20354
Question
A {{type}} has a hub with {{measure1}} of {{length1}} millimetres and an outer rubber layer with a width of {{length2}} millimetres.
{{image}}
What distance, in millimetres, would the truck cover in one full rotation of the wheel?
Worked Solution
|
|
Radius of wheel |
= {{length1}} + {{length2}} |
|
= {{length3}} mm |
|
|
∴ Distance |
= 2 × π × r |
|
= {{{correctAnswer}}} |
U2FsdGVkX19qYwIQyhQgmzibnaN9543oK0wHYr9V9C2xse2yiVEkL4346HPH0l0N4H7y+fzhsk5S7T7OGYeXkGaHN8ft4HvfoS3RkJYqCLkNURMlPMyRyxG301zWlhXdeYV83PEp9upTxLk5/tX8V8hE+Flrts1hUSLiEdCezuVabi7hW9Zk+tfD2eKEfkyt+CBt6XPcnUQST6dGBsXUxbFmjmeLwg/s4VqBubr/cCFkCXQE7baV2yAJJG1y1TVf8HvRG5IcmBVblHP3Mwbqldio4QtdVrbgQ5uyLd6PMDFvFQgkhYPg5mEq+bW1onKmvt6Zz6mzNjuqdYrvjQs0+gSf9boi1tD1e3lo9UpNMbW0k506HUUqLMEEQQodpg7s8KyOL0+TiGlCNMRpULdSyTXZYQkLITooZpY6Gr/e1xcbT7GoWxXlFqBmfQHLJgyOTOp9u3IV2HP2Wspt+uzDUf08DUIsc1s8P+6eszWprMWMlNOEDUNYEZUHVr8uGqiCV5ptzaiDzhCxuY+C7SJthN4taNUnZ5/a82s0dTHvOKWzFQzlEoRJMw/WkPs/3XAI587TMKEkxGc9ihRqoY8YuVG9npREZcRhoUrQGKHQjaD5nlw3b0ihd+D6xYS3ehCAtwrUR/D6wz7ZQnDKPz4MjbVDgnYlfuJNfbYNqsrrCEB2ODUtQd/YiFHh/F0LEa9HWR88PIh4ZouzKraV2Vbani1MAGws9yIFHv3wsN8Pdg5/MlYmlwBXAgXvgvFrxUB6vk2ap/057l8V8OxYHvj4XawbrL19x/qKssBL0ZciSQrP0Son9q7dz1JK/7L6OYaa+ZcSoQ3FYl2YznQIppx23+5i//unoz/tO/Izdb8uSuhjmNCjIiTxFZXMyWEkezTVeykQ4zOaXplqgqb1OwuQOFWH9IH8nbn6UecyI/0txbhuPc2c35YShegwYG7Mt37+kEmkflNo+7XG6U+UqL/SGe8eXDCEvtgjxKmpAzzoYQOPqGmBDLHSvYPF5MjUxOR07sEeCV4dXDhaXSP8tfaMGiox55Mh2rUO0CWVBkgvEsmJhI7tV2jkBkCXo4Qlj4wOWdDFHct0FT69Ez3VobZZCrUUKCIwgIu8YHug3KwqyLLue9WObjCV3m4z3aRN5fUD+o8QZkoEId3HroQTwlLynv2WSvw5mx7RE0wOdrnvyHCe3bX37CQgB19ZsUx0yUfyiR3bBgR5ucIzHUCVpJXHg/hvmz28X4XbGSzeUo2FZtF9JvKt1RQoHxbkbhGkp3CWRn69t9z+gfcRTcFFC1oHNXge9mZp3EA5OVeJtNpD8Oin50IygwGvr9ql5S5JV/ZjsFrIJZckr5bXf5Ah+8GnQRiProoZSLDwH4H8eSyzQ4IrCV6xW8IzuyssyodruHteSQLxdfciLmsilMHn4L8IWGQCpsJs8nhHgxkmlLd73MMLbevPEmuYvZnHb02mCSjq1Fv8KFt3l0I1G6npYpU+IpKbWezQY++sQE8xHQkS5WZNLfGFeMzFfWf8jgU1ZrFJh3QAqDcEcCHM3KbbRW2jnTtZsy7SIuoUuOnPd4DvxMCdh5j+47P4CAr0P5ce3K1FuRQU1IZwlRFFJBi43XAMt+A1a81LSbINqznXcWSy4NBucL9k+iHkFmRRpw+pPYYKwb/QQL7bdyS4lP+87xgr+m83L2j3Zimmjw7yMeYN9MsTVB8ntRMDOi0l7/dIfHa1j4kcYAVa2MozwLeAtnr0X8ZjkYqbMJLTSvQlZbFjMk8rLTeIunLRppw1f3Hsufo8B/QXgyTkwbi5y8xuSxxQtVxFhTuYhsE/yLuCrOK01H8c8v6EeGfDFKu9bfgMbcPsIvp+Iio4Rm0rrYvjepdHat2mpoKa3CLg8v0lClDT45m/K0jYzFnSRkVBZq7O2Gr4eo/XHMzpslpSYylVe/TKvvo3oz38yYTdwznHn2ZaUp8zKy4hxvCbLBLkJXk4iKwTjQHjncbetXH6JuNQbmlJwwM9G9gV/FXIryXyJfLt6P4zyeK6H89vS/F6sLxEjY6CSuvSQ4aUWO30LwMjsyptydeDHas6DpmqS0/90uy9Y8/l6v8RbKnPnzKmb+7q/yCxymjTeDujTand/JiVDsnvLUwY1pasqFDvwRUS8G1G2+MsYp48LGgM6eUfdqOcZR71z5WCxX6+T++VFYpOQF57O5BI90AA7qze6To+y1YI/5bMAT3RjWBurVlq8CKwdpEfs6EpXm2HnhU4FZB4UnJpweS63adwKuy/rixgbBS1Jtj40HfVJgZnnpopr9AnZT9B662ELteWOu0D0JPBlo499BJFVD7pByx+gRPbeykG5pADPWvvxV9iVlvT86QRCjITGtnaPtCvbZAgQU0Aj1ncxnwg8Ui/aQHsGK1ibPdcsC/i02agY80MDFCJgmP09rzuetetiULMdq148zr0VJD9qvwXpEWy3SC3l3fZ6f0LbSTjE2fFt3fOXOY9ehWwnnY4Imn+H2g7BPvgLNv9ZLVaJnBL+Ty6Fuv3oP9wPMcS7ioV2Z2tKZ/cC1/Oos1K8EtomYCS2OOOWp4p9pGAJotG4szR+Bfc15eiTBYMCMFu5JJpMR06etSRidkFhzPgjg/55aJeD3lzCxfeQY6C0xsui6KQNnKpqoQrbE2ZaU4kN6BqzHLoFKzGp5ks8QdtO+f9cGql5vwbpA7WNs4CTsmF5g3gp7ScTiesrt/vnIun9bIQTZORxQwEqlRBA9UIA9HjnOX9WYQXiI9M+8PBtbh15PKUDVgKfAPheb7VCEPrG0zYULWk9b7B9M94UovA938t1MC2wCbLDHbrTQ+ThWZeOjU5ppJLl+N+mbPCk5vA6nXFYCNU9yHpAhJn/uYZDXWmE0kq0Fpa0TbfpeEh3PxHvMa1t34pYpWAGdXTT7ML8QI3pHoJbWl0krqFy0TfvnKcq/b/ARk3hlG7CiI8NSMJmP+wG+VLvFRZGYzkCT3T+4nqdcbnVS45i7ed4WNREqBovcAz386VFZ/0QsR5V3lC01M7jipZ0noOiDes7eEh9H3UFfzLNQkOcn69yTD88v6NhRArUaTGSK7yabyhOPQkSFAyjwDGXRzo00DiZRoBcf9a0AdSQk07hieBH5dmZye1sZc6qAndWuuiFLNZF9dZl8RGCo5iE1TWWt6jHE+1kejvu3tN+dx1F/a436qAbksluCoW7gj9O2RJGcdOvTo3HljYS1l/dJzv+o9GihODZfUn3RBxBEFbGa/Witm9LVZHBdLz3EA8pxRtd3mLo44XxdwN18LnLXTH/eqg/AD4rtT9PjcTGjxdAwwgase2OTx3tl7hUqUisrpsnV99b19l8PEUIq4zO2oLmnIF6UVbDv4p8agJjk4s3LDCgcaY/6BlbtH+mBhO6ShajAjxXeT5mI4meM3B/y0du1GOw8kGiDUs3BqDdw8lTsxJGeDXwiMSweCkTAGyjD/8riWb7uo0e81sjPSA+p6UkVmw+KhSyvZqOgKPc6MypQ6V7elaFP/UUybZiMg2kyXdVR2SnjbQsNpfGJ5umQ0JOcDEvVFESTc4eI8KABaBJfCOoyiN07J9ekg/YMd1EVR+UKZSpirTlkN5MmQz1ySnONdPE4nuXuoEthNqFxt46sAiZ0z5a2CymzLISVAcY0URWHmmCf28nrhbdr9j8KJywWrJ+a6iymCGOR1Y5xcf31CHE+BGWAfexsKdUX6ghmAMkLPKsZ9JbqjIYP3vsaqLnFNRXtT+m3q+4IrKJQy4fsp2TFbAfcboMwCDJ+ZSbCVnOn47uwENcg9txhvdLiYp7jeWTqHdYVW9RGdTeYQhV5cz5eBPruTLCfGwy5rLJB5bx0yMW69bWaOIhS+WMSejgtFGj4QTXl4WxCh0l0QyPtLpRBZOQcG9Mk/DMzGfy2ntT6mMikF/c4n++bDqAiGJi07uNUefcTIrVII529jasQCyCpYbqWhmo7uOFUse34tI4CC6Q9xqeyFDulSuAW+jWpnfAQnQ2bktbmt7GXVoByv6IncSZFg+15yb8+DWICjl5FTBRcD8k3DlQsEX8Fep7Sfy+aqs4nhyExDQLXkIGkaQu1RBsIjKlatlIgRAGP0MY+s3jlrD1fuSGt7+XTLlQQc4eloq5JFoAK6HKlMOD1UK0RYzotQTW7huR0MkMUGhaX3w/+Su/gCWym+sh2S59sFzEvFS+tkOzUeuOFPbJM5CWjkZcvKPxiFdYXszYYP5mmEP1DsunXn4X1xLc9+Bj5/Xcb9+gGyHaBx+xIxaSUF4zooubMFn+ZcNU4a5kB7qcqF6CGs3D0fYpxijjFTqbg3kUxSz8Ar1m7PNx6kOSruC4UtVNZzZJvlkWhxMLHUJctAmnr1MpywvKfirnrSu8AhMz0gDb36KzZkCXw6s8sdYRcbudF0/FW6DDUJJAOnOFbvhcYfBj0jxoV4am15Wd6NqXBhvZlIF/66eO43QsgcP/T8i+S9qk5iMJk0R8xVcqpUTNoafRawZQSqosouBEYVWPxrxqPnGGCuD1JyRnPKzz9DTrXxV3ErKCr6jUpYIUiHfjtgQqVIOWKVPWAxYYzaXKaYcMCRlWlNc2/j6NF17DJbINhTonymDaCgagthfB9Ussmef2KEQ695rOyUx2tiWJye/lp76TqCC7h/5Gn0k5URkiNI2kgwm/uKuH3rO98pDJVl5GCvwKKtG1dmANMO9DimSC/n5BFBmb6yDKNfGsAE6aQT7WEy/Ajich8NtazvZ4d6v41vKcagN27bJ+hsi9xCDSr01EYim+kFXs0EiaydVLbKL+TLCy3D0ya/E7rZPKWZenV/cj/qCCNVGjaL/IVV8fLJUmxSxZ/jXpIAYEiSB5r+di43uF4VlVkSv18Al/0XdNHKwmuKsAU5FllvyxhLt5JokIHBFK76w7ADdkvAdr1s65Jo2qsZ6sDxgIu08Js2080aDULNIsJiRgtD71S7Gv8fH92Q6Unp70nJCJGSJe13VucipoboBuWhdps0/GsyjOM8ZC4xvYGeHOebNrgqaoaTKdXtuiviFZVtpRz+bT6AnNMCpSHDNm39oPebVPFrjEFXN6axwIsAU6ScUs6W3zkCYUGGQ6rK/+HPMC+TUAolp3l1KivTZsttaRcwJ6Dh+V1RTZU/O9B6Tz9wc43tFNKDZsIRfNaVrJ7hFAcX2fQaODGhl60pzCrkdxIiHxO2epKj4vEd2MRAaWDJDIeW2ePLF8Thf8IGfIQcHkJNWO+siUIdDIEW1VVl/dBNn9hiZ1gL7+uLpFtJrbU5zQBR4L/6Q47hKuIHvI2cAM2DgipTyle3jtHxwZ7ILjeOy/LeS34rt83mmv/1hWlOteV8ERJDUZGNAaJ0mNHYG23714Easnb1sjmVgxoCjEwBPB6GkIi4pZ+ffVMYh7HwEhvsZYvGhft0z+uQ1hLLagOon2qyWdm0xDpwVdbU9Qhh/CbxOGI/uvo14HKjjsOtmMsUAucSrZP/WofGXc0ZTBCqmHD9JpbipZH2vQwFOcSEaw+3BC4ARJK7VUcjvYUoFDE3JpUkFrStGvgmrkfJ71xKRiLUqzlt4XJYriOaClVfgzggMXiQeiGf/50KuOu3xwQudiYZJuDQgVGoNffAr0rNQa6ni4HnWmKO560U6mffno5/AchlHs+nfpwJ/tXknmvf4PIkKQPzL7jLJw0pEXp/1dRROKBhLfYX8asQPfCyqS1L/KNdmFIcEWZIkYVKUl33xdBW9hl81q2Q99a3Fkvc7m6vKcHlz/o8yDyeRBEh/lV2T2fSYYSfGTSWhzJ0/aSeDbYvbsb+UOU+HGkFx34zHkc7GpyYuHDQDk1lcdUuauKS1zY+zrxmyC3tAYVya15Apod1DyBUNI01INP2Y/My8ClsmUEvs+969ZOqHGWRh0IZvd/or83hfGTN5V6DDkeYywV0P2zOSJWBt9l32P1Ds4FZkmj733BLiaI/tkqJqNudtJjB2Efg0SsAMNfIB1rptEBB+F2b9tMmD4YpzUqarAAxzwN8W8w4BFtiTyDpSHVkHI+EmsgELnK5dO7BtbiHPoukWe26gG4u5g2kZhqk8sNmn8IlDc7XuBvdvEI72KLU0nQmDhViyZcjq0jG9S8kaICU39BC3l7oLqk8GKzPVStk8kvqKSF2kEjNYkAq/UZ3WmmGj3X4T0vMtLvlk4I/A0KS8RPHjzhzaAXJiOSVAtAe+Vi16Qjbunr6gnUBsWOPJLc7mx+OqAJ79nGXVL+GqnofiB0KDzwK2AALzW6pps+2N6KUgw+Rdt0EADU5OlQT0UkRHSFR2ueLDdFR1u9cZN860A8JpmR6dOlEQ5e1Kg/2sqni4cn/T3apzc98zE3E47UiTHr7P3SY70vNxsEKL0n84kxK95xPtJrDXElveIWseq+MAhAfEuyNxpgH3SrTSCwsVTS7EMeUc1+qAfr3/K/Kk9oIagQkiJzEZxP4l/AkPAjYRidqWnqRTHt3rIm9quNEeGDdRHGMX37VpVntBBxMNSByP/GPJhmKZKOXUAGCsRpWARX9ntS8r+Lv6AMi5JGjvwiXXizFrrgrDPaiYcRRUz2ZqXC+LIppwa7jYA6p4ZelFFovJR1+Vn7dUomlw33FpgBhQM/b6aH4gF8kM3BGptJHS8z1lkhgfTqiPBLmKiw/D/ZUyc5QtOMBWC5RrQ1cztpQ8yyK/+F+6fytEzMsWPNPF5Zb1xF1lJR0jb7DBX46iKWDmhl9k9A7OC3n9P8tmnUWEaFnK4ToRXQcoliDm84wTlqbp6qnaWU4SZXT8uaqi1maSAmPPhneeViFuiI0kdq/sxGgc1Qs8H7M/ETC0SsxKatNEyz09gEYRPtJ/aBmM4hwo8Sn2N8JbMfvNXbg4m86lXO0sT1UaRmuHeZAyzfuVkHO17X5rC0JFWL2PouOagDMlAX/oKQIXzLxIaGO5lbS87sy1aNCtw2E+MvvRbHkQuNq8OOArmamPum7np3NYdzIJCeC0J1mM7msTP3rl3A3gMi9WdH1W+YzNJ0kaawMLFLToCP3s8EEKcE+DA2tAKGdFl0Bwa6AXOw7Qqe+7OZIFFDQNKkUiErNJkxEouL9B+XZ1Dm5DqpGTWDL/cMrSA0wIjY5RAad28aIjihcnBe/AvEcy63moX5m0KqV2BMOjIU0JXgYdGahuQ+qOStUiykBuCP8dhpLbSJU7uRqt5jeogEAlmSIEZXP2Og6Thh8O8jd1ZC/ecN4Isr1uYY8YgtcUm7KRfZLVfeBDh/ogYf2FrlEYov06qjjCojAIsm9hnrKsIn/77jrD4lo1F+ZK1gZVIh0h+mX1NwAeGh4JOHeAyDB8iV+7uQwHVGUu/ApW0wZ3fLENVFfoGTFQo4r772yCNX4rjhE5iYOwjeOgT5rfsd1WYengQ5PDbdJEJ9RO45rFfl5JtTTKz4/nfwmZ/VLqNX6B5I97aZcb3rCvxYDO3CceVNY00zuOSPB82w/r94hMxqnXSy4wCYdFJDvt6TmkwE8ttd/dCvktE1g/FvJD6GYNZlsSLSRdBVLY9t0Jt9zRExO/RCy4qKmRUWSMv61qNLYvaq0iqQ3Go+y82fuPmqJh+xDgmRT2HrI2QSgnFc61CaxLv6jj6/c/Nx+666c7XpNbIj7nA1F5l08qDhZXMwFZDrSQCa2+1zk5/BGHJMAQlcu7nl/IujlRThDezVIxFYPmQ6fRnH9gxO9Ct2044RBNL7/4Z+8VzgFhkuZjlsJ7xAxldbHdI3Xznog+Zaqkzxcs1tKG/NEXHJZ/NW+nLIj1W1RD3uTYN59hOXP25g8GMyqsoEROt6v6byJxirG3SylCGTgb3WG/Obr4vz/Rf+qxu2Zf90EEZYcNFXegBM1P9qOmHdsOI5G6Pu/E2J+YRPRmUIHaEiZNVRqyiSUHbNRIyknxS+0rPuXHVodmJ2YUzD6OiDG/6vFPvv89tSqdWMzS1IRF6/UUO91GHushjpB2MXWWTzYFd7KKnqxemkw//H4Rd6dLK2JkaGu2gKtUat4MX8xKtZ3XVKziZ/R1LErfClMePmSmHof6IoMHFx87nbzdCTS6uADf36sWDFo44ySsyxvUUISTepYYPfhxKIqO4J7hsXKkIsyeA2OWBPFE1Wmw5Z4VINIohwaGTGM4IDvzfONl4qWCsyc5384fpc+6sGfGcc8NrVtRm9mMYfKTsCykRJyKJqSm2FE6y0R7JTQDzUp4bV9ifffc9HCjXo9aUKAApyzM24HizDS5uiMUNRj2PKgywnWVgt3alg9A6FTbfDNmJxajr8wwoO+dIUI2dggjJDHVpXO/XeLFMsPxUOGFRUugmZL5ldIEJG/6jBACBuUe8J9LFYp456CC9ft2yHRRdmAcsyLGhP7mJVtnnxedlHxSzGsim5MxF8TZuPWRRFjpkpeaTgmCbf4o/HvKV577SxQPt4ugvIGpqugLRqa66+0pKvv3p5IPpMLduOw7/0g7rx/KslQC1XsWwWnO3tf+s7m6LfssD2z979BC/VV2QhqC7KL3cdLkDA4fXj2gClozvzQlURTspkObaY5Y2eiyKumI+x0vd0c9i07BkZdcgGMXeYbBE6xIR38JQ/jzt24fKIH/haC1VXmFp4EOT2mwynb52aMh1DUycku3tprTzlIQ0wwkJjim629dbI6sIjwiq6i+L75vnPH415dXvBVcEr4U04xgjKsmyOruY1LlGjnbnyILQlmikDG43P6Hwc8BhvBC44ZNBG8iap3As8uqk5zVSx9OfKOToNDjiclfgA+kJgWodgzS2P3qRBg8qlx2u/HToMjwLT1VfzMlfPW8ANem9gh9uNK5qA9O++isMMNr7SGugjYKB/5VXUtvcDhKLuE3PmFavj9Rb0aEhzNpHUDJjCwqoCpEKaRgKQLQZ+kQYbyv8w+sTOxwdEoQUuosXuliLZ4IoFVhtik14muO/MBV2sDHoU75NiBHLWzFAOiw6PnHXDAYGHgshRzuEKU4+wz7sRo6zFMQvqGoEv41gS+twnqyQ2XQBH38HV5WjTGjugO7aoFqj6aKSqmTd2mANZ35DFtSEABZ0bruZeb/eLLdxcldf7SLokk0/NJMiQ6l9leSloYBNeQV24xbO6hcXoerojonpjqjVEoz0uRCoheKVveO0aaPH9JwI0z9PPPjxiVlecsYl0zq3Iu79d+G8P4wTqAHfbfQicZHn9VpkAnaGA5EvzLdJ6rwDrPKOIYmQ4KpX5amcjj9s5TlLsau1Ah5pmlPqdwBM39MozwKsbJKFvJZ2rbzdtCKVkT/apUh7MylOorK7dgmHCUh7Qf7lY9l5GrvO6ujrJfu9VK1nyqdQHHVBW0RIL31f0Qr47l4hrknoIhw6yu6k3tXQXefx1Z9HMpVlzkjzR2myTuNZy+zxeuXIcrg91v38NEhKwpLP50+EgemWkhDmzvOouyK73GpmPDx8Yc1h+joqgc3kNymB6GEII+R8ut723S3fCJ3UHveBNK6T8D6uHgnpFzlTvhL0KNw0DrDA10PC0kmS4nMnpwSZrcGTNzqCEhQ+9n1tCoy88o04SNdkGl3WZIB0bxkPLEoAUj3vSnOVUVMmIC7qMTaNKAGAyNxKzXOiJdXIn0RRzM3ke6W+tn1wxipZzwwyufFz9MWAXlgVocKfTAF5zdrQjkvJrtLmsceosRf0qDN8vXKKVQn2G1BThsChIXAE/37On5BJyLy4a0Sb2/yctC/gXdsu25XENjhX2YLc1Npa1wTqInsCsTZ2vywDDpajd6zUqIRzSF7Y7eyAsGMQywDJds65i3EkFEPsS4usGbJVuyyDAbRKtNFoOInnWRUYLLLO7CMeLwrK/29n5gPD0Edxln6VpZ1aVb2nUf+ZUbihZeHdONPiGxeDHDwe7J9xSmh2wYhOXpnWiqvI8/y8tIs+XWcjvn5gwH+nThi7jMsWYWZ6u7QgnM5a8jMMoBiTIwVSpN3n/49K7SEaXQAIQSc3L5orkQbQtgcqHKm4JV/SyLQrpVnmq2fMfAQ7CTSva2L7bEgEimQn+eXHmRAnwp7c/tvM8trB4xvhhpHG0Y9YGk2ydvse0edDG0mJWdRhfPxytHb4LzQeb8bZT66oQmZP/5qRXiRu4ytFeknWdoiCnXD+6vpA5GRHKoPO8bZz3iRJJuljLEZgZ3544X12fJMMSBRMGZunLkNHRjF7E9owmHKqH6UKJP6QlTRleHYPNu/tXGs9EfrTAoDjEmdhde8olXlmc0jZDqD9e4l3h7X+hEGpY1M5IjvrrrxCCGIRM0nnWjWsS4i5VbsvAq1RcKp3VmrS++by7/wEbQGNRjS8xzbXNlsMYbJsCwSRjuke2CfcejxycZbcTOtBWVv4Z+9DKZlvnc39hb9WgFt9KlzS96JlcXsE+4xLxrd9XT2biw8/wVqb9PSw7HVL2fllWpiHP62/fMmmii8bKeSHDs2EkbkpccZ8z2Jm13bBM+idqE3O3cwZT3alQWl2BqQkNStVmH6w70yM9yOB/PTojfHJffQUNIfmPX2MMyfbJ8bYkszmMOQQaguj7RHhGiAJoyjgQ8piYjeE0QchVAmbwHdG2czi6ijrTQ+aZCmczQU2HB/n4ChXjpp+EV1cVr8gokdDs3sxok/BQjYr9zZk6+HHAaQOVMAvJivdhFwDDJlaCWI66JYvkiCEP1juM102emhIo5Cys/Qvq1eRM/R/7Cg48a0czOEUrSkzKS+nFVp5DuyknTxMFLCee80QerLHb+XVZet8muI5Yk7AeFbSpnzsnRnQZ4Cjcl1Gq/linbcmbwcdGePudbJAWW10/id2/Wd+2O2avhVGA+GWshAHsVpi1eZTCHXnnQB+jxTGGlz8rMTthJDj/5ReqELJnAa6JozD2TuRReKVxndqmRv4maIqwbHttPkaT8Bw3G5QXs6iu9tYPrcqKhgeyY7n1jCotTCorklZV6lhWOIQFfccakZ42Wj7POS62EZMiqcde/CaE8EB+nJr+LSpiPqg4w16mv9MdepiWaCPjPwgmG5L37C5DxB/MVNs8DEHLnIxehWaGJXp8aZCNI9OSDjKUt+ty01ZW+7dnJheltM730iA0owwgshuTgqWSk6HENBfesNG/8x6xfsGo8IhWjXKibcxsalJVplQsCt0mGgY4LVXZMFmeJkHvS8a4i1kISwwjjtUFwSrpiwhZQeJCZia4jwbIhR5vrP6rOl+glxv0u+zU1ZLAQUwk7MDZMDvvKa+XvO11H3NaKyio7W1D40yWA5xtN6XLt9J4a0vSPYnqstgRnDvretlmg1qgpgevfW+LBBbsxAFgQRqXIRi0Kn2BJfgYPiU5Qas/X2D3YrCqYlr7GDlpEcYDyeP3+T+jBAZGdrXMuqACXfNDWcPrxgawXMULUzo7Y1flFOyA5mn5iB0WQOvjQKtJTjQ66VA6sMgUARXyrzhKpvEBV2q1jGvgayFM9QguWpSZlkW6VOcieBgDqekPY65ALh1YqVf4nXzA2mQyn36IAqoJx8OYLhEhMRycZyf1F7xQGlRjQ/y9KBk1EjmxrwrlRte7lk4E5GT0+KNKG1Jf5l2IZdbCKtqPeWw8kso8l68SevIStYeGxtAvoKes/msU/flGcFZLl0M8Ow0pwJpbSt44BYpJGYUOmwFKfYBH7kcJ2DXJmgAaYw/kJZSDPySt7gKHKwO1tzTPtTnVU+Umvco25IBo78AZSuIquGVnwjl+y7QtxB01etlJWfd2C3LSgebZfgiHs5I2+J7k/7V6cuDekvnvizOvSny+6ZKenz4WhsglJ9aICxIuy7eMgnDrqyTk5OEVvcWMyplxOg1G0Bw24MqIywV55sf9GlwAaa2bYxUGtdP5UcYa4Sx6tzBLa/qlvpg37QYss7ZuTRLfXVqSmF7xNhUskeOga1zZxiS7TFuyttqbWOlDk6Logl54VJ22Sw4+S8I8b9dKmmDzK6ANWmJptT46SAGrXB+QGYgfoL//Eb5/GGB6pay4WVYV5Q4IziISWP3HPnPzS5iTYgcErUDIsl+Zg5tLahWMkREOaXD85Ps0l4GKifq/mnWGfZ41LFUJxLM+mnR/VIAtLTDprvUtDMZH617T+hbX85Ttv5msRuan3FMnqItzsg/SuFM7SjAi4T7W8JvDNENL2jpjpVzk1/sAKVSWEw8+HyALcF6N7EQV1c+C5uPsd1vNYqbBAKmW+H1/IvoiPC7rICZ0pWvyg2kJwayjF8mwI21K004/VW9KdG+IByyb4zTBmpZl2EyVbBCU+2dqR5trJyyUir2p/Z3gMQ1CEvj+rszTntJAcQKGeRnlJhACKP9nbF2w5iafLQfHkq8vGiDqfVqTg05DWYtJE0VRYmuwnPrvP0J/MlyuyVKeabcPexbBEu01XkAfx9OGwt4uUxbtdLyHGulv3HASan6tu/kJb34u2aZcnzG1RaBuIlMFREu7jBNEaCHjF5u7yaDdvYvwLmcamJ6DJAOmPWUKwXUxRHxGhdhgfcqB1NkN84DxlAaMInWSgCd+4i/G0WXwmAGgamJj7AymPEgTZJlnTyyqodftn4uKhs2J2d01OUpmnuIioKZiMHBqgr3MktGo0MScEYaUskweEVDkdMF2glRGuE/Ly7V41uLyXvSnLcaaP+00nttzFkgzLchSsMzXw4+EISUgSYLmK3SLu3+kwgPawST6jPkpX2KVLXP08dxy5Db5LlBWyRWK0UIcHBgilw/eK0JKfC8Dg1LxXlF5PNQx2vCOGC7VaNhuMsWzW2ti7lRICkyCvwtWVnGOBhajQsg5fBn/x096ihs5I9EM/u1UWVGZXO/FjgpK5207+rk/3uJcueybmhyP5nyfU6t924idRJm/GqH0U+/mBFLp1aC+OFcALcqE6U07goZqltIa8nV/NhGwweZzktnKJJyi5a+Z/wAuUD1H+M3+jZSMbk3nmLOAKM8XFTuIFGPBiWwOAlnKkxEcVLm1W7Ab/PH6oXPhFl/1GG64PXJM6F5NQBvbVIHT/LRLDOKr4zM2T9BaIM+V0KkEIgL8/fAAc4IPc/hZMp02jZVzXUdPvLhdceoxcoRwgQlaP90RLoZj+v4P9ymyU9i5lL089zfl7L9lMQan4JoAZjq8j1/n0yF1olVkWcQFN2HD50MWceAFrXGGMdHIWvsFrDjq0FUFUPPcreHXfsJwHOtRvqhOfeM9+VVkWgOWGqFAS6hGX95lFE65LgHvRUyLZrNslw0JE3knquPXwLXTIwDZQGrDdckyyz7u5Sr7rwCcWWwR6vLGg6BBMKHnY0jKUAzeLwgSSe0dyFhXiPJKnAOzJ84YCkpNKy5rOB614elzLCT5cufVC0aaFmWomtcF522JxSDg/QOJZaEnXMbv0oCYvfWLhIQy2L/Rk0R3297iPXIhhOltuW1by8yoaeaQFprJsnfMhpdVz/ntKJGUfuO30WgjP6ICspzQfNtzGTvIFpwMdqQhn1ELvSDzoptow20sOXOXUQn8WjlGmVDPFxduXz6+K91R1t0sUo43ESUV84s//NAyfx8tQznLiUTuHYpOVCdl820quO/yER5GBJbQ8FFOVajMmbZnptJCBPMCAnINXczYIPGRUu0VkvlVyWOnp3XaFy0Tzil3fzpSYq2yMyRxNR3qe/0JfefjrY888Bpnh5+jiPhLHRWcWOgAibv9aB5jUyrNWYah/WuMNQzu78CuOw6muxxIm96tEGJJeeKP0Y/j61qmAeSxr01OvnzFbv16UiXUHesjT+t2UrgFtfWLzWbj4fDotB/Nf1Kofv4lfFPZpQMj6Rt2cDFBXugKUwzmJguHigiY8gAb8gDpLJ+cvEd9ghrSijON7JgG4Zs2y69710jEu0P94I5oH2FGQXdHI0wfH2T1PzWIGTWDI/YFhV8n7msQnIuT57Zi7XmoF4+Qw5zJbbUxcUia7VUi+Iol8+FcUpxMa+5hXSDTrI5zaZSUEYPxnEVY2ZBluFrHr6saQe4uJtBedCsp+WNeCplxKq8Y7v1XxKp+xg8pMaUO56apHtJ9ADn8nYNInWH3Xc3Yfr1Ku/j1QXOHy0si6W1KBM5eCKMz8ZqKtrdqxH8Gx3CNlbtVtsvmp55hB0qGfPVkDT01uk2ozHcbtaVL286CkPuVNQCU00fDslfZDNBbWanTHt/Ul95C2ddhDWdDrfuWR8s6vKsDuJY8pYcBcGbMaYeakwUL6rc9MBRWgIlk7olkq1paBJ6h6/wbP2AMG4AlN87+gUNXX8U5TnRNdWSLaMPEugsv0mivV2BA4/A2oGI1FCDRLJMgse4jzPSXJPoGXEAZpPxiNP2+zMFlV4H191YsyZoZKqIBkhHOof/LU7QN3y3zHRvzIrk+NmU3E+xtxn
Variant 0
DifficultyLevel
577
Question
A truck wheel has a hub with radius of 250 millimetres and an outer rubber layer with a width of 150 millimetres.
What distance, in millimetres, would the truck cover in one full rotation of the wheel?
Worked Solution
|
|
Radius of wheel |
= 250 + 150 |
|
= 400 mm |
|
|
∴ Distance |
= 2 × π × r |
|
= 2×π×400 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
type | |
measure1 | |
length1 | |
length2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/01/5var_320_150mm.svg 350 indent vpad |
length3 | |
correctAnswer | $2 \times\large \pi\normalsize\times 400$ |
Answers
Is Correct? | Answer |
x | π×1502 |
x | π×4002 |
x | 2×π×150 |
✓ | 2×π×400 |
U2FsdGVkX18bAbkMsbxYAY99mzWbGtvfrpQUWh6ePIHyxHodGzwPtECWAXjlo2nClSixoS6eN0AKBMisqfuP3piD4k/rp8ngjCLlB1wEKJgxcgfzyD1fvU7Aflvu89AtxnEg3BivTMieqBptn1KEJzo58y2nvWuw+IbbeATm69v9UUBblIgtBNKoxXkC4PQHExVekbNxHMsre862+K2vNiP39OamZnmXgZ2zg2YXmBOjsSVx3lckBho58VkwFFbj16dPCrHcfMRTFNQxzsnToHkyIGGwVncOxiwS7XEyyt0ciG0dLj31W863bPlq89ObvOl0fF/vMB9IfKgzOmuO5IM0Hk+rvA9HzxuU4269jA0ze5PgiPparo49i0LBi9qcVd8N04xa3vS7QapuvebWrLDtzVfq28b50efqWYfXlRTJMQQEAiIXw3hH/YAj4jP+dqnGdMImlXzp4ojafjhOcej8Ry8FrPfn5KY5LI9CnaPq4r2DiSkIFAQunDgdNadQK/O7CczQ1HPw77KBtZfpGejBXQhrYLwumgdzQMCFaS9jTakBPvk8dvrYhJDt/fo5w6j+dkQTnJ1Ln+LByyIU0LGGzoTZl/SAo8EghmnYFW5PXMm/D8VwgqCySRnmNt1qM0PmjuBMDOmE3YctLbVxmTO7StHg1iraM8m8AteZeHlut7s6M19lLg7kUrk8wQicS+HOrAr8gK4EGG2KJ7jKMcJwCi96vkE8PkJ2DTGRgL0dZLO3p8Ai4VDMdR7U+xGhhOouywFk90Ym/1oLVVof0DJmEbxk7kNiZxcbIZ6CdhvNkf0rZiYD1AgzkhgxK9k6QkQJm5nXEVNdBSAI1brCKbC4/ujYqpxJQ34OFnQf5GaQ/bIKW8aF7fMw6trR1V4ce84u29XwbjHmkcT1SObrhWS9AUsHYhOOOnNZ3UTIsDer166jJd+NXEXGPWrPeX91/77cx5XorDrIJ94zgL3YeDWVOytvGsqfiV+F8P5Q7X2x8QSdSVJHsZRdnWylI+QMLOHIlgQ2HiLgWwnEr9VD4NvkVffSLe6tg2OZgtdOWumcGFBj+JAM3/7srvkqAAwMPQMuHhyZ1EacaiW0fF7x+fFHczJBYlOf0pvAXilrBJ7T6xcsc+aWIuGYjAaSWMBr0FwRkH6bwnhUxZH9T5bpoBLR4ZIcWphFxpjRuOkJAROTv2m8TOCPgt9my/Gu70cyoZhr4qfPV2tUmr2vCADCtB7ZIZRBoHgfIAMlBupcGOsnxEn/OhuihJTEX3xcIYscPy0YdVBZMdriDDWTj9Y0ODbGoaYHG+DY8SDGv48vKjJxjNb3rcjkr4XqCU1/8fZN4ydM8BvHJTXluLOYDpSNyURpdQNh8ri2rIIFO3ULEOuW5RUChRpSH5GoECBM3bmzSHo3AcF7Y6WZF+K/birQnkDuMV0ZAZrhHehW6bgRoO8uuBkMWfXlmlVEVcbGS+8Tk7zLZcqxyUZ7N30YSlbAGKZlvmz01L13jrGJ26I4CJSz5Lnm+1GLeAfTkfuk+wShUI8vhoP197N5MdE5180D13elwNQYLsp4QPU0WghZWU3N77f9OwyPBurHNycWWUja8mvl050AxBDuDqqKGxI2ZNPzlnXceYiztQWq1bp87tJ7vM/SVwB4zHO37SLH0nocbqlHWXhWxUldDOSELCXkPX8FqfZ5+m7LAAVnRqc2pvgHRQ+HZCuDdodYoTC1fT+PI//xEdw1o2TX3gI34HvCb+XtPljudmbIRlc3qXqNHEw8W7uv9gwCU6QDHs4abZM3doEQtR0Bx5crfQEhuVShU+mhEb1BzLMS9dXixHJSb2g2USYTW2ezPbrkrWaz/IhSAAudbX+sL5dtSdUmqm7wa6cLFy2h8BUT+SEww6ey7MR8jpvSX9IngcugzySgD6zJ6WHw0G3RJgChtr5jg9h+aJvUMWXPSc9I5rLR6jS/1RMcu7dz1zLnW2Ctw8jxc9NaNWwq7qrOU5gNARHT8ji+dW0k6FpETJTxnT8XVtvm7jNsPMJ0w2nxk13WhL6buuKMOoE66eLVIatSJ9HjUT0yULlOxHYuBcRVDPyhEfd320wPLetvNZiGS0f6kUtDF0OJQj8RPsiofH3HztNUxKtwZBHX8BjVFHTFr46KgfwzavnA8/+NYc9z50I8dH9lGjOOEF5NttQmQxD5xKVrnsoTCLArlVPBHms4AhH2GszhltXDETmv7b3qgn9x7MMxOn/e8p/h82tx5mDQbunjzYL35xVV0/fdAmSmQZnmHY/ETCOQRPzCGHx1NPLUI2V5nl4NdrsmsNpZBRXYFZBy51LyWZZEv2flYAawfksX0owujWUowN0w7OLDRFgDUlFEAOX4bglmrt5TmEarYr4WsmVCNIzotLO/VueeqJIUNHF4thhkQSgH7pk1ukZUcDeduOlXGpeh/NVDuhuPTjvrXHpB/g0j0V/TbjrMqyGMvB0rncKser8YfooUW3DNAsnwwrwTwCUvWTvKov+rTGjzYWNp/1o0muf7a7AAYlKevMoJe6wLi9YElynnmLdryLLYEqPucBIUA3D76NEfnqM4FQ77QktGrODU18MSCYjuRjYf6CkfcT+yBNgeI8Krr90O1OQTQyTKkxBKEjqMPrseO6OGFV173v9BoxjQ9Csp5XERu1C/nnD9FSYfW3xqqOoYAsc2od1QzmVW3HAp22f3f+BCRzKZE9enuZZNNISgVUgx6zHGPSfbNKtz3zhnkZHejsUM4ebihzkeNH0Y3O/SsEpfVnJ11il4V3RtUOUx2FWwsfh/2ezF2kv6e4HR6kW+feKvkxSF0NtRXsmGRacvukDq6S14aPkm4Eme7OPu9jpAn/BXxNzvC8HjNBeY8GWf8gxIchwzNRAJXhib7gNPfcCQqy9sV9zFslo/RZGxsEKCyEJw3y8naqKY15nv6YUaChix3hdM2aAVHcMyQI2jw0wOGRzsON4GPbK7efXTl7zXqKOnhB5FBuKJF8EJCt62RcIh5yzS6hNdskYrvjyGd1pVbdcyjDYe1Rhwdt/1CFFb4WNUEhsKcWMFKQuLyBvNigvbfcfFktGr/d5sfGdU9cfvYY1+o7caDDixBJbbnpZOBxUzNt0pGvMVHkbYjf5Sq9EgmybM0QsqKW8iHGcWciYgCnGcMKyRGNZ7hJOuRPiGB0kv8SPHy/PikDozfkJRt88uluiKRPucGp1RqNzIm00plX1nWNxxIjAofEyCRrNDA7Al9qJLgYEw67neLUETI0B36x62WjPEAHfbp/Ay2vgWWfcpkUzQpyaMat3orF7G7ndYU9OHveSdY4KOLgdKIeZeHBQrJI1Zc+8CYljwwNDlxOi/ftdjyLRFakM52pqChKHxm4LkSRoIHdK9pCQ7ZJDWr404hsjadly8BFo5W67x8arBGWvQkZLw29PK9/tXW1IYlkskOYmRAmOrVksertNObO2TJAS1wEQKku3eDbxYZWSd2SSahWBrDcIUFCdbq6L+/o8fi2OPpz7vn3SVZw+eXF1ijRs70T/oXqvkhE+VtPGXVjberW0yBkgdqqzc9jGUVo2LyHBBNxKlnBoxZ4WvB4xAAL8LpEDX/1ukZPPolDlJUKNnGc/Bt1cRW/iFOxayy4xCcGMXQhmfXUhrHN0q29vpBxxX4ImOegdfFOLbGOAGoEuPiNj+LD2OUdGUUDTWjvEWXAMmWbCi3RAduQelcTYyXSeshdSJunGTwhaRWMZMjqPk28OUNwevjA4dFN301FfZRAKfQVYVSiy8m/3GIoNRjmkSbVmikQ1UblPtF9mmnF2k3Afa5Ohql84tMbTqXpO9TyxbAkg4tLY7dXB8PjPPne76yWLicIYNEv1Ws5wNb61lvnpL35W/RqX5/7PdI53uDEdcgwz8+VRopmG5dJjU7CBjhPbY/6YXgid5VAv+u4d8tMQoFW4CfLyUvOczaxE5NEZtVcUT+0zicNLV0tsoB+DVOSNgJbJdNwB4Hkm6lR7KA50WcFPYfSeLms3MITPjZ4T0VW2k1ImF5ozzbRJAazXyWL9lDNchx/9vAiN49BBcRm9nAp8rd+Nr2qN4bjFifzVvYf5OtBLkhj07rMSSpdS4hoKpcB70tw6gAGKC3wpn/742gKFsgBGNbFpORGsHUIvtp9N8Fy2VHW/eXuONM12IeAf8vS+MnHuwN6688scRAXcEtcdyxo5vT3+1KFhyRlNUAIjc974PZkMQa+S8d2DXfBbxA8LZElGuOqG3xf/FfPwuRRsXhoWvL8qlQ7mwUCnraRvDBTJDxWA+H4NRuza5g3gn8mjckefvc+l+OvQAvu2FW/kBVLXjJ426j/OszCJcdveljbdwntWURGs6pEDrjU7DAj45U5IbQddJ0/soLfsF39mYGCMdT5K6ytUeP/nrC1cJSUHqx6fGYHizDIyhm0Vu8NMWgMzgp6XUfHJSlAzVKMoo9z1R2dMTmfnGvMN+1EdwqIlirtz5Xqq3zRFwirfUnsOf70SKrRg6qBuy+y7QEmR77uKoeMUSTXSc3afdWq7NJ18ivFkTD6oc67Yo7xxZaPxRewKTpDVDTKxaktZITifcQUlY91v40K9QadteOZUhWatkIvT1qwA2XG82Q7mKkbhGY+flbWzXkXnJNPzuPkkwSxKGMYnh+2wCtAhHlEfdZjUmxkpccM9YyhWpC29Zd/9pGRRcaWZngCe3GTtfsBIXCWOsi7oojhttJ/EYNSfNCyhh2VaYxFScOObEC8coTA+jyYNKSdQmMCaQ9SYG7cY4ZtuQJJCbcKlgIQaha/7rsEQ8NwNcsp2uTfvnusgeLWY8SMB7wnhSJUKDe45MfcaVGydhoI5Gq58YZkjhjTtRupx/PrZ5epAUUb2yr5TpOqwjxPzQAlgL5lrdbVGtpLcOtLD+bw5boiQ0XILfaGZLh95oQH6aLMFsegsBIQicBrQ1hfVWRK7wGMIu/BGQCZBb+03nxJ5auTMe1accbtU1CMFl1jq3I3LtQoBvmGhANaj7Vsm1qxkyxRK9eopelr9/Jjqv+lLI+Y2psfwcds4ZYNSdkSl3h/ek+ANQYoifO77ecHigrLCUdjSX9DGFcEpjHR0oUVgn0Qb90CPwpDHH/rsiBLkisS+EQ8iIfhMw5FsQzd8heK6eyV9b8uC6PRMJrDAhv5Sa8uuqDLW25bk1YoDnJMTQ8TLTQ8RQZuHVQggTrowo4PurL7e6lPSY76javENeWSCAa91NRc788J8RwRZQ0fyYYAdYDk2Ej8o4GLq2ePMlWjXEU+yhX4HX6e9SK2QK5SH88uQRpL2kpDnHiERyDMqp6m4gHP/fzi+94ISNIHjSWQeRQ8kMskf6ev/5GqqIdp3IxG9jfda2LH4YiGnl+uD3o1kPkDyiHF382+UihY8ApGR1arjXa5Wa018vcUbl6FxnePoC+TBxdjAMveHFgTXiVWPaPOoBUhR/mm3b4vDYJvIV3+e6aLxVP/RZSrx1hmJ4X4GMDT/S3OVt2nfQPsvLD903/dnC8i0pkHA1FZuoSViIoHBWS4lXPauOTu3UvS+K7rAWu/ZBwrWuw5dfLXYEbCCGxNotYW+RPmsKiplcozojqX6ElUdc/7/XEFUdgQZ8qlZC7XqZRZUCTg9fhntfJIse31NO1yiT2cKvUS12QhfY58FY5A54jdjE/3stMWFZEfGU70JR89zparL4GIRm5lE51nsGZ6zsCRDmoUGWV+vGNlfSfrIrrsKnM6Ku3zZwNFAefGF1y0pMocWuTaolcYs5QPIG4OKdyn4Jmo4REUzYwafkYefXTG6eplpHOnXUM0bBgDVcfs9d+le+yF3kvyEAidYPc/8wJQkGVMaVvKlrlGqTPjUsdy4kM2pxRzy+jhLi5Sf6ZMqSW44CRi3qamYNrzULiYsfli/nb/P4ht81WB2g6dn3YgfoSEwTB8geNPdt7OTa/0lCNj5MY2DK23AmixSz3tTT+GL3QVWAgB2dqGvScZGiNA5fn/URYfTAZ29iVFQQbagh39aoeqhGNLpx1WLgoGVP6Ptpso1zMfLBC+zKFZvslYZ51yNwQ2eOjYljlIqRp+lOJ9sKGRGPJclt/rYsf1vaXyX6b3xcQkf23bsuLaU90ZoCxl5zVTbbQyIHl5UGO/JiC7STdLr59UGF2VtShOp6XiFzFxZhusj/LPuvFvsye8VJMfx2WOJ5/8exO3GaHyvqjdmVMmBhv8Gwq51NUaSs7FlBZZsuJoWxtSMkXrk/pviE5XD0lE0k4hmblsZp/47NPAU58W+0dRZCbtrZp0hVcnJWfVIW5W/pG+a7IU2RfyDSP0rv/f1ugQzdHEBw+ik0nNO69aClDlSo/YGzOElnw8OpZrQ7ELHmnWFMnCNF1LmFo95sdWq3WrO6qt6tgFcDbJjP9m5uKpfuJMFYfrO26PkHhOBMoO9yD5OUgzSfeXitdwLNoYCSQfmox7YC46ttErvY05YTwvKn06+Q4PGm1sgkV+jTwceso+dUBeCw/nHHCNGIM5lt7jOObmCd6z7GSAvSEzxkiSYe371+78CnLXdZGqOzf+GqVEFLGFUqOEVytBkBHU8BKZ1zkG4jLJlpWIUOc7ubJbv3u50qmyad7E6SSTuPDB3Z49iAJkxgN7f2qTWKpP4M3APL6+OU+QhMX/CIq36clPTuzdviFXggGMayre77gzYgl3NA3S6mkrpAfTGvvIEBpmcC6BeWkR/MBaw/9oPPGRnPcd7/lBQl6DAIIHjw7+TAfalmVY571H02RcIrWAxLv3j14Z3QjwR9vyMA6vxEpTdyIjHbUpwkhhS3c53K30fssj177yQiTDpR6WpLllpudwDfEdq2rFFr0k2zdxIKuHCpDyJ9Mpks6ZyPLT8RDwJgvsb++od4y0v9SYMToEGCKtpUl7Ent/5WZjqoLAJRtSzxbiZmHbFdgOO3eaG5i1s2+jHODEKnGkVMARLgV9c4jQ5rmH5l3KDctgEkecYIEKY7uCVaQJTG1zaS+Qd4QEedBfHWqnozdamER1+Lw5yRnivmLkiEECQvux7RWTRHkuie+PSBimB63vS11aBqclFwpmg9gJiZWUkOK2hrjNY4os9qjtx5r0z94hKLjVQ44DR8g0y+OgRUnJUwmy82uTGAWRdeqqEP0yuOZAlyizMBtNRjBflNDjUST6FDO8qrlDCz3nJm5hdI39Heb0lF5zZBDLkTsCqcG+4PvO6ZIJhxwI5iVYhf+4/Nd0x3TWNx+GSXOIOHSwXF+gxON8kvrR7qZkzfluFFxG0+UCVL4BODcucbHZNb+s5JBy60iITk0SRFoErfetSx3Bnlg/3kNZFxdTO4tcDIlf6zCn9G0XmoHXkKL1JhMmakg+vB84BI62MeD+kVODZ0bjKPbJC1O3oIaPJ2vAmxAOI8WjzqJ4UH0vsfp+6ARA6ph1mWjDBwzNzZlPrUwF5Qc8fKaRH4+gaRJ8TnO8uwN6auz8AGyrKZMrmPyzTUeCc5ORtbnitQvZrIYoFBXNYPlNJbZ/PruD4m2spJ5bf9IqJntV4vmUXEEHv1A4jgANCZPJEmxdGPsN2Mw6uzfnXHxRQUkI7zXZp4gHN3JuO8yWnFCyjm3j1m8E1NIzV4XvRU7yf/koxUBqCJ70J53UXkAl5fEjRbhNrAgf0IUF2XsAY81KDZj5ggsBaTBQ8WJPp+9vXrW2d9LyTl0iCAvlaIg4+O7V1F0F2iW7bUlae1cAKoia8g9VW29rtMISmWEvV5wGIDXBdKFHzwxEZLveaxO0FBeenl2dSa0C6pOuQV8+Tewo+Ir6hAdXZPyJ0jTklYjccx7NMYGy+IBNTGFr2HvfHOS5eQ+t+RxXhMidraWtc4Bg8UZG+YF7SdBXzs6MNItRn9EX4ev9wmmJhQGV9tjba4HEAvInKBvXKI3IcWQqojZHYHWDq0bD5MPIjduZLkGCd3o3nRA3xc2GlOnOTKrPw1dpy98p6HOQgz7UcOCvLP5yn1xyKPQ8o4/RO23J/UVilu1txvn9kWy8Re/zF2Bx4JlM9D6dSy7xE38eyaMnPllRVecY3pm5mw/49Cey6PJbOCJluM8ePE+1LU+m1WCy32crdJeUEa5Xu/jkP4jveNWHFLdU2C5jvYm3jt+Mni7f7Uh6TL6IR24/oIr+4EF3LD1m7JM0W57CXmGystQUGry9P3NWLqaNvpTARLBQGs25T9OFdKIhFauYDHS+ykP5+zfCuZI8MWIJH5rT6sNx4FPQE3qqzT/AlPNo0dU9j96NQG3nOGfzzxmktIOoGpKXpwh5961sCqs/xGAX/qAXG5ZEVtUhMMKzYpK8v580SLqkKUXcCGdvk6XGQISweJoyQNY205cfJWSD+rouJ+BYXVprt6LVWIw90dC1OaB+WCLLYq0xUoYTnxIQe+BP41/x9LR/zV8u2nJUwWNDr58oUGSPLrlIwTCd/Vr1XQfP1Eh/WzK246yZKbWjgX6pW+7CCZKCHRkSNR+bGKylrTanzXwYFaHAydppHzsHnmH+4HGbEIA8FvfQIlSN9VtEGL1xWB03I8Jc7jJwUhFuDyAvaUqEyJec6VADQwZ9IHLmxkPITVgo/x2MtGf7eDnnGmgfUy/1IOdlcO5hB2WOoXaktjYJsCT+KK4kGu5QBLZMdiF058G8yUoF2IZFxmQ2em0+nNK3KJUcq0VclRW9S1Z/x1vs3mAGXtJf4cnTkjd/3IfdQC2BoCC2BaDzElAbs1pnsDHsHeyvlV2Tbr0o+2pUCRTuHhmknCJmUyeO3dBRAjUs/gT5dSbmrCCn1H+Rj4JhMWswm2q82IJw6lxmYhA5aTnvsBTqji/shbgNdt+3MV8gtPUKmmoUH5mpABcqTKSqdLb7zANyLYy/ngE1Pmsm5NqEapxQvU8at070wMBgZ2DjLaV7G3exgIXWk0r+W/1ChyTpjBdTiqzQs7Syd4SzTVTY8Mfj1NlTzsCDizVuVEFJFsLBeAatcnQYueSnxegbjAmYKBElnHk4mB4Y4OAJogFbG1Yvk/CKwGYEP0lVMPi40Q2VoicH9d7S3lQMRQ5n17H+5tVKFHg0fu748Af2iZw6g3reVFZtOWng/45MwxPR8Iu/ISM3dpj4qScehZ8Le9QegDKHiQ6uLePZufVJXnX0ilfFVk/UTxE6tQ7Y3Ryw5gIEwVIkoAUr3RjO8X0th+KeyWV44Jr1FWU2Cm2gD8q5fofBgti+DWOgI2hScfh5Yfpj21ZyRUavbcBhjxGDqkjQz76f/5gbVmLYFB1drcliWanXgnhs/7xjnm0CZB+3fkpkWTkHFeal9845I1pSMIn5BU82xkL2j4lagEZ+C+l2iySo8aCE5bzM+PboqVv8DfzosLYB+TUTGq54s0wcvi3/RiuAXTug7ol8/e8WH2aPEyX8Z/Qd4mjDT57pzCX0UMsqgKykHqzsOSFxmJL17DCH5bF0SJR8pq6vOqosaqzyx7O5mIj66Ab2Syi63exGy63yE5vVVDmNnFvyG6YNXzvNncg8QXNZe+NqX7okB4T77G1CeEqksZ7nZwE+gIJgDVwSWCn1iJO/5KayoOWIjNoWQElq6PcDiDuuyQJyHCGsYOrAczBwj1SJ0Hrqt1NlsXet288YZSJ4moXonTQyPbrEyRcmhob53JHPHDGoFEvnT0auZxD8/5cTUVxjw7D4FWZGfiQlPcZ+VKIjB0UGRN+5Gy1IKbx91rxokUi2JeJSFIwA0niGY6PqKZP2bhi27AC6EG4xK6yKFqcjsVqiPbI22qDK/Qw2QyBsyjiykjlS0kqixmVNidpBJu5bOlwwOUjc+h3FlRrNdTemkDpA5ULdFa3uSnepIEr/6NXJ94+3F+MNk2g38orMtpvTl0hkp9kGRLrmNWGrgizG45TDLUjoiwWmK3MDtHtpOCl7ApsMvU+XNz4gv9J85XtEy81D7sii8GVfi7kFk0osSuhlU1EC8g2LvKsvoJLBY2XRYws1fjaxOLhyshZwVvjDkD/3gVvOQJ69CEy5OzZLOQgU8TWkUF8DdG6a7a/Y+2jFAUD6DrU3PuXwvKMfQgwvbU6JtxF3WcvtjHTXwm1v3Cj7W7nrkRE0rUd+R0k70yr1g4A2VLJSTZmMreKcfZ+AnfJMzLqCzHUcFqG33V+1YojwR1AE1hsr0Yt0IhfsHMFTzIy7YvQozKzrzIjtze7Hwor/6eSfRZ/OpHW50cZxfJe6lYvJm10KVPVjUS/vhuZZPhXc74IqWLUiBP7EXdQ5hZ6FzO1WcxSyWwvWsAcNH/BRmyLX45IDFcoCM3bwL8BxfwoLqOdJhGWnQJ4k3BS4fLkZE3g7ELPNURUWLRqwaw/UWBb7kWVJKbvGSZPdrSfs7UdVUlaedXpa18y4LxhogsXLOXw0hqK+psGzXSvYvktBQ9HbXr++m27EryiGMZm/pOkexaWz/VLaDxrwFq+peOamOQSVInn4dPb3YKRM7wYhtcFNfoxW94SGn6A/fDaa+72E8DNB541N8qkJdwpT8Cci+QBHJ38ViSNa+UH55b8bz80/yeBMuhEd4nJAj7XJ6juER+i9VZprbsg+tfdKIxvgGD5VI7P/dH5nuiQF+cF6aKUZS7Xs2n+prPBo9HYc7eV5ATPXiW3Op642PUIRixc3wha0QNuRAV5bJqIP6eSTPI492T+ANwSEWFrRX0rWnkexjwEDaAEtV9NzvLjxcmjtiWZ28rLCNp4rCp3emBng/eaWX4IqnaEk3R0tNOIpP+NkABZXCKj2feTshX2im5DpM9G2iQKIWAlEkLU4R94a7KR8arB5IvmNUxAHMFx81laB4b0kCvEZ7pzQSf71Zhn4+YJj6JAA7+LQeUrTZUdno8OvwuCglu7kukYB9EFSsNVZQng3Vh7z0zXWA5b8jF5CV45lmCUbGwLvTozipH2LACgnmX8ZTn0T60QA5sdfWBEU7F3Ncf3NLwPncY0FSD0JL/Q5052GrV+tC+lF3yspCcqeTPHQPyOHBj5uMckLzJh4lqr8Bjj3jOMQkJ5AN/Pv/Sg2bi+ZWQFkwrn9uKcVeSrjKXF3LZyCmDuBBnhQTLkmigkmTHYJ7RTBUFulg6O7XUv3oLtdvXSuy8komjL6dp1300AlXEMnUsbo3J06xpAQB7/s/aSIQ3qU2jNvf6an4oUapJWszDdoh8e0QitYMPGcEXVXZ9/0XfeJCxSHiXcwbyIuBcr05of+nfNRpdrbUmXvC4aGA9KBd2J5bWMUrFbd7ZumcnU6YV0+fNJRWihvU+opHLLLNnhgA0EjW/AsGKHY2IOhwydzzKR5dhBLvyoTe/14vMTmR8KfeF0J85IQy3dufWfTCg+pttnVq/nUygs1MpptTdN9jQruYWQfmTVdK70Z9acURhVHSxjkRmxydNLCqgCJZ62eKf8qi+x/N66d07Zudvx04oubd2oBMiNoqPCq9EjAr/VZn5i4oBIa/Rwvb3USoG9hXF5F+dJqck+kFu3U/VeH9x9egAN7Wv3K1n6aR5icOZxyak08pz3pBSSKmnfkJecUsKWtRdN/nsJJvQLbIhUzvwYSjc5ujz5mWMuwS6bDQPYx6sMiAMU8ucmL5AKuAkNGzqMX3XSsd74wN39/8HosJpjhNdzirvQiJVX8ov4GFJT/cKf3IRs/gsb6TZ8ki5dnKVUV+MyNrei/hn0bpes9n4njgwmjSa3X3+VWOjMrvV4n44W7aM/4u8okHnXA79aTpsm9c9wfRJZgeud3OFpDBARRcHOAyd5osPPVWXGNV5Gp3KbSEYoQu+D/4mDuetNS6JYKbyueINrhOmR/jtWA76byVsT9yE1Jgxob7K/vqjctctvTeKuwB3Vz0yYqvMnGnJQgZZmIb4kmtQsmUDNE7KBQTPV3VVIWRJWsmj+jG9F9rMzhmLFOG1BhMKGLPE/zZdO7Hc+YoYMG1/PHgZXWI9RXzo6LcsHRG5j3F2eRECIhgBOfKAQSny6gDrNQKW5GD9X0Dn1J/VcLrJlf5fSazRL1Dn0bKdeeSALKcE5SLrkGndPZrnNBYNZC6PewrH3nGKoYZFytpjMTW3F8trXiuqK1HBEQQKsdrAP7Xzqc9jCcSPTi4+CgD6IvXHfjkNbxTuCl3xMoXmgxLQ2gFrRwamTxR360Ej3u3hDg8VFxJsCjljMKvtd23T0uwusCz+qzkdWfb95PrUjDjcSmjsMA9DdeBPb8Gimr1lg4p3VrO37cSqMQ5wCL3XYV2RXaeRhODAQpLM5LgxwHsBem5DXtxy00RS/4Zwva7e2VM2XRfDC9VQ54HDJq1Bh4E9ctPCla52xAZD4YgSLsajT3XQUHXlZ26KFC1A+lAqN2vkaeZxLE+hN926/S3dKfsrenSOjTin4QjFGBOCy7toQqQzqFy1zy4o4/nahso2IXqIOs4I7kLIh1ZylHpEPDVLszj6AjVn4cQITh94Kxh/Neo7r28SfFaucUL5QGtC5xDwnug0SX2racRmA5z8dpY+F+AloQ0I5tFPnNapSkCyRj0eutyJw6ivC3BUUT/8r8+lRCYYjE8EzpcyhqznoeUP7pqOuraZfOLpy1Z1BPZ4NUU1xUthxrgxySQQ6vIl5GMCsrhEUqDdwSKfN2RGLBXrfjMJ5bEFLWyokDRoxQc0gAl4WF3s/sy9PBFnQRfcMwxebIVP6iaHRtZHA/w2MmrZhoDVeZm7ubpZ1MsosftLgNtmOKKd2taaXUQiuP+gmDIDXTrP73E9FO/wkmRS0aEIe7o+VcpF7QTo1lD4DCFgS82Keb09mRbhdULodMG3hGAfM8YCCbR/Z45plV9p9Jg3k8Xy2RlsZXeWpeJ7DBh5Qk0ZoHpIAsuIo8UoZm1w1wJR3brVfrEXNkZLsTnRf5IR7M8gha6OTTx4XRUSmRjXHCPrrKbiy7hZzCWYos0lUHTTfqAI1oj9D6EpH2VXjlPJj/G2lS3iDK2MylLLE56u8AagE2nlgeSiH+Tenhvg39K9SgLXn5aKws7UElxayk9JIdEL908EsabdOJABs7+sTAK0nTdt6T3iZMequ1GJl7u+Bgu4ONCqUvKcmH0AQl+c+USVv/ftKFYKs8vnKeCmtl4MoFmufugTDV38sYGJiE72uszmavfG58BSMJbjI21VpeS+DYaE/l418pSvh2u0satNhq1OCBXVlUir5fHTvFThkZXXCa6AMiNEeWu3N3bWY7V15cs3y2/UxuSi4LQk+T+knFiTgCafHsJ8/mn2CLbUwL1cAOpq/XVGB70uKtRu3WhLIZcqMmzpmAbre2MOFO6805uimuF62NXCxhR06uqeqm08b8KRWSfHahzFT35mzy5wCO+HsHstlywwIS06LVdZrJFJMFXXPNtxhk1KKG8sNCgTwt5MfVBrlnfXXS+0btL5TYAmF8WRwlOho7yV47zw2Qw8ykMbUDYPHsC+8Q==
Variant 1
DifficultyLevel
579
Question
A coal truck wheel has a hub with radius of 2400 millimetres and an outer rubber layer with a width of 600 millimetres.
What distance, in millimetres, would the truck cover in one full rotation of the wheel?
Worked Solution
|
|
Radius of wheel |
= 2400 + 600 |
|
= 3000 mm |
|
|
∴ Distance |
= 2 × π × r |
|
= π×6000 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
type | |
measure1 | |
length1 | |
length2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/01/5var_320_600mm.svg 350 indent vpad |
length3 | |
correctAnswer | $\large \pi \normalsize \times 6000$ |
Answers
Is Correct? | Answer |
x | π×12000 |
x | π×60002 |
✓ | π×6000 |
x | π×30002 |
U2FsdGVkX194s6qspxsAEWFV6VkvPq6ovDYyhGwUXeAatzoBT1zsOsHmTxqBpcif1b32pE86HNBEL9Knn+16366ViR7v2EZ9Cxe2ZVFqU8o9OCsqFxyFR5adC4mC9G+CdE833yCM8245jiLeEPdv3gkZl6HWIxrRpCfHX/9GPP/03lpdFAROOcpNsSjkWf+ZmmWFP5QcngGfhdaVlCVLSU/ZTTwCMjjFGAeJ/J9j6xnGG+ulk0OFOoSyFMuuhe+JrXapovvyD2cXdqN5nwBCv801nSksYeXg+SkJ8Ln4SMMhtVgJ5FxUVFvBHYA61f3MBHUZiLAsF+pAXfrQlii+vYIhgDEDkqpBNlPNmWdjicXlUWjyaOVjcjnrV9/4PeiZoL6wfuzHPB3xHXNBA0A+VZgNTFRmK7JfZBvP+tGUEtIS4XkPJwRTgn9M5ESwlVynQ3SmFZdHpuOzhvPuEZJqF0B0D1xUVxAFnWSkDCeSZpOICi0rC4kZpRAXxlpuCZE0qBCuLIWitgWWkx+RlTFYJicDaGescw+G9UJvZwT72IBoDyQEiZ3SJWFgOH+m7p/uLPs4l8G04O/+OiQ78469aGPSrXAUCvZkwMcQBwCdIpZQ5/0q6R6uxDbdSStebxv0lEBIVyHD7UOVTNPuEsbsYW9kw0AlhocHV55nKn3KvMXLmIRXl9Zx2ljq+pDIkJKipQgmSh/2dF4DH/8qHBTyPjkaba1i6JNveWoCcuuOq0DRFn3o//Z795ElUMFABid+3cT6opY7UGVD4Nt985AC1n3YND6Z/oXsikEZVwwdAkx8E8591393BP1QQ/3iWVb6s98bBuswKfMlSukAWu0scvHoE/dz+UwHUCS7J+U1mOlEqwyeHodpVn29nX02jUpBZng8rfuanRntyy7IKMGS70CRULHxLBtJQ/QYIwV42KWGHvKPLhlmy2WG29ku2Ta8N2Vk1Ck2hvfhkYirebTm5Xfh8MlpAsDvXZClj1zs4TSfUT/Kf7gWk28A3gEe5v5+612R3FT8cfM+IVGQ/CiASaWkjNa4vIrnslrkltovphr2gj09pokIJ1zMqm0U2QMWFZDcj1SXOF5Lqck1T/yvIo53up9DQPOvg66ZpIEzfqvvicFhW8yyn32QFwgcYxFYy1FWjwzyspuuwKcnJHTDVEOFnQBaUvg+Yj1BL/aansxEMnekVYt524cUn2+mccgCQQVUWoBsPIXyP5CWHBnviDFr0z8mmYy0HrENR8HvryKeV0FbSH48FsCxM+4jtUJ0XtAAerVZIF2H1eWdiBCS2yk99gvG0ETggISpIM8kNsmhVzJLAL6C5Ocx2BlUyAu5dz9ay4BMp0hyt+K+1Da2MGApB5q+0CT6C4vyVj/jPH4S5PZLdj2/QpcRRYynwULKmONx3VDdPFIOrwL6EQfi+jqZKzrKXCq69Tz7ITW6mQFPrRNC6A5imrDcit8npIaOqNk7hs6jX1si3YtAGTHrJoQgislG3Otqkdp7aupfBO6ERoRtcWXH9xOi9ln1Y0OPU59J3vIMm+5+Q3JnGxsAVv7LBEU7d/3kV1d5OlkYW+iEGppSJcNunUJBJwbb0FFKBYHIdr8afpYOKfLRtC01759JhJtL9AIKZ/58wQQCJn1YXDYHVYyYPgWM3Etq2LUZ4hziUX6lY6TZJlnpd8yZqP/lHX/2Hl5aApSqkoAd6sVv9ZL7aLyX7EQ764Ud2dDezF85dOWzMltRf2sFre4ji/H4ulr/QnyRgX7/uoKofztfKArWwt4fWjjdeJq9JvKmlk4RSOpML8KUs1bwwraDwOwFNTtDQdmVi8UAQUrg31Wr4FD06CH27H0t5i5ifEwQwwZXl+kHxIS96mmeoAWyG/aSNmqIkv4k0gQlvfh5BBNKNgKTMFfD0+/na8wA7OT3p+4j9BcZiRL0nHP+enu/15WnMpRGBefM+NohpgNcO387O8yMp5reS6YIqk4YiNOOYNF2hVUtmKxMOVs7nG7hL6wRQSIYo7I+7lrojGzoUK+RTdPjAgYO6JcNT0JdryAJzEK3ozvEQNQo9QK8z3uxoSsk3IbzAXqf7ohiNfMF+H2evuSO9Oci4PIEA7NqgoecLE6eH+/vzsXKfSSC5I57tJXoPsEmB0ytj6wCoa46Ikx3IiHeOMTwLWgahIoNBbL1CXSdqMq+r5xflEyXCsTkKEogL2Jv2HFhiwauzkwmPRzG5hMlrWxQ7OmREnV0pw52xYuyh1F2HnMvjhf9jckC9qeEkPDFrR5e+szROikB0HH9BIiOmkyQORPdBgr0/A51ldDn/cyqJ8b5mpR3sWcxQU9T4orS9sJ4BebQCuaniU72a0UPwXbeBSfipvaH/mV0g4wdXvVgWaeB05/+FtuGVjJ24Ym12rsd9RGg8sy4s6jRQ2D/j/aOMzOXEam56IerUNA6AD6l5nG2FOmZf10amnWGjNdRoS6zPfnYNON2GT6jxsfMft+TOiCmA1c+oXlS2S+2GU+I4yicF5FaPaq6JAAV/eEsr4WnAhuurJC67Y2jL7SQHqbWFqTYnKD4Mvb4zPGjYxZVxyqzmEgBQ+lA648Av5sH6JZGXskwQQmjbuAIO4nn/lQATL2ppAcIJH+g37ZuC33d3D/ZAUXE8bYpQMGI8ZsL0Wabg4uOa3/eNxlQmvlVyiRH0uG+jKm/6UUkJayOcnINmjdibdvJiq8gJUMq4FeThWJjt/mRixKvfPz5lcWAhUVSkkBpwLw0CAs7119LeZ3nA7i3JkApvdYuSJcLSvzB1/GT6uVqhxz5WspM43S+lqjQloUBQd8hmH57789zqxiXG2PT3W6h1hZ2Nzx/7GzO6ATI5zST7i3mqQuiYHtdDtWKBwe0kT9xGQmM2WZnhyGko80HrkT9h7TPWESKuDTEaVGG6RTDujuMRAd1U9Zx3N4/sh8lvkUkzJOSHps82q/Tp7xYr68nxgQl5aKZYrM7uoGW7VMamEw3YAmjA0NQoux4LWE+ZWUh6/FWrXDlOjGAHlKLLhgR9zzUJFeuuxF3WLau/pRgRMuueX/KPkcYjnx62AI7wZUEVC1hGGdHfOFiEfpJ3VmK98a2oX5zlxFWaR374at8dYQ9BMCdl0LmE1zT4fwMLPVjQd6fVFatFPAxKJ6KA5d+E4ROdnPnIsHzcFvk7IRgVPUIUZ7/Krpu9A6avDAV9G1SWjMJ/5+Fg8xwcyk7PMNZS2IzZO82V6HHuTlyysy8owcQqAdC+B56NwAjyggX2I5V3p8Gl54MYrSCSv2v8Hptl6BSmTX7KL1yPiA8PARu+Yfjk4xnnimmckFdt5PS/ZCHgsAlN/Pr9shRlgpBeI9177h4Z2SaF0bSsWBLCkDQ8eMLF8bscakhfuDr87pHoSKKsjL0D2ElM1B3/KF2YyX96hzspNWcW5ChRa0hL8O3xiXR1oorap/DyWkXlQH76jz04tTuWPvRS6c8j6YXtWGxfeZ++TP+qFUrNPKfC0MdA3omA2utrBoHuNllvtAa3rbwogjt63b0M0PteIXBLZu+6MJQKTWpHP56/imAKUMlllnapm/R2cWJJ50Ughrzn4JBmLHPjQKm25MXg7Nq4psM/rDwlZMDlabIok6IAoQqLdPjZu5OGUO4JWlp2OwF4Qi8rrqXZ+uMhyYGH5hKqXVsO2BBXj8IuuogcK8is15UJe5HmVAa45CaGs5MXxsSQkKJeNySEa0Tj8qXsZeZJdpwyKGtCRI3RiGHOpN73b3DVbQUpIcMfdBD57clUHlkA15NJDxerDFSyfRtfmFDOhd3c223zEB5tjQcLEeWK24uOPJw/s+8vIfLDscgIqj1ZheEKokMAhHncggZG7gXGYZfzv2mJS33+/iEu87MFw90ucPGqSlNSMGKhmkOJSOUtF/yOWikD6pP/oD9WDL5mGjDK7E3CfQgsSJjmpcZ55qbu9N0IGcDEee4FKKR197qgxC9+4TWfKlQKoc+gms+U1LVDu0MYBLQiR2eRpDODDPg9ZHzeSAfuZ4HefuDApqPIwvsyQq3Z3QHhtYpdePvdvktE8AkPCa7jUzyzLnR8eOsDkBZ8zFBlTxZri4BMb9kmZO33dgNJtGolp92RlXuZ10vpR+J3J7w/rkmR0pbiDpj+NObcucY77btJEe1r53V6iWIiQW/KRVOZ53t7Up3nbbGNOIHeMc9klUBcWvHgZPidom8CHive2W9xJkCy3ojXhmMroUBeQDdtXtDIjqApOboH9eBTLvVUK0aSBHqTt4APC8Kfz/4ibQkwLYgfbWaY30iCahKPXLF8qwjYMpz1kp3qwtDiZ6EMY4KW7NSb9OIyTzkY2Kwf2iQ/5+DMmKJV9e9bQt5kO//tK0nFA33HrgdcZ6Lyy7BD2Wirj70XATh3FzuPfb7C0mJiLqpNhY7RXkT36pIN5hpWkdiYflNIppPbp6iDaL6BQkzCPpMYnnJ4+93rv+mVhJaAFaRdrD7EjN9Dl7ewYw+05rJDPM3Eku6cYNX7hduwcgEMjXvgmRFt/ICNOYcBgW8z2n4DOp2dzB9mKTVwZXiuwvt1RbYr8k6Ce34KAM0szQFlH4e4KkiQm3bfPEN432ptl6rEQ7ahauskVygoHlauc9wT8OTku7aDPbIyLmqKcsjns20MVGy+CbFh52GUGMLw8mNBX6v6aiNG/IYmyhGrgxTpJmFYfZcWkq1kQNObYHWxoIFkTOo1REJsFV3ea15KCToNLr9Okles0xGTuQwyaBh5ulh92oqRa7wY4Oof9hncl7pDY1I/ncPSj/fcJSAhUueuu7YUKrJ1iuQlLYnRrgb0VUraYyIVDxv9lpp6sHjz+Vah9UQPKYlrMMoA9Tt1heGqVtQVTpmoiq4dGfYCLZo84J4fdLYNAcbMLsIVQhiE3BBr+IF/71Om4Uhqzx3nKpZoh9aKpDenxu/GKENgwBNUhSSE8pakzsm0II9s/X0a/RO3ACh2SxuRQE/JAhke9kjEcrEfmfTROcgk8Fc/eLMNVDJDFMQ3MhKvyoMxoVBrE6jzghrj/5ti4DbNV0apyjZ0vXCyMJgK+ptYXf2GeVKkzr2rXWjP/CUiXbgp8rghraTR/yueKPXmVx6bVOdZpAvWQp4FeF/DED7fB9jGejWalBOXNg1kENIbWLgzvZ/scCLYElJpKeR1c51qVwlkr1O3GuwfTnLm/Le3vzbphGyyU30wgwTM8FlrCXITiT2h/m1cz01PdKmJ2vDqCFAtWotT5ltUSs4VmRhXm0a944M9bSDCCapMQQ/Z6qMAodWBSaaq2SGhh7ep/6y8IBLuzuSd+u/+rl/8Wsi8G2obNfXKcJIbg7/Q52EVpRG6fit+sQeHkEnsmH0tFIRwvwPuMELP9tQmF6LdQe9XlTgquwHOslTCMuY4JWa0imuQmlFPgGUdvhfCTB0DwtRZgyyOulWa6jHPyOFBdbiwrSvImXeKxfsJ+t3If0Z3L++c9NaMh77dEwoIKXkf0igi7JhAdVoNR6NZp7UUJonhp1wwOs/iDR+fQjLvpPWTcEPPFO2vQP/FD6zuqxbe/9d0QtuGi+wfRE3awdkB4uSq2yeB9gJVhhLpcGOV6fCKe3wsu+t5YaL5p0ixtnRmEUfWu36r8eku3o0djc6ZJewnHoxJ8WWxydnNVLZyxiXNoh0CW7zBZPALzla86K7jZIcfDcy7F4IZmtHAPm2y2dwCg6/T0nkbVydJb+zX8HGL6pbGWo2IsdxUYF2zThuWRgwDUQpKUwAswHeMk+dBqBqbBAs/Hs9EIvMmRvkKJn+PT0m4kWMnufma1UK/8yxOAkqehaO/UvJ2MH89trbW60k2Ggn1JDKfP52d2cRzqnzKeF8uru3qCJ+dvqfT7IU1Q/LPpo+arDpUsbHXfyHxOpQQSv2Vuh7g5tiKQ5G8sUCCnXOlb3aM9EDtDFHTfqPLtmqEXkmGED5O9brBHD+DVHfrvS6KpBaBtJ4gK+1r7hRWeM4yCmg+h6P9sV2AwPdiPFwSNJLYB2d1WNSX8SkUFEu1x8AlG94Cz5y4WvOuVFRLpnNro5Y7tpoIGJok/6yCyDlf1ErqYTbGX6TV1BLi4zH923cVucug9lHPgsBN6IuS8m6+IKWnem9EYi93WeR9BwzK3Icu07jKEPFohD0Kt91RFPEGGKz0t92XaWoUciVrixTIeoUJvo8qFvWjxjTXJrHSnwNIqjfRzX+3upnPBUkl3ccsYP4/75kuatAMPZ0tj2I86BvxWeMPkDuco9scVznc5Df+j2CGUfu5ltgfP1pAOnY5Y8vgun8bvWGiwCg8YTSHLRa8AIwvUmxauvbB60MxSpmFh+5Ji8Rbfa9uErSki22jSAqduGWFgqqa4C/0r8V8FOrQl627A6gCA63wy1Lnhk9icp8dJ7/cMUFjFEdy75WRbOX2NFxccmIdKrrO4MlRsrHe+VwZcYdUcw9p2VazxEtNZS8vEqoB7kiL85TNmwJ5Dp6ktEcgg0YJmxlmr+F9sJ9WuvShopCzikq+b/9LVq0ed3e0s9C1E+74bv+yEEWXN8JkbzBYt67QUAudTnOI/LWxvO/abED2Ns/YYqZ6SQSwnDou9LUb/xNMd4Bva2/Sj2IsJIWk1Htt4z38GQDITCQO2kyZR0mpNlpqoWowcq11QN5zfPQZn0UtZAg+nl5eiCLZ5jhbczpaebsUX6eYCkUd3zGxhFtbZxuzoxUd90jLAHFCA0CXCjVnjUX1tCgNUgjdI1l2/qy7/x2essZbdkzheXQ8Ig+HzivclRrwcpcS69FW5VcYr77C50LN1EVklKMTgqeGnmpnwVMFF/fZHbtSvjOdfs1IDpaICh6O7/wHtJvrFDvHyTSVcxMMYr/T3eHQS0QGINd2UT2k9RPo68bF/XkGjtA/mz3zUXKUdpb/nBPPcX21iPn+tIkxxLOcT9ln1t7b/C0ZS+c/RE8bKgDFQFLLfYU04+uhHUtYPw5eR80y9HBV5xCtSXtp1b53WSvChYgjcLFuOqyQGcMf4Krx5EtwPDGT70TpKHyBHnqgbqWnAaLpliGGclNvrz7ukeq46V9/EN8PSYoBhcBFmdGWEpARocdwKTcAAXAwgEV4/ZCOduE4uJ32Xpt31SL03MgGvrUSKoezjBrdAIXu2Tgbs/MRYzGlqp580hEEFHPYnOq6bv+PLUGsf6OAMdpPUYWOloLegpsjhy9JTbE4rdTZSYCCBq7AdJ+qGjTyPO+FTO3Rl+ElqYZkSzI201I9ZkydgzTbUkmkNCIGNtQQaaFwV91g4J+d82rkC30ddMeEGQsOI1CeTvF5ByZNwo85KAfynf/ZgEyUlWrilOfktGR2HGQ7X2huXMzBPdjkSXNyVbdm5g0xs4NelpoDtmH6NWZ1LSRu3EXQLJpjdj42FaPhoWyyIkPSdFY3JIiyTkgMNddiVghZg4u8IsUC4kmRl11AzOyuiSZTgEfiDxplUWzyKmw6IIkvD2uJ0XMZ7hFG04aipWGikEYzA/EcM3O3f1dTjIjShAlPOBCyjkL/kWmRR60cNGCMeAh6oFQ5fy9vSsMtiOupAhbA7GHLB8CIAwqi49s7yL45lCvQTsV8jukASXisWmyzwVDu+J6RKFfrPsz8ew2WQF7g3OwW8PpkKXcNIgqygEoz2fervDrOAy6yPneiEnnYWlZYfBoVRcEsrHmhQ9rqW5gz24AL2EqKengXGixyaJ8izhnMKAGtorOf+aZqHkseybbFMG1zu3aUhDk8NsFNKXTid1PJls2x8Y3VXFKMDFKYM1VvDDV+ZfHf4odfD40CEwzoLNseYlEPU55zAEmRYr05nLC+Bl0nEJHc+G6jbYdONL50rYYV0dhUTqvuFuaeMmjWYvvGUoCe1GzKNCqi6NDTgqqAFf4iKKGhxc8nbhk/KixgjrGJtrjBagExqtwCeR23k/nMButCuaBYaJ8P21A5RKjHXsviKYt2N+IdkEMdbgdyhGSJFat2rudJISJiFgBXSTkki4/pj++klmasscJorNdWGVqhCET0kUxBQUpgX4yz8Mm73G1oE0pPpm6KkgF6nS/ys8Cdj2o6iWRb52qJVBW7J0ys4AbK2LOsL+fTuQNBvtyQw+dUNNAKd1D4pP26C3ODjeCXvXaHQaFC3CgBGfViEI9PmmcHl1iNMHNPsB061s8A6aMtXfR4c7haJlmj5fDKlIFPvDGo2Nqh4PR1YGpcf7J5obtUzbYumfiPXTkRAeGr8Cupvn6NM/A5wiczb97Os39aP2q85pOl/QfYSjwhPLJeg4avqIcYOm7FSz1wAa0mUv1Kb9ubNv+PEUcGL1aZFaFjBGO26Py2L11DhsVb7vexwFUOPc/k0wbW3w2rhm31WTTRTEixf4nurK29braMf2Yzx+aAM/x7ioHzTrkeD3eTeWfi1Z/iwK4TB9CPRcyDDMS+JyT4mGOfIGeH0ffF4g3GMaZaNvHwvdRxS24Eb7AR9Q9xy65QKyJ5xdHsOqooNt7W7TJcEdnKnXGTnd7dJZvr84ZaVqZXYPFmlb1Aq3Uhw4J0+QaY+drVcPtU/wZCbMBzXDUyNe3B0/3knL6djQ0GFtC+l14GeYZHb0pvX+4gCsHLHi0lBEhr9pe5hp/bxinqXxZ8VfVshBTg4gnGMHNAmPRoVgDG9ZBEHWkZMbEzJ6mclkV7npU2lrtIXAhZRlJ5Cmg+g9rZ7Y67rAM4rmCa8/CyMGAJ0N0qmvugjipv9iZk9ti2dhCcag7rmSBtMUdqH+KTFx+mVNAT2gSeHxqRIzeI2EBRiutlk+7hfeLx8Of50takAoG3GJkNU0CUp90W6LTRD+bDn2mDQceg1iRNWE3xqyQZfTowasT6QV2nyoWYR4optUCNFu9nPpi6eboYS6leyT7S2ix+0r6EFQIVUntwH17Ywcj3QY6RnpHwhKatP82zNW9HQTG8SDpGiDx3ChVv+54HSZcVfRlvOcNC+AF9mStfiDLPOzDdNpR0DYXeB5g6FUlV/h6U4BhFISx/NIq6O3AuGcROlB1j/dhBuVRiXgTPGuhSdbuTihTQezrkJSH8CIhZDObzJLaz4vc7FDqthsFrnUEyFPTLM33IzMQ5KSO6VZubU9VMuov7a6wJxn1z69Uq4+Yt8vrNUF7Q5arTJI3SrCp2ZnRZ6kpYgUISMHvbth2NnjRV5HyaBkNlEDj83zmFQbC3eMFoXPFHGueDyJ+lHAeGwlSZJoR0zLN0zSCXK/9f6fj5kt9yYy3HSZdickShFCSfUZ6JOygxJVNbGY/3SQsGzSAMPATSYSrlJADYwYvziY/ZleWuKw5vLiNZ3LWA4SUCeXl3If+SSu2zdUZ9kCElH5dI8fwEfnW5yNLNmkPvsbbDp676SC6eYx4/xTM+/wNXdgPEwBmoQ6ThJuurDUnMWDhX2gAJ+3EEiJU0sOf+JGwUVPka2S0CAFmRiExwB0N6iEDvZTo9kzIkPL/yTzgJbLXDoimfqwdYi2zczHHa+K578Ui+L6HKq9nBOyPBkC51BVlT+eyT9jOFqVOjtrzdFnBBuM7Pwujf3jfB5Ypk7ElF6QNYW/C/U6xscFEZvqZUbL1oou1xyEFsrzP6ZbGa63hgJihNS/qOLCNHXsknUyj3dVpN0wwtHnsbOJle4oCwbwJwxCUXZe1pMZUlmR/a+Wt5RR38pHb9rDBxUE2BQLBu/wAKYdPkZBrkCHvtSBjjvcfcgtKI3Gcgpap5wYnDP06y8kUs2TcpaG1oACPyDB0VU1Zr7KFrNubC6h40iIayFvMKJiH5nItI9YRUn64aE984xm4YYE1IAPFUa3U1tk63nFqBvuPfhy1NoLFDCXUoJPCZfQ/kNYJ5J4KGjd1+nOux4Lm6cLYm6P9c/6qC1I+WuZKScc2v9JrYvTeAEuvUOVp6a+MgV/h5HPQkMpMAi+W/Bh3l/3Azu+ESihWkZzbi9Gho4qK/8798qt3OCvRzAWx7gU8tnClRNmheC9BKZYXt0Ntc5sxrcYSjX0Lefk6Bhg5ywHGK+NUV6pjho8uGiRfewnfhuFc5bZQCLtXbs9gr0ns18dIiqNjYua0qf7tiLIWl4DOyYpLD+sTOJ85nGLf39I2aKpunmSFJM06DWLoKOmRwYz+LM7BBH5PKrDWvxpzwQaCM/HE62LTNnDAw+OM4Jh6PjMPK0T01tluuSFBAj/v5KoPhn86YwUiBZrrgdSWCI0yEEwdtEuVGJOABnafFJsnHQ7tTBCmGer6H9Xq4v6R+I1EZwXLcNY8cdL9GIiPcE3NgTtyHbwtoOZF6k+T3ccWZ4qufvVw3+pkzVuu/4Tmp68q0tfcF+VI365KgrRoe/xDQeHRdYOKBS8Lbngo0TK0uasEllfyvpqozPDuv7jXYwdlsyIR1mXZGW1JLwHEnM03iEkHBCWuB8XjLJZuei6+CRLQs144LbGLPJ3koakemr7WXH/5gYoqUA7CYMMPM0iXriK1NctWWcQDar9sEccJwvTc5LoI8YEVGJ2MYm/FkeSCOemeG56xy8rojg2h1xhxVFnSMVPbjQWqKimQfBegKDLpEV+nsqPxHrXVialx0ZGDuMACBjKIr58Enu8VMc36eF3x1Pt2zzNc9YHoGNJ8W7cL5Xa1jU0HwrUJpIBzueh4DOFkkfI/7Td5/uIFY1iT4wwbc9sS+HyYCF5WGw+QyCqJ5z4ZUX3tWGdysE5VwzHFwY56Uk7O1jeEENvz18Pn+jrN/Cn8VUd3eqlhZq6m1odSYyWXavdhnAkq8wneMTyZhuRE2/UeDpAV9FUnkuzY/bjQ47rhtpgZdCUSrZn2erXaxWHTgAbFqFBUXrE2EKzGSqS7LxYd8DaPpWE+vY6otexFNl/46f0eYko4gWempO8yzZtAbXJO+Mn1rI2hjM5CtpLZPpplWzIHdwv1CQ3HFvtjSzJmkKrC6APyVS0O6Nf3iP4O/fZsXUFF+BJQohdtnVGazmKsgKEgXWhUJJxgk/d3wU/VbeCZddbio8TpqwHZuT1FW4Gdn2RpAVfl9TfwSJTlEMVFo2Ltf8V8mD00dAk60r7xw0ru9jHGyhDgyhrEbjJHg0IuBVUlTqoDoab7yHR39hrjlzSSGN1mx4SrdLSdy3S+vX0IWzIq5kwtPrmRahxco1ttXi+YrkExaTgXVMqVpnmHhyGd+t0lDSKVm3gXzb7TjHyNN569gX1w01aBF3aAZq/iMW9ZCgfGE8r9AYG95ujBTsZhZbBDM2+oC0jSvL2SwBBpVbLP+5WN1n0LyEwwAnABvIVE9D238NqHsTY31GuVCwrpiDwYZNYSeluHCw5MtgLqO8LZcrxjdVNy0bXTcUz/ne/DHRY00Ph9EZ4pNnVw53/t3TORP8A4sIb7Z70mIFImHx/TnLg6+SVBhVxRBcJA8LcHxVw2xazJnOsqGS7dTQ8OMG/2sQcfWgvg+y3B4di4De3O2uAvnZCm/r24QYYnLYDMpfsO49GJ99+TTNa/0TVnPts+9IWNJM4ZjJ3xeY01y76H4vfRrhDag/S+DpRg3QyTfZYXBgcoD4xZqlJ+6yNGt+QNCDR4DotuSnE63+cFDYIrEiRQBpUCCCZyP4JRAW/p4XADXZgtEeLyfkscxzrOpMnoeyEjb8flnYgGg3YTK+nU4mhgTB09ehWKfm1iCfi/E6bMkfUYAoeDo6Tagn9AGFtr3qQKXzUAI6H5QXfyZATn0hDia9c/ToqQRRdt74BRV83IZzyUm/bo5+Q/YtdFLrFQzRkbXei22Ld7RoxFcyGSQ+0u6D/LFW8851mkEfVJRK27XCll2rG2Ppv8FloiVuWM8XpbwE77LHoLxoPxi2/wOpc1uAlSW+DG+rnBSyx1dsNwzcCEosEco4/pLhbZRvi+EZJkx+IQpcpv8Cy2IzOHCL919FQzB/w9YRoUACH1wmvUQnPQKjliBsrLeOcWHR3ZSSNNS39ZcHdwR7TNw2KGEnEPcaqEGe8qcti4eDgnuUYugdXnEPY6gy2O40uuPa3vDeNmlVrUVz7RiXLoKgFm3ohJI3OrX5nfvoAfvettKwsNAtiFjSts78CLU1D+smXjmVWG8lZGRR8+P19iXo8xIA2/zpesyJZzyWLqSUQToPC3KliMiBctAulq0avqFx6zG5B4ayOjefCcJolxEV3tCUR0kIahID8egEptgKJ2Wd1tigQsMgAWaxHUrbey52VswwHOP6uGVAqse0vdnIZ8rV9b8/ZB35xElUhJP1aOXcPSxJurhudaFZZenE3LuSspmK8F16CnCJErtKmpFpXp7W5sqQM6YUjLX5LYiMaKKHE/2l0OsLrFLrmOfonNteADSyocUupQFUqGTDux5HywJeO9whleTCpTcfVK8/cTRA7fLrNt8o5IA2kc19oKPQe+/CcxgCeMXexpFuKup3tfAxvKiVkIpQOnyc6t55KiYLk9ecHoBNDKfhiUs6w3C2MJOzvAbc7GGGQRRp7VG/CVQzlzsUFgIfk1D9mZl3jyH9PWi4mVvOpxyGnolFbh7AM46tSW5IupxDLLxsB+e83pMwrbZTV8wXuBmy5J56vN/CUg1ymgMPMiUp2pOqf+4a8jIV8uIVFxbbPaCuBYprKptIYpJXBMPXP2iB1BKlMWK6HXL/ZS1Ez+/7ig0hooYWHmMQJ+G45iw7LNhHD+5eWK0tzMHy8Did1WlEBDTmucx76lltEAq3gEQ4RPFJsVUSBDselz8u1ga4LO9vBVIFlNGq37XzPcT+oYAWChi3Y7rF6xLGNoTvG85XPO6qGSyiq5zywZoBAbfHqdcZ/eO8exhqIqXtvdazLGQ1g1kTFYDVVJspKRZ5RWkrwigwRDclNdn70iJ/P7pnhzq2Z7Z/pLrluSzqjeR975npM6EqK2WhXmW2c66sQU1Zah9DROr9uD/1BoNhVwN8lJ802g1Ybqe8PHslhYpUK3YTNDTKyXEFCWWiY9kXoxuXKnwA2IwdCdbrUInzm5JVGWyGoLW2vnRNv8gF0T7LSMgipLV/41P7kCKs9Iwl8OpgsayU8iD3xFUT3AGgdsTRU2vHi47ubivR2XW/BG3jTPS3xI/iY3W6SZ54IyTOdLYEYLvgoNGOYBMvn+1C0+RjnGuNi8ekEVqBGbrTp15RZsz2klD3mgjcsNuRZ9IDuIYOz5/Pr3t+ZzRCgWAQKQLhMBpcXkzjaeiqAxkCKLiA7XHDxbgP8PEGyjDBsuwfFv0JOVUqt/YF8+uFE+X/9v0d2PCebswY3+utmzV083uvCdgDbPKHozxAtTd7iPNlo9MuaGKw3owkKP4Gh0IJlIOYpNOfTjVvv7s4qnEvsyRNE3hbS++AMtyQ62jezREXX5vPCWQfdo5ukKQQfEAfvBB1aLmseFQnQ5k+DVpGAXWdemEdJGdSzydVcqem5T/TS6yY0j35WpML9SJ1K56xSc90690pHkTQTSLZIIqEtoKeL+MPMw/cQKegkQPLj4ITsV1ZAqDHIcHPVbjdHa4zCcwGMh2XAp8JRu+PUvSGeL2x+nLGAuzmfbJcRlSNm5t2bNnz/oLn+ryfHztQbwtomqPS6WLxLKaekuiPnvT/vl5GsVcra6KDzo2Vkgg+Hipg4m3urvRjOPuv2UKvu5kPnrcvInrpSqLKY1aMILfCFYgzvAhimOtOY7HpLtpC0Xh4l8/QCY5faPFq+V52V8MEbsve+4IFV/zs75e12Up4aezEmLVnyPoFUO34gshGx46n2TlK5uB5NsbTWdzvPe66Gc1wxTc+Pb2AzP1QI7wdJ4prguSotipyBuClP43px8XgGSQ4rCxbK1p0sRrpDvDyx3p+8ao4icfK6sXqEBo6izJvBQJMaJ2QauvO7nYbjlmd0Qkt3ZODzC5hG1eE/IVmu+03Z1J071YGpEAerkesFExs9R0eRd7fqxyu8846RDqPs5epg7pnYNxv73A9shLy7ENc5zn5uNX2CmVTkR/pq1Fnyoka8iwxF2amISsisq/+r84xnOGV5sN0mN/nlZCLl/SxFi7zaJCFy7AcxEaiz8mSEHpNR6v8azTIiEm1j/CbRkoWO4b1S+0ggoJYYmRwNZe6Z6mx4z0xncNoBKmhJ/14KPPFjBYafx9qhL13CnSD/evCxG6LaQlpO59dokDF+SuhboDyEQQnhpuvdarlaHN9JZ/eMATBsgXVfSYoM2bI2KOMXKhChQnQWGaR6QfprB4pg2cXRYRpW7sR/H3CtaQvLhi+gsI6WEjev1v55oy6O9KO8S/dKYnJolEgdidgr1UN1yXYfVNpTrm1H/YDK/Sn9JSFhylSy7F9IHcNGct5gpppcJ0NOPpAXpVy0fEGRWCZ96sd0dpEPlVa9Dd4lBjksyAcpD/9FHzNEN3YsA0BqGRTY4f4MqcDD73qEonpJQliZdj8bAIqjrCN8/UcvRlAp61nf8X2u6Md8Ky9jUBkD8xaqr6UIwNAkYNzButZkKV1PPgVJl5X00eY7NseCG9SfwRWaWQXBua5a8p+ZOmXHlztkzmE3zMvydwmskMVhtKYsDAyCK7oaw6Y8MhckomLZQJLbLbfd/9fQad3vnLB0PSptjuKZ903SqMz9BzAoPUb4SOjWbz+/enjwKFdkrZdkwGRxZpsZlGor86zMak21+HXpXUGztAFYkPRoeL9PLzuZD/zF2/zbwXJt1qndB/17a1GYDZX2TWE39Ggm0WScLIPDRNb4vX6kILoiKYeEHPU9zoM020L1Puz0GjPwc2z/xi/hOzlQUv8JCTGoTijjaC2AsMGnY
Variant 2
DifficultyLevel
577
Question
A monster truck wheel has a hub with radius of 3200 millimetres and an outer rubber layer with a width of 500 millimetres.
What distance, in millimetres, would the truck cover in one full rotation of the wheel?
Worked Solution
|
|
Radius of wheel |
= 3200 + 500 |
|
= 3700 mm |
|
|
∴ Distance |
= 2 × π × r |
|
= 2×π×3700 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
type | |
measure1 | |
length1 | |
length2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/01/5var_320_500mm.svg 350 indent vpad |
length3 | |
correctAnswer | $2 \times \large \pi \normalsize\times 3700$ |
Answers
Is Correct? | Answer |
x | π×37002 |
✓ | 2×π×3700 |
x | π×74002 |
x | 2×π×7400 |
U2FsdGVkX1+kAmrhLPKpp76N3KdGtl6rncoyyFzB4hSJ2SSuydarl8V56Vu0vCp3vvYJ9q1+q4SyTgUROOZ3AHZMdjlZjgsWvwAbRo994DunmYCRQtx80GuE834fddFypvP74FSOyZVhzc6pyMVRj7uGvUc9k5aP76OSWWmZIA5EwfoJ+BqMmwdW/n7Wbr7Zxd3hox8Vp4x7FLB0OlnYHnzgXhQLsNdlQAFH2FnlAebsS6yKIdsopTBebLRXZLyVOfJEwHJDcOJ6Sg9hvYnCYT6QSUnlsYZYDHzB2VaPt4M1fwCVrLk3ITeiqhkdMQyQw9+qUOmQTO5QFeJyLQRkzgiAuJnky6jAat+UiAcXfw764hU5x79krvipoURD8upOgM/lka4fAmDHQGNURh6jtQHqs09d6C6nDpQJIOdHH0wPFPe9X8gRNzyiy8AllYcTxJ/ZQowdlBFd3Btk4UCCfE4bUxrWbtZ32g9M+dWhCUcMlKtco0VRs5AGdtG9PBsuHNvA6r9mYFAbJI0o+NJ+ge0wrrSYJamqUCgidYJclQXZsRx7gLQy00aNfQN6JivF42rJrY92SrxSBiSiSoyq4pN5ykkECH7D1tr4s2p8JJFZgWUQALoSCaSQSYjJcfEaORyoZXJL9wvPVv0KV94L1hw/CBgZTJCyI+W7PPnRUwEVeLaJcmrHRP1WUXGP58QwhBVXTpy9wD1jJSr/JyCuRtHvLA/MeCPyhe34ySF+5S6PZ3SDCg0w7fhwfyQ0rDjoY1qqoIJXdi3vH6jp2rps85zmDrkXuIBwY5hR5bcyct6BjGgE/ZTBKgvDz5lwWPKHsM9wz6pzS9e1sqWkcbrNT9d/x2rwyrMwggk40PMwGILBUOxO6PXpv4N0JkZ9pRSX7+w2E/Nr6jPCnLjTxvSlX9PNN/PWIAMJvh2WQ688NMFRp43Hw2ZTdwu8fIClnQCljZtkNUnnjI92VfQ4SavvC0c5+mwrutaFXoQijR9yz0aeW122/2Tr4iwRHVz3SBlgSDTjRbjt00GUUCGtreqFI3X7iO3K52onvRp/G7G6b41z1g5KSxiTCVHs7Ip/aQKxvNaL8kerdRN+QL5QU3slBWzCrHIir3mr+VKy57f+A+Z6s9IyZTsM5UI30TcAj9rCn2pNxTsgTlKy0SGTMT/Lh/585FA6/+3Br1KuKTXiMCpCD2D+4PlJEIX5iM3Hed6teKK1bInNlOGeIo9iKJjY3td2qn15ebPBoHQXAdbNwRVrN4/1UPFij7UOM9zTdExJ7jNYJWcJI1u8jV9qIjxDnmWnMKX340b4yBBKFwGjhIuRxQ5LsolJ2+qK4fnfDJ3r/RZKf8Toy9jEa5svHY1+ffDgJzFG6IU2QZg7VBYQZzhN71aVrprGxDCE3tavo8nuvyoeVxCxRcQ40SCD+3FQn1aXmnK6AnF0be63iY4jsUCqX4DHv05H6EWD2WBrXZKeB0pJeOUmcABmmYwulp9rRbB1mARHcEcK8Va0lxx7F7xBRKbB1Qpiffkt4uYxnjGNoBTHUPJQTDcO33muMHcaLtKtaIjCBz9R6+cBeF/UzKXp/BKQ72sFqQzowOhG8eZGgbRIsNZbscYO2RXGv4GtV8VGf6qxq7kprX/IPkYvsuHfbBNjpa7JKFM4asrvBWti8JxMtvPDVGzAPKw6wCZB7U3dhhBVSCu1IR9KoF+EAgwszXXvz07znpDBtP5s+lnUQxiil3j906ZcKqO2WPjiIHsOmrUGF8tAzIrGsjO0JkUYk7Vo64Ih3Absn0Mjkb/32hVyvrVr4QegjsmC4RYQLdDFcQrGDvf0f2QNE7gfgAZYL50We5DSgaIY46WGrWPg0itgYwrZx8P3ymvz45SX5f2sC8irU4vHTnfSxIcKJFoc3zWK97fCUbjb+ocoEijPzihqPkZH4Fd9vyZyVWPTGsdgat4PHY2PgtuLfffL8kXWBSA8HQkjJbhFaDbm/66tevZSuBax7rHlKNcN+BlvfPPR0VMDuFSDrFaP4HPKVi8jxtViIvLmRhDBUjxJI8XJvlS8/6yXEoWDGxnRVmSaWhZID4Vnw+5K9HRhDiP3xPCVlVfZW2bRGiCYDwekBQpy2zpinX3C5XjPHtN6NnGSnTeQUmiL50yDXnxp3lLbwgXiXi+71LNEne5Y7M98YFXvX1qMiHXwKUi95z6op9q/9Bc5Sbqn9Iy12U0AtzvUMrCKDqly8hZB1cnZhFwy7I4PzqH0NO8vBVbMNYXyZBhFDh7+epwL6ooxTbHvDsBsY8RBeojnJnBVdXU4ygOFik+Vc3mzUmtrTKhPlC5DEWDWlRdg12NhjmFTWaeqm69uY7sG4O4OO9TfGrCemP1mM+EJ9N+YUijloaLgaZ0NTC0x3zxpwR4PA7tDFpxi1Nl1QUCCt/lgehBW1IuTyYD6rEc8UMCe/0tJtt4GA6VGMKS6VXrPUBnDeiXquHSw9HK4KPXrB5pqs0uMdmVhh2ncKJRghupIJlvdQwVtX12FieshRk67slZfgSOqZHJmVFLMv4iSPmJ0XPI8MErL3wyQCAZoE4SOanC8FU6kr2vVXs93krDnabPOH9uwLeasK4eBZQo+vnhQCZi3UMdOS8mGEH1kknXq7wAf73/zXzMQgC8rpu4IjEGMXBHD10M0IVzA+V1bz2aayB+eMzSI9MGeKXxdA9/Z07kKGkU3EV21SxNQihzyIWCxZz4cSUsxF2z9Yunm7bTw/DHEAFpmW6z7pch6JEeTEnZlkieRiei5hBz95pMm13HZnVOfOKNDmrydrAWlSVmv+HOtj7xLeer5PVxTQpnkQhA/KuG8j2P2DRY8fJjiJgDVkBrT9lq6VJllkUh4NrCClQM8hTNX+/AnwhngxPLJRBHmUJBBCSU0SMlZhjwUoTD2Qre5ToRYmeOCrXVEbkJkhizSNGQsNF3F+kVWplAYM8M1GX9q5pcrXjB7mLsz0fmGjyvpuZMueEHEN9NGXvgPcKpMSW7YZATyPgdSEed6TDxOVFOXepavP+DuMtzRCn7bIGX4ysdu4r+nq7AhVOa1NderCxIr8/fxSnI7bDBzdkOYK1BDGVixceA5a6qyIWM2G5TtG2fO8PGWyrbdIFQx7sLM74EF0n6EIJB/+1F3qu5ZChwyKWO0v2p/pqeshSZmBB4VMifyvwBVEuI3aeY/wJAa6+21BQqC2uSIzH4g6VXWJdBE9/KvLHPAaMHZCTb7iWWxALZfCHKb87i4dzR/Ce6EmXa0/Y8jy95cWfe1OSgpDVLdVxjNxbnbXpkkvNd7Obo+0X8EHboGRDavlCl9w9w1RIwxCdXJEP9HJHodkU71bwV65yLQG1wzrA2oBKFOWLDtn7UzoXftUbIHeEzb8IXDXafWt7YFfJy2MX9V7a2rsygbFipXCl1ckLh8ti1Yzv0PYqbKkM7CTRqXIUhzHwfF8ytRcLDDuk5zyZjohvII9Opq10a5RwLjJUnK5nlkPgyUIC9bf8ILArAVuWfTQXaFLJ5EoMaK68lVC9aa7mz1dmKP8Hho1ikubxvBBY6QnmM1J7fo+2BCiEsqk76oMKv06SzxupxpegCmzKiv5gXEQMZkHBy6NS/f0Z+kGmEn2Jd50ik6R1ZVXc+O+8XTfeKS5vNRAT1YS81Ya0+sEkGCOL63BC9k78jwE0YxJ1GllZG7QaUDjBBx2I+UcEqWOCjRy/fDS3749rfTfu3s1QiVJVQqdFhXZuHWIvQAAUa139nm5dh8NBVNYCv65DasB3Vc/wpEKnfTyPDt4lmOElEC66FLJeDgwsqpfjXQKo3aihKFKA1GBh7/LR4HrJasxou+jlp4FaJExZE9CoR2cQII/n7Egf0jE5Sh7xnJuaf+xQ68+hnv3HMAUav8x8nsGh2YAD74BGjSHg4x7FyvYrEqvx5HJtXAsmNiVOYsGw/gheMaPHf6jtah5511hd3+DMkJY7dAWggPPDFalTX9bOMF+vsLcXCX/poOWuxB1+e/V3hbTUWBLaxkn2QXYb2JyM+8UlH/i2TJ+hvXQGyGnIHhzA1Nwa+L0oP+r+eRnZCk5DiWoQB4HlvBiToTrtxtepf5AVd07OaRFhM30iGlp1br9Z4FFUww/7csuc321ejwaW/3qaO2SCN6kf6ostEGFuzIRnw7QGmLC/rcad8zGzV8Nq9SxvkWLsyr6eUugJTEPs0gzUIrv0imF9m5fzWfaV9AHOXhdl2Sz9iLMJ8i5hmrrmuJZv4xPCX2gNa8AuuKxP7mfllpdABbDMl0l2mFRYllqWqIDBolhFvsTxkYmp4AZAeMpFWuRoqSuV7RxLB0vXMT8/dGL0MthKNt+eAKfbbUrrEK36LO1Fc5ZMmg6dID3JLAdRRBQboLQuHfO8BezwQ/w7H2373ppLZcxgMXc90iUYz9Ok63ehI19v7EZ6kda18jBQ+A1g6btPmbdO4TKbCKS3q5jYEQzT6Ijf8P1sJBo+SCEa0kL/KcAVp4FvWnWeYi1OfviRxRh45QzOGbCcFPin6O8L9mhfc54zOJ9NCfcfVvtfmVe7r8cSTBOfH5xhcSvNu/zFowvZcDi+yiJdOp0XhxGcdv/o4tAA/af2kiXlY1gFSEo3C3SSNXSBESQdVdhH33q+D3m1KroyjkMg1+Jt621MpXF/zbMRXjBlGBs9rvYqUmJlckUH082pBhaf3bcTtOiEUez4K8iOtHYEG1peWf7YRSEc2b35g3Hr1/piDOBwuHyPbgNtPqcq5Wsh5/wWhIrL9CYkXvt7SlDD/fA9gu6BPDu9F43t7VsntaOPNmfHGuJwyxH5qJHyi3GS40UxMd/Maj3gPN4YV/w0r7LUBzfWoxBdZCbgZBAeYqQsspcqF31bCjxZMadDFcAGxrff4U275l43Iubaws4nsP+r+uSnxJHfgJIGgTX3UYj+Sngg8akxGzvei1MmhDtLIlFVbpa2AyZEZRVPqlYbcrE+z2o2+NeY+H9DWUNtfKp7U8d9bPNNrkTUjBkBHcf5b+cyld/g7O3kBZmcR5xRS1x6m6ZMzG07CuCJavOxnItMRqItBULNCFTVdXVFKF22nMZvqhmGmed9PBnXerFBriba87NjVerq1KmADOdoNBxPj9qf8QxXNnXBJPBZRE+DiV50J+L198hivLpz/KuO2B3lL8NZVDen5dcP52LdXoMZtXGU41W30tlaRc6Iv6FU0D7ZJc8aCVdYkUbJILssUm7rKpbVw6G6HWdC8B0ATWammh0GmHqp3i/22aaWNIMIAuyZm5nFJuSltozFtxtPFaivZO8FFc/TNkrn5Q2uFneqjSrjwvG4HCbF4/TIWG+4kiqqqKZ6mvjYa8ATfOAW/oLWkEpammnfgY8Xg8zkiWG9r7E1k/jSYr0BT5ZAW5eYslJAPDJGKlVXM3hXOh+USDHfSy7Rrni1HydFWufwYmKKCyQZg5P30O2foWhdNLSIHAyWj5XMWON8uoWp3QGSa29VLhAzBkNnpeQKquShQqf0qC4jsFubwjgQLVCwAeeIX8a87PKjYDsSv5Ic8Uf4DbVA2W9ULW8rEmavNy//EXwGP3vuUJ6lWtWcwaymvt8vUzwQH4B61RhWOo5zfeJOLn0ZIfKUG+jVAxkBEhjp50n3evYf3QXkIdY5zMkEL2l2xgpbGg6pC73EhY51b1KbQPWUnawiMZyoRJEi7Xx8q9eOXE56lD+ewWeOrfu9Xj0Eg/ZBrvRqtx0Yt7Kp4akV84NGxswnf/IiLtgKAm83L/eHp4k3Y9tPmbptOtQyizNKNNH3L16HySPSW4oJZh//w1EJvfEwHi9m6Y8cdw3oxjwQx9Q3cHrhyFp52mdBVEfSMOzXyzV0sLjyn/UztlYlcAkYR/lZTwfmFwZaUJ4p2689bo6vPBrYdFyjMNK62BlapPgwsvG95hH3GdoPiYaqYGbxt0e4UhkZP0ak+8bK2AK42Og2cCyzxdBE5VBiSDcRa8pnuzLuIqxovk7hgY2s6LT9nz1d33PhOXgbjmYz6EpoXOL4MaUy8FPmL53H5anbHeKTQV3nS+771y+8+0WZpiwUZaI3u991JzMvJihEjtU2TgrFOSke9F/2t8NfgmnbCTNoAXvn9zuRe4FRbDjYS7+sNjhknMjnkIPwxoX7+5tiIg+rzSO+wmczehjWiIHNI4WMAFnqACQS9lJzLFq0BJrF58P6D8DqLxvWskkTQLCycLHoyWBLibB1x0/n5lAWjcRjCKw+jF90TU2fyiKpMVExODkeDM6V1mIbJAOIpMN5FlCdPWc5lvkUrfqXNIAbgovJQ1MC16aT37o2z33i9bLGKQ5Ym1d5ZmUlWKcdRzFgtWtn2bOpQ+4/8scXgettqxXWlEUKwc8Nyux6LplUAsVYLM27JEY5z2vql6qqLa0Tiy9E6f7nvwg6QKpv5qt11uSVVt1zQOVe0Si3DpWXH92Pml/zcPTZ4UAryb+ZqnJX/8lpEy689hrQGYfYzfPG3yNvevWiteZRLdD5bT3S5XeDNM+eq3YvDVH6t8FrnKDrV+2dY34TdOVMlbP64M0eRaysAsugEsZPFoxPbupusLJAkYuW7A3XCXSsw0AUm9T86+fh762hLCpDr1UPZGXP/Y7i/57WA+v/8SFbitR4JTcfBgAd1PsAzKDfocqQbJM8Mc5RZqGRxq09MKFqNxlt2ziCNeg2XJFgztC94wtpoZBGnvvSApRGZoS/n1eFPwKa9YJpe5xDZVDJrGygVeLnni74tFXZnuNuOsxbGW1IuVgHDuFT3FhYtFb9DAC5oLmkTF8XbioTNo7gtfR6QY0f+ovxdzKRiknafTIy6/Kxx0rwllG/WRKxNKNlI76uyfIKznsz0eVWLASAoEdParhy1kI+wWGOQsWL5dGWdaKGQ6MG+fRa4EWnrJLAp+UBLguvc6W0QjxKuwVNJCWhlLTl1k5vWtZWEOA1vkMCmtye3eO/XS0I/ewMNI/ssjwzYWIcIl+EZOQM0tNWERJu7a6pI70JqWls9M5tzlFbDV3+hz7/AOWtqXk8T6yDjPf8jEtRQfeU4a0yh5yngsv2Ncou5OoMUXPvjngcnp5J5Eiq2RyoHqu66doo07v21R+8dUZdVk4fALe3Cc2NaoXROtDfekeKBng2J/sLEo85pWQsj6T+DvRMl8O1QbkU8INKG/TdXZnm9Ir/71luIoDK3MDHZzmj381UshggHc1PeUW9DEyr8AFnyz3C685U+VDy81ecdJUpYj1sLWPIN1ZjhlPb/UgfHmAop6JorvSVYSxtQKJ1Qd0oyHX1oHOFgP8wXOKfzKU4spfEZFvvd0ELJmKZDOgYvHmbTNU0xZYfQMAONYmb75seJBJEITKyA9aWVjNPqxpyrfhOypfXKxeHrLxGeTaWTR2fEw+aQCAzJqMEdq8kj/QmJoYtHK0PGPOurreE4Xb9lXayXZKWcn2/bcGai6T3YXt+907XrypNBQU9LacMQbBVVmuqG2FyGuHwVfDFvBupSmTOrSwOkpTZqqSal6IZMKdVaWSkGRhWUk2v8rx8PGdA3eI/F37coURZIEDOjm0kBoSTHGqlPh9CO5k+dDKKQKfHjex0tLylluiXJk0dyNvoHTEulPe/vlWvKHaJwO8KcqrfuwyvXXPSulAxnkkfZMoiBKKb/3U7ZsnpnNVZCfp+ZtdcVs9OhbIrzAEqYkkywYZwu73eyoMrq9qH9Huze4RJFuhzkWU1iKbJb2QlijGHeSk+yajcW7BeIpj04CmmUtDn+8qfMEFVmN+UyphLln9sXHQIOQdzydrI49zoyN5RqFm6dFPzBw0pzANruHvU4aEgnopTm33gPfRpOmri5nzw8/1fbM/L0OsPaKUJAiOyfRIUAVnZAxA3BQt9Exn/v26utj8SkBkLp11yJCQ9EVRtL+8idYgnTukTaAcoOTuSB/JPP+mrpYr8QITb2AO80k7Fp4vnDzQmMLDi5CEXfKYAxvIdPp2FnrxS82h7yOROZnrfuiGLma9i8JaJk2dzKtIMtGobW5Ge363mxfi+E6+GN/uuUeSwFj1vnsCfHgt4n8y0h1+ZLpx47uF3ABy48rFLBT/aOh1jgVaiqoxQ9cRF+t1RgiHsHZRQy3C9Q7jAuHY00NuMHB3DdT/9FA0fhnkAJUjDc8q3AqCQ3BqUQPd0zFxtIwxtgVRFlHkFtYz6knihQHhrJKLm/ciYJUHGt3YSebcJzSJ6uqwIqmJAXD4tfEdx9Ay+BoMkLZPaklCSm44YtSIcqe16VTqd8yUFZab6VotoifpOtcrQHYYbzzHTCQZFl34bGIjG08N9wxjbZL8vk7Sg553p4X8N6sxIXisj1M6J+sWK6oSI5PpjsevVxvq3NrpDMCiOyCmTLNSFEjZv7eisfSMsuDxWYmK3Zxs4hZQSiqlM0p/Cv7WAAWQSvcyRABPkc5mjtmOUL0ZYg7WD3+ePPstCrEmYK/+FZeKp+xbEkgZNNEGew0qT/8yNBxVkLv6MJuKYOH+qgW8OzTtxyJ0jpaeG2KBC7UtdZpyzV1VpwP+uavIGbv638nOfWVfTXD4FjafGiq75oqdb+KjMtXV7HDk4FyYEC3gzwhtLhHKcaKMWd8hhl1SCYVbS7xot7DuL7kzFrXXJaQPbyYcCBMyN1SbQOgh1vDt9Zpu2iu+tnS8poz7x+z4mE+mrmZBO/JdQuVDjKmQWkSRbLEodGp3pPsOJzL7MQw441RH6SZ95WO78wPaVKHxSDfk3xuo4JSCXjUSJD1ubZYH7jMnBrX7TVhLZEwTqQJWBPdKp51pbajk7Ek26f2fE0k69hFR5aL9488JDg2BENv4FREJSAdItyEslEL3hilK1yPpr2mTAyr8cZz2u2vXqB3a5ia1n3WSy6N8XccmWBxREGku2/OOY86yA0PHAS8vO7TvoReXLh8qmqyZoeVLJ+zkF3Txlfs6dUZ/PurjtuznPYuXeRazCbc60xeLkEuCPYKMpeaQZQ6eRIb4PK7aVgZ6HRxd3rYdWVJzpu421s9T5oHBybb1KXBORsda9BwJPW5RoXrJXlQ5kWlI98V7X2pDatrQfIogWSk5X/qC+fpuFPxEL6ZFqk2DFpb/BpqmtyXN1NFRb+YqT0AC1wHR1JCVNaj3mzFlLXWIgf4OPGpsV3DvIJ2i7D7Ts5t58QRLmA9l4xN8GbGMINqxufjcPjAlYNUCJSWiPqSE3YaIJix1yoZ5+xryKizybwrxcxYCNXpMi7AK8wDhc3NB1qg5effADVcAdE9Eae+SFu7inEf0QXYoe4ExS1Mxdz1nt0sUKiREzrIA2KCAV841RHcWc/c0QBgIeByZGAL7CLwxgaFV7tWTWCZ9ao24kvl/CjKIkNq10is7y5MnK4S9OlwhZW2XMwmqegakUTMksR+CdcFGcSH6Kn2ApBg3SkghScAhpZSvT04gergZi/0VzJY9GX7jivfXoIJQH7UCzJPpGZ0Vc0dVhsiJ8bPxITF32YY0HYtlYoauzUjuA5UN7UZsmtmyzltHvhjIHRYxQoYqqff4KrWPfd5ax+DXxr0Pw6eWE2HpnG1bhO31yRNe91GIP0nkBYl+A9F5EQAcXWkZya+6oojp44mVZiCbRjRlHX3IweFETdnk2OdNfllF+mIUz4uL9EMxs3b/LLUnLv3arC9ky3cBqVCIh/wncrmyqMIZPD7k1ZSlUzCk+PEpY6nDmig6byV+DQOLC68wVAcJtozZVItGyAB+hV2ioedLCkVjqmrx98VEVEk6dsZY0x2eX5NJkRRJzz19eV416NUHeIosGVe4qm+MCQ8RH2VyV7X2sLQ3RNVmLLv/CfeC9VPiQwi5VAUQyz176XJxa9+wDa0BY8XpVBmMPXmowuvhun+x0zo5MmMZktkhtkK5BmjIMb8TU0pfagVmSuZWJDeApIpj649X1dBFpOhnHszw3UavPl2EHj9SxZ01B987uOmyH+HSSqSuIhtK1l9zg8LhIBQfiat0RKsAoxW6esJAZzRfBtMOm/fBaMktDvlMKL5D9uYB6BrCnMHqq0q2D0odBve6ZsDs2MNc+tb2ddu2T0GtqqRzowkJTReVqfPlcMJ7L65gzfgSEbo3hLivBalFF8L4RZgf/MFhcQLLGPRbRKg1IY0RsbT/D19Q14mXEphFFOK5fo1QPSBxO96TR8nqHlbvIqegTc2z+sdYIPQtSieetRz8bAI8IfbcVVuP4/Y+ffjgRNPyf8Lx62jpdqF3cFpiyKqKdza+JLO3FZovTuvVtMNoxYJn5cFThn+f6YiIT4qlGc4iIjzsn+/4DI0Yey9Cww41Wdh4LEGteVCkFfy2Nq+Zi11iiaZSREsl931bE/WP6xIs8EC/iZ3ErXjmgWRazrHIoMdVFkfIWAgehl7ks2ca9K9fnANZ/+wrBSPojREQzw5DSQZh+O0JAhG/p4n79bgfHxVPDDaobghL5pR//ZVX4AN7V5f54VKEbPnhwdfj+SzQkjTch9prOEePhNItdI6oTGPwzCVwfjyKVQHoOx6RSabCr3bGyV19CtQPWFOiNplnGPRWZ1cvhlpFq1uGENK4lKQxRd7szhHrVoPieYnM2dRZ+v+FTUE8sL21s/0JXas6zyuSsJE4q4qg2KPBG/ppkTUgltUGK3Et3ejVr0DwR3hA79sQtO49IkMJ+7uU9DvNPWm6JW7QtUrz7/iMeCqUuM9oiPMrMuKhyGNCFrkDo8+u0REHDloo+N0O4ETrDqFkzNPsw5uRF1DlPQ6F/oC6Xf5bMHwQUViYMrWJbhnydkdF2VEdMMJ/NxbYBt/m8ydT53aEAErbK3WCMkU/GDknzG2FHx7r/SPeWrBxn8+adFMaaVcw36kml02ZBSb9rQqS4qHUP5tH9n9oHKv5Due2ifyPw8Kt2XM2dE8624l1vIUyZp3Denfyx6EyDYSzjOUcUGlufZGOpQF++BppfZCEUOj5Dbm2oh5qjhi9RYRjcBwpzewHvrU6RhALJEWI+CTsPvxFbsmI2vZzTAfhAmYMg023FLPfFsCGaW1TSVBP4PMvImbnzifcEo5Na4QBZl6VR8VBGkBCNG/DaG9T2ny0n0ZYkTPuL0d4U8hxabiIJsdfj/f6D6lBXOKe7H0hCBJdiWnw2g2YniDBzruxb6QqnXmQ7izy1yp7velO+KiKj0qj6VwsBPl+aQjqX96oRl17qu3Q0N1Arg8sP6hVmxuUKbIfAUoBL+zOqJGahv/MwWXeElrzCTinp3H0ulC/TlY2QEHnF9pk9YiS4prR4JrE7y6KaZ9UMGCscB3CxxxJvk/XK+MDRoWoOG2wf2oFfZww1Iexh0WmwlKSjSp+G0z2PR3IjP2ayIOCCtLmg3frNiqpiA+nt/hV7BkjdsFguyPs6whHXqs+qsQuWwXvUCti5PV7YMIxbb4cVw0H1Ss8MeKlPt6rfVxm0QQsSdeTsnljJPdnLO1y8ka+PpFY2hZSAdRG7DKqx1FsOKeWp4IAzxI+LHsJYalKMoZNCjrXJHiAfDRfg7Xji0WbGHJ8SSDmS3kpb7jbqfBCgsBFKvxyIio4fpOIXFtaPt9WpS3BHGl9foYgri1NJbLmp2pMQX3WF8W+O1/4KjgZ2vWINKfr9xFa+ht4cVwJWSKG7NxjplfSHOPIt13C9BqKGkillMs9dEOeHDyIboOB/ZNUBzOQE1v8Tz7CXcfj9aJ8/EfjFpvRzwR/SqzrDsD5J/AOf3aD/iiYxaXW3DghQZszlXqlHZrKo10vUDvz8QBDq+QuPCzjMTR0JGm3f3aALkB9sSZ+gA82MMhrtDjOrRulvCxvteDedVG1Yy8eZJ1/LSIYYn8z0q9ofCa/FapTuy9BGCBbgqoSDDbCFAhZ5tqJjeEwmQNwXC+MmR9lnbRGkEMLwhxGIPFnphEuPt7BVvdFE71Y8KqthHR3ZI+PgULU+oSvsbvqOt8y67iWQrttkFq57JU1mASdwOQTb98vPH9z0EZe+8alXKzqfba0E3R4yMWrWlsDwglkBKCNfYJuy/GC8xJyKSOLM7coBLKQPIpgqWBalXGQDfjZ2yAfj1rRaTAOiBtFXb6B165zkUWE+3FridRgMkUBpcEQPSw7ytvc52De0z48zXsa9EsU2sbJ+xKT1cjpKJqJG6GWY28Bog5PQz+1+4KTqtqOaDf5R0acTIQsUnXSijLQdQ414qVRXWE41aO91J9pPdul43GEdX3U177U28ZBvTi9EaAb3IQhkGQas1P/rsWYaXMAqGlI4lRUSifLyK/Es1yKebA5Ha3QArLzrPe3bCsNiXNEY6Y6tLF/lzUWUEWYG9WkkzBUEvLDEwIGQIYan50lvotTIFzu4mFt1Rr7t2ELkEKxFwKSX0nBu+XtaQE7aNpxxS7nfOfTOZRWu5SzssCEc6suWpijhQEkted9kTlTgQdLwDoH9Lnw7ztDJSzc6Eg2sapEiu1GV8OOwmU/MaWHV8y7w+eY2tN3hG1S0t+g1BwImvdbvnKOVetlafh3LpSot/q06oGEYKKSDxJhfPiRXiR5GVTZiBvqQk+/IVEgJf0ocZcEWVuTNrbC3bxgbUo+CJeQ/GzKBOAkBxWLEyJa28K/kpuhkc/CQScs+ZcwvyZz2jWpt5N+3amCko0i7O9qvJKAqZTc6ynnt63VrUUPtotH+XgSiYOhLmmsI84gNFHa2GLDJ8//F5e2XHQd4kD/Ml7NTjZGbIJCHR+xKD8QdHNLYjhAEspEMxVSnuTt5MCV4ZJwNmq6+6a4KnKVgF2Ji4t7V/gNTEFtAZOMDUP4r+g1inUBLlQI2WupRWXF6Sn4X8M25kfLg+kAzMQL6AyEFtOa2/mS474i4tXxlfv+WuOwf+UXMpxKSGzb69tnilylGsjq6xOBsqs+7GbCJprIx9SHmLQ20gXo71BBFYGg9faXlWh9gRknLJKVvzbSA68+sb4AxIhy/r56PkZLqesfr1wYco5iEKzx7RfgZpobb/SGiHOKW6fh2pd7FOAKH7CQU97ew/Q1CQKiY5+E6+JSIwx7uXtmhCDCIuoCmsFrEdJQoNr52HANd5IglYUUtZIDEwXPSX1IyiFhgcAwGmy8CcpJFeV2FsOpW+PajJ6jtlzRx/agwQzay6pkmhSDuXwcFmaQKT6UkGVTpliPfyLS+N0liGHOQxQ2qJgisDknw32Fi7crS1JAJ0XCmyqctXiJymrUFLtDHkGhLLOWwYqDfXBpOfUFqZ2l37dWbbZz9tm3FJZW/jt9cfWCKm1czhVBZYPSEcJzIfmD71fHMJVQih/7Qd3/EiIRIut+1PYPBdR4dJ6HOlwDtXyHW8MLcg+p+THyfvxXrsYIn2jTDv3qaimQTxmoIY/UraglZ4hJca2w4ahRinVAmiXfcZCwLtcjVOKZC9hceEhX4nLnweSXloqpaZAWWZMyoIKCpwY46LbdWcjg/tWwVZ/Mz79X0UHknlvCRVUVjm3/54n8kjJ7K6cLE0Fn6TMUsscXbwPZVd9hMQO/NKyYtxQfaJmvNCkchZTUDWf9qOy+vi3228RwkLrPVLl0dJuMCzJH81/TQ0Qi3j6hr+6pUv1Jy5n4HkAIXD+/OldzNZmcKEF7TiDp1GZieZL9JLfhzoQEiaK93X96lfv4YTZdTo7T2gbL13f4VxQlO8ei8sMsGx79PM4Y3+AdoENs3KjpboAYHEVFCCLlSpNhxknHwEvNzUW7mRHGPPs1FBei36ZO61G4eV+erV4SjMmzogLIVigtpYhdFNJ3M0ct2SQa0ZlW6gpTd3vqgfSPZAkUupgahwkEdwTUWn+C8IF80bX5EkZsZMyffXnWQtGdOTVdF8nrIN/gpXncVPYymjhd2AQQ+sh4bk1chzFQE8uT4JW+/qukexGZT6j/zQw1CQGE6HncbqRzGjvJZnLVgJFFzgUtSModpHw9DjBuvvMukftqCg/mdIFQKvYqMYN3JQYCGlAq1ys7O1cdIt5c/Yjyk67j2oVDODLeeO+iToppp5IqBbcjQUV9mLnmhA8HO/xDyGPDFs7VFUDZIZebx+0JsumXxFOmrcP7a8WqQBOjX0HC50+KlUeo0oC8+D85IelyWoK8bSbm+rue6DhXLsgvFqecNGhVnW96e/TYKeuzBxZmchDcfxWhc/t6S0233JG9wd8OLdrkVNkdwA9YXyzXmJ97d4sCRANvso0Weo0ctUUhLqtdHTUFX1obkNA697hG8i0RcmebmVVhSUKfvZXmoVDzR0MqPrshG/pw1YyPCs4ALgoy5TxA4BoHmExcPLXYyVWW+DbV1pU8NW1Shg0JaGjWZN4/ipI2QDGauMuQyr2MuDnueKl+JgbTksIoVWf7NpFTnwVACXzXxsybdAMyiPL+zPBQijW6udg+QXoCwHW
Variant 3
DifficultyLevel
577
Question
A truck tyre has a hub with radius of 380 millimetres and an outer rubber layer with a width of 140 millimetres.
What distance, in millimetres, would the truck cover in one full rotation of the wheel?
Worked Solution
|
|
Radius of wheel |
= 380 + 140 |
|
= 520 mm |
|
|
∴ Distance |
= 2 × π × r |
|
= 2×π×520 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
type | |
measure1 | |
length1 | |
length2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/01/5var_320_140mm.svg 350 indent vpad |
length3 | |
correctAnswer | $2 \times \large \pi \normalsize\times 520$ |
Answers
Is Correct? | Answer |
x | π×1402 |
x | π×5202 |
x | 2×π×140 |
✓ | 2×π×520 |
U2FsdGVkX19zKlDTg7hGPHqfHv/Luhx7Jr3+536jOpKoGZvTA2rBaLuRpYuZ0OI8TkodTlOKS/m1QJbAoJc1DLw1HeyRGJhwBivZxiyC6Rvd338DVEPOYRUacj0pHO1bxpRBWVD+mDsYII+YyAfmqpr0qSacjx/irvRkqLRnd+MzDAusfeKsIKYw6wl28CRi72cdmtV15t5FMJRHEPuFu5FGpyVDHyg94zoNL47zA0bwGGOm4GmXX/aBBqwCqf+V228HShGH1XrXA6eIkQfVepCr0QjJhQvkpx4QoovtOntym1k/Er5C+bx7Ns3ptz7+SaF/x+yQ98ZU9R1Lepy15LapbabnlNMN00sfqSZ86Fm8i1tzbNDOyzVQt/GL44dV6Kw17FxAPSDrVg3+66B613lF7Lz2Bo8J+dekGI3t/nyOCGcxQdYH87SiqAlHMh1kCCkldTU6wLZ3UY5p1cwIudRzawF0phYlzC+ya8a7H8aEjtbBe1x4gFWXA/gO3wneoQdO+L3PwjsjpDVjVJpzmHSPBehcfsuomTATtsxQff/dGRvOwSEzfn3NeAXX+TB+e/Y8KQj0/CrdhzcaM4rxCuGRl5Fje80LjhhHyiHx2H0zNt9qCAHaOac1kSHs85puLvqoo0Bm2O6A2YufO1t0qpKhzY01heKmv6kVjdEKbAspKTodT613Lmh+bK0wxvpRmDMBIlBjJy+soo98f9rVFMwItn91CVhW7RoiJG1VsQMo+lfpAq7VEUQHNnsV/ey0hPA96q83+79eZX/mpmlju5dMMZDdEm1IjEC2IHuPUj7eW1Haz43t8tIZQBcZqaZT+5EfGkru4AF6QwFE22LnraaMRG0tag9+m9R8GeAEQoXOFkFaIItcMQ1IXWJD+4mUBea5GlsSW56W2L6Xbbs/exQ5ONVY7ypBJzfE5IGoc2di3j6qpx7q39aKZt5jeLM8oPM5GLtTRqUFKRORSF5WcnCRhGyMNP0SZfE+La7jMoY5IK9A5DafFUpKauAt+JTfoJWU+MsyeT0SykMAX3nMkwEXn2P49+jvEGFy6LbmJsIRL1XA/GUlhe11WFnxJd3IJJTLfhYjK8dK7z3cxgOWH4eXwkcrOGyMmOPZvCZX2tNcESP5SZqV2dJNvX8o2Tuq4rFdOR3NYPhBmuL5Fh88VWKuAVUKbY1YoUlH5XbcRoJr2dniWkNSzndfScCv8I8VUNwLmS0gQxHDHeuZEPzvEvCpjElmZdIiXk4bHEGCQkt0y62y+Ew1hRE+u6LneRSFK+TGnKSeb/4yFMk7SYltJD7J5u1TDMqVxs+lRYWE+ftCCaKplrIsJGFLk0k5ip1XqNKMFKKWen2cw+AzRyw4kJe5tAbUvM9aCbdqeFA314R9gfjX5H38jgrQT/BrGiorh7G1KIE7KnT5K19VT6GYP7S5fGjnRL0bloZcxPZ5wZmLgu56ZK+U27Qxchlvtq/AX1ciX3sQuOHcVS1EbhyfcKT6TnX2uVUzTGebdNHmLh2kiMhfcojoSO/zwWVGEdVugUhVFza13rebIGHvVZ5fnvrqitZLDEC9uj6ryHH/vzucEasdEz7M3gT6RHWKt6Wzi0YSAK7BAmErlV4IySsE+Gy5WIZdMplHaskHq1ZusgbCcfRsCwFBOlMPasxD26bXN4gwEN3p3xiOt9JDI5AimxcAhH4/uKWDeCsMkHFBorj1Q/eNCuVh8SRxGKxGfRQphTZvRcpQ+VAM3IgdlUf60RWnxZYYOVL2sHekXUtWCgFMMD2NE10AFApmMTjoq9cuwQ5KwF6zDLali6rynPfhvxtTh5W1qTPpbz4gHWS//2teFLrwj4hMOVIDi64Je6pEtx8CNstug2W4vGXpelqnvHbH2iP5FEZ7SIKsR9py+tR6T4/0l1lShYRV+fS+cLgRH/4vX+nGiewJfec7bxMjVM4DsTbhrywMvIzxgMqG9lLWuqSffFro5/w+PtXmDYfXBbC6kGGwIEEqcXx5F2F+grbZE/3i5ftKtV84QraLwhZWKL4XlSk3+bEQ7yC+gL4mrukxRU52dXT0yM+cBbNiHOrU29ju1KFfpZg7a5AQAE45Zun0GIgOcyvvSw/8w/B444sxh/e5Mo9Dw4bQ0XKoI2qkf5ObCzMEKPfCcFGhXcynr5VN86aq9HFmBkCLnXpMhqAFEvQCMKZ6tIxjYr1ae/B845fyG1VEfPSPb+6E9acKqF/d9Buh/kDAtzbcSv3Nw3+ktkKKfPoX5cI/deuJy8IZTMYaVGhxH92bcuFSr+Im4zbfQxogr3JSLnrJojbMjkqKkvlujbR232iiJPPKAo14BN0LoPnFKRjrlXMDtyQTqyuguqoKHxuWnw5NYYZSBUhswc6mhzvLmAZnaoduZTVKm0eZr/hutiJWzvK5md1PyAFFvXrkYzUGkoZOtstDCLn4D07BrPJFFge6fqWBTLY2Q9YHkmZoQRsQUsaNDSlnOHGvytmN6FH3ra7pb2sQ+zbbQqgfRe2dUxbJIHY6T8qge2x+6CtdLMhr6S1oa/5vATStPMn6aFjxpte7Ze/tVuWBthSWH2WQbUDsO8DammEptyCeVm8mUWErfQICNB9wWN565deP0eHBblA9ZAk345WRkLhEm8wTVgGcCCuYzbJ+x8rx7A/omv8s+TBFy8Iu51Gp4K7H5S3hxExaBOxVVGk60NCPlh5D4PyDqshDeF5ykxFZJBEz6UMKWuwJM8jnfSg0+UTiiF3tMjy5KN/b6Uw8Clx776tunOy6CWv3O9HQUcwACrJlIJhbV21Zi2PE9JJ3HCyMy6UKHJJSB3ZXvykjWMMTKhDVbtZ5pMpsK5haPbyKhRYUaVg68s7ESUG62k+Ux1ZijL9FVXWpYCHN0odCykM9n/c9mV0n3HFXFKQ34rL/4lvFbvg7/Npws9p1bYjxRFSUa1y8pgl7hMKTTkLUrr5JViXuv+S3X1693/uRUHlzHQ2JGaLVLTDQFM3K7S57SyYFRYW9FW82lcQVFjqxcb4F58ZF7bUXClqZjqCtcznNyBJqnkRm7KWVFAXg1hRaQY+4fudYjUkyihkM4AxT09ylNGe3rfm8hB2OygEG8IHK6Fxq30pe2L7p6ekmdCp5iWshd+IrYOdfysW7J3Z9iUuk2PASnHHe+1iIO53xy6fQ/VbszlTBiuI2fzgzJ4X/ZrviWRLPEJjCLBMlMwpHbMJXT3JYdEWEwVr5Ft1DjOLkUN5VQcENEEywhy88yRcgqrijp+AmYDHwQPCLuOhMWb9IcJmlpigGz18JdDf4E1Z5BppHQsZlfCHAYo5rW/FiGP8ldp0l4bxmEaX/BZzvHqHTWHPmeGRhJn/vzY24y5idlLbI969iqXEIy1tyhPcID/CRQVI2oh0DMwuklS1S3N1vozbiJ+BAB6yxsEGSFLhItGOiprKn9APgoOeMQLfjM6/k4C3zRaBaS1pL08LbJfjo0STI8YBOuBBmuu2vJ7z2kZUynjVBJuzpfD67/PERbkGzKxwF+pdOcr8R728JVZrT+Jf141X+lozvk+LMbbTkETfAVqB1TOtvsriMMGxA8bgKqytykC9aiLrTklFn0JTgzfjBznRCjc2k1K0787nN9Fyw1Gr16O66F6UVddbM1bk0qvzAUFbVSrESTXviuoQiZdL+5/1uBcLmlaxe/JjbkVxvs9jFKLhDN9uipQ6UrwH+gpfbweukVfTLOiJDDIB3Dh3BdtklqXmOWRRwSqm2qyapymX0ahSsxoTOhRVyj/LnasS/Plg9LWYO/5Rqk/kW9Aqy3HxR1XxmFks1vSg9Tn8q0Q+hbg+NT10F9jNg6bFRGYsWEjAwtpnFgUdwV5SczN9aN3eKwOsvC3mDAssghtp4run5g8ggwPz4/sC0Z2KKZL4nTffzMxhdgDP+ojcrKIiI4fRjrXX0ygqv4cnJE+9MKtJl2UXh21txUOU/s+cavJo+QKKuqzemuwdDBsv84zs5H4co34i9gONiWKYgXkyLuh5WvnZFVLgNHYEreYfb7Z5zrONZWYgfxOwpBqXE9XExu/pD1WOfpe1nAFicSsFseeFO3KUwSOZf2pgFCwmPhfh5p7izw1glF6JuWsrA3RoXaAzNoiomYgpd8l8IjIjPK3OTyZW4Bt4IOM+4jxs+P65DX3Xp8RKX0zC+JCYBkIiWSxXh1VUlTGU7hgVnhDITqTKhP+uvVAmsuOboKGVpTl5bXkXcR5lMALVh2TCU9NwOBADATM+iCk83+yTWvuhVeI2nvK/v7C7R4rsiv9Qt1xUfwe5Yk3ZZO0VeQNvIifOH3nLpDYc7Y+Z3oQhPwuMUxA43sGpdE/JFcU9vJYrQb/+6OKBFfFUqHg6JlmPUb5k33vGuvJon3IV8Zfi9Hec+82jzFlhw+GZrR0VP0FZmzGPzOUmuztQKRz/mWBG/cDegsg3JH28BNLloWmWdRCpNGYRrOlg7aP+PO3bvauIBrl4JP0R5nabhs51i2nY1wRzye70+w3Angygltu4evyFrAZ6aOiUEI//AOvyjUs7K72PSlNOa15Kh5xmTcZrNwdW0SWSyzVsHRhQ0gB/GGiRLZnVTITVkf+NdkUkzuJYQpLu22maJMDbaggDxSLFSGBzpB2pfZbHbv//DXHA4XBJEYDqvW+NJRoDkRZnopPQSAoi8S/gn87XXTjIN5D1rAQgkjunkAlYm2BYUh0xQva3RJmE4xTb1k/a11yFUiDxIoL4/Ad4uYECjNxtwCuYDXGJKK/lo+pa2jKrvZqvn1pAI+Csx01ul4NFgJsp/oBCx8oaQWijqwQx9AYaaeGah5J3NWaFrYWKIp/gNIVGXShURgjel+xXBuz8HntcEjlV6sToBzm1VSUw3PsOo+C2s45CBwqGApdf9spHyjjw4FqjwpChAuAUtHwokP5ouCZ5BVGlwH+a5fC8V5lnn9CQPhj1WkcKnt6OA6gJvYPud/wOBmUrvuwUcCd/z9HaFPsIf7ICtKC6TfAqX8Xl1h5+QhzCxdq4JwxI0EuR3MoAP+o5AHuJ2kg2/GQP6oIv2KFpxacdlJWoT9fPs1HKq0/JPO9DUzBfrY563cRc+Ju956bOOj4ccLCW05w2ShAlsopcSjQR9NGa1EHEvIKVOoh3+2M1DoY2RoFX4zPa6FExmRq/wyT/CDUin0HzVVYCBSPIcgELII6H+u76oVCNDEQp6G49LgEmfaRM0SKoSVdERBdK7ECDsBIC9h6MnWHT+LUjRWNR5BVDeybXmtpMEjlAJevG1lV5eQCftMhMDCmz5u259shYUdpFcEr2n1+Jg8ejSfHO6jPetLKLea+KRGb0/gkSMiEMx8N9n/5nhRTXGaMThQAj7ImsYWQW7vjmlZlGSa7EFiwc+mcNm7yggffHb5QnYFpMIZmiOATTKuXI6qZEG13QeqXtP3YDwo0Iz2r+M2gHW2hg0ZnQzgifTjbBzoidPI16Qk7Xw0ZRzrzu+nLW4mr2nzIFC9J6lruwBzjih3lfTmRGirGgpt421slNIALYVGwR9Kp4aMw9tA/dQfzMF/lVZw1b5w0rBRcVcnXGNsDOOZWphHIJa430gepttv3J7emz05kvzaF3I72wtuZygOwOe6446QVQaI7/jkutJQkHs2zBSxzJLZBp8cncoo0Kc0AVBnbQnjrQL3bElbxTDBWWL2Q6zSSWhOSsz9RY5GEGNZrAqNkPgfGD0jywZbLNNzdpC888bQxa8AvoSdnsKlDPizWBlSNCiNLZEWx84HaRpsXmZf3R8/CPsLftAIyOLNU5V6lf1I3KeCwg6Beq1a6IEypxzchwWT3jImQD935C0Y+4tdvw80Pltjy5yMT21PxESf1JccKHdeIDXMLMwp17jAA0Q3km6CxZ27XnwNzzj2kxFYxqQTH/okgw6izZoL8d1fe85aMF6j2KaPnH6p/QjmBwv6SdAh8eAix7UnEP1UtMiyanCnwVTsrHqawvKcFFqvsI17nF5Kr1ByQG2OI4cN9zFQ+oPsF3MSvT1tYGCoeqizQxJHnos4VrtiG9V2kBpUnmtlCmTHRM02bPhwKxLLXs6K0Or6PAW6yXa82WKxAqDZWKCG6Xa7lasvfr/szzPGe6rzlneVGrJk/8UyrKzw668AZmi6bFpU2glwSUq+BH/fLoR/g7NlA/PFjK4/Kb5wex1AJ78fBGmqJFiS6kf2gFCp2guOrDohhgCW7aaQpXj3eAxbskgZyi+lO3kIkCWb36FkEobYDnaVEi+v6GRW/t/OorouOdh/PO9c25Y6Gi6GuNH50kWqJNRuj7u+qacsHvqtT04sbd4hnNyNwpnIe5ekXd6llpGkaZ8VUil7OHQpehy698uxCiLlEMkhw7MRCyy/W4H3Hjw/gCT7A3IAz82T9fejQj+oQGxhwXz/eBUXufH9MmB937jSREqn5KcnVyU+ppApEQqIRjNeMRF+LGEtTPzhvPuJD88n/kYkAK4hSLCKAoFS48SBF11Kowx9pnGbEmx2uJDJ2Jz4OPVPj9k6OrUaMvb4SAYMd1YFiV8IctwDM1qTJOf5oWtPxdLOrRWQ6hawS83AX+4LD4sOt6GednXmsV1i/JbNOsvDkE/8dcwtWd3sjCJDLloFeWUEA5jGntxvdFOO2TD5sgMCsiYU62P+Xkj6nfQaUFQAKJaZiQ7Pzp+1G0v4RnoKASs58EaqOO9PDM2N4SgVs4b8x2AUMtJp+SAqVHK88KqJNvLzK884fo/U9iRZ5rUP/lrUzXmAoPiJCKpe/qgyMfk5jM9tfO76rDjX5JrH5n5pt/0UvB2WMffv+ggPYyzzKv7IWU7nvD0cQ3n4GlNPRK1luH5IYL0oNfoLxqskCsySRyoa1jlFR7gS1SFB8On1I+TQxoAL6Bp17zRzGysUldmY2NDI1lr+Vfe0pL36TVl4So9X5jkS6G2owRQscQzpnOxJ2q8RVta1P200G55VhhE00Rc1RSUnndr8HywAX9i7JyyxGQtkvmKj17KE3oD2vAHvfR6JbRo9P3zmSVPZzOWFose/EJNIEJZrUk9S2X0lRY9M3em+HbgliC9O3q14mfvIgGKcjMJrlvzOwTx6D9xa/91LbxTawqT+ARjzeDTktyr1LMDIpeYhF5Cam5xTtTt7GCTrBZrP53YPEc7YAA8gODMpUrJVtMzsiwVzVrkC4rP2wL3hx60FzDQ6nP5gBbaE9/LpTJg9McdzHyk7AwTdPws5sXI3Spu0zkanJFSnum0qAF3ldfdp4pPtRPggBwjB0nSvVUAADjWt7y6eBBcv3x8JzNN8eZ4llxnFdsVuqmVRhR0KLSsgtQwy+aSrg83SPZLxMv2twiGY/h67Dy8YJHHiBojG9lOyyRz7HGZLQbNWZKtfSSg5KKmeszf6KQHkDKDlKK9PmWnmkWAIwrKiuZEscgKMjNV+7TNjrsd8TjGaXIJZIWtrIYp2f0KejreIrnjQ9ws2UsET6vzPB5YVjXk0uE5l4N3fPehMY8DK62M3lQiUai5NQTxQdspOAV6cusuJmvbVkP+uNObplXxac/8dmYfgbvX7XoXmlqtwXYtEgN6A8K5aDWRqLodC6bYHUwftFde4v+OvOpJM/sLzoqqhREz2TCX475V2B/FCws3s3FFZy4i8+/0JVyuQJBpHXC03mKmTI3vraEKXXoAaDaTFGdBTh7tPTMZYxeWpZ+nMuzviRsgSg4ERG7HeDvfk5hkcPBp6JZFdxtm2adzQcc7Cg8ACLa8Aixc8M6x1oFa7vVc9LmqEZL+yfWMXL8fXxOK4JKEPiBrOFYQaJSmp4JJMPD2H9KIdwrbIE0qCxmGzUmxCi0qfZRDhfQlwVYif6Um9uZoE0+FsgbBnj+nAaKDxVqyGuVQVzCG8AKrRGmiXBhaYgP37fDGhaXoPT1uy7W9yRlFVTX19yEFv9jt96Lsntq+qJ2sqmJ74VTDbcVcdAu5TRrSd+vV4L0SV8FjxiaeRVhqsjiqrn1k6l+7ADsVJ2SK7XyWS+yePYTFPhWj8Elr9IfAfwoyGReEhEViekivcAhVtZMZs2wA1SLjgjf2VC2vRpuS2TwM3vD2szoXQeQ/ldrDcmdPrh5L+4eLWtLmin0kmC3QHb8iVYIlIWcF6otP4B0GRCZKn3NVE4iI6OtaINCAO/N6RKZBD1aeylzTeTkyqDUzuxz79XjCPhDmGHfZR/T9Ue0dcMl5m1hEdoZ2FuJkETa8agz6u8daSUx86Hv5YFajRSPoAjk1ZgRQhFrGYcHAzwnVxjbVjk/VEg3KwGhOyNromiuR5TKTK4k1AK/pq9STdjrRji2Igl+G1TFK4pddQ56E2yNuUuV5+jYz/tW+G8tud4iIwwnq+UXgjbXwmf/8UhIUwJgIIURA0sugGBaiBUyuBmNpDk1EZFRfbtSmFgpl8VxEIzJszobSt6ycoMuy2h1yinMEz+FouavQo+heM972pDZr+cq+U1lRoXNW9HHuAgyii6KejYJ5NNARqFHw8kZhe9sXYSgzlttM5SynfTDEmvvv/MoW5UNL9jG0fjo9bp+a5QCyrivbduLII/L+0PZglqKxRxnqp+87uqnfpuErWZVnrb+acqisLbyKo+zj1Hb/BIveil+CNkTKivWbqRk0ffiz4GJeS9WasylrDcObE8eYz8hgnwBh/gkJGaMqUoRA13xqENo0JsfxcHvawkGXAjstZStBY1dAe+HQEfaeYFh1nb0CDzcVKLIlPccEh6zeqTjJtP+Hy3tRW+fpnX5nOSCFwwJFdol2Ukwl9dR3f6wldtPw4A1Pr/bJBFFg8TH4UZ4z+HvwwVAJp6x2hbnnBIpkqz+Ka54NHPS83+pRLdQ+nL2OmSl8B8dfacQar1AQfZRNaogk3brTO0rce1eIG8rxatgKna0zrrnFPW5rEbiLlhehgXc7IuuLbn+zyynItJqQG1BsemKfJ+a6Bzcrt7MYUHoaF3ycFzhN12Y2gJvRoOWkFDsE0HPs7d/GVD6iWZBv23hQhQh/MthXf94owLM+te2SbtrZspH9aEPJMfmuH85HOZRrW2nIyJ646ZKipCV6TwbB/afs7Kth9z+htx/vTAQS34jhrNmkcOflh9hW43BWHL4yWRR2odv+bFvHZEYAgIEUwePI2kSZ3czYFDGPJue7b1C5/15Rnaj5RG2skJKmN2DLxI8jwIEEWJX14kQ6Sti+2iTF3nSo5AdI5RtMWy1nt1/8TwdsN0OY2WCLjLsaWfQWUv+r8zaztfURQb1TeZqZ1jDBwToR5IPQqDzvm9ONO7Eu8s+QxJCk5Y77QsjgVRUjDjwBZCNJPhGs99FFlwOW3UDMb4+pC8T6+R4dsjatjOahLCNy7ccSz0ok/qBCTwsr5c62+Xy8fNIbbaTq32m+YBJPHX+IL9ikzBTE86t6eOEwa5bsNjePK7psCPjYLF6OrtoZEMLBjkRfMuhLKpXRFaP6wNUM503oFXtbTpzvEo2D2XI8Sb5rGvFbK1yAw+RjenJxyuIid0Ur/wHkeyeAGa2RU5cgA8wo/plnnljCkV84ZoMzmNKNNOZ5Nbsj+gCvJ/F4Kg/cHxSLams3Bz9qjqVXCiDyIxdBh0bPNKpFkPxgK+On7Cc6QqkrWbYYbMo0hFtK37Mc7S/aiUr6ew10EAi/TkTW2fz5k2l1r9ZTy0TTTI0tx/RjUf6Wnaolw8s5ePh02OGRzk9FIpODcseS3ep0vqqPh7v5bnzMn1bRlBU7Pwvq/WV7UcWDNGn3OXtoKgHfpKi8YRHwbuq3onZNScC1lxFxROCpn/yMh1uQNwsd3yPtGGcD26aZ2i4YpwtJVfU93Dsjgoy2/TlgVLE0SNSPZo9NZBiC0xJJEpSF84OM+iaiPVOvYPAWkf9kGYNHF1XxsfEQaSWCu1SovhyogKL5bdYHHuHR1KTNwVVFN2KD+15R63M+7H+3T8P0RAvuBNXX2yj50wKYbw2+iqve3XrOJnkkSk1k3utWh+JlmzmHAjD4kTrvHnVSOSXqOylYdrTEUmCZanvcXa0jJEBA/zXFp4hfhlTK8awIslr8xTg1Bu3OA9vENaG2aIIFnU5ZXZ/CCXqc4h/LYVS4juGkqK8j+fgjn19f1+vw20zaefJPws4SgLMOuxANpvTeHP4pplTLmCv53Og9nRS8uZyq2lEPG8UXQRVHiWxYQzXkDCRybGBsH0HMY2FjXHnI3Qhnm4qHjrb11iLEJDA3q2arJvWmI/gWfw26ra2efUosvupk7VxJNoLL9wZkgpBhfCCrwcpz5CTII3azo9JkYC5m60GDtJrfHMQf9a3zg43y8ZSXLkFnMFPpYrnPNo308fZ/nefLdZWDwgwqDJzuHat9Ggd6iMa6jG2iXXmT+9u5+DqekeVth+He2KtZqI5DKvwswuTgvrH9/mn6ruimNcbkmfSFEZXa+lMB8ursQyKafc6CBWaemHWM+vask2vbR5E74BjL6OcmlcXrRK/wxvsvDEF8rcmGalNCpZJHBFqFXdKFpGqSPJVtjo3UMFB/WPobrFB6gxbcpWnWmZ0e3X2hIYf45YnHz0/ml2KiWnrhxYSM4hqBB/kidfPxbuyXz3eDjC/tpWft27QzCoK6CRhNlMIZ66rQPYshx8B41LEeN4pb/LOjgYa5I7rlwCT3epNoznKxEuZLe+QQ9IXYv0UZzeWvpUrYlnPiy1EURBTMkRgtoMZID6tGA4pIHuclzQTsUFMRxXQLEKzEcPPjV4VAl/sz/SFg2ddsssL+yTC+YsMC008mXA+Wq118rgTegbuVq1fdjyGZMaE/DN9quvRYZu8YXsjE3gUg5Hb0MWWLAGFwtoUQcphHyPhKKRd+ApubMP8mr3d1PLBC3pg73zOT8IPGtPmvF0z9zS/i1s+b1rZ5EPGiozkW4bs9XDd3tA8rgA+MVlzn5G/lQJaXWj+xkBw30xJDar17Iwt+GbpcS3T3tZ0JIU/QPlnKYzZAPuQUuQ+G/4m7QYslzAQKYNTjlVm+wA0azuNnA+qwk6KSBmB8rYi0y5EeOSi/BmpuJTxrD4nlv1XbulOFgZzUXyqCJcQtK+AkOM3Z1lwBk4MEYRDJ8b/y1vzO4EUPC/DIiZahxER47xZ2jzISqXeGDFM5WKMcmgMPt/hK/PblLhfRTeoc9i0aHyGk9YtxGY1rsqyYMhpF3ZfodNAXTLeJiAorSNpw1oPKUBCDxxx7y6GCezjYSz9p8T0DoNGjnvD4qYhG8q1uYlbP4n7fGRaUIXTVOocJxDx873Vlq4XWa4QTuSHb930QRVne7lihGr/+vrPRD7MojOyjqVGh1XxPi12DdbKFgBJhS9uQM8JlFq8Jg1VGHSdoVuCpotzmNUe4qIYQGayurjYqw8keobOMo3MRr0orTvmEbrx2wBIT1JibmmtW35EAXAdlZCmDFbz5+jFBVPyiUg505Tmm/J/0i9Q/fETkCkFdb2SuH0OKPl2KrYfj0Irf1Y39xeoxF0CKsx6aRpDaB9QMjJTZ2ZVQ78ZESnqecLoJgZD1QO6Qsz7ii9exK+FADlTbH7bBPAv9cEyUJxI9z8UH9LbMyJk7Dil3ijdop7UcXBrXuxH6pTId33s4UPIF0u1ZGUTgMFWIRBdaMfI0USPDH3kCTWmTQ1OXCSbarTzrszmH0gvijgLrIwUkW4ODnyJikzH9Pqh1CvzPzSBPjahS8O6Kvxu7dOAuPGgEdNrLQCuRtAjc54sGlYD4oBQRqQWCvhpvDaOfPtq2wslBvC71hb5DP7eKOnErgIMzDfAiTQENmigSvfKGT3dJOXNN9sKK1YKAFVVZyxF6dHbaz1ykrX+CjFA7NwjvI63LllzkrQCyxdpB4EY8XUeo4n1hPTZ+RXZwR9pQsXFwkloiNOeeV+aEkcsLBPpxr4gt7lf/0XVbetqKFdS3QArJihyBeh19ldPabE3JWeDw/SsLM5thB6OIjti4xLDQq3/y1h43beCKNvBujySfKBo9qaQFADs8gI/NGxSij50s401QbkQIkvthT4ZPkwLrEmCpfXTBiA+tvyqufPP6xDPnFwYrQA2G9JMMpvt0GfK8hGOJ9HOT2a+SpKgklb4M3XElvPeIVy1jPz9sLx7CNqmbCRiqjGRY65lS3SEiSRRobJhK/Vz3YH2E0KVUFG5dXUNK92+WK3Lbh1EA/dY2AqLxMVaTN3WXw3bBpukelVSzgOXV6aNTwwrh9kZemxdnHvUc6ZV9wnwzUnVmql9uJeUb6cizVeo3xrIM/y3DGUN8cGYZP6CYvhwm8Hew2DGz6f8Ye1RQieZBl+ORfhhj8fYzyvReibqZDJCwCSx4CZE8PyeYVTjRvZxbvSNMzSFmm+hT3DVwKupsM2Sg2N04OOYiGM3ST6b7xC67UKcG9cYVKHlAAwH9mnLydLMH41eVUADD7Ftz+Gx+l0L5eDDFvVD/apONVCbl42Zg5fbT6eyoM1Q/1W/GtgGWy59qSvJ4wWRRdnWQyJZV9MAmzIgBBm27KzFbgcUz39EjVCiO5/eY4DMWmaV5rpd+Pxe2stQocX06oJc+Ux87juSVpkeflXAdVp55GtUJLxxKza6CgEyTshQkGRHzal5LhLh7qy78rLp7rqG4pNt0vFPKzq0xvuvtTVcu+2ofGh6aHsAA6pMTNSbc8dPvLeGHZPEKwiDhnqqRpUrzvmx4oFuJIBrs9ToIQctCmR/0ZuC65V9TjVISqqi0NQTidSKu9aBo6dMKishVKMpqcnz2lkxBXqPGYWXCEBbK/TAZTLZJ0+nwheLyIxvYZZf4MOd/SRhacfUld6NEHgIi29hiZzZX+D5DC8S6/izgYTIjZwG0nMWuk5er4Y7exBrtnApj2OHtSorirfqJhua98B7GdCweAe0OtTg/IGIm15UkAomzYrW6mJQ1tvQdsiQrkDyongm5ju5C7l3c3fr4AoqutqlQrmZakaoubRBZTNhEfH9HHZdbZujYt+zyGfhgZ3GLO0p7GCVxfW+X4xQdh9HYDuDSVbV3Ni9uuDimlV0dObhaPGjsRPmxGgKtVST20YMRr0J5ujquYg9R4gJPqeVsJbkEgC8GFOvFGDKKQ82QOhgXlY3E5Dm1oGPNgvNp/hNj6GfcrVwQCudD9Gfc87yZjMMlWbMhTF9bWQ7TGYk+NnaXI3SEts0B3jnOhWK2IjBb1Zjfq1+TSGtrAHhCMI4Svv2Bc2OYrF4xSCi9kFuJwk8bjyJ4EaD4pEeO1IgkXNHRkq69fPLJ+macdbiQAbY+mugJtZs5R+j2FpEK7usZgBHOndD9gCXl
Variant 4
DifficultyLevel
580
Question
A mining truck tyre has a hub with radius of 1900 millimetres and an outer rubber layer with a width of 600 millimetres.
What distance, in millimetres, would the truck cover in one full rotation of the wheel?
Worked Solution
|
|
Radius of wheel |
= 1900 + 600 |
|
= 2500 mm |
|
|
∴ Distance |
= 2 × π × r |
|
= π×5000 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
type | |
measure1 | |
length1 | |
length2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/01/5var_320_600mm.svg 350 indent vpad |
length3 | |
correctAnswer | $\large \pi \normalsize \times 5000$ |
Answers
Is Correct? | Answer |
x | π×1200 |
x | π×6002 |
✓ | π×5000 |
x | π×25002 |