzKjHHJ1QgeSJ6hPOH2eApYQrkncCTF3brr+FGDz2juIJKkkdIpchAKfnFMXrGgmoFLLF+vPbqQwYF/5pvaYc0L7JosB6f41tXQSXgocw+EMSGpaIuAdGKWg2IxNhh93OyZ0VRdy3Sz2ZqBrsbbLZKG2CVcxHu6+tFOaWoVAiZyIEa9ouaQldzYEWc4HZzYU2gV0VCkTxNAS1io7ivwJzqradzDTU/fEaT4DwjW2lBHVo2DHy+567pWXS8Jzy/Y36nDAp2CuDKbl9gss9vtpFljy2rLH6GbUaPeMonn8sUo++QbtTbbXhl9eiaCdxV8jRW35TAmX26L5Coj+84KRvOmpCFPsVwsYZG5l9k9P4w6HrhLoftQWCAjVH8tTeVhTOwMPi4BBTd65VBqZMfJbut9AhMjdGGEH8cJmGHf/R0a3r4EW5KJjGH9HZAgf7CEHsCj/QJgtO2NajWb52Xh/p0o38uSzCWsnDEgero5GiJmz++QRakOlCFUB+OwRMoCaWq9fuOpYXWJsL0PrFUvVNEEdKn1WQ87E9MUXLMhaVhMUFaeKmRjLcx6u+stioXSSdr8d5stLUXrhtDD2hm8hnVG5W+xDGX/5DTTTweBcN7P13VyOwjvHZz0FHBPtnIdDJaUTmGuaw2C6WoPms5vPKc1qI7fXi9zKOR+LWb68xRtM9z+SbcDG+qTkYpphZuJjPBmtDDLz3yHpsDQ/SsJm2C4kUsoRb4XguuJkFpq1NzncRzZ0EFlxoU7eCHtzRWHpGREIv2F2dYHY+7YnT7I3O/Xa4rvQi2MvCAsv9IvllTN016pkmPnN+Jmm8VqZ6D4o86+8q0AdbbwqUzWeG0SmBHBTDIUHv0IzxQIj07fgTqgW5Ohz7dojJMyAkiYnEzm8yr31M15cor5q3urgAfjJycLTrC31BwSaPnSRaOelUKIwFigV5V3Wvg8XW6nlIi7ddLZTmpYEwsoKqKsETXy2eWq8hcuWDZr51fwpcP1Oh9lV8zJhj7s7HMxmSFloY5bKdc0FwMC/FNQfh+P3efIhXIchp/D1+sXpOHQtSUdL/Er4EauA0xk6vt8WIZb6wyB1mxF7KtR287tAoDwo9DDPLiJ0wu/f2QBdzY27hDag7HIrlLk3qJNXEK6rJ616sz3bYkHa5efz2vIE5jNMPl6TeUxPK/bBVecxHy3u1UofOghKwBeeFvpzuuyVlpYg6WHon9G+Hf/FQFy5otrQX4F66agMyhNIe0AVQTyk8x27abDvjBCDKEifxscWUWCgvjhQbOK4V+3MxSmn6aEYqBQNvTQp3Xl0hLUBy0zjOZzGVvkO/ygx6dH1JTWPm8SE2UG7aNwWC7c6F6JadMcup5gY2BevLLQXZJP70YLak1aL/1lgOw70YHQRevkFWXxpeFs4RUiETeJlKk8gKDmfWZTo3+u3/d/g0XXfDdL73fotDSjvPaovw7vvAId7hF6v1Q=
Variant 5
DifficultyLevel
723
Question
What is the value of x given 52x − 3 = x − 6?
Worked Solution
|
|
52x − 3 |
= x − 6 |
2x − 15 |
= 5x − 30 |
3x |
= 15 |
∴x |
= 5 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the value of $\large x$ given $\ \dfrac{2}{5}\large x$ $-$ 3 = $\large x$ $−$ 6? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{2}{5}\large x$ $-$ 3 | \= $\large x$ $-$ 6 |
| $2\large x$ $-$ 15 | \= $5\large x$ $-$ 30 |
| $3\large x$ | \= 15 |
| $\therefore \large x$| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 5 | |