30044
Question
A type of mortar can be produced by mixing cement and sand in the ratio {{ratio}}.
How much {{choose1}} is required to make {{mass}} kilograms of this mortar?
Worked Solution
Cement : Sand = {{ratio}}
⇒ {{fraction}} of mortar is {{choose1}}
|
|
∴ Sand required |
= {{fraction}} × {{mass}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/d3hoDD+HspYi0umgfAqRAvhp//6o06Zce0hd74C9zAIYb6tpHo0VwmQR4fQRSF2N2v4RNDEGafWJb6OHF5aGbY8RS5gvTUtwQHFhpugMD3HPuchNIDANAvJIprpwVoDpDhc5Xso2s65fqQ7Pe4gsi3t6wsTWXz3Nbja5tA/r2oAF70WrZNLw6/QLFIvLXXy8+jXFBu0SPKavnHkEyCoridlTZrAqs+w5uDv+3C4X7ZWr7pXUE4o4c3Brbcu0Cd8MY1kMzM/R4o6m+4vFPr4QOhmvePn6A7AMZUzDN/jRmnK6zboP1x+ZZOXgYnChmLAGVlBUNKo/2+JUVvlYLR8QEB7ogoEUwG6PAxgIZSjPx7z/tm0xxRZI0ptvXB/6y3qVlvIzGxOcXGy1opQ5Scl3PaaDAltpjV3fzlu/96zVkemCFw15BDPtoxKVgE+cKqAUmcKlM429F/xFRRRITpH0QgLO52kyCUQHxXNnPiw/6dTCJbDJ4zqaR60RQMtdpxOu82GLDMRJe4SIp8bO8+QE8EBpld3+/Y8AMXARXGc03q0aoh4Zs0cvk9543cYNGDUOBcrlymEl7Vm0G7G3V6V9AaPHbTsfhJTfGmVCUBXfGBIbjpJlgLrRTkxtPEahbvS3BnpeGgCopfqxyh1Rv0/KsC0WKOj8a2H1Yib+UZXAVbwNt2jrBtOto1V+SmF6r0CZqOFpBlnAXY8R2Uo/bBHHfhQzBAcow7/K/5yFDKBLRUc9ASK6Tej5JUAX8BI4T9FwSiXuwV9VReHrfaI0NEda+N4jkayGV5JMvp0O8MnHVFMQRRFu3MKYVWYhcLB/KM2izOIZIJH/hEA62KfWnwmD5hqWL7JR6iewa/0aqjPwKu9zh9vhnYlCN8RagqspUoq2xDTGUFZPAH25jZpY03z7xhjXW1KFiiy7mVRg16V5qje5KZh4NS3dCcjz78YETiuFhKmHpYVPVQts4Axc9FKxcZLYzyxcV2Wss2r7tPnEEPozzWm6j0FNI6jXDH5ErYWCtPaVa61EQ0bMklMFuPVysvGAJFnA/9kqRlPkLyPrnu3v0OWKTGmxKNx5z3T9WCiM9+J1hetqZ/b3kuJd/Uq/WY9fH6CgvmEtmlB28Ybpp6D84LiP87aNS4tERcXHyaJJ8FZLaOACXc52zxpRMg36U3+cSSwrq7Ho5ztd5Ieljg6e4JRr1b9iRawhq4liV+uK5QCdzWYTs8f37sFAHdH4qzxM9CwqXCDqg8V5++A1fzS1+LDb0PsOnC/EQQI9bjvlkxGt1ausN4bj09PgjaqFNoSlyr2jXDTIm8G6lIrBG44riZBGUAHjf/zufV0TRFKx1Vs1iAr0nxZR8sU/rhWnKeoUAwgbJPtxs2fqDbFZqTSW0ykjU8hH0tZEiv+j0uOHUxWyb7ZfzmpO89UtBk3n7HsEqgY90vdQvXSJpvQQ3PhCZ4uOhp9tFOo9M6nYoeOtoW+lqO0EfvfjPIlNWDe6zbRX+jSl5bkJ2T9m465vfIxkO+O8NfEW0EOTXN7oAYpB4rKIn3pfthzpndX2uib9Wh3JJ6g61Iyd1S9yBtzej9bXk0cN4mIX3m+pb47MMJvEi1gF4wbGuhPspcR1tOyKlpfG6poHbNpVQ59gtdXK+d6QlIGd3d8SjDlVWo/hBe+QW4JS6Kta69QaPRRa33ynkvdCr1KMtd4dOb8GsrC0AtgwQX5GSJqmJ1lI+KG4nBnhI0Ift3FnW3XiiNqB28i23vuHqv3UHkyhiWZw1odpKIcsR+68ZSG9Z1xis550eXwkCvr3Ng0/W553qkAwsQbbreSiiUTQk+66NRjA8dvwPIdo3uzGphGXN2C1n6J+2YEuU2DtLx1JHru9QpnZHNY+jX3W78NjFWPiXwRBG774UeasyvYMoDtQ93pJ68wHdQbryuO9+BvdTE0qHpDBMwqE7hOMJc/PLhcbVyvyzRx18lNBYxiuVHCAZ9XGOFxyHKPtp1hYmSn0svLRRtkK2r3SmPQxZSjdbVVkTuLgNmm2X4NGWMq0ASAnXPtbVJp2tdZ+XUsAy5kM5UZ5I42MAanKkkDJgu+CZCCDUlrB0r+BO6m1trTlJ4z2aVnNTyqaGv3c1PVGFvYyjtRt3JBFoq+7fAuOkH4YzZ7hxtmyPTWTY4sLHxIEZvbngY4mN6zDRXRdIg88mar3R+6ltUiLe2yLBn9sLJJ9MAkFJG7J7+nOX08Aa9r4DaedH+ZwiO4Eg/36yalYFNMoBD1SOq+IeNb9MUzl4E0Cea1E5rAgcO2eaNBNP1+Ro+NCMTNp1yebqDa39ELlk2/O9AbJ7cNa8MX40kx2H6gw7Av4RAIl3uoYKKu+CdJiNTDqXwXN2fI3yPiSJk8rQMFkKWCfGp92Zzj2C+1vlphAGQiWUVIg0KDl3HPvlfNr1k18zAGgOdAhypD6ZXDxKA1tQz/JWMfW8+nf81YhFbeg5DqGxzZMA1ZmrvpplZVbtV7rJoL1F/iexoqH70nAEmNDjK63EfeY4KhlBgaEsdMTQRViRiHmy9bEcjQTXxjwxcbwD55cb1Za9EWN4910wonltMonapeaTgd9h2qgqCx1aE5VjJbo/V79ch4tPhnFjKwYWIErM8H8hfDzxQ0BS/S+RCGOjMbJWWi6ejhBCuL2s8BGzIWL6/OXpxRun7YkvzDMQWV30V5UvsSvlmTChNi8qrTyH9b2yK62qZKFLSZeDEJquMx0O6KOAnrJXkZwGsQ/U28CB1YfjWI3gyo2f7jESMX6WazPV5BKRFF7TmBh1N6Mg6Pjd1gUxotUk22A0UTe7DPSX/u/n4JpcytuOG7EjE3dIj2kMIpkS+lOuq1yfeP78PxP+QwcNVZ2hvI8rKDj7DiX2fKDnvLqx0ZPN9ebFYXlbsO7SrOmNHxlz+vPaIkl1kWFI5jYANGZonHpXXGWVJZ9A5ROGjXhg8cLgpXwrbf9FC2Zo0F6kZSHQShu+lpTluoFYKWdYsQoIRnMqurHya6gbJLtzY4HnJZ0wAkPlKb9hUGb4KrbE9sRhs9YnznO/Znz/6TjVanymBxPw/wisu32QeR1UhttX+7RcdDMtcGO7v+HRZGgXcU0aImOvEANW+T4L4p4b0pdrX1FiM7MOROCXmJwfJMzS/b3dQ5sN8q+VEujmwqQuc9mHUxpPY19gEcGGRLUdVS2AK4ay6osY0aIf1p3qZOd1TAkhuOY5is2hpJid9vlQS7kjESsDHX1NbAyhiADsVQg+z8gY9Jv95MNXVTGcOClrGr8TMa7BUxI9ETUt21mBy2KYFltxQLjFPIzgVxejzhW22OL6wfP9/rnTSBTgxiO8gPKAjBMXrZ4sUVz5Q2ujY/MKGTDwHu0XKLU/HY2J8xfxUdCWOtBejWuB9wli2IMNa4DeiqmUXpj14SsWJoa40f9Zyl/kxVBoR1734U0H9MmHtT/RyyJaaBULCw4LuipFgeNaR468bCCOap23yOW92NGP9kq9y7aFuvuSHN3yjG5kLlwW3cOabpDkroP1+/pC8llTMwzqoSNEAygPms+/ajX0F5PdoOsZeLJWq/EMSpnEPlJ0vzkD7Zfk07TCIyHqC/rjloV3Ent2mxCG/h9R6Ri+3Lh/YTPU7/6PfCGCwDtbO1pctOM1xpNT/F1AHc5mmyi3d7P01ZvgGZcLKZo+etyO2pvo6kpPQ3dEqg3qgJwkuI+zrF3OcxgtiSNAwyvpfVCvSVgIUHw8wYY8H7ezOPtRurqLIrm70qiBXgUmU0qjW/p6fpOSJ7pD3hcvdFDcI9+yOZNaazxF+zvtyL8uzztFHZvLdJyBqHpUO2n7bnHai7iKr8KCiz0dDa92oLMgHqYzoVOo3sBuXVeGIgtURwbUgu0QH/N68M4oqI5JC8NanAkRk0yeFP3lrk13SLt+dLlPBzCtaAhxBne2S5m3O6V2gju0ge7KIxagaGysKLIK/ZSy3u0nOoEVebMkTU3nrFyYmtgfE7hKhY6x3uiM8Sx7ESZVCxx1TPcpSQ5evqOgQn+01dFoS6RDwECWenkT1r1klZOWNr5lxS3noandCk3NrSviZHQmiFs8mgaUCA2ty3baE3SJP2aU3X2kz7/cVSmDjFSc7CE3x4EiwrmVNPcByCRd/FDuQuLbKWfX31RRylUAzl3QB/zQ4lEiRXU+s7POK9Nh+0JnsUxVrynUWArTjXY9Wl2XzhDI6Je3NtxBhFhPnqRcx+ICtjHzE/bfVywnINbcWbbc/9Yln8I2rEKwwyOEmHJSKazIa7JvFesb3sTiAy4/2Ax0pB2OXMUbrNAMiAnFIn6H8GQIOIQqN6xebadTC/wC6iVt+djeGdzV5/Syi2Vdggy38Z7wR+dagqLJ1C+jA4gvAiDQ1xPg+SEVdouE99Yx6D4j+BS7R2aCuR6zDVcKBr0dnSnib6qaE/6Jbl+7ekjpt9diZAjCV+OBoF9v5LCEZV/5NjWsPmTTG4XEYovMcS/GQwCXUaouVhrYJlUoRbfboGzzBD/A14xS8KfN36as8Y0HKdNi5S4SRckEkiT1INVznsKAUPYICKFEtJDKWseMe3kGgilEmjwPy+l/COSvCw7s2csYs6yHA8+PDAEi3cludpQtFYs8EtsUAo7OHYl1QaiTCZpBPz88ymAH+a9KYHFm1VCMyNN/lx7YBdTtmlCbvdIwjyIBJG0SnplAgHqSByTs6yb1ksU2F3fw+Kvwq81MkYd3KLvikPXLF1L2UDeccXps17S0pOF88f5AUnohJ7AgcI+ojdn9bZqpNzQJ5SlRUcj6AV7t4pUeScpC4x0/bB0Fnve0OvpPfvYgVpPi1c4uIDYZcPM1S/4iS2dQ5s+tVUchV6HJZITeIxpXVjw/WImRSgzYl7rGwEla2M4NK6rFGmym+a2kO01EEXwUyjkfCkzo8s9aBJ/wpIdjIEa32x4qZyFPWkGT5ImqcM+nvo0AvQOkVUPLp5GQGuPDuI53WkJD1S38RY1VmGxQZtCv8WlOkyuOJN5P5UhvdXM/sc6nKp/v0YrpMTcXg3I/XsBd7YFvJBigYTYdGECVTnlhvLty8exJP+T59CkwPu4YNPCf75FACbBuCGT1+7gjWVL0Yb2jZGvxENgkAuJ7E1CLU20IcocGRtSHXfG5js9fvrEjOsSi9v3mAtorAXj9laiSoANjQA3hFJhJmHQt9GW/nfwP2DWy6E7VcGjW1WM2/CCKw0hzdKR8tsny0BRIT7s+jthFseO6Da/08lQnimxkvE8knL1JetZfmFuTGmcslfA7VVbJ7/yLayUOpwZ+nnSejNvXSKwBA5b2s5x5OcxWBtfhKdtEMAZb67aCYHxtRwcwlo5i1bW0eTmzV4U/MvyBrde3cxxZbnb8z9GhJWmcuB8WrUvw0QlJxPH4jTScWuvH5YtcqC0AdmmWSSEJ0+oGLsrKD6OhirJE5jb97R+v4FTQfOlNRWL5gK2W0Wlfn+fj7XUGaeSGBbcIjG89kPojMZEOs8HJD3oOhjS1UPLhiwjKYU4Xdj4KECh/r4mS0t1mrE4a8kuSovs1lhju8XsZi64xKfZnqm8h+v9Kd8DMQmGjHgDwFApGaG9BQTcjpteXGD/hz1DX5EG1IwepvxgPITXdjYLAzcFO+r2XZctZNC6lBaNMVaF7RgKE/aH9It2cG7C8L3tMSj2pKb5cU2GEuwaeVSFfJOEwVANe2+HZ0ta+YYzj+l2NbRTBwDqOzWygRdk3v/GVc0tR/3z06zl1hkGL5lPXKPogisaixGuD7tPwvJSrG1Nhzy6KUL0zlCBo747Syo+chG6rInYRxGvQQA6NRIIGLFUUm2KSlsiFDBUmCY+xeLMSQ5qh9kdRmaSOL1yDE84N9a9ZCtMb+sOZtxZoFstcmuASUekd0CZmnSF97qfoMs/X3FJeqbhbhiWKvldC4QcasN7iwx1YWBXQbu0R602sBgQ6ne1FI4HUeYSlLK/Fghp/9z/RqZZMAI5xPoDJHB74mrVXRI/05ynm4SwAWsjLHtX17hnILw3FKEy7/IlEDfX8eeE+8WUfozFZPmfDN5fgpZ+t1Snopf4uIn3jq2cqbXUTUUgcG4WAQ2Q3sORK+ossN2hAwwslwqAhbXNc3bn+WxdCFhsxHqFr3g2PkONUWUKB1diItz7LsobONdcSMNsOed7OUzDnYnSjNxMgcuuEMmXdRici+P4Z4Odx0Gu8o9sff7ZC+oYx7IATnmA7ERpA2uDurP/GrYp25vCN1N0hPdfbtS3AQ54yCq6Rd3m1gCOABR/Hb9tI0fE3AIeCUARQJzAHzkIimz9P6GLMLr8Tt8MoBbwvAj9cCk397iPKdlSk69D4ugf0Yp5+pDRJO3vw3f8AsqyVXe8Bq1keKaBKs/pdIiQAxf777uNYRPE1FlGKHFavszpY2U9TK4yH4vGad6HeLZQxx94Y+6509E8SeBViXV4yTjBrx8HBpBsO3kUnY45xsrrjRY2VQMsZFZ6mRJGpGADQGCeCH8MDZYUK+M/Qsl4Oydvmy8BZ+6HhtXENcHn0j+N0ISkfoVx8ygic8zdAcNTAwDRnX6ATiuKJb0ggBR5l7AJ3KhauyrD9r1aZgMh1lr/BS0/0/gv9yTmAtNcwmEUBZ4XQqXu+AVRJIY9YKj0RTo/wX8gMs7G9Sn7xVbm3zLj7JRy1xS1bZ3go7ydVhWaR1rRs5zG53xHCQNFEV/R8SK8Bb4e5ZP9uCrBcYVb0vqYbZRDRzgg/5YLzvfXFtnUsheOd85z7Cr2y039Bm2Id93irNurqOSzaGAII02EmLRiHPxO4Dal12BAWIceCUC/B7Q2dFgQjFEIzWoUHp/IfTBOqFrAqrntt8OEPz+QPkeDhuSu6T/YItzQY2yIzB2Q+gnwRxKndcyNwvXko3SqlL8/UpKBtwLUAaZ22uCwWxc/DrMU+ZisVTAED4WtG+rlD2WdiVrcj1dpS5TtZSBJE4MAGNBkybPLV5LncHDAjYre/YHhuGhewEL/68cCBSczC/za/5+nqehpD8Xj9h1SAuFBRO6f+MAED24i37M1mZvRtqeyEqpflZOgas9vhiHBRHezvx2xvpRrFEuRXUzsHJad4mm7QzTCf+LLWScPLF81Nh7QocJT4fKHXx+26IImI9WspeCXAW2lu7NVy3WeLLMKdth4K6r0R8VAQi08FMtjoxp3Wp8rA8EzN3KLlq8BLz2d+bzVaIW7H9JDVKbicz0qDLEecxnDsrOaODyrxiG3Fo4Bsw3wkFIc6wDsWReDNwob3Zb4ouMPGvp7YicxlDR4Il8/5hiDMkPc4czBuJUr9gYA/51Y7nJyPeEiZGeLMsKs2Dune4rIWH5gjl20OsswIrMGuXckwdeCBe/JLNaVKNc1mVk5Thkd0lXFXylSF2rxI5dgXkEdrKUqqMuSin4B9B8J9LGJo7qpaYtPSb4BEXbQoF7vnRugs8pqXO0YL8gb05Sj90iffXHHuI/YO9J6jXMgDM6Mqp3Gn9HYxgqHn0aMUatcIfzDOU+5pgFtS9Ia+oUojs1FQnkstT4wY4HmWWbCdebajr6J72UDj9fhFir+0gUEDa5KSY06zFglM7maUju2R2iMbm+d9vNr3CsYhC/JGQtCBKnzTZ8q96Tc31AET6I/T89B6abPnui6E/DUWnRr8il8C1XNc2kCkeWtzh2x7W3HRaiVbLHxP6hc606txv+vJbPf/7jxgYRf2uHoA6uRvgOjt/gJWyO1rufQVI6OAn7vh08Zm68veOyVRyE/knUWgQedmWdw7OpTKbmYwsOedOMfwQ8tL0oQsV2iSpLylS46hcKymE7gYJBkJ7Eq+ohSWNbaRTxJUiQisBL60t7EStHwcad+RfbSNo1RzwcC60jFJoNMglQ+/+oiCRUJ/rtBXE9iE2/yEaC5vRrTCZ7I8nt0itKfpWZSKqNF5SvleiMqW53pDiWIkkuMbKQhXxzU8vMhF7jQyqhRb9DLEs/aLGG/0gc69Z5Uf3JCrswMwPcsiMwmZLZl+VNDHI7VCB4/lBx6qXoprfR/x/Zy6j7mZhG4wLz3DMQK5DrTU1xc/HJIVvT9t5vdGXIm68HA0v0jWP+iwdz2C/Sc4Z2ViWlRXhuvGXlaXUFEj61QtBMSJwukUqGYLY6fESjXUtD0h1u9puAPSxf+KghXAdlNm3I4Gs6VQK5O51Q30mKjfWySOG3L+biyS3xmejXYJFCC+A4xnUO4fwUlOZXze6IWCxDoEMfbQmYcDDZ0b9PS1qEGK85jMF5BkmRoj3gUucS9yilTiB7Vcik56RxGZcNjrJWxh8mWeH3YpNITS5+yxgkw0prazh3hlBDhhevEGtBmHA8jS74QTG1h3fL+jB7Xtk7GoFXRQKRI4WbEi1cq/nK49ppC4/2+0kMqI0AUJLSHODwE3td9JwGtdvwFrPmkD5wNhRC56Wn+TdVAfiq841NnEnnwY0L/BNtgz1Grme+KUg9WGbI8NZnWlPBOzk8/vsskVSSlRmknQjeS0bxm78JPrOmQOS4lTIV1cKP+OsjLOKrfYU3kWAQ0bNFLun51H71crurXPsaUSDGFsE3f2REgVpKDzMGyeVRrR9nE0I8V+Cs3HdlO3FnURx8ozJ2ykLpEso63Hnk83HpY6QWG/zMrKEtx/zhDZyiMjCbZCmB/AunOuAsTmdYeKpDeosXuCAzRGmrPaxlEqgNgrwdNnNGXClSDPnzp8mzZTTbEbch0uettROQnYSWgOKOiMSs13Ze5OmIiYzVnFbegVWWhOG+fPYyhHVPWYZt9Kzo/SMDwnmq0XPd8BBp/JhJzqlzOKEolqoqFFJjatEwE5zuIUrjm0PLvRDF1ZJbWD/IBpvLKXX7D1A2E7bchB2RxK0zjidE9wcnhD9QDABQBVP+LMwf+TuKnuxSpxqAXe36S4iccspsrT8/Pa/HHPPAH4Ql0o5wITpDJxZI2yZ9p2ZmgnOyrfpWkG3SKDzWmMC8XIf+ILpTr2LaLZ3qPLx5S7aAZ1EjSS5hVJxUV1jjxJOZcbvOar4rDYwjFtE9LTpSZ8QrJXMdxccNKpp1aD6oMXJ2Zq4T+32FALPzgLrQQ=
Variant 0
DifficultyLevel
565
Question
A type of mortar can be produced by mixing cement and sand in the ratio 2:3.
How much sand is required to make 30 kilograms of this mortar?
Worked Solution
Cement : Sand = 2:3
⇒ 53 of mortar is sand
|
|
∴ Sand required |
= 53 × 30 |
|
= 18 kilograms |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
ratio | |
choose1 | |
mass | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX19O/qzpzR7sDix9X1RCPXein+FiMNgUJg/1wwO1SbtuOQV+aIh+YTniUkj5+KHV/1Vz/CPkepaqQhGij7fKP4Gy/xOsQI3al/Hx2Rla/8pa9ZCA7pMtd+qpfOiJMWT3ze+SHdG/3xVmKRokkxtMNG+4dAMoqbpwDHLcQALosnD+IlIR9SDG4o0DlNDGR85W3+7nkBEfSMD1R000B74TFf6xdSmE9ypLb2xQGu2Dc5DbgGAusS7tWPrzZMW8xugF+2B6+HHTAxOTMOSW9JulS9iyItl3YDWOm0s8h9BvAWAR5sIqw0qN/Pza25VB+i8PfUs01NEfrTuKHP+tbK0gejn1+fH7yoL6QvN0kXWRj231/j5V1QP8GUQ3iIABPNPaNeY1Pla4BV8YFioEZorHI4wUmet/f1qRa4/Mju5FbGT9zaLZ2x78vsNXv5clfK2HPVUBu/tVwVpY9ypX1eBiS1tK3BrutClhr/RbGrcA5eTTryteTppdAJamqKM8M8h0WrrFYJtMwKelXQOSY11Zqy86Ous2Y4icEi0c8VgWAupdnrvHxjNLL/74RL6eengqFFfjUXymTyOzd42OdK/Rv0r2vAH83656uv9NBctDLASx8mJF55ZNyvfVuJhcMOdjoTvl62lI5ZsNV7AUdqK0hLMabg9ZTiaydNhZwND/ERXrPc6bhtEIgI+eauPbtZjzEsT/dPISoz10vnN3jlrXj7EAEJRnKy1iTnEz5aTNQuiRvV2Z8hPwvC+kcJeBe2Mghe4oSaRbD9d0HvX6HjCiVRJ5iR9A1fvxWGXm6BmLjNWc3DQyCToEduYWcGu1TRi6WxaBMbSngkMtbenpsC70s4+vBqUB+V9f+PZrNUsJhQgcpZe5tsJAzS15geX/nturVpNHQPILb5qICsEWD4AtUylflp6FOwB7ecpe3Ul+Vy7jkNlwva8p3k1DYbJK4UOAo/D7l0uVNSauMi32dOeA8vFXybXD3S8/WCpzfIcmkU9sBikl8Eovk1AIvm9c48Jut8PxRXcW/9AcWIcc0UxticFn4bfrDJXq/tCc6hXkb4uxRE0AA2iVg9J20AVgSduO3zM7qe5RMBENWhlkUlAG6IS3sxOcvog943RqlIHDTMlT0U1zrg9IAgepPpFS/Eu86ECIOnvGgSmCHhzevDT32LGl46o9z/5Q6rMNALtYQp2KNmYtMNoag+cdP1UQ0hVjoFbejdt8WHtekj0EOMv4kGeVR5omeOPRrBzIElkT0bSsqFGL3Sl18ESznt2ikhdKyFz2i57bbXfiKdvk9h3lIpN/gkJexss7bZRx7vVUQR/En061G7YI7VrdbgSEO+2Xpniq+5NKYy3JTTlS9OWWNWPhJB/t8WeFW8qBb7Xtgf1Ao4ETH75Nno7ZK6i/cIPZtVPPGC5CicX0VmYFlF2H/I2pqLlCKMNazvpTy7Ma1KQDLAeP4g7Aeb+vCOEEmEPZxz2YGw7s5AUbYgazUe7r3x7J5bUGvO6HxC1qBxNxBGofZeh1giyDjcw6lEIt8nVtKb+PIfdHKlYueRVjFNAGbqhgsyiC5ncLmmTr8VWh6xnHch6sbKwEBgC7V5rtxZaJ73zeeSjp78AatawgRmqXZtmPC+k5UfqRij2GFkpfS7OaXhxnI7UI6ApNXjnBn2zhMNw2v3sQOKhp7k/4Y93OjBoSDwnnc5WltfzlCVMMOHaVMOSvaiKlxpPXbifLGH7FNLKR/8tzzumuZH6kw4yvTIEgkZylMVbDTAQ0FvPge7IBxXAuQi9OtuQmlecOJkLuDkaQNhJsgZN4cFd9mm2z0UXQXontHP/Aw+Gwi174xuqZCKXQxf5i9NE6J4zJcKtYokTykDbY/h9oJ6Zs5A8CaMLvMtpzQHs5Uyky1LxJvIJiX9voFVEsifSzwhKrjxFcyMgG0ZbnSkARR56fRMfdFqMs1Lx99SjPJ5Rcakwozdlxhu0FIl9P/+Lwd5Bz7T+SH/MibNvsqk94ZMFP0hEAEVH4yqgbARmSkeS4didYP8qfqyMnuwRKdoi4CnVWyUlIf5ZZzNf+DYOh6GV4yqnndStU5omDb5fJX57B2cmc/7XObFYuSlVhHzY8zy/HCodvOKXRvAnE8ldWr7+wdMdnMaah7IY8odQFUhvgRxzexilA0l7m+8ghNwnGKrA9oXINyVFA6YKhbwjO1q68nALxSb4/rht1UXdl9ile2WneO9RLYAwf3g6rgmqjLJWGX6XStgKaNrC3qCO+gvOe5/6nV1B9hCWw8NuDA3upzkBd6Ouv0jwmA2K+jdmGjo9iK6EajeEAwQdz9hff1FvAmgeAuN5OYEiGyYxURceAclHEHqUZNhSAQzRlx2BKMPDjsmGJRCcLWcaUNCOZIych1HbQF78p91QJxI03OL1/+7aVAOdyuf2kgxSMSyxu856o4iPzFg2wpMHS5dQtH1ILfF5LUts/NFB0i0R3tjER0zxCVgPUkdxDdiwiaS+s4zmJ1/gFrQE+jD+n8Zy7OjxBwT3fLdCM91vY2Wo2rWUlZupnmZ3pVT+NMiJqdH0UR44gUHPhUVgttFfrVgCdkmA5OOsRqHzZo+8AIRjTnDqrk8W53yRGyuskbvazSHUhEbZv8MJEYM9L70YDaewK4Iy5+kO8gXEz1wMkikRpCRP76ssFIgFgseREgH34RCsS5m+xNoEfIaFnK0PMS5J4ZIvqSRJczUEn6kjouXZsv+1dzegiOkM/yrMAZCJV2ogjPfKp6gLeX0nEyc3biV7wSAK+3mODTkaBH0sM/1K0J1bqtL3wU858AVMkCTCsj9Psq7EFUiJ3ICH8jh7lmAm6gGpjg7eI4Omyuf+GBd5f8JjQlLGVMrIWqVoaXuQtrP0RGY8DE4KYvaiiKVPuk5FYgO3+GlPApDglMXH5U/4M7hpVWRiLEuW7wGT38MkMn3387wrpTBdFTAIo5AC/AuKrKd44lencfLc5xyOqOljqRRMi6ltVGx13r5gE5ZMBcG3r5Dh8y/K5sFo7Yimh5drbEICFfhaHzmCj8Rn8blhXqI4ur8xGW2eEPVl4u+UkVHmXm1kt/f3Q06HzQt1MPK3tUJzVUyqF17/EvCViy4HTIL0vuwbVHrKvYtD/gfHqg97i1d5tDJiHj9iqf1waamT6ZxHNTN361jMCpK8RukzcqyuQQPTFUVWLG4kyxh68ObtPPph4FC6WNtJiYijpID+qvPGMW+CO5dj+CvDMIrlUQAgwidc24k/TRf1Nmupww2imuhltFEaM3uuSKpEmtblmuc8kB8HdZdnvdgUxUTh6tLIfbzuKj0Eft311OT2Ahj1Y1lg/uKI3lVm7pwm9ylnV5lqHihJiDh+CdyF72LvZFV+fGlPEl3KDtcNIgxAQeTOORmoY3wwTlat81gsrsz9kpNQKZqQDmZgCkaa1nd9/anf6QkzhxgSgWENn32ugzorAGMrD/tRoPIlMblOILi7L8WIRwMGUvi/oYtu09K8oPWm4OSfzlNssPGKNy9drK+0oP9e78fSR/+KKowWmsTVtCcK6Ji0M4vfOIcvteHl0kcw//8k94tyzbkoTfo1SWnGzMV+6AWKuunkCdZTNQwbrFAkrtkMUW+7SvbVXN2MNJDjN6etVz6b0GMcEACxrZNTLDrl/8FqONZmLfTpgaDxur4C5dV+tMlOg8cCtoWnESa8Ko9VVw1u9WJZU71BoLbcRO4clF6giW+SLRWePXoQZ2lKtzkGO7JEBV4KM6pQvUILuVIHbaKqZCXD0RozsKzrytQ0gskw30e4tN1uaTXwJ8jxUKqIVVnx8zW4Azo5Cob/utdm6rXqP99bCSIzGFlEyHOqkLqbyCoVDNlzGiEE3GWHQa7o3rPFR6Au7cjMf8h2aOl6yVsnnRCP2oSoJj5TdhVOyOTBKpfkyWcGzZ2c/y0MvFpV1reJxrjfsXKuORzx8CgSddKBQ6yVFor3fnbtahB9Bv6LnEpSdRnX4OIS0Kfsq4zum6W68xh4yHuBeF0A8qYvXHcVthSm8mKfyxszCLqbSOOagoo9xPptmlBFqdVHJr3mocSRHtv+bKLP8NV60tN6OBrkCzKHN3MvCbUerdlkiRJrY2kcHaxl/CUIsByHHVOomfZgxxmXtJ9+vswOj/6/JYEq+DpiMV8Wg+FhTIrwWWUN8uaH+5ySHODA5pbAYOZ/BVq6Mp2VrzmFxfZS83sa3Pfk3iooT6oI0AtwRCTppvrvBLP4x/4Tfwko3sZ61lw3QugO1gqQKo0HL0cfp5SRC5kKSTdWeCA0Qv26Y2DJMOTJ6oiqCpbp63JgVu1iH9dUdUcI4mZJsphNd3H5Wnph52sEErRWX2npYfbRe8EpQntwn/gyjwcnfnf9J9Og9ZXY5OyzrATeAheRzCMPL4y7UPyRc7yI88wM1YX2yZkEwqATo3EnZcBHvIF2aC1caMEPHJbLRZm+7DcY920/vZaSSjTESn+AUOVn+ed4sUUVcKsrdqwv3x2Dz07pSEVzI+0vSm+5QIYNHVaXBpOxg+GWzAheRQN1njYpqJs6PZIk2BzJnvsXHHt/8TEmIFvqDAThNnhsUgOJY1rtiGFjMZ44YcfuZEu7VU/z7zFTE1GAWSQHi9Iyt4s32AJT1EpnhdlJPhAVpCG374/ca0ifbCLSaUGfKaKZg96j6GYg4KkahG+lMQVyz6+WMie+zV+Pp2AT1jeqd54WgEWlcWbx9VCLbUmpxW9UbKXkJpl/1Q3ya5e2uD0WC6kDLWO1hh7S1ZhSrTf7aZwyhA62p7QgteU38M/aNcoHxF64Xsi2MItqz1uyHURXjug4++2BErnT0B76LarMJNKRiKn1uJ4Q2lSfsj4s5pbB775zFO0I3HTFjima7ZwtvcL+WpFCHrs+kk2/yb6j4cffVPwEVBCojAJhZ2H0CJcavqvCYZi5bkprqqId+19eIl3A2L0NsyReyN8GwxOZgvo6YW1GrgryKnPc0O6+foZmKW2x1kHp5pU8ybvWWvtFl3zVyFOpei/aKZ4/4jwBjNDzCQ0Nrd/2XbFrXjMZ3mw95PRrYX3BnGKHfjjo7TR8M5Rhx2nsgoxJvuzB/Ptul34mhzvWA0YGToIph9KcPX4e1PdcBi9rGuDAfupR+zhrKGXwjrfEEblkweL23iLRLrqL2T17XqVf1ApFJ7zhZD73yC9AGTZno03vO0/yCgvMhwFYHd/BzXvqYIngWL3BNvzbBX7YPDmPusnAD9XMNM3BI4W1T6CCIV0tncAP1SCAwyDTPUs1gFbDsbK30+G9WRh7ZPpDHLRLNwkxUaWd3adEoFtdAlT6bFFPm/b+IgfyVz9oNJ615fitxdcHis0x3LCCIhS4/leeYLIDvxJ2tYZWzC8C0o0LjGCa1nAmHyzbLWma0EWUhKSWZJO9EtMqBSUE6rVqnIQMhW+gscqRGaAFxBUQDAoimAOfHejoeE3muIa6TsCZHQkQEC6vM7PCHNaNh/JeI6pDkNneEEio8pn+GsB7orgvN3mLzHq/MC9+fqHR9j0SjyB+ZWXVNheigmZzDA9uH6LBmTX88L/iVEGQGfMavB5jrsL61R0/oFpZRKF7/Qrnp4il0q/pO4BWAUFRVKy2ckMY8fKrs2aCxHmlkke41WJCHWnot7+rDxPgdLmD47SL46B3xWnefMt6W65CGBlUVu8jbXgNxZQVGpIr6g3tKWwoWuh7qkt1ZGVt8geLAs53zE0irwNZFemM7+ueEzFMcHGaPaMF6e5ZUzjhKVtlZmh+97FLwmMJrY5BmWybEe927gCaZkg/KXSu55Bvo/JS1Zt2/w1wGeiDqev5h/cpURtNr+OFLRMgicJ0Nmt8qyHmqL0K6LpbZaSNUQUgYTwy1hDcM1FYHatidWPQHa7gasejOlFPwv7Jq5PO44ycIakLReKNQgtF2ZTKedBI4rfA9GRg0eNTTZEV7YiFtFji0/WqtxnyDZkFjPDRm5kcXqSoCH2iSy3yyWnsu4VOsUqfU+KvOD3CwYnCCVgwqQ9mSVOS12KtrgOvfZP95cM6afvNiEzagCqp1xSQI+izrVfmu5tgnlg/rMCoyp5nJyObjLoa4LoDfWXJiDARkOu2+ilLxoDOJFD91FGn/MRhgcMvi41hvkuqWXYx//T45i3wA+WPIH7fAT/K4LV2xu5jfqqYsvbiMKZnvUXaPhySDDmZByI/1ElpZCkXHxJS4Wl1DLXh2MXr8q42x6Gr0zTika+PMIUlronkIwVOpKzEa5+LFDY0Cg3YofwKwWJHvUoWA6TihtnHUNF8aimF8PZqTVA7RNq7DKqWFWkhZE7MBV+o2hDrDhZB9xjUs104uejAdxGJ0O1E9oUr5C70Vbl+jzMApJorWwhswynAPDWHLFHrNgHyxVkFVK0yBf8LthyA+yjFhwHyD/tkQ/bfHGKTEJU+uQPK9a48FpehaJTyAxHXJjholRjwJPVinR6OJNz+6kSEVCc1oNA0g37zkweUzs6H+imFxGeKqc0sxGx7PW7kJdjVUwhCZIMbVJvtS0NbVZAo6dnCZMjRdUvGQMO0uGA/hetAhpYa0hXSshfDC/+1LKYjK5hbtzaUxm8WFMZoC1RXeMv68gjDg7xXVOAstGyssXFvgazDAg1KkO17x1W7WLjRUWlEi8D3hv2naZ4+TZnhrIL1sVFxHuPuDn9r4y3e0VNt42pNrUrU6LsUpIDBIcUic3piVgjZLdmd2Xazd/6RVV7FL5kTlgh06vFtyKfDvwCjDb9bo9j912TTVhRy3KFxrE/z89YXPQbuaijFHIQzAR2e+w62oX9PJBHMKV5uzrS6inW7OocOuLA59GQi1Prxk4vAFkk+MaB6J9Q3sGgC/0uoH6A6LKxolr135vEkzZGzW/QAIbuCNpa2oUGqNOoC+DhXQRmuEb7deDH7uN80wBVovcvAvwKwIsQCYononLZUeQofNEpSLz+yifFA3ZdtIFE8wgsHDY4qa5VBGWYv0Z/JLKR/HrVH4sYp+GvlIugmuarJaj9KUaOt3xvvk9oE196ecd3G/yukUdpUc8G2nNODmi2PnFEyJuP2y3EF8Vz6iPqKGxKE30P4TwoCUHbPiFfLyV1AalxYr7FhgaqKCPBLTXbatk19l+8tYHKf4+O5QSerWbZTDW+TeKHRJHOhFNTrrU+85FYjWVSYFSU0Nzoq0EF9jQnm25xS5QHZuyRtyoU7zgPHZ12bI4bFiqgdtQbUY4F4zgyBKjWjKOx0xSIpn/QYuhppVby67gxVmkPozEqPhRphStUPHX6NZaOShXTK7W8TPka7aLTnhLX7uodbOr1wlob6Q1H5NgBqaT8jDXOAl+Yiy/FgzstnO1b4I6W7OnZdmNpyrK+bl5xFCxeg4YsppnC8k20qp4bQKz5mf9An4Mx7OxOpmOnZKXCeRGkR13DrzBhulkF0kqxbO4zmCixVD0y8iljK8o8SHsAUBNOK8qqshIkTfFH+OJjhU0uuxTbnGFZxzT3wNZm7Z/uEikUGs/UCTKK7YCtXx9qmlS/HR2CF87SySuiHvlKtkgGhkKinCwtNZ4R4BOsupBSVmTDhkPDLVzlFdehAqwzZH4g2br1zRSdjV3Ue3Lcs3JUyflsFLHBvVsop39LbvN+ai9zhVvdXJvgvZ1s8lpfsc+j0R6jhNCDYzT7K62GG/AdddSANQxdYNtW2UiDgN+mPXIQvlrttDlKLkdWk5SnY3h4N3eV3xZ3fJrQ4JMdOBzOZKJaNr2cOVWJPETIQ8rzWtMe/pNKAG48iAML9yV17sDpMcZwa5gUu2IBK0GK95mXiOaUEATMOi5eu8D63TX4/JIuf+Qjb0zW8GgMEYggpHZ9a2ylsN1oVO3B/M8efCyugGLS8sBNvgwwglKwMA7uS0RzMqtgzSi31eoMg5fMK8xnxsFq9CLmNvmqN1BFtHELXJcUYM+b9I4MNOECjOgDk6AWzOBbWG+Z5F+zP+YOOXFwstR5L1FPdne7FIPhKobY2WJmaeUd9vKyHWeJrpbikHBFYHkwNaqJ8r86sDSsASOhX7PJRNYb5+qROmUfgbDNDHKZ+wQgrhXvv7h7xXVIu+wEWk65ztLUCoPrXDUy5UEVOw6eGM64RtDICNMIRnqVCIe6iLM8MXjcXXtSl9c1KbjxbKgGEUPrBdWxOTPDxuf8Uw+CS8hEKJv8rqnE0J1/PY6rvt/aN55Ct1JVRfGc2fR2f5Ez5ieBsaqos6XxkvxFMdRna/WVWetl4g+mNYBeMK0piJEjrCRt8jQ882esNttf4UhxRlsso/aCORhuk/lz6W2Se9tRXjd0Zw32CesdcZWY/xqdGpKtkeQ7LrcQtMHF5QOc5XRtygxrqKmBqQRcZwULj8/gFBfFrmQ5CXd0ZoAIhS4YfFKDzYIYYjqbqQDJa8p+u5mqSrg9dqz2qcEzIa6GrQSeqBqcruVuvH0FRGILSqzHyYelGvVTUdiMAuhRqAwZBQsC1M7fBBAQ+I1dKnH6c0rCqs093xl/gPVV1tKlWzUFhfTbO4TpB1bPEALSP4M1n8T7uI8qi0kZ88YmE9eA+pnCk8G4CG6YXiLAFEmH+wOLRvqBoOemu+iqiNxtqbz31Dw8+wXiRmBryt6aXRQdey63OYw4jxPz3UoT2yP9dNRGzr2IYUCVt/F4oweywcD23ye1GhDbPkQiC5GDr1pioNZB5r1ZJ+4w3MPxTK93etkosZguCFbYoyYMkwz8RqiPbzA2DQtNCkmaU/jSVC96YwJxy2X9jQAtIfEshJu98MCKMCkqua0lACpLWS+1E6hJNiMvkG6l7PiDL/+kCmVtdMtoEgHSrlBqKQjVNW18nXCfUOvQZ5vdwSQXYD5cpJWUkNkTvPe5JN/t10FvIJUjnldg4+M7jJ46U5YFfnwhiksPChqAig6pn4nhKAWYdIHBZTPFnvnaPCRz3jz51P+E2GuH8PXmzfayd78BZUQolplo4PU2G3glNPugAe0+LgBK21AqAjn4ZMmMdaCi7yfi4Hv8uvXjgAtHfwgAwSev4JuNF6e5vpRUs3lHC7HKrmUHa7QK8NzGCVO4a9HzlA9Fa+BCGlQHpHANg=
Variant 1
DifficultyLevel
565
Question
A type of mortar can be produced by mixing cement and sand in the ratio 3:4.
How much sand is required to make 28 kilograms of this mortar?
Worked Solution
Cement : Sand = 3:4
⇒ 74 of mortar is sand
|
|
∴ Sand required |
= 74 × 28 |
|
= 16 kilograms |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
ratio | |
choose1 | |
mass | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX19qFolAK5PkwI1N1NOxauFK/y97azTh5+17oM+2U16zoQEJqK3UlzGMQ8JnVZYyE7gfj0xncDIa2oeyU9h7HREkY9Fut9t9Bd8l4DYi6LUyXnayqszsGIx1eTynv6b0G8XXqJ1UaSO2dDJB9Kjne6vePgdQhuk8wRnBfFg3udsOb6+29ZHrKxXM18en2YBkPI3DvKJiOPvBK5l/8NyKYIXK/G4aak8W4umuxaFePowXWl9M2nr6J8wjJttJC+fwhevrCgS9BSQfaRfih3nZoKgFBloc2HSx4ohVauqEMXTyRui9M8RHPfgQ+cQhQv8BkgzzVLrghyWEPE52sOa4296f5lHFNq4vwTljYBKL0qZZBoJmsylgUDOa36uLrZwQcCynSsgyPvh3VCPR3nbGPTcTnnkOigZvRY9wME0zgp2rTlclSuRVgMYBwR5x/HCtGFYhu+pVmOSxe5w6kaWcXj1/fraZRLD0FIUp3y+G+XAZeidCCtK2aUwfhxA/QvTR6hGZKgo7mx0WYyAKXdsXGJJRt0wJhZkfOQR3X/GTlUqcvdbsgbupxA1Edqu2ypqzKGairmQrjKruG+OHm7JD6fXwr2gbYpFXl8kzaj3YPm13HNglw2asapBpvGnwItC5ewAi4kNZKO+YUg3NK2lxOZirCeTbYh7Mxcdq6FWrBV8ceddA98Lt/4l5LlUFPY+dtu48YuCIsQ6E2TuQXyp2VgqErOvKoaeQzj4rf0ghatkELWrp+DQ70XIklJ5UQQP5BUDn2a6s26/mAL8non+Lfw/iTVd/kPZVUvdWgsakrfhj3EMbcF0EAjXH8rpD9gSDzu6sspSZpkz+1n2sZFIXiASjzMx+s+du3rcj0T3a/WTJCW5vnGSfpMNIHRoucXRmIuj/y10BYB5R+ddR9YN/idKfu0lvQqcyh7sMvz7G79gKklx2ljc65h/fRw1FlL1VwuALVRe+sfBH2WU5f057kBiEXhWdKPPQ+TXDZ555FA4qaK1ATuRT1h80m0m7Iy46fcLfmr3m54k34mUKhYI18ieA1Hry6lE5eST3YSfd+aR/QP08qnQsKgcSmbajURFXyHjsAQgXEtO+zOTfLYOh84hAHAUasJ+R2b7qOMHZ6YRGYLSCRTKDunIszGboetNRbv/wVF+OgrtvqEDPSH5YTdZhyiwLWC/VFs1pgSz8OGYgY477yBv2WH1hgiCjHGsCaexW8RogU68pq5JaksfhmFvVIgeS+XB24DJRM4cnX8w3V/XoOELU8+XEziCfhU0quteii+xWM1lTLtXkNseUS1MXKZrCpunVxaUdVzDZWdDKyitwctNrpWmqIpnqOxFx9QRnpcm4v0vSzS/r+vNsTkf/PE9DvHKAmjdCRrM4MakPaH7cwq81CBQDeDxgpKvsDrlOb9uhIkRcQ2Qj0TU9ltELFO1Q7zZ+DZQVLbJs40VskHC5q87b7ncB6IMLXPO/18c3gdAnTTKUFWXP8oAK/QAh+zAY5Jt0NAqQqKZE/4i3rYe9yMlXoLswsorFRhHkHgGvh6oq6BTUygU+A+WxG4KeR90a5MFP1m4aGS8XL5TOhv39TGxe3N/Cg00m6S0WZ5R11tt41MYUqffiAUwR9Kf4ClUJQb3MZ3vJjFgAyNfHMPjh6CYGqtFoWhXVX8X1dPViaG73HxCMSumylfBnMimq0CoA4odtS96AsQJ5iJHvf+ebkO0UavvNk00lC58hGnTEfc0aoGcZYSqyLysFSAKWMAqW/2JK4y8x9JQDFU1P9sS+nAqhQB0l3gu4SJ2H9e7TpoAx7IHOTClccKG2Q77DGqg3Xet02Oxwh9PYXk2WPYzv8QXfX/AP77DlmE3gklgSH88ZG4ysA3PqjdobYx3mbppIfXBrRgyEvmYYS0i0e7VzBQIZWtAxjvJWfk4TThLrMKtsDGizkxpTgX44oGjKQsA9bqOepQBgJ+pC3KdaV86V/9sTpAAUGungprpo8HoC9GMYfpe+GJFNXovANpX9V47fLoyPyvVUBz/24p8/ArxTjVTtJ+vH9NDOOe4J7FI8EMIWufOo6VwV1MVDeg8weNSEGr9+dAr6iUMGvHLGFBf+woHi21FkQPLKcHA9f7XVZR7ZTEyMmLmX9WdAUnVmvm1sJoC147MoFepFMkqW78srkax2q0xytlfHs2G5AwWgQQbu4uTM8vckATQxf2FXre7Isxbgsuam7WPRapHokb0OrpOg1Cb4kwvk5mzs9tBThvfQAxFKUnIaio/TegQj9hiy3bnH5z/2/Cuu6RdaVZmAcw3PoNjIyImwiPUY3UAW/9cEW6FFZviRdy6UjFY9sujXYUW472IkqGV2ztV+e3wjSFBXgkaiTrDRQ/2VMBdEV3Tj7/0nXizl5loOZ2UYXp4vL3SxZCaJf6BcocHrwYJCgHZfikFHwTlVJAkFVRHDKIHzpoU/8eAOz4zSdi+Sac16Q/40q+mmXILRocrdf62rs9z2lzmXYR5QakNU41Py3sOMg3AjPA6seDnQBYi4AKuT70IoPx7z+in+u0GNbRW2dai9DcFoXqt5rqfj03k2jA3510h7spl1xfuis0WCXPwcvtc+m2ytYzKi2jXbqWmAViXwqCsRn5fJgbTzTXkFoESjkcSPWVec5bvC6cXQP6OKHwkRjoC6F4PoKlB/wXavH0Gv3MG9IjnCZhm4NzuNtx8JmVxmax+r+PbvKwA6CEFiJr8Vuy/32eBbLnnKIazZQMuMJng1RYAWZLHWrQDwyEZQhYXLpuXFkA9iljtuAwIESnZEl9ysGGBCg1eaq0PRq8Yy3QuO03kIo87yYFW3brU44mSMMDqhmxUA7joNc/jn8sFXLFfy2DudncQCvfnNcG4ogO0/KRuvJiIBUw7/iYLv27rHZKtKr/nN2Wl81o1ALrcf74x99WmV4sya8Zrhk1wyv3hgvUzM/ngiFoHlWi8fyPeKpCj8lj0SYDudlfR9DQ8E7H5Ws2RH0cEgWGMkw3MCupFw3QJPdqcBdxKL4f8Zjgmq3f07eguZwc8pT4QbqRIQN+Lu/JGX4ly9YM0CB8bpWaFBlJzoDNR8LXdudrYAQhKDj+sNeKntJFV3a4wmrViNbi+DOJcwMF5HN6zsl+ST9Z1BOZng2R/thoIHSwVHMROwqsh8oTHKqZB2QKmFwquMqN4irqzdTkbQzwHASduMB9FgHd3C3gIxyh8gs+z5FXpVtLCHgay8ABYiHT8QEPXtS//r0/aS8WALtXw6R/DPg6+IgAlPOSiXk9UusPdO8SQ6z8mZX2rWQsnP3p6MJDC7YSGymlzXOTMyGFy5+zhZ46jh3YKMRbcgyhSgNDKTkFg4QmEgDQ8hw9QKeJ34V95D3lDH1gdfE1Kf8o85NfMDQqV2srVsW6/0D4M3320Cams35r8239KBntEjjM97TuTu7iGxQQ4VLpfb9SoJHDaEx6pjaDRqPQOsBjF8bsZ5nni7/wI/CIoJhOu3r1E6ozM2R2SvjWKHMEcfCFCfx4CWGWVpA+CtRSnkdN/1QAAfpDyZv4UJ6ClGxaEWAcwUqfZ1azLYHg2vKwmU9zcJktDWygEtM8xkI33J0HoQODN3+XRwecS3npUz0qcLuUKq2ioe44JD+x20o6p2Ip2Q07mx4xopymPLmSKCaAeM1Iq16P0WaBLe5CO1Oq/oHwTx0SL/UcD2labFtHV9id1ua8n+E1M20g++UWnwpDSbgfanRzsCA9XRmo0Ykrgn7S3kVt0Dp5Tq8+qXiI+MzC6eNhbSTxZkVOxnCS86PiY63XlqZ8Vk6lvGvEeadAa3JMVpORAfhmEUTv4egmXa1fhE0zz+nHp+gpvxm/BDmUqX974R0T6ngaFPuJfbDDLRJoQRnr621tsSo0JwZRo6kyl0SmEH+Dz/KBwpv+2NFw/7xtIpxmFdN3ORcJJ/3H+unObcsVm4iU9u+bXxAralhCO0gvhcHAJ2hh2/TNGdmEeBmLADJFnEtr60+DhbS/djE8sTqg0EgfWg/FQZ6btRxEtIMuIJymRy7gpzBB6XN7yNsahW790l14A33UDmReKtCnv3z/tAwZQta7furgB8cyFMk824uqSUWTlP3n/CWBkUWVbW37uJB9uxePN5jKcg3tarvajMbcE5l0rfQB/2HHopNeu46kdSQjbegMn9p0FdTFPqzwX7SMk+Zl3J+BDGiw1JmAilsctZy5w5SFVOCEUERZ3FcDlbkbA+QSZb9eto8CQtxD9SjkAmw5nY0/GHXCLwGKBhm2kyBhE2aTJnVkuwpN9isIsH2rjVy2UZwi1yyyOfQzTJSZZr7sMZ7FpCsjjsznan6UJjYCY0r3zYySkkZOu9mgYqExB6rEo6t7v6N35zRlq0ViBQb1nC5BVkpq/8pMX+5SAwIhP6lB+AM9yTiuP0pVg/CQegJE0fy1l6z77jHElWO2Gpaj19dATAFnxroVrI37fpqlo8Y4yDECD49G/nNUliAVxoKr7gRQdZemMdtS+ISaaP8ZIJ9W0AcJbyNNGtV087ppUi7gLjtfEAAAYDPdIOpPR8tid+ofsRuH+4SRGUgZGx6Ck1TBjNOdL2hanJsSxOeIPKgl88n236TwlD6gzdFgHYSQ4bP0wyVAgUlrl/nIRhRdCQwWKjeb5N2srOAcILV+c5tvwFdacHnZFgtdDAh1V5rSaayPUuF/BJLXRmKodtbBIrkg3oRLggKinYcHVHVQcrOfuOgMLm7kwWDR8OQaqfZpWN1OG5BfIqlH8BZ5PjWUUmVOf6o+PlVxVZA6uEqDZI6VKvQ/aMPcOHNlRZpjXzbsr5Dwex46u+QoaWRVWE/PubJdXn6klIB0tuO1TghUZAwWYZ7AYr2lXGdJY9L6DDCSmGeBRxcwlNFUgf3DWuIlhaKItD1nrWozbnOph1RrRDaTCTRG+F3c/gynG/BWFw1vO9h917/EVYsRohrGpA/NsTA9SD6at9n/LaGjdIp8KdYCN7a78gMDFQp+ERgX4uh6ztdX8njldU6cPFP8cxh3jlpMKpsLHi+u3fni1VYRqiuMDAHo2XdRoQWJvzl2qtn33om6r8K9hsUJj2dvlK6NT37Rkw0rr5KrB+nTVnVU6+2BK995Kym81UOE4FHY0uQdG7jENR3590J+b5+oYOllBigVICwYUWBA29gxWXINPHrLpCkus+D+24LtIv5pCFBA0CFo05cudQ/g6MzoF9Db9evhk5l1U7JumTk4xrOP6dzAXVJtANzxRrWyfQywXktERaZG87Ad38NS4ZyejJxp24SAuIpaEGqkiRA7WvMA9oIvCGTW7zdYB0MOUZdlL6U/wKWlvbdPYliNrXtpB1y7WwYN6zm120FgEuzAuKRQGJV1v4JCilfpJ3CzBWm7G/gCC1M4YrOs83ZFEc5eE9MyIiOpQcFCxXbGSmICx0uTEQbyAdBDA6BOUyTF3Tv9x1aWiSf47KndjJ8Mkxb8l0V2YTXlUZHkc7IU86Mbwsyt5Qo+Cc2QjvWETa6/zGSDh10ZZH4vwWqBLKIhoUtnRXjKQimUDa0BU1a8B1iLZdlWOQj0dmvBgUZMrHnbc6PbA/LAO2eTKodZRp3LoVKvTBvLRiVqDcICCMQkQpRdDAqgA2Tv0B9IUDYvZItiqkm7/AjnMzv2CaaSmMXafYyxUoPOfrBegao0RrSH7kBxsBg1BJUkp1uc56Txki/vq3nSr0Pgku0+jLyIZ0daKoaTvw9ELpev5aH1kXX9cV6l55bGBEqN7rggv0LgWX0HXQjLgBzWk4IQh3tahV67u4S/dCHnHerHGnwoKrsv3wpOnjn/ZVBuqWBrJw3KC399R0/OJ1iqbLOcsS98BraQXMMTFLjHMKgBvut4116j4JVq1HIaVoPFgG/7HxUfETb3ED6aJWHMbm96eqLD6V0QmPMQlZyyJtyfFDliHBwGZjgUjFFGMkUob3JpNR8RlHPKd+j7A4S9R4OHkTllqTClfWSPWVKQ+TYSTDf5XCie5H1KhOTAe7Y2ocvjwaVtaEdA1wvXxK+OnS2ZqqQiXdKUbJwSwOpjKUn3n6X9wgqIRyd4u3BZ4q2evBheSkkw8KX+7Vz7Ykp7EWL2z96Xy7XPzCHUnUoUgJs9SOcPbNMeOp8ASqOsrVJks4g3pCrnKSv3/TmT2mv+KpiT7+5FcLvOYOdtuEJtNQ5pqk6LKefsFbogJXWPje25Ye1k7ZLQo59k1xtvH2ZKrqbtiIc/85Prf3TwyQHRFC+MC2e+jgNJ3xTUZDjK/yAkj9RtKX89L1eJh1rFc1w7nDnIAKEbJXwDf6zaeA5afX8QPyja0RFLkKNFiXeVJl/PR+LoR7DoJQwQpyHMpYlcbMxcj6JfdKZLwI/I0G5Ww+vWs6Z24FEI1Hb9/dPPy3u9/XomtoCqZBx5IqavHdnZysL5Qhc/etEsZVDLL8XkKBzfRr600puSe7X7hsGw9QTwEoziI/7A+MaXUX2ZCvoRndlQuAGVWEeZLHqb1o4MxaqtM8YlDPChyML8goaQgFwz9ZAbY05/FVSVn74MEkCcszHWlSe8Gg1Suj8OwMDpE/hhTAu+FwKxLoB0iGGKSZneKbhJ3NRn5RaazFdoNVbXg3eMS2SQK/350+G0BghiP5qZ3xHjUmc9Jy0vGmxBQP97RQVYnY7SsA3OqUkrgDXAWUrXw1i+WBLCXgcRqBsCrwaM587oiRZPWvWEtblgWnrtqfZZrHQuV2hXD+fivVYIVj+PKH0vRbVVDVq4851l42XDybd+97p4i506LauzLhGbvY/wx70TUTRmoRDzgBrG5GCyyBWkFAtwPn0vV/lYxx2D5V4mvOwO1X6OSYEqouZK/kIUUdQpH4TSv4pR0OR9HOkIS5EQLIhchyY5FWXh45zUURa9DwGArzUPJ12zw1ohpcXCaJCPqq9RkCZ78EiUsrhAHdCErSiCpzGTBMZt4Zm14N5O80VtXivGOeeBq/g6ENUX8oba0G/KzeCVhreQbsnXZbLG9GQAonjOz+FCMPSYGxlJiYBls4fOj4ro3AJyznRpqzlIqUqW84OdQdwB5lvYW7yhmo2G5SyHxer+N8iYwsp3EcyWsH+h23GtzRMIX7Bd0R+BxKZvP/rxSLhYfUI1uqvMkmnS+zEFAxGybh4tH3So3GaCYQaAJR8gm5iEeFr7UHKHoy/n3mFL1tMyOVkRHYdZlRbjVsZRVaNFcGIAsXVRPtFLk6b8q5gtnx5a+RMOdI3NKtpAX910C2w0Z++my9UNbp6lbZzTepdOPQcNpvsxFXJ0Z6V0f9QJmCVhRYW2LAX0RnAckK8UcJI/YxdmHF3m30nLmBpngsuIMsp9rmu50x0leydFxVf3XBn4OcWXHmOt41Nqf9FxOcN4V+8ChSJTWG0DE7gtfLNO1w8MRLd2irZdYIitQ8zaaJO95umJQJBQLXk/jLYf9G9GiaJh3Lni80NWKV7udcocunnEnXUcH0SehbOTWQIjLEvDz9YAg7vC+dezYOeCpWwqOfyVWO7CncRqKxcahRuJGm5Rdw39SK8l9nzxiFYBpMQdD3rZt2XyDGBOGvEaBxnnjBVpR2xutFqRP3O2nRIVWYKketknSWAVs1K6+LpTlvt8yCGwHNjfJsJoJtgVJ3pF3vHLU8+ejr/yf7cFKofVgb7lccvmncmHDGtys1LMNye49MMbvyNsVGPwghBFYRqOyKhrx2qiXaLE+1BwvrucVsBqsvPw/2lz74jH+s/rokS8Vr9F2uh5oZFGYyhiJ2pa+eTfotvlMdv1M57eXIq/JkJMygxGR6bSsF8Wl0XFU4nbmWzRzx9ZvknNpL+2InXdikQxL1UVutbCw/AJ5xUSnJNLBfyWVc3YCv1AZlYfDPPf8Y6z2KSwpuidw7xmPgSxD5fD1TI92tcyBvFxo+z43XegWAhcMYkPMinX7j+lVNfe1vuQ4iDZ+L+uhaVskrjVgG3KWUcXflE3PAsqB3U1U8rlmypMmJekvXbLelK5GERE/KNKAUni11EUMWr71U30rR0uSJ5D4edMhowACnjBb+LKJWBAUDA8wmj8tNBQV0bnWUKmpd7qAnACgPxm5WmbUtAlnj1YOQew8ZpMO4X5FOKlstTye+WlI6fFcbLetYWQaiH8UVUEFuTe4BmSzSgOF/vjngPwgMdXGo3hyjdY9uN86F0TBGriMauIFP33BfpIynvCI3dPzBlO9i9AQjk55OORVClg54SCsEU5krGqei90lgkmR8LmyRJFmTesZ1CCe08OgRSqylQjSq+KGBr9mTAELL88+8NDcHkd83t+5nqQNRu72VnqdNniX4lmGNR2S6gSfbMtuvV8HEIw7ijsAIGbY1UPPn7p5DvPdsMlFV5JH9GgC4tm3+jjU2IaccPN5ggtTAjjB1lxUVU4e88KLKIGAEVE8FeXbU+FfmVGXDI4PN41BwK5V8rc7GXtKWfjuNKkoI35Gnta803tuelKFMA0p31I86PyXgPj5CIeTwLQFmH0qVBfR0Ym7esQrhl0on1CUn7YJcsHTygKfX3n8ROdl87yZJHKIDl5RljaZJj2chF6Y4XZugw4npaHTn9QdnXDwo8vf7KlX0bLEby+fBr7XRABwjoZQ9Vf8Vp54Ryzgrowi8vuYa8NbMCQ7su3hvje4UtTOi6pGY/W7xrFbj/yl30Ypjjh7/m9wzBwg8NwGQCS2adBWPiVFw1hIhB/YsoiEa0xAN/zqfEb79rSsNhSl6dGhtMwnEQWQqZwBrWOdwKIJzd21hZ1wFiU/hU0tgCVA6q3KJDIIHNrK5I21xA8CFfNHrZayzW+bUIXAV+qgr68EH7GKqHk8heBIS6bHtgoFjoDUEvfGYxEka5vyMpgb1unlFPlM8WpNT3387ldyjHaL7aPFDPOfWZIY1Y4oCZJ+tL56+ZFbMt8UElIWlcowCEDWYN23oV4R9oZRh2LoQUaChzqoOytKVYgYIJX1FPn69+Rt7knW48NAUJfKyFgYqyqtdUXZEbN3zv9aoMDz2sKLITQpkn5cEPKg0PzRAVERpuPn+bBnQbaj4W8nI92h9SHX/5WEbAkaJ/1Z+IkE9Hut6JvUIKbc=
Variant 2
DifficultyLevel
565
Question
A type of mortar can be produced by mixing cement and sand in the ratio 2:5.
How much cement is required to make 35 kilograms of this mortar?
Worked Solution
Cement : Sand = 2:5
⇒ 72 of mortar is cement
|
|
∴ Sand required |
= 72 × 35 |
|
= 10 kilograms |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
ratio | |
choose1 | |
mass | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX18Fwy/PRKvhb+z7SnjDu2ssT4/wyN0cbalmg2ZZF2J1/el4vrLa0PjHBfxNMscYxeF2yB9EQWXmkXo7xOz5u4fuB/Y9fr24cI10//Pg+4ER4dU8LRlq3i4K2HXxax1YWx1hmoy/zKR9XsmqLtuv7wuqUJjk93Nx1pCVg01QeM3Bm5CY4IKnCC0C8+rrubFs8hWU0zjXYfrck7WwotxTVVuwxc2VtBY+1AUQ14jLQQoZs+iRRPDgAht9BObR1y2rQejoiz6jMclTqmV34SzoG+xuuLK0R4TqFIhShs9X572lahpIiv2IrRlEgtTvnnrHEUHP6figuZhfRixhsIPRSbN7UCtxr3aQgfBC7R2+FpOUV+ozK+zay4517oZVBj8kZ5AINwGgncvu0SB2wNoLggmbcs11jy2Ya7C06NsPPh1H2yLdca0EgRRvGNvzLhpaDm6/tBw7/Gfkb0xtbD2NLmoBbp7r+LEnxt+e1az88S8Ts+3mlxsXS7O6ZX4Jg0TMhNApfTq9XwxOOzaUF8Tj8WsvPP7rX5Dsry55XUWUqc4NHVpSCMQ4CdMJI6uGh3yFZIfHy+bfVaLzPhYNAJ0uTS3UgG2ig4UjM3ZOfknDbHbQo3K9BQKUvauwss7fES7JqFPpdhM/lU/iFkTTJaPOpaUJIquj1+Zn6zgHlN3zLu03A4yFX4sUY+LyiymEDNmHnxOFddGxJJxtW4raCVBFWC79coRy2fVLFEWoGtK+q6sHI7xxTPUnmovhp30vHXuJ907WPqgypMS+7l/fpfNEg/RrSL0QRKcweuqKF+eLhSpGvuozHyXh1PGv0W2ErotRrGhxgBmB2HNW5PzQUZ+ovFC+Jz/OAlykRSIfo0xIDyV6gCak09VmBKXZtujkWeRIpYJqLPQTLlbmyjIBofJ7fclXLUcmGLybgIjjauCseozUfoGPN6pkOGfYdNvjDPzZc2kb9AzSek0EjeQGBgze6zukwBHmb0GW8FYZ5oFeXReD7VtlgQZDawALsbf99Ml1OnT7rNSbtR1Rk7F6RBNjrfCYYEDmj4kPb1Y2jr/phnbVwbb8UX9AS25SSOlR/YbaAtmjqbPLBgVUQXGmPtvN9hFv3ebFeywNJKz+MaSmom5O2T+HCSvT5C2xJjjAHTLE0KcS0cyzwI2Ek5MapfAOhHsGHCoWAmBZNEMFoZel4WEhw3i104CRogfqkJYFtb/oK57TRWb+7gwEQlCzAvd3xbAvmztiIJmnBsRuOy1zg5munVZTvgNoCpxLAhq9MTMXMtDWLsEGW6sP6bnR0Lau6y3dADhYpBpKTxJcxm9g0CEE9j4LjKzhphmN36OLgRGu6HyXExqeRygnEER0BA/iNFz88TnftnyTd++Jhvz4W9k5+yruqtH6XNRhiJJU8/AB/kDJXmvx146HiG+gtA2t2mQsnJWjatgHmk5WVs34DYtHV4xLPWcbLxhhjuRVa6H+0vAqgm3tNzVa6Ajbr4whOiIK6rAcg34V7mOcf3plaw/O6+dOGMXNFFRlqxKhdTQhfmtV+XihEPTWMdDy6/qlhtBeqIuUHNFCCOCmsJ8fgsQsuiY3r/2L90oJClSFOvQPtowhveKeWesljliF5XFuGwo962XFMvndE8OYpVxLtwuPxMXwecifp4SjkTAU4o1D4ogWhTcakoBSv2Ykef69bPJMFhFdNd9EQpILsNAwy/dCR2QLxPVvhZzfvVllp/o4fvc4Sm5woj7dL4ujKA2N9lhZ8plldjb2V6K/1MtjS5bCh+hA/yLcB6BGLR5DgxoQuhmibDtyHztlt80BJvrXj0TdDSerq/OMjmLk9Qz5KV+stzQemIINU4PmqhProst6s9mUi2Rp4+r+04d6LhVFrIdq5t5Caa42xjpWsuNEuvXgMZiPbIHsQtZgqOBuHnrh1cnVBd0H4Sqv+F1Vkw/LcY4FuxnSbDPkhskmgAFOhbK7oLZH0QigyC3XiMZdmbHjNQf+9LPUwCbLiueEHfYgEzOJ/gKzetGX6dmiNtVXxyqozTQ3f73wUQ5XLZgqnFzYC2EWwJyRrpUBk8ui5r9iWVnikZZWyK18QJ8NUtOaVWBEtzurnvhDpJuGFoABkcGep9yJSv/F2+vBSRmcu1ZzTwqJobaeoNCvfZ++iD/H4wkV9U+r1SfCuWsMlmtFYIyNLDpevodWZ/V3H24bMe+dgyv/DMWrytvejU16iNB+VtsBa/v6Hiuxs0xo5vhwwNQmBU6RRJZCdVWQEzRlEqzADpiZaPmNTnM5AsUpJggW6j1F1WhJQ84P6JH0f5E1ZWjaE5mgio384mKlH6yHeMD/bQDgtXiKpFORsdONnD6ohxu/NnTFbNvU0n8dOuxlXMPBuIPhygIUgEZbQRKoOC4fPHs4Jb3a6fT2RDUrxKxwplvCVAAPQu4QofxFOkGmmaSOeQUIjNd9e/yO2zmF/0mKWBFr3eYW6xJRbmZE6YBnom6IsshFBn30JrqnApdqNzXHsdK749GjbB8qgvLtwbDxk0yLrAn55ygtjAgbSsLzp/4Ae5m6qH/SmU1J/Qx7SSlZ1rLsfQv996zerhCYrsESYgkCyGqkU4e4YDS5ZNdUeJXwuHGu7AwMNpiR7f06l9AxM2/kIDOJHYg5CngOEcZpvXYCiSTvU9ChaEWhzznAN1wYoRPeaoQt/gZqhW+aEyiLszkDGou7C50V+NqE6AKyEpYN5QoEPB+bgo6BNyt1jhILKFEqUnS1ndCrvcVLbMGrr78XVpu3nDalEFl/heMBhw0g3gRRsRf4PXF2EJNAmC4eV3lYHKCKwsrBXbPilmz43SMjmfbBATsfdfZCH3DS4ZVRh/Yh3MOGnCvtDDZHkaFOCFV/WmCDPQ8P3Gbxsaq4gleV1edQT1yJKa1aTH7m3Eto7XPnNSvJbVrd509zCMGkAconT45m6FSAM8oLWtwvB7s+SWqjJqT05JzxQTDkQ17UoWQb0ubIZHEl8fEVZvd04XkDySaxm7xNEP5Fl+HjPIqK6b5EkKUP2jVppCmmsvOJ+L949kkFg7N8oIUCLp1RLtoCt6XCE7LoCsIQOvKYXMyr0fczOxzCLl1m3ZFhdI1k+217wF6fUEq7AZ2YF9+1C87VlIuJdfMQPFQU0I9m9HopjV9T9AqjgtXCN5wK1YtmsMINbnf8PQE7AFMIUm+S88UmQahKI/15TmmYIcbPen6NZd/Pt3hEVAqfYMZW1vIu0sKB1wK3v5qQBjKgfktwVwKJ2kHkvj1jeVY7RgfADvhz5WQzfsuYBZZq4pEW/FTy/FeqM6Nts+g2p/d18IuCittCjDuVohXHhsMrLdyDEJZq6fEQZC22HjsA7o50Ut9p2aM3PA1H/VJyBKNpWWSZR3EgMD8U55OpM8Z+X5IF6t/zsXCDuMIu2INluxTmgsVfcBCHtSVdn4AtZ9/xEBl2RA9phOMuQ1BbYrNOpoa2TmJotiolhYaqe4FgFxaqxkWzNxpPXTXWiz2WKD/WFw9o4g9QeFfSHH34EcA98GxKdl5ir5WwluqrrnYpuaWaYdRK2ZB+2VZCObaw0SX69dSuzHeXZd9dd33tGteXcL4WTigD3ES74lKjJzPAfSfx/Wr7WINDvIoZyH+H09DaVmgNw/0O+W2PDIWh/TpXVWANRQv4zcNROV8NxucywZ+K2L/G/+njH039D7nyhuSZ5+dhrVZywp/PG3KPTI4e7N+bZ2llLe5Yd8QNGKiWDSdsAViQ73ChxLuYpH99BMBJ+tgL43a9GfQgClvY6DDt6gxKNWLZNnbHw7onc9ILg7ofrvP0Brbk7SKoFyibNgJo2bvdJL6fvk9kd1jshMJH2daXFG+Fc/qTdMuQsihSMD3L/FkUhqAdpwN1EwCuqyD0srzZbZxvQEeswJVE7jIxwAWDFFusThniW/7XpEjGQdoWnZB7sJ/kwUsWXAt3D63tLbVvrhjnvBfy67wKLnvQh+NR13w/TWvvvqy3VbCjUiIypSk7djNA8wPpAuqx/h38H5a22GUNpAF6gThrhDW61Ijp1EHE3NlL2rJk3I4zSnHbleLszUMCDPmiZhL9AxkInw/NYACQYI7g7ra1bw2/teWJcVE4rye2dxKSnLgsmWUZe1TNpI3zHZTfW4CpbFkNrqJPp49bMkp+qfk4ILCJU0UJ2EiuB6Q/MMooK4HYEgjeLgaJVqs/plUpnnlAGNcamQAyQiPw0jP2+d2KSwBkLAqguEC+5jH26Si2utpdnPY8TPthsNY2QNhqzj6yCSkuIQLmTaF+O/kVTFCNEK5ks9UVsZ3bwCj9XO267h/njb1t/sOJtPKH7byZPYQp/GFLkFCs8rTs54Ok3qge8FZr64rgLDfigJHp4GW7lu0gz2IGxtcmwyQghA/a/DMT0ar2aSVMJ86q/Z+Zlwf9q5Efnlv+/fXLyZEnNKGKdK4zqF3Hbg6aET0vzcneUA4ZcL8F1yF8/z4f6S8Zk2hbvEjj3eoS+MROSFXkxbY83dYz1qheKR5mtciJ64vi5oPBOqEv1j4rlkTrMOb7GeUcOrnjUQLmueHZUnpmGPPAAndRXrAVv5PT3ezcsJAQFfw8BqfD5WHYMeNzRtX9XZLq0Ybgc0DlEZkA19bUBk4ceCRTxVKtLr4mt+j89hcFjwu6QF62N9orZIWHBwutJ9q2ZFsPFU/qxM8KC6GBcAgdDf7NfT38leW5xmUoC01vTXMhYGyB41FlLP6WMPBH4gK408YGt/l6Apki1BpzSZohG+bQYx4csmSMIPKhQNkqCIr+hrBA78RibS79PSZ6jFdvw5hfh07tlN5dSsju9NvSaBsyl/xsdJOqEXKq5JO6J52KoQbcQHyCI5E5EK4H9n7yLsvIsMfgcz8NNY6pByQJEKK3D1mRm56xW6k4s09Ns5xX5Hab/YuKqeVXf8RMxz+SpCIuss+dXSFeLhgq8GNsZYC6k0DplMkSMagI00ClRtWJVc2gRiRINcR/yUsxf9Ujs5GUpfSU9xkgSVBGT9giHBaIjQqrRfbPZBsZgA8Kz+GgIEsIEO6I7SiXk33ermL/ErY65nfagwLPnc8UgOvCKbZhSIXWlF5WqsaCoaCzWyKG/xiYuKnhSbwwDDgFxXvHfJ8qwoGhpaid6jbzu5iR6PWKCv3BePRl3JLQPsjKpFacEYaErlOGbE8HTo4L4omrsp+Rb4lcIaed4rAzscgPAa/JhgUn7cxod56D0vjc/S/d4R+rQ9F5PBmHVHmBnnhpC7A2rPY2jhQVIjuVpWV2h1EonLsaUEfj3CEn+M71+BOgxZOG+P2T8f6qc45/xJtfbe2ZO3fO566F7x8E0C569lEuJ9LHhCPc/duA60cceLKfC8B5OjKBLUD1ZLbxC5JvB5ehxw7Oe1aZ3U+arQojVUwbck4Z55YsVbcXFvQIcaDqsnSwKx218ieE9hNEFVyptx/b+z5tBzC4acBTh2A4SpvWctqruLaSZSRY/PrtmdQqCKYLlGnkk6Do51EGY/TbFSdkc9DQ8LQ/u33Lw+XqNWlHXx4GfDEBLXzBeESDgpUVLg+QHszWdkq4/zq1ySayAjIOZxEtXEasqftUA7y9PBuvANDj/RMb4slacBMdU8zW3/3Qz9BXISXs/VtBv/BWaNrCC/UpIUK4RybfL3RuIsqv2BPbnAZG+iug7UoyL9IGuLRzamXluUCkoKeZMtRDfOggKRc6sm+kU1vva8oy5ji43d4361Xw4sEPacVIG71hp+FKK5FYJU3G2RYdfLdjXmn04UI+bMvxYgE4nGHQi3L7K6+gXyAZqZhGM17QMsVb17TZsH5iuiKsW2lQHeaDR0H38FBzcPD4d0D8mWCeN3gDDnME1BYdG8JibrtHyjc6twKewb1rmaVSUJtBde6IZdwI8rPneizvMeeWbykD8vKPh1+SjQW47LSj1bwCb9lU3NkgleUpRCcUgfn9n+gFdb1Xg3o9xCgIQgq6DDSsqeDwu+W0/7/hN/DIIgKn+Se89PsMSUtuYHrj4fRzrAZLijQJvRsMSjE+wB+mQjZdvvZp7iie364e7KaG4ZDvuWD/iwVctGuOm4G4VV1mhilKPBK+LUDF//5X8lukhRVjMtKL6A9YdIVv6fFLCY1esHrfB1OjO8Hgyx3e2NFH8DNnrNd2/zDUFYdtC1l3fiPf5yewnYmS16tij5tyy6Y5xNzHr1pHrnoAM843RJXx1wVFG/v5IbJrojTjCScGyk4urhj85A2NF9mA7WU/q+NRbAEExHCLQTBLbzGOcIZElyUnyRgCg1JT0w27PFe/umMWMUCu3/8KdUqlGdKaDX+9DI0xW/8qT8XPR41s+2KPOvVJcaXpSmAkvl07Z3P5zubgACWb20K7v6x6yqmZV1brK/XkoeHw7Duxq09fYn6y6s2ZhER720T56qe0wbR2471lvDGXeDOnL2ceIMr5W2sEB6ZjWkHp4G0HBaFQ+ePsLYWOaYssASJoibkjaiWya+Xe2kl7pHdgDS/eOZo6+5WmdD+lt5UMwyYgxR2JASSTCqjWkquadG57egLoNHLzlK8fxEQxlWItW9MTZzhnjoDd7lIgMLbKstNsGXlnMKg5TmCqJFE/esdZSKnlt7im4wjV6DQskqNIY/L5PRhbkTyPtWsF4QJqbDAzX8akCutUSBJ5R2tgg1kmQWuGVqBFTExRV+d79sq7rreLJea0E1Q3rsAP93urLnGcF+9spMcd7s8fyDesR5ofYVkTL7WwhyCUcGTsjR1du4xxy2+glNhwh34cXGMEkW5eD48Jdgh0R8C0xf2FqZDJ7td5693h6+Kw+mesWO+Xu3gHyG/qWj0e2awEJR/5US67+6RHfXDimuvdvXu48wse1KoNP0GbODnP8ci/327VOympl67fJGtPDJDYlGNqU0gAU13tTywvyx5wdU+lT/scfzdb47VvnnHYIck8ryYgLnqr3sTASoI/ty32Ov0NtP0I6pgIi2ZEqB7iaoks5I10QrIq1G/4L/f0HySx0jZdIrPOv4bCVPujRGlOy3XeNe2WVTaos02vtb7e29wp1CTDxnoTC1TyJG/wSGKtBE2onCHyLxdCTPuVrBpOOD3zgn1OGpNGjXZPz0yoZgeN5YuY5KQ7Qf6xPZRvW7vn2GKCPXStFN8hpfhiLhi7IuGjYXieO9rhBgrbR2/bNTE5Sn4bXWLv7azDjWMSqr3hyOIXZ7cjyVYLlFyFkh2H3265sL0ml7UsKCsiYiBw/p6YY7hqU6HyjK2FEAwORdkjO9J0wfuR4EAyrFtWUBSJCMBu01orcI4hpD74W4k4S3tOQAaP0xL7sZAkJS4a40L26XNgdazV5b/2XRfd3hRhYY0fqOmAXfh9ON3CFbRiuDmgAjEWtHMCyKomBdom/Gaz2jG+AJmqO0YhYXxfjAeDQfM9XhgkvTHwW5FooojAUj9at6aEfZfdkOQep8yPDccEW6JDfR3DqjujYRQEonondcNxmhkEJXbjtfsK4py9niTZvQEwP8dCmJcDFBW/QZIsfEbfS6eNWUL+1nZWizanuMIQnMZqd55i36g3huSMaM+O1ulH/C2MsNbonbDIkLsKBuwkLuu8e6V+ydgWnH+V+w+746ML1ivTTXyl9Dm6muleIdqyUMtO+uE33Razxcsyt7urJ7SfhW/B87RnnPxnZbhGk7ej3CKYrbfEh1Chjyiwv49pPSYBIPA8U16p2XoftLkf1yc2Ie3rw11CAFf9y/FxBvueYyH5/uHmilM7r5kbR+75J2kf4Q/ktZIGbTJnxh/jbh47OlqOG70NKuP2w43cevbPF/fH5vxTZkl4KUdD08xpFj7P3+nlz7Wd7L22huyPHdBavZaMaGC6PrW81nbLsseTCD9gReD8lTr8K1WtHzieJSZZnLNd7GhBIEu8QOZc5vf9Csj3Sn9+2Mt9VkMyGuhuniffVpdkW9tUqlU3dryHRa6GT+V5k8orlOJiplbycLvHi6oHII2mZ6ozNxbd09B3LCOA+oaJOh1Qd5WpfZrxonrhxR6gQ6SZhkkj4j6/wKfJmrNZhVfj8mr9wYpw67lwGwOCzdpLjPtQj7o/xUdV6tm1Cs169W8mlbwoNIIZ88sv/e+5nAHEAOjsLlZ+p/Xzc1mMxg+jfavavGS8kBzrwCDt7f9eIK4vaazMkGIynnEigm13DTtlspUTBJFjpO3XjfGZ8qmSE/8dvog6BjxgrQ9+bXInOeRppUQkijBo1mfIA2zVOkauYHJ+cAjvw7f0MxNPjQj+vnjU+fxiyhC6ZaXDXpzHTY2rXa21UyxrqrSNH/loexNQxalIPArtfJY/4lx2FMZ/qwWgY4wcxfiGEwpzw9yrAmP6onjhf2ucnzkUYdAcCzsKUEIzpmk6NLKFlnZoq4ZkRzs70J55olxHczB7OtwD4Iy9bRfALS6up3OCfEYL/MSTDL2ba/kJMj5QRVkKMuih9D5Sn6hyDQruauzZL3c3iZ6zvpucU0Gd+1/R3tshgFrzWP/1FbTpIAf2rtpT0fUqFEgQx90icWc7K2QKWMvWEpZoHRRRvbvQKnPBuxP06jKqML4pXKzy3S8LEjVkgXnlshHF8VRO9E/CqQsD+cPmnptFyvQDzs+OIBWtSpgC/ixZxE2zyrBiramCQERagA2yXJ604RePHD1XrkGdBlCs7I2+Y5omHY/bIvusbsEdxxq4dG9QTRPjKoFb6dXfCpEYjpBkxWJ7reuYncWumZK/UcAf3nN94Ajvn27VZ5SpaQxXlhlLglFZ+wuaaRico5co8vQxFr4V5O9Td9/z3KK2sTjKKdMkx+G/+HW54aYrX+IDN95JuN2juoW66M1N0GvtlrdI2zcaCmXM2pOjareL45Hh1SI06RLC/5/WAAWm4kwGNyFTDE8Gxvu2FTNT2DuswQOTPXrDhS8I9N6ReGSXuUO+yYEruEdNmv4QHRu9hpMJ3bN6ElLvZouE2aZ8K9m3v+XQd+UMEu1tlT4/fOkK4HRya5c+3RsfVzC3Ye7UJKUpU6HtmSgwC5ginNY9VGZB1ECfQxYXa+Wux6b2BMb0yB7k8DGG8hJshH7s5L35PLnNxD4=
Variant 3
DifficultyLevel
565
Question
A type of mortar can be produced by mixing cement and sand in the ratio 3:5.
How much sand is required to make 80 kilograms of this mortar?
Worked Solution
Cement : Sand = 3:5
⇒ 85 of mortar is sand
|
|
∴ Sand required |
= 85 × 80 |
|
= 50 kilograms |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
ratio | |
choose1 | |
mass | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX183Us1zKZUa//Z6m57Exutny2la1kRWm8+qDdwRHMcRwBx9S89lS3D/gt3Wkj+VM6/LI+7KegmrQFJnPaZRAm7Hw0mUjN8kcV7Tb44M+Gz+GyMLYxs051iD3yHPjRTcYi4g9aL1r++JCOHQoS2tC8JglDSxhGho9OYbpZwWtzcL1A/T8H80bQDwzh4qGriWJhoKyG6sljMYRVIQHugEqoyPQW2yDr9Qfwy+J35pUGWI//eXNeZcZVcrfqQrzC13jna03xWjez9GlboUxsss0BSYPRM9zRCsLpwLqUzU/VXW8CDyXeHrrs4OQ+mLXUUR+UDVw6jmYTIdtAsvqintOdlIqK5BlaiENIremXBOZVDTqhUblTU6f2ZLyT14OobEXbfvvttZEAW2f8o9eZS1b2d8/vFU9BAjiIS5S4rOlQg0hCOrW+dyhgVImDf9GyDfBQkgA9Vk3DC7OxiTnBHT5wQ/1NEIRowHZ+rAWY4vIs7wVcYVj1lqwQCXUq2anhySLA017Scuj1q5HrRX6Rl+pUodl/6inwJFocUSpQaTUf4RN1d+9OoRQyG6srEjUMkzQqG0byGxcHGchYtjSszhH8FUaMkz0cmAE11GCS1TaDTf1Sr71EtM4jb5W6Uhly9ya5ve+KiBSKmmlF47iyXBjPW8oJiTAp6NeQCxt+oH6eseAolWZWQ7D4kscXCbnmcMdN5OEt7URj2Nl45cAhOAtgEgPHJ2KrhRCOuQYum27dP7WL8Pf+5ZGT0OQkzRYstGTr91f61YnOS51yE/mkJLlpv4OZEqyZCXqWCVwHyl3BVWCXNXnaFqOVfJrIjXe5wCPwVfTXeEAkqkXPjSUSiZanRTzoprK3ED76uBx1o0eqpkMvIlojvUhPASW5JOKeImlqkJAvUn/XTbtXMkftAcPr7kn/qAAUEFFOQAH34otzjiw4JkEp5IQUVEj4+y1GGgmOemgHOtVls8gPiajUWUelWb4PfUC/2TpYwwZEEiVQ9NfsPmRJKwta5/RHz4H/b9hlMMMQtA4VY8ML/mxqnWbXzNniaVNDxHs8zAGyztCP8d7GlIpjgBCgxVBtDvq7sAsFEGmyDvcjCeO5hCCt6mXU1m6zj2NLwDC2ee5XqP5Z6a5+6RDCyo7CpOy25a10AdTRSfWcqpaUEdwwpWCjLhzhx7a320jITAqanzG/AkfiEYQ043Hz2xcgkL03/bxggPdvu6Ok63PCwyGYXs5PGwewk6DwnqCff+9rK9a4bogQKzAPb9BB0u6P+OD0G+7475S9XmFOcsrqniJIt+HD+g8nqvZCzRUJ8h9lDigmLCFQKHW7yorc6d8DAIA4+w0pL0TPkyocSXlJTjjtEXAa7NridcqNAhuL5aa3icNfrGizu20SfS8jx0pvjJohfH1EuToWX57rj3kmnIAwkdolt6btB60nXV0h5NgKJcXxernIRIuDuCZWeLv69ZD7NUjAVNPiCLzsFx+UTQSaSfN+hsm+h/eahqGECj/opaZlHtQrt+TUV0k6GmOIucpJNI7Lh96hLT3nbxI5yeWSPxssGYyuid4SL55JKifdB4sICL6ebTyv6BiBXOOauO4p2Xlfl0si45Qw+V5OXHO4ymmYXiOr9HA9QtqaTkRVbZurI5QeR/sic7bpNTuTvR3HmdRlTy6XhzJc2u4uSPmLWBWVarsN/xxlqnjNeoYviEJA5JTCIorrmLGIc7m/f1eghUyf09zn+QAmK6OIMMZsTLckufT4taaIgROd15SE/CiSm85W8/DCUzLcIJKxwgU60a7Xy8Qg2s7ZXd7CmnmGRNFRYlNgKbm9S/ItOeHRGkHqNsvVXq1pVFKFmplb1rTUBKsRrOJPx6rNj5BB+pX/Gp/lox8tisjP5GuE7+cCH67ztF9pvSRoNQdgxkGCkb4SRF2F9Bo0TDgPWzfzpIi0XCihbkn1RGMaSAHSAMMBeV7EEH59ah2pE2yqG7EH5r8n/E3RvUd0hEYJDKfEbslt32etiyqGc1pGIanuO/9kYoIo8lec54UDgFXMMSQ+J7gvzySQMeGE4qFl6bDObury/faQKSd4Sc4owRhnzfFl4BM/Mqyj7DzO991mNEAyovnc7OtieyYmrc9GMSkYndBPjoch/1pZ4gtEh2/9HKjge4ym8M2mX/R6alsn5v2KALJMNfPpjRTwYV7gEVTbOVUhzxldg9F+EYkq7ROu+Ab476n6QLswBbh1iAmtB6vML7W0xuqye6UQvA9DDDiMdjDcwxwK7xjsQnJ9Ue36ex8ENNVjIxHgRp74a7/fSkaXA1KcicPLChVPPHywkXSiqRCCaLwkDsHWaYpxg789Ub4sueoWnggYxslPJHKSB85PrpoxlOm5VtFiBuYu7ud0IpnTPC5FhAOWttlethYDkoRj92lClVNG/Rtfi2HvEm7IZw1xWCv9csmYuMY7tDyVJmA+fnP8nyt/NV/RHr+m8hbNTeDYNLAtnjjt51Mi+B4SOV67mdYbSkglyXRgKWoMr1rO+neY5QGv+sGFxh5yM1Uvbc9RQdbJkkxaWnvd/K51+lg2TNgsvpVu2pcMP48rkLlGTGdLWtP52XuR0UN8BhxIMZcjH6IYC7ZhQjJdShAOaCiwm2oYjd7/QlRKlsudOkGt+cQ9+nXJYWeY3qNBqp3CsPebQjXCwKmzS60oWm/rmuQk866KCb1fQCa4HdMIGtlJlm3pza+/BieN/nTYjK5IdeQavkoOzYEAHd1VPXzoMEo7A6X1JP7LcR4lYPRUEVTxtC93c5KLzRykd0upm+cSSOSSgsRaWzME4irsYxIMaliNqRurJfd3kkkXS2cHtmC3AjD4M9xxtcu/zGfcyD3SNvE5HK39acqrf4q7SHgGAjhZC+2YrMQ6wgx9smtKIKEJCGS/Sn80zwsndYmwR99pggN9aibRm3O3s4T9UGsSREQxfW6+jBC8X41wMvMBhdpfb51Mxo7qJKjg5adufxYjh6HdCjdN32eu4f0InkrWQIgIgGupQlKh7DOyshJKOsZ8PZmm5lhs2gZYvkysAqhVrLqiN00RrNyjFdD8IuFiz06Vskcf9EZwjuJ4awze51SDljeSGYj9tNLddmoflnLMUSvk9aL0XsKM6ckFMCnNCDmCklUy6VTXbo84MPA9Z/JUeF4lpuCjw+YS+OUbxk9nkHnKfxo38O8oc1bBupZcYM+Bi/JXXWw35g4NDHTM+EPqQnyDpKuuVrfCMvaSw2Y6fR+coYkznh8kQO55Ds0Ur51ixHBRMB6Tm0hGtUENjQBj7oTDk3d02ekuulKDlteTncY6ulTm9mVzWgSDQfmzGqQFR2h3DrXQySz4kkjmdc0/oKKpy+SZu6CJdS6l80WbDtI7oGl50vXntIDL+49xZkEY+MhwJcPyQsrkUU7dQtwO6btiL3jslMM8aWlcOVT6JJcqYdmkUbove2eVCAZoQqsXZktxy9Kbh5Uzwn4RhU6IJM3JsaJ335FC6mzcBUmG99tK4aNukDE48+GJUA4vCByTS17/p0f0c7Ckam/7j19rkjEKpiptnJQx1eUPRy3aJI6YPtVT5qbHCMx7JSOFsgEVjmheQNBuTibJwW6zUYW0rcwwVZxwZKWHP1j9Fig/Y6clKe9XMkXstbExxQRqa5BNtmxXjdU5yHGS792+jRfBWuB9A9BEaUcbO6hK0cGWdSzJHRP660rrEL7yhjTETbkLbdX8rSQzA/Iepuy7fzGeEIS3VuacnjAAeMJpmcZtzbf1nAeFGvgwpOBCvxAHBOeYhKI+R+08Its4lxyCHPzR/IhQQogcqr3sPo5DyD97TpM9/moAX7Se360A8SMxy/4ino8fXNLuJ3w28Au5MYGcBuMoDiDzb6ml4F19+CX8oQiLCbTjcWcqZmz9gaGqZIrg7fSKwtqCYYNBaVv4GdsRzM6JUcYTfUgIW5ag103DIq+df0UIQssW5MZkpo0WUkUC+1r/oa+LA5JcLrUXg8u6VX4X+iWuMsmFkdmi+y9Zz0CyRuiEXg8gMfXG02Qzn4rbMw6RJ/Z7xTDqvGG6W0TpAZkL958UDXPsbHMLz9cu6FouurKE2yVdeUw8wyb2GoM0FO+CwPEqufOS2TSoe0siP6I7GBPliqijjTW29BrU1ZrmzczPmkjh7i/AbuLlcIg2AFLaggtDzLlZeXFqHpqg513Ns4AAt0UIsiuHXq/iJ05AhxNnV4ySP4ynNHf5E+l+VzxzWNnW0xwLVUvSfZ0b2o6KXkRjwO7oTun6py+tFTo6wTkVrN6iBNRAiVIjVW2X6er48R2lg32zlRySH91tm1zTD1No9G0GoKzyMsGKZcpt5QNsbSQuDSqFunhop90g7KYnNAj6PQSFGmJw1XPJpRm96Slvv3L/kBDcV6klQ2HDs5s04PsuPSZRTFufkGc/r54vpoDB4wRGO2frFHj9P02pAw9oJ8RdohymEkz1LAj2X8GGS4HGQs1QvK81Y/3/RNkHD39N0zd9QBLdtrEAy4oSf8mDZ4iSCC/03vyyT9GFiri3ZYtVD1XvcELS9DyNruHsvG71zduDwzvsH7TUxhTHZ8Qdq+GJLJqspc+dZseW0O28IESXoG5Kl6K2++yreDK3LVpveCD5bs8K60cQVdD92E6b32/t5Ptc2OTkj2IoRX38L0sAuLHZuJuqB6lQdnCcs2OF4WghM2gIIkJNEuLThfLusX5BCnQDoAcyylVkInhiNNeSOYwGjvrhtf9RIffIZlnwgwTb3cme1E4dvCkX1u9TokUtnrAm9lzzsFU9sBIvAVT822Tk7Oi47qhKUYEGKvmVhF+nX0oELXUCG+7F+X0AIgamM02MSSTWi17xAjLP3SBT2oi1FfXvvY0HfpEir6yiCXIab5jcoUlykQdugAa2xsh3vgOr7tRAGx3mcIPzZkVhz/Q847iYMRo6tBzO3+CT6UXJYrOnpPTCPcIPIUnjo6otmXIYIoJcn624bpypKHanocAIocIWc50agiC6QJ+QzDMkXab3ctl20UInSxDVxzm+emMLxjsxdex0LSZ77RkRvZ0UJMECSRY2tU2vdnZMqSPrDGms/G034h+EWCDIwEC35/bB3PR2hQv7n4cgGpuqvOePs/LZQ16TMMbGf7BiRQfMvtPXwhTuGhF3sDOchqujBjMVZ3TodLnYu8WWFuG3o5d9cjjmdbx0kxOCFIeJBJ7VNmzoaSN5Uavxt2xfkNaN1ryGPpZypD7pU9XWlSjtx738R+OIsim3gkO7jWhlViUUBYRhgmcZ49uXrE4wD5Y/47LXadoHcJhAFwnwIox/zSDNSxT35ZV8wl0AvIf4AzM8uqmo76qa5ZalmPQvZT3jKgVVgtB1wmOUxfGm2Op0nyiVxbHZCOFtc9YubaCyS571t8lMgW7Z9cqohHbrpnDdUYMTfIOa4NrTAaw7ecqU4VkAVEckbP/qqk00IHdhMbf5wwpDOKAR7ycnDn76IGAaid8O1yHGqNYym+h7Bi+rcsx+LVPDSkwbs2jmTcRsePLBAqnh9QkfemfojwRvKtY5bhmDTKJET8yslC2GsqCstAbATFclKiTQlYvqMC0/5owlwjuGchQgMBChRxglyn2T43Slo9Ra3BseULbRpk3je+UxbGXHCt6JL1ClVxHgf3cu9hXu8AoTqhseOdyMtHyCdtc6mM+5uYyhdQgjpaNkIlYqdoYsBf4m8lUgbI/JKJWtMtM5jG54KrhHFsoLNUl3r8VrUEQJjY+XA0utGcfRwNER2rCrG8FqngnD0L9jhRzXxwrNH+Jr30cPIeeKXdwb8xthVhGEIVKJUdczohmMjg9VvJqS9guXcjr45mM2xa0oIQ4QIw342vNI3Qw2imJleR97jMFwg7BXByG+rPrFHrzcr17YKZPRAUS3+RWo6AyozuHVI5Ic9KVNLPXJRD4AUFfxkx3PrVmwHtVnDBFx98hiIdiT+RYyc6Ig41wVuxpCwK4u1hocAUroTjsBBkdqMO4THPLzqrVAHcrKzBgKTfmKKxdPFK7pU0pxCJ6YVeVfw9yIj9V8yYBsxHUyKogvcvBnu1Ol33Dbq4cUyAMi8PMWOaeQZMx0EChinMLbLbpoJVREzDpYmD0wVPVoFO0MH4vt5jL0InNf1lq6XCRCRoMjsd0FL4MfkYvYicMZqiexiPJRekE9Pjn2kLtzk7/2SI7FnOauy0juN6mPYgM21hRMLOd+czkMEFw2phNE4geYJTpdXCuL5/efTtkSqKPG9IvhxDd5mNuH4LXxK0PV69qF0k8N1rlbhlc4nbk9V+SzXUNhC4ZYkomoc2u4S4/HuQU3MgRh5rPFv4GZY1545hhH616FInxjTjWKxxWEMkWgKyqDH9jZ9uy+wCG2S1ddA64OfHbut5dvM4IwnjBQAb2xRW6RaYrFxA+pO3NtzPdEOV5S/NeKKBbLFwnAqHOhRt2dnaBN9mjhEbpHowLbJRIN7v0ZOLpOrF4Z/g3cahgc8+tHNWJ+1FF9OHT5VoBmUwEALE0ZsXbxoMhCHIw2AfL84vMdxZTol7NQPck+X/xsKk5od4epJQuCtTlgEp8ciDghi+FH8kMed16eHao2GkYeT50f5PnYnGO9DlUgWAkLyfKiRK60FxzpV1YPEozFpvbr8Pt2x3C/f4iXZQJzKwXRUPSpA5B6/oekcTX5YOkWtKXAgFzj1+tjnVmw3cE3g3pM48iiy83U4lONbbCWnQ5e1goxJIyMKAQU/4jP+cH8khrWvaG0FvWSobRfQ1s5l4krhtTo5YxgDfZN2SxHKX94l4yH/8oEtUldm7NQRutnUHQF5HP6/bQkfHGJZy66zffTd7woopucTv0DtTFMDOipBZvrxYJ5J0roJ8Poqx/5dHSKWvuhh13bCU9AGmKJEvIKkc5pSO27vi4omI3f2/KUDDWAqtK5XnEjFc50tR/orS3qUEop+eqQb46f6x+FrVAM67dbRR2rLcIXNJinilWU9MQDo5pSDYimAE0ctE2VViViJAxpnoGhsLA2mVEZDhN6vpD7IrxIGqkSW7nefmQHFLsFVh2Rt9t1gCeZ8MCV8aSvAA+CCaX0Af9vv132cx1deQuv7BGDQzitrkqb7JvqdmwmTHDAm+ykGtdCIVFkz9TetMEj04qisLSIFzfjRosni72GhtwaSeeZxqwi+WSTG+4igDeKn7tTQQg5CGhA3LkRo275Hv68ZDT/1m9zNZx6ajcE264aAcfXX/hAcC8oblsoiNTr0GR2vcx62QwHamUZz42G1vOzYBZgkQulNu0C7Yz3NUyHW9RrqTkpu2ZiZtNBCrm5bzZVBVMBzR3f0WT5I3ZLiJxxNxkjJUuRK1CFxJAp3X7RN1AOPGcyQPCzCn+ulKoEmHN2Bt6Kma7uF7d0F/EV+8yV3GR6fRe4lFTQcr6Ovzj83Zj9n6D0URFUTrMla2LNspKzzMgqr89z+EYSmHb4lL0OJcdqZt44NB1dWCnVRrW2QFfSZiDR0zikEW073Lf4u/zlgilRaEcLfN2Wzg7VBmBuNqOyKWq9k78b3yVBGC8liaWcVcSLQ9SyxTiw04qYSG5Hve8wrNs1rVq2ZFX8QwwbwWGOtwp7nzx3B1samvwUNobPpqBeN/YE3yHLoCEsDDtSUpK6FeLXBr//mksVLuMdO7gXHERrlUEQya4ZNqvJDMGsgGaG96jNwQORg7VdHlsKhQaarZefWj6E4RkwdwdN+e4cFsGqwslbsS+dzk73ZxxzZf18V3/4/Um3yWIE0OAfhNKuFMb7E+M4fc2d/3BeqVB06iFpbU7c9b58q73n7qawc+KNr2VGeGdPgq430c2vRLZVs7q5Invsgyoa3apzT1gTBESSJycQiKSHqB5nxitjSrVwKWDGeZPNOuagUysgVPfE2//UW1OY24oCtvOxSAOmgMR19PmtmxJgFxE+VLq0TcPDXeB1lCpIsXL0HCPldzg4B6gmhC0d11GKqVQ/dXgMybihuj28aeHUivc+47foAnSQrlRU1bOpo2UhnCmqjWxMPyUU7YZrF8oe1w9iODmYi5olD1jEt9wqPg9fvVt5a6E8iv47eoA0PAl+IHAO4LtJE5DK1lPzgpsSQjMc/rVoUvByZ9Sgr7TajIx42DLZpPnh9bdR7g3xD/fMLzSO4cmNbni9VtwCAryvBbLwLSv+mII019hah6BjC2m+EencZhE6r6/oO44DDAIfLZbTc7NN+5LadtV400iVOOzHOlGoK7nWMksunwO7opn48kEwYihfN8JyzxaGgMnIzutNx9mLS6sW62iUpJ7ZDkJ7aOaWZ+wipn22/Ocenl6JohdT789NQ0/YvqlW2xoFUAVNO1z4zkxDyPGKyLjmgi0RkFxADeMwKJs9+IdD8sOAbQ27BHKcy6E9cYyvUeSa1zROw0FHfKvZFIms5uDxLKCReo8rZmPSK4uQZcqOns3n7yLCNcFOCtHoj0fcnhKEbMsycsZmGRd7NaNdSW+0RgJluUHuVnHiuyuF2CAmeO4F+nAHCnU0pNj9DsvyS7FWatFEOEly7IpynQeknzT/7NENxrq4anbOUHQN4oYeTP52iwt67If2gDZEZrwNj4VLl7G7kJWPS7nmISwyQz2wq//lCB1E0pXrkJjSOrrd0q4+t3jKl2pnHyfqI3QZRVJOhwqzR7cGSOsY3xGqFoRzdkmn2c2AfG8wAPf7r4lPitNeKQ0wTKagwYOhmwuzpEjJaBAUuz5PmDYvxsn2Y8vEemx/cTKy90qWBgWy+/658FqowKyTrbg9OKdgUFYrL0au+uNoiq64dhAURhSKKn+JK9QYwTjfVIj6xC+GdVWqeyf+c5eJzLik3tyms58GUjWiWD52G/gLa+Z1DJvRcb7izJhD4DYZZdY2YQxwfecwm4EHwhI1BGWP42Wddg5BzTslQviSHB4eyvBTHPZ/uSlDFOWLoAIlOwTJcclt0AOI774x+cvilQQIVBPtJjpQoRxREHXmOwYwK7G/M1iXDBG47WD4Wj8q2SFrIZDkCQ+esFTW/hLpnmp7MON3eiA7G2soZGyWBzGmm+LGt/L75QAiF4B6FZFvz7y7uIfavdXHs=
Variant 4
DifficultyLevel
565
Question
A type of mortar can be produced by mixing cement and sand in the ratio 2:3.
How much cement is required to make 30 kilograms of this mortar?
Worked Solution
Cement : Sand = 2:3
⇒ 52 of mortar is cement
|
|
∴ Sand required |
= 52 × 30 |
|
= 12 kilograms |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
ratio | |
choose1 | |
mass | |
fraction | |
correctAnswer | |
Answers