Algebra, NAPX-F4-NC18
U2FsdGVkX19WW6m6WrZXGNLNLMx3ptYaQyLZZACPLTu968G1nOYfmFuFV5fVECJWp9KLVIOnhQPeJ6DXYEO0apyOPYOai2OP9GCFQsuwucuNbdX/FudnkR+mCmGFBKVzCUBdwkcmTWKRiaWCh+HgxLjIAt/poM6pHiK5KQva5R3yaPcuyHWGbhqk2hRzLsu/5hQYTS25Yo1VKt/KQzRuYKMJgmTJEv0nlloe4AzlrqKpmFhqo9LjXVaZXpQ4PdE3mt7t1Krz4zfAKA+hop//dzKPesqprhI3Kp6z6pzylGEvtx6GmbadqDompQBBsM+TMxDO9lFAcfmw93N42AubZTSDv9T9V72lLaPfzmahyMSZ1F9yCcpyGxZzsQh9cT8cch2ORnOoO74NC+by7DKDSP+tapIsoMJaF1Y7/CqX+n2bUmOzMYex+uHQ9w6sj9L8SPkAyr2hGEw2ctRRsEM8g+rEKfvPnl97sX4qM4hwwvSx305MlU6BgDnygFsIl9QPP8Ma8kYHwQq9lZfekLN4+a2XcYyfhB7iZUxaEAGQQtJb/srbJnP1glkb8NBPav+ijJAKiMIZya+14XOqGSvOPNXOL0Z4XL1+VwmRIo83rOEEojEKSVAhkHRDyNIzCwOKgii9x1U9OI6qYQLqtzXOhtL+Cyv5m0oa8qs0mT3s0SIPjJbJlz3h8meNZVi5fQDouHJHG2MSAJPe4nHVMvxCvIo1KYOEG2NAPrLF/pahCaEVGPvJK/5RCXPAx4dBQfGkfwM66ci3pwuFF9zjtqEPQnlZWYkq6pRv33dM70DCAGqhpLRYQGeGzAx4Hyl3V68Op0dWlqXnxqdFtbWYf2UTWNhr7CkaQTBx6SCESrN1h3dj/8NIia1CagC4KXmcC+Dy++53aLyLRzedXO5OHuJaTUR64I8gG0h5bbMltzSNzQjbZL32VHfkrb/ns/v0hc3ZXSo6LEhdrLxZx9zkU0GzIBjjxcoQzPTSWJBzctltRw/MI7wQoRrcHcOh+iWCaWJsxBm64YpnlVpXN63qtMKogBedYnDMST74JJfEKGCBk/njGAYk0YQo56nn3/x1PJokvMpF7ipX9DeAWpAGcmxuk43FVXMJfWvDQxsLK+C/BNuXB1H+icQFoC2nBdUD2R5EYPpgg1GDYHYbnjy7cou5uhHuxdsSrT+L8JeANmAeZsypAvugBwu+AcOcxqR7+tSQkWmXEjOu8owIV/zu5tnAWFlTDp0gMO93kWiTXuDveLzA3sUscEeySh9nIQgmbelO/LzRRIeF7fnfIhhqgjJtEwBcafyPA+5OGCxOXcC6RWFWu/S9XPtGcFjhexBJyPRjW4rAuRbsOoDRRXlWKdouFMZB2J7HnGLCZkVuVF0ISzJkiLlSsZ1Uhrb9vrmc7CX84XXxBqqI+DProooEy1+//Ce9ixpts6Ec6aFCLa1jo7hVeoaf1K3DteEqCKKB2KOjNutUpiz+pFjZeLDohNNxm5FzygmQo2lRmoa5FmJtzgskfM4rz/4i+ZULi/zJYD+mnPxsrM2BrzPWtt8EA0qGSmebanRzyzgSXm4Cwi7Y9Yd5jNJw/iOLqXh6n10CCr9siVloQ7BKl8swCJCZUGHuLgCdhZI1k0j49cXsVhUwVN5yrlpfeMVNzaPPv6lyIUSPaop0rtS/jl/b11leoBWuyZG8FVZxUviftqPqdV2F/g0OSuJ/7+t1qm8dSzNABORcTLaYuBS+u9qARx00fVt9/cPHTYTw6jnuQSBF7UzGMtxVmb/Oh8VZEQIBen54qdLeTrpSqxdrR7JYmtvZbk7g40/AVWJfZ6fWylqTzhFINjMMXxt+DHtlK+W9EQUegklt8ohrerko96ghznvjwkdwJSFReCuZJgDIrKqvpbTrJAmgjfACBFqIlOnyaqT12jVnlJhpRhmf1KjZA1U9cVXAQdqBxFt58bj4an7rLvFFqurJw5b5C7VIjg3rUHTgR0A0sTdCkQJvlzh54bhtud7oA2gATguLOxBFd7mhmQmYJ3/I5QgAp559bsWkL72A0FkJD9yPSqfc88VyhMTit4HtzEfs/a4DMFcJPzuTSfoS59SBanwMXpxBhTtEJLtFUf/VMKYP3ayHA3E4Z45AjgUgXGIe0R/j5+sakX5/o58Rod++jqJYt1gI/oPCCc5Qy0EwAwPAjs1BGasyIsur7DabT6TSom5QGhwlr0f9ve8G6Vw9Mk8s0T5mCVd9H082o+ce50w20Oowc49OogYHqXxpY6kQH2PqD8bwfe9GTb/wE2wAJ4UuiM5NaByYBPHe8/6IiZ25YJezdVyokQMhvpoIyzTSLa0MnB9pgMbR1J7bLzKQGhm/AsTJmSzaZPT7QEzV7tYLmk6XRf6HUDK3R1iih4HAbqbggGaaU4QA7w85pz5Suhz/if3nSRMdEy1dZRq2ThbG0h+xlYLGjWMNMBcvy8HPa9hDqg5AQEs9v+xiygp/3rvSQk+XteHjCL/FGdTtk+YRrsTI/3WOe+JMCuJwJ9zSyXooPtyyOEbmzPT99EkwIZ5bPjZAerqge1fCdnCBlEcu1r8FyKc9cKAk18UkScjnTVUmk3EjrmcL3QExrP1YD55n5JX6NjpoSN8hTsi/47+TvJbl6bgmE+6EpbiBn9OgAZ5Mpj6XhgpydhhUShY5oHL5ym0p8Uz/FpAlq0GULvOq2maWWSh5982pIJiRzIg3cztVfCp4n0/6gRw227sx9+C56OctY2n0x7LIzngzeh5fMfqdEwVUAIelLFzxTpGVROQY96ADiosA6LtYyZK8rKC5LgxaV4xzN+oJqcksiNcIJdLDq1L8VU4mLcruqRqZ1ZrUkf8H23IvselyQlqheR1f+Df2I/PNcjUTEJug7NVTBtDyAIrR2h4magzdUFalU+y5I+qEbCtT/hTwiUg5iUjwmZYRXO3wmS1wtatAbnCtWIm0zfzKO1bYnD0OPU6dD4eV2WIIz4GnfhkcFvT+8PVC04XUS2BQ2jvdy6jeMVV7gTDI83IG3k0PePg7CGkkOnDCYUOpSvSzjj/pqrtNGE2VB1TJe5SZIASQlS5gNRvwmfSCdaEpwoukcYaocUqktZpBGb+R7Ld1C4cEtzAEaXJ668VbPFKO4zLLbJCOm54CWre/9InSovtZETKxmDq/YPo/6mCS9TpKwcjBm7WEn2dPzv1CXoc4vpK0bLmd/bOBTa69OyETwRICLOUyZ+dArQ9gH/oXxQSRHX9t9ctMerjaJpoUVe4VxvjRavJqGcm137U1EVNam7JQr9EP/vz4iep92ftfXMijczZr9f877G5Qa6xeJUB6Bw6w5Be8q5FR9ytlbaIDWmVc8PvgpJBl+x92yXsH6UiZ6J60EWj3Kl1mpina2YgfVOYE7sTXjtTZRbvq+UTTUaXchGJLOUrHr7fRnSE1vQG1cwrdB4z7hZAh320r/46Y1MwwjVHEvUQNSep933iVbenNtLV0c/z+UJ6KRnwY3HWXzXEwg8GXh95xJ644jdAg7/ywR7OVpTtPjd89QYZhMtKcRpiZMH/SwZ6Ty9zXQqookGbbBqTLu31LrHUChmJv7hv1C/mhAktLm24wTIaBxbmI8LCVMn64gI9ZS/vXJ1AhOmXxlcY7Qb/RX33RLRSK8ebey52uc9VjxBqqcq0bgpnOweOPsksLSvcyjeXYvriXW2UafnnPFH6uc+zxOKHQCkYBos8+JELvj3WrONWLgCSi9jj1kjikSKqy/J1b1/PXbfSQgOhYXt1SgZWAfp04SShBnDIosofoaIMZSIp8ABKkVYCTbHph/RKxFVK6DN7Xi8dDGGK408+bFAecqiLscPwKY+4dUvevjHP+EHEQJHYBv0//D5nNcbOQZuhxa/7FNB1uhQeohwhSdc+Vj55OthIPq2xMJ2ZmPUVgdaqISKIxCjZ8bfgYB4EVHfMNuRJ9TByTMBMlqCkHUXYpJ93TJ7Pell7lAaeN8QreNg70DxKjygchNXI/J1YAjf5t1oiwoKp9INrwYHR+jLmn6Mc1G5iKW60NTe+4wC8q7/o34Fq8SGXJF8kFUgLEr1BQZmQRH/UnS6y8tVV2+pCeYxUQsypDFh+gpEh8T8H76nQiuxs489ZY58rh6AWqd5Cjh82VFk8WWTo0iGGn/761A4Md1cP3YqNY1BGy0D39UOq9kGey7+ZuxSHn1OLzmdNLzQmPhdme+/qgYjWN+QGz2UP/O8kkJXU9k2fvxh5B22UbcKsmsexmr9urZtCBynCoE6wcKqIfRz9VEMLu+UC+ArMLIyayyNxI3mCaZxYXTU2OZ9TtpJMlNMBOdL0866oHAyhXHJieqOzjRU2KUQgOxaJzPwBG8Ym2H3Rbnv8oAfng/QIn8aQ5LhTzhR/NSUagkAZ/HeUfFiOasdqgzWprT5Ccel0sDad71deuRBw/L+dukbkydg1zSZOZlVQ/60Ub4h/r/p+Ra8a54Z8W8lDVqLYg/RXbJ++RV4yI2nBKKEMHFVeXTYmqMSoYBKXzu1AeHLPeA+OTI6BGmI/EccIfN4+klrjz0k6yjLC08sEFWzrrbYxa7VO46bzlR8PV36x/c3+KAZXXTUbHWjnppaccrkFjK819V831Wemzha/FGBB4F7ZjtM6H/8qRbgqnLTB46rMUaHrCbZdmFj6DA2yr7A6N84++a+HX4T86ZMkNjfkEjMXLXRUVlNwkaWEi5goXquQCRweGCdWZEaoUdsULdXd61Gvj2VkcevdWJjiaeFBHFI4+T4UAN8aoigrXOPA5i3c6P6WNvonuhbgsTNi3lwSjHbu2vQ24sdJgQ2dPMfhDyipJb5F+U+t2dXZyxw+Bx5QLP+03pI+DC1rR/GmXJbHtgM+F8Xj84ywSTKlQFBOPb/X/LkHUKsPoT+N1BrxeaEVxJYRUkv1ZfmfduZpq1e5OwqzKu+XYRRG5HTddTe8PED2kBQQzxrSkdgdevHryK29pobn6pD3WQWjrMe2OK3qv/damd6SYzevDqsJAaikmzCCaLIK6Keq6c1eX3JluPQq4criYiVmCLMc/WJtf9/IEDeICIOECvGQMqfMIqPdRMcW0TjYYn0PBovlkVN+deuK02QjCxDsjFO5FQ382CZ6ZZe/0TzuWFB+uX1ST8i3lTzBnSL0JJpIKZ4Wljj7w3VxtJKlVe56AaXxuoqs5nbNEn0/ojifQ5qOGXBYy/JvZ3UxiyJdHR+KRtieDzOE6Ol+v2pwqvxnUPE8YrIz7mPDRjNgrk2EN5aUYlZQvfE0xQxmbOXrFiKX6vwBVBJWh/tvatNGUscCzHW0zkSKyg61pHqjB/hzXXI0kl7e9YnCTkDhQOoIlytP7ciuPG6/ao6eSuJg2uCKIJdVZOMvjp2lmkY/JBgvxMNJnV23sbp+BACdycv6n/gIXJRiGEA4ZboEOSzh3RzK2FDE+LkTmTcwJ2ZPiyoU03JOcv9TNU6NQ9djXH3vOu2aNUo6F+v/p6V21u5p0mXazrLGiyJcfGZUvXhWlSnW6zZBcy6jeCSzgXGYoa4EoTjFwNCG2lp+B19r4xNiI0TA7DCxqfrTI0/JRT/asWhb6RQML/87k1p4F/5viEizB2fiEpuZlgboarbBNc330qbE7ncX2gVwptqKlncoRczrT/klYlzGB4tDkprQZDRmDRCrR376nJ0NkmO1SlE5P/0Fi7pi8XbG+OSpn9ibL/APU0q2/tipKJiREAtotiYa/tSaiYIV8Bp7JKxY0fxqaKucLdUZWgd+qRiL3dU6JK0SmeIH7v9grmKsJhR472P4v34KlfoaIa1jPeqxVzEhi0pyrjaW+koeeSBEvZhz8ZYF82QIIa/t1bIlAphhf4Q3Y9pC1s54JXQDhdDV6pm4MnlIHQsnvkgNABoZnHo8ZvfHrOH3xefXSlj7azlvPdRt6OoHvuuVrg6rV1eBrB9rhhYH0dAYD/cEnn3eAVUl3BC6q/zwwj2H5edn3ZZ4NtjE/Ue0bEy/4r8DZzh8amd5+yU3bDHNVagyUCeZXas+UztTgamHwG3nifKprIUZhYD7i/MCNoGsUWnjgx34kCEGbJmNvqM4rFOkQ3k7Q2s9CMOV0yTwhw+2qyUeK8o6IcysTVq/c1V1PbHRzRjtFR6tA+n8s2vwyC0RavVDAgPehwlL37dWgbRIya3twqwqX37fHnnyYKn74q9PrkUC/Xzdi6C0Tr8sS2ssgBA/Ex5r99BXPoKogIZbjsEsfxc1NTQkPQqu5kuKHy3VYkLngYe1gRFHdI/0C323EH0Biso5gRlTy1o8qLZK8DbkqJRx2TdjnfFPrAT/mejW7HrfXeykSzO8liPhzYYCRiZ7oa7NYLbTdsZ/44rGupvrSqYa5QEd8JShOmw3OttV+wMovk+qoOuJg5QBP/zDM234FfXFtV4sgWb7XZNAPPwjyhTnL1oFXp91M8yPVPrreo/GPMcqj1fXK53L/0stozwrH9hIkDTtbGHukwORmpYew8B7PTMkCUoW0xoJibD6OZYnNE41azA3+kEoC2wlMBaHBmGXpX9FLPdw4Y3JuxnBTAsO1NSzWBd4334YLwp2fsExZ18Gz7yMLKIRJaUJ/bCBM+c8jTxvfbzxdQrfMj5cfZIj2qrYmgQLftzP0hQh1I2jUPEMKS3fmXOD1qY2w1IOfYeoYUrAp1VgLKLqR51rCHE/fUD4mjpzp10IqBsiv0XfT0XcoPulb5ajOC+GNy/WrD0PT5y0INw0G6tMOVmlbtIlLZn9TuSJPpby2BmqzhTwcPub4Y4UDR1ORwyKAKoF42UdGhLdDfhqbbX6pkFL2S5OGaBWcIQR1X/6IIBoxycIPGHPMt60zbtwIYNMInSuRtfi5utAuWt4dIDhCq3pd/SjGSryTeqBuen1oeVcQ49eI1DT0Jw8TsAJT11WfGvLUE8/J8pHaA8TbXhFQ3VLiaUaPrR9P5lwoIsOP/ON9pekeLPwjQtNTMIIoXQi7D1NDvlFkw/Nsaz5T4UytlW0hYWBm0lOBsABnqGi1FHtJjmFfslYjb3wzUlX/wZ+nzJFv05nnmK6uuzJfeb/mJWogKSV19XY0lQZfmgfBKwVpDG9egNOqAW3BLsrG65R4FcJnwBk7+VjZHrKxViR+gFe/zpwUAYt0uIva4irssyPnAoTB16eWsRPsSBHGHCQGsjf+qpVRT3VFdt6J0Kd1yAukHGsi3b+tRRSjYf1z9lLLg5zecfz0wCTise0h6eyZoJZTEfsYPLy2+LAEa36WZ8uAsN/uCQCQmq2dnNCrXTjtMkJDwNfb1+c/8EPotz+eiM4P+Cy2herpCZ2gLUjLR4dC79X0pHXBajhl0C4lDZe1xlNfYwhAS3SQuocHYDtNHH/uQo5PNOmypehWq/ATft84aXZQq9cJwQBXN7OyyaTsbWwYPYfL5+zFIq6CfJB9XBAKs1OjJRzVl1LgdtcfQqNkTkl8C/cEAkbki4+RFl32cgRKY05CbhbZaF1L4ayo0IAOJWHy6k6PC5neYmYhyYVMj9BvsQfjjhAKdrUN96TKw2bG96si+rJp8DfNaKNHljG+idjQj3lY2LaY/PsZZGoNSQFa+fKn88YVGgMrod4qKLdGzX11lxTB+4KHy2mLLSzO2xr8qQMo8uI27EErj2DVD1RgJv4edURh5DT+gd9dOCxK/3lg5vDBHsC4KuekVcR/nkTU/RiqlmzwJk3iXS9utwcsgzP3dPQkHDmb0naTug/do50rltQOTxAqm+og7E26GDq2maK5MvrWgTe0t6e3d/31FWMt4/oymFK2tTC9DbH1/MWsw5jag4JWrx9N8/c5cGWJzB2t535Da+0OyKl3TAGZOpuCiNp19tGiBdNofSox1yH8XRAedglvWz6McNr8wFnum+gHBoR+X1maK4dkqwS0NCQcJDB+78O/iGk5tarZf/rpc8JsRRiEqMDVSxRalGG4RPWsMimUpzqplrJzbbtTwHihMcBNWAH+g/jY3Dg4Fjh3QSdA22ICXKUKXprrL2NQO+5M0OgO3qjisKo78q+sEonQoaxINbSWor9anQAYGxdaykKIGFLaFfZqJ+SkPDTiNx5JJ5N7pUNkQh0Heq0PW9nttZ2sbHerk2FFnvuNWDXDMWDgQAMCqVU2LR47jWiPOhbYKeYXVQKPmxX4xpFWdLQp6BGMmh3t72QG3kXm/Fx2I/O4MEQV/FsCEumpHrzEeIDPr47EQZszd65CrheeWT20zr4uIV4wZVIGhNrpObvskAqiAz6Vfu/z93t2xJTWQoi1UOdn7M9JRaGeC8GG5n5kSt7MTkhfFK0jdhfOV7aHSzc4M4GcNJqLWPp0bUMaBETKvndvvFEUjYu+yFmRUpXfSsO9LnHxWQ7BZkz90G5tXmbpl8p4EJYCLf92pYXlVef8uolNz82s04FyGlHuZ8c+VD280n5KrjPeaIK0ajLubRMtMSydzq67f8WD7mflgp/RImaQ35Knq8Lr+IMIWWxNjY4rJ6/W+ye/OmfOxAkhchCoZ30YP3do3kwJHNtRH7zKfNGuqho3wYI5Gso4rM5X5+TYeglC7uDWOUKYApzidajww8iRNfZPoWGQ1U7iGbk0ONOThcUo0PULDbsA6FG5Zfo9IpiHQIUO+ljS3DpAnZLhAadeL59qN1rhQZZvic5gOi2eyzKnYxEBUnG7Nam/BA1+l3/AXtCVcZZzpejdOAKiUTjszMmd/TLubgLtIPM5zRNAOGzLu1JO9Z9cDR93F46bjJLlPrIppCfcsKghhb1qhPSHyXTSZQYYuruZeIT2bZZhR0sWFWOehut7Lr8E91c35mvHn72k9p5iQF4Py9K7m+U9a6kzF6Z9HeyZHqvVtTf0nG1zvdPUBc0yEwHHx7SFhmMGZoRCv/MCPld2Ahq7rYgTuFpSMUM6rgw7Ki6YwNbe5qAYe9uyBxNeMqEW7Rs573h2SwxJBoxH2hkjA3aZ2pnsTmlR18Jt9bBbZLkAFN9DzvCCbG1hQt1t0GhX3L10DykTKmgWIfSE0epo465etZPO1CjRxkH51NT+M6TjjxW7U+CyNixLNvQs0Eve17KqosJ9agVlIJRMJ0W9M/OrhtqVEzkCYlahCkZItWGnC9C6PqQ1Qvq+oQwzxL2ZQILGFDfpQ8SiGYcm66uC7oGfAY3lNoUNgVHLKx73kACyHqb8rWldWEaHkxePWqqX9nSX1xIFclaHMeUlaFIj8A/+SY1SwX4LfnbbkRzHCyMywEUh98k5JYw2YYJ02xq2rnU+LbGiINYsCQnO4t0KDBzLtp3PnMIFxIIX3GrdTjts2Xx4QDo0D4aODOMqHCnjCk/YQjuWJ7du6N0hY+19GSHdQ1cH5Tjca1iFlG4l/cyAwgzyqWlcJvuMHygDFv+1dITL/0y+NA5rN2epFDw/psZpcSAiKYzU4qmZ5ua4CtJaISFtajYJRGZPD10K3+cTqx8gTy3GTt+YVmZeqwwdxL2TuFDyOqxWvD5cJ2OX+wfThsJrb6xOdGamrXKO1HSUwUScaiRMERS2AbxPJJIjJ3DA4crYsFV0LvhwYvfE245Ree88wHg5EKaZJ8HliMIF1J08wVIV+Z78vQv41hNy+zyjuC/I7r1b1Vq48YRnbrcMTq7daLMbRUr2H0xRcL+Ww12/i7bJygdhkV4CyfdZgKhYlepWoCUKaGqnHGBhEWMVxofXM7dwXuoWpY8/m6yijCCdwJj2RL4codvboX9lWf5rrKikABcTqXAci0D5oZH3mo5NZC6XUdiAwXJ8fzP4RNvYfWF+9/U2sfK7BXyDrKBXlW7vfjb7r55GSa/k60ebu20YVS5S+kS1qmexOTzlEWJVioZRHfgfkMeblVlOWeCtTzjO/3kYkIg+lmIJBRMJUFktt0AUNzcY2isNqCLdTkFuCub5tj78JgE5liS5aORMNj1JN0PgRk9YhCw70PwGE4W7l+8EBTCD9z0IAmIePh9o47zP5EYClWlmxNZFOegLYIMT+z3cHE9zK6qAvCHuiOMwXWU+ooIMPKiWKxpF9gRXikbU3VxHfXn6lm3Frf9SgkIjU04BDpKeZRDTm18hBdE97pWvPurmWKd8INSbMQQSMEYKfObMKj4ujj2waNjtpGynK7rwFVcTp2TfeksaWQcEtEp5aR4N6/DCOBn6e7d1OVsmKlgkuH9wr2YrAI+roh8Zwfrl4q3CtPz4O09ryjUaVmAq1s6MNX1f12aZZqylwLDV2kkYTvDq3hMz5AN+1cPEMD2C/Z0z8cNjqXRGpv9kgHo7oJgGELDkLuB0i3PPso2gcfDG/MeUzHu+u2JZKmLTVGsAzBMjcDmHbaRzp05xaQoyD++e5tfPLRXNlo9dEFdxplLGElRqOis4BYkosl+Y2DqUGrLV3DenH7E0JQKSBoQiGFk85D7m/FexBFNVetGH9BgdhnDg47X9hvHUXYqzLAjQTFILh/3+19Ww/4fZuJfIPtte9A5VPn5l/ApwLNDv+eblMUcjWAkUevDpZSUhaLpuU7igEXCj72AgE7iq/hnSK2rhVyFf3x4xA+P7j3GuMfEpZi9785CA7Iml/vNLX5DlkSgrbAXyghS1W/qvMyAvkCdWiHUGJF5zGOuDTV7/b71O+WGEXgJToCLMjovWsG8W4jTJEjuEadgu6OF2J58+SmCsrIPegTTkg9itilmPEbzzZcEQmQzRfAXbbwxC6jAnMjETVSRgXjyTlpjsU5dr65M3G5rwOFBEeNRBp0GYx8BSkwbD98VzRCI6Sr1jHnQ5mmZ+9Hv4nvdzvW9+yYias/bfX0DSE6DtuyMho8AkGzaV7olIp+TveAi34f+gb0DRT0vGiHsI8UmGwTMpD5O6r/Wg5sYb9+JUvQMAeZGEpKVSHk5scu5BCVqaL+0iiukURa2dHZDuHr80OT+9HogWGUOKtvq/nmpOKUbzBePzp1cZAfUFk40ZgM1pSM44jt+D9lfyVAJrfO6LKepZKsw6DNiJakTO3Ayek6+ugi9MwmDeQ0QcAyO/UYpFcRpxOSTW1oCQQ5pGsBFeOHHfIKmZQLosykUObyUzegcUx7r8ow1ognMdLEmOXB2T+3ktjPQlHvZhLt4d6UaZ9AtWaizicxdEw6XFs/qNiINI/g8Bq9+aWMRbPRpwB12d2iUw2aoHN3rOxpY1j77J5z3z9rMhIfSM7nvXYBzPJLk1LPPNasw4EAFIiAbYsFRLvuplN63Wck5nHAE9TQ/7HTv4cwl7qhAv54/dyXDAf1+Svv7zPDL4cXCRhJKUlNyfA+11nUF0VerMPGpUEWAN6LGH9zeHmSynvWGioEDtwKVYZUo/ZKgxGNhQVNtOiwUqfbxhAvgQadNr/t8JWuxFVgGX+nKbUW4DpVtm0x8Hi86OmUtoJXwhJjyrVMrnt66b9jcCvUpXSi8ZreOfcXQPe3D+b/esZKe6/KhXbsDihQ==
Variant 0
DifficultyLevel
638
Question
What expression is equivalent to −(8 − p)?
Worked Solution
|
|
−(8 − p) |
= − 8+p |
|
= p − 8 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What expression is equivalent to $−(8\ −\ \large p)$? |
workedSolution |
>| | |
| -------------: | ---------- |
| $−(8\ −\ \large p)$| \= $−\ 8 + \large p$ |
| | \= $\large p\ -$ 8 |
|
correctAnswer | |
Answers
U2FsdGVkX1/xHKhTcrB4qqk8LlaGcchA7wlQtpMFij6xksKSx1GNRsmMo/5fzijlkqvdx9d/5mKUK0RKWngRC7ohW46jhYA++dVMzTgxiLeBcttVyH3DcDS9Ct4d+x8kAbbO6EsK6ZEZn7q9luE5zMA9q1tT03uaPz8A5NmFQiELp7GirmbokkuSfTHBo5/BaoyyATXR2LDY63VLlBQgS9d7+h3WcII6saqTy/U3sS76gy/sZFic4aj9Uz5kcYEtbzYSppZnpj1VNkqXRWCp6S39SuoGRWYn7sVj7xQefETdD3X0V1F88e0FCeq09EziipoRvUa0Poqhi2Ee1OWyG5uuwbiAyar8c1ZAQ7bLXLH5M82YcTOW7Lf9qEHFoPePEBOej5wki8DmR3ArK7g7EgeB8Z47fnPoUCI6SeqtRmBUWcLiktVGOmNtnH+ymqNEblkNWGS3DFyYezEccM4cqHKZnvE2DWQiMrxrlQCtUBU2Gmd/OR0PzxdaZopIl6Lja9tGXwCqff4Mr4DyKlQ2a0li9Q5BQ794taJrjudoFQZv9RPNTYjUePakhLTrn1kFi2X1O09dMu2bpABFBvXtqALwEdm7IYiTIa3Z+dXiSRrPA4Q35FtND9CmjCsoV7vFkdjwI7cf/vC4FuWLKEf1DiXJ42kBf4jgxXj97u2QxjvKw88IsdVIcCfs0rhXCUqH8ErF6qIk6lfyAVwhZhEd4GXB8IPmJM9sEQfUMR5/RV6RYDLJ049eWIVfiOyfuXImEPBREcbdkSNblEW3qnwNOVA3QQejONcsoLbzLjcvzRrKQrB1P7kOdPtyHW8VL2XpccFq2UJAhFhbw/G1ZqaMjO1qMicJUE3VfRxJL2lWbr/lOPfz15TMCmgSvKUuSjc0HbZsz91hdy3VLW7PeC5mTAAAIPqRd0jlUA6CA4MjmHzdskvqF3zssbu4W/u1Ssqhs7tWMGvYEhtyqFxDPM5im5zTVaF/x57Qq8uMqrH8lrD9l3FZiWcKkpxB5yXxpcOFoIJ/iXKtWRRM8kxXPgk/NESGju8HdNNhstxTQHLJ+SEJSoxzGPwqkTbepzDWy3qLmAsQ8vL9YXF94hYwwUzzYp7E56KGOLIMsb9e8KNRAQI50A2dxdqrnx0BRwcoDAvucI+bVCe6XEYp6JLQj03D9npK3WJd/cE0BPY+j3DG4OOIowIIOIFObnaKDEI20rbb23R+vJYBbyiA9Sx44xPDYV5wwslY3n6YbzWen2+W7kd8MIpLFqU0O/rkvSX5QxS6EjPU70OalXCw7wXseJ4iemG9/1pY/+7hme71nCHmuBR/xUcNQP8S1e2JKmfG4FSetd9a7eESU/ewKMSMV/UnV6F4ZG6NIvgxquOZ0amroCp/AqSaPJ+5Enrx2WKdyhjQEs+Sh2d8yahoaczv0J450+c3J1xHsZ61UyWEXpiygZVrThCX+7RHimmN1SfqRrd1hnLK+4F9VXIh52JYsuG6Cwd14HUlP0vQtqycj91Y7+XjQXIDaiS6ohQYmP5uLMo3W5m/muLlQtigpYUHUpIRZeKQid2OSd/STC9Y5koLIK0X7PZsa7PQ+YFbMtiZkYyybHjj7r/YV+35VRFftOB5llq91q70rvX7pTfsx/Y7nzC+438ezpgQs9h1BqZI1d1aGvOkBDn060zQHSjR/u1KXXocyyaavF05PG+xoaZi4ldCJ+JLoCb6GMMzwSryDKgkIWcVY/9q4O3dnTzGJ2TWi2NM1IK/wNOwDAowI7olZmZBGP5WE4jZQQ7NuwOZF2/LmxemG6O9bjTX9Cf5u45cPj60InPY7x1BntMOYtuCToirJFl0Ik2hlL4JjCenbcLidQwsWZ9Yq9QdG8aVjXKPXD7DHN4EPwTx4LOFvWgMQeWHSZz7y2svvdBm8kDL/c1Rj7UBIa9z6mDxme0tF0fNN2yBsG5sxexlloMTEQtd31fS/jmbxcGnCx3coiA2o/WACbvrOCnhseym/FjNFNNmdDfCniKoijukdjta/aLXd5xfmyzkECyPjgJwnH9AXDn7HgBkDIPWxKNosRz30NN4LoOLVtwIi25Rpnd5pBYK7BKisHRC58dHvXhWMWFb40K4trigu9pfz74OmmE1zCNDYeIJftDu6CAJh2yndaIU3Ggyx5MWefXcaOS4/ov15n6vAZdZD9kL5p/0PmKo1OBC8V19Fag87MtWNxP79gRqthf6gK+RVNQJ/5nWAxAfLjyN/wz1EnDTknZGf4z/ajGsMyCk6Amz331iYFDU0C5FIUkcsAnUWlaar7oqpVbhNFlKlCLpirhGvP9WboQwkr9aNQNjQSWWIPkSny9SEc+o0TAke70t1gyjPuMO3x0sFxlpem5bAJg8jUARvJpMA39VgkR6IRzBaag0BRskY6+8LZMnwyETHHADIuaukwOaqgWlIiZwxpsx8H5KUaJAmZzTAgnv84WqIfk9OIXk3/BmNTFaeIm4UzLOQWsYLm2haZ5UQg+cKF0fVPvx/dkEkkvvC+ptdEVimol1iW3RwzaKpSwTGnmyJsjXSrNai9uuo4mIUQO0XuLzvTPEInJCNXdOfQRdsRPNxkmcXYfJaV6mskm9235eeGNMO/kwJKT19e+prn21Ku1urB461e1PKHzolvM6DZVWA6cVOiK93igVaOIl67MVnI8+RNPvLmirYsEZNKi4ZhIbMPC2Kqq0la3zGIuGLQpajmlMNzva0/FMPL4yeEk5Z4pu3m8JPTU8NGMS1dy4bycu6bm4i6rxp/Cw9EGC5p9rwszNJR5RK+ch3hGdUZF/qTzM4Dm5Rw2u34k9BSbHX69Dba8Sx4QqzCqGX70YF9tIlh1K/YhENO0YADjHK+r1Lgo8ymmOj18eLvsbfnO5f5DS9yGUiTtz4ptwPCoCFtBtKlA94UeEClmlxVyRyVavUJr8FGQ2mHv2ryT5xJuxRIGSXNOYgTaP1/1Ke7HtsQFW8ocOy4JDWx1MAgMj0wkaPbKMX4wdrkd7X2WmBf2Be6OELefIhVIxM3fpkYF2MaQKnALlst7qQJko1eJNo7FWud0+cq23nlBZfqU2Usj4/IVCyBVR1asrVfqKmN6zOnvNON35R+XpyQ4BRaGe2ZATLGqaNcroxB9YM3wwv1nCXuPhO8TGE4boqwbneuobZqEvcMkfMj+BOUxc1sV7ekRzn2EFb/EFRHvB/FwSP6L37cWsOGjLnXVrPo8cbU8flH0/A7X47MIPwauhdDqksAmwO4k6Lxl2tfSPuXutEx8JI+x8Na/eWQS1u9TZ6SgBOk71Dk6vn0PIgWzzV3baqFcwZRZZoMVGljxWP08RxOdCNFGTcVa7Cohj71+4cnVmYzms0YgKbshEcdiqcYCZWe7h4qWcplG8PHqZAFkUfXJ3U8JIdj99t+MkoSlaLuT2Nzjpzj5ae7DRqa1YWR9pP87DNBko7xVWbkcyNY3KRpsZoEoxpaVmqkdjcJWNL26PUMJdrBkdeC+vpm7SW8lnkajAKb2OitxqVsuzsQ5HBVvRjRE06rmcCHz9vJN7rkSZ3DDQ9YesFaUNrHsk+E6bvbm+daTNBrcPENxME5rjZz5rfSRO9WfaHhVwIP5Hw2OZKk2nDbkkgLxXndWBtP5go325LBvPNRlOFvThx6TxgXZ5XJnVpZuah2cFtfum79LmsP/h69UfHrhQBhMkNwWNWLcHppVt7X9dgCTuDyvcZTmsK4bdl1sqhKtLJnT+2IWpegvZpLP5ACcrTRh3SvljfOLB4CPBYcTuXTe1vWSLrEMwmGJuHmYHAZm9umd7zvvoGvC3zDdDllJ0ljikB42jhonMqz81b93OAG/k+IU+OLMYfsY9Ylfzz1HMnOqV/Z4f6eK9gozBKsXA/9vNXSDXlO4qGAJwS0eXp1MGIDVujlp3kWSV1tKrGQcn22aTM7O18+3XSBbzAf6tOMrSIGzfvfs6lZ6BZ4ps3y+2L2AAMnANCRWslQcHv0UM19DtinwgU87KLdnIuvTeF5am/dw/KnWDZe+p5rXWygBn9JVCrwTrz1BjwvX5qc557P5GMX4pFOzoHzh6HfFXN/zlTppWmVqcYVe7e+qU6Qr1apgRvxl0jZgSzH9EogtCpxOSw6JR87FyEYdLTsb/SsrcfvV7gcDTFZYDeidB4iyo9Fe4uKzGPSe63ESoBG2m+1+5Dsap9x+tM82m3JGoBdfJSzptQ4be7uNYgd5lvVDtL73uxkAEUziLw+9SBUP2MNbWQakOk0QfTUQPe+vmKLowkXyH6UO0UaItbzu9rZI8YzBwTO9R0etB3muQhRcecopppiXQfAjnWRyh3sqqVmoiFBwZFTwMeVE46PY9UGmYpO33WGZUZrp4vCMfS6e4464D+FogoDtBEAzARSGbDfbQMZkqvtRw8w/D1ea6lzzrr/3SLUqBvYbAEOwbYsN3AEQ5vSt+B+63x4p9kuWyqRshki7gb+C1opHVeQaaieH8uRfEr5qg2JHxbHy8dl/zwIBLf6Iqo2fLanhbB9OCrDqpcBj2qW2aB2lwcgkvvjisH3iMdDornHcht+HS0rDugpLkq1YDADHbCqseTThr7zX26YPYHbT4FqjP4dOj+2nwc6YWSfQ6XpVKCbUi8lz6MJprYdxybUZvSOGSRWkJwIdtG8LvMaXqCPWF5WQbkPgML9p9NQITwSBh1iXhYu8zR5mpl03gkgBlM8ciEysmDOgcdD2Xz3voWahDZ1KrPU1baUvVF3NSlGR9OxQHbv5pk56sPpIPopit1x6yS0bhbZE8UC3qCVcYzyiJ3gYDiwlbVAHBE0zcFB9mQYbE1xow+s4hNwe5uNSFPYAJ1NKWrmT1su/Oz/VXZ/9BKy8+QJ8JctDmcDRi2VyNOF3zHOQgW8UJhUPvnWGLZSbLGji3BJ9R5PV/FYeqUyj5GviYzd2+vy47mGVofXveILuESodnJjbsqvOlANgk2KuzuMxjfnyxj2L+1TeqB4u92fB8L6wBs1Ub8NVAvY7khsfIJqW6MpUos6UbJkJlVbm0Sys32BWg8H3rQJfBfq7JqGoAdXkCBKEjhJRsno7XJA+iuXygo9QxoPcQgcJkDpae7vZ6ZRxPCNQT+158r+CznnLMJYWws9rH9CDJPVgik75yd7hDj5qSY3BVHOAFWk3KvCgGVFtrz/GkApwyR1uuRvkXdblvabMd3QwoHFDUboMzlFUDlEZ8hZljA8hpj/p1uu/7xPxe5udj33b0EW/GdDiRoYBOJ1LYNaEOJ39JbT+5Lv9QuloO27heXj0cIaPhI8YUfdmUl8UN2iC7Y2Ay5ZHKszJY51wUUgRDQngp2uVFqs61jCeWoiQSq+3XWpTsBi2uJ826ZNZ6axoTOfqlTj/CIjWQAfaSUz6Ao3QfD0b0Om25EYOLWxf9QNT3Vr5lntbPbBbSCkQ1Sk49BeavEG+fcFqFYtYck5P6tVePNIn1hZu1RAC0QHBgcXme15PLFBNJSyPpuPTn2adBl1G2AF+FsmmxX38HV7cJ711pVHXvKJcboIKKYUgGPg0E+I9pZFJJsMuTxva6KPXo0GBNpfsDBXbDdx45Ca8Gur6nrr4sj144Lnu2P50dUAe9zRoVrglLgzky7+3eZcq4Dirp6FNHW9ebBT+Pqbdx3LjsTauYMIKMFXVECwwML2OP4OyseOtkwoefsRLHQDAMTRQED1ihZAmV5LcC2KEeVNW+EUz0Ia0qMt7uWdokXR67YznJ9uSlI1MYDOLiwKfPkMp4iqCftzmOPsGeyX4faOSXoBrZ0QOQEAWSLU6dXK6nSLXcXntnYn3pN44KUEUAIdTfeCq4k17W1g707sHwQSazbJunid+3T41IiIJPhvXUj5P7nBdJDhiz0LEIuo9uUEoYmVEdZeE3p2Pj1AS3B76Ehx27oRzw9B4Lus1u6lNjBSts/fxd0znMRyOuRuoJQRbCQB0CZQTTT10x09n2csyUCdXegiqP4gUyDezTQzAo9kWOuyiG8ggO8hX47QP4E7uhsImkCxcPawSjlxuSsz++doiaC7iWjOwu3RRM/4vJFvIXhq18HCHO4aZtZZeohtKBbsN3luYH36xsA2VZdk2lJBHofuL9z2PnxrxFgmKFSmcghUuytTaFzLEM0wi5erKzCtzGJ0prRV/4nOlu5a/6JX7/NR0zzvnmUX7LrBqqgIWSFWRTz3qquYUlq4ubJiXIL134i15NrxlJOiq0fP4rq7S5823rE2wuuNRFHYUR8RZdrdmRnem91UJojnoZ+pxr8LjCPjuE8Ce/RNg/HIc5iskIamzkXnnjskD1x6aC0OVwuG3CCLjZK46UpJ4Ksyn2O/qimPYYNKWpYR9BtKx1XE8hr39K48OAOzx62DF5IugX60tXv1VnO83wk6xOY91IZJAKa5LsWLkWlEE8i6waemySLUuKYwY3oMQggYhhpuGHX6MMd3ems0aqgbXvi4M/gUwWugt3+XbiGGALyHR6Yw4mQQH4zB5UZmv9X0fiBFsxzlBL3ysEl1DXKdAUAzRi6Ly4JzVqurn+v1mDYI+m98hJdqGV6/e49ztGN6FM0Yk9OKKwuFpRnvT6v561dJ99pCUN6a7dl9wqJ3Xwm4esjYxu84XFj4V7/zwN5Xp6t5pZ4Rs51iIgs+1alHy6AxeeYhrxm/blrVF0R5EuTdEPcHYtjhxn+lVPTxyQQ2ql2Cr4Q6FDwPhtP8Ts/S8YzLvt/79DL+57gvpsvHDpUmK/kdFRgsIGKzRqUzQogrWy7TY2Ys8/SY4xIHkVbFpWt8+JIqSQpDAqTPVxwOHlUZK3o1ssjdGj8b/wXYu7qWCwkMYzQzM3jgbH1HIaVXz8QvB9yJT/jGHkvqjJIjfsSd6hWk9SngReZRjWcC6xt+inCIfd+6JV6GqWCJTeGGy7oSMWPGMlaa+6vDSputoYZ1mhyXyNz0t1SnQO1GoiCiTLHU5QzClORHhRB4uMPqYhZxDsJMwrW8oQvR7ltb0x0rLo3NSa7QUT64QWIUahyThfAOnIHxSHqgBxQRI5avhKXluarV2WsHP2gpsnJKJR7zlqRfwdQSo/OZ/WUdr9M8NVZWRczTxdrQrZfHwik0QnXBmu1mk1/bQYzL1+w9BzcwMk+IJDMHNpsyBSyLHt8Jcpx7/RJfBL1J4/5L/V07ty/oOQU5iWLuyWxuKwiADltRK6KlYZ0izMMVxg3SBzbTltHJO0CH9ek5b9trKpMCxp3irgeQgWGotPj7c3gAj5cog3LU9gf+IHm4AZOvcxg6RGC5TBlNK17hAuC+d7WtEl9IzqE1K0XXzWUYCsoaCbWf/2DqPZuRcDS8QJciYkCiGiHiwFTSP9FKAPZDLMeB5HSXWvHQCovgeFubfEkOcEAyfosRhNe5ILRRVuYUEkhZJdWh99UqHz99gGv3zNO356sYgzCNeEevFiqRizj5AXWPdYQ2EDPO1g1DIXfjyyeeZ02+h1jPliMh60Qb3ziOIvichryLt8L1hgTv0CRyuflIq+CPLv410mmpmcSG1ikrymc1nNVIJfDzjnq9ZPsK7PUy13PKEm2oAG7pB61RXOPZ6Ynl2QJFg1+Y43tOa+M6lx5NG9ikpsfyAJra8kg0I2f5lc1yDU9MJbQoCBKPIVNgnt8v1kZg3gQtMC+JCpeeFV0v38X6cf0wOfQjmd+9I/j95m783VV5zV3VNG+F3ISGJ69OeHAwc1LEzz31d7ImS8yNTfRkwTA1YmgTI2TruTF2uVwwgVhvSO4hMxUenIqb3zur+/7ihxti7y4mnAQBdNWA4uFhzFB/zwc/OMlBJRyjuAfruudnyrI+XOOpNXCYZ+YoGMwODUf3/yi06yiamZS0jJG2OhX7mLn+XamRv2mjMStihndkjy50wxg1DWhAo6ACpTbAZK+Z4YA4YobEPG2/vRxpcq9bL4E8E3oWBLpGIdnV51CZo9Q97qAIGPKyEO/Zqaz418kh90/8iMLxsFPMB5ev6h03co9jVPfUKpM2D7jQS+NBSR7E5i09SCMuTNf39rAhGAmSeGdkHfaqeuwPC9s4I/rmF69jCLTUJuhIQonlYcQVskyChHrjSn6kwBRdzSA/dS/CgAiU4DfbYiR3mwevyL01uqaQ6cBFOItqfeHUZs0x8r11KYyvvluW0a+TqphNRcl+bH/mdC+oSTax1wtAsWsjBaHnU0lGkJqkdE6BS1qn7uu9tEW7NTb9jmE6OEL+PjzCcdWlmdv9AHSzScqZXiXbcwJiCdCsgsv0f8LeOt8QaTi+56es61i1s1Sg+0r8SyJYNbva6uwq/Gmv1zJ5x6JrE93WzZ5yDmD8gYldF7b1mNjGc4Lf7plSWmURLo8+tUfzZ8NYu+r3+DLBicOSdvJSI++Q2wZ+0b6hdk3zECNRd8adLgoIpgdXq2SN/JFMycOD+Q+ELTeiiX4MTlo0AFzPW9ZsgfpOUjcxlutoowQXUoplv7cofdgzUvG8m+d0YwQf2SE/9MgilSsLHi+I8JjrzhAhf5HiZwF+kvVxVOAvHnKQMcqofJ/qOPX3ZmLgNXUe1i78YLbasInYQY20g2M8fB6u7IM1QyeRTarojLOBaj2vk9Ye2I0pDAzE2DjrEGmzolXuMoGvWQVXddfg52SdnuIeS7DNJp913VU6PKvaf02uN0+AQLxVmF2FHMjGr8r3PHh3CgWEfz1TobwWWW+ooGRRNMjfKg2GQkvX2BiUTw0fOIfUHojhorcdD8u4hV/HvxrTVp4ioS3D6bCaq8STk51tONwlxVAB/Mkdfc3B78B1oHtL/RkXSnQP9PA/bn9d9lPpGLJ1zKZpIJjCPMWHKliTQ2oQGyK3leV3D85IK9nuGv6sFbSy9QB8U9e/LODyPP6rn+rK+lWUDXx21TAP7UCUvCn1KUnMnfx5iryuSrrJA1Esv/fH+5nwZN/nWkVvbBgBSM4/CxZp+oa618bjU074C7cbecIsMKz/jKCqJqEEj+6s/0+e5E/jNwpOro7Kka1QnkPXMU4zcKKsaEdUJIOSfopSJgumVvSJv+ZMwAcZXPKnkI+xaydLVM8c3P9e2B6mnhzxM2Oqna4dW0PpbZaM/gBbEw9hlNGurGYfwfzVEO+k7HXC6o4t5EQrJl0e/YY34GDisdPXXYvoYtvD2B83UPADUOCh+P2SGLJBOYaW43x+dPLZ8JEQ1gLBd4M6e/LDIETJ8oaMLDms4vOaUm2ItXxStHUxzrsBQ6RO5LLS6DBcFPu85d4m4p7xPPadml33EblQwKsGBeWe9e25m4vEOrcxM6snAqf/NKglFiB7Y95qYb+JDmZp5r4WefXDYuy8PGtB+twJKLeZ42rXJlingKbxO9aYaUBIlmLyoNWXbQ2lLYH6d2H9SDNXVWBwquuYs8RQtoieFSO4SLtIJc/8K/Lcvxrc2ADS7Ngyv47nmezUM9HCU7TEU32W9SQBemN5r926/HDmASu21/OvpJxPQGLoVw6EoWvkpJUF8/V759PCLVcPtbK+V5n0Koac5uXBrinWnUtvTqDOUnNb1563IiApjDlVGgY/R92y9cQHNTaklVpSMQiAgVTezDwmyaU4+N2piSsGTfDm+7AiXqK5a8Df60GMr4VoNLEO2wWXAzCOd+x5eo23k+YhhXbYo6l/sWusjON4HbF6BdnuPGysUzgxBSrb3kdcnoqE4uprDWJRblJtuqtA67LwUe0DdSjqQfk5Rkk/2w2H+DlIUjquK4DU/GxSd1xFHVqHeWaXA9L4Z2lHa6YOQZcmnkvpeRX9UCJSkI+okGotb4LM4ax7N/gXxjQWFyHVDzzcExeMy2ZGRTxFr+U3/VsQAPRchr7l+K8w1IpMntwXEyMi7iC7ggsQFrpU5yx7iXT8FKEHtI/Jo67dUkh5IXcSIa/D/1QxVMAqJOQUKmTx7UkDukFOA+zlYBABARPSMV7FfOYvDqs9zysheHizwk5wA/xaYp7LCN1Ex8/t1sm3AZpsPLqL0QE66b4KdLEd91XUdbhBtGslFxIPQ2uFUgJxQ/nz/4uWq6ReVMOt8txReztmbI9m2frgM4q3mZvnzbMyQgRtPp5UVsXYuVCX/2cw717NVfDbbXk9UJUL4EsEOfm0SBu6Fk0+AB9R6OLQxKHp9NUPtJyF4V5QxnnOvKQnQOK5k1ZRq+FQd0wlVlMBkSbFYNkPykhmXWLqpe8OkCstdIwG/aaAsfqUuGNp4vEckpXE5KmedJc4izDdQcUTW2R0ybytVQVE06UIwOTyaGGc0tmyWW5dEiC7ciZBgMa99BKIVCxbu+IJe/flzBmR2Xuo+fnNuxkSZQTPiK/OKAN9KZqGLIx1RT29mLGOtn5S/38WT/KzPxTs9jbhk2AIetme89xVWp6um5JvIMpmumkBANh/JncOG+UErI2kWgeu248K1xINEHfVPpCwUbauuBTmEQRgbSusHCFUf8A4hy13sh07DLHV7XZKeMrTDlyJehsq28BLkOwIkbS5r062vOLd7bHXydbqp4+vtqQ3kmAUOtC7xk/3Lzq08UCNLmcLW9UfFKtTx2Eb30QXoRxuV4eZiKqdkFuxwSMtVEqJNRQUm6YpHYv1AvgIly457g6gDpMorKJSc1OgxYyWvTZObA32UD65HksUSnc7PyTaj/gPF34Zvx0LdHv2YP8FZPm6QeZNedP3gVihnkrMjW+gVbwN/OnWaBsQvHS7xGIMeHmy80jqkrw2OxsmxpgHe7vZiXP5GbMLH1ekvh/SMM0H0ArmTGbO/ZPocDE4dsKK7YFYFS6tG7E3gWdNz8lozOULTUw8cqWK8XyagTDlKJ5V5PzLxkIxIyeiDvX00VO3HKluRRX7LrzNyB0Q05djy81sy+ffza/ThcK9oKy/QLAa3cz+HIPYq8zTfrP1VEIfPrQ7I76xzW9Ppbtk93dHM6EqAFKn2wKiHU3b7D1aXR6V+GAvMMrZGE6BWH9HyoBPjLtiECZvOXcYosgJcG6EkjDq7Y9AV7dd5iPp9SkV7pPGegdyU9Vno4e8qLPx1/nLLHqi2luCy7vsN9R3RdUtwC7aPgSyL9okgwIt8s4Geb7ADg6QWYWsdgRdYUltvkCWctdUrYnNoTHtnb0O2ueUhX1uYB+S+7EH82ezRVSBMvVoTPjpBD3fdCsvvSzYouolWeXQottUGFy2krFmmv6KnKBkfvUsJals/d+T1vLb/JvFUdHcXFfTtb1uxVuRqtukWoO5ePYdFLR5C/aG9RvrPHW48+4zfqrEOf+p5Y3U651iPm2VRVQdB3lLTk2fjKwAf20YUuZ46xt0ycND/6gPMnUlgHDoZhlLLU9Fu6QLgQCpCZpBl9MqRMzudMOGRHV8l1GtbWmW8QvwCqgS08+asC01hqp/AgT6mbGEgQAh1SEsyWenKJqZwIQpiPI0N/K9XYTeIGCm4VrN13Xq9ew5WcPuo1X3ueHzvsft/51krsz0Z+qkF06mk+fGPeU0UbHCfuDpgVO0ACR69gzRSvXc4C7mEEfA071hKD/9TnHzqXEktAqSQa9opT/rwKM4K1dVVsWV5SigKUoFkB6jCjxo39GBmh/gV3ADB8SrJIIXUGZ8yd0bopF8VtlbnFwd8ZXJLXaSP53pk+2whqjY7jyJ38Hlkd0JYRhs5Fd9usHJG61ljQvSn15s9WjqGLXpm9GM48A9ALqO36UunwE4lvF5xJ0fFURmzWUK4c22FFX94twxKvfvPOwP8/RY5yxgwieAbjSXkbBzlRSApy77oVT7ZLhygvlbmwz6grT+c6ncgBc7c5bmPLr8/s+Xf7+qiwE6GLVOvjtyyy+IxsqqRHPe9xD5FflmANDn0fDCo9R+Lqqufe2dAxRNJX5AX2SfdoWZVMeY3cpWys4hN0jgkUQW+BpQbuVqYGMQ5H80x/cA3dlSksAbaqi1uZorR8SYruO0w2BcDaC3TCRY/wB/XxwdAwp1X+QgoxpNmHt4YmEibkSjnkMknHW2tcuo0+8OeRnPUEECTB4DqDY7B47d+G3Adk6ezYHyF+LzbOe92+J9s3lCcqXsDZ00Z2leqQTnoRfs6Md+CJWRSkljukmSbX94R8tQbNtdGv4NcTcDTtBRWIU6DHFN6wUzK1PCHRfhzlOWZZpSujlhW1iTtYs4mO3MEMy836Tv+Z8tmO0t2BDt1oH2xN6ns01bvS3RtBWp4qQE63sO/f9hU9YcXzb8FjepQ/e7BMnSvaE9vWaxCXeHCxDUGaI1xi+6L1IMuOLWMA2T7MZLvA9FFS9Jl7ARAYqQFq5pgTjjv8XwF4RoAlh3QTSF7ACklmtz/1c0wu7MCpvj83FhcmDzWg2vbNV0ENapVxbW52YbkI+6q4MW5nhipOJvl7R/gU7gIXvhLdike4lv3h48HY3aduRIUpPh0HE/gPA6unN6yzo/za7BMKMIJhOntUyW8hedy1L4zMhwg6rE+0B3BfGJbuf6U8w/O/d2WURkt9Liyz0zBjtLEsvJVq0lGlDAx511QWAT0JSHQiTX+DuPu867XdTRyvEL++HU4nocj66wZAZ4lDzBM7t/K3FpMSXhrUSby/o7lY5F7vn2lHu9nHGJFQ85x65o84AZE37o2T202REr7JpB8KRiF+AW6rd5QTSPBfHfLvfY1yscl7KhK1cNFUE7Q3slnzNurFlH74UbHi4upsg8CTxfR+pKNJ/FC5obmtnGHBp0Enn4/mGDBHa9Lcye1aZLn0mg95Ov7IamHsLTPiGxJ+6ivFGom216sOBEtEc7URU/FR3MfA6hbpl8Dz16dzTr+v/aOtCfB8SM0t7u+H3BBWFU26R9Tf4ID9nGCBQ3R0VnDPZKZWS6WSZ6NEeLkD1HzrNKX63UOD44GZz84D586eL/9nnNm7SRPBP5F1z/MwiP9HwTU5WAkPoBRI61pHWEEoNrN24+Z9h7dygXuCezOrO6x3fktmhs/CajZz7dVHhTC4nGzn1iBaibL/2UR0mUr2vTuyus0ddH3BggX7uCezBRfhWne3j6Xk4o2wf/u+1q9EG3QzrkdHa8weVdmLk8xGyay1PIGfgegloV/ZkJQjlbWuU11oFEMXDs10SOP6ZeDMU1mlU5qoIe8w9FeTl8OPJqjfsvXrhBxJnshSCu7OakEDEgS+eWrR0wbXz40purlP7T6/18IGaL1ezDWg21IadtLIcxqHpKBsEuN3nvGMO57Uue0zd/dqugBlrLh/0hJ6CwvNJsWug694EPIKayWC3HXYEcuBHxM9a+w05BA0aMO2jjTOy+U3maGyA8qXUf00u93O256ef2kgSXHLfRY3tqYV+6AqwrDbVS6MgEU9C7n37EYSAdjPEckXA1iFcQKk6W/ksnCRtCkIVd7WeowVUcEg/P9+tYmIPzaakXb6J8+QhFH4297Mq3KAe7VjnFMgzZSzcP3vod+qBhCDIsgdxszRIJXRRX+zyL4TAci0J2pgc/zrfgFnBRHPrPx/l3mXUKHM1B3LP5yfdmmx0Ts94SbGHMqmCcoH2JoiLERof6AXz6PcROkU+E1b4jmGAyf1YK+yE5w4AxNjS13vtdvvCW3MTX481KxMc6nIxDFb+Lqilc9ZdlXe2806DuSG6xnhxI1VLnZRsQVRzEFiE4L5wl1fMk9lt+jl04rSeHFdHRIZPe+CpkBwkf1EP9IBTHlvHerfI7lO/RrOKVH0VmFwQm+y85zbiIPpw8KclCQoGvdvjCvmGf32W0RTgteYlUuObx15vdeJz1c+Mk4V+cX+Gq/PqIcUlE2ZDXDhsM6VBLG9S7284a4fs1GkV5WoUb07NKsn/HV5YTNu
Variant 1
DifficultyLevel
631
Question
Which of the following is always equal to − p + q?
Worked Solution
− p + q = q − p
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is always equal to $\ −\ \large p$ + $\large q$? |
workedSolution | $\ −\ \large p$ + $\large q$ = $\large q$ $−$ $\large p$ |
correctAnswer | |
Answers
Is Correct? | Answer |
x | q − (− p) |
x | − q + p |
x | − q − p |
✓ | q − p |
U2FsdGVkX19IaM3LeEUU8GXVPXzRVndT0SgyrabVNHmxzSQ885f7nGNFJ2V9T+pcyOs7UNb5QCJTejtcxKJPDeA5tSQRts53kT9/gl2+zonSyFnhIPtj4DqMYjDUViLaK5L05UA72H7sUesujo6uOhE+EZ+AsLbcf+uSiRaKNvRuJXN/ZwJKDi0iUk9H096oNjxIIoacEX1Ctr9IJC0Qu2wgSks95rCPD5rTzdNkWIRsFNMjp80LJG/6leZnFlP+3QJfCHwSOJfPD9Eap0/JEIJGBi82a7e7Xy6HqwtwsoXSwIWkzx39wOcja8Ylky5XdyGNx9FGHp9JjFhjNk7Duqo9RnMtownRmM+zTHE4iboR3ttbFdkyeVCDqUszgZlNq6NYM38muJrb4u0zanGKIo1SWowWgnyf29yiZUVlmkyEqYgvLg4DzqkXplS0JytNmvPPRPVsB+hGwOkR4fqpw4XQH7K4i613OfaxjpC48RNE+2CtkehnK3Y1xKW80LxY4UnY5u6g3vHoqb7nuxABAAB/rNzMBJDaJifsEG0cb+3v+0AMNxuUdc8S7lA9pY9GnjWHrqoaNTxNGRF/VPqbStgfzQZF5ilDbrjhA0ewiXaQMDZGNcoyMy65G3LWygIeo/1moqFhVqxY8U0AjCYcM8Icdw56hbSWN+XZy69ndNFaFzwhx3eQfjv3hZ5NejJ2jP9IfUdX/dlZ58zE/DT1WfLN2OUsQdiV3cqM3R/ysXX1drujbqDzZKZ/BrzTjeSm+GaVguR/ppJ3+RdpJuWjXzfM/x65J9Nsk0ERTG+dkNip6iqfph/PYWMnXwmyYinrfOh9W6jrENLiizZYYlFO7HrolZDTL82napGH8WkIyvbdJdTvOuUIqVeiXLnx+W5FJbGvNSj4M1lCZ1KzrYP7UDw5EuWY7GR2/t1PY3wMN11cbV/UyKHSIJc70WWgO87PfVQrFZDReKNQ/7uwfoBu1+Ve7yeDcj9VSvmEam9zWuuxDINtyXPA5cRMzZCy/wyKxxljP+9UNSKOrXI/zMzcw0CmjscdkXqrcNhYvteiRbbhXH8hObAnfYhaeMsp5nW5BPatqFA+zDPmG4153bf7yu/C2kK497RDeEB3iNWvjz6vjfAOcOMD66W8HpNRVlbjc0VJKbnTWHQXBKTaPMFTiCZPz+ULoUX9F500ODoeZKHaLk2LXHHUqWbnbHJ1mWT9XoDfLabr7k+egomZ0QYkw514kjczij3fWqGK3MoIKDtO+MZamXzcvwxfa/WWbN2nFo2nARYVNV2/SwrFNH5K0MNxRfqDS7bNWl+xL0PYyPlVH89UO/Kx5Q5ZM1eCz3mL0svU9Xb7CqDAwOfL0t8YwSdrFN6Z7aZb6lWS1PVSdQLumFmFRaPELeNrY2cMR1jjUmMGaAEB1BtB2SN4y3y96t24SfMzvYHOPhhQb5WRk+QOa24pJ7W8FXdXDCG2tI+6aJYm1JIFDoLehhf7lvzhNDJTjUTdlYrZrqfcnwSeNgwUzFJ70/lrmdlQq5SwdGHVWu2H1ie3vIpmV+O8JMA8SwJrFI05ZEj6cg27jTTt8nPOfyMHkwtQ7Bo4r3ysmuwyAQ5/teMOZQ6ggEiY3a1FlrE79QuVaEz/6tRt3FaXlgKcg7/Tax8ejfs8VGrZ8CqoJBdGGefgGdQB6Sci82g4sU15u9R5D9yE9SNRRt3lu5c1cyM17qqP8ChB2ZqJ43mfbI4YXLWxhQbSierojulue0wxT0RtnBRbDdaVUza0ir0PeBr0nl+SQnxeSdPO90AWCiYByNih9Bz9uJXkaN9R+YZfdgFC3ZYHMaTBXtoL6itWPhiWMU2h+jtR3OcqZ3ONluFF+P5Cj0f7onIAX95Ym6TLUWAskglPOG5bmRK9EeonAJ0E1CAZaea4UZzs3MmQ7CVtN34E8/c0DxSEyzQdI/M+ge7T4XhFxm4thgt5VNUPY8u7Qu7yB7Sx28HIh7wWqyP6r1izZ6DuxfW95gYn1xgCyKWX46aO9Ro7Yf92B1JYWoG06saisbveTIOrID5YE3QEEIad1JsvQCZUi9ya4jmmJERfl/uW76lw4HIKsZUiIVTR4mETjswr8bHnwlfrrFYswF5c+/tAGYHA0hLxH/CdGtZcR0iHIE3twwv3UIxH6Tdn8Z0GkQaa3fjAev1fZbYudk/Exry4d2gtgQxJte5WZHQLnWMbPOYd5odbyMw+jdMkJe0QlWN586ByxoxAa03ngIur29PmIe/UdP+A1mugUOStMHPGz4wEqr4i3vgEvEnuXI2bP+fQ+pfw7Mba5Vj6pQrRu8SDXiLT602KDyp8mCHqY22YqsBSBkXTwXjqe2Strz/lvtHzm3FyHP4lwLmtl7uFio9oc3qks9SFvC+Or0XqmzrORuKrzVhmcQRx9NUNBh75bcvYj4S+VZLxa0jZK690lYUmePgfE/6amVbfKHhFl2LsAEQKjysmFeNOtLJN9Fg6wA0f0uBk1OR9n8QWChMP5PKaVpAExfGioPNkURHy9jmNUwAhsEJliEadByi7hrGA9Og7P/6ojqrH+4M54Xhm+OpXGYY99429X6IeK6vQl+zQzRkEHKkKGB9MiR6z+jjollagzepOfai7ba2l6xchoBI57dkimqCaxD/XUC0EkUgpXdlyEQnKTfa3ERND4MJWK2Nj+HnNR0zO0cnagrz5mgSnx12hTT9YQFeneeLjsBOVW40LtUkLhgADvH838ZkBQ33tzsSIb9EbB8xqqqPB9Tlnke/JhU4GHmoB6bpoL49mOROt6/ReTYHucQuuOlNKsI+KRUNMWFpeT7aX9gM6oukemLlKnUMIfSiE2YuV+qtZrkV7ay3y9fvtlTPyq0dTCczM61BUXHzcCUL/pmCOCCwIEpL4jvsQlvgIhpMTURPR/jWpfBUu1Ui9iw6eQaTTcPA6I9kSgwssbJfefK7lNvlIiyTxLedabDlceoC457V8aoD+YxtHftbjtDCDAeUfttt1u1PmT+CcwJcXR0058J27fzciJ5I6YVzuU5gfEsQg/LUTPXr4NnpV/KLexDth6Mw0E7v8kWRaPHeFJs6SFU0sKhfYJtgco6/MyMPNK9S82WlD13H6u1zTixJeICfLEXZs+t5253N9rBhEAPPwu6ccpAb+5l6eVb6IcQfXP1Ui6deX+zkG9mi/kBvsq735V5kxKGGR/djC2cTyDIBRMF5Y1VUyOdneO04Iu6u7k+xwx2M+0a+J06VA31BQygEDftl69uZMTb/n1Cr08KDH+bAk2uPXPItmVJbM5VEeckRLuiS4V1dTTyE5VoJp8opJuKGGLRfzVJhGhn9bs36h9aTyrPArO817++jABWpiMoOA1b9hpKJ0LXUjvQDcMX5/g1r3Q7ZY3Fu39zmYnXB++wMqWJ6mF3y2lWc9f0U3L9IkTtqmFcmxwQqZRVDRcqrNTARyE0Q19JEnRoLejCySi9qxPb1KcTvHs59JmIiYm8ITevE9c574WGcx1oyZ0CKVGv8xxnnazLyFsFEWe7e3mRy93UOPkmZ2wU+pIwDiWsYiX99eauMpFWciRPpwZuy9QGEiPcz5W6TGpJR1TPdfdp4/L21UttDGdbwwpUoVXJYornCxGRmMe2pPUS+UlCVEXe15udPkTvFBkGv19vaP4twat7DBzw1GqjqT+5g3rtPo+baT48JPjJ5MJwPVOKF+Hh5GM/eB9BrFs/EGybxiZbZnzHY6PP/wOnUZUh2xMapWP6TMQiV1OT9BFXy+A0gN14c3mdPKK0IXOVOl2KhmlSkrVai0BamzH6wM9Yr1Eal2/VEy04+LB0Qo0roeUE3qzn/j2Z03B+M0W+QaI9mCrhu4F0edXNppY019jo73yGV3QXhUHqYU0NK6lr2VQ5XpKEwfqNaTUhfzFBUaGaT5M2trKopXh1Ar6x1qMX8WkDj/hpg5gveXgBzBldbCeoPRTqygjvuKE2jLPE/mFwRJ3UC7ABguEobeP33KfO5CM8Xu0BvFfRaDZiy6GO2uJvxRTusrlVh1zuG6kgi3TnbuWxV4oWhJtD/44kfkMKEIz3KBjZYxAjVbIu7jdFf3mjRukqlUOYp8j3BHQZ+bElYVpxiPhRVH7rixPDb+H1rTq91/ufKxusWnit8LJiQ8Ok5SFrJ9kB9D+cWG/duYhOxHUDzX91k2PAmdUILBbpdFv5x8vldgaFgFwnws4urdo7VDka+qvpyQZEiz8ujzHv7l9MZEhoPgjcpsDVJq2umWmxRQM5riQOG8AptTX4VuePk3SIaAn2Gbwb15NCj06QfWsU+0Nc0LZ1+7Ro5ZKXkd4Lvgl2E7rDCE/hli9fJpOzPkkRoCSdKuvqsg18TmTSRVEz2F5q4C7Y1oc4kQAKHnMvsekx8tjsWu+T5YB6AGJZ6D1sLHnrJqeUiroOFSm2issA2mKGWwMU6G5c0MayfwtTdG5QyhBU0I80hhuLKLIXbzovyW48C3WpA/43Ku2Kifqi6uzYtH8JsucRzNexj0XPD7WVkE6DxVnRmX8epAqZTvlEUiOmlaIyursCoOvUP9iTGlqhOnEUm3q1GfkLtxcNOG7M9Nwq541RnOQAqPhHSLBQrXzvKnkFZJGMZN1nOf72SpMtbubb/dofsGU9SbF96PAywngF4UTCdfWm/y5/HeDP18YdNkBD3bmJuXhGC/jGD/pZQIjU+TYWWoL7g0TCJWt6x7+PTa+MnHgEW5pY3nTnMEGWaYLQQhtI1ZuGV9/Se9pUF/t2CErQaHaRxQIDXvhQGgb6w8VdbacE7PUWV/IKIEu5pT2ql1pd2OB+pPE3jdPhfUxQYz3w8rE8qYdE84Ct7CJbVyt9B2o6VkE2BI9WDzqey3kYCMXov1YfTBKamKlqXG5ithetDZsOO4FJdJ/N+i2DsFx0TVzKgM4E00fW1Ny9NKbrunNDUo+A6hEzl4w1+/CEFXPf17zU5xQg5cLY/cGcwPCBlq7xlR7lZ1s/jNAmC+xQqnF4IXJDm1dtO4QzaOFG87j945ylhgMwiF8RyVrZgavZ+09Q1b5LdvEg2MDTGcTjmuC2Q3pwYxmFi8nT6z8EpqRuiq/n2jUcLi8AnqfoOfky3UZ0eBzxRBMD6SWaP3L/zlCWW6r2e2jHdwm3w7RFEev3n3DYxvCA+7id2afp0mv8M243dZrDuT4CXVcIFzRPeJxfNbKmUOcoSn4CZRgLcGwebphFjyTjC0Z1nOj8AYr4WM/eGeZRjLgQXo+9sToRNSMPHICt2WigM2RMP9yBY61UjqExUfoKoei5UN1fz7AA2XwoxBbh6EKs4KdbH3ypsgdU4LpoEbe201COtokaW5fzkUkCPIPNwRk/HpoyE6/UAhRBWI6ZoROUOs9JXF2FuyjuObGMi9RtZ6pfadJ6V+14LFASqROu1OfZcH4n+xPGQlGiMxaERmLFoczQ7pdwB3uNhqOZ+PhMCM0Fd9FpgWgZsHzfLpt5W+e9N6b0SDeZeR+eG4L8OivMxmBXuwMGCL4a7bYJMdfNym+21SunULGB/aCO49wwss1MiCGGrs7ZgXGPT40jZfXK66ULQ9XXOa/67IH0i+2aAmbJVykHzV6628Z+X6sbDNNNJe/OW7/itm1poIMpoh2KC40wUYYxXBumcDU3/jnx6iAJnywA1LMMFpo2n8/zyJO3p3vBTEOPORVxCPn6tX09k0kvcFh317GRqKcTCyKD7mLAHl8zA4U/UFEeOB9cA4xtYye1/rfwQGjJ1jDTYWzA02Z8vKNO/KbBqirNoqkgI09aoYKCKN1hdiwZiBBhmaGam3gR6uDgXbV/xOdd0EFpBHnuCAFFKm1vgqXXKEVH9+H/O6zF930twNQpeVXPIW4sUNBEDodW/EoE4Df7WX1RQvSeVaVEzJ57sKiuilfkfVkgDKGZex2AbNqRO4OoUzvLt7a28GsKLcb5dfZVuh3eWqg0FeHqkeXkBIxjIFkhWHXjzdvIyOLJQXF7CeZWwq19+aoK1NboHT1odiOud3c9MwzC3XgkMOJJt3xyOvc3KLIztIs8kDru+Nzqr9CWL+D7wk02racsg2haN1kEJAbt7d7/NKGGoCZZoWTot4zkhjka17UrOYgiQGaPRiYiXu42ISLtdOCgna4L74oArbfrfLad2yiPKPZ6d3onMep37Tv671R0v4mvNQAzuJEXIVnpvASsOnqyFQFvH+Io6Lw6YNwDTGdKlwDXweA315cKoc36t0NUhFi5FwJdeJ7phB008imoKsfryZWEKr5baD91OZbKE7sP/ZtNMATiFzP8rISqDyfl4X7Gr2ao1G2cKOyd74swGjnCmi5rYFBlA7g5JQUb11yzTbXGmCgYurBLs4ddgNWEQe0e0DaHdI6DOVYUB5BFjdtERrqD1cIJgy61SFn+6rMdcawKpouw5okCET4PIE/vhaQgZB65liwSv8P/02UBivRrdtFlGY79C48sMrCT1GfGT/XRIStynE7/xJieDBoLgx/IzhnlYipju8bbS56TSZgnd9QwMkuGOnIS0p+16iuqLhHpKDbug9j2bWq+W5eTWNIoNM0i+nTDJbTguPJiv0UM8GaSZY8qb2pzOVmpknfUzK0aTQzGjMGWWU8vKzROGJP2d2XJXNHyYl8Oon95iMvl0yCx7DozUsDHlvbcotSTJu/shgtAnCF+gB+Dgfp9UAZRGPkTr1mOg5uLf8CqjFpESv/zWq/UEfBHzy6MF5tYIw7NNX5MKRnHdJdqT1+PGJTS4gkGc0+0xhiPq4edfF5203fr8Ezyfrm/iu59uhdmauDsF2Hi+OgbXKsYJ1/SZxZJSj5qsha083YTNhFyTUWX0lrTzKXCgF0GW40R9J9KMYoVuKFBRyMWEzTKLkG+laGhkRLwaJBcysFwZZfPcy/SA3BiG5Dj7S0nV+dHhPGiS09LiTxSkXZx9mdRQsszvePhCiDzOjgf8a2ubimZLDVJRBfTz1BXAG9wSMU/EVuh40Br0r3MJ4GknslmMr/a6aq5q107QDscW1ZF/Ag0JJVnx27+YZ3V6i5n/sji4YODADQGy5VyI0hTUHcHgyzEUShJ0aTKdXH4TGoiA5T08yL/V+bO8ieMV5rwkbQjwu2NslmxV9VPQXK+qazAWE3WqJeUDb2GL62cgu7LF9uYCP0g5pw0a39IIyM+rKfLc7e06LrNeruWXdm6Tw/g+BfhGcJMv5ZCdTvX2+oPfgPmm3OEZpdblf4oxHTKi+zxPkg7TtfvBpbyOnKkb8pdaE6yBJQusbXz2Cw1OzWfFHyiP+8fVRMaQtgdx8nRSzKwuMhPrI1EQa8LQoCb59os5kNLYTRrjEouuTYWbdvwuG4sgnz0LOKg/hPxEQNTnG1jlBWATOEe1B5JoqFWeOCnMoT5vzALYloX3X9LBfNps6AVRiPurT5O5xbpx7aWJGBZMWWjMZ1v2++1O1pDnI1qdHDHm5egUsi8hzC5CAvaF53flkYtR0VGQU1kVV98xFBVxMqNd21zfAS01FtweSfv5kCRJE5KSnZ5a2vsaL4sLT1GC7NEAmirkCxuPNlfJLcTKMNT7exoVKcy3TgZV/K8QWExfLj2YHpWBldsIBlm3tDaNefGEc76JSKpxD583Yw5V6ENm2w8/ruPRS5kWOMXN2d7PfujDblYyCoLo5WAg+BBiKnfxehmi0JGgCPnhJDN36BZIQ38M++/W0TmXaVm6BnMF96gJVT2D1BiW7mGD9uEOFrCNNleE8quRf8Mfil2aGsBfS/8sUPrQWYPFdDO2sFYQhGWYCRvZCPyqda4JhYLHJuhNje9oQ8HefK3rUEiCFGV4aJ2YjDW5kmmdNnZJph2bNCYbDGTM21iqhVT6vEnRpr60tbo/QpqD+GJrfbexzWtRR0t06LdZX72v2uw2vj2moKGw7ndRouGJvZgrh9sfvOvqlKge7jhKj0OCiQoQ9bsBUMtvaeAsMC2D3KcsQqhHW75lHphZnDEOOqi79f3NUAFFOK9oFDmkHb67dCEcWcdxDdQUvwhHBCKpEsB2DpAvvFRlfJLxehrGSHtqDEtc1ocGlMJ9SgdWjvMZ3NrlVMJLFhtoZmP2m8DcCbdxKUXPG2XO3g0KWLynE7vIYGSTai9buxbCCYc3YHY9Jvea9wZ+RcU0omCYjQs5Twsh/abx68rcC2+GhxZ6vvcbw6cLAxt12wDWEQfqHlKrinX2u073Ns+H4JT5oWMlUkEqlfDtjVzIP7C9ORr7J60/kMdAo9L5QvwhBWDnlpktgUvceDpOcq3M+/3zs22aJ5er7/KmxGzZg54Hoiz8RCRcekJr7p2JSEU4Wt/8LMKsJvkgEfFYkJCwYA7kOJ4Th+35fCes6W6or/9OgAz0TsVRK4VVpfOPrXENdoAPdZUwiIj1J/V/AqyZ8+grkKhZXjydKSJWDOWxJM3MOdCmQffg/9HZv7hpXlJIjYBzcHrbRIDkcY7SFxYpjYSm9WnGQf7gO2A2zlja1AFp+SJ5XYgQ/vUiONc4M9kOSKUYnB9TZU+Y8uGZA5yKUT1sUPuWV/SiYDTQmw+pHiLMHvuBhd4J9xaOWXzou7tzKnvf+i7y/ROiopZZ/gYKxTGQQ+T3XE80VEvXZH8l3Wc2pBFDfeBsls6f8ayfhxluLSbbo7ZOWCIfosoAVvwE5n1G88IC2mRYFADZMAbttlCA47Rugwz2P2eNAFeAKzO9bXRjInVZywtAUYwiru3LqE8J/3JIdbqaPY+ApHfOBjrIfEHyqWO8vaYA27ncD+EQ3XhFuOJ6eG9cEKlHxOKQt0IQiXAEJ/5Nxk+TG3Y68htlLabUH7i/5oWnNXtZVbQ/wwtOlbqloAQUs7Yc/InL9lsxanXUgwgkybqqCGcirU5wF5wImCHi+WzUyqpBqPSffNBpJqejr6x9gO7mFvsG8HLl0P7PdCqPGezATHMIYjaHU3JgqPWeQH75SNkiksrznJ1UKVRK3CDMMHYw8YstPBB+NhHOsCL6kOVGrD9T6r14Z43NTdVY4Y6MZDHsMojkSczmRTbrYkwLQ/kPgMPkBEMop3FHZPrZaFkqpQGAfLnm3JBfmM32qAk4emFlX+zpaA0xfNLjfKeNE73zrLeP4nvUazSYkyNPPOYPVolElMLWFWDmaKWCV7MMMcYu23rd/K6NA8GaYLKyXeQhgdmhbZrsVozJTgBRWOmE2Cd6iMemxnnPKen17pPNiqMFjh0vH5zBQS1vZYKtus+Q77h2kOuicIRRde1pCpxUxquGXpICFBzlhumcNb0K4xAosgwOeKbapDFhOtlp5Wr/HWGNy6e1MTzbJPHqhdnGQcY39qO9FaYVU+0PrhF7mw4u5RLGuEmiiF81o+OtU2Hq+83q6z613or19kTpKczprmlD0l1EV8WHdc2Pk6V46R+x0TEyKNE5vJSU3HW4W0Cw81BnVyuBCo0RB6SoC4g/0xUhBqOHHO2MiUrEYMjjM8f7Y/E+wguQw20/Zgi68oV8xBMmY5yBw4NTewixsIZSd++K9/2CbdtsUqXhIrk4XE0PbhuDFKgsKjyLbKtF0jiyjPD3RCyDdB3gtDXkFR+xYanjEo/r087IX5WTd9FndR2IuLbeQORioo59tvY1V0mjGSTJoSEJ2QYLi7LupAQpEF0jghIsDOwTI9h9AJXJv+8E0U3Yk6mhUSdKEL/fxWftryhAG7RPirmi/dIMB00cYY9PZb0WQWHYStYTN51ijeaQiW+twUD0yQHlcFFFqZDfQOfZK/5ycZKQvcqA4AhlZfKT1toV97OzXkuM2CHUZPvLMWusXv7lXkNItYmYnH27pl0KhmpAbjuC6uzfDT6dJ+8Niwm6x+3e//NJ4X4PNQdyOiozTu2TrIjsY7weIRlItwVq2A6ilvBRo6NderTYm1PQAmtiOt60gT57WFrDULvYK15UljadZk7uuXG/TtYVLs2nhPZbyiOjPS74uWLpyLuYRg/4vZid0C+Wb9zsp/rHVr6myvYcTj3XVeDmD7Jjw0sA5RO/FjNxtzIqkZR5x/GvgeB6ZBdByMUjgGtJsJFQCj0fA5tdpptmYJi/PK/KIEGQoV6sT03sHDzbDQ0UIwsaFbdSsp29vv4LdA4ran1U8tFEn0AhC8DQxo5TxN0W+Y52Pv7B6AvtePDDLe8hqkc0k4MgKaAGEl6vLQjrKrcD5xvDKp+jhGBT5NB0OqKjPfaHbAw+aT+DpMkGspdb4YsOySte1alG3cYNHGUovv0Uhf0dSAPlnFUVcXNUCRnpvV66LO0GJbUDjj6b29tXCBmZiCIQ6jUu3l6l+u6Taz43T3VFJRNW+u9btlKVFQd1Xa3Snl/zRk5i2HkCnvr1PBhX5VzeS8bzUgx1Ne/MhqfPkD7FKPfWDa4yK1T1k3js5MGLOEdbERf3RbZlxJku2T5Akcd7JLo6vCoFbx5JCW7lq/yJN4twnLxEBkvWygXVOzS/oThW+G55P9RCoR28lAbVAygnVo0/egm4K2FA11TGMH9My+ymQLlU5InxsFHYSpjSceuFT9F1epxAth1wBy/r1YLmg0Jl2w5oBKCcVF4uO1LJI85ZZc1gXobEVkXqOY6RQhYN05d/PqCZlDbYnvy1TeSoK+kJS+DHEFwK7KbBAs1crNt1qVUra6piMy2LMq7VLxYex/W1irIjOIsCEk1Idr4SnMk5U06dYWKuCazm3B91KIVImZFT8900R1gEQ9WiLjwBhQcixY8kZ66cbTSAwFfIBcwvPg3regImpGL3gLt8TypAzZriSPhQD4jsNfP2hTPxLbYZ+b8H1iyKx9LGbFC28RDIQLbumki4zfejvwgj1eVEomLV3FqZGTXRdwtxW76iORl97OscrrRnGNCzZLeMPfLywit0HtDyyOtGxveSfwDpQSp7e426wyLp9mPW09PDWnTTvu9vmspmoc5lpHBVXmd0M2PyoPUP9BuNwXuhPF5TsmN1xKq/DdBszjey9M3nUGnh0jQkXj2HvAQWF/DPWkSNB7FDUYHN1GL7dRekIT7SlrQiNSAMI4xUbey5BYtpDqWGYoQ5y7qWPQmynvHSSHzrRWU1ZDcheIawT7vEN7Cun89cbt286+B9HZAeaNgu1kmOzf4Jfu0ic4e3vM1agMuKems4bcJt+V0LTIvw2aAjeRNUvqAY231aUdPhsLMmB33KbTptvzpbU9VLreT/wdcq0kdSSmfyEk4JKuMygAenVeXjEpM9Y9JKH6ZoHriZOBQMdzGUmSjtNNQNAro7OuEuZ+d/Vufa6FIs2GcVO2aUvccrpPQXPJqTUdvU56MvxJ0vPwpqMt+xQaVSflVn9YP7Z/aZ5qDsJEeYIH275Jy5BrMc3XcQDaTrY4KeCrioxD3I7pIsFpPEXM0Y4UEd59EiDtSMBQk0dn1Mi52YhmDQK4Wm9IFPvVxNkP9I5oO0lsqJeAZMvZeZ8AAHOik1W/jKncJ2K6OMIj98Vb82kPTaeiegamV/uBHlXKDscWAFwTe5Ecf2uadtHzjXKJLhkuLLKIUGmwrSbmkr0xXY0zGNR0ULwnUzgcn837kCQWooc1CfD77y7POfWfcdOPJPmlGTvK4fmsCNVJgKQ+eLvxkQ7m0zP3jVdUIizsrQxxFe1oq+/605yCVUCvsgoUaerymmYBXfKd60N6FXqX9SrU9CWi0kGNBCMOnzz573yMoX0LE0ztWeURNtpHG5I4Dtsc+1Et3Woo+u+Fa19R7JsD8hHH7QJSGTuv2njWUW8wi/oVCVa6NLHtljoDAfvWCjTawULaNpSdxu+Q63+tWV7T4ZfO7IY08QzfyehiRj+k7JtMhdWCj7U5ki355+uzFjpAwYNINhSVI/fOznmC3qkJp1ginj1jj5i9lfwIgDUHJMCAe3ESsoc4YFc69RPZhyGcK/QNJIW8SkBYbTjocvHAdG3MNeEqpDrW4U01v2Ly6rqgkkZWeIyG5aT6hfKSLHCyHsgyRETJKcWdtASzb8/9N129dnoSInjl5A2RY6uagNAhAhrRg48Fg3FHsxcqJ/oACkw8ch1wKnMBa2ic2RLlvMdIl2LmRmawsVuwmvCf/YJLHUqO3TF/F3utaTJ8/OpuQhv6cR9+oYhrkfyrsQ1Qj3HjFbNfYNoA/iZdDWt1OLTyfeNMW4bNSFJwtIkLjCwHuOYPAj5ZHGcy0LXCwaxUo4l1qsve3MfFKvdAhJDXY3hWiIoNETu7poYqKo+Q5U9gvnBdaezKs7z4PzVXeDq2rMgAtC0KeWDStrZ6Z2RTr4+7BSTZfTYWRUjdf5O5NlNJjPfH9Lh/LusPbJ8Zh5X0/l9cAjGKXMvEK+evihRE/uDdenMIjXjb8GFTldJ1RK+AIhOwcEEmHxkzRXwl2DlMZP5xSTBNeXpjOHa061bd4ejaZ3LT8GC9rqbBy0N1qwyuJLDsrs6Knc14VAt/n7JNzVoIwt9SY+cM76l9x8ZAU6AuxxgbUXCT15LhA4FBxSaMU+5wMC7MKuYBXTmoKI/1I8ohegu7nLJCyl5chA36sxF+olv73QRV55rQvMedIU4LUG0uWqUe5Sif1NnNdOYpHC7SiJfJVYH0yYIQ+nYvDkia+yCfwUtSHgsax/nfsZfnvjs9/9EygmQEN5Im4OfKPhCcg/cQ9G3d8VhxFjxp/96U80lStCpmlzFjFXeYT5NkSw/OSk+SdhQaK7mSbhcfC+J65oko1asO0dG31ABqCQsaL/LqXtDkH0xKVWDKgVsO26LDod4u66sVUuZzHwSSMi+WYQMH2Utvj51VDsCkqJjleUBw0Ce76TkzOvw208uTZfY4ueTTU0TLCZskqKUDC/V4TWWRRl5LWGDuwBN9zdDIt3WImIUBIrQ0hWVx91qa1+UHknbmIpzwVxBa9wE2K0QD9KZ+hP4nn9Cp+3zBp1Qm6wlpHXx4A4jxHMjUPjiOGVRtM4xSYAHspIiCwpHo4eA386LE48OmVgcMQWx5Solv4lluhXmekI2TsdooTpelaLO6gKUPdnJt4Q0YFifzmqz3qxGKwMgDuGn28ilxi5SNnwdyNzgHTiKcCFL2mCC4WSKI+EInM2DSjc67M49Dc5/W4DVcXnYkjyAcUbhGYy1fqsoC1w14YP3jhRvhYiKnbDd/BuaQGVKUy/enN6pD0RSXAFBs58HlicwcsEfsrvKw0O+ktfXoZZZGWLYWBFkKEXMAYKs++wRk2CABGqWUja40in+EMvxfjIFe3x5IQp9sVR3SZYiksF5R2S7I5r9IE8fHuBCUg/RbKvaoMN7ZXwOzgrGhpOYDccuyp2/gMjtVx/7eD8vOf6FYiI1Z/vESCpMdagwL7G9e8ahMSQ6QRSmwfEDu9AalC13zaTw835dPAhEhOBe0FcHXn/2gEIaAUZExOKW1F4WjvBFvOu3GqFwWsTRwc/WB4B8HI7MWqPLXwuCVN4JDc74f6BbTxaReUgj6LR6AbVyJnDGknBM/RAxEptBJpuSPkuNiScx19947bLbgAOFVOS0q1qXe7w8wUrASdyV1CrbUSzI9rPQdJBtxminkoZ/pT5VPjyILsO4evAKkBMH0xv9Fu3XF1EXij7eRFlQ+81e+g8GL05LInJpcvoqSJaMFo6MSaogX3YHitAWOZkgIYtPlAS6TJKjcU4ncuqLiYNqiojd0b/QdTtbh7xg3xpMBNLzTnbeWoQ3s4DbPLQyf+5/asnDraqyNIGjHjgVMonuw+HYktAqXcxjd1zGNZhXXtwWcqrhKkuPSlfrJlWXZay2qSlF/pfiKqDB1raYWk7ERrqoOa/e3z185/fV4miCEiRUnkZLePIFkiBzVE6i7UKVJpzG3hVyDC6eDvu5sfKpV2cMg1l/0xRrfNchHdScMB6yculSDiGkQfJ7V0cL0fSGfHTUtPitGjiPQoYEjCKOH/ZTiCnGgJgEgCIpvy7XD2FIPG3xAb2YXejP4RLzj6hK+egf8o2v+XmRXsPkE0PbDU4q7J95wOHSuvCFATdvYUW2gWxYfWt3xmUBhUEZgli7IS0bNkZcNLwLKp+jcJf1dZKss/UgYIFeXduCqGQDI5oj6dmRJd4XY2Xcg6ZpoQWVgDL5K0kbaeE0lqeTi8SOqW63x02QMbXplO5wI6lrwYJz+9ct2mIQmlBBcsU9kqG+FIKhzTXyIkmfcliHGoccLTQP5bxlxai5k4kixVyFu46kKMEiJLJvgoDPYRQ7qa98Ru3XuxSD4HJvVX2EvPuxQ8PItVsSFPf3nk2gDtLqDaiA6VW+a/GnAZkEeZ9gs3s9ecm+E+rKFGIWGEOZ0nSVhYyxMh+uPvEjv2Qe0IA16YSxZxNELAw+LouXjJFywZrEl5/vFGwhWU4fbO7x/ydAidvd73fhFvz24ZmkJpdiKQOJ5unrP+09P+TT+rptne2PQW45DuSV2bxoaodvbqp1dskG8HYisdVq2mV089BdZ+i/8xsu7cLVxZGMRjR7Fuvc1hMITXcBeU2uG0OEAuYSAzXVy/q6GlgU8HyKNeqhgJLLWa0a9EppizbhkJ+FaBOeuzkAHQloSDE8NFAqPMOoj/2pKQk8xRrBaRcg0ekAiFU1S+t1/UkN0XZQS36MwfUPjegIlNSgqgUZQkrPEIbtaMJJN3XM/Z4IpHXPZXZdWLXhzt2k3KE+XgkbrUD7xKeNs9+zC8HAs+wHrMhhAcYJ7Zf13oGmmRHKF5dillUoLKnI
Variant 2
DifficultyLevel
636
Question
Which of the following is always equal to − p − q?
Worked Solution
− p − q = − (q + p)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is always equal to $\ −\ \large p$ − $\large q$? |
workedSolution | $\ −\ \large p$ − $\large q$ = $−$ ($\large q$ + $\large p$) |
correctAnswer | $−$ ($\large q$ + $\large p$)
|
Answers
Is Correct? | Answer |
x | q − (− p) |
x | − q + p |
✓ | − (q + p) |
x | − (q − p) |
U2FsdGVkX1/W7r45Dc/nTZY4zmh92HUe9bePyy4zbsmQ6cZFv+E9wX5A+0NiFh34F0drqx8jpWsa7nZSsP/ssdoJ6JhDLQOLeyBH6YwoJCUYgPtFfMJWHIORSoknbjkEfjE4/7cjwS3pnc7ynTA+i6YRGvy7Fvkk94zG4Yunc0g+yWG+y4FdCBG2Kh4x9HeTOZuQ+wc6MNclsUX9aeuOgSgqOd94MG7HF2cLKJGbDwYOY37W22I2O51kmqQ0kXU8FXx2mtuc6fH1nv2dNqiwJYKjoQ78fT4SxLlrSXzXzwS+MNmqjTsP6GnkJhJjlrNmOFwvY/zIJop12M8WeO4idNA1kZGr9xm+kpOsE2VgVA/yhwDqgQTglb01bEQHbpLqIJuDmKsn8VYdb5qdIWwUyPHXAhlDso1ukA0+rWnXu/wjxdGU2GE5O1dd1Y/izyeqMBK5d2EAlTVm52WWQoVIpuVtPHxrXKx76GcvPVxzRWrk5KZl+tkbCyykmoHIAFnKLZPq7K8eMhsldCJbADXXMKrPHjkPoYG5qIm1CJFjde5h2BQd+MdQNBPTD/Od7azByqR3FwmOF23R3bDUagWLm+y8FGOgxWJvwatrcuwwBbuRVrZTwPq6nlCdozGKxlSwzRIoKt8yJ1A8SJqIuPnkarYr4j8m6msT5QR3eTV9JFyaJoatCV74Gfq/S3XaHTd4ptkcYjr6/hdQBhnWzPcp9bQCRnwrlDBHy2Ukaidi1g5wFkbvnuhTbOgViQEWUGp1VJ+GcHeqnPA+bpeu6RHPeDt0W9V0yvkNJJF1NuG/h6D5FUU1RFFuX62ka8SeWeWaUZk5SL0s0Eb7Vy90bJ018ceje1lp2U3po/XOdRIMZrmepqIleW2limbAlKc/eolgZ7s2AIq14jpi3WYJ89VIQ+O0MhwETwYTa2Dexa0ICByqliI+Y8R7FwxPzqvW0yk27FciDkqWJ3OEp54navsK7aCMW0/9giORJQvRNCUtcRxFbOzv+Ue7ogHaDVjPOYgJR3fxJRLz8RRmgRkmqF1ewLrPoSkuXjH8MUt7ucO76Cigii0MwlsrY+zQh8ItCdqHXiIxLbQtTVfBV7pR/Nvw+KqtrKLVKzwsVZctv6ClAZwVZ7xTDsT9Q3DSUsl3/PJQPM5GVqZz/twY/oEk7k+KPJsZ/0b374mWYvRhjcJ17fNFMAxvKrFR0IYieeRqe1ewQgiSFYCwf66wibJDeZHnZgVjKRCQiX2nscoEkOKXwVTE4q8QFI+PgeZl5CN0u3uzXprSUrvZEbDcjSQ1/E5dZtep55U77N96jNJJtHpKiERivssVgZMyZTYZpqUBywwiTZxByiZGCbgudSsWNaszsXwatIS9CpGmCuGWYuDFhBk+Gn1he2uGv/hAcnRW6KBmEZa39PEIS3wdV7QHVqGPKAKbbxqE5+uPoQDUOEwodHclDQZzQg8jw3smCArW4gVSq1wiSK5IHLOVRq6AMCHmfRTz9pJ/y7hqom1p2dsDfMnEnLRnRlqZOw2qjehXtAdyn6ZRB9QnvDRCEY+7P5Il8vX37UWXnzYpnV9qMkRZvFkLHxdmnTixEUEtuITnNMVVoyk19xu4lhNiYg9Ql/5j4mxCCujt0/mjey1DETyb2YOHE8JySjs1uIuL8gtYaNC3FTLzDOK0MVMG5WpO04wVRPTWiAKoyDGhKeDJYZKELe7jM0zXoEXor9OW/MjvnEghYfwnOcTCjOtlzhPouH+68rZyXjMdvQLOS6u9ZQClcPwnM2+qzmsPzpz8gMkb/OmW4N8iy/v/KpI61r8sy+8H4NjxkjpnBJ5liYSgRDDtzZT/MbwFkIUI0GBDgZjS60mDwxEwQm8ggCTGuaMQSKhuiw++qwISHeR0vivBbub5OIuMtboOGbe70IvQGGSOL8T7p1IlF6QkKFl5w95F680yL+CebcsDIvyzA2l4+npwd+6cvvA2s9N9lxxfPTw/P9F01h2AddxAhEqseAiPSg6Ajt4wBC5yM+y9ofcSXSUbdlc1stKutDb18RViLCr96Ex7mJKPhS1+H5e7tDYhHWLX3Wy0KvmTWIChbArtryo8YJCIM89TVXxWL73SGFz9+9ynW/wWQiOU6ISD94n2GjKXcQnqLJomSGmJJm+bntaGZm6zylmLp9z0EImvDVJZq0YLjljx0qy1+jPUieTRKz4YOd2uFu1NoQyg5tVH8F3eaNseJjU7o6AdA1EFIWfCZZG8uxpoVEuwBHaWQDQcw/CnGSxI6EsfUabGPcQ4iw8AuE231j+7RIaZXl/ahadbOAi/R4fw78406Ny1yGD1mE5qF/eeVG46HL4OWFcEPOmKJNMTsXB9kvyEuJaX4yyLsO6yjvn5Ph9QdCHuxSJBMV81BkWGwyI8yQKut+3UrepMDSoyIxMvxIVvJ+IsWHfNYBSQQyeyzlaSu7SY2aWHwaEVilaK/OgaQIcKXwHqpKHaSs9ZiZNq5KFpvz+A+ksVHLLT+vHV/t0VdVmZvxoCRsbiUzaEt1byFoDYtJoqR3/m/09tHz33tfF2HbqfopGR/fgwYSphuGrabHYkU9YBHByJqDAxiAmqU8u/SEogcCblxwaWXlxQYCsfHnDoxvvcbNitpkT0u5QksxbA+cxz0Mb/AyXwQhEhl6spwZbWIZ2w0d6cykHp1nj5BtNZ4h2yjbnwYnBoJJu1CYcQQm3vdNGgUB5QbsvHHZAv3ju8t5uhqDAB8Raj9+dHpO1wr7jnQdbaMMUF+JgPrSJBZcWTulpWsEWLbHH4ia1Sx0EigJuLs5L2SlN5gbEVGczDWhm3Kv2m7EB2uEo+J+v0tAsCm6D8ja5rpfiHBBPsCPTYZSgWMlf4tBukF09P4888iyjOhNecrvou/ULsKKvFAjCOdjQCigqO/+sFaiadm5AznOCnlC8RL6L6esZPUBJ2ecImU1n5L5RyjDVfnaQqKSxSrH4KbFVRjjbKoXEj2DCXY0Htc1dYAdm1cgurwIkP13YESyouiwtbqiuSzwO6wVBKJKdSef/nIRZEYwFnZusEzymp+CxFx1zzGs8teIkI2DoLAlzIiMcQ+yTC1Qo2ZHSloqvzFHZMl69LJWByWsJLz3HjYfpj1K2dpVKtL2Fvq+5SM2aXITHj5tg0FSaa+p5H/b1Xx0SjX/rSxHylK4IUoRErwKMES5oSTT1MYahjyZ+J1kO+0jQ+nzADOtKFwdD4AtejipbXe2RD4LDr9i14ghjFRX8Ic+VD4XdZ8iE3NvT2CO8luuoHyH+3puzMrRif2tTasrIh8S6e4qakVVvUx4K4Zk3eNI5vh/kCJSP6iMaW4jCJ763GNhMqRvc3o4NhYTx8/2l985u0It0XUBfEtAavlXGqaSTC4xY2fYCTCNsA+0oAlG9kA8sRFREnOYEDFIDCimtit75vx7NSB8lxtWmjy4UNIeElPHgR8v4xTogrfD/KDyZjkVBN4626PnkbcKQ6tZ2t7qXswSji+/+4SHBkII1FRZTkAV/fKADt1IY1e5kJANaAmWyuvLUIKtprciZfIupoyskGDk24VDnrnFvgQiCgA/Oj+vgdH+GcrBZyIBEtK0FInQSBLh0jftO7274+uiFMSLtmR1Y7Xvru268QYluDqP7YjotwoS+IussI+e5MO1FznRw1Wa74KYcxHhYfWLHBcGzeYvGzuyJWJxoRmBVVXLXiZRUdfuHYjZKVhztkHHLNl4eGJQkOgECKsjRpdTNXZhn0xNjteZq0iRXTl/E3iMihMlpULIWja2VnEznzCsuLQ8O3HcJNN63iq+zTSrZtHjE0LpzGQ1/QP/sKboZFJbSVg8WATjEdDnLUtYUTZm7pzQawkxhmt1m0TYf+V65sS2drcmSlkCU0G8GtYRp5juCsr32YB2rOKjsvz1WwPTc9PqQtQmmEqcR7YlCcaeO+sliRrASqIKE80QqzBIYpAaHEMydjr7Eke+N1a+8zkGo8HPrMxbh+LHY8WF0IsM9p8djP6oM4idC17+CDEnviat99H0EIf9yVHgWTERSWEFho2NjWTLfVQ2b5d3t5l7TgSFhKXHzSYgwvO1vXEGn9LP0jiKrI4ACu+OJwB8KB81hTxhcXcifOTF9GpPgIfojE1aNaOsc+nqrPkkoip6o8ySIBBgII8Hdl05vn+lnJTrZi62FvWopdzXfUOCl8Muq96gfBTnUPLp573G/SfStFr3iTMHau2+NLQtIM9NVLVQcrRlxcgJPIa9x9NEfoVhnlZmRf2XBVbAsYzU9ZX+k20V/RDegem0TPgvY299HgdDVnTuQMPrzIw7gCb1J8dZd6EgMIp4H6PZia1Xh8/Fy1K8Vm3yKHIIOxmXN3yhFC59TD2oLe1mJFqcwd8QVIL9yMbsKAnKRjcu66bXyIOLW/fJMYZz2OF/G1UfqTdVNJbuOpI5qFyAbSr8z7x6CpMnHR8YyMyZM8sSeGluvGtk9kxrwZbpGhRPS9hKC7q96hK3Mb2mI1bg82GrMin5fgleIVVyHU8lf1TIuTogNHXSE0IWTu6sWjUGehMfdnjSw2HLMMXgeYivzU77gMyia3ZuskLka+be/tvtubRxvGhluq9b074n+zVN7j29woIblDNOmnF+LIdQokdyUWQ0rNRhnTFm57s21Qa5qes+AU8RFrHe6Tx4UyT00WQtB+BR2rShNN0+Vag+p+aWJQYHC9B2ykjMPXLGQlaxSQHrPcWWx7/FY6u07xZuX6zy/XseRzMUzw+wDD6ypnYguC0V0dRNUVQU20wZwC8dbnixNX4qzOclOoMqxKQIBUKBbvBof4cDhnmXyUAFo/rWMvQChnDvf0wbk76839aR5UEDxcGaT5VDMdxhl4J+jovJoWZy6/unOJS2xD5L7/dbNnCxJtsYj2lKW6Mz10lR6QHXy3jVbLC0dZzhjLANR2kfLnvMuFLZYlQWfT4Xv2yzlMQyujqNDzg5+ktOiLY/7hk8UeG5hkuhq2mZkBJJzV86Bxoc7UlE10QswddksK+OU+5ell1VX+mRR3LG8IWQT4VKPsiu1EaBx9SVbNEY0ZAojzEhEiE2AugMTnkUSNjZhBVXfTJjA9be4prwPC80FvH6hA9gl9b62HuTLVxkvZqo9DcLSDBAJpNGx47oTeyOB97h+Mva9cgsvkLqKTRiclh8yCF985tOb2kWE6Cb8yxQiBB3P3jze48EyNft7aARS0i35LTTZIqN4ScFtnAV0AjCi9KSODCup52kC8cl3z7iqtW0eH0TRZ12sXOGCARfU4mSdtAJZl4FGSwOZTPYp4B7Ak+1ATO9R6phNu907aVVn4fdLbiLVDNyB+9NhZ1OlWjp0QNbBo6vLCY2T2JVUi9hcZyY7wRuTHAoRn1qo3VhCJma5p12qW6XBzmrtdj9OD4yCO1MZ9IAKZkZCoVDi4u2IyXsJbqUIiPwwbLte/AGLmgBxjVZV9xEcasXXdKdnw2f2Nrpgrohfb9QJZp+c4SVlO0hHUF8tk56Eq4MXIsPTW7XpRs60nsdMZzCzpSfOsB7u8wMyg98eAvDfonLXFwEZ749kjZgiddwLK3LzDBAE0FYag3k+MTV5kqpv7E8m+tK3xTufAKyZFpUVmGIg+mf/+Myk9o4nrisHm6wv0Cw3qT5IOuuJfq7HYUsBOPIkfUkNNEu8pSC2NcUs/y4/T2q37KgfOK2p95vkvTp3oUF5hdePdb+7cOP/stDywBP2FnRyAuvdaa5bzAPUR/Ln8TkBD8m+t5TD2/ocfK8wdCkNAocrkTELQRVlsGN5iHw2yjrrnVjHUiQSzo65WqX4umy1fOnh860ooJsDf8YO6Ciok96o0M3AMO2E8Soz9A7SaSELVqj+dkJDbM/bWccHprlvRMkgDJU4Q/bZk3k8jtt4dseCt0YLjX+IO3YZPXrHnByUIhY6XR6c1I5x58tovu4czqejPWtbVxINasaDzkfkMdRSIowR3TVUlnbRKSnocPygG5QETMWiCOwISllCpg7zGAU/Vn70eqIgBJ6khy5iEVMCxyme2rU4m5mRQrrtaqAAlRypAIRtmCxBFqHrYAJhEN+1KLHHzbzbE1HijgUHcXcZ3ibP7kLJkJzqsrFNKMp9GiJR4Eg+MIf28rpfL+9RfEF8BYO+XQA8n0vDxctNdY7ok4wDuCJPdM4bZjMt4ROEyPKmDXCNGXskBZzaHeSkrCeb6wSCIGx/tUlNQhmF/Jqa6Xn7B6J53RULbIfEcRaS6SMUe95YTBB3XgFhpcboMRuvjSjEij2sf6mKRf7WAF5T1GqrTpW0zhRJpqO/RIohNlBptcxYaJIKBDA6KF7icS/V6HglTORT9nn1ynFmfVDuYUFb7s0oh0ih4toRUkdT6a9rI5rEehrfLVPRMei4phqQofHE77ObEtQpUD69d8Ib8cAUgM1WG0YmRsC7ZLZbcrvhJW/9fiLtnM5WbJYeF+QHc+H8ZuiHoXTe14/48WGczLi4nZzzXunkfhWf2HxuSfTHdOXcJr+tOqLb2woDHhbnURaZFkcl9p95lmNSDNUZp42HmFFs6vhmT8Bb99ayMu1C82g4LssrF8TPg6mqdCL8Se0ChOnRx5C2OIZ49RyW3k17pC+wD8z6EqWfM7xaiiPrt/jjhYKC0PNrKTBYNpZLG68lv4HziSMKNK2upWY0zrFewq+r4xuMymkPXKxycw4sEnqDUM97IdXUkHoWR49oeXz+YMoDIOzXBCBzWPucDXUmmpxd3XLZGzJsMpXV/V8C3ChRK9n0kgpSMm/mDumWzMF8cnsbOxTYctlNyugCAaQah+MR0X3jO0WmM+BNGWIJLOk830iVDIwP1+5X/gostkNkhYDkPoDUKrMz2wmIoCDxhC6fAUgAhEgjQaL1ov+Pm+LeJNYjbtGkpoZdti41BdMNdXxgWyUptPIobFZtv15Li4JrD25UIXSTNbCvFz0J0P/aVsFI1n8vusSD0FSR8WgHUeBjNxqrc5xQw8F/hGfG29sKZ+e2fstaHTRFLuuhIWsrPUPgWs9tnn2Jcr5FzVztCEtKMKQ1ru/7qJcHGW5ItHgGdkM987wQp+hI7wcf1MNrSCw+YSwRfrjBVK+gH6e6+JzTPF6oOm8BdebfOxCeLK751J0abJGIYqLgdw7Gh+QS9uqvZokZF0ZWyOddV0xCyucr+o/n4SFfItiVCqsp+EkbOYmRBZMVItuueGlKW6ovFxIEyXpOF3wudLyB2mgM+yajQrC9+TxHx+nibHHUjmtK6HsQYgFIIUht0+6VDNCTOsUzO4C+Mq2wXvALubo9Zjzj0UXHQs+PAIFrlml95Tq8xvmqVpRGfmRC9IKIEvteXNucXvVK+6ZpY2poc57uvDgOcNUwQXvK2IAdb1/jHWwteSXZZiitBahGbWRXqPglNRJoRB2Twtx2BHQvv2GxjIcc3bHD2iYjfn6olphH4VdWVCHLreaFp2nMm52NC1u9wOGO2iJkjlJnWAe4dtZgJzntf2OOVb669GxkarAnDRHX/zIoLYKn/gDjC97vPoKq4CANOPvrMnwOlOz/T6A5GZeiS8wtDOHBiIa06rzaXNEGArJq7xrYppntBfk9KWUyRSGSRHaq/yPCZpal/gi44Gq79FgFY1aOK/uFL3KADn7HKVEfHgpSv66HhEXTHCD3OSZ6GG/MWW/Swo+nHUMnfnCRu2TgwxYpT2NDJNJkag03B9nD4Zfq5L3LIYqpm3jqah0tj7+LynG1grClIHUv9BCQi9rVTrZwU5GUj+CaZ/MZ8gUhfP1+q4u4mG8QMakLxusnwRuC3dHZESHbCJo9UiMRkBYttbpPYWyGJTkjmlk4v2sBus4mhCSbm+jHGrn8fjssJX/g1f/6AivvGVNO7GH7MNUnxKZ0ed/dZFSiUDeZbR5A6hQJ/u9urzBK4ZAjDuctOKfTg78valpvGZwo0g+mWvmxgJgNfPeXmDcUtn38qCw9RNEd7S9IX/Zk3j+ANiPsACQXS7n27glLrYVPPd7dckUtkgY5RH68RglqLP+DfjtQdajLZI+lVed8pnEy90r26X1ZKa2lt+EfQpWw4LRLj167vDsoZ1wmw6TG6JUj446/N5HJEQXabjgb+s+Lywa5j0JR39fUykZVQiSBvATNalb7MQkUkBbkIZRdg36Wb7FbaDi5XKwbH1qeZFipXj2HjZ7VRfjhqSG/sPWzkkVju/8WBcT/r8CktLfL3jwy4hjwrgyu4SuaIg+XMC0VVR2blh3YKu2pTwSsUbDrqEC8qFlOETkHS/Vcu6oHt18Bq4xNutbKvfrk1XSD8GuhoEuhCbbY/AQ4szG4U9twZkY2pBEg5guQgFZW9ueImQwjNW3eOmF8DE/Nv3CMmsBXfm8BKkMxR7Pmxl+//12teEFzzod98oF0FhT9fkIGN/FgFBe8cqZ061iPM29bLp9OiEqwrNoGf3y+mP585vXts61ogNBgaOwweavDPiXpfGBSCN/tlqBAfEEbIJMcY/7gbDYKJz9WJK17RPwyL6skqMONBUleQdooQMoYYeXqdYM2Zh+NpH4xweH0upjrM0tnwOouEiD/ba606440jbXLFEeOtPP/v7Hlo0iB0bvL19en4ieQncujEd01JlNaLMGDkakD7eHgTvDioCG1/rL5knPQOzoVjYAGRTpuKDMheARplD0YlaaGaaJb3UEtKUIEp5TNQowM9r8dxKC0D9J0fNEHsLqyCgJDbP+8rJGd89picXvFS+MJXTTWkbK8W4dkig1NjAeV8X39qIWA+SSTGsjxAWeqXTuQ7LoKo6kPPVSdVScZLNYpnt26w+GSfGPu1NqStrFDIPugg8PQLQJcv0oCAZJqazW6WaNSn3dbxEQLHswfKI6JXipst8k4JL772gYNmYXQXoMAS3zkWcMm0b7SITI1rFhkMWJRnatUwVGZhJ9ZxLFH+TM+oPDLSRsrUYUfQhS78GXphcqfvh5ouW0GzPGi/2jqAyVIxkr4DSz0yRFtpDiTTSyL7yZ9S1TztRi5uBrP10lkyRaq6QzMOgDfgn3m+AgGMS566jR/IlBcbsYo49N7N1PMG3JcS9ROcOSq4ignpan7gIVEm68c+Tyv3A08EqjsKQ2sQL6biCehTR1/32GJfGwXsiM9lX2GiwKT/qBhOM7Bi7NS4GzZHx7rvKxwgJGs8l6DJSb5uhIK/2OGUTR08TMzaRBVL43XuLjARjB/1n3YTlg/qwkW4dh5hQ3gAWosmq6tMOoYE12CdRsoTEudU6CNg4IBdxsTrjk64NCHCsEytk3P+B5F6cFUmyA1e55bNQIqrQXoYlXd2EUvLcI85dv7sEmrdxeA/SZmPzEYq5h2cykMBt0sfixAJvLJPeISEIdVFH9Ot2JqIeNUPyDD4tXgfY6ytzgYX7V5ZUCWzPHrxw9QDeHNRoS2lT6V1IjCHjdpcIyQGjnC+pIEckurH4e3wkooyMoyhBemxrRohn5oF2t6bTV4IEb5bXw4iVHqlbKEePeheswwSHSvhxOrMFnh8l1f0UXei0y8gFiVjfTffxc2Q6ovUBWR6Qeq9DlaSQtEO+yobzJXKSajWSOut9hKsoMInPuqvvs8ESao+/OSfRV6AkTVdb3XIUORDf6xyLXRAaHQaOo2V3mXQECGb8iAh4CYoens9LWcpgySqtUZNYfGXT/C7bIqLgn7gBE69T3H77uVXl292JSjwkF0k0jlhVxqbinpURgwBt24Kv+oHusUIyhk+mmoD5S58dBUVyw2zVat1KPvd9C4sfFIBrIe76F+CnQTKwCU91Yo7kaKyaRyoXVNIxAWWgy8At6mOYkQhlpmhynPfqPOGXZtYUFtj5EaSE6zzzkmE2h83ec5dBYvZlWRGYF33DLWG8HVvoAFvA4dki/EMT1JM4/fU0KBFpfwyc778wE/Q6w4gIaxSM6jEIFGNZAecqdlcFYIJLRhVet4O3bqNViEpTwtGjrr6Reb86pD+zFUx92/9VN9umUsUAWmEuLDaTHuNAA6Y+oddnac3qQEfHI0IkfWTOPx06YR624Mq6TygRZu0Nt9T7srwXZXa4NGHoyrmIiGzOA468SgHV0gYxa3C32ux3F+SEQ41Z9NAz1kinzLBtalWLsvXPvX5d9bpHSD9pvbqyfioez8Qw1jJ5Ah1y/AqxqlscC+Rl8QQnzM3Z8ZEOcJjz10cdvdm9BkU/MbZ9PSsHUkjN5wWmJtx7o3kHCdgCHA82gGdLbZJYCTqletGvO6BnKpv8TxM0tZz3AWOU7jBTs2XnzU/9hKdhP8KcBV+E3evnQk1g65YbJ1Pa7DjbO3GZOOLq+jFYIJqC173lR5gQquqXi0pdT5u2Yi16n1JfMPQ/z7qBb6v/WozX8ok7FV6vT0dOtklqbtvt9zCmzVSHcKiA0sRu3JejxHgenqrXXk/ajFtZjKOFVUaB7G21OQ9ClEgFFYLOKBM//b4zNXnX+vpoczg4l57g6zG31Eh8RrjVsWIx9oZo5E6p10ZryXLY/ImHEM2FCHZjEQK7+2ShUGxL/e4/EMqrY/eEXeq+PWgZr7/wXaJpc55z3q7vCILIkfdzHSfg0Izsawq7ml6gITPdAOHmYrBXFaRp9yhZN6CAwLKIm1FhkU6YrjBxak3ju2wlmv3QWAAV86V1Fb3n6f0h7looM0cxCcbPd2nb7A52R6M1Y3dyjEru3ZTQk89eue7196nHbfHmtnXP4G87iTM2EWC7kL9CFUDc/18P/1yEpgUX+/Sjece9DMuUPQNWxxif4Yn4CWmnO9jAS9EuVVEBUodvIwLYyVdEkIFsE43/JdTLODEMdLI5n9WdAvvQeJjwzSQhHL92BmrYOL3TXVPFib3XMnNeWE0YilMrNUdUf/sle1fiSqU+qWKFallZEnmZt+aKAVQl11xJRpMpeas4dOswqKLMPEh2rDHneJTDgQ+ORNHLXMDeAtufUU9xkX+OqTfY5v4kJbRIf0YG4pVmeChJq73VCtfNVXduYuElypWeVOdFAPLj8aDOIRi48c2l3Hnp95vF6KCfyL1p+u3QnEuThe0dsryxMxywjS3v1Iz1Hmnc1EdSn/UPigLY4q4hLzZCKVGgMSUs4FmEDGHUBdJexWVqPLtRN/K/1PBKd9NgHJmCUyJsnoqNQQnaxRteZiG2CTHxwcngpBym9sB8oC4Zhunh6lji2fvPi9b0DoijGcqCqFLXyQT4w2qjv39n70BCee6t50vD8gd6KNfSRqXTFqsm+kKMm6BsfQU3zMvz8bX72Vvxi8xIxhLkY38HWFSRFL/TaERXrG8cL3wRJXvhDNYiYST6OdMc8kF4+8ap5Fw9vX+ISjTD/3tD3mjqYwDu6AcufxCdvfgQjp7RiF3O33QtNv5UIqxFxBUwlA8mfcLOgyeaqHkOnk9QZQUWS6BFcIN/dMtF4npep1kS8m7hx3+eXPtZ0nebpUyNkx1JTCpnM5ytzW5csUtK5hM1Q5/WIUU3JwZjDTxnSLrgV1pA0wWQy5AZHq4dAsOaDqq0fGDGePS2G9Xbd1Ilmv4nzsEqY6iG+X4vWy72ri2Ugfi300KJZ13SfxZk6VmsEUpw6PJ98W8tv2c4/LxQTz3Nq/4JCjlYljmxUx1xWxuhBscsClXBJG9F6gG8zY579iurq3FMeEELfaR8pb09yNoKfMwQBkvEXFvL8/N4R/Gq/K+gknNmONhurG8xr6LuzHM5FCxV4BCaCzrV/UEMh76Os1wnulvdi/U82Bqg4IG8TTQbcnSimt6zuOocaQHpQ1kGWQzGfum03yv/WXWRMAkxq60dMqrn6HDYwbVDhHJQJ40fxwOeXbg/lrGcblZpPw00bYdHtY4Wkb4PzZHdZd4oB9bZBvNC70mjfOvaa0X2Yq51DLxJi+o+9h5WOpjLPxvDHjjNMJCKXX8uBYenldQsFbmUsALVM1nrunY9yY0DhFTqqe26kJ4HIY+fnTm0b9kej6NXypGsahe3x2Ps84/1WsF7gmqH0uiTF5C0Vpa/x3NTknxBvBCeQlNpSYdiYwT9sk/jFkuc2JihrMuhe7VKDZKlgSd6AQF4AA4LIM2Vlc/GvXloFmJG9E/tWYxO8Qx6mG2ZRQ8g9QeJt6pSW2845nWT7VZRCegG3NvbAGVW8ZYlO9GMDNX1CxQxoK0GK0SswwlvHYIbL1OHnbuHNdVNwOMIvlInw7iOTuk0Hxf0wGda5qF708/IeVV3Xzd//42laNEx0ULU/gKk8J5vXPhyLIMnijWTreWbAQcse409G1htmXwfTUFmbWj3Esi8FMGh4678GyAFw0dkAFCaP/tKOpoVswLPzpTO92mKzaapsc9uabc+vXLKQ897765ggmaNnTJ+EcUIL9xRxlmeaUc9CvwsTf2ZrVqX+SDoFAIQrGIoMG4Syv2mINRg9BoKn8YLKpbu67HbNxfozBUvXKzgpT02yj63+vnbELlmZT/onRWsskRUGaSMo4v9pdh4sjkNWfvlm+03yP0X03kTmodN+9rgAC1UMgipBr7x1Se74Dz8E2aPwnx/f7AVZFubNUqYJHXxJ0CNZx6eMFdlXbERuT/cld3YJ7U7NCQ5aG7jjp7D+m0skBJ4JoAEWh+FuoVi6fHFLNbr+KJVJNCOnKd8CwUTpMm7rQh7JJLTqwWfpVmlQTHbYQjttlLdO1OCsoaHlwKMKSY+j/Vrt+TdACOitudB4oYjn7Vxcxaw9Sxl4BrS1WyobVw8wYS0cIzaSaqoedtq1eQBE+DbHHqhrIc1RrR/zGuWa+Rf2IG0tj3MGYP5YTX8Onxx2gl508DDB4dXe0YhKxyA5kVPdYNuPb2IMBcN5gxdR2zD2LWbcAxLwks3IgCOQMtmUKCe+v3gx7e8tBsWHQAznElZD/1nygHQrNe3c/P9dy0FKy0mvdTnRhTpePtGyrgJJIKjtK7gOdDvvFMzp8vE6s/w6S9yyrFTHs/3IoT9FSFdDjdgiU4XJ9iZdldfI9HmZ8dSqtXkLQ1khHBU8hOIu7/0zI64Shrdk1fkDPBwJ4oFXG/qjCMudSGrPmlv+PmkAMKW3LQ01CR+ioV1kBm1euNMAsQQ0lYRdTZ3iUoDlusCFmv9cwdwOto2So0cw5LZqIHG6wJ4f733QlosgWxpv7W3vOp4aVrs28rKdu4N0k+7MYEirzstaTT7Ejb+bi00E6DwlAL0U20m22tsIsuW3nGI4DySjnMTXZq+DdFPpc/dqG7gvpmvX9VMmJdIcGIa0BoaTakAUuxdGRw4RgtUbql/v0Z8qBa0QijkVzzjOFTieiUlFw3Sgh6oih5cY1K6q/9XrNbreHDffUSGViQ3jl6ylMK5ziWfjQ5H04WsKUeab7TyXkL1jGY9NlewTyABwL8S3AVX6CVPbIEcuub4LWe3CehPEPmOPu5rquZt3GjPxBqv1c3RW61c+ChSYQrLLNbpohZYZB9M4+Tn2HrFLdInrrZ6T2FhCcscqwJRSB4VEB83nDQ2/kt7krSyebTEnx79A06ORUatil7MRrK5amCqRumujNjDr4ypW5X2hCUfqZonKXqjrZ51Dw6evsY4xICxH9fEqlS1qHk9dpI8oXLLDVbZoRYpDt3JSmA85G1tU49NiYOXzmfyF11ZhUDcXrVYqRXsE1aekhkO4+l59OdY7PTB9VNSgHmaz7Xwt7FOZuzB/Y37nc0SFDk7Sg2WVW3xIaNUgqK4qhUkHfeFF2oNiyPCPgTFkVH+b3P8U3qF6b58im8/Pg6M8S/IUEyJs1po5fhicOlYw3SLVeIG64FoZ4waUB/KWFq8dJ69cJRy09Jxa4qv9ijrqhtKKTcX2muogwYSPNboa9SurEtWbfPDZggDqqj8jbvm2819R2n6GUJVz3nvMt7vUcSh7lRoL+EVQ8qr5ywAnZBktEme5WVdSnDsTpGQlUvHFePxKEPquulwvoiOzBbbJBt1qB/M15Wn39eEAD2oFxVo1hbFcBjOrk56cnrUIY9nwvtydLvN+jf1ob6+6ZBUytddx72iTVnQqfilEe1QArcfi6VEO+efgAyPH5mk4X0HqZ/bPm8/1BfLriyvjF7boJB6LYf6wM1/iYw43m18cVDFqKkl6M1ovngNO0Rp4xfQ0PkU8vDiD3wFly9n2Ky7IbrAoWPiYTtYCYnqyydxK7sltXWwImCnMCoRlwbYkPJTYCdotWU7R0eGCuWweBzT3ERpjSNVTCQyOK/VTuuqTmH7MdEN3fnaLyRRykTIfS70BUzJggqi8On9Zz1ov85zjbo8IKnyR34CoPTxm6lAynzcCKvBE37GuvzbhQGOdjJapQmAS2OgIKF1ry+/V9s8fIGx2KIr/jSClRn3azmsO40XOGuGjTaAuWbEdLYLnNyzGe/MKtLazqfGfP51afCi/xrGl9LgDvlWlFSom1+uRptyKGkxXAUGQsTPaOX5ekBRzU7umouImB/pIIEEFdTMzkWMMMeup3Bku1Fohwrlw2A6lUyIYu5i5UNDLyfeE22vKi9p2tEh7eeK2KVdiw+WM48H6sZd3c+ClGgFdENLlOMXxDNFcpp2Fa0Sp7QWNCWYPDTaFmjntM5T9g9knKbiy1juxFVb4t1NmxiaFlwJhFXbpwTbYJNN6iwWrQHxdgGr/tyHWwrHOwFNNFTBjULd34BegNg0bWeQ+Eumvdfh+EfsjPAKjE79h4PR4OLAZ4HQHflci/h0cqJrXpqYTiMqJ+iEpL1Xc7VEET7YZH75XWefwNBUStYAIelBkA0lJnqJf8VyMRC10S33G+ZHi1E7J0mfaqKQ8WYdghmKNPEMp75GaL8mq0lF26apyq4WX5UtyFgl7cWWD2a/uy8mTp1Z7zJpbB4htpzjkq+gtBamD3424nP8NBORzSXyDA=
Variant 3
DifficultyLevel
635
Question
Which of the following is always equal to − 2m + n?
Worked Solution
− 2m + n = − 2m − (− n)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is always equal to $\ −\ 2\large m$ + $\large n$? |
workedSolution | $\ −\ 2\large m$ + $\large n$ = $−\ 2\large m$ $−$ ($−\ \large n$) |
correctAnswer | $−\ 2\large m$ $−$ ($−\ \large n$) |
Answers
Is Correct? | Answer |
x | − 2(m − n) |
✓ | − 2m − (− n) |
x | − 2(m + n) |
x | − n + 2m |
U2FsdGVkX18wF202p0xomZzwp6SPz7kGtFEiqPyaQKntmeV+00/v/5HSZMIb+y2fQDdsI3FfaAB/ad7yDJsK/lGyyn5kj4bIwpA4YgIurvH2Q2P0JZcaeNU5YE9mGtKOIOqXJu0FA4lt2EFQP+/S2VqE42FMPqW5dr0MO8EfJCiBVUE0qT2br1Iumr0It6WBF8Zl6vTwnfJ9Ys2gqQOHcVuoH85sPg6kbhb2qMot+ZgOZso++/KEV8qFz4ishQJFqA+NCNgwEanO5LzfCAWCxb84Eg9qhbVDruFxHRN65vJP3b3bTDPmaEITCqpD6I/Ygdy6sWfI7dtPLJpc1v1UgDulLFdMNH9flz1G2qKl5KljAKHWSxTjB7PatChmz+s+3bCDNdeN/P5IetHmJE3eCLgKdypCZ2C5ApjzFiBVsZx2rWKXnSnJMSrFO3xdqP+La68cUFBwNe6y9g/Q8Ez3SM1lJCHhAi5r7ImHtxvRaugBIW6ERzCU+ybI9W9038AJOVO9EYZHAfLbV5WMP7Ez5p55d26O+aa9a9GuLfvTdL27zG9TUJcqsMSluuWuZ8v1RzPH8Eoo7ymlYPWYOBvn6QCU2JR3/lo9EbC0bX9naz1WMZBPKteGl9YFKhoe3UwMDDduL1/ANFWDiy2j8FcymWlUyscCzCkRelCKVl1h14jnR98dXrShTQ7ZjPBP74MS2JHrLShjfkADasPTr/YZKTVG9BImC57yPM4gZp99VoTchS5nq23PuOftWKaZPfLpZWMlDz6IcdMYc+taJWTUIaoDDFpSNo4RWng+4R8SrEUOVly5VPc//udRyR4itvErec0qo1HgbETJqOXlD5bwzLhoM1yDf5+xpCuE41pTe+wVMuLI4h7hdm/izPkPmeGQcnQotnT4oV9TUxTKd2hJnkusbUCetZx05H+In5AEIhQL/2R5LIm977jW0yBrAI26YKhz9dTV8cDOeC1pUzUJ3dU08L53vVJ2A0Lay1O0N2JszgzCzxMZmMQg59hX/C37XBUXtNH9jbmzzimtesOozZXLM5Aepu5Q8OVaMxBH/NmTmhl9nXEcddzKWsQr8u009XKbDlalMCN2xfgOEAft/atlsibzh6r2nPVy+nmS/M2UN4ZOimk0AyeopuRrmymj42lRryvhBlH3G1EQ7wZQurJj9tAeGpyw6zGYE9Pupaf5weZyq/uUsx3ASG7BXXCXFCdEW5JhaPu8pXvMX0NPLQXz+9LWvvecAgbGeLIfh4xK3PbbK/ymFc+wwJZ4Qe3DPEC5LSo+YBdKFdB7bDhG8mn48GAmJdXk7Qi0m8HgfnCgFo+Hc23nm78Bf7pRsWzcvM5+kN7+fzodWf0+8ogooGq9eI9gZJEY3G/XmXOW/jrpfPdcXp+kOR8fODXPzFM4Leua+zrxx9zplTx8b6i2xwCQKE5mjzifGiQMTkK29a3RzboUUubZWKnZAPKxBEl2lRj9sIoXHLXisfKRJ0vk1w05mtRAAxsw4UnsSKkt6HLJOhrwmDJUGsQKCAOZ3wm1azinzY7cXTOIL1Bxnzn0HOd4Fw8L2qq/Mq/eE4RD7uopozVTM0EbPIB97wnoP5v1yJazD9lTV/h4spIF+olYsG4Ty390XEmT+0NwaLSik5FH1AiQ+RzSQ8t/yNTiyTnI6wt+XvqLjaFEUiQyRyE4hfSYIVEpZj0rtu4n4KYFpaduaTINeFp4bXzqQ4tTPWDD6RcufEAAlJu41QPHa4l9/y5ctt9zza0ul1jHurogdGTvRgI8s4UdJ8JILZdaQO7eNooJg9m/d2+a7WpfIlzmQmv807QQ2kM46Z8EKTepJKZOmAi2Sk1Mg7qDXETDC2mEEfyDZ5DDWJwaRPHydj3hh3fve2/xxun/YCPafmVR7SoTh1rOmIbpfQCmC7ZfDGxl4XSIg+s9IlhtFipyeOmcEuIBpsDpJVFDP7W3myZkUIjt53nDBFTDXo4/c8g2PONUSPD2KeXPnmfOOhDLSxfawSf/HhNcOY6boFo+qq7rJV9iCH9z+Zl7hWAkpPj4uq8O7RiIV/734ax9qI/tfGbyWFR4P540+mfqor4SdDjYcfT8GkKkJg/YatXKlLtIbViJ//NZz9C04ZMOUp64d//TktNY3FYdQcDwOXeIPPn5Y0lEv8vmPUmhaJQZ4On82s5i5jSpunP381pdem7hdtfb9ltlU2an9sDq0iQLxZXrrMmvOCvQGg4hVE2NLWuzKISWX6HioXfUINcFhromNmLNT6Cw9vRlGVu1U+OyEPum9KjZHHzYneBCEpgURcFfEbAwB6qRxjPXUj81dKJAR0TZk7ktiYYD2Pl90U9TWByLmm/X6as8ZXkAgi350pbxrsm8IcyP9BAxv6pGmHCPGGmIXSX1st84fZxbe+PycRnd3q/JpXS4KGvyn/ptqaRs9S3alNliu2r0Pis0Sq/sX0RLVk8F7lF9JIrC1Mn9So7js6mf7OzSN23Ho/u+vLINF3a5I0ia7ZMQUNibn306V6TAR4d/9DLrBhoJS5S5ok2SN/msOOIRoxxbKHXis7zKIWcu2hFj3YJrfw4SpGHIj47g35Hr1vDaBwpyU9cy1N67Sl/o0Uw6DHQUbZJOHwPuRpgW/IXE0JzlMh84JIQ34I3xoACEH14JlRfaQao0HQDw1EBBOtelooiWAJA4ITrCQbxvXhJHY2ysddxQfvpGmFGeOHMtBfkIXGy+UZskbNINFaeHNlZq8yk7lzj5VyBMEQKcogxJs6qXI9gqZpqjesNfVY+ayP3E5ue7Cv4Bf3kq8wu5M00w96Fb+2CdAts6sUxZgF0riy7U/zQT05S6uUf45QJl6XffkuyYu64/fzT6oepG9n1sjq624+QxK63JkSwAHfZf1vyN1xZ9HV3RI5xP1Ze5uddkWQ7PFqEDXHXJiesV1J8Yd0pH2W7J5RsXHJEE4PLzi0tGMzpHzi457eke1EznKtAd5H+i65AnXxwjm0om9DMto3esoYpsMynwoLwqLu8SvdLzBvQVdP105kYOJS8zg0D8JFF334HB/I5Gq0qSjslvrPe1AKvwEs1p1aG83nzX3QBSlssJKlIJeszroKqAr57mb5N7zfozX8NTg+NRBM8dImHhWesl1s0qszFORTLHH9GzQZEAGI3vOnKsqy5wffSfx6tD+qFbN5WDoIPDl0fFQXdfO/7luXMcr2aHVrkvdRtJKF1Fdh2Oq4KghADWWkReBqhTNAy0FGkjhxiwaZcMi6PJDxEOqbU4snL8zHvrZuAJUAP3+6Y7ZaGx1a7ywwKZQeobXMudymxWiD0zs5YagZH2yGZtxDBoyAzNuhSErKsVPO+PdRhjI7UGCUSOes2Vzm0kq0zoVsjo4Hqm3drPuicrfjokxAgyfjjzuMnH8f3yOC+ylcaDdlI5/LCDnQD+feMnN3YfMbPxkw+/0LlDsQH6hpMIwg4npMAymHZKbupWpraUNIbFPxphDhHuWmSngoKOodq0TpDWz8gWFZ7b/1/zEo+v0gA32jOV4vZUbIA2+TtbQtmMV9HGw8Y3SnTnRag24Gb11VaOzaRolUrfSDoGcPXRptro9By4Mh9jwZ2MO4sJAub5Ycr1044VpG7Q3rWJmJEb5yi8QvQXJr5zRI372A+xkjLmHwNH2R8LUM69SiaHoJUJMURnCRfnRb2MyJ7h/zqEgIP+edOMtHcNwBO5NLtPksqB42c4OwptLDLVI1oJ6doLe11unRQ/OD5ofBlRlI6gH2BHW9a5pG7fYgev9FrpyhPeeGdYS4G51JogUKmrkAyvYQaSVJtJ1evx50/dMH6MDaZUXrTgQh6uoHy2NgyXutLJ4LPKE8WQPDS7oyD2sWGsTXGrWTe5/O1WUwRdvCYlkPnkKiX3LAWr5CZOw9uNzph+aRTow/3oSX7mV4tk4h7OHG7i5MgS9dqiduOBXAFvHPFqtcCqnSP1KBk6mu9xxV3dCLpQbosqENX9S+u6EHPR+4aaPjSG1Ff95g+MDIQYCkYBeAAeza5xyAMBcM3iYbSdayfyK8lOJKoT/ftebFmZKMQn3jTtyhxOQbFdvdJb/4lerVRmg7DFnwaxDd4Wco0x+ouKpcq024s3s5q6+F5UK+ZDq30nKrjOKirgx8O4w12CmPESrkDRHsNb7B5uXVEvWlqJHI8o5qZ2k0pSVT1RkVHjg970owttvhPo9J5nn/sn7FT+e0/tR/7+eDTg4d2RHpG8lyRw2fGRtGCmIfu3nhuzxPnPwVSf5kE+M7dHUnyiGVuLvuN6ZsoIBA1CYGEr2qmwONdhXkrjTU4GJugFSKVnFDduNqpK+rYXcfNLZn7pYeYmj2Fjk2/DSedA7smztcyKIUSxFgS/BMHl8ZLDACP2Ami5pxI6H6CegO2ACmOM3rtrgAzYp5ugdWNXaO52X2i5iYe791nOPmLj3qcdd5CDkGaxola7QSWKPPDnyMwppkb0E2dlA6SreANrl0WXs1TBhgQV2jJUUcENMQEFJOmEQ91+bOS3Y+/z1pC+XerrAhZziUkLR/Y/fIBoFTnGlJkQCqI7x6jFMRUfvPA6VV1V2ugfZiv6sW+hDlMmZng5YX8wpUgQeWlzTV0EQZh8Lp1XZ0QkgB22z/D/p4og4HWogM0ae+67KITxPvtEuBi4Xx0gGbD6RPOeJnO+pp1V1o2mGDV08ydO2rIbs//VF56JsEDUnUKt6yD/KsDINUjzc3+W66pl/2w0ZDR6UG8x87LnrxQ7HLQcvfxSfeEEVJ9XcIigykQoi1Wuw6P6Da/jN93pPj8ukU2J1Xr9ZLUqAy7DEAv7TwAYHQXg2Ja2O2hlCGJLuxd3j4F0ecxLxJqhXIyWTpJ2lTWdjtk9P0msT2cN87SUlUkM+EQ5jxExxttC5Eafaas9VUJ2yoEfpw+EFHrAEh1eJVAaSfMdGW/RKacOky18jFJM2iuPE1WnrNAmHf32DKzLnhRd9wIbGZif5wU/4k5S4MRJqVvXZuoSsChv78A95QLe0iJHZSr3qljd+C3ep3vlc7k56aeV10kkke2CgVUHz+2cZePlSrPrzdsRNok0jqdUYr8PfjKz5My0iXQe3iN+kYMp2MU1fIhGvkozXl5k/Zyja7r0vHMEHBNWyTf4u4df4Qp7IB3THoKj2cUrJDQEgV0/1dbjj0lTh7Pb/k21GLR00ZktbFMPDLyPaXciizyObNZdnB0jvGY4cn4uVjxihy0smbtGRwTu9f3YcGl3VV0ewyQ+M4UwDFyAUO5WZkwxoj66AWl9QzSwQ3vg1OwrnV4E5dljN6/bP14b0W++KCnXYFoK0AsPho80c/9SuDPHAbJ5npyou9qbSqysuj/3g1iTiMi57OdxcxWq8tdYvTvRIyGvRLyOUz2DdkysYbUnSefiX5Hnn0K1tGJEAqNFQ1juxuJ9B/fb4nXsQ/18/VKIGNi/di55RD/FHNwEzyuRwHT9luFTySHHczWKMZ9+wty+fMBBg+qJj+qrKD6Cfm5EQ7shbnA9inCH6DIWmsnGZeuXWkMJaO6V2cOf3k7tPfU48DzDUeKqXflEJcnUrnbIKwPeEe72ffm+KHm/h/l9uoMTWYaksjgjon9lpH4qdWZSBNwKtaSDwQGJnCrFI5Yk5yOnQ2Ko4AOXWJMvhhIsRqDH6aLsOLGdNu4KlkQ9ZXW9/V+hdxcTo5Sj1LS8La5V/CR08NQ8oE3HB3/n7xzL1YrgsOZSar+R0JvXYs2yB9ggYO24IBsTxRGVuut5SyZY0CWfOW+urMJge6HHiRYqvy/nsWVQ+wBPdarww8OsRQdK+IDFJI/hMUaRTFjfrP3sCzUNxZPQjBiZZPjfcCUDxno/BKsK9BWeibyGDtAuFfsZjQSMZ+0VCLhz56KMlpz4Lnc/2KsqNEVxJHN1cCZBq+w2eXXThqstTjSY6jt6tDCWiy1oounkfKb4/u5B18dnUUmaSjJblkKHHme/uFnkzfB68DWKAi7qwtodVFAdS+Nh5wTXyCvf7r0PIPHeklmqz+A6jcH7Hm3yqVqDFeQGRNQ7BOGX7GCxqAYmiMNJMcAWsEhbLWTUnycJgBF0AxX+f0BT57WLYe+7Sl2VFwQRmi8bkOLAo3zdp0RWEg47U4OgjUwRvBT7pKA+1iMsLwlKy1X3E/HMl+NXyVCJH3ItBxOo+K1Wx3HwhBi1bxBt6ALB5LdRv0qJa8QkEcY9SnrSHRmOiHe+Pw60pEIOEqFuPMsZqq4JAKrKCLu5LbbbzfzN6d4eOSd1I/znGEMcveGAkMTrSbEJJjg+fgjAAllic4zR/Z5VmcwQllLDloHDXFDzExfhWv451PL7hH3F5teZG48JIpBuLkiZIdZiHUios9N4+J+o8IN8ckSuwnFfYTzlj275QgkTMLUk012kKyXUUFsvkNhjB/nINEBhlkGStPP6G48jKhghvdPBuW7GyQGNSCz7iXNFhfJkGOiSSoF0tWibqxvGaA48/TFXox1tJ8UQNqPHemTpkHDq+KEEdrJgsor+5d9S503AC3ZiDbJs3/TSI1liH46R7hhvDIfD3R9KyslD8sJ96jaFjMqBDe85M9mXnd5J48So5kKzIt4q1Ed8LWpeW42ayFPdow0C2hmyDeOkvkMmByeItw68TvKa8yqg35O9Bmxe/tJfMTey2EU2QIgzF6Zy3AkftSH/rAk3Stww9QA/tnvMqgjIQuy/25a80Hu9on6u1wijL0nWJFwzix/HxG+kdAteGxhgpceY64DML5rN/mukaRUWQrKoNHbvpcrQADZiLM/iGU3xXITRZ3Bsa2jXqC/Ohoh1LNSNpAON4OiUYVHrn9pEgxfyVWK8WwgdqsuRB4Z2cS3tHn7EGE7foWYiBtX6sSduU7cqUsshMgbjh3ElARX1FuXPfSW83OK2BIK8dvhYJXMoU5oRgTUdquXUSdqan+ty54z6rKjmzD8c7b3oRM6h3eQxo5YbxdhX8hlfat8gWwjlgV4IrHz0EEjxKTGRzayrq9+LXeoDYeMgqQ2Ae+u9coT14XEeLrP7zJXZpL1klJ9ysuC+kcTPgKQiheADU7+v6JKt4Gm1JZNes0/sh33SyasE/rugAJOTgdbjgDaVDbzYG0jYWCygmUAVkXp+c85WAKdXGxj4pURwd/FFtOZrq9S5WaAa2W6cny4nImm/zERiLTrsnDZjaXAWEO/M0QMlgi7bYpOwDB7WjxohaGdpT4vFSWcaG9sTfwlecpL4SfoV5ikhuGhufWx9DMzbICtCDgk1QczJ4xfVWrNdTUuIeuLWOU2esGKcDjdCo1wHGe0zA3WQGBlpHEs5FBqg0rLk6XRUdXqJqgWV5zxCRBGFVewqAbsdF/sQBgoctOCnJdazMvLA1MbcVlOduB+VCY9Z+rQaGFIJg2QD7nIxLN8h7pHbmU0GB7xl6FBbUNx83iJP39TgUe3Ldvn1GqOvkRTkrjPcxvg4xzXGYDrmCmcydEZTkzS8JhDiHt85XwAY1BnAdCvFNj+aS1mrR3iNOLDBGVfoXTts5qk8FX9xsuh9OgM7pDRA3zRBQoxxv0NJ1qAFf+U72Mtb+oE/FhDK2/CmJQI7JxVXHskuzKM7r/DULUcCHIVoc4tbrRRwlaUfnocNziTl7NcHPl3o7Relw9Wmf2SXebQaMLxoxmwEJrO9Np6bRF3wwBtHp4TGIODJCla0whmMzsLKQ+72M7RbLyi+TzDEd9NmxiZzjH0b2c2r9kLv5GlxnRtKV6uKbJCM60gykorUcboR7ZxflmQojEqs3hn9qoqJ455Iya4t5PnTiKoEYl/AxcGaR6fuxurjNLqV3GVBbO4an/XgBkG4gPibY+jZCyPQsBaR+vSIaaWlf+GakSyoMwjOagiedDkAV/z3k9YNo8RL8GZyBwLaq41cHeYF7hoPoGMgyZoqMsRNJ/eWxypL3lvfsqHm8EEwmB2nQZIJbBFKYcUVM45nAOWgS97mIokHoL47XrlQoamcbl9Guh7f0SgCNsuCD1FndCQ5n2ttEVjemGWdIvFX9HsuhuwCerxaaiHSIBs21pboj+F2Zr+7jTV9OJFAWqDUaKex179aUc9UqFJMQGYCI+Hvmxww/B9+Jq7VEMnQgQUlIQygRnAC6iNSlVj6QYPQbMHxwEu0+Ip1l5zlHn5qa9PH11KBXGBIWHLZA0rrayd1thmAi27Ygg44ybp5E527GaOqMAc6Q4yr9RzE7Z6XytXx97Fy00ZvWmHli6QkZK9KKSwk+SQjLdPwEb0yO+mxR3JN0bcS6lo4UaoFRQ3GWnk7S0RPoilEo6wSbEqQypKf/gsVfnPxBDen+arP1X9ff0B3dILpqmhvPLTz5MybZZnFGA7YGWEufcbOp+5TwapegCL87cWihwBWdwvWB153TWF1dlvDMDTDztgvjHLw0DAwd6jNzIyZbfFjZwW+InO8kw2hZo+52YPz1pZaui2xyA/7mfJ74vcniqqHFa4771lg1jhkxAGkE/j9bw0YpuBESfnJwLmKgPWPwBcAdNvaNDM2tCImsDpwmB9LhQ0xktY41vYrE47H7gp3Y4CMGYRf36vaXhq6cKsVmgGlFoAjyWmXuBPfvxk6r+w5aL1rWcSUZqXFN2M5wMcChwgnWh0jNLOhlKPd2FfjGvGpd30F0Tx5WTf1ZiBK/1Y4OD2CO8/EjyUvqzkJeiZnwd0KTSYx76kDuTYm4Ej00lCi9x6I974dDcSudeur/U0R+OmEu2n6x8fwE5N57xCNy9eWVBcTXqxQ8Cr4MXNwjwpziSH3BUqtyvLtakdwoRbOVA5rZ0bVqD3skBoCa5KcsYk1T6yWOJwCOao9sQvwLqn7Gje5PY1AX0wuX1FRDbrWfkNmJ24YEmLUavnAU+/7Ei+CpEU99iNtnjaoJd8zuYp1YQTopnd6u7B8a/b+4XQ9GzeMWGEAWwC+CrXNAK18YatD1gmBp9xHnI9c87LrYoTo27u8wEi2MMVXzxUu8E4D2uSFiQ9OC2FVVznp4puWuvk+FoLewqF5Rj8WynaAD/3iPzmzGYS8A+6Dh2dRlwUb3IbHnoE8uXLoPFhIZ0HNI6LhCgZUcSqPw+TlBEcI//7j7+8wyQQiJEvvl/me9H2lj+jaBGdvhTaKraDobFhF9UIqRoYkrtc785BG/jQ8fPPHADjIqVDCJ9drIm9CNmwxhGMSp0QnCfq0brR2pbziBUGjA4M+HIAiaSdTJRJWDDogIQMePMT7CJxfWBI34snymaDpc5XfKu5xSiTOXSbjQw1l6LK3mMx6MVGO8eTpuYzGNOYXb7AIMYqtpPzNHmgX9ADUfZcfCIcQ2uMvRxLQZJ+7ypZ/t7nPnewLftf2lW9HrQvSQTpvuwG6NxXPjAN4xYinYFdWN0sEdtQjLt4gsNCnyB+trTgcJiMgbKUccgKj799Kugc2nBxvVPoGxvtp+Mc10NE8C/vmeURpikaOjgo1d5vMcAVnlhuq6XXq3Z20RlCBEFNnUSNkrU42jeyglzWqDh3aPj5p7/qCVvoRWVrhsBh6cnaicGuF8dTssHEQWRxNxWCEZXmpI5bc9k4x68tDbGU4lbiPikgD0Yo43wU5xPdnIDYSXYRTUaXc+CbKL47W5j8UVeuaBujL5ujOwBTrw5QmelF8mHNyaRE2mac5JGogkR5NFFOqyH2+C54XD2NRd2Kbdgv9fdI5gQd4tdQR9BmNClQjKMd9xTKu33/PmwItbI3FiLJtXKq5hgcYeEJhba/VyAU33hiXxYOhGS2Tw8/OBN5fbSRgmWq5SKUqjtc/b7oWq5cH+Ow3yQUzGgSjeUXgu70cCZqwxl9xpYtoh1ddT9zPPz73NruVsU+EiQVQCCJs2Wc0jwllOQCKUiLr9E8WGdVD0KXReejHyCSbNA9u5KL9LTMsJGbfanS6hYfWnFZEvnJGeGrw6OSUHM6e6Azu/X8tg9gQCZqFP38dmzJ11HGT9FBlwjmvVyisDUG0DdgdvbR7A0NcvKIXcbXHV0KkCzqc7wJFM8Wd0Uvi15dp0LMyOD0Ws5Ar94TpkvERvcOIW2PZd8+0mkn6Na7QoDPYk2DaAjWFBfKAmgPvAyIuGNboiPQ+wq3/o9M9lfFVlCresqMzDZHumlBLHTrbq1XvZNZD8W2LsLXxK7Pi5rHw9zfmm7qv1MSPII/OcLFUXo1ltLVILhDmClU+plxfKbiwQphc3BDsFZPaJgdqQPTideoJ2Gc9vImLR5mOGu++y+PZbeA+hRuHrcUgkSt3V9/o2dI6QGdlmnmKfA0QzlgV0Gy7WiAPeRwcSsHpeMTARkpzqhkpxdw4pCv/KxkFNdWGLHGOuhPivZcLhDsygNHt/1E9vcVybEIvBU/r5qz2usMfl3oPolKvfmybYlDABhrfEtM5chYDwQShb+KTE2RpeNPIq+Rys+oJYSLtsZNkKI9aXdM4PDXBwe+My1bjGR4LWtBwfPmx6Sh2XxDsID8PhlWfPdKotEEEqBfQJkog80ijCCGKwOumdjjClMZ4fwxBqID5p0aPdCfdpDVcs5ehLb4SHkBJEzUtCcGcNwvZLEiaNSm03dmBYjGXOXvlof2WRlOuYTn7DQpjFv88ToKMV7cZHOggJ0TQtfVwJ5CeDAOalu5I3OR0BQKSxbUgbRauEs+akjAHewRA72CPsJk5r6Y9HDsk7YYyMxBCbdJUGabQNdAM/u58cl+WBvGtvBNtdZ7WDsh2RGNdXVudJ8h5kl4PI5qf+B7X7QgksaMR9pBxSU6iVPqzXd2+FMoVo3aOtnvOgNybaBYEXicU8a0X+siHDZSzkioV0bSRlAvVBMVrqLB3WJCAGj+kBVsa9LqbsQDgTmLyN/K+0ONd58aeLMrnrSHe0sKEgJmmyjS4NoASKUyEEJtYSHlQRN+bDSEg7rv1CRNIya7IgpBJPIFZEkLjFHSYATzhADM/a6kEpWBVsSndh54fQYIosBi1UhxITrzXf/Hv5eJOcQhx3LFzzWqJJWzMRM8qaRq4/qKAqTn+Rs3EoSKcfWiAaxORdBbaYE4h5AwZeOmzetKSnIAHhyqibeUeArdTwDP3RN1CKAEo1wNAQtze4bSxVJxnoRx66m5VpHsoJJDyOD6DBHlqz8jLxoogVQTZMtRaifqJJ42tYQx+9L2xsQsdSvunehkQN+itP7KEHOo32qsG0prdQYpDjSWAx7CBzIkg4tox1DpzfMEZ3/znbwyHZRYvYKwUPSeMQav5+NxxQvVOrH+jeuI2W/vv8WevQ4Q0foGSea3/TFeOUJbGvDTAFeQXWHwLa28u4crmjG9jiYrY9cyV0Nzp1PMdmJxCO6in3ARPVwMBX6iSe9WhB6t8sIaFr5gTS3QVk2V7wqrZ0HIzIx0FIIV3DyKlJH2KYb5fppM15ZRiSdNZrmLysfDa684Ld8g8RbqPCwCyL10/wO/jzfTYiwReycf3pmfieZz4FCdsmFUezThwcHzOXUZ1gf3+DGMxBi51bAgpSEtktGx17lFzOZrvH4LI8w2bCQcrU73VEG+v74spZqFu2zEmXgUIrLfZNRNAoKQ8ONpequgHhsFeX0EGEwNGoum8ED8lWtYIap6NhJ0AyEcnuTmpQqVXp9gwUPF9nN0PHBJuwEeM+M3R3L0TPRr9vIIVxiqmcfNdojDLzPqUb5i2i52xzQKbu7J2RiiIiNoWNGLeDZqpmcPdLNT2ASHudwEFUsk5SRjWfLWusOsoiSMaDYfxNW/KhdCQ5iODaq6qVUbnZGis9+QuV6QeU0xkMMA/bYy6CfpOfX+V8T2pP8xnqK9eMoNvl6K5G/dEcfvTkV9ohDykD0/4UtC1YD4sdZgSI+cdvPmAkOwXy8/4OWJCcRB6W2jPUR8IW/V2+Gl28uqkLmVnW8+9Ha7J+PKlZ7uUJASJAhFhXb+xj7ezgat9jyjcrw6D2xWG1IWc1JNOAZM3SBnCT3f/M+fHWqK93fuCT3abyDsFg/apSZQEcXiW/d74DSkOhoC5i5eBC13ABd69zjgJKuXkloedU8XG5UmBDoyowdLxFLLa8gY+r86ipmlBOa83krmaif08ztVzY0EJwYEVPpoNNOqP5wy6HAIBuwhz2dMmBDsWEybT7I/SuKf+1AU8ZIR7FAzixH5UN6tFYDvnVIlCbXbSMPO4xZkafX2LmvG3aIeI9B75mRAuEIV1yFY1vB0GyNWRxzX0FYiz2tEbvAOFxcK3hHvWNBbYKLHDdbjsqq64D2XEknF/y7viURXgECvY8x+LZZ7QMRivRtxTSaKU8qrY7RKmSksVblNKYZj4PG5V8A41plzmz+lBoWIjl16YDpMQ7PM2z+mclVoXCtI3Kmiun2R21mvDle/n5Ve14rY2EuuiaJIlZDeG8omZ8E/O4Kpe9qgZz53suTcYN9hha7c8XCYegsdrPkgBcd1CV2St5kHeQK7COg78FI4CsdaYnDoCDRUU1O5ITpXe1WHKrq4dv2vV2FKHJDY8cANrMv0Bx2izPy90XkvOOeu/20BBrrPXRziY/N8Hkv5w7kgD8Jkr+Pdw5LtGtFBBEt24apMoIHO7XpuyaOse7Aoo1ZaHqHuYhGLz36aWq2OyjlRq7V1hq9+/5DYMojYubxy5ELSx0Y7h1std94f5mp+ViFyEnLaLcW/XAuKRKVplLf5Bhmkh0eGWjnyD4q9/mgPjy6lkzn1a6x8ja/qhZ96xhlf+8ZQKN7m+j1dEs7nlFDtg1rOARxdwvMVI7TRWf6v7kCs0yBS9SsLatJVe0Y9iirJDZSqlpaincLj1N5LLc8DlIEYpxoX8NBmwVHMAAImxK5U/O6xFETdGjvzXwA3h74w5bY5r7wSsEcou9OES/Xm+tVzkevyxMGJNXVz2R4mQqsNe05/FnpRqgKXxojoe6YSNFNqCB85S41x15xyA2xbI8Dqq4BSTXQNHVjsIuh/P4vIn8YmWTJxmWWkfCTZ3DS2sReYaoeOj3H7y1pOrPQ8CSGUb5CrB49MRSz24fEgign6wY+ykVdkLzmT+JpWP/5sOG4VNpilFsCqRzB7COjMTUmxlNhPPSKh2SmHC/POnjK2Drd3/jjsSyVg8/b41l9e9Tk3Q37UpYHVOmxxqJA6HgWwMNjQ0NLUavn7aIqE6/KFBCUvRAmQeTKoq16kD2DZLyW14nogT041NPXD8/gMglgdGLHh62kaaviWDKfM3upmeMWqwUw9r4lKAyE1a7dWvxMshDidyBS2FjG/yHbUN54P0/+HjQVV9TCcLCS6oUxFO509A085MVYLdMz7fAqUOScIuCzzxfC+4jQ1KU9mS+4F9bZKoWDV+dzVFHLr06U1q37+q2WjJe243NeD/bKIFA+Lj955yCotsVyl6P+BGq+XBOj4/TbIgizHh1EKo3w7P4R5Lcr/B2lETcdwSStRdCntdpJzUp5E9q6/qO9r1wlzkZUaRrToQAv6NOl/tybu6bxRMN97m+KqXhxiQF9IQq08kIDfoDFA4wxHkMSQCg6IU2VstgmedgXWyQMp73jTXQgiFe4F7KqVTnT4cXl2W8VuDh5yHB7x9xqM1xhu41wKY6UMDPsHzA7NPudcaPSyethDIlVltk6Ef1WpbuHc7Bo1IAQLz6gg0wA7grGaUXVNFHN48gGPnqa+tjXaYPm3rxkD8XeY1dl2S1AiV5xSImbjlcjesx2RG2OyQDrR4sKkptJl0KJMfIOVhbBZoyChBh899K9O2ohkudsYOacoMW5+RtpsaqnLtx4YIqaGjlRnbtDSKD+KuquPpnuYdjNgcAVowKsqcL8MetraMDZKcBvzRMFM23Fdcdf4WYFsn7P3jy2yB3rqU7jPYSKuVbhpyCHNGVlhe007eeeqE3ihSKPKYR7LthsS5+3fWQoQut1vVr8pqPNHdHB4Xoh0VUkybQPHH8Vej2NuODSq+rpEgUBCjKpNveCMTJjjPlo4SjM4pPKzFiIigXVRNClM/7TLHEQeOfqYtFZ59Yg0kUGijJq4GvnQUfqcJcDQXItcHlOeQ22O1mGa1tGPPgWE0WrYVlPcSjkhmXGIRl4kKfAlQv+aTuAUXAdg1+4zp0lr+LPm5ubSRsI5zZASmbCyBPuXAV5KZxSZPwe9jF/p7OKDEM5JSrxJ62mhpVtAqihinjMgg7WQt3FDIFGnR/5/A+TpFXxZL5osHPwjnEkGOl+Cn4YoQFQKa+37YnlFwJBZeJlm8G5FuY+1Nd2/3KckoKAA5h2oiEd0X2F0jWafXoj2XITEOfCaOtxJQBtRUUyJ7ORCtDe8A+sNqywCi4uc21NwyQVHEqdx0+xqtTZFg3z+VXeAbv7sJEE9Blrva9ADqIH4UPjdO7v8DhQ7oJbX7pSNn014dtxdET7J4qseHI//nELCVvI2Sd9CM56ZDxpJ59PLren4DFSGtKC5zsK3RhgMfgl5cbp96qtEcBKOv8lifwpmjAAYtiXfvzWrLRnu8vNkJeOyJymQAsRDHG0ONI8YrN8MxOTFuCZ39L2UGE7X2rRSBsFyO0UpCDpLIE8X51X4pmHL+ZbEnzEBvjlMmt8JejDuqnuinvtfqN8fDORG750Za3gHiS3VeG6JghyvbBOgoaLSo++dV5qNwsO0elPvmMEMVRSxGBQhUxXePVvsjDl6i3vA+PevP9M/Zkgb15NXutM427+f6ZV0RdcgQl52XNDR+N8eFlwrA0C1Rcn99MkqCViamVBse+Jqt7HtlwbCifZ7wVblo41jD1mOpCAi4/Gyn0qBUrDlPsqY7KELr/d3PaRgijtf4DejrA+BzywNA5HzU0CvfjaDg9YJuvg+sl7jCPJZuXLIn4MpLiSbHDzhtsunuWarD9CemDb+kp7tbq7G0mjhpZpl+rTPxcRUrZhFbq5wSlnZIdwwEWs6cBHDhBffaUz07WBg9xHcqeKQXaeJUsyrygzZDNL+tClsPURKeeAVFlP8tuZ3MTI3PFubGEHL7MbaVCLzDD/EimDb/issGS0niwZ8BAuTfy3Vl3w2RoSnrzeRD97ognaHvzFGRiNEebHklTl0M0IPLrVb1TwBG4BUJrf+1Yri1nalBZps2XFCsabJ/DeT9Aa8L/83z6LyA+NI3
Variant 4
DifficultyLevel
637
Question
What expression is equivalent to −(x − 2y)?
Worked Solution
|
|
−(x − 2y) |
= − x + 2y |
|
= 2y − x |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What expression is equivalent to $−(\large x\ −$ 2$\large y)$? |
workedSolution |
>| | |
| -------------: | ---------- |
| $−(\large x\ −$ 2$\large y)$| \= $−\ \large x\ +$ 2$\large y$ |
| | \= $2\large y\ -\ x$ |
|
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | 2y − x |
x | 2y + x |
x | −2y − x |
x | −2y + x |
U2FsdGVkX18NtpZbzJ07d/gdqc8+aXNio0VjQJKgPXC6LmPUgPjJq1Q0x+K5xu4RK/0uGKNSdeFy32OaSMBDJ7q4u+o3W8UsVzczCwCbTEJXZGgL9yjYN/OsQH7otyTK0wPYZ7fTrtdzIWSaU5hNgMb1YDgpKP++sWjZx/eHsKfRnKNwcyYEgOxvSMmUkn0NYgiraTn8qo1Bm8EvmFBXjAhPPrJssXtTWcG1Rmqy+HHWdClG63gGHeeQZBM945v8vuw2DZDB3clNjyG/PYvxvP9eDASctrtedwQn7myhP90LunhFcR4FVeNdJZYXsBhWZgG4O+VvJx6nFz+9qGfnJylPCiN3jUh1VNoEdMfm0TFHM4vPalrVH7vebtWmAZZ3aCtmDI1m23GPhm0BJL02GiXeE/usF1G6PrQgRVFpd/nAZnnEXbh44uT5cf5H48n85S6RjUN7ol1cvmk+0Fwry/CpDdtEqOnKA5BZKo1SxQgLdRVEYgRMoDM9DphdHJQK7zYQUqqtOCORRnGroAhoWRkDH9+FOrkYyF3r6uN4t4/QBNZfvR1WRLPoon2d7kJKo0wMrmCXoljMe27MfKtTc7H5O0j64bRDns3zvBjGj3QeR/pXdK12XzPQupIkBMfXTZ7hper/3Ajhy6AjwivZ+x5thg6d3SsfNbXQFqHNV1g0dyPh3e6S29kQv0jDczBTl4+6ek7GXCrVLCplEKob2/H7BKholBrUsA38qsX1f5zK3tSLGDhlY27GphYmzw/hhY0Tzk59tG7SSTNey1wL21ZtKf5cM89M0rKWVEhqkVwsmfkLjWyZqlABpIOfEz/kdERgGMHT1MoF8KU6UhX3XGaWWRLME1eiSfQa+PNmdfaLuYuvCYnK4c3Om4o97fjjgA0PvKHC+GL2RUVzsZBIAfN0yYptRNMbmZlcaxVMpHtVwcF+5OtoWBNLNNqhxhFainGo1tUiqvZDFrPcFPjjXmoAXMCwNGaTRNqdWd4mmREtsNV7Xti1g+o0WqcYskqS7K6MT7skyFNga7hyO8lNtUtLpkZq/5lUofYQLYv7CoBPSk2l0C3RXywSqVh2RFnSg6rP/R+zWPDJTGFd4Zf3cIaLpf4HyhpMOnkk9Z8rDg4r/rBX7aMsi8C/MozS8AuE4H7hDJbMT7V1SGzc5nsI4Y+GWFG6q1vrXYfaQlAWE5daEI9rJn/ingefbpOqLyg2Asds1nyU9KZNnEbN1HvOPDlnI3fStSuDJdREesRfXvxlshRE5BFkq5u+Zia+/aGnpK+GSjPc9r0PW28JHlPrNJx7ruEtpkBwhaTk76yrF0b7qz35gMvT+IF1OpfJAa0FIDS3Hh7XNsWXhjjttvQGRyXciAYTKhhQsE5h9BHn73J+lMkTqKbwLfE7nAnaSn5qf357allF3jvcr1CWePF+xlSee4TtF3+exMKRZQ3wCpM25scGg/ezR2TBpithLtFxxf8lUEAuAYQNh3Wao1S6/I6kdOfMqV7R/I8aMsoG/dz9RvbP5eW1KEHj8yXwjBY5aAQnsNoPpV2I1vhJOIDbLizeJMtLgpYEv+nzDioPPvZm8We521x3LJ+g2qtdVLf4wGKKO5Z+8yRCKQvYgf8GvKva9VBN5VK+8cOrSGWtbumC37yfF6yKQ2Ea9ARzhOzDr+8eADf6wTdIDU5AxxmVJZVoqmHWSYmuQBPqPAfkImU5jECQgQ5pwKthShDFtgb94QR3iQAnRv3fvw9NAlbwZj8eKBUord/5Ll8kzhpgEEpw7XbaRpcnrce59kNi94k5tepf2Dc3WfI/6qi7xJAqPnbBJb4/+Cy8zgYgypD6pLttleGO+Csiv4+bNH3Wm/qY+NlgsXDuPMu0YMqU4ApOKYx+NNe/dpnx3pfit90OizPGFhTM5kDJLc3YnkFj7W/gmjraVejKhOhgfYIkjtIDsUoOcVwuaTsHuzDQUYakmnuhSznT8Iq4aRPI4BXwXlYc51EMcMCdl6MOVvJs1rQryu8Do0UgFGsFLZXnmAW1wgKki9ekLsciYm9eItuTKECSVX3vRADVpRry8MsTX06V/1UD3okZWMtUUlDJU0g+BzzH3Slc9XEPkddqq+5YJPnZj3pKs4to02H2vlXNHkaxR3tg4IJoDWZcF7FVyjUKGxvSGQ4wjOaYv/qleem1oHwhmQ3XDhAQYOL2lBb2RDpEvVdzpANzLfYJsDiJSFNsDNqrAq04umbfQGB+UN2njV0F2rkxgeTSvl6cwZZHrtZZMmuaXfK7T91xr7gTOF8v4II7Ie3oSAxxvazz2P7/uHIMn+oKYTQNoqX78O4UHHDM1Lu93CBwIWXUr/VdursQIeY1rTjuRUvJOgD9VRjzQQG5oTBBaLnmZ7BjRQwiAEv0QS+DLYyCHNbfaX29FAfdp48sIQHDNroRIQRbLa4W0rAbPNX8djNkSmZOQTJu4akwvX/A9c/KfGorQvwK2FH4UTsXdy2E4CESHrLybPh8qqhbzMfb0tgAInfFL7qdw6OggrOg+Wt499riIlasgCGFrEFrK+i/aRAgfY2jInS2bndlZ2H0/zME04XTha0nfh/hpf+KfnqJdjO3b27W5h2VAeCFDvftV3ZDo3BB6aem+XeMEqX408OwMlgDttuQya51wm+IkU2qxrbHckt6atE+Bm4cfNIFT6ixBj4qeI4Wj61XxxCr4ug2Adb8uor8RHxnwXSWjgJOdS028F7IVcJRVaSnRU0rDZoZl8u2IjsLukKmVH7jJnPwwK9rKVjLX2O55PFOuFVrrqTHXQWNBm+eYdBtOiQHbQOVaCHvQJntV9dNU05UaN7b0BE7Oss4bl+wOxsx4R83gAPyIaahQ3AoSsoKon+s52NdHztalOUb22q3UAv7tvDu+LicwbRycl3sbG2sa7FrxVClR5PEfhqan3IdxJNHnnO5U1ytsTr/lakxk8P3c7svAtV1tvX1wgT/Au80M6k2mgg21mzsXmFDg06cgQ7z0v0YZxfURJHUuMN/f/tttgJi+0Xb4kXPrrdLcnsgIYB1WHEtFgq3ShSFLDMInZP6MPPeZNZ8gPCeF7rHYXMWI1dMv1//5KqflWO5AJq8B2uPC6YkBFUg3dVYvsur7jM0L5F0MCPXdhMCU1jxWwQM7eYrKRttWSrwiIdNdOHqfIPWZfhhM9yHrfn6EJd2MTH3em+JI80juljjb1vCFnDINnhTpoVtCVYMEycc6WCI20mVrcCKsdaEK7wot3XKX/dWc/s5lUwoDQRihrHd3vCvlwVkXk8rqXkFiO02amZ9rjo4aWI0LLs1G7l/kfa1Pli0f490StGlugLg22e60QR974sHctOzLKUOxCLEdL2KvA18xg1vOtLNKco4Mn+ERu78F8nR7dBmcNKzZd143VjRGUPLkeNh8zw6jF6bLhJBXEEaUnSNE5MfTD5JyufvzQhYnbOM0PMiR8BSMEHx8FmV5EvR6zUEjWbg+7tnoWXnojffE3ZMOojUSz6JwrEOR7TAbExJqqnPgJxq25eB8CB96hfkAa0CG0SGS51ExCD8P/MkbxpmHAYc014wzhymkM4Zv1NbRJKgZkO584Sa8jIIMPRrn0dNWCfKiagRp44zjYDh2qq/7Zia/G9VliBRMG3l9lThHhpvb6caz3vhjkqqycnxxHlyk5m9h5jIDv2VWwztOVbBEFlMTSjEulkZpyzHQd1zKgJrYpl7wZaDCkvJOvW+0Jffwe4LuSG7bMeKSaCtDp/C8bYYK7GyVrKXNjJxewbxZPIoo5KoCTD0cKuMVWXl7PVlV7+t2haqCozoRLN6ETbg8Dxal2UaA4Ph6ogaQQeVUrJb/gjYJe8k2LPe9WWZPPXTO/h4oq54TYufoey18maAW6YQ75UVDXt1pa9N1GCLeov3HZ4tQIBp561xe4gOeYXTppderVij0zBXRNEmQCCaTRqYLFp/LgVLs2QZqQNYi0IX0qFwb3/ZKtqbFMMmj4ip42sdhCHAkPjBmfwlvNC1p3eMQ4sGoajByRo0RC44/zCECmoQARYkTOdFkrz7aq0hhkRDOFflFPsm5M0mBktHJtJ/7xd/KXq9k8Yv0X5HRHKDvn61PblzkdGvS4UEhssIbTjz8vu46ogoirzGY0Ni4t1eWl5wUpNZdpjTt0KiKHchqcuV8mHIhWZTdIdtP66YJ63olwPXNHP3zlhBx7uUwttkfQf70DxbR32zFva6MZzWR00CSeGHxCIVY8G0+Wxc64+jXATfeIgIj4pDrsX3QctuiQxT1i+nju7Dq4YVr3iTXjUptBuiHGhPYwRAPkOoJP56Z1NJVxmTVkxXicVvDw/atefAmDz6L8S+094M4ofwY7MI6wfcux+Y7CH5vC0EJBL6lrd5H+fcGcg9r5ueDsLe6YGNo7FmayVsanU/0ao2I76JlOigH7hfs6go13iQ08U4LTTbVVMnsV9kryKa5h6p28KaE1ATL2/QxXNLRc9C84UXa0MVDIHpSUn7FK6fq5s977XOBevMMopdlTmdOq++55/tHoXLxTC4awkoLpHqef3aBG118HQpqmqkA7jkjGRcaXGzAqdoKx5/2ETpjt9dBxnCvtc0bITlGlFh5qVKbaaeSsVgbASjBXNCDeYcPf2rdEToo9ef/xpqlVF9XN89g+NFd+DC+dfsO/vwzw451gUXfpBFZklYTrx5BZBBuabrCrzX3WZVfeNJzv/yB57RVeYYnx28FhLecac5o1s4Lo5VzPRwJ0bF2gyNph1iM6WGGBh9ND8xyO+E6gXW6dz3bLxC/FFNJMSQkJQiyWAkXBeROc6Nd2aCajpkvvtPbLSr0SRyE6EkQ0B4hNmyIZ3bsOuuPH+GTFQPymRJpqNja9U0fdr8Nj/LhF6ALoAMVZGVMYsdWyudFUf7Q/YmHo0WHTCuTlttGXnD0ptnD1agaiVbEl8tblvMK9S6Q+9b7+x64Bn+0Vn/DhwXdkxi2iO8C+mvGXe5cuvZPKHQSdMfjOKxHeVwUyCVXeFxzKCyRxy3gFukReSyTeqDAdXAdqBf4aGM6wWlDy//b4SDm10RmUoLsqknfT67hJJA6j+ETYpEg+Y33Vjwg7XqmpT/6gZg30v3RWIxQZ1pNiBghENlrdE9TD1+umLlYHiBGH1tU6b11rBnPxjy9sSNKwJvljZH8gym79OeKfqJwiJWRNrmYR2CD1/shnwbUoIANY8pu83r3av7y2sivMOGYe/eRR0xTQxpVZrN2clt7KXEgk1bkWmd6QpKp6csskVeltNUy8zH+IDJ1o9DBpVz6AJ2fmwOp0UGr/cpQ49FaSZFfa0d+kW30utolI0FiADDyQo8IuMF1jBqmgMGelPjyD8PKpQloTHv8mxBWhAylObjAByNtP7cWvIldH84t1/GDlP1BVtqEnbc4EDZlH8eFj2pEtsHpyOnQ+YWSQZC1hYr8g52eHNt4ZpumSWuI75h0KjNoDEfYx0GYeTOQT/NomhwC3G7CPifNkKJ8y875Hnj5efgBys+PXGi5MzR6FQ2fauIjkmsPKCu/Gb7BlHrj2q8yi7W9xf0NJOb6Rl53/gP2mOnpl+kGnUjRWrJN9bLnRtSKlDCzVl7qhWpt5IARDKO5EjBtzK3wocWvbMO2FdKK/10eiMRZA7eUISkH0THigQ8KiL/iwaQFsQrGPIlJ+EwBwg/pPEvmZ56+3RFjRwH9UQzOFRp7/tW+qMmgCvez5jeRNFGNLmTnjcAjAaNIbdRHBOhjBvK5Q90lASrHwEC5OF927POuZj0ufGibWAMnQDmYOBnBVXukOwwH6b/LUfj0vEcsy/AekDB/d9MjIpLn4skLzqpJcD93XAnTCWRyMGBoJP0VlNACQzYkAbqt3UzejKNZACgbYjTTRwviq0tImFtTOXwUi5bPJxtYwVwkWAPJXL/PlLaWwu2hqbi/4vpUvEHZUj3MzqWDTjCxJBecVFSpPr2JUzTnhYfdq8O4RlOnft2f7SZDGWgcHtY8to/p7YgtIUNQcOEaEJgwwQ47/qj9ZpsBO/kXo2+AisIiWXk5Xxl9+7bC1HDczXt/xJ660Mq4ArUqY1IxzEyhvWvcutduLD1DrfsSqH39AtU35t/as+4Zc7FDndoP4S3XiGSOlOzt2GW6gzYceBgoC4WhsT9LWHjxH6HxCJzD6SV3lq2mkMoKqDmaWVt40mAVD2gsH+TNvvOjKxVgCVk1gK4AbDdS0ha/qg/m/3a4yQkSA1nCMIQ2WRWSy8fhM6TT63DYL8Khe4SEjtomnMdJGrvmjPorcBIoaPby8N1uZe41OSprN0Bw+ay5D3B/rXu8+bfpFsznsF4823cGev8/J5VK3jdb7Bsvx7T22SJs7tkLEUaVE2Kn6jg9YgkggRTcvAefRJjAuXZTBqWBty/oosjJqRoZ9JmZv1n+8CgbZ5SaXkSb5ROCQ0hsX8zPVG7Wqr2gCnu0+T7CsMZKL8brZNS971vdvGcqzW/jZuESMr9k9rt5M+1czKfga8PKi1fGOLTvYgdoX7J9HWx5f2lPaUaVZCO3IfaKU2hOx7giPNNfb3ZGd6TqKPXgxNvrNsvDoK1PX20GEmdQdJTotNxE1hGnXAel0uHta5TvNW+cQVDVsL2ydIN8IdSwrPtzGGVZPvDUjwJAu01L0bNy7F/NoDSSzqJmGlc1oPMtgVqr7hul3ujHVYiwf+UCKW3DJxbMkocbFneqcm/e9kctM4Zb6IR1Sd7qwEDxODnSgPgZuUvEkzJaI57F8R+NEgFxOZRrCbMGBtz6Hc9YHEeqQp2c63Jar1ksX5tBr4ndRHLZYVokNgO5gAV8DvbpW6M14ITjnudXqbz7XHxI0bCGhHcbZUtvAHAOCQ6uSrT4TAtP5j7DZMavw9T/r9PE7isuZteNK9mnFl6gMj2r4OBlDprI982lCYuRr7OCduDJ3vci56eGFjSXc2BEHxIb6h/OeHHXqy4WWnkNjFhcbuG++2icitREcXCHG8B4FQ+HffTs+3zRky6ubkPLVoo98EdlKv73GplkHRgZNwoGxpNKljJ7fMlLkWcf5lZb/JiIFwJFulIyd3qI2S8AoFL8XCjmDNHGNHUJbh6dpzsh0FzJMk9uEGXDpE+uK23TbRJNp/5LVh/xeYRq6Xp2Hl/aO0tvNNJnIk3ozQnBDeC/nUI47PhLrLJVB9LNXQJvB0YfYq8z/BcXn2kH9nsro30+N8I/aF/mpNW9ElOKTTEJeu9qKFI1YOVVSHPggzTGQpbxDSPx+SE8a2sFGvBllRrQD8ABJqp+pNK5SH3iXZxHMNja8szOk6cQNVGcja83UKdYrXYezBlBhyDUBoyV7HTr+oGcf+LTdmc/QxUhzggdgqXGNQa9Sfwi+ZtRSjqoKC9SSb0XUCXC5DtlO3KL2f/Tw/o3MqZ0iMux4HH6mTJ2IB0CnM95pc9LDBRtIzDbXFVq4mTVovKMJLgEmRPzdyBQCNmsf7dfxxHu5+51OJX8+UkonJ6xH+6MYixMcMosQwMTPzv8TqUDteF2rxyrquxsTIMV5J+h048uxWV+CCroYpfD0OA87ALROreP3vEffLH1RfKHswlcW344+CM2BmGp7gc6D4YBVzFeG+5etbBOCKV+RBNMK2FXepofJteWK0YawZ38wkB9DFg7tf2+Hksw1IfU7WMPAC2Ey4UlD15rWQ/EfeEDxj7QacjKlYEPvfWaACgyQC0TrJYRV0mlZ6k6pGbWYcClkBgGsRv8t6V8cJeg8IfnZ1U9GQM1SyIYnqiSo7JUbrQzTOltNvIlIBmkF6GWEGuYFCecDDQtJBU3CtdmwEP2kCQhjx0oExHVyGz6bdGLwvTtKGaSsZZ1G/jusf8UgToV62t2WtDEsShgS/NAq1b2RWoShavbA5wBzHts/sEoWHNYQ41B+FOTMV7U7QKRkOuo7YPE4RlsGXQyE/sTWSAP36b3UvTZA9LdunhOESP7HEnVm7JVqFLmViRsw4h2n0q48qN+4F2hJ+nMAWiJiwIi4kY24WB2pR9QAQuTTVknol/rGk6y0oBSpfByWqnPUjnEbXWDeOfNo4QEYVMrLjCU95IpMcrPdcpBa8IlPIM9Dc+oIyt2sbcP76G4TKjDtqMwHzFtY6KhoV6TYAZiPG+Zk+q8ysyp/94czsba1NguAT8fBlAzgETUBtd4Pv9991uui9i7yhBHVjX6ms6rvXFGrb9YhB/kHbOFlK1BalxyYbkpCTrq8eNvSH3LZK7cn8KDWk+Gide+zGmIK6X4/7Z06MiT553Q6CSesA3LSB54F9deGwsTsa6M6tVuywSGbD+UoyFvOEHDFOilexNTGYwZzWUq/n9BOn/o4j/36ft4NvtVj7jATnAAZJhIIkZ77Dre5cbGChXukogn4Hqw4fjDUfspHpDftwXWHvjCas0nh56YB/Y/yCq3ymG9IdumDkF4zjLfLQksFJRV0RZ81mt6Yph20OT58jW92HbM/ahPWUo5uuH3Ihz6tqJ1pSMtAV5Vo64SRX5+lxU/XvIqDhCm7+92Kwk6fERjpMRUj+fTlFnmSNH0JkiHc4WPm2DWtUSWV4XW5aKRIzBj1ZZrNaeXxtneFNWw5PbXE3Ou2GWLti7AwYzPk8Uq+fUttmt8dkAGWvBj+sVmeTHGfNtVw3114XjgS6+QRFVqZR3okkcdg26dCRQcw1kKUa3sIagWobPpB+w/DrbyYApxt5TiurztFEHPxSLsDq8j/SE4L6JaoQXVd+jBWnnAT+tcQ5vVqpnft7E8MHSFq9MeCaL+joILjZhZzLz46DQiGgIqRdY9kuRYzMZbl6V+pwunR+w2lnRhytKBTBCYJ3aPChSW1+RVCSV0T0HKgxkPof0j7jIyLC/MU7ZrMNjORKte1Er7fOiPAJ0LcCV2aNyPAJ3PDdWlWX/xm3UCnsP5HlzDSXnFQT93zJ3gqGWDoCXXNvG74gVd+ah+flbXPtQKc4XAXHSdYin6q170GGu7oGMsZS8NwBnPtLFjufhiDZAkm5cUrQ6DBKK0G9D7usXfnb9eHUKJxe08DnILOJ/5qNQhL+dGdoDZ/28C4sW1tDLYhD/KFFFT47IortL4VHRCc5stqdpo1DppQH8ljqHQUgeHV4qZbEz/TkjPKizHqzu3fnGb1HGOCc9dvDO1AMbUz8/unLGrd+MkwH20luVsUwhq/jLqZ0qFeyoHKg9pKThetzBXfBIRyBvwZwjjtN90or1LQdDh7pbUqcElWCrZ+zWWsgZlf/BfK3EB3leTyMM0BNCOUtcr53laREgn1e7bYJHiCICr0hsLiSSEJO2rnDeumVXmZz3JOTCXmvbi1qQ68UEwEkQHGiFNGo4b6iEQIC3no9FTrFYbj1/HA3OmMUtwzIm0/5q3vIr7eI4DrUzVEU7U2WY0qR+awe7bPeIpafBrZXvBBlxDyJH0V8mML1s4WgMSHCNDGeWvm3lUEfSpi3qcqaRHxWQgA1ThXixR2NBA9m5Ifpl7ZxREEJ0rI0twlwiV8A9AKSvBE1dWBO/MREGpEDFY1n2av6N8tuZiOjs/OUKRf6TYmIidBTwzPLhY+WFC8OChzcWVex/QWiv/6hrTGsF9ZtRv3G3G4U3SobB8xEkJVB0jVReV/lxt1gMSoOh13VVpEoN1tAWPAMIB2R0nl0SobWXv5RtpBeFZKZCyCVDhm3PuqLWh/11HNQBR+NNAX4GzXFJzq/17AJ2vQ13/0fNzr96NxDhPDIVehPsDdQIKaEveMVtIqC3aOWzDDhHJemb9S3gso4sJra5A3nBqs9Jem1S1xF4O2LokEZFp/Or+gxtTXlZEvOIEycbh0AI3/IOgpN/ZJksVyDwjI+x9AlfvH2VRbnM+JV2/f0vQ+jugPktNemyylquBLMFqKXs7OCoja9xXENfanoYS6yOTlplc4MiULBLidLBcZ3Cv0AN1quEfSZr3eCFYMfgRdQlj5+jymAxRW0/ii0rICpbqmZc1IeqEhrSfEkt2ZXA+LfGtPnhRSPTsLhldJp+USRuU4crB021ZJsxBlZ7+ZLnR56FQBLRx/BTm7wqfz/1BC8u1k9agRVnVG8+1LmYfBMc06O/y9HgtwrrL4O27OVuxA45C9Xy6qu9Tc7LTYaN4gZWbUwutFNELmwSZ8tK0L/xUp3ZqswYsTJllE16FtD4YHmT5vmeJ078RyCt13Ovt2xnK8e3CAPlCYlf2bJzI0O3fp16AnT+O3l9acT/0+rarlwKXxAzl1Zq1c7qgED5LNJQxZ4LrEGy8LfpdoshQqWWA03iU7QIzI1JRqNXkpK/XRgRyaaOZ3vl17YBm7rSLxoMdqsIzi5fEsoz1FnetcqeiSoc7CKNVlYANarKJs7kinoICNRVbHIwmNwVP4X/IuapCFjRKa6H7bTf4tIwk02xdVk/u5690a+yjXbnpWtvpSvQ+klSILsQEGV6u2Nf1vRUCR8vi2Bdx71WNR+zXfrIfBJLWr0XtRtnOO+EL3arDz1lUhoyRbL8f4U/ew1HwTCcv7U5MhAJAm4IN9LntBSXLK5+r0/uS1oAFt+nNYdRBaucpvgcfCMfQyaKbzCeYgEyJdpuuqnGOI2j16sJjbVSSKkHuRYB/pNYDloD0dEMvH59KT40j84kDOnsq39P+2Ruw3PPFrRyPzHeRkDkCvZPpDbIbmv/aO6WU3V6eEhIA6rhxFOT6f9zmxP1sEWm1S3k+vUmi/h9JE3Q+LzO5JyuaHa+72LtxcfKhF1D0oYbsmwQSjn1VdCC4I0jTTMNoKuQ6v+AQ90eiGs3qgRc/zZw0MIo5maSs/O7FAyBG4q6y0AaPRFAxNkb7KDqfniF1p8ybvHAzcGtKfFnA73C6Eji/PAjdvFUhSkDPG3836921QvyN0K3Fuxp7UwDPIlSD8qKKOy9FkHcGLPHg5hD1QNOXTknrxFG9M923NupZyjQ6pSUAT3GNj5VwFRuHcW7eEbwpUN3gcvsef5v77knBzFPPhh2oVggRiXaL4lhZ6f1PXGQmgvbYNETketEcyuMxjdl92bePD5/1jN6WT4O8/YGjlsU+8QGJWomrhFzTP7anmPMMXtAMGyJV0Jt0VJ9K4IQuAnXLZsaP4ObffJcDnA9iz52+LBw3fekRMzsB/HaYYGlZMdbGcVcz8hsIR2fTVIvzxWDGs+WBwNNWhVyAYgpfXujNUhTAlVDzdhM0m2WBTGdPQ/IpMauJdarTiJbv51EYCKjGe4aJn9/2hZVceUp0KgFcWBtDTfec1BPDJ/S5by1obF5VzeKA9YQRyYK7hyNwBcy3NwM3JBEqqf1uk2xyxwhiBxCqDXGroxhANNTjfawT6EPkSCIfYLuR+CLk6wIicP3C+cKly542+90urzfL9NkO3BRebz3bQZgn9j4FKsvPNt2urvZNYF6F1d220mGUR1jU/M7/AOVRB7wgXBROkmReUlrrQVJkZ2x3pjPGXRfKrkHuaP+zmEB/DVxg9i75zq6ATA0egFAbT4pvluGj1yRsaLu3/CWq72V4qGeh6PMTLWha/qkZ53P6YOagVz5M6GngAQjTbikhLn/83HW3X3JdJyRoazHWBpqmkNPjP40GgThVj+Yltzv5BMe0j1FrvV2kCvQLXtDR2AoINAj6/ehryg59DjBbpCromh4vNfh7KCWe38gZcrrPOVrDxrtGSDT7XNr9Gvbdez1e2Oc72iCeH1NP3l+ZZD7mQPqENiqfeUCcxWePbigKicVZGlUcqF1ao41QdGPKRfs9619SmvcXM9zJe4hclVe5gj2TFRQWR7uJFHGj71F8ZUnQbRA+kLfkKg+J+f42ZlxNuBthdzwjQCS6Z2YP72l4roedM2LK96eT3Cf3qRGcQ4XXgFI+66ghNDpf+QEdEo1JFh/QnLlMNEjljJGZIbgCvD8aQ9EmeWk39p9GGwU3rza5XagtQq4NG1VKQUKpXvJ9FuwrjZ/76RTaPEbHC3LyuWi/y/JRXY/mNv0YGI8XoU+woDC4Ga5pu2IURh8XJ1NZEBFBC/eNW4SGK+kbEESn6PGv19Lxak62bKzI4reRbqxi6IRFpSqmUA4LU1E1KlO81+dNohjBI441QxRUamxSSP25Ai+BSPiuK5r06bNRpqaQ8+I0ai4ToXjIuKd6KR/V7u6oO1GRc4cOJXjUKwsZNdGOl2t0JSQC8QNTS1qlekej3lUh7pEWyEkEAvOqhQ3HYfAVMxC5VeGupTBG7AeRv23yQ9nBLHxlk50LlXYwPtCvHNXqRvipiwGylSUs/jQ1QrtDSFNxHVqI8Uajkz3A/KXjiPKlMqwICP2Y1g4NYi8zkMcQ6mU5qr8CiWkRFFAirgcMKFtIEY7drxcLXWoqrCTWv+y2M1KikloHVmALjbUbBzvTthdQhiNRlxnmSYAvNr3jSTZ32VV+A5c3hbvu4S7uZhTmjxrz4Ys0ARUrxP3SFJOlfpp3zi/rWE4UpYoSPP+3V9QlPOso74YVUfo7E3vFxwXVk7P3DxlaoI1CWg7Wm6R7eiiv7uB3rInp3+THzrw7xbVM5qzEQjJT/F1nj35J5MyNydbJzJu4bAlfq7sROneAWG8/VjNK2Bg8ePxN1V6iHdrhs+U7H+ysbuirTHUPKo4LYiNocPFd+7o17JtpVqX0TQi/1N7n4zERcWs+OiEZBmbaUhJVRnUhgq/bqMciuwriRbM9C50Q3uidT+4aFd3NSXX0EjGWKjQWwmy75Pd3XaemgaCs4CVv/lEeNElL2fberB/cETjU2melqXJgZAq7wBceCbsyIKZbOhj7ryo1rFh3bO8OKgEOeHe+kVUFDtpmqFffevyCVW2R/okFZA9iklVXw9NYtwTFFIOOYhTZL57RjKpQ1IKU10vhDTEYPlRgsLMxH8jjjyO1Fq/Vm7NfQm2oxe2ImmlMVKqAxOs71wRj9DjtTvMQ9FOWX/xeHHhrgwm1YiXkrm7kqIypqmMPCbSLO00Ti1WVx+jjop0Enr+GwMmI5bXILyD5I0feIYnokOcr/ZfNFYjoDy7DQ7VX1A/qC/sM3Fwr7Ze5OUeZkAvZ4U/3i3Pqubhg32lTAAwDuhXH43+PiUEA0HCnnGT/gfExVACZOi8BttVKIx4M0GRfHug560p8eh+hBfwrmSNT3MI/yXNA8clhZSICb+etDDVQWpExzJwN8uvD+p5HuQFOmDNbKfEPSo4+X/q8kHhU7LX0+bb7y2Fxzaq7O1Rd4R5WIT7wMiiH8Ii5uAaPfIqaqZPIm1gqqXn8E5hNwkjYvyuZtkYlgbqKjNOheBHoMV9GLDFJAZPyq6EB54TrGWbImQ5Z8UAVDuChrY1OMA6ccBcHEsFyH2ToGJsWQjyP1lfZ+mgjH4I29Cy7aVMRisbX+tA/JhrW5TPwrQ1oy2knSHmNadugJhuHZeuvVlcyYufdAl6wASPNJASOw7yeVNq/f52yjPyI8A7vyu70ETjk3N8YV5hzG+QLiNp5Rz66NO02OP1bKnrAxzjfpo/bjvF7r6Ualv684lHUyIOmJPjFerl4i2jcLsJlKIUAT3o6HD8mWRqokh6mgAu/LJs3XIUPQ5fu1JrIgEuA7iUF+fOCW36cpGyjj3E8V80EMshFhl75jaf+KXNvl0HIWR/c8484H+3ur/FJhJYDOklX1Z883P+KZkwnrJnm4lpLvkjI5zU0147WGCLuoHygrSZ9dvuOdiiHjyou1LK3uS6v3yR0gEeqfKKwt3oDIMtjNLiKQVzORUxqsoSuyYcPKWe0ub4NpzwQRo5+y39FNBFsxiiY0CwdoKfvBZRM+BrIaSmbns/Rm08rvdfrYkiiqQBC+kRYDbNk8asq3/1TQLdQTtZNA6VyCFRPE/ro5In5aahHvzOO5z4qQpYRugDDXx4Mif4Ael/egjFwhLX1UWFS8hrFrjtvjAiUZY2alnXz+RVw7M5x1xa/kd2Yt6+aUYdTgnFMySPnRBZupksOo1InyU2mL6RH+KuTPkFhSvbjTwT6CI8qRzjmD/u2vTs/2QnLCBR9blEz3MzoApRAHbkwc1ETv8wXAU1VC5C07Sz+I3L80H0cx6ODbTXBfMcZ7/+OUqOyuwBWXlWICktSjYY/LqhJ4UNclguqP8jlWnUoTC7s3z6rKDag5QC8KyOX774DXe2Z49N2mSRRN3YLv9c22zAZnx4xHuU1dXg8ZG57m79mMpA+OWkXOX6I3Boeppn3apaHHUgyf1ckFKZcuw9Vs78coCuLUpC9pNMqWmYgXV3uxkA1Z75SuN8F6/T8bIco8PdU8swr5j+GzT0+/vSqeFP0JUqRKkMbmRkBRDtpkSvbdA2e4bOclH89CmMnH8E0HYNgZGrWO2vRVlANSbvwNjPgNQ88laIDWLSMbiC+ah1r0NFXZs3veQj55iC8/Pv4LcUqxXOX5DtHVi2U+u/txdSn41OT+6Nd0v9s2IffyeT43V9prLIy26TEaunl4mLW9GFb13HZzSATbXH9yFjBssbibRe36YaPu5UXSEnQN1EoHq/D/Hq04Jhalf+njcMEF4mJ38iiKeYaQQr8yG6ogBoY5LFOXuyWv6lIgHt0I41BjRH148MUC6VfBWQ0uAHz265lnYm4u0UuU7cPeVjJEkOhoz8xPCrI3MooQ/CmcA8ByU8Z+K5TIEJ/01Ta80wXCOXDj1iuZb7Liot4XcHvJ8Rnrr7pZwOET80AiJBxujwXACp7rZ7HBHx/k2O2yTOMnCfC5p92XbiQcaoJ0S3cHyMwnLa7Tc8FOBWN3axKp7RfbPbUZt17dG8OM20iLlpKeKQN+li6DsASwWWM9pzXFKamoUDF3GXpz7jyGnvpe12hWCz8610SCDX477ChGi+2IA4aUID0wegk7qOPAjExRn1PXQ7nwl1NcMFzUqmJ3Ankifr/eUaPLqlG0+pVSBOek4aJT4ZfaU1IpFm+0v7jQESleVUJeuUq/pv4i9kB1DtpydVye73yWhdmSMh6SAceJj4LKmBQqTx4quu/MgRp2RF6Uoyg1p4mV0JxzuB3rCVWcqjKdImmoqa2DdiC9J2rCZQ+l8sfqK8CYegwTaVzU/kmYcILi+WhWAE/czl34ZNXsfL2skdOEZZgdnjCrIsHAfrKEBkDS5FdkIiUgZK+ppjEFH1qNKcMlcW2NtR3fLGV/Jo2AfEJwxSzj38DWUTv6MMRF8r8Yqj9NJk5S5DQQvVX89mfPoHIAMd7XQNxveqhkOrHYvP7kuQgNqerkYItZ3khbbmBTkLPQoLhaGWbkXrLFHtFrjpdd9gHe6Vg0GRtJHZg5+lPWGfvO+01JLJU03e2q3bQqg/n6EUF91gSkjfo1HiYwnHw3hhicanatQyFyJaCf1J70pnaSOZGHXfs140sxxXkSUHG4sCu3N9//k30JvMaQomw7C6nezy86Uw4q1mdbDJAWuQyxOKgh/14Vng3vLYQiOfsc02oukoZHu0Wi30VgrLJ0GjYUwzbpZZWR9NnYUMA7SQI6g/vKAI8z4SBUwo+0DjF1+jZhYn6We1r9ebH0KQ+U7Pi5CgRf3xDOcNbFznELxCXKnss/YRVWy1Qp9EAH3FUQARht+8T4aRoyWSq12/ei42z65tpmuiTIkgyxGIcU9MMFQEmF0fMc23vI1U1n2AUGXyuJKohL4MDwU2iPKMhiiehGNajZirx10+F3AXfhWKpYdjZUe/UGoLzlM6E5Tk+3/G00sei/npPxMX3uyRWNZcJa0D1Fn3bE2yHqxe/K6Qf/JuDztng7WAEoX9xJt4CMoiZRFLEC6cud7AJMaceUpd+BHChsq9QIirw6fyjiJhi6iY+7x6M/g2CS3K1qlGPBm0+/NRfiW9OT+jDDkZhss/EvKElrsjsut16vlfevT09bCxIj6o7yWkxEfNyxOVIVKWaA==
Variant 5
DifficultyLevel
636
Question
Which of the following is always equal to −(5v + 7t)?
Worked Solution
−(5v + 7t) = −5v − 7t
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is always equal to $−(5\large v$ + $7 \large t)$? |
workedSolution | $−(5\large v$ + $7 \large t)$ = $−5\large v$ $-$ $7 \large t$ |
correctAnswer | $−5\large v$ $-$ $7 \large t$ |
Answers
Is Correct? | Answer |
x | −5v + 7t |
✓ | −5v − 7t |
x | 5v + 7t |
x | 5v − 7t |