Question
Guthrie plotted the points A−F on a grid paper, as shown below.
She then joined some of the points together with lines.
Which of these pairs of lines are parallel?
Worked Solution
{{{correctAnswer}}} are parallel
U2FsdGVkX1+qr1F0oljg+orNTXSpprzO85ZcMcQKfNaC09T7n9UAdBXfw4GZ5nNwUOHlzX1p6Rx5XAIo2DkdPM5YaUXlQPryuZ2tGVkjmLB8sCghhtYSRby8U0wyXfcMUzD4zkv1E5Pkpa4sOXY/yLCpk3F9eBV62vdvDG4BxSSbNOei9DsGbeZ1U/za7i+4eJ/JcgSO7deEV0XrwWALyAyUYOkunU4bmcZBTppeuZgOire96ek7Kb90+HmDSLroD8wVRD7fzzP8s/vfsX4+TCcVY2VRuQlRD0C6RGYZ7JC6UthbtnNjgPFeWyhbtA1DJ445MULz8sQBCilbqlupht+wW94n7Gn4zXofNPgj+N3Yl3LRZJa7VnxaG+wXzew7sZ4iMS/aXdClv/jwmuSZOKbH0nSn8eF7fPNQsibHMOeK1iCnVt2nCaFg3AXAmzIIaKtBTHf3LKJHw3xbtndsm3tBG5ZZv5wzbKM+AWIeuJpIhIuMPCTxz29uZ0TfUZx7QWcXpH0RUzAVtBuXS5krSbpjlpOLjlSmAXBawLhzmXr8Dpsu2WSeHaFFkODkTLpTObSSWFwyl2BFyBVEb8+anFtOwZ1Mg5hYM88kLB0E97vtye7lP3Mb1tan4uvvtgVXX1LWkb0K2dRBkUQ+eQbonOqLXKqSQYEGrHGrCUZlfUYiO9poZGVUIVC4N6AbQeML3sr2UE3H8MQBx6Rf+TWss4fQSeTfHnGidn0K4kcoYRXQZpXc/LoJLcAUs9KD7+TSKG9YKzrX+vOXmdceqilU+V35T8/Db3PL2R4azuH1Ei8qZxVZAVwEs5o8Sv9M+Jx1zGtJzUVNih1fwa/YV8Z1qaSZF58+mRxGzs1qzK01A2HD9O57bAbs4wiPwiAmZJFHJmksVGGGuqE58p88Gm5ZWf8GWJB0CVky2IE99Y53AjvB6Nc3G/Vr02vfh6KLlgLCXFvX256kq3GasZn6tjPkV6WGxwf//HLwOrGs9/oYINgGfQvWo30VqqL0hFN+hHyDtz5w5Gg2MO8Ie2MeMRJcFwlekseCugsZQO4J72oQP7MknO+fxFRz7T0xHgcCmAEq9I2rVunK8ULX2TYQdCDzy01fa6WdhoUp8Pqrg11MqFHQRwVjYaCKyC6FF6zksX0oTkbb3bJ1WtZycAhsA1UfzndHlDtsN9kwDHwRCstK1cDJHj+vW92IyhwLpIj/Hbg3pK7pBcL6W77ZwrrpaexwkGoDJwFp8VFKCdzqcQ39Wn6wUOONV/DHCKK1/0qqaOYEkW2/WGYDg0Mb2h3wJ6qQzTMbDldq5O4fAJEo/PST7lDGt/HJKCoLkYnDJL7JsJrjyrSq4giB+iwb4CL3e5WSEXBAHhreFBHPKB04tTTbLDwtmMiHYWvgLFRceCFRErHUNxocr8xZtPF55TcftyjLOV0iCE7kqyXRjSKfYumDfOv+hs1/vo2vjqCd0kvFm3eWAOJftsKs7LLCVQPdWdpz+qXlWh6RQFcsYWfB9icdeurGXYJrqAfiMDVyiEZih5Mc2qMHn/N1vlbHTXq2sibFfmN+SA1IYImhL6aKhJLGYBf3x1kAyNL/u541+HG/cmh9APKpw+XEchfxVkyq29yJ/P6YcsW8W0QP4SvH7EBuK01soivnTiV7OgjPGCWA7ZGUBv107WzafaVZeMW7VjFZB/DyaeMcrdElrSwJ6ieFofz3HzqRt0yWf6xx0KxZYXXVSNiT+g59Pa0lNaGeRPBv/tAvamifUIBRnyFpKWdoodKGRHUh3NWkNhsn+990nMSXihgCPqv68rslSOo7FC9+s2IwB76SiXZHjW+d15DYPBKdtjq71PH8phZ+vgyj/K8Z4FDwStlS3DbQ0re0q9Xggw16QjTc5/5LBOcZWmY83zOo63U37RreDGjpUt3P+o/xfJVbjfmopNGOKufLanqv7njT/7PIcH5pZC1pNbVV+yluy+rskiSqO9CobaAeWxxZh4sOWc+nHbbob2reLMtEunW/SLyeeJTfUls/bMWVguHjFDjGqghFOdYI1gg9giZA9YrU7jnwLfevNDRq/v4nxXG41hBYCiVf1zMO00w8xj/epRh+PFj+gB2HkLU2PkQujPYWsgd3IoAKOQZnn6LnpjL2JKXNUmfDVMb2aJH88QLp2rfoQqR5RHFo4v64KY4XEskO0oMXcJfqpYNnlspJi3J0BkbSLHDZq8VU8qq0AoBV+ScM7mpqm98V3WrqWh9j1KuMB1MHbfgrMfEbgSg+5h18An8o+Pc8tT08UXUUiiAZzT+Dkb35BMZlewh50OMp8TgBqcDhEUz2eZ60UC10qnittM0gUEfUrqR1QSAGRmUa5SZ6u/gtnDraNquK1wBBH4J5Da2JdvBtY2JzxdbU5iUqTkZgLX8T8RTLlRUkjBhP6NxzXSqc+VStJmRBjyAJEwy5t9+tr3CI3btmFpo14mpP2xNG2VQidQNw0YS0n5TTenHE9HU8iG/DoV6bCC7ZzEUauJPcetgDopgo8dZOFhCItIh9dxGMVmxo0O1IbfnNeSxFJyB/v3oKhrgPjKQ1bV1csCdrBe2mryJ067ZgwW/pzbmE0oEDQQvLn5SF1sCouJl4Hg0AB/0NXO7xltQsafTN1y488oPCVPbJm1XUKIHzEDlueHR65vzWUSOe2yNk2iF1RWbzeGWGsOZqcrJAVsVKiv7oM49SnLKzmsq+pvpwZPKaI7KJkizJUCZ3yuVlfENG6DRlVRwBHpl5B39fRLs4XQ9pz0i+5/tLlL4j2A+95vboOLD2yC44LEWQBboaArWGG3/VL46PPkgtMoIf4birJpJ6RsQZcNLBpa6Nw7UFicIO2J4ohH0bd2OGpMwnvHLILwFi736z+x7coxLpdYh57L6e/h9Of30qZx6NhURSqVn86BXSBuw18f/zFwsx4DkLlTbz1qgcnZJoOjOSoGAbo0WktfnoJAprVsX/GopEjXfkGoYeVv3x3yG4xDUf1BM+dSIZguRQYcJHoV2WxEyvr3t/VGznBwVw8hWB6AMniylbt9FEut7PartbEFXI8yPT/W3ZsBs+yj2BRMrSG4Yqkv0iSewPyI+1a60RAGwo3+3QrYAIL/AD4pKo8P4rZ1SDCGFehGxyYt02Ys2GfL5euF8LoT49oipHU0bxnrCBYmu67rM5vzvWyjLA0j9AGvPO9D+sqh3i0c4glJHUozwx/TULT3KMSRVxJVbUbep2JQTCYwAATwMGba5Ud/V1doC22YkZxiIVfNMAiNwaJcY7zABzui5Q6d8Qjh/CzE/FnKBirvn2HO3IC71AQpQqFceB+xXTROgUvDWm9yy9h5LrujgHrBcQyd+bg0+ziU/ktW78kmHt2SYuAM4mw7QoJxeRPE308mGTJEyZ1QeBEjdi6rJWr7Be2SqUpJ+127Y1YvM1V7QN9kL2btRE8hccOHbU20TClcZ3JHJucGyosKg648VPw9mEhCcu8d2KGt7PN374a/uw1pgv+U9h5DsIGmmoS1byZf4SSbeP6jbXQOZoGZpcCcNuhvxF+alm3WBKhrW+eOizx6PzHHIIMY2PsHzRdZw5VmVHwxJ8EMBJstUBAWbiieJi2htrzq8edQe+QoX6dFqDghphjgu0Py2QEGU0G4AAPLYwTVgHZldD09sEKRwlX17OSbSNTyDEaNiUKeCDjLzEj5sPHieXYPP41ioVfZnoiM9C5+x2JZAyDBjQOSn4fKtvGZ1xPKRIr6sZy/7krd50SEKXkCLhXMykO4JEpQUzImjF/QxUR11ptrlZIM3UiWh2Z2N69SkuXcBQmBImAxmxl/xtjWZ2P6NEUhAp/LKTISDsYY6sSY6m+fqnvkb4YLJZkv5F27byie8ouRrzE6+ztW0RL7M/SkAwD1X19XOaanUzH+YzcJPpwdBkf+sI0MonHNFlXKXulJtWO5vSfDybizPPaeGTBlsUl289yWM0CDk4Wj1J5LgJwWdzY/HemLp05joRQIZkiVDi66uR4tp5tAQvlYJOCx9w2YnArChYDtwlxpZ0igvqCKFjNA6PyOABFKerdXASwJKClpMmml2vSfpfhw312RFgy83aLt/2iWJQDHXGMQ1KQ8SS0Dy/ZS9Gdonxy/bx9FygWUCjSmoctpwof8/Xo/bRfss1l6oArgG78Z8UvglThH3nyMUYQIhEiRHPZhlWDQovvU1ICE910tdDRaCakZ6dlER67L27fmDm5zfAqIY+PUNLbMO2AC9VjiSuClyaRbgUqm1ZHl4sprwUfQaauB/N+78Dy6qvxiU+WTQMZaWNBRNSaVODoCkjwohnRCH8956+zy49Elew4lQ0jgZPVJCVPEbDXi5Q5SBi4HZnd5kyIGkYVredw8ZgM94dL+fnWpnJVuexKdPMoGtKTwoYZQHQZ9EMxfoTVG06RVtfRlRrv56jTEzZnkGgq25dGWVX08OvBF7igZJ59w4bvB0eTTn00n3m+bvMD0/WKBgtaLSMpmBvJDZevpw2Kh6SA5glWg/U6FDMVt1/wfI4ql9eKkMOIskyjIXG9/M3JNcvU8C1JLSEWMMVWoh3V0CqgLC8WDHu5SrQtNIuXjmu+k3oIMClrJTKz8UK8Vvwz3GEzGEyvo6RmNYiN84FCpXgGm+JvU/CDox8jNrGS51tOezh8TtsVLx/T1Q6pSKkjDa2vK6z7LlIQ6pOWjKLcwzWwlodIC+qWyXmxEefLUCogkqZD8FFioAZ+ERife+TYylDoPVVCRsDnL6vpkixPT8CVHmVFgfsTXwBUreW+T3FWO4+c30v7mZdph8+pHnWJueiOAC9ygcWj8OMRulriXPgzNml7T9wtgqHdNnlV7WkRu0UJ9NopJ/UgE+XzjqXFV2QpkONkLX1AOv05tu4HgFuAMFvTZeNRw595d4p9QmaonK8x6oE1jyAScQIt3z6sUp/ra5IfyTkYUIjxsIttgJekOC7GswXe4mq0JMVqGxkO76eRQ0wA+WCRkOf2seRUGp6SEre/GeGidJWBswmcW9T994ti2qd2A84qZcIXsU/fqV2AYelImf2IFUACEhp9HCkda6ECXnszyMIqCCQh7hW+Ll6vaZ+fJS7vhY5I74QJx8VrpA1Rc19hXZU992F+CJz6i0LrCQXUwdJd5BnnVxmpJSKzWkp5VLRglcx9x7blGVF4L7CEVL+vKsXtP8e1QdblVpGDkhhZ7OKHdOdYbenIT+L90NymRb02FaAQMDOxP5O4weWdKHn61tTm9zp6edZf02KafRC4i9YarO9qCsTOtYxgGt0kWA6EgM5frNWJVuGbW5bzgibbCd34Q1g24Hz5VXkFWT3NDxI+8bTmFSRW0JHKZITF/pd1QSStVYDj/+7xRWFmq49MTnHgHer216Mz+Y4ZESzmRQqAMhAY2qZnpQC1ZUlc979QjeW+FXyvqOes0R64jTFQOJfBoyBwgS1gWV1HuXg7NDuOkVhTgiBYVUIF8Z1jgBBDv52lA54nFJFm+GUiC0fkc/g0hQpdKH3g3m4wLF9WsumFzakR547uoupTm9uSCmvl+AffqDb/SHkj5xSvgQYfeMbZXZ8VR3w3nGLfGJa/9UVlG9kU+G1q1Mi8jyyHxYbdvr0iDQF1W4YJlHVZ6Tq5HKCGBtTM6m/EhOegA+hbXVBhjIjuyXxl6XpiSyvGTyYS7bGRqbR300aVPOwEZ9CRlc/DzkDy/b/N9o4xpSBWnb8yEaWDq0Zr9RPEA9bIUBSiJyfGv11HbncfF5FAYU5bQ/jsPaHb5oa7AnK7RXgcjvCRpVKqeEQPU7mvkZyOx9jhXv3TbYn4ZrMeWR5AI8Dc0+p4XmJ8ZGpvMjVUgl52D3PYb559tYRLxGXNskGBqaWtRX9bfgEonMXfqiSuN2lTMyHnjQiBxXoXe0AorEWT/gSX8uRN8hbPohAy7tkcMcH1+5vH+JqY3ZBSdiH4kw3T3smu7uEY/KvEWYdNaqYdNsTXANxuX2DDglut6b+OI4Syr98d5qb57UdCTt0j/XS5GJ+JI06St1M7DFgxboJeKq21bZaXJAuEUNEo+pe/LdAoxq2QkgbwN0YTGTM/o5tHwPwpECfRkyFRnA5hal5G0Z+pvM+wyjg46x+BplnUL9oREa1AcyjoaeH0TDsHsshEq88yKDu82XmipgWH0XE8BsOFmoKKZr8gi9Y2qfw95fInStQR8JhBqsZTBnmZ/aWiGhK6Z4jG0K+crJbImTh1LBsZCYD/Buso7fhQ8ZqaRxdSyVk7/yod+uRBtHCUGcEPdykBpSJ0NLOXx/LXrMlryNDPmN1xJmr+i0Z1nmlzBH4SZQzwiVhcVZtGwcim4XJa9SADABjQKscoRVudVgT2scDOUK+2Qv1n1UveLRt6ag3IISK/+UJQ/bXG2AGeJh4teJ4J430cCb1e2eOBHiCRezNkktHhi0g5XPyCfZ4hPlXGb3dY+nn4P+sIulHK9QXNohRqh262Ba6opLAnXFZzgmlc3OjvE9lUF4SAIAUpW0uIgV4RJr2bg9Gs/AOGwe81oK6ycv/YwiI8Bd+deBal7iWLLko250FH80UeYt2/NycUB4LcmShxBx1e4Ns/sonb/nCIAEF6KJuFY1qIrKn5UaPeNftNaUeen9pO6hq8JwIdwTfilh9N7hX0sLSgCauKagAZdnXcMPhcuTF1OKOhqNhk5hkw5NyrbMbTkLKqlCGO75Z4ALNgQY0NwUWlI9Umt9zhETm+f/uGQjer1Fp32DJEavrD7LRUjg7NkdvolsCBCU0CCCG78XKs0c/+zkt8nmJM4/RUXSR8vTp9unThPqejv5Tncs1Cab9j0BG7YI2P4aNPOfqOui76abeeZw2UxP8OTBVGbCpMfZpCdH2FpuJguKexvS7GW7lzm/ObqUuhtS4ETAlYGvae1Jd01eXnoefQEsohIzDTlmwMpVud3hy03wk69UHij/1rxKX65gK5LvjJC1GjEx2c3KcKKGY+V5T8GTKO1/FAQUKpK992oKLpt6gskRyBdb7HkVR4Ma5pXCxcPDzXLDiSKY/negPsWrgSAhIFGsZu4SanWFS0MQTkITF3aX66hnjQK3t20h7DiJ5lLpj0Sq7jRWki12TKh+/O866+UESs4jT/9HueHPrnGg32s9cHz4Xz2YUQgt4yMoQyUumKr7/1n0WrTt+pkrsQJkGJBY6KF+zbRxGmwPLX3oFureeDeRXYSVWfHtf3y5E6pUF1S/SxzAiS9KNhqDKrePk+YvEvul9inTUzJ7nKCgo/4xWPoRnjkt+H5C3Ey4VJcbHYZEim285R/VsFvLuZmZF6+9vwWcWFJPluGiA2F5JXUBEPGvzOhHmR6E76fs6WKa2TG9b/1S919R2bi6avL9OeS/R4wR5JSMFr9Y9xxL+voGKvjfxQRGPn/dDwCfzyzHc74xNZ1JpqnMua5S5CiOHDsRLTfdKSGOG3kaeJJV7oGIeLxE2G5V134ZZrnxjlZaWZwI0KyeK/BxK3RI3QGOaYQOst85l1cM4gXSCcH8OphfcQMuUdeqyWALB8qYBc2kuVMm+eWRkrqSfG0jHRHxsiJ31VZ4m7YsTNAzdn4ObsAxQ5yZDdRYnHH8VG64D7DxmDHkAvK0BnyuqoOYiC1UD5PEaKHjpDpdaKMiD8N3s1tYghgmQLd7MsddMDDVpiUu6Hwx2/yXzl2o50AfvasZso3FmZ+SKQDwZRgVZbDt2UJlYrCbemPmHY9nY7SWAfhTL59wWKHUXWitjgcUXoA4IMdTRkL+yOUazxQbayV1d8Nbjsuhs4AuXRUnrKfBCRZjSMP6mxeMveBylz16bolT8t8wqwzonIENgMye/iYSYuxspV5b2imcwf/mAjJC4OVBa4KzzEIEOeOMAMZn/keJcIHqCZeekmtWrJzKSvbEpz/PQqdT7UueobGJQZCEN4wTCta6HANIkt+kN4sIV0HvkiR4KNGQJpOZ3WtH6p429YsGHtR/zF8Vupj8xqj6M152cNar6307LxLl9z67BVL6EI6AGc/CRqvd7PUuTocF+cBUIPTFVanrU+CXN/Itl89YRLpwWT899C94EU5MBM4K+SZ0sWXhqTUHV0SOOBAmaGRLBoletnGYnto+uEMNzvOkFil05n703xYJ2o1jeg51WMwTXNmMdmPdx7V+Jlyf7Bit98KxML3EIxfEMKgA1QpTQiY9Cyv9WagsXPK7Ogln/cZSe1QYpVdct0bebD1rhppg5YW74Wo4vJ8tdM+Kn5jfiOiKuzBW163VDHgMtQsPyhQ0VXWtFRG8NxBxr2J/yC9uXdeMUETMeltGB5aUsM/EJtF9bzoKTcsSKp8LSBxx/TrV/AKNaTSpLABUTEkqm0Gj618nsxwCsgJlLAqui7mzL0/aT4U9jRRyEL36unz+23VtWAc3h
Variant 0
DifficultyLevel
557
Question
Guthrie plotted the points A−F on a grid paper, as shown below.
She then joined some of the points together with lines.
Which of these pairs of lines are parallel?
Worked Solution
BC and EF are parallel
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | CD and EF |
x | CE and AF |
x | BF and AE |
✓ | BC and EF |