Question
Matt and Libby both bought the same sized box of chocolates.
Matt ate 65 of his box.
Libby ate more chocolates than Matt.
What fraction of her chocolates could Libby have eaten?
Worked Solution
{{{correctAnswer}}} > 65
⇒ All other fractions are smaller than 65.
U2FsdGVkX18PYMnRX4pH3XgAT1i+m8emPFEMy2THxMp57bK/mbGl8dG+GbsiAJP8ZXo0yA14Wx8Sr/mibgPjSvwXOa/oLFllda7I4J2tb6JB5ClbX0Pg6MXYFPfd09jsAvrLhVZ7L1LmW+9RzyA4btHLo6lfbzH6Fl18TXa6AeiKit3foqKROfbQCRU5EYXLUQ7BgTh+2pxjR8RhkCkEdyvhI6lVcXaeBz0K7/ox4e7XVGLOxk+2Gx1e5lKYyR18E8ncZsSxliwYuxaAhJXTaPaLUCEr7PfRya9cRUOMkBbSXym0Z+c6jtM6CF5FT6kwQTj35FxAAEGpCyfcYehTLlixIF24DYj3FlR2IGm3EAsRLwlJdvX33K3gcX3Rakc41pWlFLrUnI03iW88aGCD1S/s/6+ZYcEBkGEVe0VPUACm3V2u3cSnLfb/yeJEj33hDafp/H7PCn6t8BKor04xEiBqQ55NdBAPXddV5WEZVxH7AEmtZCu8GgJRTLERVm9pSR5Wjc0LpFPSvaE//SKbcBSXXOqTAJtF0t0Po5Ck4Lc1oCg3/2PjEi23c4Cyiswq3H/H4sB0NK+t7x9eZ74JPArBHb7TK6M1S7ftLOr4K+dytjJyw2yCXneeGn/0Unxn356Qi8O5Gd1FmXYuWEDYOCT5YLJm04rLaxehkrqAZ84BMd65SzWehQtZidoJao0OyWsGF0Rw9RoH1ZnMNlLZzS3ZyNWdkGsgvDh+o6OvLvEeLB9ctm21n2Asdq20LxVi0R2ELrJxFon69SVthodsv0RX2lEVivJGB9DbRA8JdFezxSX47Em6Q1X3ef1bJ3CNVQMNqr+RmxpD8XHzmCbMiJ+FRGjFoi4SzCLXP4JEEdZFPDon6QT5HIrO4/g43fWLVRmmgAAuChDKjo6IsvXMGS90gPxI1gisaPenLghKt7uyKAv0nJ0e27iCFAKrphaQmA+77IeeIjGVxJuwfXZE1T0Dt8LzfV4zi8WqXz0YVCjTR3zuM4eAPq1OStMpiMIOMn7EjBhS9qfQS39Ix01clQr+YhXnzuUkmLbdbakuXiWf324UN1PHt3BfDfgnwb8boh34ya3BE2J5HMz2YT7Y7aQWCu9+2J/S+4brFeH1a/VJAQYPHc7dB15EFgu56/6LaI4ekaiOjBeqlNjJHel9V2+31djDUf54dcO5PPlLUpVrSaux7HNKV+JbTTPjrabzjtXrkO5Am/aJkF92aVFHVhu5xKw/+XcIpMvk/4FNvVAcdamBLmzudM7RDMUrpbNDnKVFTvb4g5nzI7E4EEhEQcM3xxkmBOoMgc/LvpbxGNPn2SubJsHw6AvCay1yipyydPAqrp24LIOTRUmD4k8gUDGQx8VF22XYHo2wn5O9Lxjtr/TwalszJLOnk3ibAQ7xNuBcUPzl4DvXoX2fAxM2b3KiwYigtx2kaXdnSd7AEtuLAAQTfOP8/GA4HKj2un81STE/Giga8896nMMNbYJaOFxmARugBJpQwxT1bOo0+QYlT1YbHUhrJCXwZXWiwAliLcAXRQE/3Mc/uJ3MeBC7RRHWDyhkqikfgCy//2qV0VEhPj0VomrkDlXzfLiE5YCbLy/3Dbu3TXBah5IIrJrx0ZglifCT/eu7v5uSB25PgN/TA9LEOn8Ipy4jENL7HU/v8GDOaGx3sjmZ6j2YJCVNQjksVSlA33swFVRii4McFi/GaH5gIHf9mmt3uXhpyn4CxN8TkogDDpoGY8F4r/87oHKJq+gEsMKyByu4Uu7CjQSrwiaZiCVEvfuyjGXNRpbEe4mN6lnUp8OqEcm/qYMUMQDY5t3Xf2qI7SsGSUKmqeHUyVfKMqFcl/jcnaDB2sTYStRxFjLO6EpF/KDYd+av/kD8R112XbBynQusvrkHJw6uYyBICQ0DWbJT2fIEXJOMHh5bYgft/kymoJIi8AaFFjWcAI0adY5J3c5vOq2T9U1mbZU/zEZmiAVtoj3wyuQJUuThuyqz31HDNSsa5ayCwxvcR9TDs4LW5uXpQzcC51/Dxk4ZTjdkcUZaiyL568k43+j4/dse7+mWAxbWqhpL+3JDKvDu3PUvCbTW0haisVWohzHSeLf21cMOX83P8aS+0rAmWvJi6TXjKIm4P4z1Vp0b3qG0+JodyfJNLkwAGMMJ6BYoencwsI2wBYHKb/KRchIpoo0Ui8AuWrnHFyYLu38qtKcYYiHiufGF5+S3+rodlzSBxfdUvmyjLGhYlKZJS41HTiod5D6DzYaM/onxNGsYoC/ErhPGrAd1j8u/5q1KywRUTPu5PxWmCvV4B9vrt3ZpSaxjSPAas+XllkQLVCgwyWmF5j1ihAPionoBWeeiRkHH+7UmbAr/X8CGTeeTrR2+cZe/fPjq8xO9lxQ44KrCq03OqmHVG555fTKWu3Bxr8t/OM1NcUIwQAWP1zH2XQ5SODxNVn3Fj+7Po31kg52fxd4EMuVqYErPC1OaDHHWoDZF+gFeR0SUwJ3GmFlhIWJhsXvAL/QluG9J2uDzs9lqzYIhsDU51DQBTGDo88xZhD1ySnbtRvsky6b4tEcTY97WMGMxPoOKissJf2YEUtoN5UDto/HLCA+Gp/pUzOdjmd1tDLBic2oX9fvsXXyqWbJSv1WUkHfb5/H2kXjBt9RBdx4CR8gnpDi6vvxwZYFmIlj4QekN5NthlWG5df/xAzegiOAkvCQqqbENZIZeyLLuZ3bo9mJ+e4bfiamFT2Sd/OrOnfV2onXS7WeBXJXqVkrPU7FAw0OzTo2rZ2b1+F4tx9pOqpMghBcxo5CWoM9g0aWiCfIvvLvc+oHxDkBLIjiyzfmgbBHcNHgrd6QuAGev3fWZKgHQr1Cafl/nw9tgcBEB1omrobACSsJQ6dmn2qdm+DFYNhf+xP0cG05NNWfZUSMu3RSFj5cPuTWM5wtXALJt9qI+TV9gieVL29lxoV8PqZcXn3+DToZNdHRu7I7XGB4KhuvKv/EUYmqvKk5QdNzYxhL419aDdPkCDSK9Dgzxy05oBrpIw28BS7Af97mfNWsmwB1xP3aZAJARKN0xwzabfwJHnfUcbQAF+s+qXM7K3nRGKc5fXfEvFduqrWBUoCVhCm9C3/9sqQqDZBMieFDn4Kl/Q7bCBjL6BaoLMd3ZMK1FkWzBTCO/TTW8+M/uamdIh9IMXPeA5JgAJgI5Ekw6WqXBFx3kdHcamvhDqRzGqzKmL1UHF9ioBiHTPWWBFC7VbdMzKS2clnzAExl9wEwkia2u/JpxJonk1/M4Km0QJgTFHGGMW9xMj9XQg3MxqXDua78ZEc4nPT23Qo4zRJ4Qrsp3vwvKi7vqYEqt0rsmOV5Y/TmE6rh0vjtrqxF7CRkRAACWnCbVU3W6NtyKYkk2n6B2TTlO4zxlg7R6Vn2zYqM0I7QcLY9OVusRgLJNyUZvR1zS1aYLkIFAR6ra2nESK3bvXLZ/bS8xQ0HR5GjYbp901fQ1pWTnC43h/P4RDcNKtvCbydgX6cDrzHsa7CzZ/+kjQyFqPIanWz/d4kJ+JIFiE0lIZPixUOS5boWtQJTXpUjsJF6+5HWeTVma5kJ4iiQYmAFDiOuS3afaXd6VkLtlWpD3tCM0+9u4BAOZRFEbjTJULVTVmtCm4+mjyf6ZH592HemWAaYQYyp1NF1gMgUWLsFn0Ooz7zsBilezjRYWMc12i+tFUZyXf1rQS5qeqxTXL2RrqMqn7Pzwjgf7Rs5E5nhoJdshNEthm6cK8dHipou+DouH7iL5b5DmSRhtV1ynj724DYo9cJMFZGZ2ZO+RX3hJHkqkDy1HLemnV2afJ7zeEnkFZRXQe1XeeCltJAhlLEMjinb4gTk2FmSt3PSDKGNnZxWcqn6zNixXeWsM0uJkZWjOS0dE5vZOa2RaZe52CbH1FeA/vgeyB7TB0zQa4jfup029pSLahDzfepL4vEIQYoFNmwFnbmhqdQwXIdIQaV+b58Jl9lUzQsiNSUZXTrqf+HTAwlb87sHQ+Uy8hDbqVNiDD3Vo+69UWjZNaTXpPbIVrBIXOee5jYDJrbnZJcAnTVp7W8IQrA64kDEz7AizgWjqOr+0acPN92C0KyNgJ1ezheDR/yOyNISiUYrR7nhYeI/lKZbgkMttRlB4dbtE1WHBalBCRDAEBrQCMNPzQkx0MUJ+eYL5XG8r0LBVKVaPM186dqPkBB6g91rxFFZbLcZfeRSyTWmsSkNoyJL3g4h3jLXX2xPdSqrrb5Ngjp/rvsGPkmurbdLBXsrASFEJZ1ZYLK7zrhedJCVnim3+1/9uWCA6eg+1Qs/kIIGvH55iS//1nA9WwL3VB2LVbXvPKLKUc1g2XJmNPItzBXLue+0d8SICuls7G/HjMzRFy6byoWySxsV3S1PdqrvU/LZj4LDd94KmRpsMxUYaI7ScCk5DeDBJ+wComuMArl0n3GK6HDTSBBRKx8GtBC35/f0isntGYJyXx8jrf2PdRZ/0Hivgskvj3FG3YNEnWnlmVgKeZzmGt7k2B6Pu+SNOHprXP7TRi1YVIW3dc6cYIYKDigSNpfmfzNUCFpIiknLhBap2opw5AHM2ERQ4yqyof9gOSHTLESrIubrFTGd6GB/JyG48DfI2N+/80eY6U31gsVL3vAXfyR4FKLzlvP6F2MBYDjgR2gHNDZmYrhmle2JpHRclUYfaQsH25juKZ6/Blf6KogDmWWOqvGttTUaQbdibQ8HIhttbTk+qYIGJxGPAYSpUxq+hV9lcm4zTb2J6rboqoXF7Hq5GNkC7MubfsjfyhkhJjkFsUuX4l3GjLZz8GYbgn7tUEnFgCMoRaQhbpo1sfFSQ7NJ1S8j/hPn9i6sP7nBL/0Sbja/haQveMC2w2VAHWLNxoA+vkXpc5Q3pBl+OpQgKqbFl9UL4PyyPNfqPibzdtsY3Nuqr4vjwb2qL3dzZPieKAg3OWLT9LKToqhZGadwRcmEdi0MB4cfAjneYifGbs+KBGf0bKRxwVKtM5O3qYt8yglJRZWsVu1tlzESdyug+PV+myryVX56d1+Q7sCaiT32YG/PW6D+9t2k/XhCRM30zQs/cTQ8t1msbw9U7b5pXkeym7JlS3jn4r52g3hVZ9krr5XudEdKm6pRkGEJsKSYpq4AeVZd5aOyiPWDcrli3Ozq19GT+/d1t7o1LmzctlNm3AGUAvVgpdWEJaA26f70K8KV4EBPhYeBvF8OWDt7brj7IvFtddnJQRw7n3lSt0KDU5serA/S24rRHGikT0hvZSmQVT6QmMwWVO4jh+UoqwnYIHJ3M4XTSgKrYtyLxa51GOb3xc9i1ZPnpwhIQh9zdZX0XE16bhDTB/BFZuCAmcctJqtIDdvsX3LBGYtJjYoKgUPuZ+C/WEcgwtLldpumicJ+oMoyaa+3vcC5jEE/c5jW414dTYk8iEb8F5USpiZlbgneCkT3FJIcH34wkV2r/V342SFGFqrF89hUV57AzhRQ7J/kFILDwoIjriCLWsXx0R/CIk+6jChtOq1ciNHRX0rRbxa+b4m9h0o4A/63ax2zHIWHXpot0qR+9mZ/01HbyfTdaxv6+mR9VUy0Lvlz7lBXb9qn3SVDSgOhaOBv+8XAJCYXSaFMij5ArCpjZzj7BvKB8rosOCZIQVs+P+OzfLDSho7bLu4/1GyuaToy8yKhmFV2cTzrVA4qa4gZDB7m72j5QzMtztSH5rXFd5otcSYz4po427SIMv/vg36E8kkwZz01drFMNX9XfyKlqRoS69bQ96djr1rWs8AapJKqKM/olJXqZIxQit+Md+MbVwrwrNyOjzVKsfHGBK88rC56tQFXPqXcoV4KeSkTDSe+87bQp0b+v1pUnrQiXmvmRJ+s2bpClOWcUgs1ugvRgAg8bM3KZdYIxOGUaG9liF6ILIlZjC1WooiMyFMTX2QtcUMObbsYTEaz89L/dMSZB8ALbzk85P7r+xqBLfYQDnl58OZsmTA0n9toMJnhleyi+lk+H2t69it5Ad7C8IWhP7PGB6uIXulzNpvGwNQxeL3wLaoJhaZGh03NYn2mgNXZee9f1i2v32psCHcsDAfZrY0eboeARAi7uQuoKEaWb6vdXEiyoN8ujR1fNK+dK/jdNewEZauArzgK/9fJPWf4a+KJtIocAhT/Gri+ScuXLlQu2DGrPxsf0eV53EoeR1vazrXWD+hsGkp9V42M5Rsiou7/I5SOv8wEcaIcVgUOW7wYFDYyf2xQFBO+6F3nuW9byBLdnAnN+bzvwzoGXc6f+4wKpaTr7JKcN0E8S/2usFVEIV21IYGdG25D+dlMcXBDOclqqjvLOkw7xQYx6PIobssLS5p4jiEk0o1wgpyogBbkqAxkJWb3A0CTN5mwPtWzcJurKNsHTaPgGz1knVx1stLG2a+WLPinRwpLe8/t0ZZeuLN2//7/A4WdgW2DyZlyqtrNST+Jm9fiFpibnRQgSt0UfkY0OGqcCmW0Mo4iGCof6zluGJlrr1VmWstsDJJ1d/AiuWZFFbyJOjIqzNiGyurQ0fxIh0u+5LZeBiO5+iyYvwNQQGCfl6spQzzNrZzSnhZhCwsNaiWgOz9OJgztUs5aWTLJDtEr92T1Ku4NyMMDH1Zm9W0ETSfXc4W6yS0x710Uz9SAmKo3aidQotBqkLvtelq8B/3Mid32yqzDAAhY4v/Fqpa0O6qLcYdTNF3frCQNcNS2Inm6O6xVG9C6m62m5+mHtElWRGMMeYZbb5KW1z6TUFoQBupiNAaVePLlrs9VHOkYcZKjENzajlKeNGwq7PUuGe0npkRfxsyLD4pWOdKfWBEasESnz1kQ7WI8HzsZFokk1R/DX4rhYWRVP7gdfkIVqp9eElSDSTKaqhg6E+jE9mNzT3g3aSZZ/VSUE8v3K1nPMWzexeoJ2IEA4Owgh9dzZL5G4YtMZMT0XEcJjuVOQd0M4LU6qaAhNPmvQ2lz0Hd0H9y6ygSG/gOJfxTSktQyoQKdGIZVx2wkNRkXcCQuXWVHHQ8Jyxo5IjzftbtX9cG8060YLHK9x2Je4oLQT0uwz0mKaqb2vRiYUOlnDf3XevxK1savHAuqEd3Yvzzu6FCXBu5wp4M2q8XIjTF0g5UQnKT/i1Tusx9XXerujTG2yHXklUraht+nxCANEqMBH96BEi/j9TxjT/7Sy2fFsfjRlUUQprQ+XSD3yZnZ0a/MeArmOVbPMMeRMqFqUJWKeUk0XMoHcRdgtuVxYWxsJVsUhqyJDIB/rCmx+XicKGOOOhwz9FqcKWPfUaYME6fd/T9vbYFWcXeLhtf/T41NOmVjB0UIbOyU660avSELLP/wG6mHsHuTh5bfryaBkKoDifgQrKoCgSAu6WSkAz+fow225WdjvoFsfa3Cs2hZEwiYOwOGuBoIdbYPvex1HiQu/nRvTDYUoczYT1eLeEaK4cLDPEjuDwoAUy4btHEN27PXo7vFeEBb0kZ5Scf9DJyftdD1AydyGd3UAIn2OFF/048eoG6hFeJTvsHzwKVS0PP9HEQlG3RWx/a8g+zMoD1RnvbdKFL9FoQByxibGU7AXB4e7ILgI0REq3S1KFUc3mmcPEe1YIfDMr4Q0RXaBQ+HNNx5RzKiwAm2xUmmMYUjeLcQxY7s6QpmYUJB6ZYp4ZXOZ8YLwitDAH70W7oapdu0HasTgK9oleHZ2+DBSd/nEduB95lENl3yAi2ruNLOLoXdfxXX7X4mkmLSFK4Lk0TvhnWOuL09AyuzBWgrlFtUyVhrUfD7MZ0EMlVkgWTSOnjCb+8Dc6W88ll293QLLv51n39uNFlN506YX9Rr9JufDww0g4J9vGNHq2olrWLOFhQ8avF8ycuUfPTKZMAH0lbb7yQVg27N3+ERxr29ayAoqeN96MML+dXqWMxlebZApIdlvoGnxfYj0i53l6Bf0n/TY8YNjJbtHUTfP5IPO6cFj7T0tIdVlpYCBhdEI6T8HTY5ql9E8wdWdJw1yuZK+P2426UXRna19gc03iXr5e0++Y5gYj8A2gm/bkcYY/4zDboZvv5HpLihLWJ5Qw62jkArfMjEpxgKYJq4tq7oyFHK/barL81Hri6m/WE6FkBac98OEVcwjksOYSUcWFd6fT4ZpW+CZxNlch5YTp6mFvrGoZKLSnhjW7MicfmnrXXAMldUYtWNUl3ivOQUDR+dc0Z5fwznDRgnssW7H6sklPnvMhDXLL/+hm0G2EmYBFTleURUoWFjWdpVwpOzjiRJC8BUE6728i/nFl8Z9ycEcoujHKxzVXook5zy3O5nQoQ6hetoGiWN7/IVXyKS0MUSO+RE/1y9Qy7S/DVY0xpYkI5Gu7Ga33sGFQ8Gttj/Vw4VHBboWvzsPpJ3jcO/3OLKqzxdRMrsFORotqRV+s/vkSr7q/vbVvrIcK5E3sfYwkhGK92Mhiko+KkxtAWyd8Mkz1/evqZ96Ervz3djLaMxP3DljYiOfxNFRhcN0LPU1FdMRhecgnowJ/FNnyvcpUWCJMOuWNnPvwhfhaknZm4kgIYvhMOJDyw23fZxkffM703g+KiLVbv3OlXYKlHbIb2jFY82iqnS5XIx1hFtUcp7lHCDHMF4g3oP54JjRp7Hwrclu95VRDkaNeDDYnNSxXJ2zdUsdN21pD+2UxCmJrz7JXl0dLIL50BhSqDgjemhJbcuCjjPYcX0LNaxDU3gbnduKrAsefQYLSJWd3IrtTDiLLaRGyy+ZTmGuLPs3Uq/Qo00kW2b6c5aJAb4iG0MC2ldUSB8S+/HyYewYPuNW48ywrMGfUeDZum2CCb/KC6wS7kM6jYSXqwJmArUiAeNHY+k2JKU5vseD6SrAClWozlZI51pRpeggqSVBWgLcCuobMYxxzsSCsbLBotQ4Hpy0jVZxHxuPo+uScYVQ+igl66t/DfmFLkFyH2ObN1vysrb4twPvYmSA4XbWNN2/MBL60OIZwpINp2/158xgCiavBSD5c0tqAlpZz04OmbnBLrsPVlxKrrR/LngUew/qz+R/XK1tCLnlDXftoZhDJDkFxAZ4en5T3I6S7/o+qRtW6H5iDoF/biG3uYs6GCxOL5wpm1sVbdqXzighjz0QxNnwAVgWN1GIyV8wiKNpJmrBbgc5VZ6SXAkJl+qokxiOEBB3etI2YWeR5vDrOAcK2n9OoekRwJO7caeJamDE1LMRk6tEZFU2vYv7gcDnBkCHcPsh4aRpQhWD6RA8Dkrs69uGzuPcto3t+gh+5WY7fFRu+/9YrZAbIeDvNpXAbn6Q6GhHRX6K7JMiojBhlREqKKrkG2wZ1PdAOcj9qfKCWWnvg9MZ6Ro2wvtqZ5T9JB1j+9dq7YLhB9RWe54j2IV7/cnSiMc+oIpkxUA7JJcEhotFH+T0mmvaRWMGwITpJvlIgTd72bcePATWJR+r9dYoSMn9gS1jSv7C+R9tmMibr+6/6iOXmNQbmT7wiCIVdaNTKr7HWXnNugx4ex2GBcJ9AL7aP9SJVOxBBYUZF9vzcH7nRgHIOCVokZqJMdsa67tDcZiHHpDcUj5d0r7j+2cQSU8v6JJ1GgDLhX514xJeojxH8UE9J1cFVbgs0u3dl5HvgarVWeJL4iKWbEqKsKq/Q2zpnoGXsxuGtqOszjqaexbcmcH2KI8L+C6OC1kdF0jQugwP8qkC+e9QUmH+lyK60K9SsS3kJSbbr/ExpIDI7zchzeo43p1dz1eZu0CfoCsVLhy9pCgzNasnQlFT8+y+o0wpUL0xxA9MMaCvRMyyUMImNbxVkolQwDGJRqHW5z/xnn3ZlN3OIRJo46/XpJQS8UaTk87rRAhHchYN0Q2URxvTPkufwE27JVp0LgZddMBFn5YqqaXZgdmQZCxrWdjXHKJ80m6j8AT4a46h91Yt5KSX7ZK00HoYJvhKDVKI9gQwZLhOgQ3BJSBr5IO4BhS0Bqv19andjzmjsOd7Foim5lSdoKqlguhnLtQK6exuYsAAOyVhO4poxztr6xopBp2XmEULZWb06uNn+Xv6eV0UXIaSpT5hQMPqZkSJJKs+ge2T9DbNdBCPbeEUhahZs5rzQIfIYnjZQvJs/VGlQ0LYaFYU1o04AXOoBCij7NOIdl/uu61hiE/8TO0RVm8fQIwcHEP2n+SIPqPtTlxHvcnmpuysf5qqZeUaaF+Dp1B4sL2T2F/Cg/9whOiyVAyz7khjhJfzWdWSM19U+ajnZh9rMLBblZflQhtyWzJZ8WPBLg2vZsk74mn3A7PZrPY92r2cF5dwuViBkZkWVC4D6l0+eWBqJDFXtiljSAqvXYKckPNeQYRCF0Lu2PYodrv6HyDhY2bmOOv+PtZPdzEoUze8w4DsJGLLsWCY9njub/Cz4oaT8tzo79RV/FW210T4/+JpgnqniIRWKzo0HNob9Uvz4rQLCnNF1+k2wK0StLIBsGyHK9YzlJyoGHipN8VTsclEqIeG7QIPLidKj1b8o8jo9pjkjbJFJyCP7ZioR2VbjpiCyFJFoOiBMfYl39vzLrMWtuKCVsDnqQ23ei+1O7wUE6JHn3v2iBsUWxVRbKDJQQlBZdFZrUiRK24lUeRijaFPAjlQybhImitRS/7QPs7UqixDGiDgjgt5JsBHSSrjU3TTADhfg9JEfnHbv++8z41XU/1xQ6UrOM8qLMzmxvYLocLfIk+tcNTdr53pZLxAk5h/89Pq8YBWdFtFgq0S8RiWPyCRambGDL8FvoJf5h+Yg1NN6GIBVpdFQpTo6cy3X+rcXcei41+m37a9u7erpqZQadtRzgWSSMytLt0XsBkwdnELaME7EVJ6XW3Pq3WWPYuX6u9vs7gH8dGo9skkOC0BlX/ObX96HhK6AW6KbPATOxBRD5b80O8akjEtu1QM9FofpyL54Ei8QrWjxALnp+3MSSK3ZbvRIAZ5dFqZNmqtcEk8RdNUauywK3G/Pyn+OI6DbiTB8vt825SqN7fWEjW3hkS6tTwfDrwQ0OMNz/SsFDLk2oEx9FmMD0mMM8LuqbH2ehVZTFK5FwhulJdV5gTgoXtn3tFl08pr+t0YakWkOgperRAFn8SlUzC67LH4gTQm5nncDAvba5WpH+RiHaYUmLPzPzs3JWnkVy32YmKtFx/P77jN6vTdNoeN6UCsYXa9r4r1EIlTEO2+XqrQl5aIh9cYRwd/hXgDW4+b8bhF4HlKJE9qjm1aIHW5nd6zwVrLxz5F2WJf8cyRnplChs+7NHX+TCenUwVTYSfRWnXqFBMz54GUnTck52Usn8nqm4qWAZmDKafHvTRnru6hgOVXS/mJAItQnt3ysAwDmqeQjOm8b18Liafgj2LUfa2tGXB7qS8qPGOmZR1QtYNQb0ItBD9IGBsRcHZQe5wzHAB5UbU+umedIi7W0r+PovrLoAmVPouh4Iht5Tgd7kB4S2qGHVu4jBW+m+sUqQwG/o6PHxZd4xsdAOZ4mlqCgho3L/Oy3UDKlzF1kK3QmNongh2vLP880MqIvNEDVLjps2knxcj5ZDHG1VLYNvkupBqyX2HdrIvOMRWXzkPeM0OZtbt25+taysQtOFui6aFbuQPCdpYxEN86L7qgEqPY8ENnHoWaB7WtmhUE1f/ZDkHluKErYMC0N8Be87ZMsSmBG+Le1f8ljLagFHqYaRwvMr2WucCLzsomppQW1xvT7yAFGJN3lNXlh/U97NZo2UJdtl71EaKtkeMSnL+oFnU14LfRFATq4y+vynDPl2p9Wy9wUEIa1dBMV6Tp1lwNnKUPY1zM5DjdplVYSmM9UJSRjby8DCiZXG/29VHLTSwDcmFool6uGX7xiC1VO0W9A96S+RvtxJqtOn1OIHtUC/MlDf9ubCIS2qzlVfh1yfmBZhiokwS5pXY8+/TA5sHYjQC8MnaQsOeDWYfKHUnSs/7rUpMGoUltKRRi8Y+0JlomDu9xONCBX4NN/+nrT08M5v7JZbDCkS84COl1pXaXmw08GN3jCpgucl7QCZax5z+rMk9NO0PaKN74i1eTzmU6urp796s+n39hMwmWeN8LO3pYnMRKrycQG2o9P77ihm44Fn65bva3n5CkzrWAspAcE4q28quEstVjoUvEMuu/675cuV0UBByTWlguBa7q1/5v51NPcfP6BzuhAR2EdnGkS2ajTqJSimnDcSuosbhGE7fo8CTA0crjXeM9toG+IyXBAY36XPsRir/VwtQb0s0rnI8ZQGlTqXe/i3+lUhxGi5AHPM23FTSyl2embNRY4XCSgLExtSGu6ZP+eb7Xg0UpFDr/zz6KFKNLU56fPTXtcEhpfgvJ42EFjXdTx8Xezfub2KUGIsqtzrD6eS+QfuXpBzQFJ1rq/8d0LIu7N5NRW4LJgq2uYMUV8lCa+fY2pdeCovBIv5PHLieS//BLmmi+/puLUWze/IqgaaqP6v1IdzHVhF2EaXzd1nV+PzrQ61lltQ6WkmbsZGmR+Kiy8Y+U84Ax5YnIs9RJ9UNVyX3CJn26xd1tNCLES5b4E3fvEMUzmUCxDH5c4Fgf/0FEOuVP0JS8kbWEWiucIV+Kvmg3f33WUXgAFBAAaa6il1geMBzidb6GHgoc9MFEEbod3Ab3Aaz6kwNLRSWlpwxUfKuCdiExd93fUK3uFJ+7nyb8Zh4TSr8Nv84SzO/FyAyXrmP7WliFflhxRh3Dw4smQNWFQyg1mLncWEyKKH3bjmhWn6Nacr8TKKdhNca5cYs7wJiIm3AC9uesrJWuxIPwfBReBP4FsOg8HcdFYQi0mnwyPl72WzGmBey2UAFOI0ldOFyyWBBd0JVB5GgRwJdSYZCm/eMcTTC5vi5Y8YehbjPpRWt90S70OMkNovgKo8qhGLnhJQrEIrYGR6Qu26YwGpS/fsy+vSE6hFqsYKcZMIjxwcgKN18TiiUrxCjUsn36wXB2iQy6mz9OEghhsLqho48cBFBVLyL4sQ2Y313wPLT0NXqq9cvmOwyznlnjcLK7VoxkG5qR2Pvc+MxsxjyfbuIHB84cYB7xBOJ1MtWAVzdtwnM42XrtVcGAGv3wyrc8dWSWvk9HCe9n+c4bhj/EOjyCuA7PZoJCKzjaNBwgkatpM7o+bVnD+KPGm+SUJ6ce0ekqOfA4g+piQpK3KGIeBts0n6gfQyA4ziaCI5WAc1UqT4qLGc86+OuXT03bmhjyKhxjWf7xfNlQIRQF0/uu6qywSTw730EH/jHr6XvjK65g7Kgcq2wyDVQ+9TFEedRSKHVGq+Dxinr+ZpUV4yP4KZiWfgsXxR7y7MjzKtY6cRub66ELUIdTym7WNKaKnX90tInO8dlZaeMp7CzS+8j5Fwu7IDz+j7i+D7b+k87KtIgMc6oduMAxNQbrn0q2wgP0MjQbdzSDDDJaXrpK1l0kHz5FTDEv4z/pQ1cWplKGacZQJBh6mK5Erc61HhA7NYlkxIIYWMrux5SvEis2whYv06HxAlH2UdCF9NEhcW6Zw6qd9u+XWtqEglxc53mTVEmRtUYZBJTB8+qBH+bvW5aJKKBZUteyWUxhEnmw5gxuKnS8bb9C2Iq2Rh+twy60EOXxiOLvk6NlXhqasIE+IKlawbDd86BdkvBuuGxNzZakBZISYROohnh21d/ZERJdF0OH/ckZKjqKS0EjzhASqVJ+r6fgGYhYN3I7TwIMPcA2jq72afsZEbpbidpFMjrnwbkwra7t1o5CD1MKIASfxA8YP3a8Ol/UTSwptVE2snLF492rtk+E3hAikDOyY6IEbMX9AnI5g0SlItmb7E3ubmk5riePW/59MenOsgzuWSSoAFpVieHbAHYa8YDNLQlcrh8qQkJ9bX4CyohCEdu87hYwRoopdaNCCLB4ZRfLT4LiyQAHv90Bp2pzQaVCNoHA+vuMqCwTH2myoE3AH5cldRcDiytXjxJguBEUoVYbDdYqZRdWwIt1kpdnUbQ2FCE05Ewl6HuSWdvABOoSCpB0s0i+uUKRZoDtQeQ4qOo0cSEL0G9SUaZUHYcfv6BOLEsb5uTJ+XuyWqNDR+rg4D0dlMBf/jM2ZkHYjuJ2gKEbjpJt13BNghih+5TRZHTQHQsu5ipl3A8IZbGer8jKK+u41htODLhKSakaO5lH8nTh9+MxMRIoTsXcenDBBi7Ln1EkJbgMBn4funbzpq7r/OKENxXw7F3aqByJYZl/T97qMHuKCkhRz9gjwdOfVDCuWvDkayp++EMaiO8nKUix9leRLI6g1e6iVv+oOcnRIp3wlSudsCFQc7WxgrToxZD0PTmikIqTDzrayDXfGV3CirsX8U3paUmn6SHAalWzr7FcLBbaWbepb+gZ+Dv/Wy96i7ynEnJkIW3ryBIQNaszy76a1mpjVwnIb1SSXiAwNfXr/tO1++XATVnk7vPZB5QNi5PURUzDbWvot20NZ+7jswpzgJE1WaEBF5tVJtmfWn42g7YO+gCSGwzTGI0MD5Uf8BoRqSQKrF/s4T2bg2Buigpd6skDa4z5HOO77Hk5F9pc2H1BC5VIpoVT+nPCEWP7htIjaOyRBSMMJ0tQdUIdvQeU56XlgK041xH5qfZtFV4WBl0tZ+pueDGEeZT3XjEpGViNhCopcY1NPku9brazAarHQ9OlhR41yRmy/phC/h3kC8Z8yk2wadybYDuoGsCT8EpgNJtFuy+75IsjV9KzffobiuXPBn0/J9Dwdq8gfPkW2OGs86L/EC6nqO7zleS7OCa9Gl4twHZG2SnqKIseZW6rj7JHxG7V3coUJJOhjA5Ly0s0fEHpvfI1db3zA1XBpvSJ+kePSX49uWs7R31WbInj8hBeod6qFVjyvnoCBaZjg2ecPcHAlYOPjxWNW2w8VSyS4u9diYLXrepd6qxbara/1jH+//zlzjRGAPODjoSpSsohc7uHraqn4cbPpDPZ4mL03VJ1CIbUtvPKjLHdAbw4o214JTY40chxQjok3V7MXVKFALaEwohaoKB1MujIdpwMe7fcRZ4DVXlltDTWp3nrJKDtQtqs/BljBPjYlrhgVxbq748GsfOCvZsVkxQsREGXhT1hdVPB89S6BndPdZV0zX0aHmR2wCQ9Mrc9uiANB+k4bDRStsskAvIFVSXaYxRawcGTKuE+T/QB+Nkh2CusFP4SGnmfMEz9SWd+0NUw6e69Et/ntcopje8TfmM1VDyKCLr6DP5JARx0XItlzTTfexqIn5gvN0kiLGerqJ85H0QHVnvcEZCy5KzUrHOIAnfmrOTSyM9sgosZytc6zs2l6wkTkNm/CFMCADXf5xypS8S7xF+MS0tQdGAOrdkeXE4nR9mH7Nppk/BygsP44wD0Aus32PP0qo+kXP7GPt4UWgLWGUCcb6iAsmXnkC2YDn+U/2RDuAoQs4Sybh10OSIGDYTA2z8HqqAJFBWOz/BIWH92gJKtZF5s6wYL+pcBTNuHxuAP4CSLQynatmk90RXRoqIB2Yv3adS/5diDlPI/ptgYYb9MKRnul2SxrLjcnNXH7bwIjvXd4ml+siBwHlrcX5A5yub4S6a620q36wwsZW+QqJFy7brg/Rh1JRzYuhRboGtkylGAJX0g6nurORmrJRToO+FfzcbNsUpMDQIGVoPBZGvEdV+BLMBN40jBYht+uE/EAH8syN7lDjWSwYINUw8bws3t4qMeM1s4DYohh09FADtH73khJyMVG25WCXch6LlKU02GabZdb1hhudBhwFEYmWctLOs4b7amve2cjytYgYWIcSFUvb72Pshki7qZ4p0SoZJAo9B4TCPXNQH6F7EQjwJMT+xb4xj6NlSLzeMvSPIcpYJIL/UlTUCKl2I6Vuk6W1lQswKyU216VRt4P+tbnsqOqgfAphxXj85JDR2SwQ20AkFDFYhnX03VA6SC5S8/OP1TcxMCeYA7UIFEs0yLgxGtKNXavod9hEOnYPGMfIurGhcs4EelgYAFrbGPOqx2R7R3U4gMFVsVi2NVoUij9UecLTDb+TvCimy2E0jwrA1ANyJnQzGD10XNnhOKocOdTBpOmT9qplVo9rhkgtvjicSuxNI/2AEV+BLcmh98Le3oK5nePH/2sYXO3l0OjBMx8/zksDnoei9s5KuOL0YNS/9mCd+QsbdY1Xku7qdQsCOMbEjfBacXKHftC1zEPqmFNGtV2zjydzFobntTDURTczmr3S1yOyI2T/NiFwV6vONQ+dUgXnpr10peRNmBIPeTgmy/F647goJROVHtAAY1daGbml/0Ua9RpJmhWa0J/dR9Bq2Gqk5kaV+DKp+aRoJCNFoAlzPf49x7VObg3o0cZYer+80WpZBQhpLlKp2JJyNVyczlj+dKOA/hwAXtfNRKhcxojQKlsoc1+UZx/YrQ9g8dN92U7viw58A66G8aY4LPSXwoyg6SAvA06Hw8+jMpwPknHh8z3StlW6IfrhKcVeNBcbNVnHgULhone3VI17Sd2sgoVU9BNLe0Hlkt18rHslIBXchL0YyOCXAoq/k61v1tcMEeiRfbohvpjvzuzcYzKHEVqq99+1g9nzP205iQIyD0aWx7I8DET8v/dPZcHXPcIYxikBjqtds8AopEtLwahdTB/h90vLXHYDq77KIgAyKv4ZdTJYLjiTtwU0o3boviAMIZ
Variant 0
DifficultyLevel
575
Question
Matt and Libby both bought the same sized box of chocolates.
Matt ate 65 of his box.
Libby ate more chocolates than Matt.
What fraction of her chocolates could Libby have eaten?
Worked Solution
76 > 65
⇒ All other fractions are smaller than 65.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers