30244
Question
{{part1}}
{{image1}}
{{part2}}
Worked Solution
U2FsdGVkX1/GR+78MNY/sBH+yyv6ioQM4OE09uV/nQQ7U8NMwB5+yKWX6hC19KIiaTxgSEnaTWK1xtSBxPfxbYKkjPz51YEAGPQ9jqFEY9+7F9Q9z5BC149jVxWTSVUvokdgLZzcxXcJHH6w14suO4KB09kMnMbpp2X+ApQU1GaJLniA3byZ6ZIRADQLsI9U+P481NEdTv0llq5SYqCTwv3/L34ok1CrlCDGKJ32SrLeK1joZ3QBBa6CPDxnnkmg4UTE26OYZA9gHjVYb+Kc+8aj+zyHIAB560Qnc7dkoy64+q04iKsnFTN8b973hROnwBb5oapTgDjdf+DppUIH3Wk/ydPk+RNPVuo9Pa+Ip12Oqe18B2+gjT+E4GMisDJUQuR6tp4R11SR9iW348oY46pBQM8c2R+fDjzn5dfx2+0Zf9wnk0UmCucb3nbfH+xp3WP2JkuAvkmPcN17QJEZjSP/H+/NqdT0AhJENdnkjz6/oSXo9ciRddKBM5ulqeRA4/TUe6Cux8CwnJ4H21xt7FR4hw15GVUp/PM8PTkys1N8fCnmydbIX2eqOyJtIYwazi8K+sLBlTz2hqpZIx7JxyMHy+M4PsZp5IdSthwe3SM5mYeqCBC4vfSsAkdl7UEKRPSu36nOqEyuNqdMqI82PHMi6vXm2LAQxrAP0xn2zkoIEKVZkaadHOHw1+696zh4iu1zV3TmQ4TVQl62hIAvzkEizkX/lZX7aKpfjOUsxKGF+Ke+1+GJRyk4SWy1DdfAzyh6GyblB62j2zqua6fRBpihBpIP9Pc6ZHL9bK+bX7owmc4va1CowC4LZaTE58Fq/LXuqT1WRhkbFa2UymtqnTV4J+8EkR50xzS2YdkWQuao3C0VjziNus8iqIYEkY78wp+W7MhXNIywOCU0LSLa+inVnYdovH4tRp5yv2RH0Rumml5GNd1IfLa5qJ97aDKAzyMWqFJBQC7wM2uvSNcJsRSzbhOljtFpHVbkCuFy10KxCCEGOnQa9aE2VS3BK4x9A8An3XcWxb0Eq2E8YOYsL4l0Jvy6pPHA3Yvzh846H8fA3jnKSWYPGfW05ssA4gKYdamMbd3ViWlQPWrU3NL7wEBSd5EXzsNhODmlkqCa1AUkV9du0K082CgvQGB226BRbNch7acEDTKeKu6wIFRURiEW4ezPdwM6geaMDpTH2kPfo2eKVSxwf7LrGl+IlL6Sgwdp99b3kGug8JrPOxhb05F4I7y71h7maddi9Uor2JQD0QPEJHQr1FNeStZ6BdEmSEWPaZVZLsGpWNRGXn8K59KNVakrzFsZ3qfsJuUms8vWCQ4TCuroIlplqa/8OfspW+Nbu0x6BXekDTWo8ZhfqJ8Ya6AkKDfwroH+MrBreyXUJ2nui8qQ3gt+wHn/VVLALHCqQTCZ4+eEev2mx1f362wzMtoSfKq6T4rlkv6OTj3XjArejzF7ArZaDuAXsyiIMFqkJOlyccDX06pN0KfqJ9VNGgv8o7FFlp6WLnTCRB8IEf3Bs7n3hP3lFKoM0k9puHm0E9k1ybutvxS7PV1j64xDN1uKNxX47/pPJhCi4n1cEnQuiRwbSGd653h4Oef/nuDtBB7VmWLn0o4xGc+ugtJnpDdefIeiQkDiT2VvVnjNnUDl9a5/3LQDaGpRiu1HVikztohbivWBrHB7FHaup+dkZpgrHjMHAA9hp0HClz1nG2QsHb2oaSA8T1utHcLJWS2gi5bdGClflJrWAR050mkk14WcFKYhRKHJvEB6XqtUw1l1Q+a93GlXHGfw80t1JoN0CfomRNUZ0bEL9yx76kBU1yHFzdTODPBjqTmUQwXxo9sRYdtfwKHSX/FFIDFqE7LLD8fYP591NYbvTD44JnTBBJCo5Egd17BwHFGOf0rYeNRETpr8VYsfSZbfvv0FESLo6EZdybc55mXYVREgmZT7pe1BxaamzQ7B/+MfElczgFiuxTYiUNNUq9N50grnyes8+oMlguG+KgPrs4pNi6bDveU2IFJ/uVhVttaueRX3uDxur3wxRcqn7MEqMpxOuWponERRBd/BFaatlB31DL/Iz2sCuMFLfaWOJMl1fWs9gaLH6hfBiNWM82oarue4VXsMUGbok84kgaCosNNCjdo6MspLIBRLnOJJEkEQUsOEKJ5QgmlCaTpweimfde8nf8W1x57a/SbSfOfpUGlOzqh2uD4rnkLcrMAr97dbRrVXL8bigPGVsq12oGvXOw0wb1LPo40+7f5U8pbBrjw5cazV80wKjlUJbpq1FrC1WGcAJGw1R0Kb9/c2mH5SwQRLwpZ748epmGfO2HmLcak60M6I4Rs8b4uF4pqG62+4hNSb5o3Gls2gw5sFdBiEqY52d/ycVSKVvkJ8i9WthYUuTPopN/NWanlZrldKjLGKBvWr6Ai86+yGmEO8h2Ifi10YEARrWZiGCtbdoVth2LooXx/w4piYtm035udcDA2msAV3sIXJeI781UaBfovzqmGBZxsPxDTr/i+DpkONevQx8HPekiYgQtFq9OyT6lGct1M3kfwdz3y5q23bc+FN/+pV3lmrzW6b57mso8SUVUKkblo5/a+lEnpX7Tq4ZprSHT1tRanXaG5cGJxRZ+np72uewRhfG0ZQ3bfGFSvucAvH4DsO1xTakQj690BZUfmcXsbeUvmEZ4oER38ARtXkVENa0joCT5xvchAqhXW3LvdhDo2ZpCaazPj05+plJwWcfFE/6Nkj+XKCKXk5sgjLdPNfRtjCdtt+UXQac/nOhZEuLZp6uF1z/Wl6TbWv1XkRvWF2A4Zt0syEXRbPYRvbeVCdt052G0KdeKxpZcNqiUkEgKXV1rjqy8wH2wyX1uIAoMvJ5Or4QMtiweJsYaKNBb1u/NlvJWDwGMXWqWsfrCV5jgGfo4kRWI2MIzKDFD+ZsfFpCspFB0pzke8A+zzQorbo8gEbdNYPB3p5oQhu3PVfnXR5DSa55r0qDcCnQCAAPtXoqBm5qQflbzJMBBv8BdzAa0lJ+tv0JvaQaQ+P4GBzVDqfjsFDNWmoXHPi80c++dcBEMCUp6hl/Xq3RLn+1tMLVMaUm74cbA0IubTIIXQDvPTUdGJ8xhR8YE+DFFOKmPGHi2xAi1fgIXbEoRfEHNF26R81KVi5n92CU3qBvlMD1aiI3ZfYN32TowrySscqlHpPmwSb7tGuKbiBfrdfwjFyhKeRujSuAkweo4I/lXSbWWO2FWwKo+3M+Jh582SxgBKxC7eQWn0UB8n142GQdcesVvxcAm0wBofY4RT0bd/iw/gIuNQyK0UurWy4QWIgUz8bFENDhR+4f9E6YXrj3xC7WsQoEZvs+aaCFTG0A+2RJBdgP5n72+vkS/iEVxvlc2wc0f33Y1Dzf6LmM63wmxTzSdQf0VRTKkeUnvAWDlsAcf3wGHvPAG3sZKM3NGCNORiHXyiBk9Fqxd0WKsBGramtSJvGzPDw5F+ahdcIlRbZUMLTYbCz/cIFEieNQf0zHHittutf3TFJbnZaDcuQZG9/xhwg3FMp/KVTxQ8kbNewECrphEmQpPhihkyuDL/ZX9JnFMmYWYOd3PBBqwrNw8Yq/80DjRMkMvfkmzbjXNYgSAJm9olvzMZWNPYcKNziqnXZT76emt7mK9IbMu7JfbaqVdPEp5Ic5p09trR52dQSCZBSoKgTVzOQkcqqEwKookoi5TZAhYfKWcqkSJ/FLR1wpbGNWEMtrP0XBVHKeAeQdlFpq08rc/G/hlZpFJDOftjFuZj+/x1QsOdsipSlEwXhsfmgKLbq/0ArUvC2MjksFzXWka4mm2WW/IRFESBmo8bFRm8wrSPSckci7IQ78+2oMVpBrfOfwukycXt/gQdmJcsf8qjwkDAC8R22e+FbZrdAFDaeCakMFluK1z4/qrNKKODJeycichaarNLvu1E/scQH2ikGi/FK2vZP06ndsxYmgA1aGW/JZeu6J7my9LHRbUeE1cFrOz5ebehQbcGAFpmkp7XEDCIYj08FXW/TQ85noUj+Xn/43AuZzVmq8pO0ubAC00kIehJIxuPJ45n0lrxTQzsCURS6Wye2u2uztvxp90m3yV50D7XP+9+DdfzE23fshHZa2iPtEjX3mPhDBMTpXdNtyZqXSUz61WOhmAOmPbNjypUu+DKcbXh2tnFU/iez3vqKs513UAojCPzxhQ3c+XuKOMSYD+jwnaHk1gA32exy8fdLr+woQ5xkxs6t3o67OGYVHen4M6srAmd24QxNvB2mDOBABx2ArN5rHiyki7Jos95z303ZhrQblke+hgF2gVrX49mx+u4e2kC8WC4vUTksv/nDNC9S7XSwPhxZcbi2iGj6zprul8J9Wld4cF4zlOjIzf+iPdOHiQ4ToLpeJQh2hi5ODLernSD53YCdn/3JXTMoyxXigSeQ/KfX9hZCOPjzEDpNZfhwOBIT20XMvarQ0LasHVL6V8IaF1Tcj2Sjj9nnRDC5INtHoWQwB51vzNOzu3RM1Fnu1gPW5M3sVkpdcaKTatpT4P/hwXiXT9jfvZrXTQgRywqynVd5ysi+1HktaNVTnTvRn/pzSbioDNuyaRVtWRq47Wbnk03fBK+uPgQfgoh6W79UeFwYCazAMSrbv8duNewkpPn17yhUe9qqnQCrFCyNY1+OHNTSx8rOhjZCmNiVFjsoNJZg9K25fMqiRXGxEgVi6ktMg8hN7Ce7i/tYZwXn/OAgaHphXqeLmG1xGeHM6bHzICMfhHxH6xXq1gfheiWi79esIu7KFJHklC36aWFxmdY5q/oe9+PLi6BsgzdeLeGJDwWiqacR3FXBHDfCGic2W0oNaJOqqrHpeJW80AH/iDQrlXsIzrcK6Ev9SRPHsKAxU6qI0otGcI6PmzNzcwgIlwO2JgK1wZvv0+NTcHxNK/DcX7zCB1DB4Q2WhkA08MbIqgtAJMZ/mPdTqz1ZoyqmgKxBpInRvF4/ko966IryTh8WIAV8qfhZLquJCVP35Yc8JUqCoh+ZZVJYYRzXfcWz5zMSd17BDGb9mYVHFySJJa9wgl6pyEpSrhNSFGAFZC8DrZaC/E62dgAo86iiva47/4PP0TSPTwn0hO1fqk2wwvG+ysb5I+VLauctZbL6e538mGvp39lvLP8Ibc6w+xcgcxPanXgZ/fsI3Ou8bZHHLgHt+I/S82OOCeHAv1qo3sckz2EIb4zMDVH2rftwNwsUwCZdWs0YrzDfisioDC4Xd5XihZUxyT+JUV6JmHN98pgc6A1veaV2zTR6GfAfhdKNA6desNkQjolARxYxkn68AWtbfQTXMIwHDuY1Nvc805q72RnTc3v2HhkQomO2MhQrx1+/3rgC1RiLuWfR4/BdFCO9gRaaXe4NJS5MrMiBasl/kQ5DHnZwC36Ko+JQVElOk+LoT7ZR24HZnlrX0nIDC/zMxMRehEKZNAEs5Rd5sYguFhHwLPn42cp+hOKZYjqfqnL2KL6OTiAvPSHrw1m+XXq9G5PK6OmHi1GcOBlJpVgJu7U/8VWd4Fg4niefVYdgKRTjbS+QVMLqU/h8QOzINKN548rs7TMiz6uLgIM5jtZtBFm8KkVyI8gfMr+YkErPx14WdrVaU19zK3CyDD1yXtth6E1SlOKaHRMIZNuuxmsYStbJ1UqepZsjDoWV5hWwfbEouCgOFowefqjx/pE5vEI/VOcJQWFheUuRTQaZlTXmvSmTmAHKNnmjV2+gUQCn7FfHLwak+Axb5c1lI4WYHOta0bbWmjclxYDDG4Hy+O08CkaGXxOwi9xu/l6BYpjJ+q/tu5O0C4W/hFibUyprs2KOxQbbPwCQ+mWbLqejd0mncVip4FvkB+p4DzzpfjynIDbod7L9eI1PmgpiZRnsEymqrYfjU1Lw7iGNwOqud66dXnQYBd+KoPGeSiAjEID/Z4afBCCHobClPdE1IHfxG1HErRkg9ltAcxoZUIZVguN7uFukWtwkJ+vBd78yzO0pS8VT5HacaGvZ09zVqPM8p6c39vo8jgl/DRqRhh5/PQiaoXKeG6wA9Ux++kpDC2ZzIRcwYYvFcZwf07GsXkmeg85rwmjGFsDvvPFwTlCotC33/A3zUkVFGKkGjklSbZzF3LM4qdyLS4lIOUwUo5FCk0cx/6pqQOiLi+e7pVhBO4QlA3nfQ1T1ctN05Vke4NFgC/CZOWZrl9JmfxYSHE9WtZl9VZNILPBOfBEdMpmUeInQHQw1HOumEqFVEzuuZgUDB9SDS2ODN9OGEqmxV7zfei7Qv/1apBG3P0Jdp5CUccTL/gJSbk36J1xzlIRktECUfwKgslEfwvS8Sf9r3x7l/cNnBqNVb2FgsI9Pdou2t79D49ZJn66gP04T5WPyN10R40nV+kChOWWb6J/A5iUaCAaw10Bn8WP6NMxqlNym/PHLGTK6DknVBJ0fhItkcVStZZMeJxw2JPhkhgOFhjyN06i31X0yI18AL7pA91Ojq5exQsDR95Jt4cgBQBqHg7/cc1XD67uvg58MB9zel6ZlC9JM3O9nt+HS6nhpJNF6TH614jlu0pBN0UPE/0HEE1fh2NsiDfZQapDfvgrfgVaMk/OTtBwXWwLHT2EHoszuglCdYsm4UxzuTggDddTQ1+eQs0Q90uIf+zk3fxwcWLiPiVTDHVXJyy6qGi3MBcnIrPpQaEOIgKR0b4IcW98aIbnCCYfc2NojAO6WENpJ0YihfFu3nDE2+0OHTRJP4k7HRXU2msiXO7Y9gzJLPvT4ZjWzkHETktti4H+jj714jPPcHBcXxWec8Xe5Z5gWwTUQNXVl63Ohmk9Tq0JOJVMgMVWUhCvw1Vt9+no1qeiVottY+Qvbn678kSsBFacCofdLDA23c1pKlCaXFd+DgFIXRLn0cCbA2XcskKfDiQBu5r8J6OewI6dyq1mofx8GhcMKkqy9Hss5G0pMPWTmqR2v3oB8LxKmEpCxGC6ySvhDvwnN3nr8GrmqY7o0/jTOHhs3QECxfaXfBYSqZmeo9CcoSxqCYlaF72HNI36h2810lH3gJ8jiNCpmpYmEi/R68n2fEUJplLfVd8SWuHeYELd+NBxFV2f4Fcq2oAAoCMnjCq4ZxwfESMSuFiX+FatuPC7KjHu5aFURq/sqAoKnlRoD7OOtlvOYZS+zhY8aoDz9JDPilUFbVW05R/+VmGegsxUqYnQy7HNJZyh9hBtslCFa5STixryVCteeVCgYvW8y2KDlpUq29ioZ89nv5e5wm6uapWTMQ+GNHKPUmB5JiH+y7m235mvH6ryQrL0zNMCWs3xcaOJgUMa2yRMoSKxKnnFb5jPamDqLXMZOPdn1T+RQZ/0vfyUiuwf3LiinfTbpwOuOk4woroPTNEShQSUP9JuQ48i2FCqyx4YLXDvaHpGdG2faOd/b2HRngUWCUzOg4aeTFErnNBNQAUDHFAZx0rp1f1cbmtz1seFwZuiNEoju7SnaavB3Ud1dZ900cx0j7lCr73h4HAZus3T2GYcX9Gpt3ZXHgu7lG7LgEM8CrmA4msBoI/lXKVzBKJm4LYnUWMhqkND6dYdV1Q17pEpZ+WqShKlCoXlAY8b9PaJq+s7BxTt1b/KZfsxULdSVuBx/7AJ07cruUYEe/hLtyjLxjqMNVy/1srL8sJnOg2SA8TALpu7Ypa7i5vzirfRK5qQbttAk/QLBiBaBnRRHgWQJCug+zIbDu8Ild+2vVpa6C/YeXz7oFqSv4ngXco+L+J8RaZxbL8/CzKIkZeeI7B0aLfJsMVpPL9eaHRTmR3H88Ha2t/IJQGOUhOMKjmFkGQfkkB6VkX5r/orDnpYE62LfiyvbGDtnGxk/Qz9p+3EhP7VG2HSvGEJFoqxIJ2THkxSBZBmNY4sAPMe0EXdY4kl9OwT3ZDP8lVcLfUbLEVmLI7DBL7mk1CsIGEDGjlYDOpH48p3pP9rlqWlqNKiqmg3uJokSrpwYxAkISpgD2vc4o3vMH9xdn2wIMgQux7uonqxiATQ8N6KbCW0Lp4OetQyp5ccHRXzOc0L+aejIwP+sQn4WndOB8Xo0wwVeYZKJqAhiaAj9WTUF3kWQ3kEMYUJNDrFBcZNG9cyS6UMODvjXRB9fi2jOon+teX+YlBaXVdrJn+TbKHVEFdfhDe4yuSfWspC2y1fQ60JKED7w1jK13uNdVx0j6nqUTojgYyzTNCFOythG9nRoYzMeUxaHeaf0MvWBxMbG+aXXR4t/dY+cgoy5bN58P7eDSmXNl6kf6soeJq+GS5B5egwafL6ecknfTGUwC1FLatvpmGgxJYYQJN2hv5oz6m6UsCp6G2CkHM2FjbCvUwi3G/v36UbwXxw5ZiO6tkjNrklXIE7vuCDlunb2q0DbHiXRtMyMHen9UvZRJiYi4gEJQHL0wSRHw7uV8VrKaTEPg+nTqim8dwI/32mxb0Apf/fpwjz4D/8eF4N4jXSb/amQgUKE5MjibvEdcoalpfKv7+jCxpFlnGVq2DIdi8mLEtfw5WH4bGa82PH6OJ6rSfTJxh8UYRyDV0H3rJYRb0T2NpaXI9jaxzx5Mm19y00gmEpGJVXEQkZqaI7ADP6YfHZpsr8+BRO4sqyP0zet0bS5D/bylb0fL3swl3YgFbo47iYhEryVc94z6fTQdm+JeEt7ekzOeNMdVhDZ8lbRfSfJ5IVKkNbFJqezhKWnSAo/BP4znxBK6LNSjejAO18EUCpedXr5m9lNZFiWwJKyR2YzWUHTOKkt5gRnnOQ8onoDp6ScVegOkui9uox8XF3n3sJzPKyFNTFani3WDqoUA7U00qqzJXo/L3t58245OEBlu2lcZedf4RFgbS4m/Hlm0v6eLHWxkMgc5v+0Hy8uzosYgx/l+51V386hMZdINYMiBqm5bR/pH9KI55UDgpmvsDhwRRyCHpK2yhyCrCXRzy9vO9kszrfiCtqVb/9ws6YtAmB7x8ikXZUDpwLOpuZQLDsAUgiiUpZ/3l7vyF6xU2gztDg9WBeMSFsXzA5mhxATBZPItXj0CB32/DmZ3YjTvBZb9UsmYqeWm4foyulwSyAKwthkCnOhlgPoq2wXvswRXdA1E9t1Mi1vFPSWXJSk/ntkMjyZR8rEwj5HqktgfSbVfQkr0DZtReGo1O5ve9eWP/gSKraWuRqGz2FZhBAIB1uCX2pYf5wkvRzO5VvMQxyJMNAQvGAniDhjLJIHGUDyKyseRl9tRO4DNY9+StKopw6EQdOrhxQnWDHjpFu1glGMRN12R3ojlV8/KEFT68NFjYnFHqGrU1McIXvtPLaAgje22iiIVB7ouRt1ME8ZZNuFq9fg7YwMrRpFuEJgacdNu8OvgDRWIsXEAQE+0XAFH4r4jEY9nQNUhQRPt86gz41+YQkqNa3SYHVP+VPKM/vCiNwSscOeLkhiXxDKyx388Vh+NXZlY3faqy+CftvclYBkXVyphdtznTYxF+wRJ87GEQJRrIrtUAubJuWH48GOhRAXcS2yNVSZ+ffnsi4dsCzykeZo51J474qhEiTet9fSCASdben7JcWmmkZF+HqNguA7HW1pH9AE5oKo0RzyTB+adGbsboHOMjVC6YqucFMRYayy3XZBak4kMzzs6Pb3nFfsD0Q3j7sZ4AEViJw/H+V9AA+i3u/35dbq/rw6K+HdbKKtT6R9OY3WpXxJC3WHZR8n4tyffOklSLT2UZb4zd8qoqm5YGbpI5TXv2A+bZ8zSQrDFCPYPuPXqi95O+GhAubDh9BWqlRBhlkgXAKNueEnFbtLOYVkI/DcZQcnImmURHvno8JX3hrCRPq7qePb5YbkqsRAANpMxNIQZkqB64E0GHNRxPvpn6LV2rRBL2M7y8g41SCkbxuqeBZ2cVgdpvg2ULNR6174/G/g+QwGSp6IdGdmdR2h9hDUmB4T7bBc8Yu+T+VArTxFGk4RnjXqMBFUROBuMAhSSeEufyVhyYjJ4HU+pUvx5+3wNIN8molJBBhZt+lOVn1symD/eMveihl3F+DbNhdUT1DhRZ2xaWhLU7cDDIERrCcou+esFb7lKKMyAsMxuMu9PIEbT/l3Gr0DrP8OxuaP+ytATccF2zojGd5SEDWAWzJIL1F5kEMUJdn0NDx6axoWd0mvfYn9B4Uuk62U7Z0E1pJlNAhP+He1QqTod+UzZ5+qBab5u8qmgBkUtjnZkBPAdjQoQNDewiKE5km0GqFr+X0yaCaqx6e56GKpstaZMqtIGHc//2h1oNjuUQT/Zekwzw59BoYlNUj+q5tO3BVFOkiuw1GpjldtVnyusU9vmvP2UpACVjNUaifpUytg9krdzUtk7olQrGwE4RW9g1l0voPPAXoPVPSv83TsW6Iu5JwD2LhU7qgGtPr3iVj4kgz6eBLXo0xnskNO0B05YPTPmvPOplxVl/beJxpBW96t17gkQnF6Jvg9AUTPrJTpoo0mLDqYerregbAC7Mnxy0nT70QyLbxX+Fxq4oFiAb7AyvPzBD7vPYJCXjzDovF6vhs2HQoybIpnGzg5KJVQ0LYcubpCx5pY9P+D8EfssgfnuMOmZyGOWXmqoS3rs0Y3bIO2ClUkjg9s5gwZzdNrNeOAKTLZMhtIyhekT9+MIVjwI/nq9veNfBa1d/KuygzbOO+oyTMoh78aL/IrQpXo8Xp1wW9LlPValuVBIfqGJQWwyo6WEQ/UD+pOhK9PDsA2xudE2cvcT8uqtv3l911Oh+YPWXnte9aQ1U+JJ+MvUCmDN8dUMPlHOaHpO+2Bv9LYuZpmEJpBbiyf/G2IkM1KWjiicKx+LPnTj1CETtLKih8iGDwHUoLzZuv+u5lc4hDwiZay9yp1m480U4SnGwJIG1miCRljjWefJqV4YKrjD48bbAnHZZxChTahkrPqcv+JoHBH8nNZchIHaLDc5sFmmMXx/+lqP/Q71Hv/92LGeIZi2/gxshrkyJtnLmz0xRZcfhlCoHzVtwZBHX1ozUYAHYDB8up1apbN1jQaUOJJ6qs4YYOwPYzWdICMYgWxyf8t2U9VoHyI4k4uqaUOE3vluFTXQFwpSOj0RwCcWRQHImYzoqffVbDxPEl11dCtRFpfqjw3Dnv+orhjNRawmJIDkt5FSTlS2XwCEk1xmeRCyo1E/ZAt+530N/SBs13tKXc4DEpTK05FS/dNWCpXR4NsMrVP8Zo6eiraPXMJHvMeDcc15CiyALWKcGboZPeKFopaff8hA5789rGEebAZW5JFFcr+plRE7QXez3rDhstATMriNjjFF2IlN3ypCCeP3KaxK4GiD/Lfq71CtEo8mOHHPHOxnhWuuM2ZO9GsyWMRfxs2HT3ZbYdqmghFq/mTg2dpCPJnq6dRi2ud/ExRieuEnoK1lo9eNIdsGZCD/KPUCDKcVG+0DtUdsQJZWn8alc0Kx1Szampjt65VeF45jLhWVow+/AhZxedJxQWKn9uHxEkaZ7aEKK1GfC+KXbvHncwo5MTVU1pbTS9r/M7wvRaTd3jCEq8BaWBqFaiU4Yj2L06J/A+cuhs2Fs6iDw8NgRCVAN/ycBpCgGI6FKqNr+0F+FUW0hzsbujZ2+Mhs1y6TWH2iX+FhlPl8ZrPdBH/IdA2G5k2DMPVZ0IogY8Gq3te+ER4LUXTU6DjscdgQoCXYb91+0fVV15cheM4cO+3hm56KvfwWgASTDB/tJIaOEOWS+tKwUrfGxNeQkCNY/mc81tc8uAvfDHRfsVbKzDPQnjxN350rmkvCRprMUC37VRfF5fjByikyBfJowAhhv/ailFRbxcGLFAVIurnROtvCVFaKRFn+YmdUZjTDY9IsguXiKmvXcvgHhxz1J9ik2uGyQv2QqxSlSR+S6p58mDHyG41WSdxwlwe05XJvp70r2x7FLLyV3tdVCgsHdSrVdrL1GQ7Q2EU3vGFd4IK5J4K3dPqQAQVGWsJ7nVG/Zr7dYUjynrOtHRz7nYKclgWQ8Js2Y5WtogBkSOx6nx3NCGo6QPiYeGOcpv0Q+eCvrmdb//pyJCow6pWLdd/5bIUrwhD/chY1ftuLDpzRnU+pbsI0aiO1C0gJhuNV71mgJ/tMWMC0cD5OAMC9gTQIsjn1mcwHLt/LBc2XrwaApZ0bUx47ncDv+FxzSBQrwAS7OBef8MbI+javpugnIASktB2J/mEBJh/bXvT9tv6QL8/aihfJb+16+qBfOZy6SOyxeaKW2ckk7IV/twWkRWXQCeWkbsLbNFg+mtpn820tIbW/1Bw5clym4xz5YwpmJ8Q8FgMAd2glkLKuJ7QTTDb5Q4rziGsUw8LZgtuonKidc/AjEO5OGHSKo51Jy348XzKM3i1WCCgZ2NOM1cnauCmlQ1fy3EY+Q4LHUxEwornjNmjS+7Z4eKFTDg+/Pdc9ARr/x8FpPtvrhguzxqSdG8Yi5HQRs0VOGIIAnDEpDsBcmsI/YMnDAkp+AhkYTFSMtyZ90txAx8XY42IhNlc+VyRjJLyA/sVJGAU9KtnEN8l/TzuQ8zGAm83+UsZYqJsZ8WQ/aUWs79m7qPjvqIJFaL+MX6SqsxT/MReKaXmCOUPgjiubWXqsIL1QZ4siyrLkyLx8ApE9p5j7P7dGI0VQiMmX6RMWMlYuUi2SQ54LnitkMrVS4fAH++GUDZlg5+rq2OdC6/XxJRhBjRZJE5m0uNm2iOS4yrSxSKYM3qfy15RIxeCPJB/6nqmFlAXLxxMgeY+p4QdoLOQhwfL9KRTTmS/Bv2EEGdBz1VsOqksBIl9KPej3o0vOZjApgTKXIRG1imu8O3+Do5ofqECeybR1yxPh1qIzAwKZ72V8l130zY/u3/4TznFdA==
Variant 0
DifficultyLevel
573
Question
A vegetable garden measures 2 metres by 1.5 metres.
Jim plants rows of lettuces in the garden, making sure there is a 20 cm gap between the garden edge and a plant, and 40 cm between each plant.
What is the maximum number of lettuces Jim can plant?
Worked Solution
Remove the 20 cm gaps from the garden edges:
|
|
Effective length |
= 200−20−20 = 160 cm |
Effective width |
= 150−20−20 = 110 cm |
|
40160=4⇒5 rows |
|
40110=2+⇒ 3 columns |
|
|
Number of lettuces |
= 5 × 3 |
|
= 15 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
part1 | A vegetable garden measures 2 metres by 1.5 metres.
Jim plants rows of lettuces in the garden, making sure there is a 20 cm gap between the garden edge and a plant, and 40 cm between each plant. |
image1 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/03/RAPH-Q1_var0-1.svg 350 indent3 vpad |
part2 | sm_nogap What is the maximum number of lettuces Jim can plant? |
solution1 | sm_nogap Remove the 20 cm gaps from the garden edges:
| | |
| ------- :| ----------------------------------- |
| Effective length| = $200 - 20 - 20$ = 160 cm |
| Effective width | = $150 - 20 - 20$ = 110 cm |
sm_nogap Rows
| |
| ------------------------------------------------------------------ |
| $\dfrac{160}{40} = 4 \Rightarrow 5 \ \text{rows}$ |
sm_nogap Columns
| |
| ---------------------------------------------------------------------- |
| $\dfrac{110}{40} = 2+ \Rightarrow$ 3 columns |
| | |
| ------------------------------- | --------------- |
| Number of lettuces | = 5 $\times$ 3 |
| | = 15 |
|
correctAnswer | |
Answers
U2FsdGVkX19c49L4HW7/IArV5xd8juLwmVgzxJHLnW03kYauvVEtys460YTEwZiZ0pJGNIiEk3UW47dSg8XNKmJLFJQAnPrMvDOYcFN6IvkM25DtAJMlUx4KUgxF+e3kv8gVQST1dirRx1zndK4E5Der1HcWn9a+NOfZPYOIBVd3ZFm5tznDNmnQgRIqbCRitbpybDzUQhXD+qdDiVlKxAAbp8hIbjefHOapUBqsajV3FslE6y3gNyGfhhuX8tpC5z5SxPj3qcDPrFcaXC6k4G71GLUNlyUJinFyeBGgNPKjFZ6U2z9gRGsYLP1N4mJKhSmNC3KOY4nF81sBg/4jLKJX0z13bPav30r1mGfxSqClB4YcgE88B5fW+xjhX8oX4AiSVVR6lABpTl7T190SOe1D8zDZAY+xQtbbz5nzgfDMhTylIAwZ6vCKFCQmYNuGK8GVCk8jZNIbFYT69YoeHmeZDPJ/WpVqR6/GnCgjOzQ9urq9aO+YnMOrSRuEyTMh+n/cAsVnhvbjsVY2opZbhsBXlOWp5hpJeShw3GKJqLgwiOVEZCaKfjs7USnN29G07nvXze3LwP9IdA4ePuMIAmIYXUjJllcVXgtgbq8yFnzlcznAynDlqLCAjd1GAz2F5UEk5VfOym6A6rVSNz6nbBWjuMysCkLwVY9Chcspm4+ftoNavymOSTfJqZWh30CJHCyhXckEYhSJpKJ2i5tMzIJk443HhHd0MwvjnMuJHH4kpQLDArHs5lyMtV9IjQYAUCSbzVx5vlD8YxkSuXXFfbw59nNCgyVuHnnobMS9vNhwsYsAHZqKUK5IiVA+lBu7NNFLR+sk9tTOkiLqwc3Ljd+9gxzr7kLJBQoiP0ARf04SrMYjAXxAEEGMFnx539LAwBm/Zrk1aaUZD8kt7f2ds3yDj5+hfePCsi8noJQiwH7wxXTDsMoAhMo1XLHHRqm5Ucf+i2zY8OR7Fku2fyF1vx4jN5g4MBiLscRciV4slsm84c7rfS43shcU5hyVV5R/RpQU8gPNhPvzbJ2sz6JTYAXCGU0Qh8O26pYoa6T7jZ4RzBdGzUXctvRFTKFcFiBJKchKd7NbJoG0XNESpvXOJH/smitkj8gDVLMvqFLmuc2vUlrsO42a3frybCUqXiDgeA/VoMr/wcjJY7aIPQ3WmIWgBO1bL0sPf6ZNNWg73vMd4I5A/tkc2FXkzmwJU1AgUCUCkAuKdWZ++tyboM/HSEyEh1qBDMg+I41XefC0020jn4qN1rQc1Gh254Rh7ytwZRmc79SCvoGaGFXETvZWqNbyQ7tzp1H0wTFkIZN3VGewJ/lQI+gs3tYAIcA+Uh3XkgfZIAhGVYaAv9WmZz3VSNxyG/QhAPiV4AKK7z2tzBcuUHfGsA25gwPi9jENlz92G/YyWIcM3C1fxgNXDiDGEwI7YjonJxIK7ZWcGm5eMHuW73wgdCNNkR54tpM3U0esp49UkQ3EGZS9fVrWpXQYCNehAhiBOwTycfr5aa9ji7JWNXbmUKAKuFG32/IWpj6P/OZKiSTJoo+6FOC/iYR1wB8O15OtcW4NHVJQMIveIWwRlNHietnzKT0CFGKTiFsqgJPMjRe9wS2RgOfG32CGIFHg6SQxPEelgjHgkusNb1r2TiZQ5JwLpp9fPMuG3B1VnvcD6wmZ3RTgzQ3IUWb7gTpgQ2AILHarSVxi//JlWlDLHZhyUuVJqBtezu3ps8BY/DHVgb/1s3a7NDY4VBE5ipgsFsmOlyTDISGOyeLnb7Z6u4iVzK/PSJ+c74wGmNdWlyZ7vzAMm5mFLU+nF0XF9licUt/v7AfyCQpBu7m8pt6SvxYlE8ydxHcvmXFxtFBtimIHeLgWd6wzbCQH0jr9oN/5NnAnC5kpFS3U+o+uIsuOHikj8dvpfehrGdptdHx1oJMCstpc6Ac84EdJ406lUdun4UJDGUFarEoTQJUSsMmLhGSUvSNnPO6q4OrNhTt4wSWFYobiZyv8/NSGZlkKkuWxc2sXYEz3sSZ/GsTme4CZdTO9/8mGw77GbJravAiFjYAPgAfqywERsOYki+N2yyaRKL2hvDSZ2bKlw1LnvVSAYN2tnf0dhOqcvHhrhsLmx8hkLsjh4jbxBePKEXgwhSAACS+wPASmjRjEHdVyVk310ZqrOITGhNlmL3Gvo/6zWQwfku4KnUZihwjEdaCl2oGoeCENOczXTfmeDPT3P20TU3488D64CjZt1Z2lRqbwHd5tFqG64ZUJ7tjNdDPQWauzjIEO4rwKLzdj4QuCKAQVPa8ByD6Pb2XRVl0ip7Cg/VfHwc4Dbii5sF197br6XkJBJHQL/92VepV19yUnPUjy2TaXoaWXAd+Wwq6XMvdZIb6jOcIqO3XxrHNx71eheUs5hmK+9OIkBtj3AedNgEKkT+o5JIlUaCqtICyU7I2u0oQkGCUWYkKmVvA1IClg7/Qn1BCGiRQemiULvNQHo7piqMMkPat6FZK6t49Uero77lqNE9L+pAVNWLb0zPzgDvGIiUqLI2AeoAK0byjsAvRBCnqOBNBYlZNgUyWaPOt5/+DOF51ZTO4lS8DulXmMdypX461GlHoN0Wng+5s8fmCM1Bxo32MetGBa7WHH7sV6XeSAKImk2pwEN1FlKb3ZJU9EnTyhLvaOmltCRikfM9SU45tgf0+L3xSV1E/Jo8diPHdvIhG4AsUtuC24aoMa/cWbEqYKPmBplb+AiQfDhfB0DizdUhuKVIIu4rMb9m5OBI41rvBYhui18X4SSxXc9u33h1wT1tMSIdWg9vuf2q4MA2Y9Ta/6lHeD7QrHwfmgNxDaC7k87/Mdpd7Eug8NARtnPwn0f7UD7Brjn9TcR39UqwZec4scBzpAQOviPkPmQWivjP33ku2SwHqdid2sbSS2Kx5RuevPlO0Kvq/C+unQNOG2F/qbsgKhoXpuD51gm7b4xkevy02Ux2sSihTA8WsDYHYbnF4c3Jp45Bp/1Cc3xm1gTfSda5AuNmLRniDvT2/oBy0j4qsyLL+ieBWtMGeOBoOeOWqNVM3Uf8qMi3Th3gmV9kCIx0vPiOTJIyjuHReCZ4nBGGeZyXm/3hLINb8qTLKOriV3hCa+ffDNfoebu4T34ePmIcesUFw9ITbtHttIXYlVjZ6LMIrzwNPGneGu7zpYuCXDTeedgbats5K8fZiCW15nxnnbut5N8ShF0uEFYt0jQ8sU04bCvWXInIwVvIs559WeEJxUCyMJjjVrn+7DPhdyaMSQg7nLdncGi3gPT7fecLOmOZHFGJJhLhHBmX6Ip70mLedZxRPUse3NzWr8CTEzGdhFxDFYWyduSyMlq7PqQuPvM7sB4TIOE4NhxcY54NoPfrlN9xnZDOxPOF6ELhr8/D0nCdnIlc0WyV9STWhzLUIhdqTC+yAzd2DR7GRUuDTnn3JbAJRJZWfK9WUgN8WRGoWnZTp+DixJ/sJx6n+B4eSsClCxfrvCiaPXdc7Ld8lt08wqUBQybCfBX0F9YCmFJvhWfHrN9itIVAD2vlizg4Q6O6N+/393TCJONaedIrLBbT7vJxn7KBn9FI3ZsKLrSFMAY7VzjJYeZZzBZrgapW3uchK0TFmuZlykaDUuHmDTeSBzuWEl9ORHHOw1BNAju4g48lCOYzoaVXAlPQfu6x3TP7jk79QJFsFYbS01vjlxU4fC/iMEjIBJXoP4/dWr1XDDvp5tWzZ6ymVp7/JR3PdSKxjy9vj2XHRQYWIl01Bt5BXH+OfguCZb4Ar1BDKdVTcUH0PPYRkEJsTFaE2cs5T6QuN7LoVmOKSnWF8fFVG60YJgXfbqbt+6Yffn21/D0QO0wjPeHzgKSKKKveL1dkNO0WHCI6P0bLrEAndYfact/pFbvnMCm63TGg8YTRfp2Fpen81M4v41I4l0muV7CzFFlGj6iMMtrXkKqfeQxv90SA1IA98buPH1U+BLz9tLwFT6N4tV8H+YzM8DCf0NIVrKhb+6UdSMHfdyulJ0hH2hNs89aipudcE2Yl8fnciyQ9GWDyrg3OggYx6cxLkpmUX5xCjXSXT/q41uqU/R94bLrYIiRPEA9xn9PkQ7klKN0nF8QuNAu1xrrmmBvPL7dCnQgFzKmSgjE2to7e+FMMwGw/WEY4Yjby2uj8DVR5EqEHl24NPh/l2zv183wRUIDe2ndN3bP3Vvj7lGE5Mymz2/0g8hWYcKFbR/DEX+XGWia3B689yiHb0Fn8NizC8bceJV7hSW6u3gHYv4odevhBngerfazxfqS1kjSziH1/fHt/GqRaBZ/IlJcHGWXU4OwGDhgtHgHBmF04PhYkJiiZCAJRnIt8NlcQeK1OsGRxLHSyk+Xu3NTgqsoZzanYgj7C41+7E46MpBPjbU3vW/gzMtZkHxWpO8L43wp44jmgUyQGNKXDvo/m+vFk5l9dwJvBv+oHLGnx6X+8HMY0dCpVFrYdN6IjYXRST4YPmjtJhVLa7J/crMgDTH4mHbRkMSWdg3INHsMvhdV/agnL4kospbASldqzF3K8kX8xwp8oWjmCETVzXnBKknVhhM+F/l27/ahLWb72U15VuLtwhlnmWkljXOeqMhO3gmEZI6xt2iwClNAF/9caxE596sf/r764bMgCpc3yD0TpB7noPzoYUfjcpJqr8TQ2+4E9VededKPgdlb1CmmUCbDjPdEI8GkNictZoXETyzS7x4odDP9gOvpMiAs4+s6m6c+z4SJrGQ02MUZtiKfbLLUrih3MX81sugGkK1uxpbTwApUZ6pxUlO5j+CKvQY6Kk+YRUU/AF1z75L4n79ZyHr5h/JdD6daxCUAoXiCN4yMKhocyOzXdL5F0CnwC17lwChdoJxeYPuhMQ8jCd3hoXfWoK0a3NhTOd9+SDrX+pNMP/ExNBV+//SyW0BUd/Ok2f1cJV8vvenCE9EqavFfHjzumCDvxSdZgZexlUzI5ldzAYroFkfrVRfh4pMS+nkZdK4hazkRgkcTcUXaortmQA+bO6+ySdmezOrpOmSj+NAl7x1jm0NG6inxqQ4NviLg9/DQ8nXSGjU0rz8E4hLrGXqgNaKpey6EgqIYTSsz7mMj/XUKAMogPYMxSMRiQK5iSuJX5KZs2ezXhjC5j/9NK4K9Lv71lC7fd80I1UFhe3PnIkBYLnOSVcfHE434QSUNYiDKjlT68BSkdVfN+cB3fnP0JTnf1zHPWcyKTqO3kRhTPRy8KkOKrAQGjfgly2ky2BcMJHGeeqws2D4FeFh4CQamJ1ggIdhb1eFaj5cAHrDFTEkadMaHezcGAwt38k0QxpLPJ9UH4dP0fZkiIcsHJn7i1ludW3NGJxBU/qyWjQPrqIwxQEUBCSYYb40v8qy9C75emnab/ZMeTTDet6hsUYanELNt09XtSHVUVp7ZxmpU7U8nqasKKrxYdUH6Xlb9EPRdizJaBd6zOj77mTxujH8nbm6hNjE8te25jZr7IdnGfuP0tjlK7xSPpLJaO9DKvA20Sl/hKUd5RJjtI8ZBeI6j7flXj0u6lvHgY8DwXqYG9qAwzbeQ/1laDFUnfn+POvxa5bi5Hu9tIfbWyRpCUHKrHnScskBryQ9JTgV+TCkUFPGGL2LYqnpsEoQtLsN5bOLA+kLoRrZieU0fx5s1193ec9TJmV4J0snAo4o76q/aIhENakuLNvLOxXTfZBlCBUguOPAru4F17LvGWtuqTTCetV3NYPsMXGTI+LLD6adRQVGW/oMCTBj4g1fE4tG5dSoHhBAgt5h4im98jrPBr6LVN/cB7e5kI6tswHdR1Tb0GNIoF069PYq6NAgl+kKWLb8djODNX8obJek7gNp6mDue2ALHGdX2wVK7AkNLojkVuNbC3850iyy0dzGVPxyqu1hPvX6gFr3XVj48HKLyE+wFKJTA4V7TbM61GeOic0YwYo33JBh1U4pDQkSoyYAkPP45OHL4W5kOMt1zP5GTrF5OsM8ptJHHrx7jN30RXzoDXaxEnqkI3m1OC5r/8bEfaQGD+mhZa5BYkx7OPR+dsgsvKdxlx+Sz2m0+bTuH5k4MvaLHBz559yCxeChEmtrbngjyIq4MdRqsklvZ3gmbZpaWuFvu4ccDul2cEbfivCWOOKeVmQYejrh+5P7nLywrvAjg9wKTJfVQ+BkIYUnutdMBEZ2IhLbdfdwvMyY4Q6hRqFbLusVyPwHaydETzgbj9PVGfwY9Eq+MIz+db+tEpcj7kjHhHTb2WrvE60gNMHGzOQk87GAbzS45imqFEKfyuTqE5Vh71LxbZdgwIh3uP33vioIjzT1nX7+EfBHBrnJg77QMLnUx2FnJk9E4QsaPmcpDdW0QqBJLfeE4IvDGXMw0OtO5kohG28tgAZqcsNaGCw6mQT4GMjkYLgocZLNvS/dSK1trR1UQXkhpNSjmitGWxJZy2guDrCX6SyvoeFw0QzhGf2fw6iCLnum9H35j+fq9J2LnZGhXmDVas71NaawX/h7yP22hR/U/PRSOMSziLM9IKn3knCs9+w73Ni1SEbOCmtdC7O4VjI3XMJ+5eG6Ax7SQdHjifrwbDzwFa3PwS8jHr6HNXU6pZuSt6ASd5eOcgx4qXEQxvcCR5gdaoPtu+sgsh/PtTwOaPWge8m7DfXlFfHvoYB1bUHB5OU8nNgzREh/aKNybc3EGlJzXsz+5dc/CMgGFxQRatmftTNCqbEN0QWL6eYO9il1j6N/k1WKqBu/j7R1sPBPM9ZnwhNcxiD6EHPKr9kdwi3N6oaDyV2+a1IGvB+oW9EvqEV4t7ySaX3Qza+Y9HHkD8eiRq73+lzjbSAOVxAgT3mC5w4LBiQV9ZgWnvdRjxX2diiYajGbGsVA3dFUlYaMi/nJmc+L3lCSZ9nnO/CJBE5XISD0uTmyFW4xY7A/uObxtSZ8i7sP11G93HMRdz0srkcyWvXv8Sqt6Rn4qmNF2p0mwF2vcVIt3MCFsOQlINWtA5NqZVqEfq4VpriUEYkDJqS1TTjdA7gY+hVTbOCsg4e4wvws6txl5pvF1pA2sRYaV5MtsS7QbF+Vdual7jrbxPFzlZer9r8zUFb2/qinZlXS9d0uVR9YFfIawp+oKa3tZNikbu1noVuUTVvoiiHytA6ZTZEDStAtd6Wr8T2bSWsCSnG6Owzy6a4iO5ZDWbMzB7/wQl3NT+Gawxn1LxN6lXG6k0BEvtVgaGfSdE/WJmZnvRDSWo2bDr6ZfLQERPXemuer7ad8c9xqPxGBEAP07ZndXb7tD+vZdyKkhTMTlLNyLA/V2SNIwSsofwSogPxP9rzVJcdeL4omZWal/ZWhdKg8BHn4rWWsnxdS9oYdhBt3mVtGcTMj/RZvVvl7Pw1alAVNW6Fgf3QLTp3tQuWnOWMetxI2P1TmO76M+okPZR+Ql0aNHcSyVlDWNITwSDHPCe8PD4D143rmQQsn8Ujf+bt2GBZ5FT8rp4TWE92zFkKEYmYGYqtBb3TgUy3sCtH9/spaXBEJjm2+TmMYaJRQAWZx9EzFVGFzQ7sIYLDsppNTf+Qv7Qcg6dbmYhdCG+pUv5v1aA9ykNIbMf4THO1klxV1Uc9zIZi8nqcg5HvEYkiGO5tpS8PMMyqot3flndOub0yv3IIoztR4eb/8tIuYXs0EqvL5wKzQ4BMZDrGC3fA/VH9WVVEddUTG34o5sjkx+BtLHJShdM+1h9ir/qw9rmf8ZlPe97n5tkrujkzRguMAQZzixRpeUOyzvMNh3WZQ/9DwtCfAQ+whv8/eAjdxbaVRq10tsAB51x5CERcvzPBCSfgMoUMyk4ApjBRMJgyX1Yoy9+tKk/TBLRQcT0fOmhLnl9fnfDHIl7v9cFofm7/EkU9GOVIfUkMdT/quVjQ4ufhMTGIOH5ZTG6Gx/hHyBXLwZbxWk4b7skcKvetef963YO5wbc/Gmbe+MTTw/NZwaN7ScibhwnQOKFlKh0Yy9FO9Rz7Z7KTdACQviu5djHIHICemDxrkphrTl8scgUceznM19FHqVesIxrLrFHLqTqUcLv0z3INa/bY5xPbuJ7ms4HTjOUWgxusz2hAiisFeJ4Ht0oI8HJmLP/9/rd/vLdItVPMr/DyXQKenwSWV/wWIFm92u+IRQawuVzCQ67+KltyM8zUghUNsMwTIILTCdbEowxCZQunB67eT5Nqn+IHg10s7n78lpM/ixRTj+QPWTk4c2B461R9DclSxdGDU3pOzTgPvP6Djd9uRhGydWmL7x/oFLLdlFmqzcS52hk7pmJ4x5txoxxu6mcS7UZQKz/xbd83x+0HIh5vSsBf84wKpGtA+PCKyvQeRK6Af6GT5I4wH23qApRsWjNVTsSrb+yxPAFam29dWd/ey8r+BnFpjyi0b4omKF7eSMIZgV1nGkTf8BRbwO2L89mLEktvkWc6HXnSBZXsxhMIYd9WEgukY0S4aTKfcJm7qCNe1yJ+ewcv1d7yx+PIz1FDsrQEzd8PKJHqd8oZQ/wwk7sNLZwy+iZxxKFY6j9D3TZngHzCUQNNfrMfhcRUs7ttJMKh4v3natgI07xhKpmhc3WoxUht5UNd8qrXJeJmZCp2yJ7F9EkvJZbuf/0JEAqrTziMjl+ijEuttfKjULWCZmZv7Yh20ibMbpPA+zRGOJONS3eYPCrKS7e4ri0X2KW46nm+oZlAqVVSf+agLzcBoAtA2vGu5Qh5Lm2VTjS0vm496MyVJk1Cu8g0P+cnFyw6jRIZVOVvyAYVX2JXAnLAY2JLwaq/bjqDrS5c7KHxD677OKzR4TIlC6WIAlt+WlFtn6pG5nIF26aBhme6oMrq5ctRORE6GGiRMq/zoJs8d6UF9IxCyBpuFmr/fCEwhhYa3EqgTA1Or0YAq0AtDJLyOwK+MrDBdxOhw9iYWSDnDYRJkWGEdcL2hdOQmPvkn44c89HloTqvwyRbhS6aA5+8zFJ55xDKb+Os4XAZ3uHz7SJLdZhOU38wwC1RwzFfSyB4IJbMX9HuCifPGjgeCzm5rR3f7nqq+i9JxeS5ZLHbbWiu1rzkm7iNHdHnmuJZY0brbhHsP0UNMp7FPHzZTDamnldBx8hMzcX6zocA0sf5Aq4pCdxxthGW5bHn0huirCFM8HMkZipCNFp6gWygnPaLYDVi4HsjdRnUZhAo/jyNFp3FR+iJsiD1+EwBTKN55Dz0UX1kfHp6OmFZF7W0Ms1D/BaiEuf6pdiSZKHuW8DD6GId3vz3/4jT3nuGvyroeUTa2Z6DozPIfE2FTNTKFwPpjiICd+SOEKFsBQrCIWCDoTr7fOvQFdyQ/saczoVL0PJ+3rzptAEEUpjjWm8rm5yxPab5EJoPFd1V0EXU0FPT1wgnYpmOuMfXAHZgljHjaIwB0svawOwiG0VsIt0V0WoEUvQsMofoj/QNinvekifs5vlZ4JXwiOf0xVgOwQGeuM+mwTeFB4N4unJR5/1FWXdCDa7HRCshrh9yRo45gioJ7k34Pyao/AIjCS3/abXlCxhfqPZe/Luaf7H0h+qEp5T1+Nuzi2hGtYbcgh2BzmoFMQqR7zxp343Gow6rFmTQDxwHhyUhyvevMUhFD61WPf0mk67VsycXtjP3PYSc3TnZ+iGgiiPx3NKcKMuYLFOBG73ez/7gB/GL3Wil8btcWibIv7o6bll0S2xvwSfqNX1brks7qNsY6Z+MNxy9a44VK1lH+iiuXflhat3wV/duQ378ZxpxwuWxgsDcwZHYei8euEwEt1Tv+rtcsWDJGuAVl0ZwrQRzNBKv3YIqeXIwxZIJYBKwiM+xihjCmouo99IKgexEgOK+ZGFdWID1beDZ7amYv0ljt4h1jX0/eg2W2aR3on2IwU9JIEB3cI8s2b2zGtMQNEX6Z5xD+24VHoIT771q4Mxh+l7608dvWbTMdwFPLMrj2Rfp8doEq40OrC4Wc5Swj2OIWa+6oQxTaDcGqVADmgTVVfIlHNp94KB41yL+bZ6w+25R4qVPHuPL1dqoJHO1oxqMu/CR2nDZc63RfOaR6BohbkCYYkudv8tsq8qAfxEJOHTs6Loh8w8FlXgI5Gf98Q7HxDFltL0uhx3f8hv0lKEnlL+ynt58/FAKJDHXDULf8VBStb/W2tWZaSrJCuIrYFiekyg/MAo7W1AimQkwc5cDS4Wquf25v62AbO5I37J0BEVF4hHpSmxEl8P0SBLAcINDrA06eKzkVDGsLL2vQxESfG9cdv7wKfqb+TqbqaGV9ujlA/1tFHH1HrcQm9N0G05mBVjfDqleiHeKlLIqiSmccrOpwIV7tLTiTR7A0opNIh7h3qPFBRDLPVIqdMHvTsMipPuXOH/Ba+HpM9NyMl7wH9xm6sDx3wliYjSaCHf1ak6NcKA54zpl63ung68+VPHl6QOm+RDODgIzeuK7Zr2JBDLOA7ah/3ej1kPuFZt/3k6O56+x63sMRrUGaJWkxZqmrOCl7klKZ6bqm3A/PeunyTE5xbfM3/CjXN1HWWQ0ayOyAIXTe/az2Up0PgZp2ClV932s6OC3j4q6QQ3YyvoWgrSd9sa3IgNPNThccNmmZFoxuk/Dy4tZ2AevCTudHLuq8DOG/ge3a2kBq6Ns7NlDdSAu9iffj7IfQQVz9S1B13P7jJpHP9UU8cSDDY2UJCQuMZtDhAWD2TflidB9JqsYCuTQZ2sRfO1Ait7rmAqPgH+yMRQscuuldmr3okngv7HcNml7pVuduMg5C/QIQj2n0Bvc/JhosNMr1qxpaHrkz9rLU0OfH6/Bzm8VDWkYlZX5fX1m346S/H5t1DRmyg3ny22knW+jKRCghPvCs1/h15Dj8v1KtG82E1CmXQJbUhdUGGtPt2Y9e0FY8A9hHfQ9iDqW0kAxZX3G/kqO6wYN+AK1Mm9XQrGOMbidBaH6hLzECykzfX57FSjrTSKGf84ownpGqMzhv8hZWSG+QdoZFZ7nnfu1IeBoe0UdqylnVO6q2C6gM5DmHAIk7eEUPrN7Qw9cGelnUeU3pAE3D8NHI9TjsLg6JaoEQtUVBujLBMNdaeHyovgFZ3s5Whm1/LY8gRSttfuyrRG/w7KWfGHQJF//fNFyjigbdGNo/7eOmWIivfIInUG1eGW69Aa5bDoYYzFEbaZOrM9o/CefPva7FQeL77/U1QJJjtdhI87AOagTMSEddzvow3rA/WcSedtCrENTrvyvDHsP+BEqpNJusf3IMkn9VP2qsplIplAaZpNnZjGw12h2sSCfmsiRWyTFv7iyTrKKRJ6CT5bh0U/4UAgEhqO32QMOOsvJ4jDrAecEyjcOc0M5Wcw8ISV7hY6yWW1sh41bLsTHCoeBqKHsyrPQHBzO7i1vz7FlHyxIS9Me/Y7GRDOhXOmGS8+t5Fv6bS65jnja64kNPAxF3sBkXjNvYObTIvHxv1M7JNRk7BRNc7676gfikFIfe2S0B3W9kqGLRt6K0VQFsXyQV2q/3CwxO6yzFsv0wIT8kQBxRbaPD9exblHxFU8qFjHsoMYP2eLsuDDwNpQkzoX6fhoDLS2P0FdNMk6SNMsXsGlDZZ4sofFD1jBL+42VNAxXDCn5tZaJcpLT7e71pQbciFe/CjNM9sRyBS5ODqvlkrYQCqR8FG80CdhApV55WtAQLW94846YlR+mj7rca2XpLBkit8n+pvNlfRy2xcd2XQBrZetZpsTS9IYff7ukjVppobfH0PUmmYjYm0JgR2DpRq797Z/V0VYf0MiNnVMg8CnrHqDX36qJkfGkTnNYTO/sPF+kOSb0klxM1yNALnMDEhZi94+IVm3URIwmZeQIlBg8xGQ5d/gxSo/ROHBPfY7VbjoqzTp8qTm9e5RSd23pj5dxfyxahyvB4/G7vkCl4K5P5XKPUOPtoFakwOr0eJUiHEQKd+2ENExUNEYyykc9V0j7lC3BcS32LHXlMsww7smWko4WdIq/bDvOj722Lq2G6BcWkk3IkOpi1ikhyzlRCTa78KdckTTLnUk5wyQoIJVClp6ilRMSHOrcG7rJfmmVVwX+CuBBG47p3XetM72V8DeYG507NM00MJsEkaYlNFmJUb0/5aXkdks7Zkh+fx0gMlU6OMFZI8LRLGIvp94hqBEtY6IAFzh9qRYuJdIRL22xr3M/d8KcL18dAxphBmgO1xfkq0arfUG0fqWrFdlnm4UGutZyGZu0Hd+Afrhomu7NomUNLwdP0Zv7BsMOHCcpySESusoG6RnZZCHPBLOHBKZHTgzAmVqsVnixYNDNHaiQBM9RRE2ahjIjtthiq8+iS+H+3Jd3ZwqufSXJnb6JMrQ5Dkf0U89l8P2nc1elaTp29HcymS/9HOvCOWLxvrI/96Kh+BYZVT6SKMBzq3HOnX+T9q6y8LWV7IML57kXavVB7GI8BcuOPg+V+zyNUAy0o5/vJjEcLsMRW7ELr9Ah5L0ixIn4QgancC/VJvW5IrSQZiEW/S7ZJf+a5mTFmt0Skuu0LHIMOEoW18fhAAhZVEYDwgtOSGQmSzODPBj8G3eBZJjtXigp1ANMpRHtrcpdaxpXpkHn/0jl/LNEtIS3SGDXUbQ7BIT5YNW6VKpA3friR1uDgeuWwHNoYNFM69OIB5J8ALLqT7LIjr1P7AXdbj07nDDrU8NCFAXOqUPO3gBjIyvLvRM25EpeKF+i3tOtyJNNtvhWboJXgg7XWzwI/xDEAjoogMtBBIMHT7QjIPYq7NUW3W4j5oj0BjKI6rLpov7rRKnzDAvZESlTvYlgntQt6eGUiboksxHbTJcKgJ5ecI5wXR/1Oq49shKb3sR5bs0bLhXOkz5oxXcNJWzJQujsqkGmdYHszG5n+lhSuDeXEnUHuHZ3tbeWVhegW5c3JSTxXQrWaMY0elxb0fGkTn4Zh6ccYOxum3g==
Variant 1
DifficultyLevel
575
Question
A vegetable garden measures 3 metres by 1.5 metres.
Sinead plants rows of sweet potatoes in the garden, making sure there is a 30 cm gap between the garden edge and a plant, and 20 cm between each plant.
What is the maximum number of sweet potatoes that Sinead can plant?
Worked Solution
Remove the 30 cm gaps from the garden edges:
|
|
Effective length |
= 300−30−30 = 240 cm |
Effective width |
= 150−30−30 = 90 cm |
|
20240=12⇒13 rows |
|
2090=4.5⇒ 5 columns |
|
|
Number of sweet potatoes |
= 13 × 5 |
|
= 65 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
part1 | A vegetable garden measures 3 metres by 1.5 metres.
Sinead plants rows of sweet potatoes in the garden, making sure there is a 30 cm gap between the garden edge and a plant, and 20 cm between each plant. |
image1 |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/03/RAPH-Q1_var1.svg 350 indent3 vpad |
part2 | What is the maximum number of sweet potatoes that Sinead can plant? |
solution1 | sm_nogap Remove the 30 cm gaps from the garden edges:
| | |
| ------- :| ----------------------------------- |
| Effective length| = $300 - 30 - 30$ = 240 cm |
| Effective width | = $150 - 30 - 30$ = 90 cm |
sm_nogap Rows
| |
| ------------------------------------------------------------------ |
| $\dfrac{240}{20} = 12 \Rightarrow 13 \ \text{rows}$ |
sm_nogap Columns
| |
| ---------------------------------------------------------------------- |
| $\dfrac{90}{20} = 4.5 \Rightarrow$ 5 columns |
| | |
| ------------------------------- | --------------- |
| Number of sweet potatoes | = 13 $\times$ 5 |
| | = 65 |
|
correctAnswer | |
Answers
U2FsdGVkX1+j5ZnUuJeSWoERNYYHZKUnnpPEvzk6ZI3rhK029QIgQ2VDUNkBzvFCrGWUasyS5LX2LIGzWZTgjzjfhXu+/fRafBPVW/Fw8tCvk4KluN0gWriINV7P/cuWvtfaYujWQ84a0YyY58W/jzxd4zX30e/z65eou7I1oeEiKx2HRWhhhmvWihajmxIiwHOg4RBCodONyuh9DchE2KacONvkyM61ZLowXPXJxlvMEVTVnmbGCDbbDO22j/BzYFWLyli3iWoa2pUqxrXhS90jI3TKdkFb6Sv0oE9rkTmt3wVX/1yWEerzyV1YP9B/YLakJH/CneZ6DvawFVcrN9ZzCOMR4lpibn/3d2zJjQHgJWUDz1krPPbUdSfT37cZI/5OeUPc+6lnNjtHnuSFqJqfzkwDxBu3k5J7pbQGexUS1deHxvAc7KX0XJqrnpXNNy3LXsP0VR6oxlq6UsWujgyjRFI0tX9nZHPhfa0Wkhisg8oZEkjFianRDuXe5zoIRg9yu6rbThEZ7VHNdK0ta3msjpANkJnPdELgydZQtazuDtxVj1+7a7sKHG4ju6G+qlDkpeUU2eI04qbA6v96TokOE9dXg9d0POqWI/8GXStQ2GSwcOUOv2sLddSQCzUjgFMS5OAASMszcEoIZ/8JXc76bH26ZaeyrcgHUN0SXQU1z/gPtz4zTFtW92ZKzBpxIkwL11knpnfd56slSUok4iEDdQuzRqVV8Ll/i1wcqvZvJ+AMbIkpIjJGIDq7RY+zinQ2AKohUCawicPmKc2393HyotvuKt+V+L553qcQ2B0NZGB7a8qKXmjsydkO6xomU98p3zBuJI7kJRslIXgAId+mSN3gv5XVmYR+c03HTAnWvWi+QN2yNVZrnmoQnCwTktzXK00htLmxk1ROPoOJJy10tl6sp/J9IOJL7ZPoTTu8DId8UDp27I7XLrdK6NOox2kAOxfzXuUfo3a753Dz+7rNZ6dWzEUWgjs2Q0CW3iLv5ANFgEGumfKJUJGgejaswWVK27EXcypmxKVVsTg7WvirPwwSzMKPkZn3GusIvahY2BZZh8FhPGr3k7F8ZutVbYAg5ixU67nCVuOXWeljybRMwUXeOIIk8pHDJwfxCwRKUXuTWjjDILZdRJVqY1X9vQgzvGvIajchJzvXMd/VtVKjN782lB3q7+ZTrZQ3HOBDb8CO2MFb05EEKnYCPSXI67fFpCu2ez+3uqOo1aUuYWEhvKT6rCTbNmD+M+iTG7B9uA24gTluU2waPvH/9j76Owl/J/hTPdVe+JlLl9J0d/63w3SmRHBS1c/XoS63dOetRHZ0wLIpm7dkKRXCY4TJRdmWrt5EGWUMXiKdJ0oHHQqNKsJMUg5bv21JHtMXOjT2PyTacczLB5M4iQwlIyDf9gI+NXUGkYfbaOiug2GMv7L42HDur8LNNSsxYqD/88bS7tqVAdum+RQN66IQIffPtKXzrP0fl1VTjhs4qrPscmhkPAQoU3Ss2yqCEQ3lBc6fA3dAQwjtso+lNd7BOoFFqksb+Rr5OYcEeQlj5Z4KKcAjgugHjbTa376z6ruP0ET5jEYBZVjTpANUeJlTD1LvYP2byCjS2YQ2N/BgEMYNRFDphGzEFhHOgR/HEaJco0X2rVNqEgqMd5kTEmsWsNqeZFRnY4xFux656G0K1OTmBTCC+Vl6mMRdcPy1pXEqof72iib1wUjfAC2BoCI2tvBh757h42IPgBRPKtu/zZ592n692Iw4Pb7PX+8gLWfwNRGwKe7QT3V+7HWoh0KQO9PqKFSwD6jrTxGIr4dgidAN1ska+UKOeu2DPEOhub4tOYSOTTqdl8qtQaHuQ/Ay+nkKQ93HjP49q+Y4ohMrFQVVwoA/jwLOHVyinMDhc7DZsVX5hMsx6yfSuZCSuPF/GqNSXg/O35nZDzQsgY5gasgisfYnRPB2G0x4ssyXqfnNxJnSY0J0U/uyV3oyTkKZbvM06/3FJrZWN+RfpoMrDPmFaDmwQwZJvtTKgCsnvsibLQ9d0U+uGTNmr2LRhZXYj1M9X4v28Ho9G31Hu5oakD9M6u6aqwXsY/AK9BS4zUutYxFUoN2rWCEIRqd/mdp6dbV4PgFDl9Vw1Dt/5uuhhdFqxf1bya0l35lzYOqTUROU7MolWcuBUTGaMHCYqqf1xsZ17qx6xUg6Vfb1J3ggmWp402QuKtsqmBKU/lZ4n/+/3vPz/50VVWLPQQw3puvrJGLAgQr5zcWc5Psuhzwug9TsT1fuOLuNa8cKKjCopea3mBX3vd6VPW1dWsxZqdB4mSA7HIzSjKys6NqXTv7XP5SVe09cRyVxfgdBdIV1EJZbxdsrebm4OJqYiDLWPdRw2Z1fG1hs1ml2GiJMymmQMT3d0GouvykxdjwuUnpF+T/2KH3P+Y9mYgU2Zucazpt79Npn31fUeN1RKwmh82V/2vDZwMbM4CniDqughyhB/7Mf3GmkjqIx75J5JqRh+HevrI8b1hFDCRhJPrX7wNPYz39dElug62802xDUj/TInr9eOVlfZgSpmP3a/t3dT2T5fNEPSLUN77j4S4Aa3wKFGkdB8+1oRLw803Is4EECqra1Q7Ueu9Sk68gJf3LuffmZo0a1GGLdf46SC3yQuMr7kKAeN4IsSCxiJuj1FO06KDv380KNVxAzZ/i636lduQKtcp2aXEUtFl7AOgAuIscS2Y2TzJ5SZ8XzMO10emkkLPl2uyYZcf80lI84GcKqcCAVLKtL3hzwh3r46zHae9G4Q+Mqa1y7YG7yWByqaJwJhdttyRxwfKNxw/OB40Te9CsCNriQxoAiIkHtvSict3oWjCgnI6KhMJ/kIj4x0LgsQ+rwCCqyQsIjkf5t9uHv0AV4WgdgbLw3OXgycPc2C6ARr+Svsx6uVBN5NWz/fJLeLSpeHhczb/OWI0siOjxmMQ8zcBED9sR2ciN/3Cvnomhz11PPc/T6wYPv3VtCgpHkP+gEY+ouN6gLTGZqjY4q/xZKR+8fac3QwlApRycFno4lqDKz+CCpGwZiyNLVYq64DSa5ze50NcZBUYTN+DSsT9P6pV3epV+QgEDbXy7ZIp8++dFpRvhcVC3SKC6JEiVwCBcVAhRJn3eKytXhJGQOpOpPDA5WpLaGjxvOMkirwiRBkNko/995GvTBDDowSZPiNuENA1zUmBtgUk4WKjG0kYWpW/kleYLLdpkoAKzEbowBpKv007GRgcjuAc5A44/XgNez+2uwFJUdD9CLfb7jiCVC0RSv7XWfQwF46YhmIDsFik15IufgmRPbwk/C4utV5KLYAPKIyT2kZgF0Otn/epDRq+STrVG4ATsLEvvW3vt9r4TAdOtqmmYC11lNDVY0ufbYR+lSYGkZDVDCWbeeSRF2SM3yQJ4jy6dLMXWL9jk/puWw5EEWGodx0Tj9sFW7HI3RjBzrYn0tVOEJQYbAxlDRyFmPs23Ub3qvovDlQJVeem+VpRZkOnh1riYNF42JvXpCbhOPXSJ+sw01O5RXYYoqbZRFahpMOwexxvj33RWnyhvEgz6jJ+fOAMPiZUOMc1BYDMCofFR7iIU/ZQL4+9VjnS+csoDGoMBGnp+Z5XOwc83X5KeMD+4/czSj7rEY1lgzwdsf9XVaBosVSoqdulavYNCHBhhO8h7Es0Urd2mxcUM40tHrMFzKd3dCbf+VmH0QO8/Q8On0gSnRsIdUY/GhDdyoIlgj7ALO+Ye65yAW9AeslJsoTWrO/n/5ArWLcM6wuDevcquIqnXL0AsW6HJxBYG5/9E1j+kLXwM4XQMxKylmiXEeFbQcGAImo7puHgjZIqM0ErHK58vtOBMBW12Yja/Uly2cQinvx/4ov74e/5UpgOfNDdKJnA/V6+eZfhGTUvrTTuZUVWAOYj5guxGHIZlM1gcGh+mHBx5A8udVsoTrFtRZsHJaLzilD3vmqPg1X02x+ggvwNCSNP4psXasIpCI2WNaZp/fanw27e/F5Gay1jSHoxBs6VGdzrzrpk7Z/ZxfbB5pJjgsWY6Jk6mXihIBrn7JOJMJhhPsJxckt02WRzZmIWzzn3BNXIc2TkzKQN51Q7gDAeJnNwoVmtuhTytVt2F4VLV/6B1dDzXi83m2dBZ3cqoSSShaBLJOjUIeBlBieXiD/empgROm9T4l35ffqOJL7d66UOaZZ1QBK8VEejw19wp65kBjuYpwmCpgl7CSdtrPr+dTctcQizjTdUWZ3FtK8MEOIuKB/KsoJ1creTy9p0N2TOqcQ/tqF9wS774iHgS8yZTRvGm397lv/5PZE4lo3ch479GpMAGzAzPDNqAilz8RnestntjVh8ZHGbwyKE8Bpcw5ndakvYBbEsteQ7LVv1gIPHpTXPq8qBuPgwb6iYaib2QX0bH3CgW7s2KrjoRbQPyvnTihO20d5SXg8MNIkCS651CVWGZIas2bZ64LBkdHnrjYMJyE3aBca+f8eilwZjLNwbnYvmysQw8+kIgQgc4IBrpt5gMf7jvgfLTHNm5KRYsyaTIlu5OFmc8modKdD16R5BjczrRTFGPeTrfELU9jnkZWd/KXqbZ7LBc6F5I0QNWiYf55CDH653mJjadWio4/SV0nZ4ORf4Cipsh3UxHLS8GTiEUxNprj8Wu5m+CNMfAlNTQIylQazV/1G4dBeqq2XZEjAOhWgzRZRh6Dk+H3WUXP+U41dB99cqgHMfEX+ncEXYUzVbZ26248s9sbTzYVvRvpUDNZMwkjsSw+1BfExWku2pbhDZ9/GVTd+Ilbcr1JW1YmprQqmlvy7lgp5c1Icjf6jwvBcT1Iakr4bMz4HoU67FVeSmQ0USpQmiFKuiKDobOr85fOHQapfsO5GvROKciBDC9KnKyPjZdN/f/P8IU4gzpacGh8rHfDwj8EcLzgEnMn35wf061XZmKgFW6YQ3/GeT5TV/fxcXo8di6Khiw639QmGF5Cu2DesI68EkAI1SleWYGlLGj+jQ33J+r2XLC41k6NJGMMBMKhTJ9K8sjhCS4dKz8xl/SmAXoJCmJOsxSygIND9+Gb4WkbnOUnGRyJqxW/z6ZtukpDuCJBLcx+AKUi6+RPlLqYMZ7/8lwMQwox6qsgzntUsUuPNccJmAjHcRf2tQigEpg3WGOgsuzGdCWTPGOW38txaQXwYIca5ndEexLK2K7xt5Ei2EM9EZD9fVXdxpCc7MUe1nyUMLqwb4F9ED6s9SCG8QG93/stjzRojN0O4NJvahIG+XYsW+WSsf9H6AZWduEFW0W8sJC4NVo5iZ4WWkk/GJQJgYN2xEcCU5dQwUJgIROSgQmzF3xQebqcV86zPD4v4o2LSuDnhGU/CjZiD08+pO7L35ddrn9cvPgD3qnbXIHW1S3jONIVdA41cd18W0WGAYR9Ya5DHeyhg5Mf8SFllMFJDLDhdW6r7oE/JzIzlxsXaOjNw5xvKb/BwO3BlAyLfs5LN6exQzW/EIBluQuJFUTJs+pDnsGccIkXOhVwXBjGdzS2Qiai/dCgAS8igzkthwtkpLmS3F22XrFN9KvZHu/gr6cDjbTqs8m/Cj7WYznLDX/BWqzPxZ7b+c8VpkbC4WUg+TMoUZemLk0jK7XlhGSe5EEqNx3Ic0b/Wg4rb/Q/Gq+H6h+cQ2JjL8oUGs/fImgKpBHiMCAAMLw+xek/UKkUxC3EHDIx0VjdGJM5Xe/gPnhUXQNBBPdVio6fTs2mywy/dEJR0IWIJPRpDdwX6fMpjnvRn+2Io+xqIl8YFETWYIJS2usCbFw5PESYIUOfnd/LhupaaFIFRb7q23IIYufx7vy3c7yzAoS85K3JNvu4f4qZ7+HniVm2RQ8VIpzR80miM0lJQyGSEOFl+I0939oPQSxgXBw4hcfQURZ9YjAW+a1DJFyMoxwld9yBaMOy6gIfkEoaWlPDtX3q+OuXAPdswSsfJ+2V2KFnl6i1vb+iWnsDOuowftnh7Irhhw/uhx6vAAZdyaMvI0k9zuDXlGEz68ej8vIs8LlC9Yl2IFN1bMWo84oyg7wn+OnCJWSoIkkQssJ2rrFdhksxF/bWxwfm6q4X/XOykWc6tyHoWtOJQ1NYJb12bQhQ3iMs6WL+eE/r7nb9RKv8GV3iz+uc4ob1fhbpRd0lQXaeNcyQ1R40TXs5eF4KJThXalAAwDZCAwP1uCkAiMj12TRTTdGv1CUKHhYxQy1Wnkc/RRRN85MLDUexWuV16109ej3/RSz/Yj27m6W03kITYY14dGkq0lx+/QDYC7DPml1FyDC2PanY3Wp/0Sej6Yh61z2FWK6M2/tgMlcKEfOLU2Hef1ZQXxKVn6jiK1G+m8zqDExxsTOz4OegrGrIEcq8QfvvgsgN9CCKkHciSFPDQ9GJFjUJ/cml3KcJGOgwN58rXhry7n78uXGnknPBMmEhFYvJwVuvE+AU+mFN2ep86etilvAwlCU9AdIaMA4TbImJEb5UGQuT5Po7YZnBl61b2aKPRyFXvv/sb5OaikKmcyHoMJUs/w+l9fdoGRuzOSBQzq9oWWIMX35JCU/9vJOuOF8Ea/ITq7mBwguK5Ma2wnuYvwmw7KF+lx5BK66dGf9a0Cuyvb7iYNMmY3WvDwWOKL/ZFsWTMNxWHL4g55giQgICzRcvFbsU/bCpH9IDtaQnAkroVBhA8oVrB7xZLf8YAeZGAFE3j7n/xrXKy89LMoCQVXXgQsAlcKlccufr06T0yNwcM4Ac23rnd3UYTtORd35xg0WkAkasgnjRCXXy+dFzEFhR+Xh1x8aL9dJBqCBfRocp4VpEZ6aQQRVUKMXHhcuM6lT2HlTF5RTJ8NOZtzJdr/x1ckX8adkL2mXft0OSFriMly9eax1RfVKFgCx0C6vTmPpZN/FTMvNXRAvYa/HNWrhrCHRLbYQZzHBiKrQVUuQ7Nd3AMUC+ndviCv6JEdcIoNW9aVK9uSLKCcMYtVUPCRpp8AFnJYVBqCVraH6+rOirIFbgexS51G6vVgrMvt8yEcok/KZZ8mZy4KGfM6a9xJPnLWivQsW777FKkZYKxuZ0hPa9FZj8Crcj4SJ0dHiUV8TQXpPJSFc1LxwqHwlSazdR2Iy+UM4wTh8jkd2M1evFZizpeT69anGXNq/f2uhfu6wazmjwUGU6KkQiazNIzvWKSAL4Zk536Y8a6zcZ9lC3xXmVozehd7aVRFYgPruRmosCZEggVJGTzjHm+f5roOelE+1qz364qw/llLsKrDYXAp40jfnfyrbN62xoFzCs7Ummfgz0WkfsfAuX/aeDrYMY7lseixj4X0RLCX/mIPz1JCxrruhuCFWwH3f2nTxQisUcw14R5qQsRlgGI4WE3jr5mJasj3rMXlwDkrap7nL3mNVB3AqJjfJp6UQCldg/WRLC4Ujmz0zCyTUgHXP8DREN94VeDHnISXaNKsfES8TREkgfOdYrugY/HxrX2EcTCpi5Ud/tfgBdiyDxk4GpRGwJvzfDiOp7BKFiaYZL/39O3Aq1R+ymEnkAWc9yO9mQ/6D24M2CoA6N6t+yGACOWEbCKO8+JnyvlBIY/aPQO03vxozcD//AaemqKYTgXbqqJs2IIDfmkMecdecC4n5BJo4/9gyT+V+MxugB91kDQVYYJJmCsdcmeU297rlf8n1b+ds0uNbct3AcFJUt8clb4GaBC957Y/vaF8d2R+KmXRMwJ3npAdnUd35f/JJwRdbTgSYaOm0HEWvojuSy5eWnerd+FId2UPNOaFNmq32zKuKK1UKaPQy7OIGjBwBYGpp8hTP5/3djlnZGg5QX8Z7nh0+AAh/TtKzQkZ6sWw2M7CtqgPMokA/ysy0rOXziJ41GJ6nfjl3oKjNnTjsjhpbdEC54YZ1PZg3vHNOlFb+Tqf999FmTWAQ1/Ff+DGCQkHd1EdsphpY2K7tnMH8xniFL8yVpq2uN8/yGs63IHgwyamXhpbpM0vEwzIOA58E9LRRrVuNAqRohhKr8xqs4m6YB8pMFiM7l2Gc3rO82nuIOSiJLQGFGVpRSkdDr5938KJFr02Ye2bUL9BHUF1KngnGk48KKJJbQPC89GOsqtdeUt0ooYHKG5BiO188BS7ytLW6hcotzH6ynS2r3TsmYqNPWKOX35fRL9dFTBfYn2CuA9mhdS4iww4fZ2zJm09UgMnJwGL02whs43WyitjgkQWhSB0Qr5bSxqn7fHL+W4jDsxgLD7DsnP+FoEBC94ZSARKKmmZyD3aPdOjgmEM3YydDSQheI0xmPixv6Rab03xRPz2IA/ZV70diWQgzv24gIHXo9ZeiuBD3pp3FJGyoIpIAcNxdTCTm7b5u4pnH51hvcXW6d3q3PUyqIzzwupQjuMhowmle10V6fP5vTq1tWt5nekydGSHC/Q0i0dBWBu5XJUTwSkConr65nR6VIHrEpCp5HbfIBjseTpM4+7B/xsxNOonCujmvdeptMcV01nCZ5GrmabR1Z/+vlP1/bIXl9Y98cu4WsWT7VSJw45rSqY8Buzm7aIZzpV98dmZQ36Kz3ZtwVcJV33/wClfpxmiTwI5TVcWfh/HoJme/mQGDGTRmBJSM6BoVStOuS7TiXccths/28Y2ibErMVnw6RlwyjtYqq/yTIoH4f/eGbbzI3+COtQUAQwJcP3ZJNshep0JBU2+O2yo334vWANaEwoqZ3Ke9QQt4unWAZ9HMHPB69mo94iAtLI0cqb0Bh7mpJMY+gVjdtcXBlUsGtvbHkMD6fMhcUbCDDPXsifg5fbCoO89T51+R162gO2ojvm8dt7nExUrF671aXVtmM9Ct060N4rwtvFoYJYIChQ4MrdhREZVcTk1SlpCiz8mvvSS8E4Ihy/eqSB4mmDN6nVU1Pk2P9Erp5ygMsqQ3encdB8EyCFGJAVzEC1wU4GK/BMk+v0cY7Jc2da0Df75V47OgPTEtEJf4TD8B32EeQU2NqPl2g6QV8ODKpD9k3eSwwNBi5w1Zs+XiihERXpA54p9c1x/IhWgfXuWAd6IqhpzywApQM71j5Vr7pwBldi8HQUpZWNmFcehCoLmEIYCWUrWt5C97PN09EW3ApquWtTNj3X4Sbos+o3hy7rwmiuArdk0cA2pbhmVO009Hkf0uTCcfvmwKC4u8BPu2soNpqorUMW5fvljh0A7i4mlLjtiV3NfscpsK305r58a+6z+/+GeovgmBy6ZsMygzXkgv0rn/u4m9RWh9saaHQhMhjtFibIGGQ+YyQl1koTnHGEWy4s4OGkUQ9BO3cFTNCqSjJzliLtXgdAucMAWQo+0LS73hxiMDtbBvJVMgZ6zfJLWGurbhHNfrGE1rIZWo7gGBNsVIHzMgstM0EPoQgFa5qtGIqua+UT8CFWDD8f4dV+wVb9sjcnC61QOA3Hw0753KXYDuiYK7IahaaTaeGjsiEuXLQaIKD47dcApkhtR/uybXhJFLjLkxnc60WnrF51QaGfQxqGxClltAf1wpIPmsxmppwfkIt7eAB+nVo1zjGKrfupJKeKQe/HSpyArFt+7rKSo+MhfNDXz8CaH6DrU1kN1Fk3AkSKb7r3TpVAGZJIBdqSe8a8Lv4qHNPH+3vQS4clWMjdaifItNLpawEgy080sV/P/nm0HGRhv07Y7L3DV6hL6mNMxbdGqOtNqWm+nzAzTYgCgOfZJYE2IQWiqmFO1pcceEtnY9Vka2XgHiA6i/i/I1+i3e5ym7tlrb0axfgZeAhdpNPyIQa3ydVKhB9/qC12qI92Rk4f/IwrQa27iZdlm07k1cwWFGYU3O2lNCgLf/+VFgthkV8wCCRCgRjcsjATclPL4iAx4rdFet7PDo9x4S9pUJHAMaLWUUzMkSk+JnPvj9RCRx1GMiece6YkriMHoOTvbxcCeiWzJKjMOw7s3w2AKB/D5IREJXi1T7ePV9Qr/LJ3MnruD7I4MWUgNlhzfS0msixhpt1jDTYRUowoQnhcXCHNuA/7ZyJ/TV1J+BP1WOanTr4VNUcWryaOEN626rhfrzDeiGVnvzr4TGVGGEK3MQHbJI0FShCLcJydqI8AJssgwnegOBOr3+CREyN9E/vXsdhLoccc4ZkYcyqXTmMlnXcRqMCujLzBr8zbIVZ3EWkDvHAM3RPM+Oozp/bF6F6Gx5LlWzG26VYUL6yUU8HMQ3bkHLQprrKAVZdzSMN5ijEK2mmj1eaBGX+GmlBSU/kEupxziKcq+qG73knUzcDrU9CYY4GE9I3A7R9Lt54gyDoBNyLcZmG88fQlAtx2NGWRVPztKyxgy9WtMQioOMo0H5nqjugRWo/w0wFCt6ZidLc8tUuNqY3jUaqxpXCaB8IB3/bef5zCsnQJghGhZavH4gnaX9qMn4pQ8Ufr3CNNGPA/cveXxmsjKsD0vXe6o8mrHsmFeC9/i9FWxAXb2PSionb3rgYHDdO4LwGWLgEX1cNAcCrv0topyjrGo1UPc/VNUwmzjoboXx7XQ7ec1TTS5juaRRZE8f/bI5nOjxBcg4XJS/qQVQFyAS5+z3klKuJyz/aW4+siXD1c3tEBSWshjBSok+ogL0xWP+eocedW7fY4EsZbQvqpGhHn4Y+zil3vfhWRzXTWLT5o/H1ZvhMQUrbF7nYc+Tav6WKVVv3ImJfasJ9s+3urCDpbKVPu4G72CYwIwz9AZJvou6wuS3UD52kI4niu9CyTDtm+dHUp68YCAYW8wyRTwLBNa+hakZW8zRMaIS9Zxz3Tb2DRARbWeqRoFlxHz1q1wOhJkXW8K5Pv0MBI5KRaaZLfuQrmRhDtPwDKoBymd3XZp+YcbeN1QvRE8x0yeMnCI4RAbgQ0+87GMRERazh4soqm4HvewSKNbyT9tOTEkzFwdHznvyfQtMNlMnkQr7Xh9LTZtG8GP/9PtVOHJ6qql0gJRtcDr41pCJviVPY2kuTnUGfjJ7OQDPqChgxfFDpeNyf90vYNOvclz1ftGRpThdHZ7SbaH6Y0fzgKGfmHYycjQRSJSIkHQ9Q2tFhiuNUwIBHFL4AvTWpE82WWDBwIxmBbhdOHXBQrzt2kx1mOGJnXhxs531Roi+RvaJdGCO/H0Oz0ls+hE7bPfaCv4grFTuh6F4d5Qs8hlaybVH/Hf9NMeoszCnldoxFfg+zZ8+a2iroLyxZWJgkz3SCWJrBBM6kQ8ZGR5w1+eii2S5PMh4fEN6gg2j1OeGbhmD17Y++d+3HyF+2Y7TTddntOujqyK1JlViC+JMk8vAXc/RzkvB5yQiZqx7PdR83WDJ5+Sj0p6D62Q0YY2BsD1GOhjyBh90wP7SLeVJbKGCRdCC7KGzNniY1jb3Gehn6drW6Tp0ncZBAti7EJ63f9MNIKcA7JXsc5Ri5edOSddjvNaNJ2UjC4DFBazCJx0EVMCNK5bsqd1gMKamlyPLe+Swxwtk8727tPLDzp1Y7BIaMY25w5waOo30fN3DJV69H04m6t78/tkkgUr6Zz+XrVBHlod+fxH0CcDfTx4UDj1lV6DoJBa//myPtef1KJF3+RFmeCyvSbZzEc6pv/0nELkf+GovlMp4YTA/xg9Tx4sRekX+ewJlwBwgX3qQssb0BQW1b0yrZE7im3iFWavjjt2ZRW5cQ2Mr4AXFwLYw+0LOtDrQlbxk+C+IvG02uutIjxoITP0HDVGGnKQel5Alxa1CWHPZF5dSclHzapVJccJLdnT4S393dlTrx2/cPcgdb9AIjeyvnb1Cifibmc9Ds1XH3lmwuk1rgVfAiGWhHiMsIZYdin+HTtoZsFHQ0CXUWnA860ROZ1NWMZO3zWrI4OZ8XDZBSeVmDFwFD/+JBeW2YZ4rhC5TXj0hwfejCgiQexp36IJJHLAgIpAe09MLpn33qcjkM0axWF5eMZWmz9xqDSClXnhYgK+r47Fx6esvTienzxzhQ7cDL5XgPeauUkVoQB8srgkaJ6vi2zH2Vfb3mrdnv8tY6c2fNgoHwY42JUj8+LmdKM7z6uZH8ZVdvDFC6sjJDXZi/siQbpoFyqsCYF7tJt6pirig4Gx9peFz7z+7+NlJ0ZZ9iNWQbGNh0I5vUCkhda/AHzQrt+DSBI24+QOPO2TK5bcjvGUyhCr2ZQP7J5tUDEYx8s7VFe/5skBWA9rSQ9/vNPwhYHkfz9UO4yEqRShrEmq03VxR0VE0jyszBnWQ9DoOHlhFAhqvWqnwy2p3ttRps2gZsQVNXWBYg/UJXg0rCyFf0f1a3q0EYgHJC7IXsqbAGvsLOwWbcL/6QJaoMjvjhhofiqpEQLAomRt82dN7tG5r7tg8Ades3E+617X5aKc77/lZ2bP51sMxzroC6O6e1b/fKMhTJia8VE0JMjpu+Zjg/nQxq+P3l5WsMYGGU1d/3peA9iow+dFV9mEdNgo+qR1Rem77e6rNlUZGEeV0QfgtgpGOOCRFq2IzG3nZT450sRaZsNKZUP63swX1cYKxTq4vlgVQGaa5NpvLLAlMXUevfLkEbEUlhEPjiounORp/JGb6AFLX5O3e4gHny6RVuo/LH1UtuxSBX4buzqoI5oZXwNxvwktGYGFNoqlwmn5z/NqbcePFNZ6t3kxHPIXwzCEQ0UDNEH+JFxQvVOxSyWXFSg9kByjxkdmp5AwUlUTyQw4ewrdFcgrNyfC8ZggdzhiJJu70f12sbs7W2l8yow2rp4BGxaQwkRFm6p9FzFFDW2jHbfL+ymB4EGsh6aqI+uVB+l/t2STM7rNM+7w7qoaDVrom0tgnRqVWCyB7KnBpXrflIcWFzTToLnqxWUNNzhLfA6BNa8aw0Arorg24dzk+nB2oFmCm2EeGZ0WVsW4+benagHsyy8Kr7bSPo440VMy+0ZO+cCSlQShs=
Variant 2
DifficultyLevel
573
Question
A vegetable garden measures 3 metres by 1 metres.
Marley plants rows of celeriac in the garden, making sure there is a 15 cm gap between the garden edge and a plant, and 30 cm between each plant.
What is the maximum number of celeriac plants that Marley can fit in the vegetable garden?
Worked Solution
Remove the 15 cm gaps from the garden edges:
|
|
Effective length |
= 300−15−15 = 270 cm |
Effective width |
= 100−15−15 = 70 cm |
|
30270=9⇒10 rows |
|
3070=2+⇒ 3 columns |
|
|
Number of celeriac plants |
= 10 × 3 |
|
= 30 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
part1 | A vegetable garden measures 3 metres by 1 metres.
Marley plants rows of celeriac in the garden, making sure there is a 15 cm gap between the garden edge and a plant, and 30 cm between each plant. |
image1 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/03/RAPH-Q1_var2.svg 350 indent3 vpad |
part2 | What is the maximum number of celeriac plants that Marley can fit in the vegetable garden? |
solution1 | sm_nogap Remove the 15 cm gaps from the garden edges:
| | |
| ------- :| ----------------------------------- |
| Effective length| = $300 - 15 - 15$ = 270 cm |
| Effective width | = $100 - 15 - 15$ = 70 cm |
sm_nogap Rows
| |
| ------------------------------------------------------------------ |
| $\dfrac{270}{30} = 9 \Rightarrow 10 \ \text{rows}$ |
sm_nogap Columns
| |
| ---------------------------------------------------------------------- |
| $\dfrac{70}{30} = 2+ \Rightarrow$ 3 columns |
| | |
| ------------------------------- | --------------- |
| Number of celeriac plants | = 10 $\times$ 3 |
| | = 30 |
|
correctAnswer | |
Answers
U2FsdGVkX19q6xwmX1XOGPvt3PDKhmmKb4HI6nfmBrBTg2QhjXiFZ/INKM/xedPfJRzC9985dZVlqKmhxOsGmJrG2M0qwb+mkgZn8PGcjY1IJYiEN2IVGpy6c5prq0eDfgSvofwAqiM+t1yEmnlfpQvs3r4lqo5FqyuCtxD1INpONbueyP7qIOAYhfsNO2OnfDdwDDOTLQLcKktOnNxVMwXwFygz8QVdet1mj4xMxUfYpm65E+ZFvb4qVIR58m6yfMWR4D2p+IaCLLK3dPEJhOW1hrxx4veNxaYR3L9N/dfvSuYXv3k62YYRWvBu7yZxkDyQyS0oqVaNetFNhDFWbhN4mWraI2x0dWK7VwEK89MZlv8q1EW7fZf/UtRDjeV8JYYWdnqzNkmr5y5pYTvYUGL+d4nOK59Pu7q0+TacIPW9KY5qnIMS5yaagH1ysTXOW4yu3ececfCakp8yEc4lNSnPl8LjczMv9xZp8PuRZG1zLiTkmcyDXeFq1xy+n9BL1WFnOpAMVTST4RnfNJaSuD4p4HmhkwjDOUINzrgHr+VsO4Cf3JyMrbT4+D7AMpLuMmMcrilMfFYIkIT9UgzR7pU1SUy/yB4fDcFTrRJ65E6MSD468WmoCcLUteWJkxEz0Q00MUG3fY+eU+FDvztCXmQhMd2mryDATV0VKACpxqxGYnKZzSXiFEuNLJlmnHsBvx5+9dNiOMIdF3VQhVyMzDhJI+HfJLe/XWN49g87hjHo+Y0BxcYfcPkte9zQBNCYlLJ7VYBe0DRx5sllQr87z7KyHBTTS/GBgwB9ODI2PHxxjHdjSccfvo57ysEOPrZMti2A0tpBHteKR0HxXPVHS4dcANFnApMDX3n5AETxqZMT1v6m/auvyQs39IEvw0d2fZsrjq5hOqdNO2oRNnGXsB5BmL/kqdYnl8vD13nT76SAdyO1NEtt+uiP8l0H1qTnS1JNZ+RO2H6LUmJRD3TmkaMqqEHT1cQw0yEkCZAzkty4uNcdhZl3MLsYtGKBS6uzuq2x/PIBFLof+4DDPC4aM+femJoVy/yrKVHi5s9iREjzFlBf0cuERMEr0mS0XnRkckN6yH712+KNMCwLZvjIbjWMzoBhwMeA9CarDYrX3C1WO+0zGE2MjISG1SPFq7/InNYDrdTaEZqaev4DKx1mplFK1ubebFISMYuNABA6+S8pVWTAOs6zHTrZRZA3IP18BxXJhKBAgTf3Vc+ri6qOZG+SvtICds+t0PkvueXQgLj1Mwe/9WFp6nTOCFQaDZfi/cA6SATvbzW5HbFbpvF3ZZS7RyXVK0w04YDVdTqk/7ebmhFxXLsaPUhiaI7CTinrLpXgro9ADaxaqt3J/E0UeKuUZQRmJRrKpuX78Pg91I1nMgd9CDB+Y9yuqA6zqp6OnqOY0Lol/KS5u8WVJZ1Waee3PWyVGiYZs2qxVPHZIy5d2dUb5Wa/FYIRNGAxEWzm73nRUTLjSs7lJsr2+aXh3WujC6D20GxtF6gRiHazcxtB+nKyt7SA8Is+uXyurWSqiHqcvlhef5rzyfJt8MCNG5F/2hYJ56i0P7jvD0YIxCzsDUgUbKfGE9+s8LITVR+J/yiQQiKiQUGw8admq1dwDvqemzkXl8NHJsCe05fXZP+wW7kvidd+BdTV4IfeqRK5936zZdqwsFEAUaIOo359wsjyBVidXFkufEkLPIcPd1oQlBIeF1sbh7ZzTtUJrDQp67aTBKYEN3igsoCmYPs2Dlm6VGvfihL5R5jtnxCYyJ8XBLya3qXl/1OuEubgdrPzhSNBVwGfbbDMxsbDPiRZYW8lPRFjL9U/ydU6n/aP5Vx2mTY/qAzUMIli0Fjp/SvJHJv4f6xlUnwiZ+pafTYjXRjMRDkAL0XXgL81Tlyp2LWgMSsz69k1Llj4LFTkGb5gvuPdT4aXZoqWVRO0cHzYxKpW0KRr4UOEsAiv6zqpttArcabrG5GTvWV4wjRLjAwzYzC7loUtmiVif8FBu0Jq0t6lVr8MIEJT6/3SBMNlKY1Vs4G3T1jjB/t/gFaIKtyoECQOESSE0GF3CJ100/8Zd2s5HVhUXw4lNlZapcj+HlElR85mOsX3Jr3YWGj1Rc4xMvhDZUIL1d093VQTTilYaIAkjjU2pVzB2BRzPO0QZr5oUDArkXacVN7YtkbR7G19yiu31Vn8CtET8p9Yu7Z0vGsnsCvRfsEMMldgRw49+JoI8wCrd3YmlLTZpSPkVunGeb9MyC96jquO2DQ45kr+nGh59pM8GAEzG3OENKNFoBBRSngeVXRnnLFpfMFqXMTJJIvRvJf33JKzwQXadAJFf9Zm7jhW1eRUp2LFhJduJooPaKnhAcKNL+iMLWjvpmaumB7Y5iWM6lHJYrNVb+huJcwRhdK6zD+v+HNGBZm1sqBRH4V+7QaTuACPO2kSluNm88bItSOW77Lq7s4yGW91krrDkhdkeaHDR89uhAIbdl/n6z80M7HtAiEXZ7zaD/4KCgBWBGyzcIYojDwBtveUNf2ipKl765rVdHA761FCjb9pMrmawuJGqjJYXA7BK1uz374er9e6hIiHapPHZBt8+IAv8FaORCCd9SGwRmVYxN1KFqqiyUwNviuy1q8LPHj5p6t3o7twp1HTYqXZ2iatdcUnQSL+Odpuvje4AxtwQ7qnS6OjTO74UXKMmJCHU0zeySmW2EP3ehSvlFFq+a4vdUGBeAblSgAH3o6c1IrMGxNBCZXO+CPAPNv7UtBlZW7NYFaxYcZArLCiyKfBNhnWfCzacJ0NN/xch56WtPr2EbVE4VRMJIX4ojZRELJJfLHE3n2I73fLp+SHj5+IE3EKtefTMyrZV5/Y3QqHCDBmvbGfr5Wt4MhL6XcIor6oSM1ww7fnu2E5LWED0VH/ClLpnOSEGkAcoIHkI2UnMpMEt3J78hDg8bAEUH0m3GlbEJLBztDFN/61d7NxEJwiy0OjnsD3Ofo46r1qyrrZV8kpDAzi8w4bs0Rw6xQfZccL38fvaIFQ/y2dh6Mq+qykaBx1nSqiu1asHFfPH9DCjuG+ryVYSoBIv/G0HsAZVQf7gB2KWIYFQt1GB1SkDZ7YNou9oWdHH3sNgGEc/A23H6VqOWetSyv0PZGTvhtRSB+OEmq0hR2p3nG7Qe95/KsXS1dfodk5wxzuVBZt0Ft3+oMZTAtyaZ/xHbZ3OhaQ5wt58uf1wo8z+6mE7156fsxIf4GubhBzawUv/IzCN7AWgOk17oGAOEHujm5mmM5XXm/yOi8gbtDcOnRWM6wyelaKo6XRCIG+XfYvNYRvZcpciOpcGjV9Z3d1uzRik1yEJAECWh7+4G0QgIMVcIc28T5joAXRwPZBcHQvjJXLOOxFjs3gwhqwcNJAjiuE1OfFAMBhmetRyREnCY6QyhihdX7SD4skqkvc6pYRrqXCzqxCwzDwMWVZiJXkqo58TQQ/eEsatWF7C/dUrbP/SYXdexM0RwIOZW5a0BAZL4XbelslI9/RHn4d9UprxBDK4Zsro2bTT+iujqjtSS3LWk89ZWPWvnnW0koPhzAg7Vj3bn50W68oinHbei3dtJI17v4CKSC5umFFWSvmWcu7x+IC8G76/GJyuBlk5rRONpp9zzWrKiIeDNKvumKKRyNwb28h8CArDg4bOvBOIazJ02t/mrTUqpKeLY4w7tA8IEXyXMITkDO5oxx33C8o/rVHqSpDBOcIdobg+CaC0hk7eS64SnA6B1ce4V83oO+RtqpGo3PJIs4oeZAB6dpVnqaigKfQkH7IoKSLjB95LEd3GOSkQ1scz3VXHyK4Lum0V7SUKVw8EodeJXwKWtjELdjIAkPYfFJP7hyuUnMgfEYW9owWLnMypKJ9RykV8ereDIOVkw39b9ZsPPNeTzeHjKVZOgxFi3nuBWTW1BzqTIoRG+IdQYaekDICcCLDBBcYhDub4WMuznUKDf95T6eMuaeIofcBfQoK6+0xcXvtaz6gYJ+/dtbY81sLO2xZ7Dy1yHzIxve622MF2X5egEEBK9x5U0olE7WYcAZwy/eIMINjlXS0Gs3GqI3d6nLS0f4kiVzgeF6ieUo/Reb5dvV1+JDbTwau8hNgrR9Eh8NC249cEG7YY4cSH/YNVlQmGUG7TC8UN/B38A/ZAuO07nK8TVrkAP2MsgDLpKHjaYdik5ouzDUDppiGgInvVrhkmKTiAwo5x1wIFaBWz0ki35xDptQJoulaDOTMohvphHUeYbDkqPHM4gvMjx3H2AKQx/Tf7pI5loQQsbS8C1ZXL+aHNyfFpZJYwKZ+Op52YQf/FpQbZ//fHY7qhv2eOzSUuixvwlDOPtBhd88POC+EKK0uwebLcBoUXn85NQ7UlV2YV2xzus0V28WyXqVHydR71H0EkRfVaLP/hY8zJ3YI8oYaJoitugCbW/gXwIFMpb2YNw9UiY0pmpyyNRAO5pVJ2F8D/YYB/HT+QuQOoDE8dJx/xpzyDxUr38Xv2cjMy99YEPXWpuG3qdCtOT3w2gEzCCEkErOa5jIGwfXRydy6VvUnLHk1UG86bAVInJ70Bag2Elu03Cc2Mn8oiKi3/u7ckHX2IwgBTTMEvfQAyQvHjjhMjFFAYmvjbGOud7mCS7PzAH2vl4ZWGD3kumINBZyn3fE7CYHY56IEPGqdzLe/pJamkkCFad0LLsE6c4q44ndwTskxS2WlNcLmuG2JEfqLp8UVa5d2D18CdBAPnyVrxWQXUgq/kLmMHkGCPog47xnuTl6uXKg2EdQXE6ape/sKg6r4DNS7bOkIwTbMx+YZjwPcpxzMA5MvOG1e3zQA0+lkCUAIB5RnE0lBGHN3FDOjB5+mFkMcz3kP7phayglx/C8wyvkRf1ReT5gAlp61U2YM0ElYg6dKkMboRhhYcEqDO9dUu3XjcRsYPK4hlek+7717ED9jlM19plnkAY8hvAzpV74HJl8/1CGukM7otmW2bZvHbaxhKr+8hDLqvM6wB+POry47XZNEGhoVWx0yC9S8IsLM+pVsBECFh3XcxPjvEIs4BrhrFwxV2XI79v1zKYXEArvG6p3iuj3kaf+f7OaIV76O8EW2zFYwwMNos7T22+hfR1I45nZ+t7j28/JCkjSITTJ0tBtHeW4YbzQD59CPWKcdaKDPFkKr/55BnYLG3BJB62eQ8y7P3U9wvwoosxRoy9EzRp3AsxEremCKfirTHiCsSID1FV7vmJmsVk4n0W9KdvJl0lTEa1fR5s09M/5O8cIXiIT0f2WgfjDpEAg2gtCWjLTZYNg4LxMi4IEa0TFf8+cOLnV3Vggivik6H9O3ET2N3N+QaSZK9nDaN/gJ9GKQc7644mBb04zpBOGeZkIENjpr21WR5VLSyvQhC/Fo1IuM19ekWz+9EqUYlC9Lt0QyqXdhSN/QRgBt3SKeb/82w5MckxpWLCynu/RO2QFiTk0IrRoJMvpwWxakXvEK5EE7iKnqAkL3NaEJWgUxQl7xnhimAyhKWKzUpLvC1oIpHSLxk6jfOraNMcgS3fPWzopjKRHCk5qHLwiDJ714gp8ksSwcghW37mk6Vf7slcp4DLfJCg41I5O/rVZXDGYvMAsvE1sQFF02IUxb5h+xA0PpzMNFH14NRI3BSsUm3RZtyyoZiodktlKF0XNnkYbSEoZGYK2TJIm+N1Y6qDd1j5t9w+OpaAWB8wT42FNDngoyzegC6NE0BSr0RTes9Jsk59RuO5/4ROxT3Eg9f26mXfDf1CPomJB78neA1Xj3EwnloM9gyTKx405PGi3+89POqLUImvTsOiEM+i0xR0hcyq94aXtlRyBF7pZYj6nVdYsNzKCNI4qYJ+cOdMrnWCMpneCGqbHLS8WvYWKOpSZyKqVs9ax2Usfxm2UAj+wZDRzqLBsMXOx5ZxUNpPLLtGAfREzpCOp3dn7H8cnvsQzvNxTQLKdCZFyep0ZUVolrH9FkPKpundE5dTWeahn6f3/wtJUjJf/lVy4GG/yb2IU9ie9cSF/0pNVzmxBgyM9aFP+tmHvKK8H0buNvntUJsP2Gltjr+koeirYDQpvbORnU5MwYa1afyfIb38s9HR6F4HQuKKQm8cSkMaGTOYXyPlb0p78YIOTFlTCygqMT16d5HdAYnoP/j/XCeOyfG7Vq9OCRqgdnfNAAs/cv+4/p/aK1e0e8PTnvJkyI33ef2aBViN8TB8Vd0MhVPZ5W4uxcy1x0MelEFAASr3pUkRtilWVrHzPUNnEJuMHrZ3j/ZfV4RDBHgwr0GputICUTGhaf5cwr6Fv1y/wvt5O4NkOaBzCrz3vqxYaa3xImymzwsiOUTAbBc+gPKVyDmuzOlO3L2cs4qGb5Ac6P+SaTX82i09Z1KFLJhIwTsAtNOQbtpSGFNIzQUDJ1HTmL92blmpCQEsWXByPYoQANH4EYQUYPv+xLDP5ahiIe0XxJIKIynYMqkjmeQGK6vGeVg+CgNdCtawHD3hRpW8GxVcux1ddfrMRIo20uzH4KrgWJFo5GGISIZ2966pwtFMmACEu91rwpLm70/9GuyqTT/8IwiphkJXkT4gI8oc+uL4rzR3RiCxK4DOvQOuofO5v9wRmGcva/AVbSmwM4fyrK+8AAlgifJadbalSJrAfabB/OqgPmAjPUpsgdDaK547/+t8uXUw9hsIA90yP0BbqZz7Pn60R4bxzc+Sp6SuKzkGmBvVBGP76alu+MdMaJkhuduYStcIk3PsriVh8qpBB8p/ntesHSxnlth1eFmk65b9j2aZDHbF8qVN2p8FCBBbLTRgKwZCpj80wv/MbOO/pQcl8s1KCzKXD6thXm62rCpi9dpUHjYv6Tep1wmHnxaoTF3UWRPVa677VGHUBHvNyItDglHvHSWQeefP3txf4Kxrenup9KobW8QcsHPb1+GDDZnYeRdE+0EL6gTMuB6hEAcHxvdjaOyyjBCq6z6KhHTlaJEK81EgFW0hKIcQ5bSaISv4v9UhPgBsIRta5C9yB6/UxBFKDDn1dPVQekTpKmm2InXvbiMVidZlm/S1tDg4Q8ZNJwzgD1/lczm/fH0+vqb4K2BoOmTSDxSPkimOGfiz7ZHjcwUmDSPPmyDJtYLS555wb0L0cvRykpde++eZ393OuvREhqNDc+5fY5vv6EwVHfTX6icFFBkpIVuRf6BFlw2NqtIFSFLiGIyZujMbR/pusy7tTOVQ15qJW5jdw8P6oKq3JjLwkVwnKsYlCh1ZrNHLUlS0za7yJXvUp9+gkWFs82qrzqZINn1z4W+jevhHg9fpy/3EtlI5reWSlJy4n/qMYq+S8Ke7Wl23t5/Pqe45h034QXapnQPGDNB57+6lnZ/ANN/qzvpBmY7ahc0Knv3XiaQTt2uHQ4gxA2dDrTPK2cDusdtYceBOiIdZqRDEZnHvl3FfW/VE4Hfne7bK8/xkPEYFqXI3DFO3HBYoLJyna/k/stfQlnmU0f48wpLSDZCUTd7oUE2V/fsHCenmXb53OirL/RWomyWe8hszEZCwW5qZ73Qgw8+35knXB/r3bnJFgcF+PSepNK4A2roGeRIzDCxEHSRhPNjGzk+qqAutSdgjqdj1h5wXwL48SKtdRn07w8voAHsja4dQuzWfz5DaS42JK9Q/xDDZUU9VyhwsBmzgZG+26R7f+7j1+VSLH0S4Zi43THOESJL7/ulRvwc+GRUnCrt+eT4UE4xxp7WOzEAwaS78KUpDar+eZWGwJVqnZwG4/G0hK5LT4I4ODqQzNePJTeRqQkCUKgOimSo6m31A0n8e3CrZE/VVBBEO+eZDEwO0JxNiDydjPzfZP/FYPUWJqSH4mxir+jXQ4s8yudEkHT/6nMuBb7ammwZVE2mIvq7AdKoFGOGroiDizP/0j067MwK7h+HX7l8Rj4JnSPFKUxqNb8e+pdPt/9tb1WDqaNwIG9s+0C2ZVrJZeflEXqAoYPFTGcahb0Nf4wcyBUDtK2kiPaC0rYdLTqVvXXUeTCwOXpnQKgKHfij2d10oPJxAsrgKT3J4I4BOcVk3dtrsaN8D9iJ98bTQ7R8TdJIKs+moHez7aO+aockegOCE91Gjeizupifx//RdvIVwI3A9chU8N2H7/9JNRTaeVA4iQpifAr+2L5JCgkMnEz1bZ2D3h9RhZXx5YWDZCX6STSTHcwFGZ5u0cs58LuCuRnWB/IHhENeDB5CEYQNQ2u5bEPBtewE+PYnCR2knMGseobcO0tU1wBQ1PfzW53oLI904A4mhmFV1nVHzpO1rbG5zXlGwv/cggWUDfop8yjEfrVI67Fyh3vE7GFcZfetd54r0pmW8lSzJaXO6N0BAN6ImPwLaIlCuOcPv4K9DEXNEp9jmXx/Q6B/XA+QaRnryLmjJd/X1TRXJfLLd5jOVPC9fNFh27OfhwlXvtpkgjXg1bwGboYM/hTm1Z14kWvIVwlLeEZOcj1FYFeOowa8d0oPPURA9Yu9ewRLWaHTOet5Q7gcpZXGeaBoU3rDOb7UVQ8svXcFAEG/s+Q5pXeM8Yp7DfoBSN1+y51Dbasc7D7icgkeuMNp14RVHotka1jVT25XgFLNlFM7vyGTEn/byAW4VCn0HJTQfKJpTKUbgqoqWE1HhbXAQaUZHqrswRBT13Sbae0KW58c6nQOHf7nKjYVJj0J1dMYv6FM1ssPtZiEJWmpml6yT5lB/iFLqQcdQsPH1osO+PFsL87ElWo3siIple/+3NdBkERfoYSgddYlnpX8yRTEYyojwyYRZALqAbgwFDOYWOCfBf8BW1YNekvQJ/ryHTLo/8E5BhVFCixRzAFL9f95KQNCg+aTgAXdRUC5lEBvAB5kZ4/l9C/0ULsU5OJZn6Qtq/96ccUrZNdybSKWykjeBXVK7BU2AWEdOjRNtzadAJXCIpBDpP/y5rVGCS3r2c6/ZlX9elvCOiop3Q31qJlzky/FiKxIoZgRkep6jKSrRRdxU3rPr1m8I6urKpWKUqZ3OKpBIIcXK+NPr3hh5XuDZSQD1rNW7hsy97s8I4GVJH39yc0vB3oKUq90DUXjRL1dwjab02kBbP97UhI7bs8phNrqrHrX/vsM9SWynzOCZpJIcjRcsdU28+9Rd+ldiPEnkGrLG0u23HLeVe8d2N+JFffHJ86GeiKBUeJhDm80t4H1lE/gocll9cGe2IDiM8+FuLMzmtF3xQH+sU552EE3NK0mz2c8FfWjaoZdCaVb2PBX0vH77BiLN9vn0WWI0zIKXUCCS37wzkDNT0pPGjMmHZSxSwps4mB9rcjMI4mxuFGvBa0nblOK30EA8pbUmJie48gCQub88jrWR+fNvZRSuSnLZstcRWgdQf5HAHorb4qx+Lc9FkMZkEEmN4l0m0+AN30fJAgeaba39LtPwYiOqb4l6U1Drq7Lykk7CqcNd5kcHkDAhW1ZOAWjI8ZMNk5Wy+Az5ghGegD/Jo28lq6AVoWkTiFtX9ESPrEmCw3qzO369YJqq7PF1S8Mwpih56FZL//JjP/gACCq/Ov3wlopuEnp7uqIRuOBf6C7AynkzKRI7Zy4EPs4eIBBJE09PcJXYr5levihSOPHhABYi2Li1MNiSWv+3tiUvCSZLjr4VRAGCyQ4kkyF3sByyzLguhsoaDAYllT8ifuP74V23f/gdvVEnYFYVUeY5cbKqmo/4/ERVzrfBrjUTs7dMt1/l3ChXGkhrPiX1qu/eQlZ3OT1vHK+z8T+nQAEeOLZwENMhSOoH5MhPz2Gn4pHShzrStckkuLjmgpaz57G83TfuammfKkrAd//iH3QAr42wugV4x674QN3zXLUxy3q31f48v9PKqUMBAk6PjHby5B1j+MuMwNb61qZqWBjGycIoo52I4J041aYNcKN18jMWJQfb4+QYYLOfPw6nxeukHrOhXJv8unA/2fMlP41hh4M4pC4u2cWxEwTLMSqt+EzUel5rHqPGt8tXKeb4atIY68+0lOYS93Dub92vkkL9VWcM2J8rS6JalkMSQ57AUKdOz/JWIrWoOa4lmV1JhD2yLJvGPkKVagcpgJcvMgsXtWGT7BwpeWK8C75nO8uf2znbxfzZ32ovMy9ajzBI+q0R5RFkWDzFONmyXvNp8vcyMNvzOi1o4INh+AHUe1aVq2v11D0j16vBHY/gbiSpPpxWO8jxP4Wm4fH7lhVyavr+aM47idR8UttxiP7dfEBnEfPf2urrynKzEHwL981D4szr5e4o/tlh0Ttw5SfvzvDWydDobIe0ys1HaE2HkLumsL5yDBCinXkcFHnK+gvCG2WWnCsgR7bkcKqdE1xVze35VFinfCpu7PPrWKEcM1+DKZ5LhrT+SZYugmVzupwCE6xl6sqBPf/EUMA9wOWmz1LLksA8H/EYgqoaAJfGwM/h2Uy6rzJaem7zjvOkn/+MxbXwMT7tbrYq5fKY+XDGWJOmWJwZ5dTLDTSZPngD4GlIZBqykdj1LJD4ov+PjKTeIEX6ojFe/MwR7fBDxBSIKaE6OAlRHMGfimA+36BDVBjOPSIK54EpQCQ+0u6gPPJ5CE8dEd43te+p8a+tD28lvKFxp9BPC3Rsoptw2UU6lRhr0ppL4TSUnBizrGPvM7QPGkMM1CdbpKemI/mRlo9C4gfAnJJJBhipBuSYis5L/Ipw1t6UWPy/AbDCQ5KJ0ClcYMET6j7Xa7tCsGrmtWyRWe9wCjgEPmnoo/gFZqIculxj2gkzt3SCwSeNC22/liOEdhoNhVLg/LPqa1IYyCSiIyurrE8+uGcM9j9x8AVp198rBSrzPKBCjm91njpLYXvX8mmHRhX6nH0UNs9qipwy9T578tz/Kj+Mbm5hMCOzvnNovm2C/XpnSCcp0hpJ1RQ64dKxaI22a/DpyzLyQS1Q1GchXlIfcc/bAPTPSNiVKg9HKCjCvAThDMvTu1FmTZA9e80kKPneUg6N28UzYsWvfc17drKI1j6Utw35DuAhgqZJi965aToK1EVVLm63idcBFXqbD4DMVkFL8lJgxpO5JwX5Gs1oLGagxAKZa0Y2wMezMbQxA1wEyL4LjdhofHR3JAPSaSwnwgZtkYIURGapIHtZXHaa8jlL2jh5Wthq4jk0LJNbTkfqpTh5RvNOFGy7xfeOe9P3gq2yhHagEUegOu7pNBsCDI3mOzE6BhuOGy2jVuAGj03eJkEbKUJjnf2kSKFdcXS/5ETGTwMRp5soBW+2DbGjG/QjI9faCSm6anSZDHFGdI8F+3HIyIJE5va/gRYTRQcRIHHufBMRbh12/OTdqdjQ+k0hR2oFBRh2OD0RvRfcxTPj44c+lpzmVzNu2ETaM1s9MAK7udut+MIlwxn+GQvb4PgDcGevcGU+IfiUNeFTyBLQ2ISeUT6TjE7a5yEALlPyWYB1aVldI0cim6fDQHIXUTjB9AFMg9SFkHYhot3gUYmZ1qi9EI4797Tux2ZCFmZLCnnYsCOzvTaDp6iOpiW0sSuropZYiJLhv/ErXTUX9qpWPKEmqdpqztC6/uIWFlUq//TU/9t89CBU8UZkpCeASzPXA/TBDyHXRJH/h5SejlU7+N657O4xkPDH7EmLJz20z17L2vWqxXT0FizjqrdscZMcKumr/ouRVPOzM3fnjiadqhzJyZM9JOVo/2BvM5EOhpLutBNG4ZwEwiuSzqilvmgF/ufH8u3Hq7rFS0oGByYb82a/3KxrCkvee7oSosrlnvmnbQB+tTqNI5CjhhhrWn7ZgDK3dbData8KOPEoBS/Dw3Y1AiLVsLiNm1BdibdsNGpruC8Y0adredBUko2L+IYTjeVRA6h/x5rQuOsQt+C/u75wuqFfYCLc1zUtOJhq4NTKTvnSadeIsusg4vdXjsCFvoSeJsDHCVM1z2PB914Ne4Uw4y+uQstyTlfe9ZHKg9Szxpf+l/r68ne2mbxdIi2Eu43zrdgbPvCarSLwhuXUSznQf3wl29qYrW9U9EppoJw8DNh8amOWfnREjUL5JE2RPP3oBgtqSACy5K5vH8EMPhRInizTmZmm4H6qF9DcAXGe0tOUgfEv3DCERNHIkTNs+KQJqgLOm84Ff5kmrmRUYRKhFi7MNJIpiMGIryjMHiG+jodJmQtJ58b9Bs1P3224vf3GPG+5F0tUn/wZ9k934I8Tny5bi6ykSTAGRf54+bC4BLjpgqrGptSEqBoRWMrz4X/In0UG77LQIFMjqyjZB0IxlYobllTR/EREhztfQaR3Xehaz2kpeX7MWns4cE+nWcms54QNoTl8qBPS/k8YJBI5AUy5mMigtqAeuU6M7YIVddNAkZil1OP2L8h7F4Bucc2vVl9EX+RtxvyfIf45GfTcTTXz60dOfkFsokx69KCSrcOE4eN05QbEcbmCB6ha7qDjpvYViJzMASVU8fOba5+sq5YkCdh/jFStuEy1sUD4sW+GUv36Od5uIpQoFMblV/0LMXBl7+Kh6XAJ1z0UfJd1izO1YZAqaBGG3CzrKpbmfESuI8JLgMosAFJNiixjgA2lEVEfHrJ6geS/Emwjo17LeuWNH8Pj1px10I0Aynlznk4BtgdLJaJxO1RdOlGJrL9VcJJa87ZL2A9okC9HDaLSdz3k1PWiPtLNX2HhqWlTA9q1tMJ7lUfMhQwN4JjbJh2DibJe3uRUVzYLk22dnqiJCVDzIfMWC79G1SselerhkXzUNrcwKq4k/Yif2noJHKx1azdOhFTFDqF5G5aelfUvDybMvLX37/+Z3AnK/RuOkn3b9nHbsqQ4kGaO19G6rRQmcQYE9l//2TIxm2yr3kMbgAIG3hdgXHC+XQ5+he
Variant 3
DifficultyLevel
573
Question
A vegetable garden measures 2 metres by 1.5 metres.
Bjork plants rows of beetroot in the garden, making sure there is a 10 cm gap between the garden edge and a plant, and 30 cm between each plant.
What is the maximum number of beetroot plants that Bjork can plant?
Worked Solution
Remove the 10 cm gaps from the garden edges:
|
|
Effective length |
= 200−10−10 = 180 cm |
Effective width |
= 150−10−10 = 130 cm |
|
30180=6⇒7 rows |
|
30130=4+⇒ 5 columns |
|
|
Number of beetroot plants |
= 7 × 5 |
|
= 35 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
part1 | A vegetable garden measures 2 metres by 1.5 metres.
Bjork plants rows of beetroot in the garden, making sure there is a 10 cm gap between the garden edge and a plant, and 30 cm between each plant. |
image1 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/03/RAPH-Q1_var3.svg 350 indent3 vpad |
part2 | What is the maximum number of beetroot plants that Bjork can plant? |
solution1 | sm_nogap Remove the 10 cm gaps from the garden edges:
| | |
| ------- :| ----------------------------------- |
| Effective length| = $200 - 10 - 10$ = 180 cm |
| Effective width | = $150 - 10 - 10$ = 130 cm |
sm_nogap Rows
| |
| ------------------------------------------------------------------ |
| $\dfrac{180}{30} = 6 \Rightarrow 7 \ \text{rows}$ |
sm_nogap Columns
| |
| ---------------------------------------------------------------------- |
| $\dfrac{130}{30} = 4+ \Rightarrow$ 5 columns |
| | |
| ------------------------------- | --------------- |
| Number of beetroot plants | = 7 $\times$ 5 |
| | = 35 |
|
correctAnswer | |
Answers
U2FsdGVkX18w50qk3UqoT6hhG5zKCXJhnl7N20BeQQD92lMXJ3hUE4xrsUm8rQ4yCU94HmxlOTrvJhsbfAsx37BDQtUxVEE+RyCrF8ZrxSt3jou8hg8/Vd/hS3PAGK4ysXOYFUwrn2wNItGqB0DM82Z/3V/N/y6re4X+JMPG4wdqCigNaSzbca2GaNmnApOH6rP21UuDairY8Kn/txDrNOugDVXy/bS1wnpbMJ3MOtikQ7vB/lkA5KKE5w+sfHFHFO88bQXsR8Bei22TsxV4w1gq6CTh2TDd5vOi4PHdotE/YaRJTkC4aKZZBnyCUpKuxMRm3RoRLGAHtPUx0Pr4ed+2M1prcK/WNY33UglSX3XbesTYa0PhZrCa5FtWUsPi91JZM6bkdm0w2x1aQRYazbDBrCt0C7lQNkZ3OKsvvPlaKXZik3r8wCOXZ6y8FR3A4EpcDCwy/7PYUS7Wo23fBGqaORiBC83hJVYzd5gDPosY2viuLJL0ZtswSBjVVa92IzZjuljL4xiGk/Id1BeJfaaUsW2pajG/uReP4998ZKOi3Z4TbjNxXDMmJEY8ZITPAJiUTJXadizg6XASVoSczqXXaSb7tLzSCPD1SUbaj4uSFAPwthRa+mHc9pEKWm1kjzF8WSYhnh+0oNXREPYoIwPanbeSsq49rPCg3ded1Ot2vZIAjAMKEJgi4W00KQEEpHGehKSLYTh8GunO0NyRN0B/alumfm3kafvXy3Cnkv7UKFkvMfwreEIC6tYVfw4NJHb8FGWscBzkk0Ju58hpnGGJs0HsD0fVF89bfXSYbjVgZy7pACA7waynzGieuIbpWgA1AmZIBZyT8DbF3XykvUp8AMRskK4bjlC7c+2KSNw86O4aPlyWydlRskFPiJZ3XHTBd7loa1WUCWQG6UkzLBPf11p9LwXk+kAZfBD6NSxdEnnI3mDoK9GOeMtjZeztwkMSr46dEeStK4/fPori/b1On1mDx2tRE2DlPulWTL2Qj4glfEXap9RNy0vrxP56e4nZ++bxqIFM5VqbqBBWc4OePkpmogymAdt0EJyHfxvf1dxD8gdKhLfvE4JArxDgbsBDvlmjPukXgRBdfVXPAsieVpdaKzzU11Ac08bVGwAJvbdVAE5hOQ+jkHbuApMC1APxmgTQJqt0mh5FVH4ag6karpfY8yXl6py6YE2GdeB8yezn82EPGaBQ/CcR93K/g9nsQzMOCeSJb0iwZQ37iRQMICFKOM3w085TXjyCG2GOR9IrYmF4yjQYlZ/J1OXPV+k/NOBt5pLNmQkewiIQwB/4q6oN3OMiXGpVFIgaoOI2wE8WKmkoY8pir/GSyWpyGkmyw108xhSnWwjM1HJmLFuDFCKHNZs7ZGy2m/jaedUv74LaQwrXcL6AQy0Wu0iTYUpCJQwdHnG/a4rtSso52GQhKWhQ7Z985XP2k6tMHXBJhf2NYEJDc179o9HkExuMhsWJzEAfc1Reb0EaKTzdPaFFRHWcMRXlnZLGXtdbbkVcywfCboJCXi6/JAj1lv69rt+7rYrxT7RAkePEj4QiAko/GeZZeZyxmfw4ar27s4Kh7piF9xxBMqm9MqakB51NV6gS22GCEBQJHVXsJNtlJHDtawrKbd30otJyccn4UbLM5ZznGxdAYGykx1LRbR17OR1+Wr+7H4VS54s5BetiiOk+z9USd3DN0vDZ6ddn+6I1v/AhxALfSqHIzajOwmeLU6uS0UhZbF69BdO+MMGYhLAIKc79UhBwKA4iok2WBnJpo5TePoXsPhuezYdNMqFaQYovyNinZCvdgGxLM/MeW/NkG6lnyWYC2ckyl7jC3k6xUdijW+Z1pSurwyTOREz9d+rYzihVHlT4fbGjH1D1UKjUqUJHL5sKxO8qHLkY6gv1DWzAyXCqGYNGOcv4wAsE9jS5FDjbXB0Q2YKnigRcIVrZ0abzqnOzUpgkXc2fbOanRBjSJKv6mrmFKLwraupcIo6XmepW8n7/T8lhW6OcjGZKmfKVQNZzL49pkE/abGCQ24wpHhx6xlAcowV8p1mbSv7yjs4lGTXGByP6/QwlPYeoj8WQqteURs6BIozkwHb1i+CI6oaLbclkpCkldFXP+MWb1VkLLS1fx6h5nV7zWC5VtZnzQz3JbyDxozmaWRV4gAi7BmDNnL0eGwavPIYHP56FqArVi6wJ1Dd6kt3ps0vQaGpGJ2BBlvGWPWfVeFhQbdD8hR9msVgRUGPo9kBSK2RRtN05IxZmwsGd/bKevyH5rby+olgQTjt7m2cciKhfdouOeXjnTgYKQCkGEpo1zRaULIoXep7lorLpTOXdp98uBZozxzUN+dSs0OC6JjiOSsitHpP6IHeb873BBmAfXmxj6BqCsWxmlc7IAzCNDNH5xJf7pXXCQvD9ekL+vm+dBRDU4J13fhdPr4U0gJ6WEmKoSvVj3nf/ARCVj8FmN2qY397rjGRbEhE0bu8zeJy4BPZeG2HSmRyW2yW6AzDbTy7b7yjfnuqrWBSlWtkXKH1GTR/RgEwL16LWjEWkTreUz31l4JDLrXztrWxE5kRNKAJ24gZJ6Ii0wag5adMimqniz5ACdQvoQ4s7aLWuxI1iHw06D7XVGKqwgTKQKKIIrSrwCnWsl0c0nWb160c6p5WahOGWU7gQWUdOWg/vJSqj7PumPBdsU5rFVbnrY3ATGKMHFmLFBQmEhOkuBBjucGhV8Zq8W8CYMKAToA0tT1HzcCH2wa+p94vjyoArx7bjqJH4UeYzR77CiLQVQH+omn6EXxvjqHYctWilO11xoxonVA6qjTp7IoDEMdai6uP9IK+5oTwfp5udUfa31Na3rzw49doevHaqReV+t48OazTTct+SKwUPylMzZBDNc0HPgN/3BWwDMTU9u+HNOc24ty2dOnVGDcNDqYmcZXTZYPxsLUd79PT1mge6H0Jc/PBOeIHywuueORORFGOZUWeI+YhmyEnUl6rtNCqtrR71dOvj/U3zKQzDRt16f/qC+vicVKgph507DXERmRUJgPycfs3YANB4HLAqvC6PDOhml9nXOAIcKQD2F0McnbX7OHDzyUplKH1ISurdIXutOCLoEEpy56LjSIaNLk/1Vy4vUhiqKSL0f9Ba5KvqWEhx3ml6eVLpEOK3cwcWdADyIHVCEALEkxBhTBFOL7nlB0ViOWPx3oS09FaZXdpQZvUzOvk25bpK7BhApPYANtGPNDKoY+8uwy3TyQVUJ8tRR7F/57VnLOKiBcyOY2+GAaE1AWBRGeMgMlLvsmPPsFaPyI+Km8frJf0oveC8NCIOYJboLLd1OUlTfiD6bgduSNGvavejCB7n1n/XjyMthrWE8wP1SUp5Nql+PUd7UexIGxt3wL1vaPgq1h5JW1X4d9eVLEE2sqP8gyMZ779tqkVJ6gEMpJJ2CaqGV4KpTQh8OEtzXggfpIpd4sGA/UoSdgq6YEM9/+FXc8LmJJbxgx9xt6YacyDS5qUt98pnuWHEsYwEXvh2rRZrWmq4OhnktaD2F7QTpstWCb4+nkc0sl2NORI2LE2bU4POwljJPBD3GzfZzs6zesn5MAlCQyCXCpqa95FxLmPagRSr1B/ut5YpgK5QO+Zy4cJF3SgfBaiAClW/SFio5iu1H1u8IHzbSjzAr+TK2H7T9DXRCoOixRnarycIHyziBzd5M1adaB4Hr5+np1ltbFuGKqnaRe3OKU8aNFjCQgv5yRvDLqfn6L5PzXtt8q9vSSDkavaMWLpEf6VDhSQ7opg1A3RwkdZYZGAG/I2qqlqsQZtBOiWtBDunaK9TVFz5Owzr3GJ57+8bIXkx52VwOJIw+ylq00lZ6iJTCDkTM1aA/bUf1GCviSu84A2Fhd2Ob6IrqglG8y6pp/Zm22f6mKYOYn9JEW35Y9CTVWLd5qpfltdDCEoAconVyOIKRwJh1faXN6UYgWKP34aH7YvjK7E4pxP01ts8r84iZJq5zp/i2s8JBipWV36HZwVQ7FHxkMSYU51AsJ6yM/oDQX5ytHN454DhqI2nNcrQCd8wsiUGvKpwSSqpDnhnbABtDaTT/suQnF12Ag72ncwOsLUdBtSp0Eui4+XC5covlty1jAnKP3nisrKeF4s8bRSZVCY17+W4b4z3o0AuujPuE3sAX4KWlWvapx8C0d6jljKt3XISDF3RoDCmxhgSGfb94aRXz/MJ1IK2c4rZEJio8zKL8Dc7oEkzvYHUa6GKqN66Nsz9EaJhigiAbE+K0lqgfKAlo2v8AGRkCeLYJdmXbj1oKLpSVeGaOCnh1mAVHACOnxjSbX9A3Fck8euhYB6x54J9ZjO4GpnNz5oXoETWIZCPvX4xS+KqJ+H6UCodqTadMUaZ5VnZGhN6CeZU2J8jwXV5hwUIuzU3c9VDvtW3BolO+7v4x1T/5IixXb6byrwaI0jkC6TYWIfFpKNjmJDzI4wVoF9rDj6IWCVuls33zBeqLughrJb+BrWl5S0gFNqk9jeDO6yJSleb5JzIX7eHLlDzxInHa7t062+E99m7vo3ZXm8K4oVPzzktFwNsCMuDNTwMzKvoHqbJCpYchlhQ1IXpwi1vqTCrkkuGGD6VwpU+U3TE3ejwU7g6BnYDDm+YGk3yizT/PYk0BXBE9b/ryJEwgN5zY/e3MYqd6EKU6tqawmtISjeJwZQl+bHJe2D9OlXL6UHo77YNH1xlMNn1MV3w664ddWWWHg6WtoI+24JVqptTnEI0q7bBgYlUn1Aq0UmEvwHyI4SvpkY/TSRe3K0WYi0g/pekPbzJaw5l/5p1AwyqULOlvU35HcxnwOYSq6rSoCwKKhjRPnZW13wpyMlSjFA6ko/rp3jkyn5A8gRNvv/x10pmPGxnhyFeNJLyeGA1JDds1Db9tLML33jn49sy4UVifVbE2K1u5vI8aKSmuy09XggqPt+VsF4kFZ5QTiGIlJB5Md5qhHjPbP0IsvzwMQTt034K6Tc+bboc47x44BbThd+Fw92WBFdQhxN+FUCQl47LFqtgtXqmfjlakN/QvxO7EOpcYE1sglSFaPWL8p8A0AMp6icJI3WucDcUaKTmF3sIGlB+OGPQ7mSvEu7j/Yb3T5ybZ+25VaH3d2IMOHwD4E0MYVm1NvqkDOiLliJK3ZMkkoWhsirh7Tmj9ZhDNIL4aEXECjiyTO7mLx4ToIu5/gBCkwSLP9Q4226/nTfBI8fHJVGsaQDIDSRzNSQEvSa1lU9hhgl5pLGVkfIZXG2HY+1xSGdp8ZYSyGvnpYT75sRw92P3Yj0V5b41CvzpnQRrXsoG0UCUXyoycAzs4T4d/fDucp6EUaDMwPZSaEtWUC9kDt3+QtGxAKAD/P/5IHiw9jfrO3QcojHbvqT4eHJAuCEccsU98HkH+rlI+HZR2SA4NONZsud1v3W7BhR9Wf5lntIo9PCJBp9kkM6sNWa5F5Qjo4VpRxm3P3/ifrP1J6rlgrpzE5S6vwNM13A1IFD1/MeFaWV4jKpyqb8AzMasEu++ekYvkHUOh6nYeQHIm8GN2jbG5o9c0tuOWkR2jVF5QRNc4dQBEs/0AUVInnbCjGWOufLxdfRtaEkUHydM6un4we6fso7z7sIvibFhrr5yemVO7kOUlh7IyACxTIYPn7UnCWaqDroZxKSFmbWOaXXxfMQVPliHCgQ3TDCdlyslbTWZadPqqb2m/mwi5hOEUhQfKi3SJ3ZhxELpQ3T8vknFPEu/SLTWkRZIjjmkBtn1LnY7Cf8rEmgYkdiB5N+wEfn3nPt75rWr3K7AhkHwmPZ9rOLMTGXdTP8NRwnm6qR4H8I9vurspLMvHwsg5eVT3xRNv0mMxqt8SA7j86mYNpn39wepKFktdaCw9w1r/pkz8A0WllgbM4xqVsOxPDKguaAmDLD7B1i26eKc4dXdHL2sotUzgnJSH9qCxniFqkCTP48oUOOHIdQdXS35OJ5laFmWyzv/ft6MuwbSbesZWEqwyM0YhuHcUa4hBiFXi68PjR/ah6R9yoY9+Ac8bS1P+rgrTW9w4TnaKTURYu2xi1rpklmYHAE6ZzPC8/thHqGi0dpizzzJvDN9+0s7Q+PK/IwqpSNvuKcz+KVCxIwbw6oBhz0d+LHKlv9A7PMrVQ7xLt7dNl8/fgAOD/vfJZOyFB3ftSQOWydVsouSEXJPkrwX3SjfOo0b3QmlrawNNeWko6W9JRUWj3bEC2HuqOP8heVSUojhdgb46kIPU3P6/u/SS0KyyOC5YiT6ZZJPykCt5x1ScwT1wII/sHe+SV7pGgEttxUSXHr8mvbQ6vWeY818b26fkFQKpIL+O+eY4kKXrA3o6atGCZTxQaaKU/fNHMH7RSs0A4JYFhy/u7DcR1QUBPJxD9kJpir/20hx6TXUEh6NhNO2PcNBu6r22W7lB5h1hIwRNmWLEtVB+ax3Jl5jJQSLeoZNBkK1j5M8/Gw3CmpV1Rx0fKmzzB7k99ZmPfWuYMTkIyO66b8cqGv2nvAKzmekgH040ScOxQ5yVoZmvMc7pulDRhEAkvITyl9ceJzm4N0A+iltaPln65mQMs8tUHlqZOdb1wXmshjUriDNyJU690rtS/ZwrXahCCi/U8Yl+TZtAWagfEPmz9D8RTXpWzEfUWF2dYQGIo/DPQBD+BD0g1ofOMdCf8jSiUxJg3yHhfGV8wuw2RjiHTjNfBrqzI9kZIQqPAijcmArhGmTQFdve2aoG+/R3CntA2nfq1WDQAR0YZ8iI4MtvfhM8Jk1Qiu9n3D7hKhAMPUNCTvap88GGpz3hBDdNljiavItKdQkuovnXOOX0CCiQYgIg0OFpiYtKYCTHGqtyhqoCkudGx5OQs45xnR+LF2gXvFNAT6NcwWuf4iRPgmzrQasT8wO9zhJU5g12M1zMGlTuCauX04A1Kx0HM2xdgBznLVsk2v2jLuxvI6KYRCDJymZzOtr0HIKfIFCr7Cf1RQTFfjlmsSW+Cml0ibql+lK3oeTN+okpBX+21BIU9491qLBW4vQoU08miNUuUTkdl6iKHiWcI9cvnr6wW9GotYhlP5O0sLKkz6Gpm+y/uHzfA3F7e6+lMXzrghbHQJ0t/X71GDVsIeP6Vypj+ENZUnLVqkfG4YeAHsvpGUbNQbiyAM5mozhq4n+S/WSs5S5pU7x8npzGlhluszoJr7O4c9UHqzgY2Atp6CqBZ1TtlNqi0kz+LmsOEc0td3bvpu1xkglNwT6xiZOJb0pNdFGQ4pvQXLFReOjKocyCb7HQYTKI6pQTjuJYWS9Xd+ovkeEdkRySgDLA4b1ceXV1AuVa1ad72Itj+vaVMuXCkY2pMya94CXCAruyIAzUA+aroNEpf22BJ3W2QVt4d+bOhyD2Zt5hojL28/keo7FYPNwJEI/n0eFzqUpHyDEJRWV4nQ7gchUVtzMrepPqa02VNL7d+VT+ycD6M/kY0NgS+V+gJMJ2VBuHLrBF6t3LEXckt6Jp2OuRl3eh/Xk0XltTy53JUt+aS1vWFxtA08bad2MzTmrOBwhArnm+8wwjrOoBdmA8rEvHDaZjoHGDzZ5/ezlzgYa5F2PZQx/0wNmQ+MAl+qoN0H4ZGKjLVtBnQWvMfH5Y6qGoGcEkCYskO/V1kFlY4EZRNjyWTXXWC5k5xme4zZHcpaCXp0fjJefp+ja+ARoGSgwT7iDBFEK/xQ1SH/XfcqL/nzHsoUvc4VgebddSRm3amhGr9rwS/21iFKjIXqGLr71grgCGjEjOzTJzMJo1UmFnx9jOpwVDxL+GOVul6Ehy9Qm+ez76VnQ5yzyrRFhmvEMDewcMLkonICQZ4RsJdWrFoumxeDh4BA18xyR7ZykiW+U6BxaA098k8XZCZjsrG6YKJ/yAfinRV9U/Ao8seNMMlW9JV/AQB9ITlk8zKUpi65ga3hAvmuB2Hf6KBZ+A+oKmT1p10WAU2Gt9H4PH8rUJhQU0yfWir+vu34c1cbFKy7zuG5O6ukH8jdnaqBO8xz3YDp65QZuulQ5yq3LdASYL3/hNZLznuNgBlFkWXwpf6m1mQn/cKrR+h27gQEWA7A4kkbx/ZDB87kNLthKatZf/sowJVFblocqjnymIpOpGcD8Oq+D2WrEQyvF7c2H/f+3eoTvLYc2zQkKxoeOsEtJr7iPyQFmPBpZnlXSTGGxEGOR0dEWoau6k6l6Yls+dE26hDxzZvBu5OEkvT+MX9Z1fUT04MQ8EUMl30iy0z7Y9Qj3JRt6RMTGT+/CCpZBQTYiQGMo4GxpO/POZ3ku5m/UEeY1XVXfqLW93YX0WKjZ8tfPhcAn6mRpvVRPnTj1TDpXzuCHiCc8+5gv+dHpv2/Oi5EC4g0yaub7QYggJw5hxZdyFuBVGSpldxBPQQV9tgsZ6hdTbHLgDYcuWCxfONa9GzjC6dfmRjzLh35pQwK6O11YYs1F4UZ5ioFtAFNMisbz6gXdBeFdteE3VQX7pL8/OqvBU6/XcEXRpT1WhqRw9ezYodoRMtFsvr7PYlF5SbntSIcbCzZ7lAXTcGo7b7c6JeUqIYvzghxyOU3++AupRqc6xzyhNzQ2KS79SXFtk1eIdlL/kjvygGiW72A2DQ5hM/BXppNiahD4cw+O0c6lyaAMqNV72D6x5a0qDDgux/rlo5t+y/1OoGwfy6jtiBiuhvvCJh0raRNHpFN1Uqw4+fBZUNfJjRPD0eh+auqWDlb4vX+CVhhWC6b6832y/VYMjlBbu6eCxEf7zszik7h+k+8suWwVH0lZBGcEfTeHW3hNXG75pQnxRzrWzouFAoW2NFZFYTStj964RN5vIxi+Lb6hk6RxeHNdnb3CGbOiVEuIgtoYR1vq/0HQYFTsYBN0JNSqUJxE3GxgwnnHpbru4CO/nYSoTxx4L9ufH84HC35vT710kns/Yxn66ewVJRp07GpcFIbyNQnD02dQbNZPGv6F1wkrY8YFmG/fuxHt3qmQQFIvo+DO2VzGLk74F9kEhMuwZgR6SaHpgajm+JNahTPPX0foFa5eD7rHYBnLrbqlp0KBZzQtr9LDQVDuBG5gNGBcd7wyTsRmiDhSU11X1+WgpgBSLo0xwll//vTMg+BgtEWgkoqFfyEcm/mRWyPfLwkwp9kiBiF2ba5NVRM6+snyChwIoQVlAI++V5rt3bHgeCFnRespVjWJsRlhaG88ldvZmYebvi6zybPZP3IZBJzc0DGZqKtYInqCCO9RXSO9+fPmZjnC8dsRzB+dDcgdkOXfSNdRqWo7dHAyCOxqvWYIV6+YIWZI6fm3who3LJq2vG7ukIZN8ADY0xTSrevYxq1ifjyns++/rmc93ny6o8rM0eU86S00wijxRlk89Rd9rf6a8jnzqw/m3lP1M2xFHqc5aRv7+qt1IAgPDuU7cwISGRgsa/MQgkyomBxKiFfUuLixn2OXQ7YMWTbg7wh5CYGi1LaCOkSfM+Sg9UDmDQ8HLbTIrW4G5D3CTI6yiobfzxf3MYPeStQULXTaEF1r5O/McOqUvkRs7uWmXeRuiaJaqwMLY/+BDD87vDkJg/xeOx5wGY1a4nF3aB0zFSBngZDisR1X5SpLIyQHRAbs1nxmgem2s5vJyqK4aL+w5rdZ1TSHNE4eWGF3s7FyJlujB/RvCpSHbO2q51O77boYcJJkIZEG3PHgT9N5+Vc41whF13iA+zDjPX6X/UbAK3+0ZwcC2v9Ls6n+Vsq+Rm6R34EuA9PUOa+9hoOndePUOHNhh1HG+57aKk/0Sgp0uSHc9K+Dm9yBUHY4q36XlokOsHTthaeqrdkQ0fF/zXisHy8adQIfETVpgNRIIzIUxq8g/wwQHvll6qgMKpoJE/XcOOkgNuZP6bKrM8Pemh8QJIbwdPgMYC6u6I5hlZmKPsB0zrmKdNAtvo/5iCL/eUeX1zDb/cVfQihB245w0h7VGJlCp1lUFr0ruHyzabMBIAS6GqLY7i+Z4Pm3UEFcvu4FhHMrmgm31s8iLK5bf+vLrU5EFyHt8EINLJ7Z7Wje8A96+y946fqjoUex+syAVqg29k0sgSjRoTlHEDS89UI9RRX1v5B9Q7zWgTyHLZCYYS8+WKOvI1vNw64aGyskNZuH+OOljVECZh2tkb+9nJ4lorI8IuBry7Mrce2hdmdTFeRayQUGZsGAVO7jC4OTTosVW50HZeczLuAmgLfugWn/ArxVBV0DJNfDXFg456weHGgNM15Yrcwgar7mzKR+3oHjkpPRXUj0OQ9xJ0t3dgGjYL1IuX5FnIMi5qkU/0R2LLWpjt+73CF7va+48NBkPrIG0DH4xgHTYGMeQE0oeaTjYp5/KIcjvJl6SwBlnGNRqMUC6EnKVJa2uA1L5HYsP4FoCyMEH3Y/qUs3WlTQ0vFpSsmrQyM3E8KbUFgwPwCxO0U16Yvuf+/p05cSZu8eYkC0qFSEtsXSDfaRJw1/FYydSrOXg2iNvRSfL39rHbSJWINOk/vOwHtw0rL75cLaV1sEH9fU+JEsHrDL5P/WpfXzS66QOsSX8upEz/x2SiFMNOiA3CqOTuTj9TDdtAtchNo/C7hRpqHjpwdQ4QtDFtnbs8Y7KbPydgutzfUqCDqcz3u5Sd1ShJTMT2AIYUZRHObtAhq65Az4nYlXv2s4QTxpmK3JvFC/n44UrNzHqzbYXCqakr9uuWqftHSAzBMFZSg79I3Rr/QbNltJ519FcntOPntj62us3neHSljWqo0x8vKY2ajafLK40XTJxvlnf5rTTIDRh2b1ObzPZ7aqv+H1KRfVpFiFE1Nrh00CPesT12QqenTBfOz11m4kTZRrqMnruyUMNIvv/qjIA+sjgu4TrWfuCutmta+HgnDp2ONZ7G0LFm/wLFhmI28ZxWAPmqk9fCUED79qhYaVHJILGnFRIT2S7hfiDO0t/2VuOBc5pnQ/IepM9jvN6u7RwqczziiCdZVqvXKe8vrE63+etYzAEoJayGMrFXk2sscVz3hQ1vy1Oy7sLY5HDU48VRRsIhdcvzfM/I2m0kqhK66Dkxp/05FPRM+j/ydDSysu0WRZLHwhEC52cC3ZbYJ+ADCZd+3zc0fPtV8xrFBX/hayjjBMtSDMC5C2qMHCaPx1Kt2ZFZdwCzqJA7aFckgsNpezAILlHEcqDOY5VAQGdGbuQ5kMlT1diu1x3l0DAEZxGJPDpZOLLIXwQoZVhh1dflIhqQBNimK1JoUfV01QlERSrrkm5I0zVNlcI7giyNbV93SllZavY/pFJtHnLp7uIX5ZjOSXVAbiJk1c93Jfq7LLVq0Yc2z1NbdGKMcf4AkKOe9ps5g9Yy9jVEVTsG6lFmh9nHQmaUOaOyZOPxyqUUU/Mo6+aOeWm4+1DXXlnI4DDQnB3WWhQ6sZPupJOnGyvHsCU7L08so18mwCMG0wOmECqIJRjdEKaCVzmrIp4UVnmJoetIAndf8sx7L6uTUNOm8sl5dFgD6nBLgbdksjlDHJFYyZSQSjfkOpER7LoJ6ov4Ejs/TdMSW0/Y/8H3tnngFCbbplgwnI3WaS6QEP5XuwLxAd94GbnZjmOlUxbS74JBv/qnaN4T7U3xIoxOhIZiapj1DQUTZ0K8c+Rfn+cwKc+pmukvg5yqmHWgS9kk0N6agPVNUY93oV8Me8oDZEXGUbdClr0D3Umq44I8oMuReTT4AEnNkPdVFdrfAotU+ApZoNvDADMO2Okp7ZCH/taZn9WZn+Cq8qllAzOV6sqEvzlkRKNVfCDhnhIYv5IOSsngbTz2RBGTib4+n2omz7N19Jrtm5xVj5gd2ZO0aas1Hd7N+OdyJ47Q0fHf4rzsH8CnBPuaIQOe4yFD/+0ZjUTiM8UfSqO9j2nNd9NlhuQiWkHUzxphbLoC5yEjFhau4y2o2NUD75HMSinUnBMNp8IsQbYHJjz1fXIOWCYWKghU6Du+Gr9BEch8h2TxcPQ3EGzofsEgJq2stBpqSa5iNEsamByvV4DAwdZPT3WYMh+FKJWz6yLpfugZwufK8bEBBSbTjDE8qkwKo8xx4IwIMfzI/k5BwcvzyidieikJ/k/rqpMIZ9Ef2Ti9prMj50p4lTayMbhy6F3p0qjWPmYDRuHUB6q2vqzQwE16Ow+g7BUbzuyuJmeybqJVqtFu+sw7/05SAflHR1SV1uZaVD6sWqPfK0n5t7zt51ePe23aE9rA55bMBQQPeNsNa1irBapAntJXxd5s/jrc4QRdHy6I2tWhgYFO1XJ6fogtYeMjYnJ34o7kPmSCz3jENdZzOyifS7FlHf/6pSH+rh8VR6lU5528FHitFMyjq/IkrE926jhO6Mo/HaBCDOHDZblL9Gitfcc7sIBAvbMr2yXhurhh+VkcOIAu0LMfsFGAr8DeEC4xN7oKzIYqmr1ClU3Z9cAI8tXbCPXN2oWJqd1cI+5okSAHc5rMQyZmrcuGf4ifwrqEDWZSJg2LCzG8DsqJuiMsLgUl4lR3HN83ORrjfQsfcolXD2iPYV/uJYZ+JHqrGBqhKbJ1C6nhmpr6hHgfMJBlhVkchFEE7Kvya85hmCJBgoD6KPF7View5yq7s4jOmyiJeZLwN45bLzfrHLrMfsU/W/XGdsvTm4UAm3sdNZ0GSGfU8Y9mkEUxfRRC3uUHD5mZ0R59bgT29yDpS2PTxjU6ptg7V3J7Ql1IudbF5gjb2vZSDSZyAZcoIPbQTFiPn+2n4jO/NlCZ4byhE/KKw/yJv9NUAVMcRZ31Hb2b9nrUMa/mEbuuqIFpkJN8is3WRDCamUVYSZULdGy6A+PbCMv/+lQBzgqn833RqeIVE78/rXkZxrC/89VXSKjEzga9Fe5pPVX8DOAcvoUfTZjocPQiPdYrBtRIeFUkX2Gm0UYZQmiYMRqmfE3JqweCPybV1PN7TqYaFhFIjawpgPwDTDORwAb1pdmX6Vl/fem90jqb6spJD7/kF/2LKh+vYMbt31rlEASzD3HM7FUpysgpkoPyeSzD7nTkI=
Variant 4
DifficultyLevel
576
Question
A vegetable garden measures 3 metres by 1 metre.
Beau plants rows of garlic in the garden, making sure there is a 15 cm gap between the garden edge and a plant, and 20 cm between each plant.
What is the maximum number of garlic plants that Beau can fit in the vegetable garden?
Worked Solution
Remove the 15 cm gaps from the garden edges:
|
|
Effective length |
= 300−15−15 = 270 cm |
Effective width |
= 100−15−15 = 70 cm |
|
20270=13.5⇒14 rows |
|
2070=3.5⇒ 4 columns |
|
|
Number of garlic plants |
= 14 × 4 |
|
= 56 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
part1 | A vegetable garden measures 3 metres by 1 metre.
Beau plants rows of garlic in the garden, making sure there is a 15 cm gap between the garden edge and a plant, and 20 cm between each plant. |
image1 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/03/RAPH-Q1_var4.svg 350 indent3 vpad |
part2 | What is the maximum number of garlic plants that Beau can fit in the vegetable garden? |
solution1 | sm_nogap Remove the 15 cm gaps from the garden edges:
| | |
| ------- :| ----------------------------------- |
| Effective length| = $300 - 15 - 15$ = 270 cm |
| Effective width | = $100 - 15 - 15$ = 70 cm |
sm_nogap Rows
| |
| ------------------------------------------------------------------ |
| $\dfrac{270}{20} = 13.5 \Rightarrow 14 \ \text{rows}$ |
sm_nogap Columns
| |
| ---------------------------------------------------------------------- |
| $\dfrac{70}{20} = 3.5 \Rightarrow$ 4 columns |
| | |
| ------------------------------- | --------------- |
| Number of garlic plants | = 14 $\times$ 4 |
| | = 56 |
|
correctAnswer | |
Answers