Measurement, NAPX-E4-CA26
U2FsdGVkX1+2ypH0PQaVXc8WHs4fUtWsf+ZMs/s3CettojGiZDmRFFfUl8AS3JDk699vfcTqCu9kSArx480XKHyt2wnDTEVqoyLwegL8qXtbW7Dna3FKRQF5yASlsHSX2jhcNjiggOAwtsW/FLvLsUz4QFxic1NUQV5A56IyesauvG/OpcHYoxHzQxCqJ7T4K0N90op2YljuIVCYorW8HFQE6nay61oERSCwni6p2+QDFE3MnpXnT3W7TDBR9Gacw+YwHk3uPtF7XOkwUZaBtIt8IT3h45wTLc+NOABGTzv/5mAaHSxBHZhksSjUpTzfQMzA/5Rm0942H+/JHm9wyxvX+eB7udbYH0BHFqcX2HkVwAUg+lddylURGGDbK+iUYQ5juRCD2IyohWgdd04zwe4bEevJ5nzr93LJAWDAea9JOAD+5yV7sS4LXGoz1EuXA0LxkZylbCHuhoo/MkMVYdREt7w6Sqd/eTwdr8QUUhuQtPs6osMaA4mRprdWzPYag6Id5hNVBMA2q/XrezEUHKAsWnhCoHEnCuds4EPPA0Q6zsAIs5a2Z4kLlb/7odydwkfgUFz5OVRoKDI6bHe6323JRB0vEZdxufYootReMrRu3Xg9mEf/jA6DMvsTBCRvlpLx7EJQ/wUxbiSr8ot8LuiqaAkiSgdOQUAv9q9a/pKrFyfFab7exIk/PZ7ZKkXUipdlGEmh5hlIuF2t4FOfD286xeBQJPBaWGQJdkbxHeLeagbU2CG4AoDNZFpUSnODYmty+UH3DPSgoOL6Sd4tT71NMFfkb0UfiQlGfiGeu8PrggMnrYsMzFaluK6AeAldpxKtyahlUGbSh9VjZnPfQ485UzhIMv7Zg6oVcCQ61ruDrTXw1lsJvOrd0Q6NOVLVXW3h+3f1OsHuKKTaIrswdnYUQa3j1VL/yVJ9bh4L+yr+G1FJJY5Wai2xQ9dhy6X8ITKsB9e55VTbfLAQ4eYP5fC0BUbxOVg/IfXpnrgy7WDsFGoKKfYvCipJPre993eWDX5NOk1sNH7g10uS2BWad+4iN5nIf/NOGm3b+63ZO+py0QIvuSEmZVv3S55Lq6V9lMpVJ5jGFn5tN1kIuNafXwQUa5VwwW/QisAXVLORenC7vPwjJjiP+HoSbIIujpIXMAhTq0dPRLwV2upDQHFFJRCHR8OJuNjxUN/AV4peAlrCaF37xSpEkjMiwfOfMQ+vDr1vJfMrxiHXlK9QAUgXNM0gmhDfffdhOcRh4BmjrwgNEiE5un7NjKBG0c3cCsk0iVtAFxMGBwNn2o+JPvG8F66j11yWaIzg/88EJanh4xJ+uZ74Vl11s2Qi7abttdwmot5tg5IZA5YpYxourwvLMZeAjomLEBr1e17WWRHQpRxeUzZ0oafZTx3Cl13tX+3F4Y3u171+s23Kc7tfMAa5HnOycKywdkAWeSset+ZopxN7E5wRuNKgiWPpXYcj1eY3Hpo5zSpqnjhVlGiP88ltIyEtsCWHDENPfrbHgPChK41ituA5XG0rmAwsFutt1YCfSGziB5q5XRomNJwWd7uULFAUHauDRNsAEsi6X8yJwS2vRrMf9eaxandQMnv8i827oaRKe1qRG4SRN7W3PeX+FXkZfNKUcBqRKqAmSCSNjTOFde5BiDtjemWnhlafuiPZIr4lwUtRYPOb9vuEUzz3g96s+nDjJmzzgEn8ZvbwAMwCaJju4VEyGufcRsvxNFM1MP2STU4FBjQmZu8T7JLRqiFVD8PGk/Uofbmx6NsIUJR0XFs3otsAAjXjTUOBT30R+ZSeZC40hItgsI/aHvH3kT7dbzQTFObsvmyaLYVAc4L8QnsIwq3Qm28s88CIAJs19J7cLJFK/p9kUu3jkRkiKuTxDjE83p6ADxHSOFhp3msSwN85yG4Yl8FqtyjT4e2UE6ji3anOaqNZ72WGguXhREtY28QEIr16+GiHTIeHVFtZBFZEB3Lh29kd/xryz7X5dOqnHXfKSmsNvfDPUbD8fpf8HpcfNB/Po09t/5neC45FA50zJUlZSE7MJddLPSLYXbAizXL0JNu+qLPXZZtxyjbhiHxAYa35y18MVsNBxPIqZ2/pF9IxTLycPQuPEbEK7QhcPOfaKE96ASXF6mnZf1aPKR0uEh2cuW9O3yfZGOLEFnzmMjHLVvXXk1LPqvpVysTtqtNEeR8XZ9LDtRLp5NDqefBYh9ac34zWZ5a9tPRRsn3tEmfXVpC3VBvoMP7z+FOu93PzanohNJxEvHoGfFjNALyA8B2m9y2lx6vMNj7srq7Mr9KSyys7EEmsgAcwYjWq4CJtHid8gNwZhF8ZksYzriOP3ajlX9n2yQoj7HEU1FtQM9DkaWv1InV4DzlDZiOwqcZSvi5lPKs8KWrZiYJbn4pRKS/gLiCEWTGoNljSXMoqRh6svs0z61vSSEeZt8LS3T+FtQ4hU/DJnQjjZW/ndBaTa3TdCSBHRA9rSfnMcJ70hplAK277nkvzWHJUq4oKd9hpp24vO0BGS9WpR8fQurnAi2ViiZwVJyxl5svdeaHpA2xeOzjy195F9o3OpdXeb3bBPqfZWo9KZphUevLVKUmUuqYqx2EdxuS8GtSn16TcYvLmpteqwGUaqUm33NqOSK2F+2sAIlKePQJGcgkXYVApbPueEp4F13BSblsNABJheb1oq2LCwgvqPw8be8H3rGFqgfYlnBmRW2TY2tW44Oh9AI/PbvuALXWsYRyIGsvphYhJWyLMlTPa2zvoJRQPUaRDihCKApQh86KodXunN85iNPyuNnYJG1blOsXLrP+BsrrMD8wjQNmpB7ZZaVY6AtpBnbmLPD1AtH3lABv7FGZRwApSTajOQemB4n93wJiVCGWyF3qgbOYPEZ3+LESurXRXW20QyHFSJSnH/F8rFe5MeStfWN5B3cbTWqfzeMT3AblplvmTsXEZqZZ+sryIWko+tmMLo9CrVGYlBLm02tomLHV9iaw+/2Enq6XVmiBHZhjwogLpeKofhG3YCzBMtPgpAy12/WuAoqyf0c515vJfO/W8DLm9YIzRb1fPgm8mCb2mMduJ5k03Mt01jc/KSVGfhIDJG9o2N/9SmK6H5wAhqUGQl5EBkF7djCYUAZQqZ6OEYNMPRmjursYrtVghkWd4Sj2RDfkpCFWstB6/kwMb7yPGAqB5PtFg8SwMv/FtPM3BwIAFfcIZosQviT98kWniFv7CmmOGKkDEdsXEUjPS2oUpiWoyFkggZbUrHX8B5baThIbfD99or9Fahdta7GZKjWZQIjcZG4n8PMjZb7JSTrrpMhHqKKcOyb3T4wAMd4sgxstH0IEtwUW3dp5T0b6WLyo5Nr1LpksBPJzhMuSIT90qpxLVvtQ8JK7gUu4havRuOULecb2P06WgB+thXB2J0a7fyRgiRA4KxZVNdBp7qEVeR3XQIIQbFZRlrUxT5bqhXmQawWLC6ZsYLEUuUQmrliULnQe7xhrBMWPMlykQNKN1FjmIVI85MNy9Ko9sqr9gHiPP/JHZYpfE/USrzmWqed+dOdwBMDUhkvnVas2SufqzMK0ox5uePQCChEzSjK2xe22nv+Beh0mxqky4e5x3dhTEv/ZtyK+QAeV+X/biEvrBMOoBs4JhQ37i1n72qFyOrVSJzF9wLMLA481JEj5VZ5HPA5G4z8nJ5uU4TmAPs+WXeXbp0qK2bTein2upTyEqbRWl2bPLYilBz19rjyrvVMGq49NED1dtz80ezq4QTYEa8pgDLxY0rlvQKaBCO4GnPkTrluyVkIy/X5UOPJwaYTRE0HukAR0dM+04fbEJmbU5vlDYk2C+xf/sU8QxYP+UCuS3SK4EwP99EN8wXy1OW4gbLCx9Vcrpj0kgbGw8z0kbVNxGbM6fciiwyCMNcgis92GKPxTzy3+5qddzRo2Cd3k8fn2JpV8n3OJAV4pL0AokbeNjBgXFZpJIr8akQ65XFhEIlLtSMcpvSfYWaVibsY3AY+a+sUf2+vWGIgT8zzpKw02RHsO7rIImqlj721K4b51K7eaAPHamtH+QAS7IflMai8KBu6szSwWh+wIR1r5hQuNarwSFMkuapt4Tj6m6d2o/SweLns1JtU2hkfr4xu+sz8oqyloHGw4o0dxsulvoiXuq11WQ8YC3Fm+0r4rSfSHu2e4c4kmsbhraRrxFRZhhbvRfH6gTxznUoby5glbjVN6GvdSMpltJ7DDrO5XWvEITVHp/WaYlGQnqHD9mTtkNGR5HRyT10lmo4epBUBxG1Na5htzXMUZNnZys+wlBe7RuYZJiWfpMQsKHjGTs0lQi04hAfNQuCMRijxuVoo2A5xWoRbCVZxKUh20BoS838che6zSTTV+lOKgEBnW40GgHWUi2burSobiffp57OumR9r4Gc+4/HkPtGyqjafU/lQ572jBJcBRiTNaANLncEZB+6WbyBzeukdsXyJxiZIMVW+THv/E5FB7+KnumG2/+JS3N50SC7JyJ2DxJiQ5CLzVr8Wt5HbtM86mpA1DJhMdCx6MEfb6MShkD4KQDYWB+9pVb4bhj5EUc7HvlhUemtzboNzVF2i18P9NqYv0uefhkqgndIDm/RRRQxIjeqobF5sax1joBtYsZBPiFIuCUqtXyOMSbCE+UjpSdeRrAsZFXvtqGx+C93LzBV+iWHUUtaJzDx9GHcDqNRWJ5gKlVxCUApyeIiPdKMVAVHrAdJMbJT9YNCcQmgkVUbjtL15bAVCPq06N5mQRw52oH2VboqI+1NGiaZqFTLKe+3lgE7NRMav9mNFssd2nv9/nFDFghj3K+qFg7KVYciwchDmUd4chn2RXezel8a3/nqUYTr5z31ZvZ3WEz3Y9UTYMESbVSlj8QHQ6UT3EdegFk4aSibqEp3OxYITPGisiOttj8ZsFT7n+lzv9cFMoJKg6oY7Wy1cNgnTjZOi8+KldAr6MfmhnjzwSUyjqx+tI70QbUJp0DI+xnPd7dUZhRNdoaRpUN8zBOFnuDOgh/hqIYGnvXupSLpJMskRyjHZRkV0sIccU0q+raSI20loKfXmDRc4tOUV2DQmcsxRgyqK1H49Xx5JZUD/a8vxhGQpKgEZyF4XGDIRHZ6yaJLJUyj9nNi4akKJyxe9cVsXeciQ61/RMQb6JnrRE8zGSn+dbyQCfCGjq3H8wJ4fpoflbv42wwUtPGKCjJ/WRaSow04HFhrq3uNXZhubE1Q5XDOHbupScFkdxrj1hbfZXYrKY+VHGTnEsl7CFJEW1/h6iJvHuGGbG3QBsgrnaoKnLTz4ZHgS5CzKxJWE/fZqZScEWpfwF+j/3mDQFXIZzZ3stHmzhNuqRK/siVJ0LH6wNx3IYdYS57akH8Jh7Ak2i1j3cdozJ9YJbQtxiF0RsX2baZvw+BreBQoCmr/Ai5Pbdrl1qwptRRQ5Uqv5xHoMKi/gKYnZcYyyJT6pKswEZPW8P5rB9/Q7czNH7Uo2PaWewayx2leRzw8yVqqooJ28ivKag/4XjPvJxTkXIUFzlsI6giSw7cVwnXGueGLYVXgV8816HCZrpoX5O6Fjw9wfWLsfxo3+GX/fCeF3jdrftqgpjze30HFuiDoBwhWYdy9TOmh2y87N8EkUurDclH1sQLe8qHVjb7QvK3m8EgpI0WjAbm08NpUkxsNz24zlzB+kg2gn727dXMuIzRYkOGJeT+/I1fLxrmkzKvRrOJKdAwu4RH28P6AYhprPZSXtmAq8Oyrxnqg4VeVzvexznFn764G3jZWf2OzLboOTnqrKJYvKOs8XEd7bBthQ/RG5iEBwL1s5qhuOSAmarrIvl+4+NpkpRGzb08ZGETmTtMt0fChzr9nEnOvXu3sQMgnsoULe5jHJG1zfmvTrzgMh87rCUMtqKjsdeJo9KW2ZhjPTuBtBbIGl0fYzASPujlQ9TUzMK1TkAMnTWpaIqWcPain4E9dGzkcWXVqc5sQM9/sKmPZX0w40qlHXU1K9mequRtLncv4zfeVjDCU1DIaU/CpGPzrMi4mgZJyUrSTu37MmcZwI8NExwTgT8CDvsku/cS7e1ruSrzLTELVZPCjwP4qcylrthEvzr7Tvpw91QZC9CwcwXsye8DF00cGqARXLw7bp+ZW9db1543tPKKqHApWzAPVOoOFXd9ZdlHFgKFOZeH5vmsna82XD2Ztw+eu+vXsxUpmsja7FVqPw++TXRJ76rS4ae2s/45gtQpdpnmBFm75MjsZ+YBgQP10kpPVjeVoYxWIqqUqipMykSTXVAlcGKACgTpVIsLJu4T+bnspt3Z3f/gk0SvA1XpqA9T4Xglz8DSzcX4NMAIXbZZpZBQb/IXr0VR0QmjP0BQMzn2js7OPIrQNOn4oc7s74jtPdxaO1BR5nu4tkjDtdmwN0taUpSB1EFsJtLxfhuAOkaNDRtXEsvwO5tyROn1OYd076IHMAvFMADnJ01KL/EKvMlRF3aVLZc3oLVzoJOGAfwvhbx3vPNLJd7waOs6T+KRpCxfAW9U+Ge8nSQFcaXZAJbiddUyHxQDNkjPKQyijk9QH7AdiWO+g0z+45ZXSfCbg6/qEqtAAfVh9GB+MqlK3YUdiVUb0TwRPtNpQ0hJjdxqJ9EwM8wJic9CyIiOvzYCz3Gvn2xHdDbimLJjyBb1iGyUPynMIH/uhRAISAPgVx1Ut2JSp0wg7tx7EjABeIcJ1vD9bF2/TX+z6HVbvhVwr627+C/nryD1WMee8tZ9cEQ6OOJ+zroa62y0PBvXyn9C/mR5ADby0yvW4pUfYmjvCpTjIdJN1Ti3U7dXYUBqHdieVYsdzCS32EtztQI809DoSzCXq9Y/OQoUxkiIvBGdlc3sHHQsjV79uGpZjK4K+PvMM8sJ+P1Y264l+BCnlQ96vY5k5UmYEgg+4Bn++2CneC0q5WdpIxNQyMtk8hAFJ7yvzsbtZ7AAbmnYpUapL2r/31MA6Own2RbzdivQnrwmC5wPYsZ3CCGyuswmBWXhm5inQlLjrjSmbLc2amAVIwVnnRCCKlDQamcBZoAaOpw6n36MYWXQDeo2zrzSPBTuB8XKF46NXLORiHpRoaYsXKFgtOvXpveUGXwtKWV/zrl8D5+5b1644EnjQokO0FIiMJH86vj1Ws0Zg6ooBHuQceEsfY10Jos4mwO7/ptM5V4LLeQJPxZq/ImioDZoimhC2NNR5ymYxbVyR0sFC9RhUEeeFJWHDvOWW/sfo3KRIjEVL2LoF1S95PD6dqZGc6Li9Sb7YNh9oVqRwv6Uq3MzxlpNbkzCy4QCg0SYuSt0U7DseQXqCW1AM6ZDYEfHufJRKXf7BDbmvLwJ2wcN6yCrg++WlpttEu+HwIBa9HW9tLBtlZqMGij4YJAGbEx+NodBGS00A2s0zqvQpWtvqtOmkeIRl6dY/AreCY8Eb+on+jLp/hwEKAkNezTVBAL/q6dgBgizNdYMQLWXlZHFQBKJDA45wNtPqpngTCz3lxWiPkOJVTxGRQ9LaZ/zeZMwVC8mzaqgQ998uwEu0z4pJSKY8AebJ+m4SmtzeGb/Q60HOJjzlu52DGDHIVaPz/gs13NFVIUVQHkKjyQGUAQzlYHUqEw9txjYn2IkAVdOi54YKwjznDwZ4vO0ssyQt7d0TBjuJ8D2csQUxS0VwrBs22qlvL/WhG07ZonS+/hFeFbSegj4joj9IJ6SuBitK5v9cSxSLIxw4JDI98cucPFlOOLbSue6U94Vgt3/UAjBRHpqs+eXpuIw0q08vKojk98FEJ7K1jMctH7UxOP6T2yWbTZbEp0p2zF+ZI70cdyYZEykdERzoOnT0sk8bGUeNUFnabtZiI6M7YUXsAJsV+sFaUTIAxFI8uJxYANuWbKTujqDaxDsm9E58030+4oNhhAtNOZXyCYpi0O0R2XvOXDBBwefDKzNMAw3wqgBS9dIjEnGe5yKVebN3NePco34X5RjQ7bg1X0TZPcrJ/EAcxNChZKjUcf12yijrg3P0P4wBW8tqXqSe5pU/Y6nh4v690jTRBcRxNbBBXeM9FgNuSA77VUDK7RHC5gmi0iIdbhdjI9s6M4JEhPhAXffml5RMKOvSa3bT0d0L9qCC14Yjbeimcsi97kIZFmvmBaYelZRDiCua+Phr6vMS+MoeaxYhv7OhMsbvBJwys5+nfbpsskcYkbwAvm2+tBKQtEKmZ6w4fWX8/VoKsUjRLRmXgKb4RS1ptfZydO+zd362i95AVCP4apD++XCP518yWWAKUZN095rChDOg7zcsnDSnhFuh+I9gNsTfa7X/tbbO+x853P3itGohYeCzPTJpRBCPragAUju3TGilxnAG0izansBXDUg645YSZ4LgzpOG0Wl61akaqQ/TUQnJZKSSxVIYqjQeUtKQmacQVW0YpF84KUwDySX3rooPwYfZgiQ/fB6YCe4JcNbWKKleXW2rcAfunsynGC2ehbfvqLzVNhhdkxnwB4X6mH5C/a1Z1xGfjE8AG+eFUBpgNaGSHUDSzrzpVq2kdPUj7M5FIxYXnMs3+gj63Gpl9Cf3Zmjy1nRYaxooQXdpUnN0EwzaGKfSCmA6bDLd7+DOPWADxhhdTgJvQV+tPWPVutUImF5Ju6t0Mc2kaoDpFWUZbNv7Y0JQOvt0BTTLTVyLwoHvNHOSXuwmmLfbiu386o+rTGAru+odLv6m+C7wDJELhaiN4Z/4pQSA8Krq3yTEfSh8ox0/wCUpZm5+NETk3AXt4PyWw5I/QrXIkrA9klcazBlLF8Qh6d49fBO5DTWEF3fDRdInAW/KSGnB1r2r+ifRMp7XNZFU0Tn+iBCwu/ZwZtsSRBDPRW3JtL3kkkGYTKlwB4ijym5IhGL13Q916vV4icQD+isIQnZWGK0SSPz0fhmxoOb8vwnHqw76F9uhfiEPpHnHiQv+kC83Yxw+1OKF06/1frU1A8p0gfiNvL2N23v9OK+LD+oGJgVLZn0IfzZ9o2CSpryNUvOmLwxzSTtYZI2AP58eOmvE7EMdq83+VpOdRB93eD6XOfmL9yXuI99oZdUEC5xGe/nR5ekFvN5F7BAeDUIOhyn//JFNOdlJ58m+Z6glHZZhkOZ+GkceAShhHx+x5C0R79Cp83FG1121FITYFHm64FfjYRM3YzqZg+PmudbtAXe4djiyQjI4VSefga2FTijUHOVWo4P5uWuIFN32Fb+Rxy7UtXIeD8YFKPJO9W26fkXS35/9haeVj8nllPDVJkV3fYvKaFXmjFw+awAmL7i7PluRX3ey1HFUJjtVk2HIrM9wRqBsaYo+da3c+2hBMe7Slm1HVgUg/41iD5g/ax0gpkeI/CB+OKMK7woVC77eY2gyRrJKrJxa41TbnBULBg+5bK8u2KKrN2AxHEdmKFzmuDEjLmBKhWkiYAziHBlGL5lyWiP9gWiA3O+3dy1PuNCbCyhPbbmUAL9OTf2E3L0Zkod8Rzzn7W06S5pR1lMm9pDVsltQdsSh4VZbwBj+QiHdcl53OynLPx9x8xbu0uJN6yTXJRG4nAE1mGhX+//USTFtr7HSsojjhFMXk1TQ6NTSQDasK3qW9loHkU4756HgXt6migmV8I5tC1ViWXWVyvs8ukLvJP5DCcKJ0/9UfcaLr4l51a7c2TX63h20I/ZrIi8NT2jqTuqWCbEqoGOKs3KEkSyI5mmGpXiIsL3WkjvUhY8XDpdcyVeA1ix65k1dT+VipOdlreycKdS0CDhaLSs5T9TqyQc5yhC2hB1dpVrRVy8rZENwZ9rI29LA8wqXLie34xM6YLrjQCC6UXMbTYUI/K+KSw9R2keps5mGdBIgTaHob1jbZdEQgVYr3dJvqGgE9ZovBjx8N2IRk/VxTqlZjma9fQb3pcv0eTTtpj3TJOpzjvAS2UZQSiB4Tirm8XCHD7YuuJubfaUG4hCpdLvcAYEiIBjww6uHRIzbdFMNNhFCJs0CXzTJW6PXWcDtXl/4ezyhbKts0ipgoNM0Tln7e5VSSvKDao1b24AblzJHyh92SihVj7Afprl2oPCGLu2JlFTAjpngl0KnoDBsXn+kbhi3zIq0Kx6H5Ib8E2SztKwnEcVXUm2SxViYhXA+PjDJSpEn/ZHSihRGwrE+zJo2eqmJbs+ic1r8mNkNJH0rHHtSC5xr6zBtq8A3BLRWfyxCcN6SrwOq0vROhVEiP9CvO22MmCRd8TI3WGAnKI+RokxoQF4CzOPCFAEZY68NkOpoAgB1pbKpgD4HbmzqkXu6lT+2w/ROEo0hYyEEd1Ukua0XS8LMxFG9b+LslU53M50nMaj2rsTwxbS/KB59Dx069iWoU/1VOBvwL4TeZvtmYz1polrGxC4O5cmdFsyjLBY7AVUvwsd4NKog8gzRsCEP/r+x10dscsQg8qK8i/WhG6KSpRbV/zppOa9sCEkhjImC/MxnnhdblCT0QshlMvQvcGWVKLI87DLLZ8Y0QdrLXATn2wsDdE3XGP6/JBGjfvWpbnA+KUCsViueZ6JLKTz3Z7HUABlI1VtTKsmy+9oW4ISU89LUYBD4KRiFddBfYRxZW/tUcfVEk818AgHXKdQM/zK2SvIMUIoNXyASZdAMf4edG05XQVQHvhrxTWbIe4sICpXf8QvsO+974ZsWoNUWuNvZuXUUkx2YQxTMOxZucT7YFn/nxo+D96WYXSNlPV/gqf9g9hvekUGrYIjNMjF4brQwEfvxovtbZRVCE2Oldgee18JbsHYKSTqMc1w8kRXcUfhCJFfwwAomLhZBSRUlck5IoBNDjVS+lJHYbJtWEEthvd7ygca1OcQO+wHk+bLiIDr3/XEbc0yIRMq9Y1kgKvAn4OzqZJ71RfrrNOQhvlFaor75PsjirnQF+tlZThw0eMDl2Al76ji/D8aeeYm540eZy8MweyiyMzSD0OHTV1Impkn9sHXCxnrmjizH2Bj1zsR8zJEi962FFwyTdE9WPpwkSFGBsdExLjummePJqJhRtPGO/1XHw0sp7Vmh1ahTEyCaUnQIGfVZZKyEz2zxPJs5QGue1odqRkCMuTizCg0YcSw+db10chzHg5iEFdMkm6bDZwO6CJ0vI91PvIjFeg/fX+XB9coaCMZ3oRbP/mxy6tCUFCgTW5aMe50anq9/JqBVUcVcJnmCK1pUDrWCSllJG9Y+imJNpIRHj19884/qRRYUzn/OoSy7G+7I+GmmMmbe8YkM+YD30IflNPhHD/x5a4ZPswt7KfIjw1u+pWer07hMhwACCQIYjntBLpsRHF+0Z3tnQDJJ3aNcy4nvCHo+jaBis3wJVqVWMtqMr7BXpRI5/geehE3FWfhHWgohHc/oa4K/bvtArfX1BOWQstl3orX13hbwsA4Xc9P7Htfkf3oOInBh1MuUiuJ6y3dlJd5oidSQdU28+NhSfmNs2cRBsyAt+CjDYPna59y57D4tjN+NeeTmDelZClCZgCE/Kbd2jwznYKgU9fS+tynu4Z9lhk+xvlQJ00veizdRDJyqCwRsa4pA4xPn6wVKwHnb+AF8oJOeo3+BFyY3JRnlRur6lhyeW/c3/ci3BJnTJZ4Y+wucSX7vzVWHd4o/t9Keu4M+EMjNujmytwh/0tyqaX/pcSkrRzVHGuR48c7hTwgLa9fEFjzXYPnbVRLWRGAC1Yev6B+5GJ9xajiyyte8cgul6/JAOte/iVqg1bmQdC40RhBpQnojsZnyRHB0A/9ur/LOhXF63mR0Zll833Q9Hy0rh5jSawe4EsMS2rnyoPhBdf9Me6TOvsCWuHrdCcQk20EfH+/FmF/41kU3BfQ5+U8Asset1e9TsN/zAUJqiZLMIvgQm/8AK0xSCMdZC95lfc8C9xcL81QdZtQMu591FPZ7bDxoJU7jOvNnzB/rx07gLYvNFyFHkLo0nRvRikX1H4s1Jczp0UkKbh5ZobxFlOCRbpo+Y5lQddAIzYei/L90ftfZxgNcgQIaJ2K99GK6yIQ3Dhk0a4vhhpD1RJ8pf20tjPrv72dQmBiVwqLiqX7iNbuQIdAqkg0NGAAluz2PbNBWNevVcLO/Rxrg960nm2+dFHR0zyt5Y++Gc2xN3BgFXBfeEm5uo9UcSMAR1PDlLfOII41SvAlcVJSxBN3Q7SsUVhR0WLiqefQLL37WEaDTR0y8KEPEmKXOTvZdsqKd+IfUxUkGNIlTs94sNN/NTBcc8bmr4dvrwCso2wByFoeWG6xePjSfDT6ycKUHzrCPC7NDxVk8qcODHC4zw/P15IsNS95vXgZl9uKQvqzZT2A4KK2XDF4Oikp0uuL/WSlh94PGwcmfD75AD6kClbunLEo8jHx/xfO6sA5IDjQoWzVKjC9ZzcptO7A+Nz+VvVuNtCDEKHlArkFitq+KEJO3J650dG6Fdq0Pnsaml0FG70y9Fa/OrKW+q+9lOAD0G13wtwC2GevNETLly0rZCrbeQ5rHszlWOZPD4wwk5VYzz51WFDwTw3ZKfzsplxcVyGkTDESOcn9fy2RW7HZpSZPhkdIZ0cNKTzeDUkwcycrgJlxK9UhDtf2GlA2SDQJuYM1Ovquw6zOZrdvz00XvkAbNY9C0QhoI/8gD3/ZO0KQL5U6oGZPLtAAVUsQhUAuLMSKuegH/pov5xK1ij2jO7tjlSgoj5jdA5qby873u8ZLGVrJDEjvvgM14+rUevqXHmiinh6gSbzWLzmVKmtOHb59XdQDtXmYZ91fqr2e0jYqg53vVbayzuXbygJI4HTc7dIqsO3r180eaKisVixWDIpBxFo1qjdcTJHLGw0imnewMJlib6XHfAKAlK3jg1BOh69Jj2c44ok8hEz/GNqjgFa5tI0DkJP10TMgHEBPfa7MRO1G/ad9w4zyBCGKWHTalSkVoAexaMo6Goky227YbzXBN9xh+24TsClHVgb6lQow/wrhUzYcQ2AHwGd8Q0+FxbdkU8RLo8hHvTc4jvPgwzC1t4ZFc9rDBuhahV3NIVWAqDLJOEhluCREmvVw50weQyeQwgEH5hXCydQ0gSg/NRrYyxKqJ7YXRua8aWrsWd+jT1dwxS5PrveUrH5E0G4uLYiVcAZA3nHBMTCkHpvfHJVHiXOkEB6WCyh53Y1g5n5myIxRF68An1ItS4aEViIAhzRyfmltbnGbN6lFUtbklEPfVpy4il5G2bWeDMvOr/rAwmMBlPlvdGbRNhiCeQjlzOpzNqDmuatZuWIg458tzDU+/5L/+IcUGubGc6IUu+B7yVTltAh87Xm0DkigNCxBM7znJL5xuPOnledxFNcSACoEVSL8q3TwgC7L/kJ9lSjTlAJyg3TARkI6cUL0gQWh5wasGK8qAu796VXWNnaQWhoqFrHIqfDlhwCN7Lj0arpOI/mYmsjLSJbpgzueiR2ce6KA1dV2Za8U3oUyGVAs+AmsXITzoPNs9dAslpPJ+aR7X/B+8h+Ss323BrqG+jRvdGMaLuh5djTFmvUnAXn1uNoCiM9hcw0PejO+0u8+R4O0JoFvyqLEG2kShh6BBF3VLyUDImY2aM4GCx0d3vYyVGgtME191olr5dJDAJy/ZzHKlDFP6pSRNdU+l9Bc92xsal6VH5fROX9f7pa/W4r8Z7lJEHlnAmv4LxeSLWS9DR21iMnFnEFpSEPobba0m1bakwhFkEmOcETuzscTM58SiWmwITH0OppRpPl4kJWyUgQoaG4QfXKfyy+e0Z5v8ZnhHZ5SMitwXYO1qQZu9TEYjPMXMP5HihBbHqCarDcP6Ioh96aQAgq4UCik+c+TdpVOLsD1s6yBjEGdjAd+3v2fWNA4yqjLuLv/DWmNjGpikp6Z9Uqg3j7hJ1t0wOiNsBr+UNED2GeTP+UFheqMVmVvEOt5zJH8K7wLdWyZiNJhKVJaHmg1w0sOKvSNdqKai7GgygsmdayEHWHKd8KrHA644XJjsbshXvaS6ee+Bmz/I20RiPWgvv7fpxnBny/Jd9E+2hUPdfqCfKL4ETDnJ854INDUqpbRkiLwWfhi9xSYTA3jzEv5z8Sj2CIFZdsPMKa0gfW5YCWZTAWu17WOwTf4zHJrx1LhnxlBLBEaNfZOIrlkQJJGOK5AFe61HBxJqqXxyH9q/ycUG55OY2+Ccj7ZGyFmQg1RFezcyfGp8flwMZJGiwaMj+6RhOXQLnch6xytnL5BkAuiYKjOuQvMvoXhZL19aCDnodcNnP8FoDIOv8PVWPRouSI9BYADGd7F7WjR6Nb2ZLkcijnUUeP3jnJYyfzbQ3fSV9kZbU26vxh+Y9tGJei+0DQ2Hc4lCc3u2orEtjsU+9SCyeLwbfnxnv5dPdeUJF3UP9uNUl9saTSS2mRD4s9qL5eK5IQHJdCB+b6n8i/7urBi8Kk6DE3Ps1fLgu86JndM56VX4jRQcQKYnZU1Gs+ci2sBBVuRJVpScnQo0W496BDl4m6+Caa/nn3qZa8xtsY9Ua6bA1ixbPhGuhj2WLNVrQNCvYoxn9JHx9ZVr0645ukQLiF0qv5m2yMaTMm2vUeHyBZHQFz6CzdzJ0fy5z1KahHECAOtmcK8VHz3sxcGnI5XqiZAuex2MxiQ5V6F9JBZFwP+3tdCIgnJCuIyaCSFti5jmcDEC1ld1ikA9zZj/dmR393i6RMz8rzemDwMICk/kdE0y7MgkZw3Hzgk2H3ngKJJehciF60Z+wBzMRXwnieeRn0003X7VFBX0lKBGKGW7ksUe1xw77wf8b0/d/r7CymGN/YVTjPPBualUEOfRCesBHqU5aCN8bd65SbzaQ==
Variant 0
DifficultyLevel
704
Question
A builder is tiling a floor that is 240 cm wide and 360 cm long.
She uses the triangular floor tile that is drawn below.
She uses all of her tiles and has no gaps between them.
How many tiles does she need?
Worked Solution
Strategy 1
2 tiles form a 4×12 cm rectangle.
Fitting rectangles into floor plan:
Width = 4240 = 60 rectangles
Length = 12360 = 30 rectangles
= 2 × (30 × 60)
= 3600
Strategy 2
|
|
Area of 1 triangle |
= 21×4×12 |
|
= 24 cm2 |
|
|
∴ Tiles needed |
= (240×360)÷24 |
|
= 3600 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A builder is tiling a floor that is 240 cm wide and 360 cm long.
She uses the triangular floor tile that is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-E4-CA26.svg 240 indent vpad
She uses all of her tiles and has no gaps between them.
How many tiles does she need? |
workedSolution | Strategy 1
2 tiles form a $\ 4 × 12$ cm rectangle.
Fitting rectangles into floor plan:
Width = $\dfrac{240}{4}$ = 60 rectangles
Length = $\dfrac{360}{12}$ = 30 rectangles
sm_nogap $\therefore$ Total tiles
>>= 2 × (30 × 60)
>>= {{{correctAnswer}}}
Strategy 2
| | |
| --------------------- | -------------------------------------------- |
| Area of 1 triangle | = $\dfrac{1}{2} \times 4 \times 12$ |
| | = 24 cm$^2$|
| | |
| --------------------- | -------------------------------------------- |
| $\therefore$ Tiles needed | = $(240 \times 360) \div 24$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18WR8KjJPDprvxVawUt5ray4CIGcLYLeB2b7a5i0Q2JmyU5/bEY2Sze1jmLpi0xgWbpokqhxnJQfqFVoMPHeYvb0DpEajOS5NKk7+bDR1g8ihjmS9jtl8CLrXW5dMFWIQ4jAhL0BqaxjDLrNONmtVeK6yHDl37XvcKJqHwACJpcBi0UkJcA2TAAMWCfJp4WVX0jHVmfvB4eKRWVaOa+pvRUpo2zla2SSU9MQVUU4wvhesVlkQwJz2BmyVka7lGbLl+qrW3yzUsrvN8FKAxsNNH/Fo0xkbl8yX4eolxIP9Pmi/P8nswPrQjEtQMKtbZDYr8LiVR4u8o8A2PiqH9VgEkaH2LsNLDFYfzYCLHb8/xxZBkuw4H79SNObNkVkFOlMeJmHzTkg455KEVSI7UrV85GOKYDg7niFc6Gm5UcYEcZ9+FOgzjYEKdsDTyWwHVSWlHOEGpCOoO2aNZlAvShMoqIUBi+Z2kmmuyEa3ovQAZObdSdJ2qDzJniOXPXbF4EKpspT1M0PeU3Jggn1VcwK6Gr++jUE/Bteb7RDHRiyqow+Mg3PWlH9ulvub10uLP7hpr/V2iev5EgyA5sTbuorOGzAJgRY7w5aIot3T+TyS/R+Wt+cu4gWrF67xCBTLMsFflo3SayfQ/eYfrXVWDwGdbXTIb/eIBQQ9St0Y8hCx+gitZfETDJys1zFar7YqegnSwdK+AlXBiBSAwoiCldhotm7QUpwwlibY4SAtBRKKOf2kjs9i9FrCpPyimhME06G8MK3jiwSwDbEtuzoXJK8bv2qhV4+mwdBeHSGxk2o2EcdPyoOMEXYpMGR4h2CI8CPL7logdGvf4nWNbrFiZz+M7XbO8KQeZ4QI5BhpqaqoWTBYfcRJrRfXQQf/4d8Pj/7x619GofcteEC6jvqAuM2U3MOs8SqD5ds/pcpCXpdr5yuvvc/GzEuVXmm54vY94XcFg6XKykrtC09BpEw5m8KWXROKkkjiw9GNwWBcTBUqYgWLZBvdm9TLWZudXBHinH2Mo2q1LUJnNp3IzEpeEg054BOoRma2tpxObz8evqVAyIutF8BObBVtCEis1DaeJo5VAwjwrl+QvWI3Q+vRHLxBB4BsrtRPnDN/LkXhm8xX11MYfbZ0mV436KHFFfIPzHhk7qvZqfPglQRKXWL7IpcC/iHPFfCeKTubnZWUrNjAuW2LcARF1U69s7EnDgOcFtS+IZXMhol77eu+PmouN/WulXrQsBnA76Plb8UZvHFrkHOT+HuCwT0UzMlNgCVYZyDaqobE9TtZ475Egv1RKyDRaRuQMKj2wB4ImKTWkbLd0qmQxD3C3WLwqy7yt+lQlej4jtoqC+twuU5v/kA+wZESXTLLQzBt/cyk9n05GnKtBCfmyKuoJSgyd/eN3FH1/uZv+otlX4GTYLNpU9tlbNNa7yJMgcZkWi6u58kL7NbzM3iDrCWJ3RZbahM3jXs8jSETtedViTwAk4H9Oz6ks1fJZZMPMfGDoqV/LR0HEvgE0GRihNk3hnHcM19m7DDYIczHwLIAbefdqJ9pOvoSwCH3MAMdRGkv8o+1fLtsXoAI+TRH1lvC/lHtU1jcxBDetPEpfFU5gN8ggz9YmgBdHk+fGzNHzZsBQHiStngD7/n7VY9sZOrj73qr4UEKxpCBWHx4Br/N4Dux/HVUBJHLnnt6w04oU4biHHh/G6aS28YlTs3WtaGPg8k9DsbHaGuRfAgAUH3NI9lS5yly7eH2yDz90uDFWcsPq1xjsowWhBmH5akr80Tslux9lDlPt8a9MdijXIuzZf5NVPKE1rSoMwB6uN93CitzyvEksCO+rxZrPMxoPoPWnvbDsF0ll1znsJKAhLLBCO8c4PnlfeKc4g3Oynl1vYLPhiZyvDSOUHP4gORHsVKqLYaDZlGUi08hSg70/IA1/uQeQF2MWMNH06BPs6mu0pWjgX04SRl4+X4QjCdkhFnkXUfI5+StEQPjO5gxKIddCh6KEHXktvudOt+Fz3BGbnklp3uaYXXk4XEvrqMfY/NbjjeFkniSApqJyqujK/U3kvSkJuBZ5CMImEnOt2OAg+636c+8Nu7z7Bdmny4kHwSOafKStq80wq/g1/yodmr892URmxcgOrbVfW6rjIORU3ynzveaoCXMu6lE9uHkPgRI8+HDZ7Obd1asBqiyyyZX1G3iOxZhugJsp0WlmLZN3OIRm91CwTrW2fRVyishXf0bijupl+aGbeORboh2MxUQkB5G50zbnAhn5WvJ0HT5EYgoMaR9+9IFTof+Yt8/U7MIiBDWIqHgdy4SlPr9Ig50k2Ke7MkhbhbZMiyk7ajgszqjQfOYPrHSI3E5oFnwfPUlpq+i7fDYIWWR4nK6Q/nLVNf0Uh4V/tzBsplGiSa5ZJZ08E5hp1bVlhGO05YMrxy7NcV304/3q0NEUNwK2qPWcuKXzDyfKTSttPV/aUKnPfwN9a3Y5iwj5qRfds4Q+n6FPR91eZ+bwGV0siHVSEvheh3nBqQyL5xFnsukf2mnfot4y6MdMpPSYsaimDCT0FeYiHOySy1jUCydxYKEiq1/X37dXcHknPnRBCW7LafT0sCvQA0GaSaHLzpfACkSwPP/1gz6PGEUQYexgX/XdiQ9ha3sTlt5YCGgUQGmzA9HIJzS0q7vdMpqokRLX1SQfPO/O3s9uFL9IDGWOi1gGb+RDTk16Au3EFf/tvY0UYcjdQZU/wr0kgD6c27UtnUiRXOWNWQ02016FpldpD5NESwSNe1lMDXXX6UAVJXfNCCBJ2hcWMyH6DgPJZnIzCYfYOVq558Nx8nZs/MDQz1S3T4tmdXLMWLSMFQVQMQSrNwxyA+tIc0YbG5Hd3jVgiVR9z7tbQuCY4g5ohaWekjJiD8dT4miuKR5nJ1kikMYG+e4qYt2+KYo1wblHKPT2aXjVH6iSUx/3VFgqD3OkzameDsSwoZwN/RES82NcVD+7eYLZoJf6MpaXoc6tDNAMaKdut5IEQ4z16Sitr8vMx5Qz3/Bbk9l844C3hbI4FUsK1IaBP3BSx1Glw1+4r2JxSAo+M0HCxoMc4qskn8/u0jDvduaUO8WRg8/4yJ7qzzrw+9zmEV/YLkPtDBCgpBgTxGKFLZTfgWES6SDXhA+Q3YAtZuScBY2J5gM9an+181n8uAuE2HIBPkRyd6SUcDYAIjUPT2XMW4Pm49aNmZWCx12+xHjPwB9pilBaoir4KzpaiesvrqKY1oFkwTHpd5Yt6a/7wnBr5Syo4+Ve5OiAjt84iKufrjn2FL7692D2NQbnxQy+O0EYsdl+Tr2eTPb1pzVvjTc5x9cmNXvD03ObywfxmaPLvwkYA/bRXoaR50K9OdL0lFOReMV+T4XoaV878+98dgKSYYJYRslM/N82OCis1/7L94UL4E3ahMx13tJaHiDJVbRIkrJClPXf26apHNdkA97U00n+UK2iZixG/Uhx+2cn9buaYkv21m92HKSwrIKNP4zm8xP9JtFg5cHviU8ACsPoyAuZcOyxNSfoIx1RDLED6+Adw7yJg2J2uKegTJ6zIawlkti+sdxE2WYi8ccQLoR2z7tAEHHvJcUwnMV3AIl+O3hXJia4ytx0fubJoGoueqDOUMYn9qn0zwnWlePYtgu5FBlU/gM+Upc7X9QJloU1s0yngHYj0uSahuQ8YwAX7tNtqHMb2qnnZ7+SX3+pVFQvbOAPunIxAOpP3mxYQaQ3FJQmXTxVV3beaKp/pZIpbUIHeYn5HbtAbjW0V3+QXE4kni/Zy5n7Wj5PueHblMnnKaySVYIZellECgcv/DHtnUXQNfKLXMubOMR65mzkagiLX1i6v5BWzQvYitWBOXT7/aTwwnfmGxA3mZMGT9eZOoAcRsWnM26wgNdYgxXhhDPsx7/1T1+j8I4UHvOh2EhPDqDS8SNs+1igrsEdrEWVm7qey7lRcX8E8Z5HlJ8tyGTTnGyz2vwGu+T0brEgu+7CLWSipduVjI7ZfmpdVjEmq9sgdUZs3yb2QBxQSt6l9NkvZprc0ZIT8PN9jA5sIiQrcqInIpZmbIzyf4os2ltKBrQC5p/kTe5rpJRgcdMxgl6XjYql6CsJcfiji5HLP/KptlA6ZQBgtipDho7R5jC8PCJMLwDoYKs5IC1ELaduc7F2XdmXLpf/sl5z22ixomIGa2473HzewZz/vmhmYc6KZoQ6mxt7vIW9YRQR51+v6zGrZDDIhiVOdfNAvi4PoH3qA/jqlS3wnI64tbn3uLnF72Zf2hfgWVcyyePH8RtgCB/ETNbpKjBjh8c/UZS1DdjeGWWKa+SipfXprO3/VQJeCxM5zuhFDuHvVIK3zA1P7eB71EhgAYhUSG1ojaHENDYzeU3O6ZKoiF4/frh6SdtmprKo9947GRIGxvL/OVo6+MablVR0iXXdlAjtVB83L/wuE4Ty19a/ncFxc/TTQ0zKJE7o6LAA05Aizwo3Y6tqwlg6hDbPoosygADdh3pcS6QmQ7IzBhGL1m8hWjmvWlaFnUqLo81hkrIE6aFQKTY83YmTPJTSvD3vQP7WpiyPy+SAG6bTLtIMOkQ/9ysou5/LXA89zx8pWTmFK86Qq1EZa3OkCUa9WbuAIeTigOXllLYprjby1VOJorzlpTVZplLaERQ/ZvkWndyikMrnPRHAIN4ChOWZpMemfgYBdVZvx2Z4uXhcpnCi16tS6oBqx3IozLZGS7Ppik0vJXBYXnFPo1SyAd49Y0+Q7kr5qWW0D+UR6KrXRW+cAIMLji7Pnj1XJh+poI5d6jzY9GkLS7yXF3/NsUMDlDMhZNvfPSU1fXsd2ppt1v1mqoryGLaWwA0/ia9PzR3UId1FgZKLDYs4FJZLc4e3pEZReZf+BqfwI+7eh2HC9pjeRdNgp7raHBq0bSdrmr1bCKyZz3xGbOBGZY2V7eSnxdlH9ZUhUtIFaWuVhsLUo7OBqEPSKwNVQGIg6BJZX212cqCvRQ9LGNmlIrH1kqJ3b79GVHzQ0s2bM8LUuuc/UC/IrXtDsizZkL567VBd7tRi5M+AtHemtyPECb/35GVLcBtt5aNt7hqR05Fi0PibqGHzhlyfjwHNeHxlIyaKKa1rBACXkwcSshaw/t94NGHk5xmR33UEAOpHGi1pETs5KJofdpMAFDBUdHqW+1XN6WdzIDzaMgRlVhnGsFMMTAvf3ssesjAuNYRF3m5msA5dJsMTp1CJDEZDrVs4kVgfiGQroObXHrstVUgVBTwfBlb3WY7czmR/8qjeerbxKwhcLnK7w0WOQODybLPYuqFPDL7vFa3gv4wGYeD1ekEV6rk0XKOSqMu3WJedpav0uuXggkE/vvPHwz5Pp6VSyj6pkrkuvyKvlLXVnSB1fEMlqeUlpLpR4fiafWb+AwwK8EWG7HjmZNGMPlXrNWQyS6eVRaexyarMch79ND2FeYgDl3BRjrEIIL9yNDX0kfY2T8tW9GK2GP0ocVix7IIhvd7JWEMQG5HsrfaraoIuxOksFXjNZpFyKtCPj1D7i3CqgYEflSbpShdS9NMsyR2hy0XnPI4/Tx0Wx88eqZ5urJwy7O0MbXVBQ165KEss0wpZDJSEWwctJkWEPWHg01TR3YZifRWYwd+j71TLMlAm/fuq9++l4Mg6rtGzvKXvyQFc69dhSb70Fsb9BBYOMsCrYi2+/Pv7SwYxo7jEZTO8cmIUiwhoMlAdXYdwRexE98e7/nXhxebr/jpwOsxdXPkUJH1/aUvUTgO2+gayxMYgh3zNQI+uqv7rU02eFes5BC4sWqG+vVd5RagE6t76ZD9nvH3AzWJ1j8MukeYdbS8QXPo9aJgMJpOXxAqiOa2Al6gJG5hrgfBteNfFmQmRFjdaQXdNh0FF1bZUSpPm0KIROOvZ468xz6dR40E4KAoMpLxtM/8ep2Vqj+RvpomwPuhWtOpmjpR+zYUwk7Bf+1a76OoGqEyeyNjsiD1dmJurdtDRvoFFmnsCXhgBORWFaLCoVGIQvCSzAdquTLLXoJQNzuBxtENdqRJgJZpkTUkzWaEH9KdBxzxStbs2qc2E6mYEoaEqSroWIxvgnKJ6QQaPewk/XH7bDuHYm5wau/vOxI5Tad5wRI7m8TFTxjnML3PsoRbHeRyqaTBgmrghRfoSZg05JP7E+tXa+2k4l4Nlkueryn9jVUWPkn0RR4+JIul0RADG/2xViQ1EZD2dncIICot4rtK7tTLDY74ceB4dPCDrQDWzZ4Kaol4mqunbsm3k1JzBM/Er5H9NbtiWXiQL6t56g+2xOhdFVa5RWSgfVeG11ihbP3t52WOicFgFgS9M1IzaIfdjwzUAxT6FIPIV9HP2xEAs0fxa5xHvJpXXDcmNFQ5tP1fngd7tY/3YPD/3YEkmv5P4JqSRXG3+PEOje9PlxgPIZ8rOMtUOpl1lf5FQJAelKzo20rjYK4Jo3jkp037dxJwW/cpwShoJrGKLPfsOesyieGTEDRq/Eso3xswXgXkguoXY9wwLXgpf8MfY9krfzsls7GBODZ6oKiitUD0Gk4852RGaneQ9tafmJ9bc2iI4a3mlQcAZWxg46FtemzfYccx64HPnYeG13UeUGhu+Nspk0eNq03fLx9p/LxLLX+Sy6f4ndRxfFARUYsYYXYqepiM6x2yRy+JPkrcqrvqJIamAkeQNNqtsMpaezrG8aTeRgavJ17AY64sykqzsasFRQVAgr1nGCKsvNS5Z65F42iFQzwv8oD5gSlikCxu+J9hB/Ef/F3bb6JmK1hPmXahhQV9VoWB0XTPY9jLb8cTWZY++cpKWa9O5LbYFKiyYxoytewqUVjE09YnyGvUFKUf+xyxXRLSf+bOeZ5yQ7fW658aPm8nC95uYKe5pRr56qdlN1ZDzudYVyncvRV7HQ7C9ZrhmMVx1u8ihWwqT05LszZ+ngGjVcWUT5OQkL42LpXDrbW8ux/fpJBrNysA9nDU41ShQFisMpqMY3hi3aYRYXvcShHhb78BSDUB8lgM7QG8bJmBIPY4cd6GCcT/wy3XTm2BOZyKICK/Sy42p5vevtBzFATqh/EHbrFTR3tuFUIrwKXk+EOGF7gPH7m3VJ2kX5/5M4+wPqEPhOmVo29ORMorwjkFbSmBU7P49yHaR0WECFzVAB/E46U176OFckUj0yKg3ECqakiBnE2X2glMI/Yyy+GsgsHmjE8/K1+ARqJY4mV0N/vHN0RziOYKlVuGsxWwzYCa88wHFvk8tnuddyeF8Kcu2WJ8Bgigv6ebCt/W92mjJrThcj8XdTZwcY6Gj4hrnWmCgYeE7+z5Tar2lHnqXV9QsThieuzmTioESRZDvmhHr21FCYBSnxErVTjGzP6yEoeHusZxH4QjNXD8SLLY3m70t4aLgBq6Q77EaR6CKG9aAsTzad/VsgS04nh13lUsGhtiQ9+nZvzsK1NYf3mUCPwSYxTyPgwTzMr8kuQT88Nh2fXy2K6IcdlbLtXnLptQGJ2dSi1RkV23K3qJDxWR1WryAZKJtzjM/BfydsDYsRmKfgkwQN51m7XliscCXuw7HBliDd8DJEUkW2akaZET5H9mxR8ytHrPjj+lZuhULcM/paCcp6OwZdDfMdG+V6hYUsTiWUXNUdC8ZPHUTA221UAqD/WDyQwk8glBwKpTH9iLuq3r+gK1hcccGd7LV4z8/HCQAZwg2K155wU0wRHBH+gUMzldPtVkWt+RKFw5GXC/ds8hHweBAA8RjZikr1t0br/JiJLm9ZbSV8Rd2Qj54zyThZHXX2can9OSOmmChQml+sLWw1XyDwXeV1SFA5pEnMVfXDNRT5Zo5ZL/i9sbPA6Sln5EBT904B4NRZ2WDw0bhf9aeRHZeAw243Q9+3ID6sNDpBhOV76S7YkiGcenWCtq67WOhLEzIZZtF7xbPXGEZlNFqbjbiSt9+YDNI8LZxxf1E3xz31P6Y0dQNOgExnrp5tkwI5m0yfKBFDwAYA8mrkOJydf2/3gtuZYO6zUvyIT9Njy2/M9MuQ4BymlCgtoIhotsb7KdDwamBWr4m6m8tWYIQ07sfMjredeMJSrIEwIcoVJOLIrND7P9Mdu2pJjSrRckP4g+H9CQZYYY/IkaaoYSjfr4VwZZxYpaMhUnohJ8T59ZAwJ6hb6UZ7inTsz0wAfcl8V4mQDQ9p8FOYYiqNLhO2D4OHpsnGilmEjUcVTrOajUyL4xvtKQjAm449EsJ0QF/Q7+oKF5SKnxoD9NKK483O9q4G/NY2U25iUsW3lNrZheo85qi26zsj14rpDEp9qdonO3dP+Z42+Lg8U+nlPJp7dppsxFvpJy2J8qyQMiayDxphlTLqW9xRB9QJPNjXbPH3Uqhh24LuHkI4V8lU9Oz/RC5znbKptjkxODQ4rxxhFh5toHrpfnId5YJgHn6x6UZjuS0L2F2mJNxAeUNqcNIv4SsUpJ1jcNA6RSaZg3B0bTOMLy4ARzuT0A77b79E1JOWylhdCAmT0/2Ujex0pDgpVTFuTd2Ik1a+X0+p6TkAY4gdKFjVNEdQJlZUWPOw8bDL7gjTYpwrX0MKcV1W+9IyirRScwnqxG1/Qr7y6DiiekNigAYjsux76TKhnY+U9Xg2cgROcxYLLe8OU5eFMJSh4jDe2RHzpIS5WM5CwGhwuCZLnLvlYFpUqJJUGMp+s+kYko5mhkEZN9y2sq7TEu2nbGZj5lka1hnx59BOD3su9tI9XpLajORzPunZMapbQEXBAz8IL2Ou/1H4PtaLRksYaTvdCRCjGUtWPiNk+P4xq2IgIzFOPbrjI9qmx72YZkDTv1DkJ8HSTupAF665uF7BmVW2Mg50fb7PiRtQ6GSeEVk+Ew8Gijsxbxbr1g95SlNQDvNbS3kWsI2974tJcIKo7O9Wphh1LHIh10fpuQYZvZ9Ji3HQ8/e6fexs+w3HRnHhlS4HlhdQqsxqxYk9Zr9jlKEHOuEIlkE08KYXDW3HHzg9vjYff0JKS6QPqfg1lQjEbl4e9sgmiNoJjtN6/wrWLCP0fwkBijHOq0Fn4Of5Qbwao9g4Bf7/MI04XripFiccd12uPXdumwQqnfBLLJ7JhW8Rqy+M1JtTS/D8Z/uvgjqCKmJf8h8HAjQf2OzQqNvRxnXO5HNhwx+EOxxXTmZTgpkn6foBNu9E7ii39ZWMNLZ5g/8rbsGI3QxOti/iIgk+nAyu7xhd6zNkM8ZiGoKF2hNfBhpXO1G3I0iKApgZsl8rA02TFQpwPtvdpD+ztW2CfC8ma3bz+F/aIK8AP5BXVp2rQ9gy3sXL93PCVCBibbIqbvGFn8q/8GJL4+grpNUbazsXe21mEVGUSRkH8SdSQ6woRcJobiO/fnweUD+KtZvzwSvTdsUgq/Me/mJNmEXTE/am7eWSK8oqBIa8uEmrRBFQ9zuLbaH13g5XpdswCmvP/HBP1zlbDC2YNEMUpFTGsfIfcAvaRVLWP9aIvEJL7rvOTfDugfrZKnNFMIXHIAWDzEQlSinKrah8EawhbTPE4gCrnoCQIPssZ46bUlmY3Evtf9ciUQ5FvclKK1a2CHpwPNo6U9bO33l14zwv3/9/+Wpez1mMXkqPVhaT4ueQVxE9dG48pzjL5r+I/wUto3J4MSwMPS65pemqskgQW0QZF6aSlzWimx1rzkk7OEfjnMx5jItgKRNFtj9WHOItLjpuDlYMfjClPrgkUnlDSbYb955g4jum7BbP9iODRzMuY8EBl4Q5+2zGrwUow+zYEa0ymzLLd5f3xfeqtEwYm7wATDzviUyH5XYD2rbuPs2F32SR3xW4MFglAzjZzoYpqUVZ9BYEKaWtD6vbsSGJETIs51ac0pyy4KTVRL4PC7lZp+Kngzzn9nqzWtHRBja7koL4bVq/zh1wXQS3XBq/5N6zyqRQuVrSmnr4ii80sNroujf5tFdVrXPXEaePz+qicHRs1K/cOyEl8/IbWSm2Zs6QGDeKerfxIC5XGOs6YuFy760YCZ4iaMDYkYljQCXBCC4O37hTLdY06FNRd/gNTHb0Q9v+GL8q7xwEBzMLFta5ADnXypNpVbQBKMUxAl5EgeS6J7MeIGCBWb6kz5tzksaLLkUUb2sofXDxOYZUJaSJDwV0CvLcOQB/7jFkrxNDeeMv7bYt5Gye/cj1FIUJDZr93Jdr9AhU+VVsggvkER1AB1mynzqy5gVodcoBN3zp0DD4v1cVDdTp9yFqwhpXLD3lLW8GTUYe0ZqcST7By+o39snKSCZK8aWClHgmAiFeRjA8ZgNx+gSWSIB37EmBKjKTB90vXw3uLqyr3SnIkEuyRdBHcfIvtfAl4mF6vaUXmNMCVt05Uczd5vS+sc+Xf0EsFNIXdt67RR7QkdeSR4QOLm93j00RZvw5wSx+LB04JS7CBKj8JwzFShoK/tnEO4PYviiQhuNodm1emXCapSF6440cthus8femU/pqPsrI5O0ruJgF/2vzaSHgLTB24Z2w7fGIT3d/mpct/p+caDDFf+yPHxYCHnQFDDAJ1r3FK1AhuTDggW2pvZ0FUc1RGBbVLrrnWWNfH00UYTgg45+Z/dQ214t4xtd98s2Bs0MCOuhPVhHBHHbns+WSo+s25OoJCjH8F4CGqaIoQzVQKhkGZoaKgc/YkcV43qDwVxJgmrisay/kS9GmI7gKBUorxjchrCfgd5dMtVJd8gAGlX4T0G2OTyXdOoAuCkuWg9DT/e7sHAAdFd9X2mzawfyEpoYaCw7fYxOISweromZb0vJxbeC4BMJ0n6cC+CqXfDr9OXuYUKqMiNNrD2ynYy/gMNzMe5MM3cRGo6Q6LZhZyLzKvX/lGemGS0yIvvvhVcXDtKVSv5B9YUQW9ez+3WoqowndzwLqAnwgtKp5z0qVUA97dvPBzkidSh5ZKKxthS04bjJrdwGv6T+sYwXbTZOA8K8pwxnintSJTNtbb8B0j5aq1TX0fV0L93kFXGemAPCWNAfzGC2vK9jwZxLlRYI3miIdstISp3vwBAcWmBZ9RY4ZMlO+1Hwdgwi1UkQhMAy8mZdl4F2py00WO6gqXzRID2C0Up3dvPc2AtxJToY3wjYnTBK3zr2gOC8XiSTYvx+sAog4IASbQGgcVM3uedJi32tjco01TKEcvtWyg0/RwwZmbZKdEFNAs1DJmNVZe491DABByLTFtKhic3JtchYBHaG+knpy3e5v/knX9GG0eY7y7f0wIgk/xgX8eSPh3HcgRdadWoesuoWxwG08rT9gX701wVFm9xPTpvpi/1n8rBA6cL8I2tEAHoEUMprMNpTPNKCPEJUhmmSfpOfyD4HOF7kyvP+Y4sTOoZOeJ3fHzw5p5o1j/Cg1c29q1Rjj7eH8//Sh2f5L0ZIZo0FapDyBm/ewAoxO9wdgLlnzll2Le3anSvJheLrjlZNeDmdjk1Z9pQ1oDNUyBI+UMHCddF8h8oFCeIw7NC7TZxLRhHEJJDcIWaI47nesu/MxUH+i8ACF+W7sB0oGve25kqdP/QYEBAY2y+LjgGuyF8VK/flKKXkEeG+cE697d3gmoNc51RRdHTVoj7W81QQZ7Mkb41Yr9XZJafOtLzIR+sCvQ/+faoX+a7Q02TvHaD0805DDYohHrsUATxUMSpk5STH849ml3C6ONwHaaCmttwPncpuvRM5eqWzvXeK/28ZEPGuCFTcPmZxUPASuf6A5j4RFcNzCX0yLKZ9H8n4VQiLw8k8vGZ3MfJYdB9/0yXzv3si+G+7w36ugSreRyiz54Cv8Ynr3LuKWdTFoce9c+Rd/btRVi13hnnzh7/xVNXb/Yeb9WE3832E/9kbPb3798v426PWc8q1G7cN8yjfi6jrxeaHxR337s2zUYvw4dUKio2e2Fhdo6NoALm98KuwDKyewOVvA4BTNf5/WzJc1ljBLgWwNGo1JB8IsE5erJyMwo3CoWvvWonfetJJQPTMMdEN1sN+cOzUKEIWtkI/OS+E3Vkv08hka3Fg740Frg0q30EOUU5OgSWFYg/DLdy7v7vZ3SNWnYyx73tt2aWzlxXkb0RXnL6pRlNr9bIaxEek03OaUo70k8NioaKpi69YK8u1mJuwamNZcYOE108GSG8cLJiyJ856qMMx/fwXzKhAFkBsppqW93IBJOKoYWxSJDVKRDur/eEEuXGqM5GeZn0bltvvpRenpDyBIzLPiAMNqqOf8nhvVj5J7qipIGn7r53Be0ZK5dxpT6507PF2RvF9698s4FkRHKqz+E5ZR5bRSZ3MDgLCVJzvLtyQYXX7aIchTnmVMG5pMZiZrVl0AjvmvBf2HXUmqdG+Lcri/kc/S3uTyjBn3v0txCQ3DFin3cySErYPpUKAx1DnEgQuDXcyVTeQ6IAZG++H39Dp3wlZBZs4Mh1L5AIXNVQ2wI5Obffhf1xzMcfdpdDU7k4Yo/BYm+12Y6hRieQVgQ0BjsmhY9LoJL/B8dmUbEkIvlnwU3AglKM4Yyl24TyU2F+yDSzDLREiRK9uvKbuXKaI3ruSkTPfrE3+fWVE/cGO8pFIKR3cwGIxlcSbHQcixxcxDVz4+BQ68bhEig6BRvUEi1uGDWBh+F/kYybn2pRKLD+zN1O9iQl/wicJLyLTxnA3oWurSSBK9JHobAjYKU4UCmSY+Pk9eMkKMqfaAgOLwF19A5tQXRzvsw6aLZ4fuBLLAksypcZ3vCYYF71eZcS2P4UL/ThZLJDgxjpcAUzrvOb/nAfV8D+wCGxUOy9nv4iWFYlDJGoGjPrdP4FAFQNvS5HgqCLJK+CJimSrViwlIOCwyhKp4/Je+HKLvyL8TO57ZwdubIS2lvRQ1iFdtXDOb/koQf0rvpaJWkE6ILWoP/0HwZuXHciDgy9oT7HVPik99vqM+oiBo8UEkpIZojrCZJKhc2BWrkbKJKVFnkidnRbyZ8ctj1Tj6rDW6UozHXeoIZuWumX2DEmwFPTEUJXvnNBNkrAhN0Mj+iILMQOMY/TJSllsbMLauvSYuuK8lHNbYtpxTeOybnaunfAkfgbiO+pamNKuTpsID7Msi6tuzGcexGo363lyoVJrI8B8yaGatVossMbcR/5QEKBNiARPVQDRv6RuCyViA9Kio/1eh4pHCYoHWhDaKsQtrHAENlBFSXza4e1NmB9thcRBovUK5v+93JvAlPHFGaCC+HQgms7TIUCojAJWwYqhbXUrzhEmLqgDAmNx4v0I6WSX/gnRCTAxXXtmq4UChZak41nON7cNAetW/96FbXjd0pBXHh1chbxPzAbVH5nqeMVhXMBOUCplgmnaK/Va5aZlzvw5uvDC2cbw29PN+vxLBtHDSFLHtZHHLy9JuKEdSi8diQX0rAMY7hQUOBMeTfXuRgqv0PMiy4gtQHyybCLqdMMFVVUz7+1nsfarOTXRveA5KjAkvZVdazL7UObKj02mRYCm5sOGBGNS0IJRkbiFVjTOPNQMm1x8xy/vH5DyOSU4sBlB68nireH2DSxN4HU5cmmPjohWpGLmQa+k4lvtvmSE+yMJhdAfRW2ERnnSq8vlyLSvlWVEuJqu6JHmNeAOSgKtMzMfYLaZxICkKhhfRYedy9X5hhycXvwjMu1yjdd1HU0OaFBNRqwUefYtCJNkO+S1haCNICXQ2/ZrRE3YTrT5LurxhR/dthNdjBkUGQuMGq0+nfiwS49HPYAd+2baiPSGgyDJrxXg1oLOFHLSEQ4vWF0WV9Po/mtSZkSzV2vrv0j0VguAIWKYkUOnJYZCFy/Alg5bWJ59I9mLSq42ZM1HQBeAgEcKCDvS7HD7MtgwE184K7fxyx0iAHTj+EF068/ud2NywxhrXWyZtfbqu0jz8iEIxMWTg/cahKLHgsNXPLJvUo/MXnnrDaPz6K9TDybhSn5/kJDubq4a0D6LC6c+g8c6Pc4iJGuMG/E48/FTT39X7KFDG4KtwsrfcPdn/gQRlnvsPawLLw6S/O7wjRgDSCwwCe5uQ+uPUgALEVE7sYlqZqS80sph46ApyU0VCK8Xfb9UPlauRTdXpfN/vXkNpV/CW4CQvVQA1dhvOatGtkQhsnOZbrI4tJUtebUu0yHruJ4PkrGg36lRLpAXFRQ+uhxUuX9mU/S8aDHbBakAv/IouCvMSMTpDIfG6NgqehzDX6QSYdQGRiISAwR0aT81Rr+hQNbJ33mltCVY66mGXJCma/eNeAC6Ohxp8zovN0THwCFLXjlo+GisqDKmhnCD7pCnrXDQ4MZFFPmU6fdEnZYRNVB72ADreBqD3cMW5SeqjF9i8t9tp4TaqfZ5+SuHWrAjUY3pxbvSO0n15L9uS/qoeA9R4TY8tkm7C68NDIXcKTcVsNaymya+5pOK/0Mg2luAFGo1KcpRxsn153pGGVMM+OgvN9iQHG6vzHjbFZRhNHk2kTM8X4+z8SD6PUCdXC1I7E0SIXv2ovVOdjVrIK1ei4iEfDPz7mB2Xteoz4zt1IIGeXr2CiSYyxgwrSW0cvxCwN5QAnWqv3EiwgkrnTOU0dQ1CJCbL3PEGp3YyV/RsRfDQWPLpgZMzA6H8vhFNwSruXa5MCmOhJrv0+z2CrKw5ypAZgwvj7ENKLqJ/be4+HTCx/Bl/dI+Q+TuUA6W6pu1zaJ60XuOyovwwl8Fh9L6HnGKFRHg4eqMye9FqCbe2fIncFRR6dcccSZnPz4NU9zpvBrex3fZrorD7+BZL+GgwvDXczXmL989RjkMsud/5vbpTFxj0EUW9zjF4tCYFivxjmFKsIXS2EetXD6f6cihCwpFz3mM=
Variant 1
DifficultyLevel
704
Question
A landscaper is tiling a patio that is 360 cm wide and 450 cm long.
He uses the triangular floor tile that is drawn below.
He uses all of his tiles and has no gaps between them.
How many tiles does he need?
Worked Solution
Strategy 1
2 tiles form a 12×5 cm rectangle.
Fitting rectangles into floor plan:
Width = 12360 = 30 rectangles
Length = 5450 = 90 rectangles
= 2 × (30 × 90)
= 5400
Strategy 2
|
|
Area of 1 triangle |
= 21×12×5 |
|
= 30 cm2 |
|
|
∴ Tiles needed |
= (360×450)÷30 |
|
= 5400 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A landscaper is tiling a patio that is 360 cm wide and 450 cm long.
He uses the triangular floor tile that is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-E4-CA26_5.svg 450 indent vpad
He uses all of his tiles and has no gaps between them.
How many tiles does he need? |
workedSolution | Strategy 1
2 tiles form a $\ 12 × 5$ cm rectangle.
Fitting rectangles into floor plan:
Width = $\dfrac{360}{12}$ = 30 rectangles
Length = $\dfrac{450}{5}$ = 90 rectangles
sm_nogap $\therefore$ Total tiles
>>= 2 × (30 × 90)
>>= {{{correctAnswer}}}
Strategy 2
| | |
| --------------------- | -------------------------------------------- |
| Area of 1 triangle | = $\dfrac{1}{2} \times 12 \times 5$ |
| | = 30 cm$^2$|
| | |
| --------------------- | -------------------------------------------- |
| $\therefore$ Tiles needed | = $(360 \times 450) \div 30$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19Eg5PfSxp2lx2p8qba1F9hIR6Vkm82pgFtkVXrWu00XsYoMF2Kxh0P0+tpZ4WOPCmzQjrLVY1oz3Lv0e/C8lT6YV9Pc6+IsrtrsnriRdnkMvSvNFk3ASojbtNpDkVcetDq2sF/ROmE5WjDY5TByxJjB9dToXeEnlI0GrHL6Ab7qrqhuFi/5CGcBGEJgiSZsonHz5bgFmdEAApFar55cc5Ct+px0G276NPWORRHY0Y+orub7sr4d2A2wckudJ5HNQ5NkFGc6pTFAt8zxYayhVyRaZ3+Ezm8x3Y3dUv+QtQp8hHgVJCWs62YC6c+7ETy2da0QF4DaTt22PAGDBD0sd8XCPE/cqW5VnBG0LyRIKYlnFDWMpeJh6LzZJFeUrhRsnQfrSDVoyFY2Ye/7sEAHtLOCzdfEitRP2o2zhRilAPnGQ8TaSnIhUd41p7Poa+Fdb9suzhP2cB8pYncVdZ9WNPZeaZdJPjkiuPq9K3PpUDNhr1wYjWLMhOc64Wa6B4X/hA3fzJMHbPIJVwvebhCSNkvu+SV8nOjLm+W+wRDNeD2O7BBkKg4nyMlPRD1ZP1dh/0Pp/DEdT8Ax4Cw7h/TabpNpJsIT6yDuVBrlqjlNts3eQjstxRfgkpfJEhvjYUHS1ctBJ2DaXaJq0zv0sAVKa1v3hugDV3U+zght+jxr2ST3bfl1aFbnf6QQZlWPsTjmfGEWkbXj3TwnTvsclbggstrrphB9eafddOrn7fZElL9nRkNCGUvaBQSh/BkaROgpkXdpgPFUBk3C+OG7hyXD51A85w7GKu2bguTUFuT5PTpBJTteWazu2DkKdOZ1g9HdxC7kJk5FNbSi3soDzHp4bv7ZHQ5e5c8FkSXWqXlk6Nq+ZZBVLhYAYhQfE99ISmBHvU0Jo4ixoZhfFa2h0Un9wUeahBXb1tq4N6Lmuoah31Qrs3N+yVZPhbrkVfQBXVvPvFwo/bfNxhrttdo9WJS4NI0RzGPEww543VFSVySeWm2ArMwKQ6gFVegPcNw1HBLub+U3V6G1FOTMkh1XEMxWcO2P0lqT2f7JwCap5p5WfOo4scVHYM6MXkWSjSN7pNwNy0yLr0nViKmN9NTZnHLIjgXpyhj15ZIwecEd0FOv66qMGA69EQ9ICouWyF8jQDCOAf68ZmWOIVfLUwpi/E2U33bEPFMbceIKcePNC7oNPczFRlcDztsRDOpQYwj+UA6O7yWnB+fLxA9OCOcb/0faWErMpma+3Mx5IXcJvuaCBWRVu7U3Ai7EL78KHeRNZhz103LMFKfboItqgbd+K1Jb4l0FIakfcdjHJz9IsEGPVDbeuTBhN3/i9dzyxph7Ixf2jotEo0X66EPgAGHG21ye/KvXGUO9M1N2J5EEENsuUQsuha38lROerFxDjTo9q2pXZRXgaH24NCgElDTpkkqKJLqOh9tmU9bzAPwkc34uAI8mx7QzEMd1q7Tukrdtuu6qH5I6NEEIorm6tto2cuMW8jiGBGPSqhrDe/iuT5RSoyZYtqFRpvHMOnOQPvRKNN9+7RxWyqb8V7y6aTvfbAtQCjFuiVCZS+v5H++Se/SCt2ltkuJVWhTkP+PnxNmgduWuOowjd82T8XxdWpXGgd7AB7KQsYb0+PL+Hps4PhQgYAw5VungMVuaNVKb7ZpEssoYlWX3yMJqgNTd6UiU/cMElrbKjpBOWUSF+QT79dDsVvMo3tVw+7LC+/wp/6+/iS4974F2iUPVExaB/OPOe7Ji91F35eL/GM/cWYWyDvFfHcj7j7+PhECozuUiuWSuQ/MJacyTNvdCJfYoGd4dAfcVuGRgKEtZvxr64una3TzAGMnCj63IPXxKa2mUYJACJJxy6IdKF95pYBuEc8Kz3u8GCinOztHUlA35xLcfTT8f9JbyOIMxsGItBVWbyLsXMpHQXyCNWrjWVT51MKWwHGGlCC1CLwm0cfKefS8gTlzWXpzbQHiFLYiPieS8GVSZ4q29jotjyDmliHAAymijEY8nfaKYw4g8ENoA60/wfHjw4lRtCrt6nNe5P5tvsaz4DWbA+nadm7Nu4v0TIlcpVFNBWQdW/N05sCYQ8TGHhiLVyBCscluHEr/efjoaGqJ9v10E/bUrkiCjdei52bGzNIHLP++T8+iI1UGqLECm52oLhATTMpuH3uug7MaXnry0yQw+XgKftPpKQXwST1tS4beH1pON/Kh+x7XGmKDXsUH1DlDnZn+2RxAFl2pGdrzhQeo7odqNZ7/hF4KgSRzyzmvUcAo2M+Y8dDx5LFe76YROsq7comF7HVsadbhDED0NwczotCF37WDeK0aK7gPqf2kvBCDvZAlNcO1V0qxB+OR+cZ8B6BtVsRnlbsA0QhVmvU4BB+DXv57XH9FJYNeW8Ai1fxQEoWLD1iEXv68JigvOax5y6NGZtdBcDp1IoWV2xaPEBSx3TW1kBLW2j7cfwp67umVRlAmgDYtq5ICQ3vgmI9XCLmV/YHDYh4YUTSwhAUPU0QTlBImRTLq95gyAa2ryGyNctGWwAO+B6s0C8nNhw8Apyx2eyP09JroCTaI63ZDUvpim5dLSo7WdW5FYqRIXiZvVVhnEsid84VYDKWZBJqzl+vN7EBgBTTVp5w811qNjSxLn1JVw4JnXDBDecY71LoQLRcq6LL6N5L00mVmRbeGJYEYtLFwBik5/IkuUdtuVe9WjnPvEdQdmC5iX2IHZLXxusl+tsrjmIX4aLAJpPYw+ex/le6mLywTpku1HSQfarRRfu8XHu06zMl3Lf1lJ7nnUDVjceLIMLDUGk2xZS+3H6P6UA3fqYipY7FeK0ZfMheIAqNAVDqfblkdSpM90KpNay1RxgrDah+wyS5I1MLC64NV8EO2YJMh31FNHsGR/OHSEPNcpEbs51+7qJDCLvLd+7QVFEgXELptefFNYM3nRu6NYn9V3iAKJMqtsfyxVS0OX+aIimrO7a+xXkSMZmcEBYXlidmS50ERuQ0ZomF9rxwsMcIeIrJz2OZGIq9Q/86A++9G3RxB46RVXULNFyJIN2ix8warr02KKGMOAPRsGbQebyDjKxxh9HOXkBgAgAr3bXvwzhZbILAzQqKseGx1s1iptqMIWKGyiSkSIALNulIV8EjLyUuKLALqjcjAvT2MjWqN39UIQVfTjPv5NZsZ57pUFvHN3vqntIexQlhXsDNBfo8KWExZLVrJHzBei45+0Zb3cP3KvzqtEP9NmKFS3cKbFc/5e0hHccHEBZm9gyu7tAGu65mbQHpU6wdK/l2vqq3uJ70ccdb+tuRfNbU5OOOGceZWaZJMMi1eAGlUZIWahqe7PS7OaBWr+MP9j8Vu6bJH9SR0CQMmdjrL6Y+CMvEl9BNinrhK/zFO/jQcjWIdMTgEnOB+8eS5x/Fx2f0mUXxjE7UDcjsLDoUgAsxV/ZzuxeyBBih9gzQMfwwFWjGyjcfit34d3xMa+gFn1SGnqlGnnhlLRHkjkLe9jAHRBtxm1uIDitgAXKcUEPuMrCGYg38UBGUR/hasc9kSeaovgIrqQN/vqBgu21aS5f4/r4G63JDzdr9yz0GbRwa696diyN3lXE6d+BguGHGsjaY8MhDYQYV3NLyH7+1Grdzmf2JqbVfxlQSlq+S22jaxIEXgiZagVzbtmRkGGADWsI2roj0WUS5t8bnpRT0jpOktmEr9uWuFPuMtWVIAulttguT5Z311tgBhtmnTI3lJcziPyXEkPLy7e4mAobZaeEjbTtCkT0N9CJexjklk8s0NZBfkPcntE8b019eCMGg2DQTyLkJJF2tpHUs5NgxbFvR5sDlSNR/jwzZaZxyeg9lkEv4CkVNmfMKg0pddihLs6f4UpLwr2QRnPnEOGuRqZTFcdHFsgI/N0kCCpWFY+SG//tyVRMimBqBY9w7mcT7jzzYaaPbGzXIIBq+iARwlkov4anWFSilzcz/u2LLaCmaQiGzXTRNjiz6sEzEWXk7rLQgOmh6QRXEY75idtU1mBYMzf67nxAHFzbrD0DajwxkZB6buRLOEo+0ndVwzNiicGB35jUp/bFv2e+HgBTIdGWvT7Fa+4shlWr8KteZVkeFYDdvVof+9cFMyz1dUPq3s4lq2IEU8jaynJSbCOSWiQuhP0wuP/oNN4o7YArSmkfx04ac9pCNJLOUg0wZjmY0kn2VFes31EJvWQltllsSi5xgAHXoZ+VvzoSplmyyveQ2VGoLVYUr1SQO4GpNB/0LHlaYbjFweftlyoc8aEYFiWdqOLvtFza+v4/EdBVBrbIT4dlnctA+W2o282NIR+52hKx07/rFF17AFSavhFqUrWJjyMQtbv5ifhQ0DMkzpY9zgKcCiJrsJ4OZ/IrVvneEDwfttOn9s34ElefYisrH0fMOc/8T/VBgGI3JuxJtQUrzb1/yBPQFDiQWPB0vOUDDKLpMhpjaWGdp/R6Nd4bLHJTipXo0wsTcXiIvbb/cMIL2ryR/tMSMcx0kZ3wJwskynzDZXVoqZWN18A5faBtbV0saHZhO+9PWp4nk2JWF+jscTDvfga6FPtJudGBrFQzQ8SspsH5BE4siQlJ5xwC8bZVmCkyJnhHP/eNHKjAO5YAil9n9DAhU8xQDVIw9pzMryW9az8s0imgkdbxXaodXvu2hoUYkanARzSQKDUQbjvBlmRr1ub4jgK+Fer0XX6/qa9WNRZcAuPfkG+xJfBm5d8RNUso/UHC2LGkgMVwRa0EwgxIr5Amw3WYRGwwhF9t/0bzJw9iJ+reTLtiQK55dTStfiqEpLwZLFWXjB5fqOPeBdFfcxHM5E4sR5eJAza23T8c3mCG/R2XuBaOF7eeY3bZit2vkxmLAP/d18JLq0zhvn4lk7XhPji58bGoor41mkwzLF0OWUufnpDQ+hp4RRkZor2EJPgO9U+PlvpIPFkLl4VY5d48LiN5hSmrfX+s1ya2V+mwr6b925k+XPGg0jtFKgNoBTmoe8FxZf+i4/Gf76EtzSveAgUF9MYpJL+mfPJM6Fz5PAY94GbIg2dBnfwLd5tTFK3uDZhMANxf8ilNU4Ja13GaC4LGUJUb1JuYbzwKzdIMFSehsrE7KL7HG2dC0qJnyt45yRIhYszbla2PKLfhyJInlZVM+DKZFAbL9tHC6gsQZmcFVG0zpzc7UM61ZyUNfl2KXF4A63edeHi0qQHK9kd8VQW9xT80QOqV7Rgq9LmLTgoyRtH87EVCkcvIyM8CyngwLvwE2/mZOSHnwM2aCCjUknDdDMcNxphtqi7pbzrjDEUYjMkUAeL2fvkRV9pg7GOBtdfhuvI31JGrXedIonBqXRJY9cq2OzmCF04VH6PKg8cfe5hsstC13ZWuHlhZj046r4KDmM4YxBxeMeUDSmsuZ/XP6oLn5BMi9I5iSw+ckUBrlz+sSAda8ouItorMq7c/rnJLlvTFjT589SQMDeTqjqPezI8YReY7kUuNYVlDa2ikq1m8KcZZuqyKxKJgiETi1fsuFGpEOYWDwa06pe7zKZPaGx5/Xvc7O1moZy1+wwv74848hF5g8PYCIoaWez1EuDftRtPQQDvTv9Di2wADcDNOzDJ4NdfYpjqdpf5cvTVpWBF+upR8i70Xb55fyTX0JSS7XnjqfLzglQMHvOudGmocqCxHkNTU4Pnkvn3fWAcBSLzS9mDkKqJnqDKl1gTDRdz3cYobAeEUlBlSgklVfl/+3INXsZJH9MR58eIfabwyp2+XU9Wg1pJqW9DOdqGCnS/P9VOMjVyxXHW2Yguwsi2eJfVSlqQ53bIiVoejq6LnvgzBWltBkMfXlp2Yaw2LMKy40GJBLuxMO9Ev9yPR6/7dHXtCNqtZdaZwjcsmoRB1xIxNg1DQ+hohGXT5JkOYwNFRpdNuj/Ar/L25xlHtGy+wXVGVE2oVrY5PgF/yK88XGIeiBvOfdW47nArpieeRKGi23Ykqa9Nz0m/WQ8aB1bmSXq9Vwpx3nGS9iRun2Lz3s+CtsaKZqUASEDhj48ba+2qGUKwEJVza7hDA+I8ofTvRdfzAhKknEAqSx9MPrvsWnaXCZQj0zakYgxifd8uE4JWNsES0tAuKtkNpd6AvMP7hQd5qaFX6kXTO123f5i6AZH+6VKFcvdE19EXQgBBJE8l0fxyVyAlzczq60+fSGr47xb84Wyfsa32/hYw+xcYj/xDUv9P7NwDOn0vuSZ7WIMYI9h2dp9qXxarPAOjOnIA0Ja9ROYrbNpMc1D62osZMPgUWoZ8lYGRQZerF1G2l6xHIKKBRIiiVCHUUMXOqMmOaZnBWY5Fzdv1+BJe06dLClYf3r03nefyn62sTH0CCJ6gl7yMnOlrIFci/EaBUL5gPhHlqmJmycXmCdLcgV+GY+50xi154iHKLjCZnVMWWxGbvyRtLU0IKnMz78GFCdScTu+f/DMIYMOD1bQ1Pkon+vEcEHqheek7ZFKEaUX18Y1cLmaH98ASE4yI01kcEHcXkrY0N0hlJ7NyfMCC5RQOknO+UYxnKICZ+IjQY+BZjiqK4wdcSzcMLfVGrp6s/+BpFnzipH4jZPn0qJ/OAaBOZvm2wDRLuv/kNlKeTEq8Lc12ldQjsbLH0WR6jl+Sc//KU+nqoZM8QbQgsDAHbvR9F9JS/+kyZVbpIfgvFvHzGJotFdQfTdGJ1jD4sdSUDaqJH5oBsk4gDKXuWZMEeLiPJ+bg6yQaew9qZpegfxEJU6eci1ErmmZbrt9mnya5HeNpVJpd5N1RFOL2vasBK/RrpFhlTbHZ1BXycQYoDkocN2Y7zE4tMef4ZjfgxQECXOvydGKaqt4YKIJ3dHxJJZcKy0g3UlXyK5zCm96j7eQ03XFjuLNznXx3fbZTX39juKtuO2TFCqEj1L65SOab+RLSK1/7ODC/C+Dgvmq2eOupGPTw2AOucAv0AF+igoAMZz3UTb+8BjH0gmri+634a3RXupIVKUIzfHjCWUYFQYjO2372EGMu02BhTTbQ+whtxVW2VPB3HJmLcrn7gvXdOqOfJ4VSPWJpITks73acJwGxFRXiJyi0MwuIFokZRsVlfIvivJdI51MKcrsAtF4rIeC+P+8q35KBLKKgSe90AySDQKj0VZ/CKACQriZsa1DtJb0QLYoX+ey4z9gH7+cDKFjUZjXAEaqLi7Hmjo7fkZLdoop7DJahsimw9hMlsPm81zVDBT8eSbyCDzsy+In0jqA/hHbwvk4xM7cv1FZNdaewb9rL2AFx0esMVYmLzfK7/RnAUpCSJVP8lpUJtnOLszjKRldGEk8eJRYwalhEeJhJaGn62xsxBeD7LwyNWiRCJs9j776dd0ttR9Ykdkj6Uzcw+V3WmaguXbnCRn25BFO3Kz/N9vRsnw6YDlEsu0UE+ZO6Q6pAEcQmbdQjIso7hwLbpO/tX4ycDleDtib6UrAbIF9Zy1eHQ0EQ8GZMVSluvtSrAd1bfrAtekiY6HT6SxClgRCGK54oAZgkUtcb3U5OaKOw/7fXYdfAs707t1Ua3WG2TvYn0pwgiWB5nqzQMvdSTef780yLSlfqIl1+qO+JYgq5FCaSU7UqTVMo0E6D6ykTSSSh+K4ZeRhU3m9zH6ZrUMkGzRk8Z2ua4LITN3B8P/fmr3P449R4VvjyEGkqIiknzLpr3qkOAR6CA31VmNBrWjNwnU9IEk8BSHWvw8OvPFxBJhUt8lOLYVNN0rmO22EVK+XLi/KIKVVHWNRx8vMUQjk2/AjYdJtJU48XDk8vHgz0Mwnt3gSB18R7rZBaiUoWEoTq/VfcqzkKISafW/vdWoOD0vjq/1MCAcggPd6PNetNOjznOLnGgNw+DMuOilHtBVlq6FbMChFpBbTSWHMBdZa0cu0sx2rfLOQRI2skFp3xOgp58/JKcCN9I3QGo9ZItbmJNfVIW+JdDBn64xShPFSejYiKc6jWMHP83O4o71pRvmnZ+Bm1TPJkYEr4lnJkKZl/tQ2hl0ryh2YGzGRVWrBVMWV7BWWzGQZct70ePvh0MV1dLy9h8bUA/rMfLQfBnkb5+Jw2LHc1SQdyQsUe60LVnm9rnCKoC1fZ9SB3q521wd3akHyr1fixu2OkhxWFeyfXw+E831U4vGpuW3RDdxFAUsyRB7xMLQcAI0cdyvG0pqeCAShxX0p9dkljuH75ZBklJoGETsVL8OebsQqqofDGFVlZgDS0RhQYcng8NRlXnsJLeq83UJm/sNLsqD+AG2lDcUjexAZDD0Si3TnnT8YiuQi1bRFB9WpvOn+K19jhpTEjIFxH62+4ZtcUUOODSJXvCc5rGvXkaH8rtNMd7M+o7J1mTAC6vuismQzasddb/BblsoRElUJ8WAc/rguj9E2dJ5RlHC+usvJXGPqgeUT45PzuFUOXYNGB8t03BO3PWYG+KIbyd6fxZ57w7ewAnDQjRKj5i3zqlokKab+q4mnATYf2LjHYrNYW7oDMpNmdU+BVWJR7Zxo6yLRPK2Yzwvup5r3LtXTkrre2Me0LlTerlhwa3Swz15ovZWABC36SZKeXIgNzJ9wcmt2ww5Nb5mBTQOrDb80xpYQnwiVlb5l445YmPYyAMno9kPCz0VzUotxFjpv7Qko3Do3E4C5MAlNNQVDi6VgxpV3lOokjiopqzuYE4azSaPzwgG2DNcC9+e9hRffgjWN6aJuHDuhWY+9mVofrcSn4lJVPj2Jh1RK5jKfRQ60LVWbTm5GDh+QaQavWAMpBIPmGDZS+XQyh/p1s1IUZunSlECR9k74bCowqwyzoJxgSlsrFu0fFWMRNExwlhKZlk0mgyzyo9gBpn+NQFetn9Z4N+RqcCQ2d+RtsJCBjIR6JLLU0mnF8Cwi6peluVCWXkl3lL9xnEXvGJbjrn3NiwX9iUSPxR1sen+GLxfFhnI8+G8Wzyy0drMBC5Y752bdnDRQvwAmPeYuxJ+re010IyXsto36Crm/Em2w5FHXmq3fuExevcWmDaK8lJdd6fKZ8XDBTYOcH3Uov5D+EWiE3r8Dp6gY68xMbv6rjfnYbNGlvHc4PY4KcDEr9aCKOZOWl8aBq55Ojyq7Z3BQivihzptRCskDVBjWtugycrY/pEunaalt0myPPIUnuiwRDoM5GjhTGT2oMNW//AVsZrmWXCIsuiKnxsc+gqzX8D64NtPoHvQx03L9pKBLFvtqihlzRg26pagFnsCLwwm7PuPsOU7Hq2E4Wtt8NAxI/oFDoYwFQZ8u1eik4OWizPfqa61FGBVHlola/ffFVlCGf+xNZ4w8Hjsu9QsotVIwnzlI43NLhWr7w6J/VLy2006C7trQM+ppie3OpZ0/2sRMptYiZ9bIrPrzyE0Nb4+W92uU0bEMX9M0mAkJATqdE2ZM9BErHoqJK/oOxMybPI7zNYxFDYKRvhXMLCVxDr9WrAzH3vfL2Gnf3h18JkjFO/gUhwm9qNIRRrjrGAYa9+XXCc0tXS1wriIuOOyyUunHCwL6exScPjFmj2o99nuWgrsnYpQ2NkQ/mKKKL4WtCfQ5m18DJJcRUY8qJ03h0sTeH0yCb4G8j3SiCGEmU5Pqn4yiVYVxL+eEwAgxgD0UgdpQ1AlISOOczpKLT2IciJU9n8oLJ6d4d60fyD3eIoUAeorF0Lwqiq9JljUvkAo9GTB2JQDDCzlw0ktvWrr9xkKc3E/kr+IS8t2pETwJfL9LY5BkeBb6jKlUMsKcBDc7o5wsRnvqZNYVj522Hi0Uc8aPTqOP9NV74X9Q2jvZ/e+8QVia4MI6/vA26gReyk8exe/BAtlFv+e9/2Gwx3FML4xW+JSDR3N4kt233N9i4V6zpqzRaL9J2O875qm2r63O0Qsyi5z5aqjd4ONW7FFs6MUNeQivJcxuOBsvb73v0rQOVUp9cTrbQdV/2/olQ77dEbcIvU4lBV4DPauQYwlXmaNM0B6+gXxuWrRj874J84cmuc1FQfsy6XnlJmxK4Hn3CQaBYJ3BnxKe9mMDRiMsp5lj1Rd3iIlO9XD3eC3j+jysF/9xyLqAlLHewYR7pEcQ64zjS5YoBlxkYQkB2IAqoM2F76EGoH2vkx9s3SuPpZHup32/n/K3jZgETsnrOsnFvB2icD9xLvs0pQMwePz37yha+iR1BCoq/ta7mv8OuZmxHNIS0ocrSwh01CJcuTSR6vrcQrIWrqodKPN0l786kxfHx7QcU7VOgn8e529MmTdz4Sf84uWSAyX7zf2sI7FLNhvse6P8fca+XcL8QfTxv4O0pfUNT62e3+dUzLcZQuFOb4AojSdE0VKJBViMCjDsjWoVcLu204jpiKhYEGuwu8avcd9E/NnjhnYqfkun6RQxYmIIcEr+MkUNdqtck3Ns2cQY7Tovvv0YFCgVZbFiOYzqEqutELHMGHeN6n210/xhxALDmm/M9yJwAD1FhmQVJ5/iI1xftYbabElqwJKGIH2FRgbPYMviHNPNBQzwFGNe/DdSxmQWO7tqUNlf/raWB01p6f/HApG9ETbcr+CPJt80heqcsO6lSroL1Hny2vh/4yDfLucaSFstmepf4iLmGSsPifGXKsxpt7tm87gWUGy8d3CIMm816yLMZE/TzfOPdMQFTbuiCygKy80usiPDjgvzIYi0BkbKJeD4fiIjF8xkxGPYhP0LaZxo+1on3rPYu0RKQu80zoh7f7b0VwjKBwwGYi6ONGqYEe+Nh1hvykHW/kCc7NZQbdYZ5//YxccN8jEleNJFlMOHTy+s/k18DfAUhpmALf0pMwR8fpw/lU/WFIGRjWx/W63UHVRnQP20vLhdN7YL1qcQNcuh3szdb8sIaZkoTs+36cWK7tQKLhv826VOSuOelCmO+ANyaKIV3eugDqyllBrj5Zenowe/q2V4SSCLJcnst9gPMZVZm6S3HI6GqcDrAqYYbkFhDekTF4FK9dzXzJ52BFBAsS6Ii4qt3D4Cn5TBtKsuOXAIhzqmIrU5L+GVjsApHoFjRjoGly4kiU5TljQ+AT31C/pQz6rKXSJck7irUlK6P0ZYT5Q5MLYMJw6wEmxzWtCsAfPoKA5xX8oEb4Gq9xjceR8HMfy5LKvXzTTUUw1yvd5YNkl06gsYNWc9TN6XkWmV4Fy7aiHZG7EVTpEW6qc4NpjY27caxBWTBOn1i1gRNF1Zew0JH9CS44dkDeXVWCpihQ56EZkxTY1Dhl5/9AgCkDaDkmAcMx5z1hQUb7mEzXOqQQe8Otrysx4ZOeCJOzFVp80oFqMtGlCrTlDMJ+ynjmMg4pjXEM53YBHp/foqc8ebRXouKhN4Z6IpZi6KJZ3mzEGDc/CUNDX0QsPZVTWuolNEFgP5bvRf8GCm8WD43q9F5w/PWJbchlyTiVjMrZS2xwDDomM3f2FZlLSQYdpG+J/d1cDYLDh+gJPNU9vaNBdSF9oX5V8jCudGUYwHhuz+Y5Jb5ev70CBX9Y1PiIey/DhRLfyBQpJW2r0XoyCceZDfgdrEV2nxm83VodGdspb0h7ElWj34FGHSPnRDIdOdCU+B7C/qvsNEjtuZ5hG1k8VqzAZKtgyO8idevJThZnF2I7rUiCEs9O5vSD9NJRYX+1TESsG5QefNbMQrv6ZzyGkYqRBoz69mmhotEp16+uoc1Vs55cwuUjGaISOKbtwRoHqPf6s07la2Q1RjTLNra9jJzoxxAtZqH3E3r2td+WSNOZWOQdyhL/H4je83PBw7GB87Jwe+i33TenJcmYwFifsf56QVIk8gJBWud+qq6uQL+bfM8Djv9XbXU9Ue5hJ9myVG2LzEcKBHqaCh9hBuhplVQ1zOSR3MuljUogmkSzUKzMdNr2epQS+Gq9+pIyKiQiQK0PKTJcD/rzjAIJZ+9pPHiDUs67o0ha4kEZ5ZYxC6tpIqbHD/B0j2IrG/t3FuFU6gBhURrGY0j+RWZDEembIahKSsLak1P9+M+CNOWZYs2lsaMUdPlLLmdl6EFdi1mtJehTqsLIjgquRAB8kKPetz8GHgaoY5rcQq5+cSuE2C7xEdpPMPWFkBoKpMBkF6xkC1wEzrPZN1OgcBYHYwksNcfw3NejhqnSx4erlf0G+OjY6WsHmS5ZsOFLVu2+PSGXUMLNrxebNUAqtmMwXKGYrYZl5bFa9lcahivG4qpVEWvaBA1ZM+oDY5+ZqQHfNN+oSzoyF2hn+6cBflIB4UQgP8c5ZFQbXD7pakxfGVoGidzzpjaYtMjQb9tq5aZ8jStX+LRqODssNynZk1/uGSHR2fZs3aSJTcoWbZNpjabgkzRucWhzv8fc5lN5Q0rGFwYmbHpro6XpAdQPZLt3jhWlIjB/wuPsf8KPnqdjEGnM1VnbE+zks860VZNzd9y0QjD5xNDvHl/7TQtdc7/gnskJpxjPdKp1kpgVrQ1Q/kkS2sAuS2JKufqA0ZWcYVHH/obdcSAw9TrACY5S+ocSvBbjbt/gvc+fXQXPzm1TOcy6kCPWD6I+djPrZqEe/KT9tIxLvCB7e2OHZpMNvKA+4acvAFHeIusvsNtgdpCCzYBIyGvoj18UqEHOIAVlTd5M8f5BOGMQjg5EVYB8QQ6fNWkrlIr6zrnP5lNn6VFMs89rV8yT7YrxazBAkUdTsBy/7g5GXdG2MhnBn51aXjtOwd40rqGw6xE2PeJyu2t7GhmUl8NDhcHeW1ySCaviAxof5yk8Mbi4jHJnaKubeBbgdm3YsZPMm9iGES/DZ2NnlQWavfTuf/EiPojpNg/9umMpzU83uMQWFBg5GMS5o+Ojn76DEHhbPebEa14BhhhzLaE32U5zq+LEFDDX+gJmWqb1rEjJ1z1EBDIoRbQY6fRIBGCBKcvrrXUrhlgFU2xWURE7MhEAVnoSEnPeSpSKie4Vtp5I5CMqkkT/NcQQaalXhoO6Xdzb4C+u+v+t6o03TJmf+Neap/O/jN7qoeNDeb7TDCaFOBR/dRK+4guuU4qvzhdvACuoaGyfsPorUuw96wt7EVmil1L2qYbXJ/dq/y2SFToDp5i1ETf06eekJaJKgdKurO0HXW3mWQhAoIG7w0wT2mr3AFkcqK7JYKd1oJs00FmwSVL47lx8mDZe940BpdhYpHOm0c6Mel7QjVOUFuBbVQEYsGhdh2MVdTqtjys7iZtEwT2ynMwbHpINaflI17x7ZBczfAxikm2Pg/PYEVTl0DrliHozfarM88r9velijqyUBoQFPbLDo11ZcsgRL8YpcnrSdQfk1+qJwzM4wJqoUChwS5LbhMYNzSFsyqjm9M38leqKy8yCbdsVVDSnunmiI0DYrMfjYJTbJ5HI3iJGvOlTEyZWu2xD5rbji61jYHeOtqSZcuEtk0wVEqz3TQZ+Le17FZIz8TPjAqf51fAIn4VAMafHp7K05hqyoK4hyR9d1A34hliNKKy+gibVl6jsnvxHkRlq0e81rvGg6YRATbHU+afNz5gtZ2JfrCnUkYixdTmyeeeEy1Ja4w49N4unsxLUMPHCxTPcB6o7W/yQH3DQWTsAlzSzQiy+9VbOHYQqMh8YvK1WLJKe3PZg5J27VicUN6n7sc2ewVY06Xup3zw2+FuPuHDoQtdm89AdLEkKR2qNTouHJfeLe+dGHquuhb9jcQcif/viaf31iFn/ZzhOeo40NfO50hco3prDB5ChGMM7aPRju0TxLYVKi2n4gcQQmoNW4xUYiS6dykAmdBVyIiAT2qsLFN+43RTuZsvTBjyjQ184NZD/Jkc0Xzctv/6uMQEi1Gp0f1mzhQm6ViBFHpPM+O4L7QZtjSKdl1ipb8IbcwMFw35gxgeRI/+9tPDG0xFR+ugHOV1j//tkbwmysSRytj8vHVvOQxxJ0EXUw5ddnACgOYG0S3ArkFO/yTIClb2G0bqduQBO45o8YI0Htt1i9PvgIzEdU6GyUIA8wi6iPt9qS16HxtLfB4VqNaV2KxvIVYdKA9KanVmcimbgpSSqz/Bi7S7akHZyNfNM96a0F68J2gyayLWgPjQb0yNBE7tvcuwnPqcwLLlFuaiwse1pVSRuo7Kdj8witqR9H7f6TeyqC+jkSnDrP3kbLMKcC94YfNjdWubHteb7hp4U2DnIH8tYrezjRwIy8OtUKiYYTiiYZQuYUZ6NQtWILAe2hAsiOAZv+hTLVdyG4mQZimvwHyBfFCH+n7u8c9620X+vFMC8aEYYBF6fjoXCQPdnulQDsHm9fwx3L8Ad8Gd5+e3jTgxcwQ9KxQ4BsBOiMAlfhiDT0wkw9EjNZxi2O32Nq1wh8Zn0eYmRZUZHktMvQVzqHWL58C2gdZ7rZbxECw8cIZqCwJ3+ZcYYeFgSfpgPodeHuF9u887q0YucdBmtyH29TfDcGIqhxP5rOwCwOD7czfgmF5Vfqp9ncRx0FgMPZkgrCxWjDFpJME2VAmfZhw4v2pCrlB4fJBQtqmJkGZ8J9S3eMoG3Gw0pkOGcWYDQBNhBWiQpJ015c3PSwZcvtwEVuHKm/QRRoOCdd75o6lufDhB+Da9A4xUDnyXxduH/bCfUxwktuPVgFsagXq3PMUcaI5FisFXXKZUDyUro0Z0rh74IBZWG3o+KEgNoNOFddIyg==
Variant 2
DifficultyLevel
703
Question
A pastry chef is cutting pastries from a sheet of pastry that is 96 cm wide and 55 cm long.
He cuts out pastry triangles in the shape shown below.
He uses the whole pastry sheet and has no pieces left over.
How many pastry triangles does he cut?
Worked Solution
Strategy 1
2 pastries form a 6×5 cm rectangle.
Cutting pastries from the pastry sheet:
Width = 696 = 16 rectangles
Length = 555 = 11 rectangles
∴ Total pastries
= 2 × (16 × 11)
= 352
Strategy 2
|
|
Area of 1 triangle |
= 21×6×5 |
|
= 15 cm2 |
|
|
∴ Pastries cut |
= (96×55)÷15 |
|
= 352 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A pastry chef is cutting pastries from a sheet of pastry that is 96 cm wide and 55 cm long.
He cuts out pastry triangles in the shape shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-E4-CA26_4.svg 270 indent3 vpad
He uses the whole pastry sheet and has no pieces left over.
How many pastry triangles does he cut? |
workedSolution | Strategy 1
2 pastries form a $\ 6 × 5$ cm rectangle.
Cutting pastries from the pastry sheet:
Width = $\dfrac{96}{6}$ = 16 rectangles
Length = $\dfrac{55}{5}$ = 11 rectangles
sm_nogap $\therefore$ Total pastries
>>= 2 × (16 × 11)
>>= {{{correctAnswer}}}
Strategy 2
| | |
| --------------------- | -------------------------------------------- |
| Area of 1 triangle | = $\dfrac{1}{2} \times 6 \times 5$ |
| | = 15 cm$^2$|
| | |
| --------------------- | -------------------------------------------- |
| $\therefore$ Pastries cut | = $(96 \times 55) \div 15$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/G9b7yT1bmhTFOznPK//Kzhz4etOX/Hl2tvTKFpCYX6djLOPTBe2wahKDECr+ftERKLCHpfwJ9gHa4RvrUyTlS2i1xZOwOlmPbNTLd/FBGoPvUgosytRPgSKOLfUrxDNT3iKlUTGKThf+5clnwQJB14f5tsSryKh6tYXbTeNj73c55rxWDT/isl050vIjPYQ/1tPqN/r8tq+Q20glH5ZMlT99+8jXkTneKFQjzzZJCttdMljFEM0LvdWvE+eK/MOVLSiF2A7vG1WwyFYOg7KGwG7xTAKXtn1wFym8+n18YsgrRYGIX0X3IuHnzdauoT3dpscfYESYXVx2Tw3RV3bD4p3mPYEEaXwYWWa97zA6UDvJNZFt6E/S4phETDxF2/lxCPgyH2uGtQkOKl+mr7+Q4Aj9Vtqt6/aoijm+ZmLeYJvfzobHLhhFEKGQLPldbQUqomjhEC8WW8LGzdg9U+MuAe3YALlBK81jUvYJ4fmfmR1Atgpm4wAiOE4TG5Ky1st2hFh7k/9tDDEFPFuJ4MLfUO9ZxTDcpmpcseLca3paRjUO2z0y4vMRkknpcaZv/r5iO6+tEn08OCnTa+CZyU2DB42tKhzfvwoXihdd8L6/63P//EHQYOosaSoXGvX3i9WNTwLajRC3Xw220iES6UZw4sCgOkacpfQXd+/QppJXEzEyHWRMwkc4iUZvgLzZHliGDQ92mzuBNMzb0OtUehMTY9Ia1IP8g+GfgY3AAIpXbUkYhkBWZI5Jc125eNBpGDDsSqm/sbXGxWLplInPrUw0A2+fSzUE5SASihadKIv24A9AdOVEyHYUIooP5foA6VHCBHIiEl67pluHvqqFLG3RKInF+LQIUEFAe8TDAkdiJCkUWSjS/X9feHhnfnAEeT3lAhJ8n3Pj4pl0WnjDjJzpVQXtp0WTfhD6zY1r64K6mN1sJj2dGuBEp7E8smKWc3EbK3OHNP4vRmCO9LGW+3MgjuoMIqHYxKIRzXYEsXPOyXcFWXhi6osuNtLa1qyh/eYzLAeV/nQKyExqkNXiGzzS9zqNUT2dilMifTbJb2bnsJbSslR8xyJu/WXcpjyAxna6PlmhMy7sdEIygV/yfc7dKm/os2EXOH3h3IPYGJ+K0CFlpcnh2UaeCk7gWTFYzf2ihQPTHHbvxYsky5/3lmqvrnuKiVSHUnLhSu+mKB1j2TXfH7SirAzZTrn0CLrW1M+hVKyFEstCX1l7cJq1+ZjMej5Q1QFDr37m5PZhT51fjwqLYXjDEYj4R/JwIKiPU6gaKUlQhiBmiqb4Uqxu5CcKEAYX65mowiApaPrXMw1URHwry7eGFsc8Te0EyOva1CWhsF4vyrTvTupEvcZtGslldp/dA1jlzwTQM9c1LeYPvApac/GgHRcLbREaOxVtZB73540aknJUGAZsLEjG1u9nRRboJkm9g6nQmBhCTk/OLuNDZ8kuRJGC05Cf27KCiwLvkO6PBpJ2x1S765QrF9zVBCnh3OBzwM1VFbWSpE92WoDKSJu3aMtjpglluOZBQ5gJPJVEAJOIAvdX1GPvs0SkP7zFTW65+S4sym9fC0cKMfOgHZ2qYBZHk5csYIeF6nX8bQFDp6KQTVYNhkiKaMkh20Ko0WiBGw+uTw+9rs2XcqDiSXr3Omb+QA7hppLn+kYRzeAnYVDUWFHL0PNQldWkmn6jDfU/9c9HuQedB1LTIp0nbWUqW9GmNutb9wpb5vWHAkgSd2cNzpDf+loRbc9EFLWOPTu10foRFIJGz6HTFpCG9D6OqGAZpxFQ8mUqZ6jjY5dAzzkHJrEE5sSbGwPCIh1XWLHORD+xukuD0T60h+5mgI+4MU92YVQmkPFjVNsuTOwQZ6Oq9Z4GepuoYIIsaGdx46EMdG5a3LNI+yARG3HAkHkUwU+Vh8z5tVwrz+iqTK7EAvuWgE3LUXTeY8rxKintRYjhHh5ltYoHVqr/+YlrpdDBpSIYwxKHEdl5hxV2XSEv49Z7WNJrBck0JZyv2PicXXPxyb4kTVnyuZoZ5Vl6AlqvLhtkp5M+SPlt/LD3gblSgfYW0RCqHlhpyRUpH8tSgbWGUzhdehd//oWnsQT5jrJC0LZ5hHUKeiBYE0Hjwn6fUM0zw6Ys5LPaQQctPpHCndKDmaQdjtkAX4La1QNGkNoJAE1VybcXnAtMQig24Aem5g9kT/xaU/QHyDxkjFUZ6XhhHK2fiM89XXADiHsbTG1/e4zgbz3QzX51zQZNKWv6CwyUdu98p9faP8OPefGZrm7sfz4D10cSPPYuGbU5169o9D3uehm/KgPeavjOVMzIY1BdaJ/2/plNCkHa5/f1K6XdzFcJ0oKNtHoMGx5ycVywizu3/T5Sfnf9f3bTgCbRwuzI2pECoQn0DGRwuEgn3PDUpplveI6Ixl1HLuTy+SuUVn9QEi1yWnrauQvo23ONOng93JgIJtRP7IXMEmz+XZQkUrnM5rMwk/ThTwOqMuRKoeCV7S/qOc7IsGTbEm0E3br5uzAQQU1TEpMDqesu9DCql0SpSiUs4iTEackvkL44pVy1PMx+SsgHm22b3BuAe8bNhSd9oAU65BpAqRCQRdFDdFaFok1rBdAcAZqnu+WU4G1XGh8/6EGhrTkSKkGPXeiOtghNoBcj3IWhrN5dgDWdIEMz2RVAIffVte8WyEVp3jFvYKSrG4dxhZ/hCTQQTG460vCfe1zYKaqNdjd8hwWzIvDNs9IB0p8HxSfq5LA5b4HGccI+7Xh+8/Jj3DK1s6YOA7s2nbKCa5h6aJKd9B8WtjGraUCs2jg5TcTSd7hIH8Px1RIH3qSXuk/LGl92P2dEz4zwrx5wVFZUHjlJYQgwg/w3jFiIJhget/84LA39hGQFnAV7OnAGrN4/Hp4sCxH1nMkX04wCickO11DYJ9HK3HxmVVbEb6ori8+88K3ti/KKK5hGYwCK1cstzuURzDPWIZc3HPpcSqfZG1aeMG3/XZyAvQY6Rg4WvUM85voOdImAS8dXn2Gc975FezIxaxzpTo6pMLZbQWtOU6SsKJSxAElf8u8gmc/YwuC1i5PiWTKZc4ZiPFSmhdLPpNSm85Q09acHIkwK8dVunULGAoew4O+Z8PxlS/szEOD/q5fVzfoIKVblkcl0ACzqj+lvubpxpM8+4YFOdcbOXoGzmOV1ygF07uGNHtJzfNRWZ3dBgryM+Rl/AxdK8eQQEWI2hjerOMHr03EMgZ4m3BJsJN0R2PTfoX4Gfo5e/JSXxqTn8L7qAGUQ5JOx8QSkzDwOSwL3sJlWEZQfC99TjH+AQdQCw1PjbedQAG8L3AGWejx25vp07i2tb68Q3S5AwVlS0K8P4wDc98G92k3InABnpm3aXqvUPXHaHr9sbDgQCHgprFuU9W2zJ+nSJzX5EWV7PInDPmwLu1Iwh0WrnS0eHPZBi/VsRaLdIkO45QBMHW+5LGSbt9MZTxdGYMgxgat9iRUA11+3nyfMiUSqNz5ZgJjlg91gzMBUZc3bVNfM6M22F80ajNFSGcesBAuxRcEqEUr9eU3tM/v5CEjhIeS5OeKto9Sc43VY8MZ5ja21fc4C6VksPzg8eZwvtsdNC9zXCB9wQN7kjtKorbATr0UXZA5GWLLbEonPhOA/RNvG19jERtXORHp7bjEwxvHsScfq78XzLBn/+ynHfr/3Qe1Sk6yq53HPMAmMMJnD2q/36nD3+JzN1AyY9ALnYIWvFK2IwVyo0essIa/mS+j+LRfTsxY8RWHHXgLp9LU198IQf78sjcQsuhhs/JilhPsxpdpdCiyj6cR45PWyyqvBa2iAm90uo6MjQry5ik4eqMCMDE/z3PvLvuoTyKnMJwNVSlN/9HOSDQO/nmG+O7LTkW9JICdPppnOY/nKgMh93c4B7RE1fO6QyS/PvkWAl9r4lF6LR4CVfsWII4qm6izn0z+hO70/RuCB2g28444/C5V6VCI/2N/kA+/03l+4vhxSH8VZWigcJYhe8T85oThqYDMM698/3ctItMwwGChL6kCOSjYT55zDWD+o29J434njG56XLBxc4nByaztgyb87axYMeYqFnqOGrRZgabjmUJYlWwgOKKZL3zb+4BCV2FlGqPgYX27X9Cb6c2pEc35yF3QM3QH89ohQ/i2EkTnz+0hCDqSBafQsWUFE2hKD2vKcM9lx3JyyB8Z9aGvGiVWvrkLR4/HbIKHIgJcp4NJLpGo8kr60Tn3PYcGueDUzaRAzBRzAAVGZbuUkUsEc5o28B1LGb+ps1W3g/iAqBy6oRU1919c2ODbj6E7AFKsIDm8UWVB0PT6b3dxyoXmtAL7fASROsIET3C2EYdxrxmgD6EaKKzGr2IVQWIH4oWmWEPQ9s2uLIJLadODxAfN7E/EFwU71fQQ/u21fW6i7WOm6wJohEHWZ0n7ugYB7Mt1rsK2AE7OG6a9fip+PSi5TBfU6neJzPno9xZ8ki3W/VQUXq1d9Mpdu2NIQiu/uBuG+mPTjm/NkNtusNeX4VgfcSjt9qT1JnjtohPUY9BdCFWccKmqcxRPNADjC9YKNM/Bbaea8hYisgSm7Nlt9UTSOcB4fUPmwPlldk5tQz/aV7xNW0YpLGDaC1ybKOMVVuqFhyIBautDfmZ6M/s1KR2h4oy6etUakKKKQxp51snbfw/jCQg/7V0oqoB44Qqlp7sm9aHEm0koABVdSVen3KlpQuVGYS8UhaJWlZgG+1LFf/ulVrYlukHSbnFpHPeLzX/1KghDx8nNdkvES497UtlkG377fLtB2PN5q39ORqtKc59e4v0tHBuRMBLCcPWDSIpVRO7VN7+BQ45f9inqpnWvmpcLWM+MBhlAzDFcgnGIzfVXrBNIOz94pqfaFCootkjLdbRoNvAgO8u1rz6+jUK6kum8VbCqRm1yD8lTXZHlQkeeYXTeHoW8tSPzUPo0vmK+OXaRf310agqKhYXbW4Ta+gaA935j5iORpfgzbtpgu1SXJexvhOaA5S4J8l0F6p/YnSWN14zQ7PT/Gm6PzWvman2SUxfZDfr+ohu6Lw7U2jUTpfFgZFaAbgCqiZzw9jQiVQFfsYYtbf6j69N1FfVz5WXQh0mmmGD+wh2w0DK7O5XjpFm8AUWRApE4aiZb7+jfi9bGUYGnoVnZlq7Hus/0UF7udXNZcPDEY9b3Sv9fdR4IdCs6xacTJMhowZznPUZOwEGP0bBpRKQJaF7x18dKXHSoGGNRc0wPx3ZNLqXlWKPFblp3bfy9/DebNihFaXJ6gSm1RUq4/IBKNg5Xl+XrXOJM3Fr7vpXu0xVoYXq/qEmIOLOUy3PWaTKPNJr188CA9y5qeIyqYMjNxEpnjVfjkSJsmDfIQX7JI9JkJKC8g3Cw3nVHKAD1nKdT+BNN6O3SgoQdAfxdPxBERDuRXhjoRzTLfLdHe3b648C4F/JmYh5JEnie+WzmydhWRBcxOt1bncAxaRKonE9vWzKqzIiSb6fe+sCBd8YC6fPKBoCY7yW/pak8fLeVVFJRf5ERwPeub5UV63q/kMomoTSGv1bnNDWgoG9otkN3tERpn1MrBa3zdpiZrY2OwLBI9QbW6v7fERzquNBty1Z3MiKaCCHLK3KdaPy0dhot3yn4SnVOaSkYWTuohFYDDBOyNz2ujieQM8peEDddpiIsNwY52oLXIsZGRKmolN/+ET8hHqE2pvNobPGUAjVr75qGMqSBxkMQ3G+I0blp9TrGi6X4WwAr8ULoG4XVPgae3rvlxDThQVUPaPuWvgJhGOlXpxFlx3ihMfEFJ7uRL4FI11AVL4R+Cl2eFyelj1A40Z5PlzFdXmZqPz6M7oyRkQ5jFEU9kginZsVc1TJljvjrhD0Nqd9eLfOtjqC3dBi63peNEMJvSz3+kN5oyu7LOu7215DXuwZNEYDkyuokM2pL4ni2yEAj0yL6tIbwxKnOz2QQe9p3DY7FVqUvxyCd1NR2OuVcmaw1z94UsQV48BgBRD3EnkmP5QdlFKMkNwedjX1Io0KWeUnYmgoY/Kw9/xWSneMW8ltw5BjL7A1KRoAVkk/20mBH4ldxcADD2DWNXGO9admz+n0b/6VI9E5dLK0Ugz8yioyfPeQdmr/69LwrCx9YNfzBmZPHhxlMA4p2akJAiDPE8IllJeNKlVk6QkyPlVcKN1umU9e3/45eLhKBLvQKjE20RSwBJASkHmOfmuLF5gr2VPBJ25TqxgDWo3XiecMV+5h4G4gwQy9XYiZS7uqr/l/Ut5wrcbG1k0wWo8c8ReYNRRABQlZvYhjfAJ4T8brA8+9/4eOx+Nd9fALWS4NFGmcbICktnqc8VoM2vmqS1+lLFYDBboSIqKPrvVPM5LHVqlqVhD4LzEyWlk5gCTxOLdERZMUCzE4RFCCq2V/AQUoruaFBntCRGVcKwdwqJ1HCzLZM8GTKD/Xljt2ik6AzeFHgQxeKPP4uRktY11CACqPTaMw4X4Low9OYfma2PLPtDP+35/YQNxRGY6oJO3w6ZoRga8zjcaUmIKvOl7VGyyBQLJVBm9xM/NzxvrWsUPobJG6Wqhs2v75T+YyfbKAMtgDKe/33wLWPbOG3Hz8GWhNzIan23ygM1Dyz2X/ywBc0yZU0Tve6dKFHeFQFdbMHquWFHx4YWqWLuVqMZTBoGToSnkWNhS1VcyPiCiSfptd2WCCZ1iJshXUmn1f41AFA+MKCzZbavCJt/bBdZX0FGTsPqHKRQSvXVJaGJhn4QSe7hC3M7EQPTgqeHqnAKxYMp4kMjjMirbT4Qum2DO3yjLvyEeHeR0FNRZSAJEtUKYVwnC5UB/Qh46TV0AtoRrGbUUPBm0BedsFJxpdjQ3RQ6WXjq1XEyNYDNArfEadEJA+sOcFADFLEj/Fa4ev6bihv7RS7Zt9VfFaMBr26k8Q1fK+prGdBFAdEjW60jIcyLetTEQwHiRERXeqWR9vocK6jwbDPuLwEU/KXGefAlPMmrJ+zZrP4zbFcrA8u1TtZZiKIrzew0PK7rpyp8ohz4kmaTRvJQKP19CBSWcwUQR5OmipCkL9Z02LvqKF+AAqvB2UD/+MMzIAS0o8+PSNNoepN6f9SuVaDFDF1OsDXqRhnXROPIe/pOy9t+4Anx+BdDZ4hlCEPl85Nj5ky77K09VUXcsxS5NM13GkC6FkiERYBzqLMEQAwQWMGbM9eqsGRl7izHuYo3SFImkTZfGYXRW/q7HxX6ZcEYgL2oo1sRDWuDP6uox+q+dz9bk4/mb16xK7HcDrBVinwDbdzckuwI6+PWm4eDDg1yDlx/cfgf23WqJ1o/GQ1sbo0MdupaEMedEDrKPJwcyyPy/YweJRXbxZl3Iuiwtuy9nZ3X0rVREibGrsajWHj0MnxuJS5G3gbv2R1CF8dXHKNlRygUKpNnu0hdaqSaQ6G3Yka7Ub8dcrwctxti8Jt80G3oPDpUAEy5M/GDA3mBSEeLgln5vSKc1K+nPQUcGFK0E4/IkTrGLVa0RUQ/Z+BgdtmqkMkLQT3lXOtbmIEgAs3s4rgNVeVm5RuxCFLkbzZQBr3mqPXFrDq4zSC/5oDiMWR4bZyyDFVCIun/z9Cjoi8ecZmaCYJoVoRpH62S5L3dmbjNcAZ68ZkvDzOzNTmBcmIay0FoFA1Qn9W0rL8uG/2+pZZgo+ngZ2VKXC5dRUhG/NXkjg6GNufQqJXLFLVdtlksYol1fPSRECooAW2L1xMJNKHcfedOt+FwwzzP8loLhNw9Pb9HlXVtvrJZCQnBz8tZoA70pJdphqz0Nf6J34GVV72YtNirrpghjZG7DIEfFQUjLSosxbb6XlAEoK8lLBwm0ygidbAqAgNTFgFOzhjx4G3lVFmuFZDcnvbnN11eGAgcMOuZFnAJ24aQHq7U899TtT4r3SYC6N6NVamSfc2tmN7N9jn0uVqZVNS9slGEmIbSedtcyrhHHAXLiJdv1nNdyye6s1631WbqHJzUCNO/z5jFT3QNR0BvFRjQGJRUyBRVvwQOt935q1hbpU9Vur/VahoNXSzkuFt+idnyFAf0WxhWakOASXKQhHX9L50+iwkyfvoaeeEKSAeqYhusQi0jEil5966uaS2ZszWdbF1xL8LXa1bTqxUcxl8Uz3rBFRADGp6cv10pgkmMwkZ/p9Df6pVuFelepG502mkfGzuQXlfRGTUsAwHpzgx7dTV0lIgz7soOGPla+yPtdXelhvxD6urJEdXxAVSltlZc8sq3dZRztjCES+OloxahJ3HhYwnEQkwHW+SfIYo+WO5zKEEFfuyX7DbMTSV5i//5W5ldUwPIemXG7m06QV+vp5Ae7VkGhqjo6EnrQZsGM+RjcT1qSDXVX+3SFeXUnLwBwDk091Qp0ArPO3ij2Z1p0yl5bzNQr2DMH0Lfc/GmJpj2VQpPMGdU+C/Fsoam/DP0pzcXnLvYcIAzuZ82eM7H5F/Z/iHtL/b2FRObNIcngTqInQeG4nIPRLpYrzbYOTPTVJpXA7R/lyStkpssnx2lWZtQXtKXNvHdFVli5V9rmbTeq5z9lBb5YWs2pTDnSwLSCOGuloMXDUTqsyUeKe0bWv1wEoIFKywlWPR2exGBtIpMym/d1bV7s58KBnJrDmv5zIYn94LP4UooIZtT1A/Vq6rA1eXDTA7F2mEm+YwKcNadJqn/hG2EXzYx3bO0mqIo9xhlHcH27aWwGub5IEIQ9lil02Go9RKoMRoV5J9BM71VnVOlE4Zx5I4CBb9vcO29MExFpHnkIbdB3I4sRxkyY4/6YIFmIIZwa9nJ8klGrp/hqNKdOv6cO9ABeUTR8unyprYss9MY7uOfLkol6tF6tsA+oM2LowAyx2thEu/kG815/RG4ShmwUjOSO8CK5dwtxbw/MYOO7JRqZv1SdduavaqvWsV+/MDtIpsSqJ0PXMV3czSOnl1ksE4P7YeQjPAO14Kq8uFdUvyARe0HdtBrSeLAgdANW1YCSYREmlL8aCC/5DhfJsIxI10uHXQpXNngPzqT5kmZWV7BNGSb2w761vLZuoqJefoV+mcvrUZfGY55lgPIeuaYh6K4uf7Sa4Q18im2QnTbLDgsGdkT36KExwyvEZD+9kMJZQLHjKGrUyypGqTlJz+ecX+OjkDjU8KXo89Oq8wqXT9k2n+oVkuTZMHf7DZYf9p5MMItQhnXZ2K5wZaNydgbKgbVuBiYdlCBpcCkBCIyohB6p9wfLgg1ZFhdpV8mgkc+TzytbtJUR9+dS/VbLmSPMzNqwu3l7Wf2qEFp0RbMfDybEVe07e3I1mafssJCGKXCMOeJ7wZKXHfPzzUCqjfxOUknzqCEvs6inB7jw2FWABgQ1NgYvzFD5dqur5ehrunEzy5XqkykWvzNkstk+luGY9Q7tW7DKuY0uaSrM3lDjshxXDn8MoCND6eAaHu2necIXox447JHiLns0ThsdqEHkdLoV2UsvFE+FCWhk9YK9vvWchQjT4a7SrgcAq/kxxhyHgMPXFgPn+OypidHqWKrzUBdkLdkVhKo//kMHYf10QhRNP41Imidjnju4yOxKRqVJoovs2yxB4PNHSApEmSIvqksNP9yMhJZ0ZN3J6xgWYxh4lKhLufoSRDId5L5BwdWyStA3u+Ad5R1necmu9jSSfISsFvvYKgWT6Y+DS/k526qKHhwUxsEppuQ7ykeF59eeDPgQwLDfTIQN38z1ZOeAVtpjPwrL9O4T7UeesbBmHkfyxzfjaZsS7Ey9ZEtE+ACqztlePD3gFdY7wcn+zZRtgK6Zz+kdez3BhvTUEEq885/lYQDrHh0qipADcPDtnwaGRCZ03wwKNUkjNVi6RtsfYNvJ8U/Jtrbu80GxVuv3TRz9EvQ7aWB8Y10OLJh4g4QyWKUH0uQjSFCnlmvE+EtB8n6lk3o/CXzqvSRoEOICr8bdx22ZpBPnRSAePbO3kE+jppLVk1yYJo9cy0ac9Xj6D7eDUyyvAw9tHgf4FicNrAvHP5psNJlsc/xQAF7v8G8p8F2pBTBkf8cBhmuVa47XhS+Ddn1aJJP4NNa1GAXG80x5EvdYVRMgTuIQ9h33wE0b7QZ6mGZRMC6DukRaEDsxKOxMZDkMbGt5TRvP5+geaB9YxyQXizUbHMEDBiIXVB+2P2e/GV8Zt3D5TwFBg6xcx1xVMoj7r2FJpL9dE9JDbnlIBA3FPgXpEDkwrLtZdj6zFN3ogDO2FMlGxRwSuklKtbopeswhi9F8MGeGwEDhh3KogdSVIplJt6JIc/x2IzHRnHHajuktQsgveOGc5zimqi13+9kFNnMhsOD87Q9ZQopzUiTznKrxqpRWRy1QDzZzBtz28f+Uikbs/fzroTEF3r4zcfQ7ODF/sVKq6hpsgg4Jp/e3QmKS1zXrzPQBcLpnRn80M/4Cm1VnWd/wPMYU6BkuebH0hLxhTsiPAIuW6BY/qCCaHWqEKgOlTtHD9YHFaGZXW7afyBBEsCubtExFu8B8P3Q0REq14THGD3+9GwMUaiNKEpefQuRJ87dz+FeaRUNG8iJ/dhe/fVEEkSw/b+ID5dXspzN0DgFrSZYqgdr3FfYacTobXu/vNNm5CwiBSAC4GDq8FQ9k3m6JWbgGUU+2l/hkr1ORqp9PjjID8rsa9ZVDRYz8o6bjgJusLJARZI5q2JauEdNFUlSwalmdusp/DLnmcxiEnN4TahkXUH6VaoZ2FIbKkhNcQz3mwZPSyRPLrr2l71CWe9RiiQTtxddaLTnEDpn5qY8++YBt6YPNVYObBjtsZJHcD45dfwHK3LKXlkUvp28dtmXAa9n/by6nL/OKIl5kXxGF9j/fNVUZNZHXb9oUanMIndxuovUjqRXUx2ArDS/U+FTS0/QTy0oSyJUiZpsKEaN1VowOxMR5ks6gjeQxYScf8i8fon8TMF+vjIY8pREh+1XHmV1xuCechRzV56lBgJi4pY/jYIhsrbc0kYt195OEPYRDkK/tp/PX5+/FmvHBYlyTlnq7N4bPbAlvWEYqD3sh9q9wOBWBdcOJrRKb48hgS9ViXJoBpmLuqgXj547/OBy6T3Kt18+BnqEzOOPqDIDqcWM7jfvGxi3l5jTjuPkrxc/0ZNkxF9AQKrsfMxDmAOiCQJ4Labdw4FXC65vLrx4vALd0WPLzSyzC0Xsu1BlZ6crkEZqSB+ipqld5QRgN5uqlQj1a8xQIq7LbWA1CQ28N9KkBDccrHNeEoGtM6GBHFAfqZfM0U4hDLmNzPyp/mR6y9jzhdIQnYyngLVH3I6QTHjOvYsq49pE4Wg3V3m2D6gqNeNKGFA6bPsIAVAN4fZv+4Lqod0Ykz+4RSJ1mD9wS1/FSCnyLdwgB34oi8qGMMGGcx1mRX/Bd8esuuzljyYwLHSJ6SllhDEWoTuw1f8DhcKHbjrbVTEF5vQi5pcEeiyoK2FcpkbQws3yRAfMBrKIgy4Cz/liDQucmJUg13NqXCDigqPDlHL48Nh30yGbeYbLyGF9RxsL0AvKCcl/b0jkQJsFOEVOMMrl+BD8/8BJuQec6dX36Vq2Uiz+cob1A1e6TAaiRL1d+uryOupI8DghG0NPuPMVWiAHQkkHfGnfXX7PzgjQXKhR09fWaXJLOB/1V/2/21B4qouecda6cqmtUQsTqtuh2adXRWFx1fsvMiZbEVg9xAhdPjIdYPDVoqz/xCWJywWi+YjOGz1U4V2Y260vccx+ibuvMt5c//zwiMr5rM+QidzwbWf0PYkdJV/FXsTN/Qv9ms7CD/RveAhz9YRXnOHgktWeb3FLI6cZoLwhCI1Mqv32a3/sORchYOJzKp/4CBV1s2LLOxnor3SBrorE0pf1Zh67Rqskl7laI10/odYwVUI0/+Z3/ICF/nh0aKJdG7Kk8UFIGLoryKQqKRpHep3nu9TtGjKXY5yxyc+LIWcb2T2aPDXi4/nTG9znredydjLxp5gf0Tu+g6fH+u7zx/o77Ixw+xG1O0MdenZxRbYdFNf+wFj2N77hv6qIFMAp8EzvpF2ID2KTgxrtRFpLRd+wFqarAHanaNiZdlNeq5fELR03MA/0wxbTsY1HD/OO6CNoW0CN73dg3mvh/Rjwno8NHYZTpf1/l0yyEscFxv5c5VMlVn3yHC06aoCyzDb/l/lf2recpDGj5RX0tf5aL7k7HTsj2z7cimZja/fkYQhXjPIoVGYy8HOvNml+zjtd3C9B7+n6cQ3SFJQ46Ml97av8NnP5ye/zcZBsaJVwZwZf3ynJB/CcDp9w/DTi2AK1isdjmxXl13nJ4kIfkmf+RNCTnA/aaX65/P2RziOQsBUHJYmRri6hNraRqNbwcEMKYUwlQjWxz7z2Ydr6mrK1ZcVJTFBc+ONva1hOnbkkyEWLkpXO+ZWZLIwayGCDA6m7LIL70Bl0k5UGJ77nrAkVVWxXUyUMt39uLXFPOOGrg2lgX0rxvbwZckrIRoFpPHaRpl18l5XhuX6OI05kYBDRr3kj83H7aqtEywODi2p/lJRvFJRe3cvR5ng8OqE6gCNCBDaQizaHvPxUDB89X2S/TYO/Awth0S4nDwUvHJjowdeOtjXVQQJvq/I1hbwqt+TAPODy7gssgzbv1EmGV/NPuXgi9miY4shQuNpnStE4+9DH3jyrQTw7ElBfMndYSiue9ozE45si70c1ats7uKeqGXsMnuGhFuGxm44wXn5u4KO4+H3HpNZU32H3g5k45xWeDHnpcUjwPBsBMypa3ClX8hZ7JHhbzo/piGmU/MZ5heHRJn8+7jSU2B8e0Ix0qfITnu1W0DDHPxrh+Cswj2WCBm47k1PF+xSYb1Tqvevr+3ue1+T7N7s/5FMXO4epnUthuJ9mwYWYCf6DUK30b/anuUoJrWOJzSqCxJ0Ei0gdJo3pvniZeCfhQ94RsEv7fX+HdsJNN/77Ry5arYjI8Z7IBM5OYcVt9aCW3yPjE/36xE55OpzMCKYpEfgzrvD0Ttzg8Mv274sU5+TUy57Eu4g6nlc9F3R54pF4Qa51Bj41yVrAHF2M1d2DEYIS8OMg6SEza5Bl61Gx44xNBs58UFOuPXbxXy1Eu34ZiTXUFq0yC40iwaLQQn2n9pJTxHNH54pk71qkAOh2CmCi2oYEAIYRijYFzH9Q9xjQlZ+0of3sH4wp5BL+ZsHQztZChMvss1bxd3y7D0o6MZXHpRi/8zB8IzTdYELWFC36UvD7tAwrHs6h6H6eS73pL4OGWUircXbMEq6LB9OiM4aNbit5KF8pHpmtnmPEP6x/tv82vvrERRoTOyuESLRP8L5AYTowPMIZTr1yuv+uWHH5+mJ0R6Ac4hyqkDjaHXtInGo+gEQDKKjEGjjW7ACpQuqFzane8bGtwwNa87gnj5mmRq7D1QXI+/jurfoqICq3umojYpcmovbFf1O4rEACTpT6USrsUfAcwF2y1ouhwZbXwI5qyseD96P3bPX558B+Nwl/7NSYQeepYF+/5TBIZ3uFvjRfVtiopzT29JRCAd2S4G6ojoJU2dc+BMQCQclXlHLbf7f8FJ25E+V7QwXnbHL3oTMIO5LUdDHAb2Vs08pZEJV5eT1iNixP/F6s/OZWsRD8vThZS6hSGxSJMETuF2YvQbXKIqhgYkyOU2UR4e8bGh6TCNMEKG3mi5F8zZGK2kAgrPjoExGgpVitn9B/U9K85ubO7Ef3e0+HwjoYWog9QvaPRoWwaYD+C5jZ2HrM3BeB9bFutas+jXjSY3BpsxNrtmkYe2EMQzxp6RPQUf2LXP2GQF/c80gMAjIDfAawngCS4zzaHTyXPg4PwpYhbN15XmT2i587bT2OAMG1LMwmWOnteMCnIekh0Im2ArdMUoNy/Fy8jAcn0KUGoLTTmqh77VVJuE/jp78/OK+tX9I90f68C/BIbcTklcttZf6KqToQ+tiTaV6hhU8E8eKz7JNnSAxyHRr8EdfzBqYFu+9kjrnJPTbIRPSn5MMOLE4CN0YONKhEWp6xZhpDEv49o6LYPuqsHhrmYtRr1kDNRdTfhmZ64idOWQX7uRhf+zzffmIYaii14CGTAthkdjVimWe9zIjivZIb0pEWA9uy0y7A2s8M/gzOO1YuE40zdHf6tGRu5e0NPKgxYtFn4dtPGsSn8OaCb9Ghu7PMQ+w7f5mHL0JW8gZsrGhcSLCNRdTLAmZ8yEPuyQ2Ah8FrxESJ5eKaQYBjmre3blWqUV/l55UXjbSB24EhbK4h4uft89GOMIOT2E8cCFojLMkpHFnNzSXpXqxWOYuNJpjI4NKxQcfsqS0P0bD0p0AEFJgMDR5cH3gd4uV8lK+1zkDyVUMfywEkjpsCo2h2us22QrlmcSxwniQiZLlyX7Z9boepMD6UYEH4wJPdh99HBE6qE4xFWDF0qutVKOXVv7w3x2UEoxgZO+VqJRlJzPS64u0ZKuFlv3L4LxAWo8w/VY+7+tl34LxMOC03dAlS8KahTPCAfOud9bSFO3UaVh2XVj1p9+Q/YypxuVOm/xclnB/uX8McIQWcktB9sPi+PbtDto/wfBC/EI57P50y6bq/zNEN7v3sft94/R/qbaeSTkKRe/Xs+JDyzgP83lG+U53JLVnfuLy7Vpj6L0mk5He0zELwTyO5i2pZ1qm4cp8TjKfZv1NCjrp5w8C1u+mLJvqE=
Variant 3
DifficultyLevel
701
Question
Jeff is tiling his bathroom that is 2.4 m wide and 2.1 m long.
He uses the triangular floor tile that is drawn below.
He uses all of his tiles and has no gaps between them.
How many tiles does he need?
Worked Solution
Strategy 1
2 tiles form a 8×3 cm rectangle.
Fitting tiles into floor plan:
Width = 8240 = 30 rectangles
Length = 3210 = 70 rectangles
= 2 × (30 × 70)
= 4200
Strategy 2
|
|
Area of 1 triangle |
= 21×8×3 |
|
= 12 cm2 |
|
|
∴ Tiles needed |
= (240×210)÷12 |
|
= 4200 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jeff is tiling his bathroom that is 2.4 m wide and 2.1 m long.
He uses the triangular floor tile that is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-E4-CA26_3.svg 270 indent vpad
He uses all of his tiles and has no gaps between them.
How many tiles does he need? |
workedSolution | Strategy 1
2 tiles form a $\ 8 × 3$ cm rectangle.
Fitting tiles into floor plan:
Width = $\dfrac{240}{8}$ = 30 rectangles
Length = $\dfrac{210}{3}$ = 70 rectangles
sm_nogap $\therefore$ Total tiles
>>= 2 × (30 × 70)
>>= {{{correctAnswer}}}
Strategy 2
| | |
| --------------------- | -------------------------------------------- |
| Area of 1 triangle | = $\dfrac{1}{2} \times 8 \times 3$ |
| | = 12 cm$^2$|
| | |
| --------------------- | -------------------------------------------- |
| $\therefore$ Tiles needed | = $(240 \times 210) \div 12$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX183v7Vzkn04WZpTZHEWsM/BFYqswymoH1M5U7Ajg4hm5vxx76LbFuoah8111ByP9capOl3laWvONZAeFpnRa3/7vaHKORlP3CxkD2yTrkfs6wrAXP2kxCvq5WbojyuArkbwFMWrWNWSO4zkjs4Z4qBhq/dFoULOiHB1TPrPq4Ymlh2BM53u18EgtZROPNDJvSGGgsWjLmBnh3ayeadmt6f3plG0GYlnhzRgOAq/VBQXFAnBSP9sK47jAlokEPhDZOA8MEpW2DFJ/civ2xTNkZOZgEOKl3ue0nmnKCL8N9I3C6LaN9nX1U0ERPfjj9fhCUscxiRx5/VJd/J1M9SxgtgJTdfafEV5G6S0fAhm6KdABUTLgOJfaphL97NY7mm1qs0bFMC7vlz0TZ+cDwqxNtQHZ93pHVTaa0Mbr6c/tqd7CdOxKVquR5t5SZiwpC+Cm+oU27MjsjCptfcPPQPrkaYorZ8th7KAB28oE8yXRQeoL+FCuKL6I3J3yp0YA0y+lCdtuY/MCcRT5pIOx0fQ0m/Ne4Thbo+1TEO8oqk1T+teK3W42fdbCkn0LjNC7MCR6DWFgNZc5rwf7FCcLG39rPO2icTjhe5pyc8TfWwM4LlJBIsIZkHCO4EK/FCCNAcPj+BYFyTqSSrCEoBRzGhI6w50gYXOJfuhfSplpsDs/3Guv6MO1MEL7YAFYwPdXcJzVdz5TO06404pE9+rWgRE1fRCdjhogQV8dxVpdorEO/vRHCeRksDSy02KtB2h6Ln35QuawJS5sQYDVo8zjX54JCDTd797nOUuqudbPbAcQc2aw5DMsfCddtqWSyCYr3GwbmiA0xtUZ+U+2Q6rmytfAm4fXxWx+PLfJKtM5KQZZeyi2owSL75/hZcuJTlFldMavjgndne65K474ROsiTdtPGXumnQGnHW7QtR3eqJOG3GtlPlNYZTHloIGBFQ0zjqYdcy00qYjBydIq9k4k5zJFcvBukF20hkkVLve2zIzoVxyiIwri/Ekj3rO8Fay92PxPTfmmpO6GcfrZ8Ayy1tuwZJl62Nx+G7rYhLeBbAJ4pzqsfeZxRAvxI4vbj2yzs5aAVDdAvAdiACETYcmDTkJpILkVx1cqvnwtC0sxoH62lqKVrI3m9NoIgcSEiAsICbJJs+u6PhvKyY4cydCAQ4pZPKDeDgozXfE7hxN5WONu+yrvajprImTCsge0emI5lmVuuqHlcldnAeRzZueRQwsOshBMoG/3gQ+bGIVgz1snCwEXH9RrFgOH3wmM5JmWMEhoc4hLsHwUWZY6aLzxqzxxRh3Ejiko6w/LHgiYCMk8GsU2TBpbSErQ+1Uysy4E816pmyrXWem/8mVdUUNB+SpAhmnDHkEI3Nfih1U55vxfO2+5Da2GA52vclWTv6i4rSiE1WZAq1ggz+3NPckNOcqxx6crVgBQ9ptxFxz9NEkQdLgI+XGbJl4ZI0l50sqo47g438GScSQL0X6LFEC7sNzaRwdrC6ujMqYORm/IAhtzof/O/FUcpcgrgDTWqPTF/bGVer+ptw8n3sBooTHqP6XkMbKDyhmR9jSnbMRh0f7R3uNwfk4gyZtz2BWtNQRWouYkuKTJHKvJ8B0X7sJIi0hvgX74sOkCQWrn2KZ8WISV21NQzmBpD7ZfsjkOcvn2u3MwnZpUOEs0yz52Xn4lONMNxCvKciTkbG0GwT5g7Wfkt6F1iEktuPYmZHA4ke7+t4VQ1wsXI2ERFkv1SpAVwQo2e9GCF9UEFT7nIesfseCbkFtkiAHzUnzYimeRQ7h7pHhafy3A6+xOp3kst8pxqG3151If0FiWFuMzN+sXg8VOtepz7/w80VfXLfY/Xcu93j77Pd0X7TUSk9kKjlVwNsHLrDtA5V9ecPjaJwcKMZwYjfXeMUozQoVEeDLCzLDe3zvHLtnzqfRbjk+J8SiZwGAg3drDvARO2l+LMDI2Bbk6Q7gVOlu7e2grAB5Bsyltyl4fuJcQtkl4BqCCWv/KrHbYRbusU6MkFU+Xv6exFqZA3c2GYCXCIrhaKrXvXWgkbiqZTWsC7BcqgOeA8Bk1zso0EfT8icdLWJdEbWngekWUx0WqaJb6fEduMWh4h5OI3VLokDeS3qAsxgsLjfO6QT0GDQqPgntFsKGpmZ5iXL7ZdVnN/EVX01fap1L7AqmgWZtl8U/r8fj8/+HrpYVYq1mYnoo/J9scFpAfcYYUIpsLaK+T27f54gXD5Vmf0RZCk2Cg1bGUYUY2Kmlpi0I7wyhinWBbqRdrhEY50cPgrafeLXE7+qWZuH7MWbjCPs8rNFcQmrX9pKlo1/jA4jsS4gN9R+Ehf8gl5VDMctTdYe3qniW1zWqpH6/GqawFP1EGkde4/VbYGcxzjn1R22pv9Yt87+4t4UuHCfrSUw4/jBtU5irdASuQ4dC5c1aqQu6OHpbW742n9Up8+k6lhdOhoEAo7JoEMLyy71z3hXbn80iUtFMxJM8vMYbA4g+Qas66hCjLQJyJrE6dSs6s7EhhMWDxMkWTHddtOpQcBZhY975LNPW/3Kmf/5WPApwmJqlJhI2YlvlUCQAZzxpK+9yrOqN2kR3IsjAqImmtdm3ptYYDG+gb4inMzN/7R9/ysr+BpTDnLMT1ybjP6Y3HtegOo82kY7b6fXHukGoeNgWFk7WlZayv9U+N659Fria7u/R+RGntzf5Zw4Jda4IY3DkIm7Tl2BzvhTgwQRi+jfw5zrf+Mlz2pqe9kTT2CbswN/v/YSvDYBWc6G4m0FT+1GWkOek4qhyHGMcyiaT/qsnyXR+SwFEVPOBo+1FvMvmXRsYMA344KboCH1BsBNGWC42xIe6sIQkSbMebyDcMFoBU7EiEZy9k5SWA4NsfXbuSyiRmXq+Cpr2MafWBAv3h8IXnsrYsRcbSluZAdK83SsDUM3vYtVvMcOyEsFSmRI1RxskW7YaafLeUjDn2OOox6BliDCN8cG56sm2PEqSYxsrfhZQltY3yNVdu6O/03tr/3vbXJ6jwm6BT5KYY8Nl1GWF1logcWjC9u/NUFc39ZnvxoH8rTHRfMmM2QqTGici0cUozywu1vlosaFDFtR9OrUFZdrO8zrieVR8nlF8E37iLq6KRBKt0mpKDLsgJ7QCUip7BuojX+5t9nRuAk9GG3+0QNcRLHN0GxBcqMzFISmXVJBtB1SfwHzcrmxeQdQy12NPyM8tLyXy8sGWKiNqdQsAZEvSaZF4frbrSx4xIn3Oc9oKp93PsFBdrQRzLt9CIV6yHNFiM/9OQyqbZonamJADVjAOrZfWVmWbCkotP99GZp0jCo/wsgCYOb3kfZU5lVFWurLIMGD2+7gndt9qQPlXUC7134Bl7y5sZca+w5fxtxcNDCe5HKLgZVcP64ieyGUuY5uiF2/Jht5Oh9NexMQ4FCCcaa2QlA9djO3b5Rtq9CKgLzB4ReWIc7a9liyeZJPz9p7DINbOSzVw/NzE0xHDY+0BJRgWpyNylVoDyf6BVYTuG3SsnUuUyY/8eJMTtPGImbs1TmBhzZ9wXZSTIoJnav/6z/ELH61QiDxoX1YvcHqALCfYR6Uss8xth5lMaSybw0nTsUNZ1lVxM1BGJlLXBBMo4wv4CCfbUxdwSv9QKqkOsEu4SRbKUfI7CjZAgNhPAZrCuyUZ32G3yClOYs++Xm1JGkWx0SX2wErk9C9nQOEQJv9+001ljGiKNUQLEmniREwJ2Umre/OCmWeDVSoen20GgEkUYpMQYHzI3A1BCYi+4+4JpFrK1Hd0cSSZSIVU3KFBO1Hzx30NBNWeTYT2sjl0syk06EFrxyM2eBnu4Qoy5ij2bG8ZI1SdM8/1G3xyotd3jy8r31rhaKZkLdInhh2VA6+X0t/HCSFCFtQ34DZ7zQXZRiHGQk/VFfGp1tYEoqh9ChVZnKFvgIOsHOqfN3eS4lPjgL8b3E2gp4hMJS/eogl6+gKQOhgRwlAjwXoMFnsyUZc03ItVzo8bthVLlVGKnLrk4nUdEwIhKCD0SZSP1+unNUudKmSQgzqXrwfcY3GU26NkUMopFhsnnwsN1ysXqlBo+hkQ9+/N1ybBy3rPZVC3aybJyNfb//l6nCARYPZLNgPmO/Zk8rN+GFH4wkU4VdnI0DJxOT+Ykte8dfWwPhZ6mGZ3VXb2Z9ceeySZHx6/x39PYzIFZ5+Hx7iW+gsMf3hEp1ID39DXuu5T+Rqpq97VAEb74KFZ8I1A2HrC8WuzTrXAnjPgtExd/0Hi03fOoZbKb7J6pBvPOwlt7eaEsjN3a/YoMGajahNMJKLzrTNfkN8BFjd7Wy40WUzmMcoRwhxNRIoS3JhHRDDnWwSyMVLS1PDJGt4AwJZFHEjQWVPu2pCj+D1a3/u++A8+Lu9jCekLISuS+xtEU8Csj0C9e0759cLiMpsB1nsdIuzE7ukSHhC42FV9zCW6UHctuL1D+gDcgVKxbcOtKaV/xtHkPHsL63IdsFNOZQkGq3vUG9Gyap/fJpJIIBL/y36SmusCPs2zSUZoGqOgT2i6jXOPtWE6q52By6q0wsQxuhRXhDSSrq3jntxfrx3YiriRonr+CufrNOVBRFRItFLHcTVH+GjEFprFPrFrq46HvqvWOHrOR/NHZYKW+NY1axYfQCuWgS/2bf0TeESFDU6F8rdgd8LdzKIhNJKql6yp9cbFqpQPUGBI1+VOrt/D4aK7sKc8awucEgQR1UMyx1XgAsrFVq7Tx8nwDEp7xdyLLWrDm1j3YEKJgNshZ3zPx22w4bgrmmmsE/HZKxxbhpmBYGhM3rMVsFpElIbEr80iGCANIBNp2DKAV753vv6CbtVID2luxWlXbIndp8Mm0oGBUKjVvJ5di9+2rT9xsKlHf594gvjZhOlWPcU43AQ3wDABkktiprN6EuNzZzV0Sg3gYWu6sb0f/gy/ZPiVYIAnQpjr30TBR0aTVuyD93KprQBLJmQRXvg2b/jV9J4HtkMxobwp2W63eA8ZOMl1LofnnYaLFLIPLI/G0aiVXAaf/W/cvfpW+3jCyWk6Ul0+xc7uONj4o+1iEKyfaPNMLLTSlCrL7d/B1FYRKychvM10EjvMdV7Asov18ZgvmI9StGTBoeldyQ6CCuFO985sqb7YKuJtaPbIJYYCzNCUuUnzlaI0qJaq0hcfCZ3VOABtetVF/Sk7XrNiDPUfnqr5SD0Vav/1pgj+YC0hpJaTnsXvfNvJwwh/lV+QuBl/gIbIWMbaahyyoaaRZKJIMtgGRR3FAyHEXgvGWSxWMTmwoapPZ8bg3rwz12kc+9rBkYKOBQBY5dk8qqsjne1cG0eJiZ8HNikt/KC51KFyNaIeAgAu5ltNg/IvxT4Z1whA9HvW1F+EKLnvM9vnP7oHzFs3tylHa9rl1S20WxA8Jvlj81V97l9yqWmhdKDNFe3Xk7mxNqNi53RiELwxWYgWG7hnBkIacXEUVzCKBI9YzvodDRKit/TZW0Z/IvetSn+wftqSmkG+5/aDWSgB34+AsbVCtai1NPT8ck9lUCC0R0Xc7riAXX7vB5mZitYKGtdDsMrqFS0jdxOV1DJGog5YKBJx+eLmWhs0v5vZoWJiPG8kKQTmPdnzGEqGkIKyXnwfKeEm9Ao75aVAkjlQanTif1RJ39tnCt9UcDa9kzROj1fH4trD/fwbrhDIW8wlPIy5nIUfH3Zx/By0vdDC2chfXvlBRGf82+FeYSH66UNTCfUU+aPZHdfjltlPQVPn7XDN2zzUwUR4j6ur7j4oamNxgivOgZunGpxoF/R1moNIyzSzfZLqC4PyLrq3OgQVTr2YsSxQoWNLzgLPITlJnn+T7zIP/rHK4MLlUj2ZCKhrpzTMRut8tfO6Cjg1SKflQxj1YSJKnoxStC5ApCZdWP6h4wBKUWAqvy2z+mcGV7lKdZImb1PiPtT8DnRxmDbDjwW8M4F4PPggLCCR0mTCnpL/4WISMwjc6J1GpzyLXCbBqfAiWEaADCT7dchcXFCklxLoJRy+LyxYYF5lA870fA8h4G2kDsVsJDyQQB3u9TDz3tJvTl+o71n4r/HvlXnDavzurnQc+FKiHo+jRlSrGwN9DkFA7FuW0Srq5nA0AWpZnMi/yY8L2+ktd9k6ouV+xZ9HYxcM5qO0CXPFf7zPJCCNUh33TWaPfcrE/x0sgeRKYA78kaQXcIB+6UE71HdyCaE3nEtR+rrAD29CKPwzcoudywoIZmajelAHP0xmFqf+gFMdixTb8rng0+vUYeUw5F/9ulJslCt4rIx6KJJX1HedvzPC5qDA5EWkdC0XIHXW9aMHOF1/kYSLGvol1lJbKZcegrwsReOnhXbKj+KwLJIOB5A7ebkVsmnQFpuQpghsfoQT/2XxFaq4vRP3/YrTaxE29XeGo1TSkn4qKhgpEYs9RUslqYiRqC/AGp7ugJjPJ57jhzvE5duo/dDzDE6llm34gjJn5F9ow8mlpjkRqLNDyklG5u/HGTBGIb3GlW4SB6nlD9LI2AjYp/Kh6qi/NkZvBFwTthBObxWCci8yVIEwduuqIpND1jLbmFknGYLtJx26r6907oyKfXFemi4jyHpJnmEjdfJdhF8lgmbv8e9QDSL1qYuT4eXbmjOrm/AN0Cu6BkBd8j0Tm/I0Vshqurs4ZBnW1y7SQbhGAAl1CZt3+ExL2dkSLJf2pBHykCDMlfo/CMd/v9K9hEsw0Z331qAxyjCxd1Q32OCFUs9WNPWSRt0U63qkzplrNftMegAPL7EDfLwOu/2a3sCOeDYgETVMNZ3uEks3qtxdymaLYEfp7CzE8/C6A5/217u2B47lI2qRPE1T+MHz1+BgAG/Mzq4thXFGJZ5Fd42eqbiWa4vE1dAnMRhYjbXcxa5WRGgjoecN+aeY8Nxa3QFgANWPl3QTc3RTg9zmgTsBwi/msdSNTPfm2IycpbcD1esmVDkscLp9krHwOLavFp6u4Oto5h9VjgT7qDqO7yXitXUoIYBaY3kTLAARKK3POb7DcO/E2ZE5qULh498j9hvU6NdpbKhhcGMsgea6xAZ9bOQCpOnQndBaLvSQOy7gQDy1fyxlB4DeujUmw1dR475iP5vfTyVXLEQmmfy8FR7752riIkJRzxnzOrEkN/rz16CLgk1WGh9TXRvSKgsmTQvEQ8ZKK9PVjLC5h0raMLB30euH8bLZmpf7Jcex0OUZTPRodSMIsEsDvksfpxZzirGzbPNDj/mMOPvF5t5ZMVM7F8qrDOGguktIuxKMhU5SgQfkhAYkDQVzGyMxQvf3Yi44GNQ6GbLEzHZEpUFW5CP5DSOjBXYR6o42llEMGqorZXCUNYXRPElwD89dUlWaQve8kBkx0bgqgTiyfwEfZ4b0GU6Po/R2+i8L9bPXpk/yJ1+fqpHH5NhBgLNntB2Nbr6kitdeP0uv8hegCbNMSi86oKBm67pwFHcziac6hvRlXIk1IYIdMuQ2hvaFVdddKGI7wTXD+Wofz5eoLFaR3qHdf+rOYHvBX4uLgehg9N+G+akc3jUWcSaLDchAliwxRUNXyf8mG6+Iq6aELFI4kFFt3kXwgRYzIqpKOR2bySZ5rGtQZKM0nkHrK2NDLGTZ4x7cZNscm2ftUXity1n66FnH3c4N6m8/tNZc9rGRB55/f6iiWgEuDCjWiYRWn20q38m4OLLaUQfe2mY8+KDiVKcbhrkAlmpJgOYKHUfMz26iYsesObT13Dgwv25t/Ni0zyL7EgKn/LWwR5YKaLfLD4BKcPbVAr7n3U8COWyElTKU9DLVtMilMrZUPbXFG5kBvyn87A3ytwUmfQl2oYQLAyNMz7S0BuEbimDcvTeCGmQwQ5p97TyFJKDny3cvDWet+aLzkBbcLPDoULKeKxnrnp3nqxFmMnJlpNJ0En/97EpVB13Rt507K5ixT1riLHvh5UK7ne+z2tpb0SzXkN6wuypWhZceURgUKai04GYonMMGdiFUzklGCDHkq+BieZoOjJtAoC8ajQEostAZSK16a0G6zgS4UrIyj9kvDcuIAI1CTNBTlEvi6JshIX+4KFOFxPikgTQokutInr8yra/q6ZQ7Xi5aNFiKl3tLnsdIxUIEvFbZVE9v81rnlu/kWzN7gqUqxYeKNCbNr2gD5FkPHj7mSYenk4/eud5L2xLvaynd+0K3vpi2kC1kghyiORpbWR5vcAvXmt1lJISnUOzzzE32WgBNiHZEOpCfhu397Vh4rQ06gKQmnEqlTVCabCwE8lijN4AKX6Hz+eoJBi1xtYHBAhjcrIombJMbt9zom66u0ZzbN3FCG0fRqZERZ+VyAVkuASCxgRvp/C27+0QT7N0gkbqlOjSIeEdEoC9tOvdhhBA2/5BgsM8HvtAVVNb0rPEkZeMrWBYqr+aieXTanJeUqAgM88fzr1j5Z1235DeMMz+cElMPpynYNAbbaz2efFdtl65iDPMdtVbKWB3J7wVEGZPxtjDFlc+Y2sgZ+caMk+juhIEsQ8ve8+AIir+oMd2uZxklis3waxDxTSuVbjcq+V1taXgKBywy0DqZwmtXruzn8UTvq53L4U21z/6X784BOWc6MZv8AYwA6hDsHeslPcgFkR2HGHYAutONnJA/mhMiZssy9Ka4my4OHzHWcRd/kxu0ep96lY20FevzLMhS+Im5BGC33G4y1hjnvw1Q9/ieMxmmqTM86oS2thRMYk4c9kOPG/DnXm81R0qpnaFVjhn3AttbPaSl6JE0FEf4EfrZtExFRwp9zicYOf7ty6ZeOI1zjCFnHGche8hnb2iHCYM72USQGNdGgU2K1DxfBIg1kpmx3nUmoF0dRV/o4gfibM6zLu9JDfFZlz9KoDk66B89qM+Twx8iV/1NUOsHpyFtc96vY0q7e9NObXql90HAk5Q+vPPqURZOsXCQI/hncRhQa+PsI5iG9ynq1OKhqiqCeNclrNpAoQ8bj6UC0kTh4nkZMgfMceCXOByjyXgwkt+Ib9Gmdr6kCS3m5v6sClub8NqOMbhRZrup/fz8+f95R4oPF8mD3n75EcTKNRm+tXgcvyMiCTA6sBXYgcE6GZAzufNhmbtPGZXd0Ve/NjBCHg3DtwYad1bHXo8eHNxe8Wr9cFCrRID+i3XlBZeOzvkFORcvCUlpFBPbUSOD1ajUgotGBjESb7zQ/WuToSlqXj2AY5Qb7ekZ5UaPPR9uohj2J6zU+udRPEoy2gsqbfmlx0b5kWiFfvatrivW3muIhHCb34NWHswurIaDHW1Sv7dJw+D7MKDELQSjFk+zPLuOZZ9xIpu9x9lq6/t3t+tviAOHUM1uHBvegT08yldz+ru/KcTaiQuiIJc/E8xaNJgojoUzlgIRGRPXIcb8E0q4kipbb0fDgLEbIPtgO2dSYGLgfUtkRn13+n745nH0keMnKPYKpretmYXPg0DbWVy+YOX40tL+Rvy1fCLXBRiGAaZZRmDYk9yFN6R685X3dQ4YXD56YpgRMGNkVRjIg92dKzQo9DDceT9j1713DrzoY+oPqOmpmH/5uYqQDEv6pQ0UK8hL6QcXWBxhX2PEqhGEloDeDO5HfD4hREIADH7nCBIwptbS33b3/9qhSgtgRxBGNU8UkgVexEz5jMQ8dxf4/482H3CBFhyPJUEIJyN6/06rEUUUAPlsA8eUWBYTOlNWRtKYmIueG7kagMiZVc89WVfE+SeKmcWccaupL1oFeQpCVijAc/7QYNo/lDoh0eGZo3t6uKmF6b3nYd6WIQzMrEoc5vu+bljA8D9qcE+rELpq4sdzS1lDNKFllY1odUH4z7VqDTfKQYJmBet79As1YYU0ezzCt1591NwfZ07iCaQQv2TDC4yOuiQ9aNzjONJJLuHwR5VkqUNlMqa0kyGL4JB7S6mQ7Of4p9vBgxKxRdH7oHVePWVs/hZQidM0igHDAhkp7tst2zZXvLv3Di30FiI9wY0xfYnLqjQb7qTnNPGLAFM8VjJG7EpAzKGkDEu/3ne0DrYajOiHeuhDxf/xSKlotsBEeAotiGMt0jW15yhm1wtAa3hdKwYTy39VzStOPjKVtKTyBhi3BT1zIei44uuXL4+t0R5d6aZtSn4mbntQnxIPQWXK+k7+OBVVQpy1XvZIL9rXHUDeNHkCELHBvJTZ9S/2CkeFq7/KgBYvmvioAOoK+ZakCZpgpsQ6KjghLkOLY68TAkemFh7cTRZHa5Uuqc08A7fYzx86i85Ax7UokIsrPhxm7MOLrjRAxZK61fKhqQEjq5C/JDKqfQ/KnINsdx3DurkpUA1Bx0EAOgrdvIrlh0jLM7mmkkzTaZ67J+n/4oBMg3cVoXQem4yM24fQT3jeDGa9KFfWvVSy1K5+z0VuxdWMZeaeoREdtxt71Pr0r/qrx2y4FbdooutUJRhn2P5V1XlnUEN8Ns1+Q9UjSwLXKBrIlun8TONy4irnYMgt8ehZyNlZUbNKKYTrsoatCUFsSuO4Sx5AFk11LLuvsDwd1TZzvzEnL+msB9WWP4EKgJAL8y2hsXCEQ5bLTrvsEEemzyZHoAgPhcQ+eukTVkguMErUDqg+eAWTLwZ5xWlWs7OpbpGaDiLctn3WYzFvSPyzrO5/4WWtbaSk6Zd/RIvdlZO1jcMf3dZ09/hCIO5XRv6C6b/Qwb7/iLtAdYOJAhGeFX8CK6kxR3T4pKA57znYfkNxmXgpMHqGMqkaNZhMSh6ql5hee9HT2Z4CwLb/rSsYpeTRkCxpjctXwj06AMM7svmGuVJIbb1V/rIPZaZC8mS+w1vEwbhEhQqBgUfKYwqtjyu2+5irYnB8Vk5qYYhH1ZLxUElnF3YfXbDnGkOc8FHhAh2fIx96+jn+T7bDL2xp+AenN6ZBR0HP0v8CUF9s+ULnzBSbmsXA8lL/EZk3QZk8oZLu1xueu8X7nq/5Dgtl+nArCM+IPk9NCFGa9lHjetbAmPcCcM0u7cZN3fT3FMhnM4X0pXHnN+Es12uECnYE0IAekM4uahDry76vbPdk0PZ6pFbFrsdaoJXmgpcY/+f2Mk0C7xC5JxPYlqtz2PL9apNChL+0Jcu2isjxBTC0PpM1ScFPau11crTCzbZWqJnbT84F2ObJdi37OMZvW3YTIFyolEuyyDB6TZLP7SCFzaGF2PN9eSiolamQJsZWF+bTq94T+mHHmJFsbGQQisQ/gihi+yzeJF4GUiuVSKi9YpCUM+G7NrvBz5oBgNiYAim39+hQvf4jIv0h1YB/Hr52jv7Gg94FLJq931CIjHit1aOa6FxganFXF7Xl+juc+5luzgl1DvhqrOg/qdoknLhs9J2vb9giyyXT9OI1PJwDSdDS0F/C7DsN+KbSUNt/GcNwO6DeQ2+bTyRNGPY7Q/YBkWE/ljZXTnBmybROK9M5l0QrOEPVccWf4kVootjiJ7rVK6BDob0pEo1KSCsiOmnXFEvGWcuAMCkIypkEM83zzMMv3zHSqCedx8ZF0+FNTESqvOAptVPAf/jlqMweis9phDqMZP0az4JDeeVPge0p4ebnjFuCO4Co5aThMCDrZlz6JCisE79ChmhddTYvYrBvIDimDrzkqn5dVVa8uYscmVwLSU7FLCvjrKfECWogzX0r+P4sIja09bjV+RqrvgagCI+DDhkye6CpHAQ4ziVDLTvBjKkjPFi2zAiO7a2VjuPU/aImoHQMvOHPEQGaYdagDzgvhWaWrp2dbotfohn+U0aw6mtTb8+wSE/iWkW00nMknNneeGNzVtDoEId793jungklk3BZPFCKtH4VP1tRAOnmSyZy3YRHP69kMQ/s/fgh7zGsIGwwjoTZs9/h0mhgRymBBF/FLhPQOqMZswL+fChWAVb69nVUO0ykg/XNowcUDQRS8bxKYtvGmPw83iknnyuEajkyzv0QH2ofRwq4RgdPTDZHJE7kXUkxSu4Vb5USCIEDRMFIK9/xVLIe5LPxi91yaP3XCamjdVDn/XtT7Lht0rdQ5a7TTBp1jP4H18cyevbfGvL1/gwgb3eWlTeGNWe6K7B3gVzmYRZY9cIX9FRSPpRFBlPPfIwk0lo88YkM3+rgpwBoGvCORh5dScj9eZ5ESz+q86CPUBV1TgHWvMyyMBHCu5hWKLFWfyXBMTR3KgeRkAJLqxcdVyUfNHnEb5J9RyrUXt3O6OLtFT8/OrNlcoZARsYdiHPLkBR903bXtF3cnQLDNzP17AUMfo+2R/ffH+0csbeiKP8oTtp6yjvqI1xEG3OMK4ILPCNu8WnHP0jKgTyT7O97XmBhgW47kI2SRnz9wt2ziHm33xYIJh/rt9l9FuI9nTzupVLS05nWaPmzj5lMZzTUeDVHnPz3tNuuTjvNvM0HLVIC+Hf1fpMPMtY8dWnwsmf868IDYfDLxnGBJmPr5SmtbIUEmy+p7Hvx3Q4WI0zuHYlxrIsMstRXHaJ98ZwCNVlJjE8PCmHuR0xp8HKHXl/JK8uCsGtop30506Eh3kSXx6bwebpLYjYPlj4OdcWwtg3dufS/y2hnESLJqDJ935GUsaTz+lTKiBNJvjRqcgVOua9OH9k9Ff8bVC8GnJ/O62PvxNQSuhEAMwv7c2o01oBlxtn0zA5OG9lbLgs0ZTi6Mc3WZXAfHvAD67t1XOuYDHatfx8i490B2oD3pyZSHFqIhssDWpxp3GKXTgwT7UQZBtQ+PgKTKiUyrhbLlRDgmXVAkjc4cTN+b/KTwPwG8I6mNQQy6pWgQnvDInxNF73nT8P2dOZuVoc/FsN5NvEougbI6oiFoieYpvniS44I5am4/2vUOLj/JWe8+YEoQX2yOGsRPCIfy2M1u+dgDm5g6LcIvNZqREAjaVrEnn9o3K9eBIhagI7EcjE7nrGxi8E8KCnTwpsCBe6NzhfqMknIbRhMQ6MuUgwH6gW53nHz/5NAC8jdQZCUWOhmMg2tQvs3tIqIyq4dE6Nt2a/rnDfoV4rihmFoIFfohn28PbFAtFNa2M+e90GtCWDyL7PmLv7G9JtXsjOAHBP7pAtbQvZsS4EjSsC2OrazW+9FmEZLve3Beeg8kJLecTrW7Jj0111wd077oxBmGTq1yqinQaQ1JmrK+x1XCoHLd3OQZiPh4Xv/6a4bgLZ/b6IHW3is2ieGCOjSRkEMgrl42px1i99C/bWNcpO/9JttUIahsUQ45Yd+ehNaoptvdEuDsUzJpWkhcSv/gvZGlZGolRcezf1yYAR+jL4sRuWv06z1YwmtflVKmgLuKXD7KTK8RPzzpXkmqTtGJ5zGXhAZGcbbpkTCL0w4Y73yvfwgFhxhVTz295B3a+wUY2pYMz1iUTtvWOfmSCyQRckNdvSB5o4vM/JFv3teBehkPzgzPpsVZtS2umGk8W+ReMwJeIPTbGbna3PMBLD9id/3FQ14fnCTxNKq+WiGOdLfy9CGQcZAEPpkWr7YEymDLbMwj+2xwDO2PjgNOkJ7rHj8N0AzN4jRzEiZy62uGRbxaKbTqHwn6snpODyjR9If4mEId/hCZ3Zk6I+dYJThteEX4BltShTgYj/DRyr9TSTEXDaDDhCrLhCJK6LzMjcWs8A8+PXiMek8cj1ROoOdlXgKDVsreav0cTr5juQv2PPALSd+026srEJJgouawFuF9TqYEQy8WOrqZKTIv+WLK38rryVjsbhZkre6EZd2Ko8FlKY7cHnu8bSK+fjtt6aQF1aGLCA5HzNJu5vHxDsOvDoJ3WmQ7+0ebZN5jfg+gFRU8mWK2sZehBSMzh2F976mJeinoUGr8aH5X7oiafOEBL2Knhx6sd6xx1VrnFHQctpRDsSfYy1q+N32YBIvby2Gs+nu1t5CRimqc6z8d6zUxZ7+G2g/NVy3Yts1dDcGjIYJLfxUMCen24hTS7RofoXVmuoOBfPf25k+uQB62j797azTbXK8wz1WsMRfEK9VY/BZXFKxTDEYZffB6jhkJmhCUOm0nBKj+rYhcWgxT0bmjkmMKR6FciN9pG+HURolhSwvGTfK/0M6jL7/aaFVdNUs+4bvXH1rzDKps+S0zg9ldUo/shgG+8CJ2IjAk6mDCLPDC57jTVwF9BnJbotyvKoJH/VPA34YqpFGpofeCo+rL3Hm7D7bOXCRp/wqSBJpsdMwB4STQiuTZ5BIo5mvbNGW74SlHgL7mnGQIOZF730PjudwW4Xr3D43jv6+WUQJkXTZYhgCpK49E8QsSrLUAGK45f3lBHS9ZmpMOuSFN5fD86Nf+T2leFf6LwKRIsJVCh7mJ9HBN+YsEHi6unHkH2OH4k5xhEpRxT8cOnhGNDrOncSHwSf+EN4mfGfvvgVxMeC67O0SttwCWzGWT3t67zF7gbs0tX8CpgD4Lj2JkxI1ptV9u1+YZgnvqVLNEUijWqpFMGYQElFDiEtHF8otYhhTaR/uMjadfz1temuBP5k8wruCWFo44qH7wMT+Z6Rz26/VsckSTgzUpkbN9y34ZCHsfGZW1SJBz+oZzDNiU+xDgNNMjJ310lGS/w1fW7Sxosrv75TvBBWihDv08jdx5YhD6OqDvwVUmMORcCLzsI5pVeF5sS5MTJiulrjG5soPSilkUDo5bj+YF1f99Qa9VTfgfJY8xoBzK6z/7V60bUl6f57FQgvPkqy4JuyOl8/YIEseypT1HzQgTw3jLo2K+bQeZaoy13zf3rXU2P8HcldY/3ga3USfYYOmocagckGrX6OsFYlDs0V+oS3DTz6AROXvADW1PXRdnPb9uoWErVpbz/PhCaMto8HlnCMi33ZJ0FbuMG0LSoqO26mgsGqTfi6jZsdK7WIGEl/zW1PRE3/7QxLDDCDXwunW+JwHRAjLtdSAw0HOLZ44Wasb+oZGXZemQ505DGowMGVzDgTOch7q2YLjqrF9eqY/yw==
Variant 4
DifficultyLevel
700
Question
Carmen is cutting material for a patchwork quilt. The finished quilt will measure 180 cm wide and 196 cm long.
She uses the triangular template that is drawn below.
She covers the area exactly and has no gaps between the pieces.
How many triangular pieces does she need?
Worked Solution
Strategy 1
2 triangles form a 12×7 cm rectangle.
Fitting triangles into quilt measurements:
Width = 12180 = 15 rectangles
Length = 7196 = 28 rectangles
= 2 × (15 × 28)
= 840
Strategy 2
|
|
Area of 1 triangle |
= 21×12×7 |
|
= 42 cm2 |
|
|
∴ Tiles needed |
= (180×196)÷42 |
|
= 840 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Carmen is cutting material for a patchwork quilt. The finished quilt will measure 180 cm wide and 196 cm long.
She uses the triangular template that is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-E4-CA26_2.svg 400 indent vpad
She covers the area exactly and has no gaps between the pieces.
How many triangular pieces does she need? |
workedSolution | Strategy 1
2 triangles form a $\ 12 × 7$ cm rectangle.
Fitting triangles into quilt measurements:
Width = $\dfrac{180}{12}$ = 15 rectangles
Length = $\dfrac{196}{7}$ = 28 rectangles
sm_nogap $\therefore$ Total tiles
>>= 2 × (15 × 28)
>>= {{{correctAnswer}}}
Strategy 2
| | |
| --------------------- | -------------------------------------------- |
| Area of 1 triangle | = $\dfrac{1}{2} \times 12 \times 7$ |
| | = 42 cm$^2$|
| | |
| --------------------- | -------------------------------------------- |
| $\therefore$ Tiles needed | = $(180 \times 196) \div 42$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18yuXAv63D0aiXJCRWYcsYAKSFsKAt6ywptfyt3iUZtcOVSHBJIoTUEEF6VXWWopNNOgV5pT18Nhqh5EQ9KAH4bA6D+jjQGTz/hRK/JehFp2+WXpjlrSu1SZPLIxDx9/8vUl/eKazWhIQF4IpBIgaWyf9weFXcPbRULcidJkOLwL+B+c3ICvKnmcVE6WfDGGUon2bP8ioo+B3X37TnfE75QnEzviN3efxFCOEYaitHHvCH0uDcmtlsR4eblc8epCzT95ZFTSqZih4fbseQ4etMs6rS0pKp+v9BofTgpqCaMYP10KofsgGf7Fp4Zcux1XFaVt+vsNPnMMsgc19LZRoDcZP8Vmq/iCOv/xQyDdoaY/Zh7h/Pq4XXnvr8/tSAnfY2j9r/4MjMsIsJx5kbYKlR1h2coGzNzCNovCy8eIuQpWzlRTsoPOS/ZsebdEFgpfkKdkKixgNMFa4Rcjt586fki3tGHYuKS6kEju2OG88ioltfhs0ylhwqgnKYeNOTosMUYAzWJ7Buqzkm4kdHl8yf3nn6KS3QZ2/r5q/M0Zalebbuq+sePKxkN24zqoNYQ2jhy0H7bvzyLj9UNgILnrluqtU0tKotflkq9n+J6PWpoqnzLrzr6bO3WEHIZm5oXIgPGqRBRwRoWku87JsUhiEEI/kgqLoCMKdvxdQu7R+l2WqRMBkR+kWXaz/MLybgs+T0Tt9dylpzqnOAsQwFC5sUTXPL/ENfxJMhVuA6qkKLk7L40r7J0CzD+Nb94/ctIhtW6d4hssFsKascEW5OF0ZtxNSpeTTiHeHak9VjQ7e2qnaIQ2Qtago6jj2b4iQ5vaxoeelTFHCaxWHuX+ZAG5IYzs3j2Reo6RWKdQNfojl5zza4Eq+pNLdQyaUbYEArq371zVTqBaiQkr4lHNxHs9muzMltMb0CBD+MfDwz/e96v93dN/2Fc8O0W9a9gJ04VEu3FXPDkOXmQeD07oSL9FMQ/rXi+LUE6MkzYiEV4pbWDOxKaTlYFgcUtzs2YIzPraQ+RlJnU/YHmt3krXrTb71hYl3K34Yvrp0jaiTafegcWwH7HtesL9S/NTbPLdB7AKN7idYgq9I9iPWASFBVkdiPYCWZVdrLcJ8J+Q3Z6Bi3gNcmFrgHgze08AcgIYDdh/mAsQxThCVsI2kIoaTEVN8ALj5HFy1XSkDkYPuxdAL2iSHv/p6K+RKhz25iI96MliscHn+PGTahzdn0PaIORwxi8FrZ30ZoEEBRnBOnZtlQI1GKR9Bsz0qwYB4QLRj5eoZ858CuIlS5hrNk08dRTehzxyGlzZKJ7e4/SJINeSqg/bpQzdER38YObRRKePo1FFw+LEqf6hHPZWys+6qU+dvbGqD5s6f2X6sWNK9gm8QGuGAwCrzYs5Ey2eYGnJ/Zis+XTlLEnb0JqYZ6mU1B+5fnRr5xKF7W3/wepxtrDQqh/fOSJX7TJUm20QZPFof1br5HLM5M+swuynTRLGT+TX1KE56OAmMwqhlWGSYN8OVh2dgWAlVl9HawFqbYiLvg+VJPmyKDAcmKvjlGtXFdkqdYKtCHMGCDqLMVePZCVvQtwt+Psbedp86OHESwzM+HX22hrj0VoC092RcBVSWeUlj0rRgdw/zYrXhxeWAn33H9LBKMFJIvR+s7Nd9zbK9aC/eBKzL5M1ZPQ/hJWSEfXHs8Xk8t1PEdA5sW0gaqxVSmX0tBHyhh0KCLTsYFyBgYjNFuaiXVz7Hrd/Y5BEvWuDXPeiqqVoYl8KKc/dqbv8FAOS8z0BTUAXhN/GrIkiilJtvWgWOffrHaMZFj8nMzmaD2if6REeQ2/H5Ua0IqOZk+OZU/8zIl5xKBOOU2RQGfXCxQfXHv89yl9ngAnZhJVqfktJQFLM0a1TaJml2Wyuf8+Nu3VOhGliMhPP+1xJgItIUkmDZodhwvTQLW47d/1s7Qr9+/ZKDvLMdccqqG+cO1Pvuf6nlkAPVD0KIXi3vMvDSO7ZOg7VGAS9zEk5wwWNhVu5D1pNLsAAF8v/xC7TdCwsySVwzmlyl0c1EZocCVSMFwsNGApx9oxJZareM335+CsW+F1vyb7mxh3+KeFQ0ybbc/nynFyS3EckG8DqEzWJFYCQaW5NhtvX9d+HUK2WsgzoX47uXkAfpJmV+u1Tt5JhseqThs/QLmPGc6CQoCKl6NFmUk+YMcq/mSCzD9Umw7mZ1i2lwrJQSfoJordmW82BgdNge3ahiVbDo+6Lv+2p75tlXD0DAWOLO7A9CDbkYu4dsYe2sTjpJjVW2HXMkQFGTQcpyfGuZEuQmwROBuyqXZcuzSLa3qk9gO1MJiahCRpK8LdtSYPkbs3Tr5O+qzemtboOq4Wkwoh39SHHBUusRuNocAixAMcUeqQ6pUxh2M84JP/HRlf+hmhv/DjSX2MMEl5uT1kdNNknAzVB3oirmMOD5GgZDakTVPROK23NwvO7ULmx8qlSSpnQZeLmBJFFEhPGoihsWkWLs6yDcDA5lTVnKX84fogP4eadlZI0Ujj2hPMky7RFZN5ylKLgAyvB/o7RzO5CcnKL/YKVlfLsyJ5YiUuCjTQVdyszoLf0XlYKymcoMgI7+9WpkK/cI0LovSSzBaPnVbkf2Fjpq9/6a0YFP5TWK5yskKwQocqGwJ4f1tlCKJewO0+srgML/gm1U0nzwgIRd1s9DMDfuDH4Gm2jSgjIymKbpAEER/JiuGTYcLZV6fx+Kayq+kKEKD6mcvsPyNWBIi7poy0+lZAK4LxwaNmN3EYLsVeV9s94A+P/JYrotZXWtcoxYzUPux2VFzVEgHyheanNpLVzrLTvVBiRc7YdnuViEMi96SR4+Z44BsasE59aqaYFqzNTuDO3KJzT2+64pZapibxSYH1l3Epr21Hj2elaIUBYz4L9BznSXWcBrzfXh6FzxTAUTgOr2IjAslniiuiVZ7Cns0aMcbqyhgG/nj2coKA1oM3IBJfRivmYtak4eeDThuyIvfiWLuHuOmC4f0yJKNXdJz1HBwhCDO+Ja7YXUmg1DBmqnd1SzbnM7ri8wg3DHA2ECeSn18Vyo8d4GrsNkgxCs2jYyll8iz8MRxfM0woLgDHU0yfbibQgwczSIM87amt/M7d/IXyF52g56caqBxF+bJ9OZ8qCW/B4zaGe2u6Oxkwl8Ek+5h/cugp9E3BvJLSbJKX0AD+QFbA8oIaakE9ZRP+YsybyP4g7Lu2eD6BG+SMivmyy+RdaT/V8DP107WG1x3TTnIfxLNwmS1U/+TEPDVTNg1m/cUvxw+8P2TsUm8EqfO51x1Ld0V59/yLgkQbuYjiyGhirn1mIfyS9AxyP7U/BAXygHSOxuwj9x3SU/GvsJpcPwHyPDlCCjQNEtS5DSfYej5rhCU2LKvaSr6Dm7XQsWQNiwja/x6MHReSEYXa7r9O1AExNHKagIg42gdDpp/EhTnx1QeO8KCvBz6y9KcziMphsyvf7uRsQnmOjMgkv06RYp7dKl4+kIZY44T7NkfsFT2R6XrATlkec2fAfGnzoM06+8KHJTZalte8esXN2vkaDFLMvF6O8GRM2n1nefsxRIbVpQnZxEeR278LibPDIxcnCIZNoLEtPMgdtD0Fje1G63FeWnP5h7NlbrsT6em769miopjWJnvLRWh/q49ayb00BR/CQsEY/1+jiDZx2gd4G3O5DWUh6yn5xpQoR4Y7BeHAT6dHW3V+qcZSc3Q0//oQVlijUlBqKAMErIjQFZncX6/zxjFnRjQRuqarKMMZw/OOL6D4yvMClRawaXpq+zmG5tfDR5l1PW6GJo99zwsPAffrh8nahd3pw2fqw/YJ7fkgfG1dI7ArdEYPj8cOqxAGCiu7p5B/D8V6eVEVlR5fgs9aoGVBoIIcyMpr7+5nTjvrT8UzGM13slnStd1SqsYf+SAyiyqDCnazfGbvkkwKPkRHtYX8fhP061S++1RjaIiB8/4EbqbGNWfBh8c12fVxVRlPcSMv/AF5Q2qw9vj6bq6SMp72ds264oTCeRsgXD75lWsjzdnAUT+BxS94sORfN5QgXPNnNIXExq89O5RHJyZuWRNhWZ1iTUfWIgSH0tApar4VZ6nKf3/0O4wzqmB3nMR41TiHRRtm6Ne+6ed2LEzQ2vos6DNRvinkhu42gCjOcecxa0dHDe/RCjFXmmogZRCZrKU0oTu5OTYdFwsZhaOnRiIAkasfikCDcV/eYW8gYMAHwiR9kOZ5VbzdPX67NrA0GogU8OWwpGitDb8kGGDrj+uqIvu9Iwhk+skgm8iOpJO9M3tBWEu5Lm9+VA6aVDgolmOq96MwZ+Pfj3upK8FrVUACOGNXnKEvOpS7G/3KCHO1aCcUrGIl3Mj4HDaKxnvHEn8FdjtbUBRk6gRGBdchhj+QEEsQ2UQL0+Hq/6tPR5+GkFqFTTqdkM+kN0CSElLThs5n9H4MJuT64lvE70uTYDOd9GSFZRuFCwSdME0wd1WFm0BzVBO0BlskZ4RMKfF67g2T5jMrOPvsOwun6uoCVLLlYyGNDX20fGyRXfxZQf2KQ2/Vz/A+zy50R2bTPVq+i++MNH1jBW7aATCxuXoK9DRsK8Wsc+MDKBwTj4ZI/Yh/kJUZAkUUabR0a0byuVito5I7eMjltliCnXgRtReSBhtdQIz62lL/AYOQMvF9/WJWG3C2MJdiXnrE+OKMs4HPybSvRELNf/qLY0E/KJdNS71d7ujSc75pvcNZIYTtyhDyGoFEuYEp1Vib5kyq5jqZgTJUs2WTO7gIjdioU0R04yqIJP4pWx54AOSv4MnXOlfeCSJjNwDqopw1USm50toUCsl2MXQSsp59AcflVwFo7xHL4kqpT8FBmy/hfHWLKS47IW2xUhL+JWFE7klNvq8hdXsaavuf9FGwboFDrMdQJtHepGkIBbOa5JFTaX0HkCgPCxinUbFBsaBcg74zPHV3FxPgpb1aNpNQO81ZhS10B/ZzIRSxxaz1J4mUgmRoDn0k1LsqdTKUU7qeNGfRhOL4fp14E7I6BOZeI+fej6Yw3oVZoylvnT9Mwr1USTh0w5KwlpFQLWCP3KNVyLHzTRMwgtJ0InMyZ5bkk04Hi44xNdDvqWsq40jpPjwQdbowG0XIsN2jbh+Af95Rj9kX7etSeh4+U8pE8OUKObLyQBvi2qx7WsZsID5Dm6fBh+Uz2F81is3KeZEilkPo0gOxpxhNO3JnT7ex7lXEKmFdKfPvOTa0MOQz5OFf01Tvq1Fx/C2rnfLfqfiRyFvuQX6vjZIfX7E5waxEKunPz+FxCXph0bMtpK2SjJJ9wLsL6TSeW4hvHM8lIhsulFlRJsYtRRXISbomdaiYEqF0fdtDE8AWrcdAGmDNWKzkMHH7k1jCz4/YY2NrNajL4kPSczylHebxEsauAsvrtHJjQvEARMW6aeSxlHoHkPvbae/TqFHL+O4xPglF0WjQZJEc53XQqTyJXM6Lg50BXPDYCDGw1LCq+w8FXGFr1ntjH8xW11Mi4V1AFy5yq15IAsF0e00ElV2tSnbA5FPfI44i/8s6EEAjh8sk5EhwmvITr3g8KBsVHr3srfomMBBKoA0C8XjR/Bo2nLTR8WOU7T/72XZrUF6//7lXfebGDmdYDjduhQGLqHuypvLgLhiS8bohRA0i/C2XlLXX2Xzf4nBVNPXE4zwJTi8JjBk+0/RvWueCBHdYFoX0Zjxw5ibRLFi9In9gYKQlKWweo/QaSEgZSLkFEA/Wzf6Cx7BoRIhtPcEjHdrM43Cf3/Yc2tTIbXzjkBvqRc8IZdGXSIBflH84s5lbie/Xjbxe95Dy7L/1wfAqbGwtREr1/FVt+q1W0DxlgUl695nlybKzFGZZLrAsgNB1Njw/+HF1S7HhyX8brUY5hslHZU0ykTxAy04Byr2azxgsA236esfVyXJ08sZefk7xQ1W4rPj7x6Kw+1UEK0yAODgSZlMwixTdfJdThIiA1aqKUmHAjrTEr8KqDGlyRi/zpbHDrc23G+zhOHuRgh7z8Jq+V3c5pBgyofGx6nMuuXROhC0I+UV0coLFLKwUwYvRiUSnM07+lMOX2gjCG7bIFd5hyzQW01cUUMdsiAwlcMPznxXh3d6cj6o3SF5rSMyJzShMs7vn8iYD3mGggPz47giFvK6N7Iu3ALbQPuhg02Z+XnqGerwNfb7cbaSpWCr1fo5H5+4Ov+N9+gODpimvPV6nqC6I2gREWiQ9GGgJXx9b/nOorYB8Rbd+IddYAzESYbwIM6ve0K/ZKaAJL96dPEVJzDhlzt0i3l2mwZHyksEnghSCuJINX9yxzXVhoC52ZcjItsIGWFZNtdiK0t/bu0L5qrJrAuVrk72vdw7MHcKUY5Lt/XXfVvJ63AoHIKjiHtryN/8UIABN99S95uqIpGVwj+YBy/HRzyphH8B+oZIzzcsHTPjcM7GgGx9afOKuVjrxpyxnAfh6ggFxuW9k6k72r5SlVRKfV19Ymgwk3ImL8r5g1oDTJ+hF4B4jHJK3DoCPDLsWZ1OZCuVuQj41iJgeM11dlU339RCbgs69RLf3h4oYZAyT8g6OQQ7u9FLTm5ehUKaYsJeLHmTVbza9X+jeMUJarAutqd0K9atQPhqTcV3IBEyJr6J1q85/u2HSk/My4DK9ni8huZHfI8paVirXawI3/Tvv4dPBedz2An44D9sr7chpiz7AWaJHeTgkbiC6Gbkqzk+GsreyrLdTCNq7KiGYsvreni+0jGoS2wXMfGSoBCAirewKuaoJLXErXf5kueKSV6aPyVjlfP/hpKNQLCWV8p3jVkb07sGBD6fs0MTtwTGRQIoaPODaqJv6YjA2XAF1VxEaMupFSGGtecz6IFVGznK77yRIzagBRCdZ9elg6duHr9NGq3wRwnQTt4O3H++r+7sNhQUfqwIrRltcD0N5ifAxJHd9Wqwo7b5Mk5Hp9dZmODbJP1/rtNEhOFxhB6yPXMNNwV+1yPclnTJzhw9+Y7GpAnM3XpiqN+ssK6J1mWXT1eR9quDIFDydTKf3gSJBVA4k9fpKqnN2dmsmwszX+5jw47UqbmPoV1MWA2GNhRzvL9Kl9sIAhmRTqqdgKWZvgLgZyG/EuFrTWKvNAqHnfp05raJleE9oIwGaWR3VSrx3e6EB8X7IgaLcdNMkWsPflh1WUOcL35fQTISIhLbwgbDRzTVzJ1vcK2KJY7wrbieWLzs6gHKgGgEUYZZzprQb/Tcle2I0T823oFMASBNcqiYo3GA64fp0HbpJkN2l+uTUXmn2xWfEgfD5fjw29ZZnH2qDVYCaZZnaVk3/SjWDlEzkTA2oiszuwkESyNA0jAmzH4tz0e9FTQenecgDD9xUeRo2wK6yPBAOpBXSli50PkxGmfBGVSh/C3D4SaDJNDSgcSRWgSGslT2Io9YZX8NVFTNrAzsEA0DNuzDENBz1I7jX/lddyTW1YfDjwSx3wkVa9zkowPeDr34napTtvutPsxop4XAY97EVBDrxGbfYex3iOlm4Hxp3IJSOquJcS3BjgVOlmfrwrWiXq8PxQzXbbK8viALEVtpOD/kcxoOtxof4sUsjZMyYishJYfuB0oeD/5hACUrDuCDYerqNOtWSj9EFblF6C4Fylgbor4RIK6oj1XrIb5tRaEF410C2EsN5PoEietgHrt97tS5pqaR0TeC9297DoRJUbCBBZQ3HCeTHrms9UZetZLyDBxWVdYGtwXP3FilsaY2xV/xREt3s5CV4LecQxLNb5uKj+m8/p00ZMN97Gki8y7FZMIO7PuuyjiK2Ha3R5oHaMYA/yCf1TMyFlwzbhbLExJ161WZAXD1DQhFyD+ycmJRC7L+6ePXkNmqL1i7hBZynHTQIg6tH3z7k/bzFAVwaBMUmup6rajxNqpUfS0jeZav/8IvN51JkFDQD0CbECJwNSRElIzkMy3MT1beVVpDwh/KkbglAIrBs20z5zuENrk8tCJo5Y2NE8V4rOonY/UoixqFIuGWlNvJaJXXJpXNVpbhrDfNiw5/ZPEzOZwCP6ImYRfGIkGQ7kTOEdStAn+m2PCg6kUrNm/Kz7/JunTLDj7sA9OT6a9gqraKdsFEKmJIeUu7akH2vQeo+WW4/knyKfcWR1wBRg2j58oBQAo6iWk+0kez2xUXAT+QJV71IRUqdh6GUSyJAxJEIavMlAK63ntoBewsV6bsih1GbZosUafn64n8ofVDpBmH3qKU4Cb0xSxvy9v1OQu6j5mhkZRmypiJnLILW+c3JisRv3lQK3NlyY3CFWup0r8smdnFhnhIj9x/kXuHF8KC/w2can0jEzfLky+PKzbIF+giWkDwLFVHYedd+AJ6QQf7jwynDDcS/RgdWjsEghQ8rfmSd7Ra8Nge7YIfJkU/Jg6fDcmSRiRM9EbxcehOL1XfC/HimTZ0zo2KrLc9s/hMfGKIfSqLADyzO6nNufF2yYvpqpEg/jUPL4bxxUfTHqpkRYySGYDWyTVrGaZ+U39dZJUpWP03y3QI1Z6eE09uwkguvoEP/QPpRAl0nyRBMI86rw/1JRcl2J+SbB4rJwial2xCoGzRVK2CECtQjyPhMfmtScEPhP0GGdNhOdxGB/Bsaebvlu75JDlHLFzQjcvTanpUVajoYCsk08JuMsB+d+1F+YecF1Tjwp1MnQ+aBBOMj/cr4YSinhbjIdh0RFmkcy7SPFwJ2J/dTOQh3tYfvQqkRdTMNo2UnpXLy7EoHK2aS8u6FPzumGaVY7H3ycWIZgOTW9FxiMI7hxXxv6znf+GMfMrCpZ2crbbvXM7rGniPOrz0aH1EPpETwls5Hi8Xo0JU8a4lStKJm/wp125NkbWmmXwoG2wz8NRaeYUyRBx72zRuHRO+Utz03ZtOU6a3csJ3POaShbbRjUiByYdfsh0xiHi+Y9oMU2NGvenDjizqpP0xNfy5Jd2LqCQV7SA1lL8UQ8dbk6XMHPZ+B1PzHldtfElYzYxF4NQgzsxJzU3cGzHgAA87fFdkGvEz7kJqBmSo5lPt8/wlaJOtXdEGVlRIEgKbYqJ/b+5fmT7/UJVaDO1y13jKO1+fr2qSpwPcE+NqYzKR52eIvEASQD1hxM005fJ3V5A0iMfb4vT4y92TO3ZfNuQMVDtwBwWqraWWzdaVyA39YlVz1MBCiUOmG/1P5Vk3pLG6jOzVbeHboN0S8ZkC9exRW4U6utkoJ84qgIa4xMSnDtYAWKORF8O/FBpGM0zjD0iYGCuAyXIzKKTKj99gVv8erptgwUl0d8b+ujDg7Svq/7r1wYfFWIe32G05wynHGqbaFCn8hHtEhCRAsbw3EWVz+KxYsHTx11qr8s5hlXol/0SbWuTRRtZt4ucPzyprTP9lVcTeKEHcj7wx3nYfFb+XhgKts5z7gSrXTZ03NI1CZ5MrYFTxjQAQcpt+I3JUAcoRu9ZzhDRe4hvCp9gLpNi6PT45LF1p2PcG+GIGMtXy4zdDqlFlxPSONOw8HFlgY+oMguaP5mfHggt4GthEKR1EqPmX+kaDcowTHdcwbJD8ouCR4AEMQoXYaDqnVY0Ae6irynz2J1MVMW/cfb3kgrzQ43RRVCn6g+GbaCldZejxoCMnbxd4J9cdP3SjPrm6ymiHUNj/ckqdDFwpM7St2J4zTidyX0WYSJcOVjviXiELzQYzFpxIN2ySCv820+SfSgLrj0ADdLZm5s7q+CFWmRjgfEKBb7S8rR0+iyAdHcq4GiQXWyvMjh+xeLe0Xngp2Rz/bNt1FyOUK5ZfnnUbxTwRbOrVltzcTdIAg/VNVpgvJyu4hwC3cAkEI5FY0YPOi6ESpJXLKZq0SB6DyxjpPxm5EyazpmHVq0MoxWDU50skq93PPicAICO0hGIMSrKT3unjdBZZRJHBfD4CcoSrkVlR5AN/8GWm4Pz21nvcMyzqSjgsi31BoJVJkmkPk0PQPcEKe3+oEf4smDzYfQ/E48BLI3XRrVUw12KpoQ8WRat9e6XIMc+VZy5sPstMQYB6JP7u46qfxHo7Thb+D8uu0G4uHbCwJY9HukcDM38oqaOoZRoQ621VW0meMUCMmUmugUnCqaTZF9Hbe2/2APHBrBVbO5Vxwbg6JUBW3C0nL8lHCtzoYW/G41EfftUTJWFBS5ftp3TceEViErzPdaZW22SA5yMJJNUHwxdYemM2wqwtOY9ZksiWlN6JK54YIW9M2WcngqlBMFgd1QA3LqQnnDwCPIIoMRCLIp39n/tvoBew+5kTw/Kv/6F3XXUCbnu4jFo5ia+sFe/e6a77Wguw9yX62ooSiKpA9virite4/quauxsbmr12BRVy/R857ugHUzgXmBUGWk1jT4QbefeBzyMeK5w7fuuRjw8Y2dBOYxTIV75Qe9X1pqE6A1ylipTmnAtoj+w/PDVsvq1XGMJTsNSkJm1nCvk/2L0FicY/ZVoKXhYLUCMeXfZf6kHsP0uLCLumaeOGib2DC0t9ENXBNQbrPrXsPV+8OfYaqIpdR8eREV++Xk0Jl9XgOERPEPo8wi7mJRySMwVezP09vnBpeIfSIGHXE4Bd0PE9SAvTqBv0f5AvEWgPcJzjbn7D4eAaZGPHjuM/VqG+ctswQm6gk5hWQminnL2S8V91dVW9hu/nJuioGebshuHAh/fWAJpsFGIxPXd3GAr4bUpfiduUkOCegfmeHMK1Z6UgG2azVS1qBPF04t+3RBEjQ5qmOfZ3tbGxrgurWOuqUoCs3fsAhxEO670cQUVS+YL615Ztn3KMNXxD+tcjkjxdmHeJwmR/uyQ9Df/97v4h21+uYQvO+wdyiGiR8mv9kEiF7mAW+L5kakwOqJdMJcpYhX1hpWkgVLWBsTZXIXOmNVJ/3KE2UPv2lZPw6otQKvcubc0IFZQZxIPtqgbwXQ+C4pF23w17AjMPGZc2IEFzGmpUNsWkLIx7iE+XHXVvoWHy8H21D0sc9IIAVZtkzXx6VDO+3WOPXB6gY+al5uQH/iYWnhjTZq29I+V4MlSJiMqyzQxdrrF2m4Xb3zSFaqpi9f9vdhcOrOasZO3YVdB5szG+VGsKslJZPzyJgNPFZmk/jmJ+jcOVVBTjjeRIRUDi2Zvnm15Btc3CoynS1ajiy91yMSOMzyvZHl8R7M4ETrPWE76Om/KJ6bs2LKexTEun6VS6EBqVvfnUWfsp2bzIxCbp2y+Pf4+KNeLfTiLYrumgeDTF4RoVv5mQmyhUHsMlIG+O+ypMoFNwXYzK3QYYNIGlLezHXhsVqkTz7XUXtLDL5h2pluocTIyX5CNl00Sp8PrL1DZTYfbWuxa15dqV+bb7N85jfiwTHS8lFgqCl+16+0Gqj1A2LjiG/5fGFUlmLmrx0pJEnUZKzWV5n6PSCtOLapHLuXkiTilwLAxyAYJuhSamAu5KD8ZiITh5ZBDj4IVNcNvJ6vikjt8GMemAsPUcDn98ydKJbdIVm72qyJJ+zFpsuZtS8/g6s5AswSUw20mowzEx94gJXrnQ34nhJ261wxlGkg35qQx62u5tKi8nD9kXXvpAcKb6UWXv37UeNrH6NB/dJid2MmGuK2Rx6TTvoKfDObZpd66ZFQiA2HtFv4MQrAVx+plU/T2UHHnVzdEgo8JcX5JrflLdetofmkY4dgky7GK/vzG+61+BnPecm8br+jCI0luJHf2anwVBnZdKUD4005cxdcep0yR6TyS1eao5n7Ytt41aAUAy8l0p1A7cDMZB6zkaY87G79xIP+B3K2p8/t2FTOt7XE07hU3+udE3O3BS6w7pkXKZNddBZMhX+Xs3b7VBXYHO61sNU4+Wx6e+fLsJE82Mfq0qQZu33hU1/Mz6EHEKIZLoyHQoncTqeYCpUnAsxHrc5WlYJT8zhbVHBaY1my5dnGkO6B3aKUA1D+YmTQTOXpe6Qhl67anGbkRk7K+Gy5VXjq23dETOEHp+E7m+NSAj9HgloP+mhDa7/M1LK4jrCKHGveIym2dZr7v/3XCs1fadqI5Gnhy7ejJT+3v+U398av9/rxMyZ33mv6PkowxT52T8TepESBLKB5Tid76ylnzg4x8v0nFIlPikD8pTSeSrNjuBJcZdbubWtc/jWYrS1dSElAP5mEL30IrAI1mK+3DajjGFVYrsldkF7X7qK/XJulUVYjRudJVoI0Ej05AYb9BL78u6cpQIRyIg9usag1rwW10UvuI1EGVr82ghtLiZzobw+LZ6xNPx/PzDTtUAaB28At/4LzP3hBZkAMrjqlq4nGoVpWfF0duSeIx+E3GnUN90DnTrRIiqlpZaDInyiXdjdE0j/ZpVubgukxPhdc/9MKq4feN0LeuJC0GX/16CejRrzVOkC+WgdvO+SexkyW4T5EtTWRDChAmgpvWFUPii97lCufWzLvAczXyJHobYH/OGNk4BseLFGH9OV2AvyNGAQfvZQ4Pf2aEpZkgLmciAjy6Dqff4Lut/Urm9/lPCWkIhMpc8vieXp+oU/S+jM/4NF7KZ3pI64RiYZqYcVdOcPg61nEHDhoHGIPOXnpHWdaHXiOjd0ZzTENQgqN2Gj1luKJ3T2JCxFMMajRjYL0EY25noVBdDAmuGwnGbuhlN9ifkHYednjMwKmYc5bFo6hzPaC6bFdU/IMaGENxVUJT0RpvVzF8T/cXTMl3qyS3NR5d6EMhasgXErKIs6yH5fsHGN8/aZfppd7LqfvSkx/rVxqFKNTYei263LCX8jbs22vcd4z1O+HwpTZa3rHsq8i+nXpDv4vsdcXBBqqUHbIMRoOnZIApjI+7BhGbugnWgGDBq6yr1uibiryC6UwegV0KMC04xO29+VhxmlyVpOo93Gm1QV/2P+bBs9Ixa86Y3ZhG8U4F4ESB8KeWw6eYdGd27gG2eChnlDx8o7MF7gVpjXwq3wFutGsRhgVQI1nPB/FszOoQEW5id8FXC1krqgPF9xdEY3FLVCOYANacdwBzO+ar8XlleCceK2MHOBR768VvmBPqpLDF1a2+cN+7rw+mkr8iKX7ukTKtz50cMvNtuhhqPIX2h3kCsP0uaa00Q+sxza7IAJSIIyBpa/+M3oAkVcTLm9AIuQNg05fAFfxu4sqRjadw8WR9LfpGbTv7KynN9JHlxUPpryRy6CEOWXcAJAQ80dysmOJccjXolZIt2xN48pPvFuVYpUIealj2M5wPg2Ow0BY99H68d5Zb8FgTaY9uz/Sl4NtMzWBMgHnvlA/EVKXbKNXoK/IoWWRI3tIZGI/p+WAakT+s0MhkjeDVWS6QKHp0nltB2582HZcSLTWTKPbPb/rJK9+2KtyGfHrwaptroNVqkQxE7TqnieerzWj5DBNcCIsOiTQgoOcP9xQ4VxnyN20+QvLzimJzwefjCcFiKbxOG7agMKmWNnk86UxeqzzBKCesFk0Xuqmh3kv4tEa/WrCvwmV5fSIQwAkcVpa7S/EXivQ7Q4swokfggW0T693Y2HHXEH/0yAlTjPWFHnnUCCL1kGzPFDS265u7sjKcSmoUFBgNvLCxYszIB30JKiYY6QTD4fHufOf9jELLXHfZ/FFPxBy/82BcvGdaDljcVZmwFc3wNqmDkO/S8KFeXiUrpJimunp916koHZFAWkVXBeLjwjf67CpvlOmF5wXLIFi4PJh6V5HVX1YrAdvs7axE3Mk4G4pbIJ77ZP5aZgv80XjEeQi5FX5VdOOThzeVWxTvIkyoF9UGWAPiON8i82Anb8+K8xxzpTH/rXnavnSAumtbpQkCrgosQpySL30Zl1itZhWZxzj0jOfA5vAfIg68jThPPemsmNngmAhU/vo4wPc6fIT8LbVsnvkeEpCPn9++YW9OYhkzgk9rywadxmFHOQs4xD8E7TJeCZS7umd1DIXRf9d5mqVdkxGZ430ImCW8WP/IlugLsPU7twrRq3x5GSqWaaXj0GmOUefT0ooN2QF0MWjnI+Vi4HPLf45Z6/Ut3yGJi12Hf0EhA1eblivdNYjXJB5YdNiCHtks/Uoixt5xaLwHA/ApjiIEmwSsFxJP0moRdMkkwe8eQISy1AH2HNR961oFKYErSh55w8rXZoPM63nnG8tRBncMIkaLOKh6aX82bwHx4jnRi81yVZhVNLF2v18iqxdgKmeoyj6DkjVX6OTGgKr0hlXegUoeeL2/i+Xn02TMMocC2gttu7BrUA5rlm1ya9f88nPCLyfW/ZrGOk0Qx4bJlCJJ5iAFEHLshtlJlAV256dkmrHBoT2/jcnbDPzTqnp7ChmN6cwWzyh2z4A1DlQqptot2J/VP22nTVZgDkySm+6DERoRABQQJxNquHDVZjAzqvnscmEMT2sc4DxeX7Y4SLE4IbIozKZ6Za6gUtVZ7D+ZGq1jZInPX+diNeCuXESCOIpsD5kATRpu8KysgE4e0HSOQY/lUIdfIWtVeCstXcm/6X25fCavp40qCDjmvgICEZpfAuIy2ihYcwEvEwB4pYUCsz2z6vWpIrW0zBSUG5XCNgYDn/bwzCeeOETJxHG0n8gzCZ7Q+7GVQdBeqbtsmNoJnaEZkGxGyy+XRnb81sXX0hJKdpFXt7lHDwBGhyhtyRAirBSkkXQ93AQnwZDgPevlW0y+FdBRimufHVQg8nlisb7xh0KFPRez0bEad/FPzRNFRQScJs8RK2YNPkMnbP+PsGsSrQd8/iuz6b79Btt09A/5TBmyYHaSV9S4OxYKTG1L34FmeJWTSPBT8AieX8pWzzaD0qBQlHPvHcDW1akEiTHOCiuh7cLh4mWghn2AFqwF5hx3B1umgsefT89lU5SjcIcraYJB/f8pO8CwYLhioMYTDMvmLH3aqcfJ0fhalSA9fRDRtJoolCtD22RfFjJQbu
Variant 5
DifficultyLevel
708
Question
Bernice is tiling a mural that is 330 cm wide and 450 cm high.
She uses the triangular wall tile that is drawn below.
She uses all of her tiles and has no gaps between them.
How many tiles does she need?
Worked Solution
Strategy 1
2 tiles form a 15×5 cm rectangle.
Fitting tiles into floor plan:
Width = 15330 = 22 rectangles
Length = 5450 = 90 rectangles
= 2 × (22 × 90)
= 3960
Strategy 2
|
|
Area of 1 triangle |
= 21×15×5 |
|
= 37.5 cm2 |
|
|
∴ Tiles needed |
= (330×450)÷37.5 |
|
= 3960 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bernice is tiling a mural that is 330 cm wide and 450 cm high.
She uses the triangular wall tile that is drawn below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX-E4-CA26_1.svg 400 indent vpad
She uses all of her tiles and has no gaps between them.
How many tiles does she need? |
workedSolution | Strategy 1
2 tiles form a $\ 15 × 5$ cm rectangle.
Fitting tiles into floor plan:
Width = $\dfrac{330}{15}$ = 22 rectangles
Length = $\dfrac{450}{5}$ = 90 rectangles
sm_nogap $\therefore$ Total tiles
>>= 2 × (22 × 90)
>>= {{{correctAnswer}}}
Strategy 2
| | |
| --------------------- | -------------------------------------------- |
| Area of 1 triangle | = $\dfrac{1}{2} \times 15 \times 5$ |
| | = 37.5 cm$^2$|
| | |
| --------------------- | -------------------------------------------- |
| $\therefore$ Tiles needed | = $(330 \times 450) \div 37.5$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers