50067
Question
A pentagon is drawn below.
What is the sum of the five interior angles?
Worked Solution
|
∠ A = 45° |
∠ B = 360 − 90 = 270° |
∠C = 90 − 45 = 45° |
∠ D = ∠ E = 90° |
∴ Sum of interior angles
|
= 45 + 270 + 45 + 90 + 90 |
= {{{correctAnswer}}} |
U2FsdGVkX1+x6dCtWhBRox1d/UfE0nAx4VbkhAx6gP39ta9LTpwyKcnE0f7GbBQDSgwgRuXNSeSPE4SraPkLECOk3SjGKiTYDTny08QK7pieXNPKzAtUYHBq9+sO6RA8mbAxtucypygpenA4+DHNqg742BSbcBc5nhMhWyADQUCHY8IlMGvGWVBc3IPKZejJljnA1jdduufwrTFb9z40ZsrhaUNPp1YLAQtbjQOE8z4yQTpPAurjqRXUo/bHJBQQq/+J5qhlHDO29EJTcALy2YeTTR4GcaQIFrHFrXQ12torK6Hl8zADeoak2cuR5UXmrmMiINNknZXxeGiuJHr2SkOFPSdf5hyM1DESPJEoQxKoDqZV1PZMR3JMSd0NfCRiD1iqzy2cwLwNrvLfnDEHZKlBEcAYx4U6DQ0V5ZgC/+SuXHyP/nfFhNbhcKNI0TXQ3uI/3PewpCQ4oIjg8JzzAgPkB/BhG2aqbRWVPKMonaZOfGXqJ0OwK2PAheiLSRX64y5K74sX37qIn7UyuEfrN1HjOFZx17T/YbJGB8Xp7X/fX7Q1q6HYjgeqPI/sW2ZgG+l4QtRGcBoa7IsgqehH8AeIQZu1R+09Zb0QKxJt2E80RhzrufhDwvaaha7xk6JLu1lrOq8mtEfDRVqUqwYYH9XA2GtDhyIyYfJxaRHoAoNvEfdQcvPXGF9TPMnobf29WMJSj7NrWrZ2L4iGJGl/MLb4YjrEMoVAviZuARqq8Wg0+r/iPTbdh9LGLXIi+39MgarjyQS3DKd5m+2KWD533MwUGmtubig3V0EQDbRsuyBw+4kUIWrEAH+ACizTaAOBvaYn+aQg08IDLUHw+driY2Zpm7In6t4FIh4a9vrMGth4EuAvhWZivkFmaeYfQZjvZXQ8lxrbZTq9AS3E+aTQ3eHRtObbvm1TWqhF63IzqSk4BnyZ/pzH8AavYF5zyVCx14W+R+14uZ9dUrphXMT5YF76Ad+TwasGRp9WBqQeDW/i3dvgQv5kqrvMdfmpwcBunKVZDpywHQUtKAGo9O/UgP30yj67mPTgUisw3F1BRf6dfV3GGewQVEmSSDTQ8z3er+ls8e/0SE5DdTbKxovGwvOgDa0ULqHvVBMKNwl+ApoY7WEUnLYTzSIDAFofJEWtRmi0LDShB2JKoGqcPZXoBokhaPJ3jIl1Y2oNC5AgjViNQi6NVwSVsjT/5Ok4+gW5gqode1Tn9Af7XjE/q9GfGAvGdenJMOwsbOwgtlymIClHzwEktyc8+YviYiqa2Iu7j7MrdgElZosMtZEuWs/+v0IvX+QthPSMa1QcBMYec4dVGnl1YBMIcEZy4W8kZ33FOnqIufZEryOgUxNeo4DnX4GUpm4STMYbV5ROSQwA1PSPrxZWMCnBCBScek02sYn1zAM7YrOpAH3CJBWSlkOOMSgfj1vchML8WmIsf0lsjBJdS9sfyCTJ0oGR4RRSn3sWX64pVkP0s4YkW3y04NBdHeQ7HZAuRIT96DIpLbzIdfgvPMdNmS2uQv3c/wd80pKZHWJet1+6DZbImbmlMW6QboYSpR9Xid0PNI57mgTIUHE2EPPo0/7BHX2htn3qPB55kjSbvLqEsKeam5D2Z4xXbhhb0OWSpQlImyPx7ozo50usRqAMIfgdmuJgzQwk+RFi0oh5ECgzv1xlb4Qra0T+pE81vL8azvvOP85JmkG8CtQMfZ5VJMv/VVRKXRIou03D1XwMI0GPTr2Cw5NDzyxj00Eh2osDJZXrilmHYyPtLj1+2Na9IizwCk6CV4E96iCX+G2r+qZ6x50m9UMJmY4wTujvRV0v96FDibrWrnwzCEUDcIdIFKiz4o5+OIyVAQBeyB7qqNO8Vt24aGm8U1rvcrFgRwY5DB2xuKKMCsVuhkD+abnk+Cj0IaU39dO8nr34ZMso670T0kWNB0DdAQ0MBzuwaBVqfFuxlu8rGRb8vu+YNf54f55D4aYAyR5XBmtwBz6tgQxCtGCZ5MmpFWaU8v3FZ2YOQvnqMENkt8Off25TPQFN2jUprVHZ82gjWoRX5P3YsY3RLVa5F2lHoTW+qKwxfA1j0AcYce/B0tJ7WvSpgujkhF7iiDtac4/e+vq7EHen/FOBt/EbDFx+rO6RN7E606UwjPVTCQxJPGg5+L8FDLRorAgKTKe9Mrr+e5FMHi2hZ1bhE4NhX5MABcw6MdoaRw2axyaEQ8gpYHicvnW+44/ClH9vYET1suwJcdHKmkQjvnzsntevCZTKG07/s+p//6lJdoledr2DNAwpjfM14w41/YMRuJ6z4IdkTQ+syEXZRHRvmDMVb0JdJtRkS1jh0YA2TgYbyknRofK/pGKFewAWGkNAybcc1g0FSlVtjpj7nlBk9Dud9mokGf7mzbTu4CdrdUrwFOEnpceZj+I7IP9TnT0ovE1Kj2CseVLVFpAwIwW9VMpc9JVEjLlABTQ2i5ayWmUy6Nbnfv5BvU/O6Mv+ceiB/pj51Qb+nxuAXUlooDRIqYMSngNifwdj8NYvfsV6cWzCvGzuxQXHAqGpECt04L1OIEQAKBaF2aPrjPgJI6FBIVC76ugwA6BjgmbLDSckm6yYbEOewbY53k8VdRG78jCv8kENz7xRu3npBzj0tMElh/t4uKcwYD7ASxTNOR48kVTvTIEnXxAKTEqFoH/HrqcQeW64SD1gcbBofUIscOSeh/K2lIVzejqW1etwvuUvolnC9lb1ySAiqoIzq5i8LOPVfgVpQel1QkCS5JMAMiNHOh+fO1waxoLgF8A7Wl61UW+9N23W87CEYh9bKtmfzxVHYTXyYAq6igrqyR+EaIJa22StDIxw958EOXRBD6ZhX5IcXptuLJ5rT8jDfp/m3ybXVxC3072tRMptzO0aZkJOZN7g2NOp1pzj6t5CCzDfHsd8I3v4+jFPzFUMDhGC2NFr4s5/gly1c/NDpphuh2jY3IpnRA/gc7i0JdfzWqXCfnHUu5AlQ9QfBErnUKFB5CRMZxotVhqkpPbfNPGvW36SPd6ZVYrclVPILgBgJBpgSsRP5GfP/A7Z6MzFsAvPg2E021PqAlBxCO70+oDxo2EfeUsms/Ni0DETLVVKTvnyx64fR0Okem962HaWJBZ2Y13HKoI0RshOuov37jI3GPmvQuX0LnDKBKZJuxOrfxi1vTDSpkKADA6WdmjK+IA4xpeqEWQUyYCXmi//9gIFmBjZUORvzONxkALZVzsZqmEuWAJ3XZWbHDIew0KsqR11rmLIX7z1m54jMkqfM3nP7bk9K2NmzBbO0VW1z3FGtXwMJ5H52c/UOc83ucAIkgO8JRslboLPvz4jXlUieJETFaabi3C5ahma+l6UdyJCdzu6Hnw5968JSoMDznpO1J/p8OGeeDh+I9Lo6LSfiBkc06dRbEOH2c89g6pg65iu9KD0SRiBOy3en9xB2+6KF18wK7NsP1Jd2k4Eo8eNivOOE895MGQE3ZGb5o7nlPYl1GSbQFw5fgVAfMwVqC0UpDFpzheBbrFa6Ma0vh990VE3LwnssY+olAskpAuG1bkC5yz6YlK6GsMQ/A+7Fg6D5VuiJW+lZ11gKSA7w4UFkjovhbZ/xqlfcSM1k/qmSSnvB8nZncVQNdkLBUk/T71bOlOtXFLTnY2NFq38LnKPupjnIz/GXL0D8T9tN0J9HNl0WodVsA5jS0tTGHsrcgFaaQ7Ud2PkJ2JACkBj++TJ4gV1bn1eH5WVPc5BBRTDKTtB/MuCpsI/1MD6ZLofazcERstNQwHm+6tPzQnGA74NKkOWO+e52XyycHSKQOUJp74l8s1PfzOe97Nx4+CawUrwwWO32iWF8CFmQtTVKYN1o2gOtpQn1nKxIgFyt7T207tWMtv8z2Kwvu11OouPTmEVVkaWK+VKDqSAxz+e4zGFucE2NEiJSmx+si7DRux/38XL0Vp0mcyc/RLXv6vmTcLuAT+VauB73sXrI2WFCM0zszppw3xjh7EsdmdzW1HWVqYv0ZRQvflSlU4Wh2cq2tb/aaONTTP4CPDPOxxgNlxbGUbWay0viBnc1YD8650GqOAnNa7x9hEuA6mG1WfJBESlYDPurgId4Y/IImnxtwDaaaUArepHsegFPtHKNT5N1nuiWzOa3NZ4f8Rkf9u713ezfP2jRtrIGqEmJewgud5/6iJtzuWnXYlKE9KRZguKEZIAbOcsOjCeuNAu0YlpFP4UehfsFMYZSwhnpv9pnRHcBkOGUEnvkm9J6e/Rd7IWNNYSKjzDJjlpl8CjbByoeJY092dpiO7z/HzQ3gX1SgCKtYmiJm9IHHPf5YX4EELADN/rJwPvC5bpWj1h/nU4zm/jHZ//bcV73ojAkyW3H96eNrGad+NScNz1Iai9j7ewEJQ1suRqbUkY8XtEaTlPYN78pZkzjZ8havM2QoJQdV0a2PjeVyjQINW8VJvnIvsga8MfypxBqnOqwvf9EylyWKcJ3l/VRq7U/12oMMKcnDrCr+420xQP9sHZdVs6SvVJPZqpIc/qecFZEk/4DKEjYTFzdpoYwhdXzEKQbQkVRVEQJoan3RcFtkJDYfquqCiAjhZ1+OCRF6S2YRM6eMY38Yc5RO7tAUuo6tiHnoSXQMZvHl5hJCdxquqfI8lfO6pwM/nrt3IONghKsye2LBZoBLDGnib57u1kYnsx9A5OifwUMwjaOtoOVgIZqiAP2FoUDk1mcjSase4Qj3BPGb1RE22sjzQYdYkFr8tPW399WuRIRBwP2d1njGUbh+felF+dlHJWQbh7gB0jywdiqA6pkBnvp0Ld8uE0vq3mSUdDkJ7ciGrf7gPVBLKBnQxFlO0vh6fQE0HcNSfZfrHeFhHFrL90KavnRRChTn3DNK3mZ38S9WiyfwnXUI0IvIFTZZfYDLEAJ7eXQSuKE+pjMnHrdpwaras9SCXFBseAPzxJv0I5/scrrwaaY6crNNtcNB+kjKMq9vHmILv3achXMWXxPbwLFtBaWUTOqgSWiMgMk/9vf8YnM2f5XDKSE6IBgCr7sTmMURQb6ribgBGmN4wCaRu8YCbyTk1wOrgkPGja1tc0/xH654kpqBPSi+rodgyXSHS3w5cCYJ9SF+1y5pjQMoQtr+O99DbVwJAoy0pvS3QzTCyIoVQzcuh2LzCfo3D/0qXPD5AkN7AgPEi6NxzuGC26mKpAerFZW2xxOs3pPOeOWA/CNohbYNhZHWSE7Kta7c3KClEoztnvh+UT8UCVvFg349AKqS+qz/MBZDn64PvO3M3Gcb9xPo11KctZNL77n6rNcDFDlYitVgWcvqlkHi1Y7BlAc6UQ5rTitINotIpvjY5gYjlEgEd3vm6Zi7jx7fo6NZYbMCj+bYOZugJACMJVPHElMOm6qK1iPM8J8gCKp01MtOwLoqViJmZra8+RqRchmEGGUTA6Ay7MJ5ESJbA+S2EyGLrPkdnx9L4TFwCOz3zKLIqmddAazLasnL2mnNhF/BVMtmdN91zqprsn8R8wJX6hP7CCSeq4wd+oKRAS0qVvuFR9wEL9PscRV/BpiSZJo+uvWIo1i9F/3GnglzlzAdI605hOgS59Y7keI4enBGnNgV4R2WsW3i3flQkmJGqTJSh9bKMJKnqY7cxM2ISsvW9vWo5vU3F7iZdh5CALFLrJfNNphRJ34d04ZuSAFvJlZkoCuNRFu1Z8o/9hrha125pBDx/5oqI7xrax8BAMUTsT5hRyiEpIPCvD22M2q3yHtMXNTX0lbUWEConSEKmyQHa+Ze99s1wGas/+9ms8Ok34yLYMYjz0AoczqEK1xHD/KRXGQqrRS5V9MLVz07uDxERgObzPJevEg8JF54i3K++bMelXjAUnMzEz0iaIGU91RfYFVz0yp6J9M9MRCMBZhx4DyGlDwIXiLRGcXdzx214WO4w9e6n33ytlCvLX46uuBKp1RetnO/rkPd4OL36C1FbagGjp8n2qsjSHnl6kOjmMJhjigo7gHX7rCKT7Ucd/iyPNpMoPa/lmPYHWP+TehAyaupjqaHCbJbgLEiqVLTNPnpM5UfN/Zoh7q86kMHK3v8meY1Z4kLdULQnmtpPbm/rHnCcgdU2MXMLLL/C8WhoiYXpo5vMMP4QZae0aknf4uVpNlSq5f+Zgd0mb0vTr/89TJ5kXqJJkqWKb2aVOwW2iVPFgAncvJF1uJdX4Dr6W32u24xES1q/590Ky3KNvU5P2q5lHlh3obP29jkIiRJIJ1UPQ6hnaGlzyi61KVrVkKwKIg1GS1/7fE6auH6z3Se32jCSLpOmcaT0ml1frmttR3OUfCHYCqNOd0YhiXeInNokhWH+duTqQvAXv852Cy7Ys/TJXVIrtC+FGP5PjGjJdVBBnJNK7+IGbzPF3PWbVuCuLFq5Jt6jknjhegDOevI+nEMfeI8mZzBMnw/OCxu6rW/9mZtQlQtFkj+aAfwcZYRZMOs4nnEXeIKP/7CK90GM7QSRBncPwfSqSumYoESyjcM8ZYU2ndt7hWl0sB5d3nhp87h6fTVCYLPbAXTISx8bnpxsTUwVJEKlSknnUC0nu7gKnNqBYLrHjsSDVVI8oEizxhaCRPGMuGt3V8f6YAJ+I7djh+M3KO0oiir4etsJIlsXg2/6/14w5yXtr7fXCJYDX17uhv/emnrwaF6oX5tnt2z2EsVnX+byyQ6vSnh03AfHHH1ieTm5XwYktHAg3Xy7nDD/f9KDBd1YK+IIMTB/458v3qDCeXhSQAxyYoNOmjrVNokaHF171pUI5vyHcE9qIFrAdYzmIsuQnpzpfVqkTE7KgQsn7/RBxaSJy2tuZ2Y2OdwB3LRfVVCZ3x5VzV/hx15fb0kTtCsC0QOfJTejezSPEePrEAnPVBnYcGrXEyI5hl1ZCs6w/gZxeEsbGKzehjz2/rLPrlJbHw2T626EEgQIhETBj74evA7AOSpkxW+zetZvO588sVy0AD16VEQeR3Lin6Iz0Vo1XCV8Z7xvIlIDyYF2DII8OijqcL++3q2egdVFtsnLFzo95pHRR6hVA1i6HtP1ELN+Bgbl+IzRIln/fUnqMy6y9roVIr4+wGfAMpAWOTTPkWAe4mFzjEaS4eikGeu0jLPKgf0/SfySsO70P2f1BpjpKErcmqThCfHzj9Xg5xqWsWKuukO5/h8eCvMMtE+iH5QAxAGSlq3uA+5KPWCcvm0DJ3HrHWB/lqEPKsGV08ZL5eqzjygaEo0860xEnAwMv/C0G4ayafWyOc+1J5XlofGxJjX19dE11hWWwl5J2G/LApJ2TGHGyr7wrbd9ykNcG7Dt4IwD4XIWLf4T2Km2Y1L4wIex7voGp0sgZpvHF8q1Jt++zcg==
Variant 0
DifficultyLevel
563
Question
A pentagon is drawn below.
What is the sum of the five interior angles?
Worked Solution
|
∠ A = 45° |
∠ B = 360 − 90 = 270° |
∠C = 90 − 45 = 45° |
∠ D = ∠ E = 90° |
∴ Sum of interior angles
|
= 45 + 270 + 45 + 90 + 90 |
= 540° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers