Number, NAP_70054
Question
Which of the following fractions is equivalent to 0.1%?
Worked Solution
0.1% = 1000.1 = {{{correctAnswer}}}
U2FsdGVkX1/uYOWRIrxwWxMXr1ji4n2t1nMSn0V/6d7u8uXod5olJlsyjuG0tWUE2zTdpSFXnThrgCXH9PvaFcvkH2r6hsMqKI7vR0r0Q0gr6AMMj5HF/cE+1v+or488gKmebQAhoQTSxeakRhpnKayJrG2BtTzU6bJvQbIjg92aZEAs8RfohwZ/nQ+YQxSbLKH28tyoMIKZFxOW+dWUtPYX0G9yLRfcGpErzNVBKJuhBPGhJNSzU88tuS6vavXi1OtGzyaBTddxVhqtgDg7ZOyMJsKCG3VVHuecOsWMRsVHH1njDEOUF56+q0QVn3Q1c7NW0rcN7rSGhQptkc5iC0XpPgCKjcPiVNgt3tfPj/kXFx+bd1m/+h2o4Irlo8/qtX8zfycFvLnFOK6rgbNvf4DoKhAdfZXDmTomZQ+8bryGeh/U9BBDasKrDmbr54oQuvzAUkem3hW0LXbU4di0I3qkJoek4fVUZHY96JmW58lKGX+mYWwwWALSAypulvnGM32ri/8Slixi59QKeaAD4ChhVuXRNDph0WgGt216qqOhAf/vqSYNHuzX6S5XOCrs3QXnui/TftyaTl0M+6Sduftcnb2fFB0HIpFmWHO7NkQCO5HbHqIc7kyST1YnKPjSJrkilivZxSN5rfyybKYnhqNfQZTCetxEhZNDiUnLn8bJtJBCcGeioBZMTltzaQrOQnw81gTK8mMP5XRSDEvLnZNolNK8XkCvOKMdgJlUO4okoxtWjZfkphtjtkcrE7xjQihcd7pkhaFhyMuEIKm3NrrKwvsrd47+qFIpaULqhmdJ/uTDGpN4wduPJrdQd7Wwp+5ES//NalJ/NBb/Ye3DKsmRk20AcQ0htXXkhd5SmWnNO0HDFymB3bs/yLAdZU3mmzZK14JjNTAu3hMM1nDeuuBkpLF7pJlJDHer8Ssd+hK6K48bW09mE6nUMq2Sek+RV8WBO2N27dw7SxgipCnNet3tbkFyGkoXfPcdNJM2TQLmR168EbRPGWUIuMYQcw0zhmFDbgFOypPFjJR2PXN8LT4wq9eFshVI/ctxgbPr9h02azD2Gr3dYlHuomaoGVhQp+yc069RN38i7lE5d1nOaIBa7UbqxOD/wu239XF5Fw6B6TAfojl2CGTQv7mH+HPuoUXAEaSzRdEZIvwEMt4WUU+zbosxz0KD2ZabSD+fqDnajlfqHiX+P+ifQ83iQtKjvUpHE6ijSyAYaFBiiyVyED+CfR5ITglnzpwn+xUehaLxVCOg+05abZFxwARdOLdqX+CKFgCKhEVq3p5tD1nMB/y6fzZBsg0LuBBhUFjsZl1RIDmJ/dI9+Uc/TuPn56qk7nhZaQj82zbIiO5PJkP12qMBOLEVSKyMTNpBR4zJxReNJZoTc6DmfKFW+tdt6hTM5oFeMatqdEaOBuVAeWKp5VvvUEo0RuSBbZNgwpUda9IYlbhFmSQWG/JRpzR5N3xDAu4xHHZQKj9xv0+jxI/kfZ6FbrKdfOmlBeYeqXWpbHGiW2F5JpodI+D5Uc0XmuOzrzX3SqZPOyrOsSu6Aqr4kBAegZgkq9BG5JNb7o9JCc/t6kjdd51IAGn8VHMS/vRW5kztK0KaSu68ha479SPgmej4/LokakcyeLyfZq9EJucF02PHxkqf9NngdTssrN6AuvZLeY0bKVCsaLBu9tFDebjmnrxi3hO2lkM342yefS5t9rFFt4bHh4CwnTfOIAi9ymV4gSwndL02ZwIf0Fyz74nhvA+sfe1n+NcnV94ud7PtVW5Aj3BAUftmkI/3QX3Q443eIYsNbBewgXYBofWE8oF3sI2FnNZlFqrWsZwQruWFJWRfOHFpaeoNGytnh0zctRcK/TDperwjF8FQOFgDi2ZS8n0p8MredDmjpvpLdqbhaesCN2Rd6Aj0DVwYNXpRR6dPwXSMOsIm1ZbJgVAenQ1hHkBzrspboWL5/dF3oqndNyKwhOnAAbgdZZIfCXltMNd7eft6nw26fja3aTWf+tI0RJ4lyHMI6fRBYJEuby+t3NiXb82AI6lo56niCjgSjtYG/GHYe+jLG6L6AxdQ43U3qZcU/IX21UzI0Eg5k5T0r6p/qxP2wQhWzzDaFK5gSl30l5yEqLTTYQh291Ttuj7Vr5XpiPLPwabB0dQlgHA1QY7bdsXf3hdmcxh085uKbsnYvWV3C+OFslCObqbiderUbXRS57n/zVxsQmcqy33fCMfteGFIc/xnVGvn3A2MvcPBXUUAPzmS8vMhHVuKmyKOxTv0rxZDN5TH5b2uLnzu4pQMKPT7WCsfu/cgZM+nD9VbVYfudATzX9NTRUOOYGNv/GlinMzcPpalzxjVrWBlHesJMNRZJGsbfvmuFyClMDtQRVChVMANV6oiiXGAhPhU8fFjdp/1+57V6JmFN5qpvvaeQ7Dnl3WzCRsWp3i+SXfah40b9oFnpUrAFHvjQ6009cMLDCGlKMrkTOWUIzgd9tPyzCQ3Q89ZK42IDYZWi2WWUEbioQQLscpGLa3Yq0/qGJZsoCwg8FHGRIHQ4JhqL47lbb4JsRicaZySAA8Vael8brIPWmjQkJJ1GF8WNzKHHGwtCAgWHxDTOF0HEr8usCku2IxiVK6RwsqhXAbO0qwISCo+Yp3mEkKP1nr+xnQNeYTvfTYTQn1Dgktyx1phRIlLEcpI7veKC57Cv7JYln5j/f/jx7tF6qH07kNuIbFN29DCCKQaWmAeXdJFnxumnkcAa3H+WE0Sm0wSiYCblZjLhaBDIuktMrSQL9DmV/kYw6bc7hvtKG1O9VLflobbOUndHqWYVj3uyXZbJfItzrtMrF9bU72T6msMmuz1WV8qfesfGy1hRYdACx9MNpioWGFHJAMqeQTCTO4Svnbo4oeiJZlUxeKuI29aHwLmNd+vb2tKqgZA0ZvrwhT5v2sDaa5BwVsZVBK0Xtic4/w/AWo4/LFoEtj1nlHBtixJo5RHyMEAmRbAb3P4VayJhoofGvzRRYVRYiuh9kJwS81xPfghxWsJxvTRgXOJLo7u2wHAqAOfHBJsnZEleFhjdOCXhknOTyHdRSyviIwvDHUikGotexMRznZpq2PTwaxxjgWC2GrGeSp55acmbeVcDh2QH1NvIxBUw01lGpQovjEm+8Nzthhd+zTSpj6PjmwNzh1lSqKGvLPfNsbmBZDelxQypwffJJ4xMQpZztaTrvAv6ylUz++DGCTHrKpl2R2i/FikCWzmHLy4/9pek0nwD82AWp45Jtpsqgx/qqons5x5VBOMPrFGySNF3nvfdsbyy9IgkVOaKQ4nFk1Qc0OSyy4InnutyON9t9Yo79lG/9urEg3oM2bENrrTXkFpj9L4Hj8GGIVXbHCrcpP0FUouK3Do+2HHg4GZzBSwV4Z61cbuyqhzK8Y3qW4M+ojq05/LyGzFQVvsZWFdm9oefdh4KLrdRMlYnQ3N+rrEJS/6iV00s+ZOG3IScAX68tVh/1WQoogEPZFQg2upl2U6C07nOXzF1oY6otENCr8KrQz4rEVRHMbuSDVZ/aXoXvKZrLhLqNqVFyFUKuVvNAAEos6pDKCWdNPjFN6mwQKR0YI717N56hhHucBgApQDJR8ce/4Styg1pFcf2PyeB/19GadZsgdyy3YB8woomR5SyHOrFRLCPtuh35GU+0b3sbdWe6vl3Y72HY5zSIaanlk1SqDqwiwNdzeweEo9A16Pbv27JjA4kLw6jNGFMqP9JIF5z5THBsKNIY04JgkE8u7VA/FZmb+rxMLbbGnNau2YQvZRIWUB/hPa3YVuh0KquSkKY/JlCqyW6yAHiTy8A4MJwf9FPP/TcQBzrw70NQVBnFrW1+ZgdXYea5d9ETUWjB8sFV6GngyQDSmdsltsLsPJK68EMCAPh8aD1h6At3+gVZWlDQyqiDt4gX7ul9peNxOiJJVwHqFmquM4y7KfIT72rpsxQoHvqeMEBdpYRYH8ePnOCBbhQzU1ck5M7kEomhkxq2WiNAbtiVPoqjq/zl8WYpRrWigFaefgLh0j0FRFklo29lRrKI8uCqVRH9a5kGVc6++ER04/ElH42hbpIuRhmUx+PcPmjPG1KhF9r20/RHJMMD+Xqc5PrdzFC0lw+yETkIAqdnzyP4aPf7gse6LrbD1VqB8479DMmfMVEksQwPpn1nH3lN7VhlOsv53iyz8l1uDu7paUlRVdhQ/wcs70qNAQv51M1eogK2yNwzLz4BEDmo7ifZ8u6WJ+V4GSKsPuQQjuIgaJpoWN/pDte7fu0S9Rg/ozlnDA5qxrc4tj7DHG8RyGZijOW8dwBWR7mE5lNc9o2yKXnqHsvvULG+hPPWHrTRimoBfS/PijndvO7EXZKXsyEUnn5gTrblgyFacTIIpKabasXKKNCA4irwBHSq0uCACbYcCx923g7p1icF2nr/p6KY9/YB47UZFmd9dQ9e03uZ4C+tYDV1d64PEkBfNIHyGxSpTq2BNu63sVVORtm2f4XNB1ZzOElssJGmva4SsSxzOEfKb0AaL+uTQ3xMJ11QLyrlzo5lMjCMQ33vK3bexz8mAeHGtxzTtY94vR2tYHS1O1QuqEXf4VlsBwYXcsDKU/SF/vV2mDeIlY3LozsEwZsVDVCm666a6Kw3gh5YCgaX3xvIvexjR0BA9yCGfJIYzswbtib8S5w8t2OO3lhLi85e56KNOGTkF7wbs5Vd+VXzhfvyebugnsAB3RpNTL2U5pPu47A4Yf57/AlQ2ATCrMruCG0N1BzlcwhXWZ+W0rIfBpt12hplNqogZWyzkeOfbtk4TaPczupxWEuVc7mFwKNmQFS88KkuRYvxND3EiuHbUmLJUHO+wGft1y5ZibouckG+cQhDkOiSOrzvcdOYaPwKyOlv9bseYCsVUl3veVUrBXfPdTiwJtOzQz6dtV4TJfXoJbMWdkYAFLg3fEAdTH6wZVzDDdFL8buXKa3CAdOUp8ta3BmwPIoPjff4+7pclOviyhbqg0r8+f3gfGgKi1A/iReMsjzdz9yx5gKqRr+V6n+uhUeKwklGwU1CmicIfa+ZI4jrFkHAr/cr5YiTBjM+w/gpBSQcvO6hXUX0EFTVxLK9Dih3nwARoPVO8HK6JT6mbPuL0dnvLxSLKmYqwHh5IuKJk/bOKIw0gTCSnwAA8MBvcvZGF2XC5xRlYZ8OIyXAiAuTKphnVZPb0aukqHZv7ijTNLDNBnWrYaCKMcwZot/o2CQ789GeFpn1EwkKSF11bolKFRov+w1n6pKuAhmyuCwKAhQvaI+F134iXAzy0ZsnpM+sQJ8McZm80UmGs3vsYShXAs/DNgIivw1/bTISiQm1Xf3eYPvxX8DpjabUTB34dUxkzrSed35dz5AO05TFrkbjq+6Yer1b5AchzMU2y0KgV2DaDJoEXY6TnPG82Uz3aQAskEBF7lW/4DXpupQF3VvN8oCCALwU4sbUQ5oGaEHaNURWKttQ1GWPd7vivE//g+PV3uqejM6xkOvXPdfxdPFhMEBaEvQCV3jNxi4MxUgIoHcoS08KZrlw5PISd7wGdoIgWWe8IemaksS1t2OTmP1UDi1CVsa3CMFkN2YmTfAhxJipYxatH5BSv1/ZSNMWymk6DjcMlxM7G+IfwPCnUxYcBIIcQtIJGP3LCpb2bxkdpnG2lBE9YLw+sWnEU0MXPw7EVmzpH/xhYjNNiGwsJgNyT1nxybzhpNnddDVT3yA7l+BVr+qWxmATpbUp1lKN1EKS3g1fm9qJ2N/1I4HAJeSzxsRRo3X/bireOse63ekmI4TiO0qPNm/syQ932+RlN8XGqfIAF9SZqFqtZtan3Ao7gZ8DG2+BLsTpH8+toh1Gn1c47ubOOH9q3bM8hsz0YIcav60dj0ZTnFS3G2gOwgQJZPPFS0ZDJadj47gofD9H9TqKPpMHFXqlbNiomyB5nBazOhtWk0hiFtn1zr5QnrU/8lOeYmqsmfqFy1LDQW7Vo9a3mZ8DIfNVZeJvgfXBHCJXpXebJKhKkJth7p7halO8Ls1gCgRcOZF2xXqF1G9uoybV1PMtyyCZZ27HEdGmTx8nANcqEtcZBR/Uv2zPIGBCMiOhz8Dn7tLZEQJ22cpqrVpwdbvhZqnvS71ZAXBP2POwnDYWLHL2Fs9zmybNp1dNAoS7NYPGPA7tKYJmO8x43oOyqqWHJopfswXbcN7jYCkjyolLtHJ2jR1EM1XuuLg1TiFNAVQTPb5sft+GrWyt0SS6D3uW1mqilu5msmhW97XE8W2JPobI3glLXOcO4rMTFb0Z+YRe+nRQ03O03DKQs6Hq7JqG4cdh2z04q8vZnYbyb7K6l9tRw2IJOevLmUj9kdrPVGTs+0DWuEZksox7psLRTQJtfxmXrxWONUMVqdnma1VRa4QRxbiqHANwLD7+L1s1JtRg+5RrQp8v3nbPOazzXCa2aOf05fW52ZPQJu5DeUHUK4FZnrbp1PRQt6fF3edKKPsSNYIt1Mxfru2wKKCgCZGfg+GRLEx9MCgN4zIDUczqt9Desf3j1Y5g0mmmQ91FVc9ciFfyweiWQVCoHuLw+cbqU6PanGlFAbbIbfPVholsOvnTHmK/UW+a9sPUqMDrs1MbbWnOPJ85IohHXpGn0WucDYFTP8t9iTC1cOJdMyu0bQ9QDowmh8Gh0fRp3QsMpELI6STMJ0GVfGl2hEHVBS+BFyTo3OiyCDI0M+kKYiFgch7w3h+qPcyEJLr6NBKZYXkZrYgJZ1t+hqTTGl7QRasH+824hilqNtf9BluOfwNMdROVko3M2TwS/tWM0U9C/7RIngne0uG6i7he7O/JGVjmeP3mtIPYruJjqo2a3D04D09MDBfx3ev00AS9knaTzv8gvfuRBYCUErv4sk6myOd9YDffRqhteZ6W/9HuI/vZKWRTRLMyFLg9YmmZkV7vfTpYi5ROKXOP4Fhgw3acP/kU6ZAzt7h3MMNml1IGXhWycJGfUuSKmMJu6hj2AvCFSXCTY9GzPzO8vQiXOtW9TZ59vRD0BUVZDbNJNTuVzxzU1SuVR7ppuq5eZUSdJSb3+hxPDCK7g1ThFyZRAXVx36l58TTprEOemVnL4MQDZQe8zAyihlSRLFJQwMexRB6+uKBucrQWvbhGqvEPcPfrPoGqYU2dR5lVE08meJLDtB7Bv9KYcVC2qAw4SqLOaxsHBE5Otkt4t9Xd9oSrJHIk4qYcY3azfVXrX7eQiIm35ie5Yy537ETWqG3ul8OIOLtvV/ni73CEkeAvdF0oYZPnsv7caUqXSCYRxpzgNznXGZFvlKsSYdV4gJL6UIy8oq05BmN3QADX0gUwXzZuBSpQpuNHjwUpo39pfkewuEBHQCO0quNM7OzulOonzCpEPudrXzSDb5DDY2F6lxnnofgClBnmkZATgxBxvWvvz2EnprQpSUkRNFut9AGkd28LWEM/ptrCws7NxHVCruyUGkXBK5zMCWIAif+WmTlqZd+M0P5wlE4XQb0eLpbGHh23RYDb9AiUieqYwtgrWsQAdU4NUiAACiBcegQuIm68aekTn+WDU7+a0fF1J7Qx1sGc+Fvl4X9nPGhRtru8KREc9HbN/dQNxSpH53BlZ+Y6EY1c7a8brgyKk9O6XXQFWE0tQB1D0lf1dakex+Vq4Tpn0mx8u2GpD/eAGLJnl+qYd+JsProX/IdQvFDSrHgh+EaJC32K+Hmq2UQx520DtPnioBm4MVyX6GgKGH7nM+Qzxq3wbtD2SCPIz2uiC7tFH8HWx8HtLwAlh4tPbb6Q1CI7e4qqjeoSiId3Z2FLiJGD9K/dEimvzdvyOsw5148imVi/qA+ocJbeOfNKtg9bndlEnScJx5Dl5DxwaUfGr4ecOp9mWo5kcl+z0LP+YfFm2yIrCOkhiJ+3qSdH5FgQ70EZ0VJb23tIMtVlVUu7DPfHTRGBcdwZDnTNuW1FMfRGrr3M2E2D9wPaA7BSR1xl1owqX8GGfZWhVD1ZxGiF+4Og+dhAtETay+ovHJpN1H05vNlGaePmj6HtdBmuCK0pO6132w/XXaI1CNQp/YyQPdj/cb2Udz0duSDqsnIq1qNt12MT2lKaK/J8AgMvwQHU4Xc0YK4kznwGVhoJn0O/vgtR4rDVQv58zgE5mEiUHNUNI39CHSsE0rkrJw/cIr3pT5vByEOvlFs/lXw+GdNoC3vEu8MKifM42q4cwH+2ICwhusyCav8QwIwxQ0GcZzE2nXfhBTM6GyMJeyA56hKQ9/dqbiNO9JQjPHWMZxGj1809CFdcbAd8WnhlYaaVD/2BXL4kirGHKKJJxfW640rmSc//MggQviTtIHN7+ElLfomBjQJdTZQN5aH2P3/XHns/rTsjnNC8AkCiS1QvZjWImJRr/Zd7P/dOlrYrfC92uvtQvzfbPD04g+3RB2UWNTFq0XpEl4JHkdFJpwyIEEzx1OjchchU1TdvDGXXhN7ugRhHvAIjvPleBUNaCizcwyJyYmu46mCF7j6YR5+GVESEccWyw0K5ipc/ZpfX7YQBTEv0zUBKztTFECUHIOrI0LbnVpcI+GOOc13w/tZflI/uXIsTJSpDmm3FyiezReIQ+G76msnJ2j//FPyoypkf5XG3cy1S0/OluP2iDFn05xJiU4ohH7iTjDMt7QvoL8DO6QL2xGyaL5n3h05JOErFclWz7q2/P+j+RjaJi4KAc2MZxaAdLHDtDdUsgcQFKnAo2Re8hcwFr9Up2Q+RSox++bFJPD+sCOp7aR+X3sCog1szkxzccnFGbKVbNa4pzremvAjsNJifknP6sFCvUD2pcy5O6HNdlbvYzt4zZdqAih/vFzJgAcGiH6qMYMwJIw/qsVhcku9d2XeaRb2S5D9hhIoDRvdaNJ+oTLZzYwAAPK6sb4fhGnuNQw4NXn5l+Q2b/oBv5+UGo2pC0vLmdVao0w4WnXs+n8OTRTVKUaSPymrCkWQ1vkwRa/S5TAfvWT2G1hnF0HnEp2maF2M3RfZeEEW32fHKr6a47BOasAmqM3IgJZbFvMTGHNG+3+/7YA+IlSAO/r7YSg3Qu6EcWa7ymgtIary70v0NnET/eKZ9BgQbyhwjIO5kLWrP+njphjml/VXnGXyXpOZrqDlrq1zEpTBkmEIl2g453g6kP14VXUf9Ce6wWxAWZBjjOGMcRVpkleOoPoOJYMcqkAHA5KeDuzGydXVXW1SH8RImAD5/oJiJx+Xl/Tb9gqEDVSrFE6Cf/A+YcA2FB5AqAYgQ4j5y7KXXqM4zt26Xu/rQ5JLr+GvmvhxFTTMoDLbSc7TChqQlNRn4dQJnyQzbD0Bn63DhvnEckFnDWB/BiQ94zNriPpxDbQwsa3YKqqnW01n0HxZqmQ+eXcme4+XcdzelYAsOK7/Sb/6QYpxBWofnSaJV5uB8cQo2ImK6pRDDGflbZsiKDIEyGKJi0cdfY9b6zDGas8fPM/++YXQQj0Sj5xEMJE+Zr+7lHHF+firrYAm1sRH22lDDIt4CRPwTmedRntw6l4eu15kxkXArkGYoClNhfZRCi1RyJIezoHhLy1pE8kHKoolwZjnNfpnFzRWg5Ns67NdVvXd5QZXfOM4uy8OlZkoEtmhq20EEfgeTKVMoLspt2Hbh6QAdCFgchYyUHk6tcHNKHAvycBW86We3gi1Go5hyOzVFA1IuWR0C7oFDycHksEUIyi5Ld5KqXhc6oWTQKGMZyIxFBNAHBoC69aTRTkI1mUoO53JlTf7ZtJTHHztFwk/McWvOZWInwdXJy7Rg/c4ph3fUyuCwLAqnjgBXCaYEHqqIsiNMnZTH5K8FB5bawvgIuc01BOUTKF48y2QnyCI0AK+iv3WH29vCJWgSLiZki3yJcyekX1epwSk8Dv6WKxeM+xhynJAcN9HDcUwfjJCtxnSyekJo47iIKz5OQ7MdPpZvWw6MFFJ6woVT5srmQdR80iTf/1d7Hasx3ZwzM0geE/V06lv++txm+TQuCzhrfan/G6dcqSCI3iKs6fcmEGYkZOC+rShXZClTeA9klIFvm2FAa6XyguWs6rySYGcAkHb5ViHv3UUkmvmPiRKccEqkS5LBG/TbDj+Oe3Fezzuy9+WlVs9ULItoPzxZZPg3/ajLyoEIketpzQRMz7/AcARw2JZns42DTYerxxjFUFjcGH1wjUBmotHPdPaRiuW9bm/8ZCRvCjS6sj8E91hU6vwlyfNa07xDHUnEH068oKMZybsxnao3iCvc6OQi4v7pyeFZQJ4KkXFbq1FPPxbSiovB5y1tqKNmXKtFMTY4evrsSg+NCL1SbGyFN6m6fUM+aBrR+EskR9jR8RfWNEX285q4vQd1UA1Hpa3Oa38wZwRuJHwDiihnNWTSI+PashScPJ5vvAkNT7E/Qw7fml0vC4HXhoa1Yc6eZuSK3+/xrn8ASEJ1RgVfPkSt8IyGqD77D9JMfUcJvY+M/eP6Bl4lN5TETaVJ+Uuu0mmxKT/+Gd7tpARiTCzqkbWzTtbcZK+3IKQR3vtbdftnsl+3iBaIMAPJEkC5MmjAYA1+aIGcenu42V5MqfkIKt6LAkw/fwv9IUculrYYWSGOCCigLzFXLdQ0SX8Efgkv273HMbSvaIofRUTVFHeg7THg7gZcEWI4vkH+eZBEoZIEpcZhGeRf7op6+Kom/g9J0DABMXgQPmXXU1/+aA4OiIZiCMrb3d2INeIAJLWoY7oMEQdAJ9dx8ydxqRxI4+pYr9gYsJUKGGLeVXfv2FNqGz12qKwnDxUkWz5YEWTVT08znLVeslmp4oE8CMHPM9hDi/WcPJ72nEkhrANJw2B5q48gfW6Y8nNEVd05SHW7o34cB6LI0k2X7D7Zonvn0/XJwPDdzOAlx0wSppETAFIo95yiPPcGbJboea/3hKqJ8IMAWt6P+vnPWeN/MU+DxXXYZhJJ9QIm+EVSC2g7d3kgLaQ114c5oERj0U4jFD0ZIGSSPFd/KjPFsznnoikjsWNKWYaKstCHGgt6vSnKmRVLfNmfXSlXkcmr+jx1RfYHFPPE7cEihUNaNFnjc7QVSp4Y1MPqfu/n6mtvizkk3bGfAVsTBedGeN1i/SBRhcJDE2UqhlLO5ctUcMapv8wK2et3i6qG+xFpN0h4D3GXnmbiTCxO3uKljfQmSYVBgkk35QN9+EDLN5nigkup/l2jxeh86MLUhS/qi3boZc+nELCh5CgkI0BX+hGgROtVSA9xaUMQ0GN5dcSIAInxbnyfSp58qh/L/mSxoHie0hu6LoeXQ7xNoFxZuASS+wLBWErFmlxJFus2B27Lx+IWr37qzjpFCMhjKOPt8pJatB+ErzzstSA2vtuA+Q62h+VSFRAocEXfVgK8+142zza7WU2BwCWztx8/gKjKgdR8GxuliKTv5zblt3N9N+OydfxZLX/RnFPv2ssbs6No8XrIqTXxQ0y/MMItQRiGxhO0MRFsqnksZ7nad14OjzSIKxyJLUFCQEl2I0R0fA5keWonvnFApVYlwKTdzRrVmJHEICw6OB/dp/1iehNo6/9AOg3jP/Uj+2N7s4E8NQD/x7CTlLqirrumdv+fpKVg6XwUPcobUJjWb2sYcZaigf9a21fFmDRaQ/96fej12wjzzutYirZX0bBSgLjxp0CZTqQ4THtKb6rRKdvB0ZbvCC5hjENV2hiAKfeZzWe4yC2N/Kz0hzTvCm9OL8iQMIuKblh32yQ8rCGEV5kFyrwQjMpYZRH/eWQ1AoaHqg/1SqCTM0jqjsEe7Pyi2zIfNn6rpsUf4zKDip4bf9DTevsyem1q4wu89pLX1mx0R4xF7A1fb8m80HKhYXQWk315ukv04jrKjyaGfnI455rHS/X0aCSyb0BxyCQvtLPk5XWzSubh4OGj6l7EzhQhgRDurw3q0o3vDu9WPo6kq3ixE9EP6p3s3gs2qVvmIni+uo3mxgabcThR0VPugkHsoafJHK0kbXuRDMx32HO6iyun1NEB4Wbnk7X+OOxqpbHKqLYk3HQwgAuhvN3GKUUOeFTwP/8z+Ph5JKs6i2EXAMH2/48J6uhD6RALybYFfpcUIjm2YZOQLcPkmWFxJbie8d/KBiznCTqStLnmlE/qDrOw3y6rugnGEM7xBxZjr/Swrj1hIUNIcZ/rSN6ge/46GPjvhA1qdd46wdvURemQFW5+Iaw20Vvy/xacXOlniZxT7Fa8O8My1T1X55qSMJW+7A2U5fEl9isrGDrD/Vh311xXatjRxi1iMGISlt/HCJSyto24STpYM2yFJoIWSOZEcEzrzROdwn0Rlh5r7zTGG6yNZZsUHrfL8da2Hnnxzc7DVI5NoVek3vQvneR39wy+VXvVclqavzoxF0BDVABrFk0e0nYS6N8MKuluxCdW6ZdAq5yL/8uTNlS3VU9l3jfSteNFSIkVU9BLyg3DXVxuKAJlfY17PtdrOU5I4P1VokSm8H0UmCUvm+et9jc4VWPzmvmIkGKVd9d3yWJt7GmC8Qg2xAKgt8VQ==
Variant 0
DifficultyLevel
500
Question
Which of the following fractions is equivalent to 0.1%?
Worked Solution
0.1% = 1000.1 = 10001
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | |
x | |
✓ | 10001 |