Algebra, NAPX-E4-CA20
U2FsdGVkX18ZGHUXXYVe1lC9pI/hXSBhiHyaQaYMNuJ6KXdj5QqmtZDdKv3MWyI5ghjXzcZ0oUwDZKf5OBkUlQQWwCsU1wUk8WIolwu6j5DpFgxjs4Ba805pa/SG6y3Nrwi4q8AN3FZQPVuFXYvYFqxdPtN6+rD42wVbGiMuU6Y53+8cvePqkBaahkZyMD1MdcTAYcmZ8xviskShWk/fnn9LJkm7XDb0hbv5r3eHKu4ivjEz95R9uxVTh0RnNqpqlG2JYVdUMfB9d0F1Ys8Y37TizLe7YYRJxU54EbEwYcnFE7Hxs5tm/Zm3RS/0uX9eBWWJKXwBgRmmIms4AoqxRCxsN+hd7rWaZy/SjFXlZwJ5EisAk0zwY7xqvYyQQmz2SeFYuysc0TCxDV2JCbl+m4DkBIeSEBql9O9qPHMB2W4TVDMEgn5QgX6UwG8VcSDJrWPiLlvN8dhFeKCzW7dp0xn1K5w6XInE5XqarvwmkyfGoYhD+E8h4KIRCpR4o3ApPL85qfrlWEsCPGdrXgDnHLeWCFPvwJSQELiFMAV5fqekNYzaO2jRiTzE5ehq3D0wXlQLGTp7bEJflF5tHwtz16Sn8Hxc35jqla0a3B19PnExPR+g6aLYYoLJb/Oi+mkn29/UanbpK5KStxEAimaLa7bGkDFWRv4OQDiVDqd74kntGB6gc1a2Z8a+B1PK3QDz5wSWj/QmdsKftDZeR8Jar/vdHGLpv1EeKT8NqlcicR4SgBMvq3/e4QGlptxKz1mo95SYBHLTHVmP/+DnvHTa1OJTdgFlIbwBlORJqniMgjus8Jjc4mPsk0mmEGFhOGYwk3TIfxgHu93SzHDK7eZDxFdat5AqNhNI/AAm1wAOyTT3OcHBSzwvTQlxTnwk+RiZB5UpEev6RdpEpuKox8UkgyVk+sN0IixKSoeOX80PB9/BS3NDERCZHPLX/5UjrFFd5hCrMj9hQYC92a17a4ek5dYEKIbSe46u/J2q6YfX2BXR4NyMtrk3xilGUUvQq3GCyxZQIL/eg63e+tWWzdo3LmxG14MBHwg3a6yL/d+T7VsVc+fBVdl/3yQ79w8kQ3JGTSR19w10ZhbOLVJ95uPOuKVB2J+ZlnMJQP0wZaIXFh51FVyXeHFfWYePaDUGlVfsRkE8YuMq54x20MljBtryBy3wmnUOVnr+8XxuGi/NSbZu291PHrBLKy8DKIZZNcmdYRm15H4UmaH+tXs77JNoQTMk4k+8gKTHgskrUQHvqUfUy9802Am2eCJMeIHE8ov6OojX3o3UNVZkwjZY+ULy9F95kNtTLlc+huMQFgD3NMsHzWaoLuoxJLHTayEzvMRGii2IqFdYg15OVDfmK4/0B90njMIplyEMfCK/cOgR0IfgOSj4lpA/NGAJddRlSaE1KFmpjsKasJYSU08eWch/a5tuKSOvxQgjrsNob5KzsP64ZUexYGUklas75bH2A0bqpHZ+BrnzmIViCbeHQ8nKN6Lkou3tIivH7Tc/NG0FVfgyAu1bAjkEf5lBpP1cJSUYEzd1t6185wQhfi30NoaOGa25DRwY5LmBtkJfPVitnNdq+rSWSXojAIcANuNbEjiGrbikuasHM1HxoH2e1Wn0PpB2ZtH1rfvczDG4J32ukBd9nJ1ErOQz3ZmMJaMFnkWWRe8EjxeLGHzIIIifh6VjZrMECR4+0J5dLXeCa/sc/qgGaY4hwGjxrJ/z8jagyJ716k+It6wTBXfmIyv6BbwMFK3IYxMUy4QatI4TV43kSq7XTwQO3KIGoa8+TGnz8rEQkkCv2LeM1+T75Hoa/keRIOI9/yz1hd221oNCnvmFW4jRpdqY0t25u0v9dKngkMiXzBe16/1jwTI1mytNdZ6Hg+Dq+Up43IHSQdK7fEAf76AVYg2uEy9nxMxPEGvfjXOGCSO2FwLIbO0N1YyI+N2wjiKmnoEUrQfbzfzhUFkw6rb598RFP5UGxArFMpRN6FvwJr8FxpAHfZnOyKMEtpvWfR85xoJn/+zju4M3kxKERzfYo3tpzdloSlnjb+IcT7F3r88L56UALdy21bfBTYip9t+2u/ht74jFDiwJJs7x7cQ8sSBGUjgE1+rHjDk9q7s1BvfQNbur2XFFwFuZy0YHB2i07QCoZpOuUV0Pb83DOAQOMxj2DGBg39ZIfRpnsUXJduk/xa83qX8mID9qgQnA2mpJBKBUEuVHbQB+TiWRqcDNA5yRWsiQrGKeD0E+EXci/FvMhqsPZYo2Hu+p2VebZEMTnKniSvwmNQL2yJFpCCqaqWEgU5EsIBVuCTSY0i+rERYTSCNuMHYL3q7NHQfyzo5GbG90H3hmtti/BEfft65la99lpg7SsmpEnBjxl3lAXAVEr+f8EAB+Zr02jpMcH0uoM1xMCSkES9SLP2IpZsjFJNV/lWc00syWj6x5hITUolzmS6Q6JJ/A7H3a7YJ847lqIllicsgry+EiSKppldQrvXqt3H6MckCRW8TDgNC/fzX9R4G8gTSSCrLzn1rXoflBN1UqRw7bOfoRJkKVk+j1I2fADY0n3/Xl+F+9MDwSJMHqIbF1ZY87yeLCLqwmJBcFl7eSbd6/UrhfB3WLBo6ldk6acek30enT/wgMcekT6pdFseojrqJCQ3Rcpy0SSOptPEKeFRtzWFazAMC+QAAuDORkr19zUBwBG/svJHCeZQJLleRaB2i4yhbvR1pNKiHf+eZGDIQ7mKEU7/F836JwRdsqJZHHzgePQKUzd2YwQ0JxFpw5Qqhs3BV31PpmVAO8mW+p9UkyzFTsJs6Ss3rNHcVMA30iyS9LjYeDYTu2Vyks1aogW2eudR0s+/vR2uamh3VnG8q6ZBzUChlbF+jOfmDmqSd8y2Fl3T2DQnpK/9cLbLrrKUHktiMbQkg+BALfU7s4GPgnWEHbuy8jOXX03QJ/DrJd5W9HB1xHdS33YkHN7TOLP/UXOR7c7jpE0g3Ww5F/aSIcZeYSgQ/5jYPKvbBpUVVImI29qaNRAAKhN6Cn2+NRmsjh5XHRnYmolsIxawwoshQoo6Fh5I2YHjlexaHTVRxIBphWykzIk0EgOn1YPa/NOxfjEdCXAJLA0+BRSbi7UW5KM1wHNztMdWlrlWGrDGkCbV4kVEUw8TqHDZX7tzEVU32GUxN0QcTCFhXSillyfKZPnyln/sm/aS0Y0Y1vPxNIHRgyHZW5e15/8bzWp64p/F9JFXA34rkWk52YbavsIvJ63kK48PrcnAo+qD91Rg3EZJfmKccwvBjpFOQw34x7bvg8z0J27oURKU9hcgKMIIs37Xuc6+/vjMpUg90ySqvvSrFSTXt/FfWIvYjK69+DVqEmOMI4hRyaX06qVHz3Yw9+VUouqVzYnUUL+8D6ymxHZBW7JxzeC+uH+JW9GLzjujWnQo9ZTpPRG4IurpUkJuvVzpOTbepLE4B3wsA4sELIv0BXeyjTByH35ozzoTRaV5gHYGUQiRXsfUEHMFgNZDdJmDVv4jzxqIFKmvknreazLeF4mIg5j4AyutJed681xD3z5jJlPsl38ilfuk+h1ISfqxI3OFe6fr79Ai2Znn8oKHukwyXua2iFua7by0PomGiO/nDs/g/lW7x+v92L8VHrDBsSHIo56CfJtzwtP6p+2m85n+ZTcm0lyWm1InSLwxXCDMIJBLqJNJl/SxKn96OVJIl7aRJG+V0ldG0W/A9QRUIPZE0joBp1eAdl/fTXLF0dxQteNwM3VtIzhRKdDr9bYkmWhLCsWrHCW24gk0CAda9vSNLmfnTw82DqyV8ljuDC5MkvIpAPd8XIIMN4ChmEa7SRjkHW5CYGBC2x1PdptjZBIhUPOu1ZesHBJdrThhfSyOVAwvCrKnjZUWpf55xDGr8anOkrsa0OLGjTzD7o3vcXjxpzGflFr6sBM7jw2+Xnl7+aceMVJ9OPS0jJHZyEoUCWIM1AkVi94X/Adrf3hL4yjKG4GCdQNOOnTZNZWig63aEAiImmHCiVMvEYrXSDbvapYJ637A+nlAy+5pYW2SeiT1pnHglL/MhR7wiLRGF+J1MFqQp4hQjbB+CDXQZzSSSugBJSub4rTS/mQf1klTvCmpTla2svvjQYFxodFmz/TbnjKiGGZjHKoeGswebbrcQFrz8rSFiPoKqgTrJjKdzk/M+n+2yp32DjcGMYMf+J3x3pJbv/ovg3Vh79MmtCZ5ohqez1OCwhem65S3t+Cq9gX51jZngJTHbenToh244sBKymJ1Rog+s9NGOb0f1USUuyprpKFOpCGTsGIV089dOf50FPM9n/XirqRO7tOsQFkSmK9XvZs/NuKxsXmNIQCeNVAc+S1b5wSgnMmnv56SMESzMM5PwIAWjeH6Jb+1EocWquTvxPQtrECG9mW8BKKJ+oi95aclJgm8Gvd4V48644xkDs1Gqm+eBQ0QpI5yFaHR7ugvjQUK1hQKtCxXLH1OHXtwtAxVZcQCB4WZEZn7t+fXfgMG7HhJ53573wJIs9kObGQvrrWq8L4NMRzFq7rhVY/c4WzvxpGd3MNL3fQuQdtUUup1gLum+hyNYcwh8nGTaYS6NEuOXuvfhNq5/2q6PoMXyqR266VN+EYLIOQ8wk5+al+nbsubj4zziHTRQCcwQiS2UIPuVZad6JYMaGV+ukFlVXjTLBcd1SBkEBoCKADuJHa1NrV4KORcW0oOL3sneAx3eHcCl990kDGMR0lBx48dcwnFFOWVNeiKkknk+gvPGh4SreVhm9dMuZ2o8cDxQFUTZeC8eh1guPFn72fIxxZsBOJDs7jHr4mjJjbSyFDrehHCUs+I2cPdlrIRxdgE37/ircXcu49VvlCfMihACXhMCS+CYQ7kNI3Wc9LX3p+e7zZF3QgU6aKymfrejQ5HWO8WBIZq+EVw2rUS1+yjot9sU36K1ALr89RnygtBxzOS5+4QbuoPYBjzXA2HN+P/miSWXsSQv5eScJpG7Fql18tk3d6IyBFELloy58WzcofhAYrQHJ8bFeengZjAgNOew4S+dthEmPKbrTsOcaKrSxwKnbkUUSXTR3h0nWrqifJ2cVackc6/w+KqsePSutUryvNYz60vZ//CqfJcYHrczOd8oeXMnqinlWsy38RwwNuk4J0jaonxLDS6rrU5Dqp8J9OydtL2yRlB+oUUNBk7gITwQ8xgGnnXOJHRXzMRRWmuskuEr79xyzaSxWfoUJMm5xEKMyNt0ReFK7NMQZPFNgQ+zmmmwK3+qvIpuV4SbhjcTaUg27g+P6tLb5jL70OCcqyuIXekrewiwUvjUVr5XU8B3oL7it70mNNhwLs41Mopu2WvRjy+q9OnVcxqdbX9clcKLpapkjXx/fDSFjfQSAQyIkKrD/tiU4qerbyRVzuQAV8A0/SPNHNPn5xin360iASxv8DlKbueJYOjwnxHFUsGkJ815M1E2SBPEGKKP9umgkdprNtFcT3qYl20bpVnUa+y032AtsGtZRwZe4dFnyM2PSo5oV77fM0YBbVGb4b1mtN7pbILvqx6Qsp2szcejRj77KJ9Z9QTx5bi0ieZ7WzLe/AFbhP5uLrmPddnQTyy2jp7ZLvG1DhJTsZBNMxcJO26iOfUCtos0ztYMoR3Yq+w4N3KX3FqqOeGEIza191bndwQVOiQx4aKXEwjFHu9aRU71cJt3dYpgaC50dSn1mZzpnXReQi9jrO/RW/9bDrjH7RN6TAfmfgrrjB1HpGvt2Hp6QZgRNZVmU3tFogL1jRISFEQrgkjht6B27slVVp5m5yWb1KFUvs/qtlluOM3r6xBIL+jwIBpzbgqrknLXyVi1UZUVWyL7wEJZQ49icrVb/1TALoYK201z/J8myMQbxadLs/EB1Rz3kYNes6Nrhd+Ku/BBtfLQpRtxHVU67dTSKh1y7+B9Up69BSmGUIqCkqIyV8J9bqgnJa1PK5jrfcgMv6FF30ECON4acHnOmbF8TqgIBYMAYt0ZtrDqCnQA8r4d5mo4RcYU1sOw0QrsGdGMJvhmUFA3H/dH7z+LMoBmDdkF9MRc9UjWowWMiu9ylilNoSV0dBS9+yjgwVLKkDkvdAbfUFYfFVrz4vUQWrR27GI3gdf/3GuMme+ZsErXpy9ik4qpKw/cViOi8AaTAh6aMWOyZfm6tQ3Wdc8rPw8ycqokAfsvgKJtwoKEGT7x/D2j2/vWAE4Oln4AfYZfUEZSTzXFHqE2K1XOLTZVwUg0zM1vf1+/Fz59maghUMoT4C4ThcSJn/2rhq605hf4FH0KUMeAyFqbxuHQvldAq6QQWgt6fTi9ZHexyTZMoetUq6Hc9bWoRd5xykljioVFNej/L1mji4C3RQ4PPVkCIzudgdH89cWOudgEovYd87k6ycQRaMKhBUczTqt2lfJ8LjYl38UCJp83383abRDk/S7QWMwdGo1Gr63lVu0/SjPUWWFnGzAfyAVSiGqYoRMNS3SgIzGeqK/y59Fr07sYQLVG3j3JxRDIprsYFrHYSqS2MbcmNHc2PakF5ei++TnkYNyJgPakf9n61eTDkJfCY3jU1YB5dF1+Dx6/QRudR+A/ChD4DJ7iXUoGGQ8wjJfU5cV1UA8K+YqkefEo+UxJHwbDCwrAQPm6/dwNAcOW0H/0kIazBjks9ApFIL0NVbRfCcCao/k8pA6x7DZ0NSHPM4gCGYDqzvjhJp79ezUmOTMNmkVLjlUvRqPDywoz7ZC312972liFLoBdSwdoVsUeCl/xYxM8JhiAIOfPpFZAT72H5ugNhjIfwEOIASc0rmo2RwrtsfpygfJ0inB4GmUj79hBYSpdayarSewixyt2tX/uOP3bBB2Lt1sd7KpUNtbCv3MbeHumIeEEw5mfuuYTdkC6Cd3UDICe0hnVcpU0mK34Qg8C8epTDc3GfKPphGoC2WC/K9Kl8dRG5BL+QAV0PM3GR808i2OmiM8YJ9g8LRwkpkHo6JfrvHjPGYgK7j8XpEs8QEnLDgVcxhPfoKik7bQ16bcDhXEWX7gqgVPnqlP2bMdYM0+ZOIm5p+5wmTYqqKgpPn70aOXfMU6i4qd8Xa0s5Ac93A6VNoD8Co1vQ7HA8xtWYQffb/hTN5rq3dCjIX6FIZTolD6JroS1RzPjnikfyXhndk5PZvGga5fVbt4pPfFBYOvKXPbZH1xli7EcFb8c6LmeBEnLBOX7Qth9d6otm+wab+Z2/emzHm5JNZdRyp4KRSwDhiqK9BlbSFbz066kGONhZtI6KQQukCaBdZXAO+ibTGu74WVv/7EZtHemIbkOFZSPn/4u8d6PAl5NXim5fQA4I675ZU+Nv0EZ+iLI6iZ0FsmObkr1kqY9l9zQK55OEjjWKHkIekzuW/XX1tuvJEasraPDWTwImGejsKNYyMAqgDnR0XgoPsdmJuTwsi7j3KQzmG8luE4cqP8l8qGs5Tl1L9/j0xb9Xt+pHn77CCZnYSxuc8vw+Rcpuf/kjwgadZjOb0gb0A0oCVG3YBARTKw5Y9HVYRDjZZzgduSynlVsBlmqSdChDJj3dDjDxFt6QqpZMGmwrIvtkaVXKv/Zen4CQfmaYKuB+s2DZh62Rxzu++gXhyWZ/HSVSv6lKyHR/7NsZF2/+DQZqnSydDGJfrg1K6cM7AwPWOMsbZsuX9VKYjjDUpbVw/fY0/IgqaEw2h5OXPfLs6Wbtbc+jNwyjBGgyWfoJzQoTD1dfZLXTxGXZ9HvdBZgbLqHbBChXtrMP3Iur06LGMu3C039Zwukic/fE1D8C/5URAt+AXQr++aH+0qAJs3tkDBGGLfzzT/an7hARrlO/k78Q3bdlwQoOpM5LHzXPcZV/CoEdnat+A1A9IzF3wzIvhKWJaEeKe5VOXtEh+HadaOQZBngYLBLKiAP3E+C/u+uaS35qUUyyhWl3ONBtDSa19K94nNWCYStjLL1esnhVbPhcXiwd/lkzMakuIyeZ0v/boOKtqfPb5YZ2UVtqL4KH02yo2FsSfmWKh9p6YA3GKBKnh/Z4IxmXVc8/0B2rAgnZkxk9+sK2U+VWmyD9PXGocszZqR/xQj+ob95remhLT0pVlL0+uwdJHHdvZZ/NSet99OH2EVSifXa1FNXlt1Hxnx1fW2nt62S6u3pHqBnI8Qea5JK0hkzICFqy20bSUOSxvNL+f0ny2M40vYaTdxj88osryahZ9CfTswfWSMUkaewffC1qTT/0h2Xke1LC4m9P5PAflmXZKCCeGBZTzBu7Zxw0qpAGRM4bbJv4m93/WnprRpLDNj6naOqr1bP0I/cssqpeyYdUUD/T5QATDoZaghhCEodGVRWerDPTdcREC/jgXX9T8W9bbovecnBvwGVPCwXoga7+1wwr95ugroEF+uoMrAlHa3lmfBnpo48q6MISpJA2bFh+He+ySVMd5aq1xX3cNkGRnCMu6jC71Mx0IZwGXKck0IFxRnb7O/Opi1o7Xo7WpgiFDUXCR1IvXv0l8AvyVzoH+qEM+Vt/amXec9F+yxU31cjiUXByQAxTl0zinp3LY/bf7vH+wc4FIJQgAcxKSgkukS9biYW//kWM6k0Zrcg09bLoOjJYB4qz1wqSF0rqUYai77lIy5nabbIS1PhhcjmNlrnnsmmXe3IRurciDMGtR5xfnfu3hKEcJCoNP054diALG/pawAmjxQcJyoe2P8H8EMUhHBh6Ua3VSQio3SL6p+/H5Rnf80pC22QNiL7B54Eqn2DlBsxIKfrO8Ih43l13Rvyz9Ev2ls9NW9n17FF5gBvEqKEt31JT+qgiHBRyYb0cx7Jhgt3NP+QoRBqMlw6dq6lv5nJiB69yMejbx/4+3nPPoZNwBb5sO/XthoxK2MAsnIKJiQmdDIWfNoWPgxUOkd4EVxLlRsK67ZPLzAMi+4mQH2a5MC1SHX6qakuJatf7ECmOiiYcNa3uFgSQUOqPn77n7R96sB8cE/c0qnCTdjvEohcqXua+YWIFEKu9Q6jnxhETsjgVnNiLH4hnqYjYSLv21rzMCB9Ef5iG6R0imVkVTqEu0k09Zc0xfPfXIkxVRcejLwyurQgOiAX+4aHebNx+ACKRynZWGfdKZAz8o6ySACo7jc0NNpEobOr4f3oEPOqH9TaZmxuH8tzUchDPqCrWzeVbFiYHWnVSj2rtV7zUT7KovnYKDS3a/QPnAUne6imYhwatREKf/2RPWH7WI2farmCxQTSeibgV/O90jDMIMxlURFYyjCa2SdqRFdOrk7iiX7l7ydm+psfRSyX+41pfUb9XUZpN2RCtwDEW2X12fw80UI1mx6UX/E0sfrOW9Kfxok45TIyranqE2GH9rnU1M0ZEUk5FbM6F21tlkejydPSnCBaT0Psrwxz12D7/fEsEgje0quVCz1MYYlIMW24IyzJFjpfhScKvonhjL+bw77EQXtHxoNrQx0Zj8mJNBKmVbqm6++IEsS0tnICmJHzcIkCuSPC2p9zyrjcEDr8q7aL3fQPXWfK+aZLi1Qo+5JvTj6ikjb34OpgxO15pL6P6ahfSH57v8wHBIBOhq/YqOmh53Oh0adTy/rbnHApVC46Wcg0sShJ7yX1mHYXeFW3lDltMgbqTDaYyglPsTVgAxetCtFBRmE5MKqPP8PwyrlZe/z2Nd9ZyTdTYLcKuTFfucvjlri8gcwoIvLXroddnlMWNpXzmMqa6YwqEUzmRrfgPlIscuAdiebzfmBGbBePAm9+4CjtEFbNWajATVlFeW1gckuFhrv4XGAz9Aa7gecCHKmIc1nMcuC4T+Tbu5NU/eAfFyptjtAvi33eX5VlLOa9KKWiTIWM5R6dNGB+xavbmYAtBOJQdDyqEdOXPSl+Pve4D3hJKZbps2HQFat8x7EmU8XPhQ1mctm6eOVy7Z0pvUYAtckaa0CwR/t8ZOi3pS8DBE3DFiRG47AI2C9speucPO0LQPkZvjU4B/JIQdxszCQFbkkA2YZNXnEbohkV8O8B91ezRWaB96KNoQmt6DB0ShmbZrCM/nN9fSWbseZIzwnGXedogCfOcaFjzmVUi+cADERbWuOeV1j1dhPkjjAteFUnsNwpjhdgwlnoCRui56NJTcitGsRoSzwbVxBv/TBcOTu8LiTpaBIRYcsdhYaVFh6rLzYtS/cuPMz3HAe2At7J4S1+/EKNuTxXzqd+HMTQYk1+96KUw0eRMlKJzoZazmUyTc1dFZMxokxjHRpTTuXdvtBUQp2ExwvAYDQIvnon7LO9tgNiehOZckblmh5EtrR5LagB6RNz7fSnc1jiWJcLrQbrkkTnupDUthpHLyagNPF1nx30ssF3VKHyGRtziXnY2bpS3PVeDmzM2bEdnWENUUUfLdeNz/EtBjMz69iFCkRNGlNfixI8nM+ijmESouU+aCPqy8xntFoy80S5XV9N3UFfeCjnfvjFPYu41Z6v81GrWYJUEaQ5s9uIlsh7RKdQZ2i3Yiqn6Up+R/mGWPAwL4SfXqGITyadv6jkIj9KAnLnWpc5VRULdlAHrI6mTio+cHk1LYIHON+OT3evEpN4Kyl7JUPKkI87nhaF++FDwzoEUKKKWNvslsj53deBu/T386HOSc0wRPemxI2cASoNBLM8CvVjcs2fgilqtzl/r0xou7decaQ36v0tJlo5rZRNgdLRJ+v7YbccGlrYEN+LpMzW0JvVUpKlVt/xyzsy12rsu6858j2/XS7WoOr7I4qtTiy/Wp039/8QIZQRfBoNFsQJ9u6/GXwLDTVEVRgM3EHAQB4JgS9Sz66rZzngD7KERmXUGD2VyjjSIQczj6gGprYN0VODdHLSOh1kq+I9IDFg2IpiCI6adgEHTpIZS8q2HoQnpqGXy+ybjGJHSO6TcnCfKYS81WYTfPruesGQ2P47DoIpPPrXYm2D7cw5iR6qDpnnSzghE2hdBcRgYEXJCj0JsGSF+ih6LxnYoaNgYe9LAM8mBGqJh4T0wLX3irb9eg7yY7FF5sWzCUE+FytssAsYP4BpY6sRhsxx8I7DboRGYbxZRBgffD1jTO6QmJluODdrImQmJ6ZPUCcoIbWIWq3miQgIr4AzcK1IlruQcRn80UwGdKvjYYleySUTnRmOq27oUv6cl8NgL8m+n9b79h9w/Ks4HbimkICky9iYp3C+HR1eAYGiCmiwiWV4udKiKYiGt7eaffLXW86Iwt5AOEI6Be14CrIMFHyV+6zOKwVteRGcmlvC8Rhfoy/hhhGchBpNn4FbN5aynd4fjQIc+zp0osk2tN/J2+15LUjvWvjzHA/qQgqfq8LTTQBtyYEJkmW0Un8uxZr8ioXnHfZo89ce/4h/2nejfmco2wvHXNILoK5wygoL69Pw4gT7dDor6+Wx1CP8l0jIDMj7zGU2bSGAIf4v6Qr3iU1ftTvxRBC5UQ5cEBn20dyw4W0yWlXQQ0JIHkv+0H08Kx8MsjkCUDm/f3p5860m6Uslt3exCTO/RiByRz9pDAoLiBEL9sXTmX/fJuaQ2QxNVrKC7LAvfrArYHW1fmUtXB/qwJQ1KtjYae0tVV8oJcTZEjFA5ECKwx1/Nxvt4puQv0O662434iX2Ix+ADRSzGouWYO65/Z446WaK7xM4qBHtaMj8ndTOGkWsS8HffwfX6Ih26QdZ368n6gvw5268UdVm/CL1vAJUajcs2uYjN7NLowQhsl1yo3R3wIfzB48kSPNLXsBTW9QHnzL05ggNZgG0co6P8DQ1GBGVwSUQCeRUcRJgUmyC5wHpCxWof2vuirP06KrMicGE5XQ//clgeVIYMLXP/sCXhkaUZntLDeEuB2AqpqyAtGPaArVCOY3SBavYxsbbVW78nIv1IBNAR+w5w/KzgClgmwrxuC2jK7jYn9CenoGzrvJwSba1Q/uQUnJr9fTTSkE4uuY8+bQpKv/Wv1qYuTcr/i1ZHlPzefSlrum8ApWOK7lv194Ob7kITLLF9hrOPq1FAyEb+Dc1fqJtmuGLQWs4CKhBZOK8F2rq51gsQFC6nX1lPNDHV1wIORs90Jn6dZmq+yAmj0boOlQVQvVy+XwTGm4kahaIhp3E9OF2qttkkVUJsB43sg/rqkmWUWIPrGXobGjdy1RktRZBaFzzRP7J722ARWtnWesjNn4CcZZPZYOeH/zWZ1OMf6w2de4WOG29oXBDNq6XNnApXacholeTozepv49UYxI+wQE49pgluULtLxe2C32CcqwRjtGWuYKyHnQHU0BLKTglXE7avDk3mHlpBCugEKhmTp/DC5H8pG8tp2KAGLlDaSjGYrgnb1G+KB5MtCRMIwzFRUy51mknlpWR2leN+N3q4GoxGKCm7tprUO22MJtYCxroVPFNczSm8Me4po/MZNj79EOGNgI/a+Mt2Q2skcfuPwDAJI6IrPT9deeGNNEDE2QIF2VjizsUbt88virz6wQaLh0T71Ce66rirIyHVUVOd12y9kM1x5DgiFY8oeqli0HR6FQIFPt6Qp4rPJ5q0PBmeOs4cw0Ti2Tqiw/kX4BpWYPEns7jRoXzHr86VrjjEO7OP2y3fbhRyrJDv/37UE2EzH3XvfDblOq3zYtEwzTHsISHwVYYtfcgVWyqQlbSQiu/uw3LkC4Ks/KYRWhvuwDWQ/4LeZLDgDQUUmyTu5BZ1jiDMxdKRl+NWuIrL0aFM3qleH3hdOfaB+MuWJoMIRL474YOMj8GvjiFZaoarMIkx6JMJKVcSkKagXW3NToU/VfZzUC4RXBKRDaSdNEGDaPt17nNyDEUYir4omIVvQo3/5ZN0WyihyKdaUjxeBaBrKOFAponyvh7socu7B6GnkZQgGBwu5OEv3uI/cTTyyJ3HtYlu+KCEOzNggxEnLcD6MmhfTqPgY1PzVOdLlnj7hA+HDKBLXJZB65G9Bze1xfObdH/+ZVqpgltMklkou0cFGvUWp1Os0B+2FyNf1w2QSYHuhDWKWTg0yihCfnRS9VL+j4mxdCnk2sJkw7iO4nQe3u0X12uAC9/Z+Ga8mXhadm/bcPfd89CEFg59y5gr4Eze+/eCWY5zIGuTAOUBVLA/xZf5/Sek1kGmuLf2MFmitiOnDxWpDY6H+xEBWM18PTN6eh+ATxvBfb3lccB7tBtsLnS2vqUxYaDiQ369g7KdxSuYHesSWzwA0FMDZ4pK8C2QqtX46o5iBZxxzr9HAPrRPf1Am4WYE77BK7Px/oFwofZ8NHFwaiIuq412xSlZkuqQ0weUFe1ojPzwXwUfgQfBtUKnt6P4/9id2IMsjnVsZ32kqmijPmKWA92OBtChIcSIkcusKWoGqAqEUMEX5L2bjj8LHRNSoskZhl/UQphQJF3JZnBc+/oWvE/M3TU1YpYUhT1KQx/d60dGZ5j2NvH0l9NGD4OTQpvgyIhY7zWQAnIRALEp9FmqfWaKjkcAp602ZmXYwP1xBBnMlpftpg6nE6Df3rpNITyzWuscPHltE6Uo4fxDnjB7GskW4H8QhTpw4wLKmIPr371jPMT06qGASVNiiK/t/tnRzlShKSQe/G1waixuK/nAXNDGn3CUrSc7+F0puZBeyI8jui+q51i+xgh97w4Zj47t/ctxIb7nz+iPNevpmoTkJGfZ6DnmYejZOic8TbhT0+ubTUeC66mA9ymeYptVzkT0jZYXgoeLpaWXmVfnVL6iQRBXSPvwoZM1JRJs97kUwiR6zea8cFVPHmJt90bxatcvFYbpcZk8RaQfHHt3846EbjrE9eacHv0U8Et45G1LXJNSb7q+PFfraCvOiLu08IEFB9bbOQYsm69dulJ7xQtZm8vJ5XIllnirjyWLN3+3bTKe0a7qdlXUvrTQNuq977NwGEL4tfC+NzCNZwY2uT4Z68l/N2A1xEDq6ZJGMRPI/naAkRG1y/2HX24hNrCHQfVu0TgPkjCZrxCKUqEnXAHtIZpXRErhGJ4Kcq8+cC/VwAhktqSbwjNTHvSKcPGB34gxDxgOBdnbkkuNwctdBIs+ELUF/hyUCwiKVsdF/zVDZgH7NUXCVPMyPngK9zmJvFxwU3ILjBrjpQ+0mRGoOuizz/DKdlm0psr27Ja1Nn3g5eT0h9lRHfxv9QQk8GGdtg1bgxyBhbDnWRIZsiM6job+lD/GylBOh1LHTfO2uXuUDwCXqEoUdgJxCjeFTiBngi02sajoZOgR781UzdfUlbNM59Emx3/1i8PUDQbJkp41Hd6X/eJSO9AkU0WyZ+Ndi7oC1t+kC+BseG3tpXfaAQLB81HxNC/K1P0gMde+LOEC+xI3KjUcKhbmv9FpqKjDUbWNvC4YEpKx0G+leT1Rk3aX8Sb5Hf1KgnjjWHf5rF+qVKA/jIdVlzfNVGiBoBVxEMD6WYNHhn+Z4v6Nf3HN3+8aDnKnLLAqtSUGhoE+PShJxVw7Co11dkglAo7IXGDuxItAonI2SiOOFM2y8uScpgiphPBAnEAtlre0PgssgCWlNmw+fGCnqMmkcfTOm7s587JLi3YdgXLqLEfq9MvE0jrjn/8ZBhRA8HDO/Xn3q8aKc3JaKYkA9ONA6MzvBMoxJkqXYUJyhieNbVtGeGN0FBVwsqMwTjKW6aOK76IlfSpnMG/i1O75NISMuZblMIeFyerXr98fPR2kez9W3QFo9R8MFSyUrZYANU3PJh/hpJjWaDLJs++6hPOsown+6fkME49yhU2DF4Qkyyf8N5/U8Ui8g7xR1zbQ22gexJkPrnUMv3DfPu47aLd14AEr526qvB3IFDAf5nWttASjMqxncYZtAAXhE88xYBWgmHocySuWlZ5epJ1zpE0ZWZzmHGazZbQ8qLJGd47+sEUYvrumy8we7tP4PqcoeIyF3P9TH8kdvNYFxjshVybmvMovkpsxlx3r82lcEee0HEdkYCoVmxieEtqZUyJ/b9eYfcV85eOwQAKF1wnyrN3Dgul3ITVd0HKPyFTwHjAEbhPtWbkLaBLdGm3wS4AB9wyWKF5D8fZ49Yvjl2fayTTH+Bq2cEZk3dyyeSqALlUJvsyqfeJ8xSB69cP2h93KQG+116lvJ0T2GRJ1OeHGdSe95w41vSp/SAbQ93puz7IysmN+Doh9Jop9P2kxnB70DJpcKxXY+o4NaUch9Fe7YRX7M5AzWZKiolcK8g0Sfas4Fls8RhJqxv9Y4WeaZNKjvt3W0J+ldCiW9DbwZKuDXrb0EXk2ktPcWDaVu5Q3i8FkPhvGbYhrdBtLsu98+sN2u1UjPk9Qdf0e3xVFtD3UxvvN7FQ2KjUMTko/+S15JKV3jSSyXKcfSV4NhLRieg9ym7gBagKdIA6C63jSK1HaMeLOqwKvzBK7iRXBdjrktJzNhftesgGeshAKa3SD73y5ceQMH4Ycm2IPCVsnyhSXu4Ms4c4E0lRHoRGeCk5OhGmLly5qCb89S5rRn9oZ0UTue4Ua6wAfUZRfINkfoU2NF+WaNrurX52qif8o2Jlzg2gWLAVTfX4gWk+kP352OiVEL5gwNuc7CsVmLzZVqwOWAGhxlhXRuhA0XLXrrZHfwROIqdivEb3MHhBIa0kVYiDVMthTVFKneIVOyO8BO/lI5DB1zAqQbdmCPUTEZesu4pft4y+rFricgVds4aOoQvCJt07023QRMkKDVh5uke9U8zmS6z8SN9Ytg1GEMY/8ymuzHIpxzYCU1HQfZpqyKKwzOxPJyhNU8M4r7R33kCLHQwLw2VOxp52/emr+dQWEp17ZqAlRQWvhpI6WgHpuUHjsfvQDA5BGQEA3Vnl3Pohvh1t/7y8u7/ua0V0cDm3JytLkUWySupigff4ZJJnyANnxBYjVYfCgexdMGiawl8tbZirnJcjkKqiOC7+duWNbCQM5ezeV/uwqD63eoqbOFUMEq0Gjrno3J2gqeUMUq+9xpEGLArmKdLdN1RVOAUK8X+Y1dCTL3wqzOQdOcpnDctPzZMmtngZE167o7/yK+q26IBDNrnCMs83BXlPE4z+uD//0j3zi5uE69sB0Pol/GQQ23CtLhKkaa5zbsuOmE3gCwQEquFAq4Kmk+HxS9V8EMWuvS7euYcBskfP+qtc++0gFMHOzY26xjkeNNjEumR9o1GkIfKni+kNBCP8yVYS4lnUhgkEeWhbAZfg9I82JWbbS4yBZsXcoEL+5ks0LKe0+XB2D39S9nV7NiP6zZBqW7WmnagzWONs9zKqUx3OJvZgQ4cfirPtE4d9fDYbZHFpxbM8JqB+tcvrLVbaPPeWPTQB5m97TYHghHa9uO0lYUrrq4Om27SLQ/uocIgxqF1DjE+nnRj1EwC3rpYVwrRgTm9Tf117U6Tc0pg+xj8+MUXHRWjSvKmujEEbOllSAIF2XE6q3vA1+K8l68MiiA7eoQVzDA/f6FYUCTFK/mcsXb2qGyC/B36qHqI9AgFHJ7vEQ2eNXzmCAagXlAsx4z8SVDW/jBylg1QIGnCokk05kNrc28h9/rbj7Kqr3LN/edTVOvu5t5kI0XAffJACyYwEe2EUpH6J+RYPL29PexQG2vdSQelj5uGFfxdoK+2//rev0c+yYjtf2stXUCmdjLYkt4ELx3PIpPP18ffjw5UGAZVkAmjwyEe7x40Vh5L0HSGOzdFVZkhIl/JfpF1LAQ7H0l3ACIlFNxRbhafrqx7AavBIZEa8EN9h8/vz50QG4efXNy4+ejtpWVLXmJo8opDB4BBx0K4jo/6+wuddB4svVNLlaHS4Wl6SlZp5V1sXZLsYTDj/JImpPG/HSZvE2uwFxOrvboQAv1TCMbKe1yGcVCxNYp3qOgui8pEVzXGHkQJ7mooSEhT8b+zqRUVXWaJPTRJ4SFC9jqF6m/ChBH6zfOXlH7ojKrZEaSAQaQ8bWNA94pxvDJelQi6N+WbX+tzwP4BXF9QGE9A0VvCLLnRFzkOTUzFCuGSVS3Nn2GDJWQtCqAo2ZRYhfHhxuUBCT0ts48mHGys7Pi+Puqqsfqd74J0PdHMFd1Wt2b3aS4XzRZLfV+md/socDhH3LGyvTG8MPzGSNVx9I+peMoIguCqgfrulZwiWPkN10B3lfXhWFklzVpmi6PtPX3344XCiQ8K6e3z0IpVHRt2cHc6ax5zA3+AVOhBbr66OCvcEeJlAvkvFG+BhOJDU6XV4/DTrQSaRF7VoJS3eXLqqDfxHDSFVz/Hmg3GsY23EzzBiVuMVI8pxn6AHzHmdEOn/ZTRtqbHFbjQNXnTIzjM2CRJXvOHnQg6Z8bqXt4Z74aZIie0DL5iaO8ptzfMvfJvG9rCv1DF4qgDUt0uRXLJGc9gBa8CtBhsGyhxFqBXZKGkiIlEBNLyh8Xi7xsAoceoWyb3dIrUZZ2vzFohgWH3Tj0lPa1s47aW/f+bEq+PHVsL/I+HPeNNqiCIUoM2HQwVq1CNgMnTfMGHuK2ijNmt66UqeO1wb4YbYce6MhjcrVUSS1jWBSMAorkHWrQFQFR4xD3Czv4ZupSJenpkVQOjmauzD1DBmS7+3DwMg7gGn5gqXJQE83sRUijwOxWMTnGuPiyNiiWsgoIT1+sKyjqDdWUsK8y4Amul6BuK7eoE4rubyP1GrycL7scLxdao2/P9jsP9rk3e4Ek44N78sno8PR/B2I7kSPlu+MsWuUUFSvDejgSZTnOWemH9SJOsrQDOV41ETLj/4TqCaqyF5/QngxX4r/Jn6DvvfeGi6l9JWo8lIIEElC1TVR8clZjgk=
Variant 0
DifficultyLevel
606
Question
300=3000−9b
What is the value of b?
Worked Solution
Strategy 1
By trial and error using given options:
|
|
300 |
= 3000 − 924 300 |
|
= 3000 − 2700 |
|
= 300 ✓ |
∴ b = 24 300
Strategy 2 (advanced)
|
|
300 |
= 3000 − 9b |
9b |
= 3000 − 300 |
b |
= 9 × 2700 |
|
= 24 300 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $300 = 3000 - \dfrac{\large b}{9}$
What is the value of $\large b$? |
workedSolution | Strategy 1
By trial and error using given options:
>| | |
| -------------: | ---------- |
| 300 | = 3000 $-$ $\dfrac{24\ 300}{9}$ |
| | = 3000 $-$ 2700 |
| | = 300 $\checkmark$ |
$\therefore\ \large b$ = {{{correctAnswer}}}
Strategy 2 (advanced)
>| | |
| -------------: | ---------- |
| 300 | = 3000 $-$ $\dfrac{\large b}{9}$ |
| $\dfrac{\large b}{9}$ | \= 3000 $-$ 300 |
| $\large b$ | \= 9 $\times$ 2700 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19lK5W7+ZVwXp1FUzqG32MsawlVrIrTk8jAJ0fY7PA1wtTRCdTIWHUfehDae66iKf4HDgcoPgLbwx3uKgfSzjtyEcr6H9sldWSaFnhI6Kp6vdW5tQKbm3tTb8PWsLurMiqSIn3flFortLAei3Ikhs+JN+Nx7vQliBRfPxSXM+ekjFWdCSizc8/KVlaxwXf9QvtZO8RSGm42hCZ//MVWVPEvqVedOTj2c2eIHQyEUDjjC9nTPLyOHK38Zr1Zw1ulttvMgaVZBM7cCiKjJWb0pfnkuCnll8j+JEz/ZnUPT8jYYZpZRI6RklXmT5vQCOT8MNFHREiTTH3EqwEZgkISxKtwMWd7THBv8nHFp5MwVCL9LhuO0S1mD0SmOgvJvQaIT8LmOPlGeJTxfJk0609DpvFjkyNL1K/KaGRCi9jZtHxjCeOogdBYSljpeTizmQycmYwzmBMpcIBZsNNwdoOb7UGvCz2Wk7RS7GJhLeOJIvTGBoKXQyhn//R3dBpMMPwg/r8OTq0Uk8Tc1NY8L6L9kpYaMX6FNpcyDcFh1nouzbyAdrC7rVJwumc7J5zP9E9IH14NuGecAo/OXlLJTDlKAkkGRKaGLD1DzsIE1nJHiyUE6RiCxRqhh6Lm7JCwXdrh6l0kMmMSrr88L7xmZen6VOXzSisIoGEwCEZzQKkhmhD8/tU5YDbs3dqrgVfnzyOboJhxrX7KuHmPsV7l5IexNwzmifVPPldBc0bWYctrqHxKSgHXsLRkWBcEyS+dxQjOSPkzO0wtMJV3bdNsXXqT087JZ7QklwhJo3vJj34c2DPGPtvqm6WLEMJCgmXuBaJWfnX7+lnmgtJeu8S1R9N0K5uGqYzVoB8IczbrU0lJoIS3uQvOJUc4ZiDC1c5WCwgd2SP7eJyjs8Knlf+jpF+n56zl7jaF/DlHSfXcRxZ8e5Y8vKiVbTjniTiiM/XBwmHrol2sFEqJ7bNP5o4OcQj2ICrb2llhV8fT/wPHJpGlX5czUbK26PAeLGs2fX0Vo+UqDbbpQIDGrqKhvMGNIZdzRhyYOqsSmnUKSix+vQcPHGhaOP4z3uhM03uWas8J1mO0Z8XBU7IjeOg+lBBBDVEMF3nk8p5GkK1ub6J2bpEupixWow2awOCAyoShK2ZURumuL1L+TIanDpjRaSEYwCf/7EcITsszOBsZCJvw6UPfnMY2OZTwx7NXKa/E1FwVJE/hf8dIFcQamI8g4uUqw2bjFduX6cFWKf97dUFqrJcdB3S50EIu7sX2y3rASJBmpQ7xt5XFp8M9+94PiyA6HmTlo2cj9RyS9y8EieCeZBNpoiqBpKPiV23PZOThGUsvoO+FhsrIHSEwAVaw6kH2BggsvkT3jvMKruEtkWEyo9eJXPBJtpfyXxxR7NCjAKKbjG1qQx/g/3/SoGPyNyThHrxGV9p3Wsgc47f4rfGwJvJGemS8pjQbFeDDZ3W3iwUH/adZDmzNIe41CjNBUjWOB+jmSN2p5mTMXjiWo+EE+6DohlNETqyc7zDC5LJEScOmb5Fm8tkbAPi0JnPzkTL+VLoJTWPYi6YWjBGnhaJntRvi/Ye29mo+N5UiP55MJaU3ZSG2rwXP+KPxXaIuZx4u4aWJ1MKOX9BEjdBEyKEtAVT7yerFOloKKFNt2EDx4m7lSD5XmrTEEH8uxXkl+wOt/7dQoLjmvUVMe9pEJ8+9k+MyAGksFuebuiiVTqXKd56XVVRLd2nuzZVMo2qG88qGLP1ifR2kjE66iayclosNdnZycvUWa0DnoqqQ9btLC/eQqXk2Dimqp5IuND5mqclvFRXwU5NzUUKCX1VlFrhTgbqQV1Aes2eJU/HROLqEMIsZG4M9fCJg/Mj2zo3FmENXTGZlX3CqZNSSGve5klpR8k4i/oHWuWN2VuwTqyXklVLX7jEYGGlwyv9488yiD4rF5n8xaBYX5NinyswJxCO1lY1ueuCBSa6Mu6iqkAjKkF9PuN4SJ+8O8Ke+Zr/TCOuK2IWQ+RIVWnaAjRsBcWgtYFhoRbq3dxDVpwzkohEsoUU/CUVwrK5YRF0KdGibAzIjKUwgKr/+ePMOtCwEkd05YqdyYbNRCovalpy8JkppD4gjROiAKYJkoel4jNo75jzQiCc2YpyHKymqhfzYggaWoptDDJOACPNb8w8DxzowngMxNVknjgMu/ScfL/Ud21hYws1gCth+DzVq2AYHGDuTCxLg6Tt5oFaWLTQEwli6oGGh62jR6CMpA9gtynWTZ6XG//hDT6gjg3CylPYCSEjnbgI00C2D1YCMt0k0Z1hAPXNantbX+hRBNAQ6VFOQjU1yqY6td1Cp4bhrJC14AxDbJ9tfB0jY9ErF26QswCZe98wa7W8Z745lAJHr7dgJl40vCHcMaEP2C0NlY9f0rjTUibRLf6aDPJasriU7/dX1Z7+DcCzO4GYR04gGiGWg3L0ekjXMCz+sVnTsAq2vBzzrJGnGHHS/He1WC+Nr4pqcXYNc7p08L9fd4LlbIoh8qgxhFexmi6RqjY/cPJac0EnGK7pls8EOqR+U6Ow7Afa8bdWrq7Gqm6CzYzzwVwsW/4MlRDc+2Y34YZmNnGfzclqqlCbW2YAW7NzPkWo/XnbK+qPuXU3nLU8ykCcklG4WQvNfDRI4QEzlR1IUB2zmiie/zlvAAUgh8ISrUox2j76ZoO9V8z6OSsEUZhTU0EnxDxBfMkDyPHRgtTeQeaBSZo/j+6JyywHJgCwTGMsryCscFBb01x32ldgDzqSBmHAiCDjWIBRNXFRnujWYKr32id2gQrGSlAp68zR9GLrDGPIzrUsJGOvu2T2+txvWqgXYxbPosgpAAwUlyb4IpFPran9q1EE1fTZrXygi/JzSmyC5nSpycsdt+Yyv5XX0+52f2ckM/Gnn5699RDw6eKI02BtoxIgHLIBYsZd9gBbhGoZC8f24HONnb66uEic10UkQOpF1tfauhUXHr6HzYeG4u2yO3TtfZdlYxq8ZCZw6HHVfpBPclBNyQOeGaJ5UTikI395GpCVW0PgI9ozEX+EHyMSGbYmJ66nYw3ISANQ+5Qxe9O2E4+YCMP3ljxaI65X1haMg7+kH1YhBwU62sMftQNM85S0OZ51iXtNiHiIfkPNQV41r/WaOo0W1ragLJUtD4eYqXjVgA1NUT4e5uJW1HXpLYii+i7QfqYbDvbbzYt4t6klk8tgz+me5gHn8SYf6YtaHjrKOQaS5BWwCykHnPfbc1Mo4BOI5avH1j+B2Ow19FWebHGmz+Ln88LZ3hhGfGE26ALY6XuwUER+9w5XqM3UmDzjtcmDvEFxyqSX8QZNKzq1dU9tBTzOuBJevStBzX0n5OweNzU6v/2AdMaPNHJRt4Cstwcc2Ob5Y+pdMlGTnIzJDCh9AYJQezlJo5B5Jo10JaDnshS7beTHWL7iyTDZdKyFMYmZz1pHzGAThXzDgI9QVKIjCFjVX9GSYDrOe0QldCwMw4T3uyE4wVFwJdulw86ConOyfVdQURt/Rbnxq0Wora4Oq9xZc50A+hZhg+/TN8ZPLktR/ONbP2fx7K5JBpIdmOJ4YjJN4suKpJUiIvN/m2aF9IIjp1qwGUstr9NUkQwbsSSPof24x5aJUvVQXL9QLhkFDXwOcKRW1GJwmM30EIJM3ZOG9mueyfa2c1N1pcQ7KJLyQB2B6BrSdgFq/YmBggww6k78gPXuKnN8fH5jeePe1OnTcO2PX4g3sG9E5E+iV8ikn9jTRNINCoIdmYVv9quYVGmJgZiQncz3ElWCxQQXXzCcj+HZ2gECFVfBPi1BMKXPzHJuLUiUZCExPFw/7zXZh74IXQzWN5QgQWmpBu9hwYfAUqsgGSGctn3Gga6hwaInUg+srf48cPKP35rckjiR2Xu8jHiOTWRPJdPELCa4pQk3GgbLyRbl186wR1jxRZYfFdIGUSdp+oVOv60SdRWbbihIjdqvKy1GZ4YT8/Jv41PdqvgMATzsFrTCQMtvbEFvMZY9JGGyJz83ejEEja1T3/2ZZBLeTAjYRrsXNjG/LW52uni/7Og0pQR8lFh2V76VRNr5AorYfa0GrgJTGITgWzMJtKq5MftdOMm7zQlXcsgbLbvPOxNfalOqQfSzQlISRbq745sYN0J+xDkz9BXEdkaffNKXbD4XsSzCIiKMVbRD0G6s4ypaf3w4NubDUN8w3gRCT1ck4175g4npn4S7tL7bKbx6hoHLWSghq10K/a9nVhoxdT8Wx7Ldclh/rr5woP1oM8uDKkBV6d+P3xF51KLrwMpWWSw5V+IR8RsJp4yDpWrprK7ox2RFOYi+ThShtRJ3LUd7I+W5zUBA5B+pmcJ3c3H+YR4s/jdv8daWAgd0V+G7kDBKQtStwIMfc3ks0ER5fN3PBj74AHHAqpDeNAJtm7HGUSwpeug5xxNO6GlGgoxoZ9+xCvNr9rdOtmLjsHbRGjjOlnO+TD63+xnbSGSAcAtZFuM/FjCpPYXtrkFjwk4oYI2mLhcg/0EsX59+NEUjj25hh75A91OQBrE+yEGelGIVeKKJjvKzvtoZl6UMpDNflj4JlOMpzv5tDx7XnuLuKVQXhFJ+BXav5sDvJAB867QSs9jMqkPaKwelnxX7tzyhcaWajlKMCaNC3njQrA1VjtBoYAkiKZj3Pow8rFaG3DiH5u1lP4FM0OC6nnpiva3O426C2aITaLxKYYUbFtoN6EV0gLFeT3iBqiQ2TzdDgwDlm2IkD1EI14rnVH7TFSa6ld//cHJr2cnQfiOwmLQDgGuIeY7rk8O9+9yo9iUyU91Y7I4wlIiyTbjFzK+SJDU9ZCs09ou+o+KooIZc/1q6gv89BxLdZ0/Hx5Utn5MURlaYb9U6YRb6PIkLDrn8RR1xuotUeZI8PngbMglKbhAuZudzXf8+lAUC7w/ZtCVjKYYngj0A0T4rdu/RnseCAULmzY51cH92PIHWSwi5BNo0G27y/pxMnWJfySAD1LfHUarBCgVLZTqhUPmNMwDjwPrzQO5TofBuzVt/c6YzUNAh5PV2mqyBghnk9cnxYIgLholrXPNbJjljdJ3UxDEnbu7dMzyK55TTctQ5UMetqkiSb+s9rbkUUxRRf3BP7g//cYl1pdQJ04u0xc9+g2WeVnq3kuGvNcPW6IBihEBHCL4/rkLgtRTlFFnMjBh+v+gkBCbKFB1lms05L7KNGoh6yR3Alq+PaE9ERRnWAlQfqDRIpOa/N7sb3RPk/xwdAOLsMR3FGQ4DCAueNtc0bOIOjBmd0U8wIcickL+ov/cIZ1PREb4vyyA63wAMRDTtxMLPDAYhMCfgPs7ZdzJdNCO3dZc1c6ZkNy9he+9zcYX41li3Po94+3geYrKy0YMnTNGCMz7eeMLBQ88vtT477sdMZ8koLPt2vyH8V0beHBlAe7qXgaanVN8Ze4UqoVqumqpghNNvXNNOEhvMVMksCg18Z/P+GvauAUE+GKbo31OE47G3kqUZdQAZWY6R7C7eUEuk4w4gHy1o1e+LVyJcCMoF4/wm1bg7QkOOYqcZ4vtMUqUlsk2FpvsYBppheJhkiihPFIed6LF4MrSBtveoxpYrn15ag9E9LOML1YbWYSZv+Wl4dYJmfkTOR+ncjpnup9Gq5kJmS73t6CMTomWW/734m609Mw8lcMgiRB4qbgX34nPaq1qz5AiR1uJNN/J7kSA69ol8pfWoP1ZsMyEbNBNBPeXhU1B4hvi2xPNNk6jaBXoadRf845MFqTGNh+Gs2mSFBDIkltu7AxKJrLnKR6ToLaYICbFThXqS/rL4qEe/HXdyrwXYP1bMz6n7WjKU83ZHtYs7LckkiAZdfzGlOpaowsJdzPqGcXuR59PWf5zqIDgCmD51aSrKPPDcM0wFzhj1mLgMbiBgahOJub1QguGkyTkNbOiMDuJTeD+calpE6b9PPN1F5LEPjUZwgmCLlJ6BLR7SmgAK/9EMER631qqOP7JyBTZHm66uY1FZPEWXB5nc5aBBLtthoOz4vsWUz4xOGk5Whv7J3DAoiU1ln8W6SenaoFQdpEoU11wuhEb4JjhB6cFATGH0X8xZQEPdz51hCIWIEI+048JBENz+an85xJIutXe0iZv5ITGkTRS2Lgk0IXI4pIYrKHnR+A2Egyggy2n5NzgBHK5Y0c0rEedRva/FZ5px5jZZiw1Sc1POoNIaJzzfZ4k/LntAQo1CA32jfWTEeGuu/dAd3iraGDYLyB1bm1MoKIn5+h2PhvAs+ytqw3hGM61JyKyhfQAIylNB4e9NFrR9QTlQCBBl1EmnxH/RMsKcj33aqtxVasNTksSyZ8w/+LdTqIcDJQsvvXNhLO+q4xLnI8EMBTqp+XJKtCjMcn9l9zThkBVEaQ09qpxCLlvOyvEvcoxvk7iLHPU7VYPVDB047ejIX1QKUz0/46c7/xgfRfky35Iki2qZieLgRGzn//hDjDR1v7aB6dEg6pkLTJ4wMzRvRjYGwSKBeqCtFchLW26eozc/Ou0LDl+zP9NaO54DmyZEagRr13mxfO731g7rE3E6G04WItEzyWD16+FPOdi1BPIEC1rNjU4mTxCaXYeFigOwzZ1Sqe/okRsfOZhJkz4SL/Sh6v/vDOZ6AHm14ZIGsaTR/warYpBO3Co6wYCu7cBCFvUkrAjtLUHQs74e5pc9m/e1z7E4PUMNYF1CkfC9PTIPxj/f3WWA25bVYojq0KKSQMF16Pgi5IHROndcAxBB4bUoyph3WDXS0DAgtwED+t9snzg47MXDR6VqxFfYFEFveXnvJZZHaPh2uSahUKVDfuyn6HzY5iPS4sGHY6a6P67fXYNnjF/BYSt1Lw9DgXAn2lF/4JbtL9ozIw+l7MJ7TtsdoxDFsP6ljRjO0jyVCjxbKkbHsxuvQIzD/JKx5YXwqqSRCfz1x5lrOJsqP1HOk1SRthMpxpNcKFQi3jdNjYAVYqcBl4ynOw708YzjXWkPe/+M8wNBtnlyyjYx4s9DBc9FsPXwJWReEMQeCKfRPRc2i1kMUT7vglYrv7zwy9Jt0Jdtc+GQX3fhlpGx1YO3FWvkEksRkPy3u8+c61PXfO886FkWcBOwrgw5yngfP79nCuCs1SzkQ3hmQnEpMN013y9Uxik3X+Cz57yF41dmL1Q1Wl00I123/j2y9P88g5lwd+GcBfyC9Of8oeQDpJjoadydqHml3+RyFn6rvw5lAeDC5I8kd/59XBsygo5yUM48kNWMlIpfwaoJRneupFT6TZpRJ7Q6/Z6rDwWg1gQtcsBDunJnaA1LYVbW4mMlks2kbLR8vlZNJdAChgeZKr+uqgTfV07auX/jon0iNDnyh2j1ydhDe6aow18Xf811tyQKxQm1r/dDetM52RZSPWqGAz0wVGfq4asZ01fdsOg6E/+W9OIARkxKPM2uXQU/RqDO7PkX5yngt0GGuBcwS7Q8zSSpy2GTp+7k7LcRw7Fu0noLP00kcS3f9OKRb6vTRIIiwR2n/3YmMbjZoPbm2HsdxRv2XdlfktS2g4JHJxJbeunE0hWN24pHlutOjKoZiIQRh5LP5U377B0QTkVCAb7JR3zj7TT3NOKlBv01ET29yWqc0K736VmHn14qcUbrOaPGwqNT/jEqOECWweZibVeT8FhafN5xp6sKS4NStI1Rppdr3oP/c4FUGynO+kAoJvmZ6iBRQbelFgr48IKZO0i1rruTMyyabxPgDZaBBXDB9Nk4Kn+17e/M41+KQhrzL4DBKsAE6EAmOEns0JKjv2ZFksyjWlLMFQJ69PJhGkjP/16ZWbnBMqmeK1Ac7NXrNn+v8j2bvLjfGl8tLAhzL13Qlu5EhWWBkrWmF2ArlYd6MTDVh1vFCl/qoSNN5/W1DcQL7nXWD69ZmdX7QVRFF360OSY3VAA1GwWMo3wC8MRt0Ypx7VyBxtPoEAipcvvPVFcx2enpmyw8cW1RVO2ABPg49hkJ56OuYdZlLbyjpJ9yUded9pO37dUEtDyJf+RvEtPeYtqqRBm+wUO3jpI9+C8VmoVnCCWEgvoyDTeD+SP+DdzqNrucMb5PS7VF+bsSgCPtHD7Uq8nLa66ygqMVtEnm4eogIoSiWLLwNVL4FynYoIj9rQNa274LJ9dUmixhlZWXeDNFW0/+Fz7p+3HAf7I0ZJZxyefU+XnMr+IIFbPER20qof1Z5NRgbXE/9m1P6uipWmo3Jwh2zJjtu0q0u9hhdDobWHKIny8Ghxz/Ufsmgi73VwuvtR4mkCAwpPI2WuTYe0qATIu+gZyO3KlOXDHeJ89LU6uFvQ0w8s1FOXTljOJmqrRNeWjnO4yhWPzeGGsMMxTIKN/y5lGDiB8YqSzdPaDTmi6qsCH1UB827mx8rEGHIiKLWPFSZdXH0palM1zSL3Mbw73Ww5UVMcy+snXfaGflwfQxOJBB4vcW2moLtotvptqSgkjz5SVjpyPdJ+i5bqDg9lux0N2Y+zepIqaAFwN/+I96FXjoErLBgR+rL8MF6RXv3+b7cRWAS6pjDDlLMPHAMPPvvYvYZGl0NKiHiAIXbi5zKLp8GBpHWqBQ9hjOaskKKg06Xli3ryRPWX4OwRsaahi7WK0rqUMJmvObMIeAczBwv6Y9dINcXDccqzgiDEGl13EDNmwqyWaeSgihfqD1sO4Ty4Wt2UxiUfLf6fqhaVwpS4hbjn9hkmQu8XBc1yKD7NOAJauGnifb1JyA4xq5AjfggWFluy+MaoTMzcAK4jaakHJOBwqEjXe3n/PuKQHKWLEX7V5UEA8ENNHj5ov3+if6kuA7MQ5m87yhn+kKCiAGa3ggnxppXWECeH7wJk1mK3XvSvsS7AKLrw8eUWoWw2DzhkBZ0g+Da7LU8VuL4IkefpRSwXQbNiDZK7izmpcMwjOTGxfqnrh4T16tS2hA9lHzHiCmc8HLKLH+OrPxxwhIgxWR0H4WezSPHD2lkKJuOiHMsWTt35zjB9VzGVaO/dDgTQtSjRqUX+ojTn6jEeHMSw5eKZ4fOqixIPzD3WXSSe/+0cA91fq5Vx2IAPEikH8h82aGeVqbmR19/3h7mwK55Eja4rc3zdo1EVeXseGPqcaJgk44/lEQbGmTKIf2STlAjTy7760iSukYR2VGuEtXbwewKNhydXaGME0VkS1R51EHIj8bigrFIOLQj+JbOCLsskIDEwEnPstopEhNsSoG3ZHun9Cyig19QhWNYE3+Khk1gNjTToWcTrXykJwKFGw8IDtJOg3qWXCvmR5jTbcrlCvR3z/aHzo04iIlk6dFH8fayfDNlWXBi5wMoZrU5kHvxy66vkjXYA3iXfm8sqb6mba0oLIsM50Epwz29rBvK80e6yCvqrJ6vIALmBDtzdf0wFygTsLoPi95S5ZkKMrFiaR8xQzB+OynMJ6H8Wx+YLIirp+Eijxcu0Jx5267RvfMC9Qc/uL7StlDoI0zObH6TobmMpxu4HV2XZ5TbvI8DujdEto+YL5NI+Rw0YdgeQGS96bnKpj3IOmO0gnfJR5SNSJLXOJG8jkDcxmRPlXDg1zxxUW6t8oEKHZJ5g3tPyk4WVoT5Vbi6M1yC31p3TeO2y7KFKwU5KqKa4M0nz2FqGIzhGz4axob98ks9C7GKqXEYp5Er/schQ2VUoiQ5mB2QQPySbXiMvP6kt6ccB7qzjhKNzSZjMLz9vkYG32zValjXK7xlSN8SdqAUmKjHe20fx3GsPnDJpVKollTBqi8lpyiAd/Tv086JIMjAmS1u8jf5pEQ8xItBLHkLZwwzZ88PmGQZn3sDOogpcUEogacdzLbjr3dAsaPn8pFsdWoY0Emn7ur6XLQ+MQg0/q8RKXaisEe1CpBJf/RRrtSSR9wXNCmjnM20bOC21vEjXshBdoTiIIzu8SY+UatVkBNE43TU3niHMci6UK0PwQNyNeVgeUkZfrcKtUEccg6U5l+zaiqraQZ8WcDS9aR9vwXBjTjimeI3+A6TdjTojo9qaexbVAY4RtA9vbC1/JihspOebcPPGcrBBrAZ2NDpMF1KSMhOPTvK0jgZgg6uJjg6F5OjZc7HaV5lSiG/a2o8IbI9dMov5+awLDlrCr5re9dR10eqNMvYWxF3SITF7Yo54rcRqeSbB8PBAtgiwdwDUHfmM7f/OI6Ze1qevs5yPJTN2J3cc0KWxtB3l957T8dPuIS4+SzO/aWe0KdPfcAMb1cyUzbCHR7UI83cCjQ1zHpa6CHvEe86UIsLQTKbCrCxxEIfUCL5tMj5tH7A+YdtB/SQ95yVZF3meDiT04aSGx4hh4jP7iQu4UehBIAwkGQrdG0DpoLZINxOpdCxACWSGq2I+5FwVoPZe7ISoWV5RaS4uyv809GER9+sNqgmIzdsqNu5i1zaefkjHtyMLGxFUBlrSqDxJ9sp1EZkXrF+6/OxvAIu/q9HVNCf499VuvlGeTEs859HxFW1JyAmFARYJAXx70OP3uxbZk+j1fW0aQzV1ebw11qq/l+q2VQzCnOic4f7NwqnY71Tn0clxv0QI+USoNs+0ZjVzBfvxSFZUsdaHbEiXlFnrWd+dbclXzZH9iyiEsgOSMD/74FAmjs5YL9RdTgUtMOB3pWsYKFlEr6W+nsxr/wsBcaoasHID7ACdgkpCB8T+z2Q9zxXSIDugtIxAdoyWSoXOQcOR0cPPQXk7j8dq+lF9iUXWWpVrHV2dgmWsi5Cq3x7akt9IWL3W7ygT0ZY6SSP+CQgHY8dVR5OFeje/e6+PY78cguB70JkVnQQE0KDsCxX2AAhmPyLS8f2b6kQO0nRCI5/YcqlQNBpbC4l1Qxr/jx+0wMgj5cBpDRLVjTdDAh4j9fnZwJPj/Zn8XxrcVlyyo8NFTurmsARSjS0hp3svb1YOd2ENJnzVVG4R6/GVUdXn60yirOoa6DMNjGorJNol3TR+mwdDZuhqxuMt7kJW0Q4R/69lGrT578qjql0X/6W2JlUyjpaUx2Ab1TJub20x3e4en6ZB5e5mWVGcjULihgGGy+gkwd9LOiVwdJJMnRG818Wup3SeE13df3VtUn52qfwWaPealbQPNM8/63jNV5UbGKUdYnPPUeNUENze92tWzg4Y2LHycdNYoUKSyEEYBwvdBeOReRh+4kTQ9h4FoMLqgbF4y7TelGUXdK22hxRr6ENaW709W2MPTZ8trX75h6sLGtus18noW2j6X1zyTL9J+cH75EV31lBFXXPB2drt/ea+5IxqHqMUZK6Hh/fNFvp1m4NbTMBR9SlixtNcXoyHOmC+sKIs6Z9gCaT9Waf2cNyux1AJExzMi/0VM3eB2bODLAfIyXNx3jyaGTE3T9lkxR8kfAWbIvozCpqYM7MlYs7o2QWPRB3UGVBhDMYBuI63YbYf6NxCWEfyr/aHaIqIOXilDjFUa6LgadJyXVZRcDY6O5o1oY24Ix4EMKraMQxDG86SqwcMTEhk8ZYzqL8AI0bHYTDPfvwVFCW+xfv0fe+5GalOtwZd6WTfbR64Be2JEv0zjs8k5V20kNImvL3l2o5jziulmmYsF2qRhBYwgW3iA9E/CScyFv8kOvtt6FOmyDdjf0LJt4ev+PG2jdBTdGBpoEc04PWwxKZ37zd505yA0riLmeLE34JThadeji5M8UhQpROkMqemJEdbJTt2eiwRuQwmuEyg5HHhDpAUg45jytRfolm9J3VPHdhRWBI1IpAy7XYkvMj7xjSPlg7DpL28mdRTyGtSbRpV4HX5F9OgsDTLBMcMPet3NgkavuAjiyjLovdkRPYREhYbcaAJBYeBNweU9rDbsPKOsFZsq/MnqXMuBITSy9mJ44BsYCqhqq0pROF0w9rtxTUBqysoSrpQSKoODvXkBw5ScxUvGRdqfYLkB00Mbi1gRReqdj28i8Fy9F95erCgjqeQ/VRmGnW6LR1NcUhbKrqzQQgVi1idgKN0vW04fMiIi5l92YDWSJOFyALTr5I2N6IM/P9W1khyPbbrj+ieRc0U8TdVlPT/HJJz2A/RTGsUvDut2w4yNC2R+olLgcy1+6vgPOgWM92s45bhAqN4T8TrIgAN03ycUvCTSNEk/RS+hEd5rcwaORDI9tNsyDnu5nDK1d2JL6LMQ1/l4xPPRDk2kPMaD6LS1eBtlWTXxy48zdkB9TSwoQLXfChVSEgpMLggWGUJk44ajn23dlUEaC+k1QWJJitl03ohpW7hl+A52iEhFhyy0SyPjGVsF7QeH2bspWEA8mfDxvAAwUO8uLnLoE/eOFY3GI706uWZBRQFxxZDag93PwCnKOCMWspTuMEHmzpvLw90hoZarccKWiL4YgouGu8vyHVZTGHrQoktUnPrqc6e4BZLGwfwefvzZlfJSovpeNjn3teZYIX7ys/0TB+dfANsgvV18EayCF6DJBPuucIXIOWyr2DpYvRNUk8w5kVLqL/N0LRTkJ+2EIk8a6+CqWRoF+Sv6OQjFwsdVnSP2wOhhtlTrJd3twx8faeN+V+OyBwa0IdQ0csWDifD3OuTS9W0m70ha+VL12BIw4ovWmreznLID4ruXa0m8f5gxRr6fqOl8NMiCXDBN10yZdE3qJsTzPHiogeQcG0P27XBiyACba8QejNVB1nsjvfULAX6OiRqVKHzS+ypM2CUDsFlgoFsKKZ8PvQCjrhRSJFfcM7Ogd7rvxFL/cRITkjJqxVSRMxMdfDrVCBITB9ACTyRPbyfLhm7/80DgVOHpsY/OVdvQprziyxExg51vcyPYLpRbBy7BKRwLdBfulEmuhTTbot9UqHzGq0++o5lEfu6s7I87NxDX5FwlIJkZOczU0PzhSXl52gysPVfFJJOddtT9S+zSgCgXIGVMCFgNnFira2EkJxCYCfQkMjhCrrOUGHOnhGxPJA6AeK0JQ1PgKMl5KvKG8wSAcuGFwYoQE67XhabtUqshJFn1+tPDjU9xINZDt34cOV+uCQk0cJtZvQ9NbNk4yJMQLJaZoRlnHFRlG+8JhPStlyEp4y5SuMYYS7lhXNZdetKJgePrSm6DhSmc1jpwucVJmhinpnGU93BrfGXnXL0oKCLCvImyQg7TkiTugTsBdm0YeoTncrWPQyP0vX1PtA/ukdN3Svi9dDfTUeU+vvoL87Jw0oAJkYvj8k0x7GxRIEkcwFH3ofCpzC5Y2k17AkTgAlircBwA5rlbWrgFRfSmyU2yH7JUb8wJy2zuwX33FFwSsPfPaMkP/V7z8+ZaQNxMzgdK51cjSjG02Fdo1PrrSP+dbeIJZUdYXXkRHkcehRse8k/9Vcqmukumzjljce3G+lykNJSM13hln1Vplgu3Y8FNfGZA4U6QPyUbIxTYvXRyJxEErWxosxKcX2HoJPemcy1peds2WQACrE4oSrzJEPZal8J6yHP02etf9W8LAc9hoEnExK0uzcR0jT4fcFxyCVSP/cy2i16U485h/YtHpo0eM7QhfRuUsPBOcHgqnfwBAylJ6yPOPZVN4LOiapRR15o9oxUdTXO48MfTUay/GYFpwUSaGqvgHFrqX8U0IXi+Xvo+sQJ4q9YIR5HclExVtuhnnBqJKVSdLSBV/Fw49dNVUuEEmZW9LSMDc8FKyllLtvcCUlKrVibMFNAA82mDrLB53eSkv8j0cVsVQJensn1Af0E4yOU41SxzPcouo2G70rqB3yYLSQDwMMLQ3EQBeusmWIdOmQK1gM1cl8ndTrH+uv8300tMkgQX+OYnRp3eH4B1btunrG1LdmdA9+ZOY5DD7gHwEnCKY/sulkUHbFtZmKg2ZEbyI5vVXw3vAipl1C4Eju+chHfLgiG4ySSfcx5f8Ufd4JF6xrY+BVzh0CrFW0ARnq6Jo/52cgx4Ye6TGRYUR/vV9qhwICNVk5uAX6pOR9NQMZWsw1Q9sLheuZ5ND9/StESf4puEKhzUumoMEaf5gf8qKy+7/ZeCNKa7iCsL/zLEOVDNlNgNWxwOFdFfdFyBFK79FmAs30+TvFVtgcdiPT5AWmPYagFmSWHuChcZY7Y+WBpVhsWI/dceSx/BvoMVrxbSpMANfht4nIUuba6GHOMqM4IlWxL9GyyTMFKp+p27qL4WVbfoKNjMNsAzIpYtOHwaevixyxTHmXoeP/KePbJPW/jXgENzTHFk1QCcw0Or++FjckEWxpOLWozl4o5Q0VOOQLzD3bsmeqlSeFg5UMyg7NDwX8l3LuweWb/tZYbeB0KdQJFV7BdF4tgbxBbJPv8ZIz3FCSCQBd+zw0EUcGbFtAc7WMHV3XvUUFRyGPtHoj8i/syKwGZ0HDkz6hUZXT++b4fJwHcIhQDYc7q6PEOwgJiz7tXLq+6GaSo3z0xjh28tWV+A8D3k+ZRSzQ9K7lXYnKVkwA9/agjjtM+eXySHPoHXPnSJLJhhg6l3CtE7diqEuUl9xOaMB9uD6OKbmVVhJI1PQvuiwWHi+TYUN3Fn1KK1DAOMe3UVm+W91OKwOPeaYBuEv+CdFUFkAufKvWZ20VGt5HB4B8rP78MZNn/sUqC0hBtoxpQxGNnbQxcorE3YvcK8lLJ1LVUzKTYJGw3+L7M9IlERhXPCbGhO4U9ctCFN/EBX4izjFFSquXTz1W40E6p6EyFYAPdE/EJcaunXz8nJFBUxJqQN3Sa/XShEf6ZETErdRIAU7x16qavWg8VXnB77VxBz4tRIEBCOV9q5CH6VbrkWokhSptSHG/op7wqXVn5kP5yuJcgz6czZzFyXPRPAZS7m2n5wZ1TM43X/UBoU0WOOk2C+E8faS6G0f05clX8oi57r/u8qhVUF7R+aXUl2938OqqhLjaswVv8N4bfZwucBg3Dsoynz5WGLENQmLHEomCCnDW/Pp3taBvFftrDnizmB5oUwNCK8YEYfuX1hasuO2DR/30Fc1yTxpqEk+ev3oR93vl72zM0rG/hoCnPJvSjk9MjBslWsAFeguiokhnBR+vGv4j4GGr2tbnr0QBInqr21WcS9jCqimzW4b0F8gQSXI+27qCNlzVa+6cnSTt06Id/Hk5qD0/t89BN3iHRV52fOfHNRPlddMYU2K6+C3NaacLhXOG3mU6pAkCoec7JxvcBug8Nzeiy6g7J8iysicUxoi1NzSIM7XM6rPsY+035bRwxbs+6jPgnNlu9lPQT+FS6QE8H/23//a1FCQETVCsFY1YZr6JclpyXgIVGmELnCQ++2GiT+AgVtSj8trkO1FWkZO0fWEYca5vy1MyOf9/oUmViZ3vL3Ch1sdk9EnZGO0jD0ODeXn2VMquc3ZIL44scAqCP2T3roJX0x0uWn7+kCPUvGgvLu1MHlgCGfFFUw8jsOBh9eRVL6o2taiKq2gzunhlrjpTSV/gTj6kPD9RHjbRfEwwmrP9uvwsurF2RkgwNVl2LlxJWFGUiVceBLMyZYCkMJnm6lrWktUaNKyAEg6TkV98bP6zpuBqZWt5BIS3E7SmS9/Cr8fXPBl+njrEcmklQUW6Zf6cIelQ1aYWMrp4sGLfvcq/+xDqg2/b/rtPIARl/lLtuBcZm8ijpIPDdGTxDsC25Raqhs+DOOcX3jCmmhhjZK0GjBdV8TAGOOILkYX3LUM8vRpKIlEu5p6Jzs4LBGYPRXHdahxnqHaKHTw1dQeuYZElzZshPUD36dYNezKmTgbyiLp3AB3s0aSkJwuRL55G+qi/C2zbVdN+8Cx63CSFfH5mXFg4JV69MAtqsQwdlSo+DOCCdVV25VWE4dtZGuMFesbnPRYxCriDkjipRJ8JW7AsJ6w5OLgoItjoW7ZHa1OUBO2r3IcbbJlbzbfesPzoTzO33MntzQZ8m5lY/D9W6bVLQpNW4hgh2CneLyFWILF0nhgttfyp4Mis/H7l9lMdvd1W5eV0y/R9XATyBYUgpxgKg+7U62n7rzTdM8rLGnW3BQFfCFoCvrDsZbOrgEFOAcm4kwNkS4FBY7OpZEBeoJL5zhXVa53yGjDMIdTKkUHsfdh6096IjyTzZPhAhWkT+nS1Rgnmo8u3b3nFAEaZ/n+eh906KpXYO1Iv78hCkIwqOVG8K9zo1iI/zizPyt+6hO4toTcv3GD7hzqFIypgcC1nxAQg2C59Q5amcWfruIfqe0Clp6BLNK1QkHUziidivFVEWxbCAt1htckkRz8ERe+vJZg1rQR3gyLometvmolgLB0/V2Adv9OgrnJ2kX7hkLlRC98uQuqQaU9AeWXJsAtyj3/ontFfPz6rmq2inZUiYZWup+Zy5CkitEbcQql/AapaWA7uIKCTgPd58MYs63nWSHQ5AYyS5N/htLJndOjvznebY1OPJAHESgqxFgkLBp4gDNKiGP8aHG/mdIOBlAiB85YUqHiJZjjovMXJkxAnL5IV97edKNDsVHSVNS1YmtD0ABdWC1H/eASRdYF/ayHSfIOxT5EToTZiKvjfBf+epsJLMlFPBvt94erS7ABdsvL+UdJgAD3RbL1BDd08M3WuG/7U+41Q/mURHkZXMrYf2j1Uh5noP7hRlB+R38V9SZi2w3fj9lOGmJs09bv8Bc7c26eTNV6m52GnCwWcdamvsnt6FMEUbj7qCNo4VgVOO20JQhL+kaxJW1b/efcZa2giitgxD6Lx54+souyCeLPpkWJMga6Q/wG3rvHOyHCItVkn8sqIuMpXWVuFpr1kKkNfpYL6Izreq7R4vkPZt9mcIgWzgL5HBdFCzefRl5/xoYTl3CzUEJzDsQS6AWR73HhJtbVJyiAleqekWNjRQ/J4tNQ2zowe91wWjin58z2ch9+fLUGh0WLyc86bkQrfdis28zzlJP3Mza//6OymYj6gfUVwjj57cYHqUf+lUGKFfyb0TtEOSl6y8963CDSAGpY3zcGTBcXhSXm3kCa7Lw9IIAYVPRJ6fDI9Zv1SBOCjfa0eNW33C6QDIS8jdsdBjvYSq4wP6j8lMpzApxhTpZoDCzM4j74rjsBsNIUS4O5nlKi8t038gkm6xV84Mdqi81m6SAuSQ+7LlatLmqZb7TXTnEhv/MkIVP7kOhk8HGQ1YWJBYwH4Cjj9LtAzRmEZBoYD4rJ1BaRnXEBiTVlUV2sBQyiNMpQMgCN2aIOcRoa+DGCsWNeYc+I1K/Oh73XzIv1C9L0YSHwVwcH5cQrWSKFV3bJbahpQZFutKCj9NvmNP9Pa31r7pNjrqajWYJd/SjORme0Ha8gM6Srmu0aQC4LbSXQlNBOBRJcC3TIngmJGfX6WzlGmig+jl3vtB0PrGyQ6FfGIL+RSk+ot9aUW6Q1lJf4nSfgWo9ZQK2BtMlqQPXQmObHG6jBxTF2jNLWCibkkdDNUz0HECNYCYU3+xJmGM7xTYm4wBPTMrLUbfphbv0k7Zu0S/LJwCuZSUhsWD4sBJe2dzu0EcKbG3/PwXY9FIKOSCVCkPdhSZl2vLPbwl/e+uxL2fR+X2kwvEp71ocjX2Qbdb04lr7iQabcajmyH4DdLNIwrA4Fy67l426SUk83dL9X5Nom/lGz+BOvddjUdOXGB
Variant 1
DifficultyLevel
608
Question
150=1000−6x
What is the value of x?
Worked Solution
Strategy 1
By trial and error using given options:
|
|
150 |
= 1000 − 65100 |
|
= 1000 − 850 |
|
= 150 ✓ |
∴x = 5100
Strategy 2 (advanced)
|
|
150 |
= 1000 − 6x |
6x |
= 1000 − 150 |
x |
= 6 × 850 |
|
= 5100 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $150 = 1000 - \dfrac{\large x}{6}$
What is the value of $\large x$? |
workedSolution | Strategy 1
By trial and error using given options:
>| | |
| -------------: | ---------- |
| 150 | = 1000 $-$ $\dfrac{5100}{6}$ |
| | = 1000 $-$ 850 |
| | = 150 $\checkmark$ |
$\therefore \large x$ = {{{correctAnswer}}}
Strategy 2 (advanced)
>| | |
| -------------: | ---------- |
| 150 | = 1000 $-$ $\dfrac{\large x}{6}$ |
| $\dfrac{\large x}{6}$ | \= 1000 $-$ 150 |
| $\large x$ | \= 6 $\times$ 850 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18lbBm0SALWISW3zYlE2ExCBORdP3covI8ghe3wC0N4eX87zUH/7+J3X9KNQNPCtOZiCKHhSlk1voaNtAZjoqbKJV1urW3sT43uR3Y1+Va+rNbIpvYNb+hfD5VFNszwQNBD6pUDBWzJlHG34Tn4hA3NFUP7MSacsg+2VKmr0LLdvDcrEGMA4xFTGYcFazFF0i5CizBxoXKQc5SsoJ/8yhN1dglA2VIveu/JjpEPLM1TNMGc+jEGaDH8mya5zZscD2Pz8u6NHgWWRIW8yaW4D7QhdbHE09Dvo8wLp2iL4CG+HLAH3jqusY7Js+zJoINj5h2WRvPAOsZg988mJDLiR398UxbPaaMW039efWQaLIH830HpXIRcyABH5n45a9jLxW6qJZnBrcffM+iqWZJ1zQJSq6mcZIzizFyK99TUMgWGHqwRDZdDNOlwvA/o7bfApVKVaaPJdLdBqTnnPBKtLzi4HM2/7kHKTttWFabfYkwyCxes34BmICE88HKqvUQJiM/Sfl4FKt02S+g+QuIxMhA9pnKbwEqNH9dqJgVOx27LwvQdEaWhPszY5/1BLCyXmrPg25PXmO3/ukBCm57OCQophoeJlLbD6tWHPkxj2KFjH84V4BUq7y9vFWs4Tsd88TCOqnn5WhWxBJX+sfIKboHjvPMPcazY1lvP5FWOtlpATE1LRH76Kx2zTCsTnGQf+7p4cgdKf2NUI7pw31m2GSu4iPeGEBQhDtDJjt4YoataLF4Jlz14BNT2WYqxVqAmZYxnC//YCwE+Z5w4aVwdPFz/kfod5CRLAG0HfxFia+zTawQjefOT/D7mlMF8E5YyVtoljzt9vCkHn3bUXr24O4dx8IicEvFsx3y31FCRKn5LyRVaDDaugrERmXBwyM+884leVPhrkC0g4U4PmMraxCiUchbGQBHZL++C885gdWqI87hZudT7u+f2tqJQgEAZ69pnnZkz7eNyCqtI6ZnAF/h9TzfnWS0dDVh4b9Z2rlyXoK210A2zwF3ldUBuIpl0layV5fWb3lVp7YiDmxqUHkTpUKfM4SsmwPqAfQIuUmuuDiqqlnhHUUFj0Rz/KqVppub1dent1YTraBaEI4nFjiI8AMb1W/HXgd7Qv9TIW1nzcCUwWrGChhu4H1Oa135NtIKIIXGT5hQm0EVNkPRTflXBIuQ0QE1tLATsHcMFfZyleH0K5NropV3OzUr4vORcLwUPWBSxKOil54xB8LCrYRZomJ9ouUeo+03KFmtBTboA4pUXjyj5itfVnd3Pv7h6A8v6blNXk0/15oSNnTWIVujS11Eos/webkEoMBC+N8xwiQpJY62vxa107R6XDTXAbAC5PTeozaubVKbnRiN434lYS2rNpjVu2sa33mcTxenyBPx6jpKg0sVRZf6plT9LjG4aZG1yS8ihQgVWegVANsxseVKbpO3v7dK1vgjbayEGA9LVoJvSx6J2hue9Ab+x2lLRNqGctEZVyEUGXRsNnsDWSW+xtDIZCHiFwuXIVWZ7gME8LwmBOobH0UWVK8qGH104LXlviXIMjL60uyw85rKK2qGO90du8q/S02pPs9Ajb/9oJx0dpFl8+HFmE7h5qIeZb/oQ207ve3WmiC761OaAQExAF6dK8IKy6aC7SNNUjmVREHSfgUWzUzMUrjIO3kOZxAOLLNMJEqHgBP9umfCBVaJd4lDzj2TV4pMtKBzLcpND370kLGlr/ldfG9L03gC2hANEVTR5qQOt9usdK8uOI0D5Lu6yKx6iPe1uuWuS9TQWSlZP6eXEymF1ySMILheib+WCXK8mpCLxePcoVpbqMZs0CSUJUWYzGyaBe9IWA3JVoiJOpPeKx3/D7jYuZ0udOLzwCn9kaYyiYN18Gvf9sAwla9zQ/pvEaHR/dHRiyJXowfGaQ6K5NZqUK+jE2UZjKXfmQeEVvQXhapffkMBlIp6iQ2x/ab0/Y7ty2iLYHsMmEZQedqxE9UZat0sV1nmWkYPwR8lksiamVb/ataLTxf1pkRUBoe/6Nzxsg+4wSE0LjOtsxUvZPmcUdrHz88lUSMXdmoNh+p7S5lYi6jaTkNQ03M8AnU3vJ2VkXAv8nVPJIO7p6m/CKAk+tuuMrkPNjSfY2X28k3vDuah30Yu9jC9VKRQqBPKMlWMd9TXihwDYTEwXVrhqqh0rTxFvocdxSP8JuYJckFkbHejoDOVI2eWPGJAyuREC8dfVt1UFr+z28EU++KSR79NNtT4heabO/XVR5HKyqbyHByo+Er3Ef/kDrNPz4E8Goqd9cAKkMNiR3PbKxePOUA8TjnDPYKgibxaJzCf8Oy60slafUGJshOQ9rLa/G4aLl3Q2DqahEXyC5Hs0ZFW6ifooeSST1DB/AB3HC2KdUU5Mpc5yOZiE0p/smP3SIAj74s0ogAhowyXLZlxgRD2fq841N8hf1AGs6UoPE6ZBHs3Y+56mJLKePS6DrltAUYtVLaAiyoWtY9INeHOpmYigFM2BHbN0DYDSEAvWttUsxpfaMFMWuwkHXiIE2hI9dxKDT3Opkm2sYRVJgngVorCteKG6j+ZhEGT8LXZ99WNcrM1rU8W92dt5UQA7m8pwAy/WF8aOoKUsdp+mxb3kMOhXU7F0T84hYhlNJBhSLFhuO1XgdYIjWdIGXrLEngt2WeedX0A6ntJlvEF7aAdegFdggOwzdedlW5fxtGZ9+dHA2ETHID2UTs4ydcOFthrGi0aLuzYUQUuq7SMOiNu2lvqcsYoMWS+pgIORAI5a8w5zznp03Qq/N7zMCfWv3PjqU4KZ1ItILXHqxS7hd1u7t9IqKRgzjm1xcMkFfVihXrhfLMsRwvwMeILd8IX9StGNzOadn5wS6qqryRYdkTsKEofdG7IE83rvXTDjmIlX1rlAO0gTcY6ySF9wsFiVyn5FHgJp7qKzdmqc+2c1ApGlLWckwbh/jjOdCTeciFmLP8rqMRqkKJZoOneYtwAUpz2IRwpGuaYQyNYjFAHnpz/COwvL5LIH7XqLZWEgJMtSA3wi1GlUBw9t0U+QVEsuGNXX7n0bqqsc3UJjS2haCrP6H9QaMWnzy9aH3hnPsxcSfdiJYKcP6PXvozhX6V5d6NhFDESnakvg/k0zuhEAPewMx9eMY0KxhM/M4WwF5O+t3bikKjI8YQ0Lv1j/x7rUDIwA8LbVNRJDIBvpyZ9MI9m5QtPIRr9xccBp8gMQHgwDzucnTmGANTB85YTOeIw0HM+XplBMH3RUlJDugVkB6KCqXDWLaqxxS8lg7sqRsYEU0s+Si0mcKDjoj/QCc2u9h9uVFqQgIbfdK68iCZ0uGj6r69EkBIx9/SqjbP1k+pT08p/KY4335Z+Yf06R4SGNk0QicEwBqou0CAwqnZj3hxXpPzEadXHpcBdmoXixJ8XkBlrV3Yu+MLkGadb5bgW0hLP29NPvsxGpDg8E3HjQAHCsrEaK4Bz3xxEa1mwCRFJY2JNHxoT4TgwdVcWfPML9u/UQO2d3u/8CpMYeT14xwxKe65/lPoqbNFKtOvfIVNoGi3XC69UCGeFb3E1StHztSXPV1jDs8WvJgiq9Dr6djzyAyh8bykNDjkqoaLV2KIz89Un8b45+cLaqWHykitXqhRPleG+c5I8ExENFhVaMQWNdpGxh6GphEpD1EsIw4/fBaRaKtlNPgy5HR+sOsTumNqSEjKi/6VxNWxZquT1XWLbZJUNhZ3Uv5IKigBLJxiKwKSBrlvIXDFOJkPlZ0DDtSzCts/iuokhvxNj/8WXXHbLplAGlyJUWDtIA1pVM8oX98xUbrLj+R3zLcvy2Ny7kqgDkSf/8p+Fs/NnGbEWrUo9SaKdoEW0XqwpmFfOIdYkplsP+kNj5IGYn31WwSBQiaL+WJmvG+zZ9NwnGfstjuYfg0tsMjkUNSUBqCwgr75qVMyhAJAiDBSky53t91qLo8xOLd9EdkICND5YbJSgUYCz1SwdYsZLTo2xd5Mja0gFqyYFDAR5NX9JCEyKg9QgumaYRRxBZXgE+Q7W2b6aN3Sz0XS22igcSCOoZwbud5GJojVPMmxsRguXrp/Ox/+pU0Hq4xI7eczSPVIvbfs1Y88H0zniiYnQ9Ht+MMHvg8rAT2eAcLnyYfFLNMQuw2tlu5auPq1tnaeIhLWsoZVefd2RGqgAZOgThaQKb0Vlm1asuvrjcDaHMavs2eUK0cg7VEiXFaaOL9gVl3y7PxWDv1P5KW38ZVegCPzX0JPuecutkwxQJxbKxizjdLnpejD4N9NxBEwXvED38irigcRxQ6NitpiN+MwBMdrFX6kHie+dRij5vqFkysQKHD2cgwSYE527GcInAekMJB1YwomqlxtYK9bAwIP9jyY/9+XUzDHjC0zsjml78aUYivvK6MW0bYq5QtC/NIpedLtJm9TdtX4hdGkshUcXs2mgWN2wVlEAsrpTRpWyb1wsZc01WGMaE8nlMh738tAHUExCl/9lPNMTXP423pcQ2d3epGR27I4O9QQ3tDUxrXgYzHGkUPWCCcsbLiOf67fkqYJZCiTj/0tQ6DbuNUZq7JF0wfRo9Sm14DXMBLyi1mO0cmTlBJiIAJ94ToWgjVuqhQw756902hBjwNE//O0eKP792752ayo29rkhdPZgtM7cyryrdSoRdXvv+AZXJkrJBFa/vOMHHXh9AtCIBZv7xXh2/1oMfP/oDd0PzvQkLA46GDGAWEucdAt8Hy5CCz9Vdy0FTM+2/e6iduVjUlVsjUf2mPDLLqlxlIRll5YdfbMHn0DzCOoEXS8IKUJaw8PKQNW5C9TU5hJBoHnrMBM7DnIOWwTDwsfqy1mNOLU5ILOgWYJP0zFxlKz22ukPzZUAo/fPmqroA4tVtcbjNTAZoqldXqvwqaqFOtvC/ZVBanzXgUIdH2DsKmMVI0Wb+wRLdzwhigiY/5WY3zoRMMc+hxmMDs3NISRUy5orKYA/h5kdNMUPVs4S3Jhbnh2L6kcVH15okfPsn1nDGpLks5+5qTJlJG2ZdTB+lTXkbHUCNxX4IX+By32FV8JgyeE1xxTHih8PpH6zZAPKq09X7RZoXhg0ZB3eYNyc0z4qwe6ulMDqHeRWqLrGVYQ55570ExU1vijdUDo5VLElpBKOWWxQfAWfC3FcEPuRql7ajzWuFMY6qCsCZ592b5XMkJvaMT8CXwOryCTs/i0spl874/8cRI+JnIQ1JjLs+OspcW2i2b995z34fTq2z/CKf/oilT2Bcvld70Xr1PWnCGERmaKoXn97YaYwywIO+e/0xkAvST+5UKb7KqpNJD9smD4YlYv/uMNTQE43EsON2Ks6Felto+BrFXCttM4VpDqqKYve/Uo6/AlS/Vt2dXoN6x/K4INduvQRgq7Sw2e9Y+DVIbdWqFLlKgU3ZRoLtyYwL9BZMi2ANBbicVvRKqLR0p9FDKab00Xkq33UQcCTWaaDX65O1e7KoDI2SvS4vdp/QKWdfyIa2qGKrFHvZm5/Xc6M0ZgwU5UjmfQpbRmuu11yaf/W6x3dfDkw0CTD/BSMRb2Eesk2E2M3UtpeaAedT2Arb2So+WkQ2jrV/iD50l4OjFDppZW4sFDkbN7Si2Ayvnx6MIg/tQhT10tGv8gjpCYSTep0f370HwfHq5TkS4dIsUUcasKyXuSMp/zj808t6IS96v615e/BAaGUaKFgfFFrFAw5MKZwXQrIupFjGNyF4+/69yvNhxfSD9Qk2mqfWzDd46eCZgIRVV3RPsQ/YpiyXZM/uimVjYtQMFbgc9VUmXVKEXZUm1X+4YTWnQROXafJaSsk5DKw7og2XgOpFGJNv9AK9cRjH1QWA7YhlfUHU1k93kegZxSM3uA8UfBrBO/3cG4D/srNgm96S2P6+hQgfxFpzBg8wj05RJbvSEbMbqX/G6uQ/dEsrRDPF2EVnIT7H/0+IuiQBdeXm9OmYxZinakt2f/1UyN4hz3Hun9EF9DymKc/tx9Zxv36aw+vLpqln8GAqXLUrAVK9fhHzxkepdy9dzEABr4mlB3b7GZnFsWl+UEWEnslgsTzyAz6FYhRZU7OTeBvGvHraqRRw7xCFffrA9rIh5ZrJ+TDskMiqeb2fPeLjlIcxwDVjUqx15z+EC5kcXIPlA0iFAdEF8jbFzBKeF0mBL5xwzvTCkI2jLaJLgSWRh2UIgZx3c2O/pciDCzcFfTxjEebbMyyhgyvFhU3TgGS/rSkxzwIF0KntUSzX5g5TjYOhMk8D4Nku1i9EtY6FkA3OUNBVe8xtCUKJnsBA3RdF9YIq8s7WMFSlEm1jwu2WVfXrY2r4/6qiqv/+ZgMm14dhuURupgxd8aMEE57AHLjGeBdvKdpB3zBp/xT2O1l3ttuNVdTrrBBQazCORv9xSVcBpoYv6YKGrdGS8AbyYRD4VdmifcSEZMulZzUAgRg+1Hwgdc6+AE8FqR10tKfen8nKY3ZHWc8ShEYvyNO98KN4pyi94qeRmedMcKpyAGyvSmW79NnFpirQdaxTQVpxTF63IpcC6a318v/B2pTmCXNZfI02ovRvyQDvWbPguQ2LKTMXTUCs2KC0XMLbbcUJXG97R2sBelpXOH4d3ETBjo0AHJ5jaS15QeDvUkR2j5vbrGpWaZxEw8AEYB+EV+umAurhcm1vjKtQLEa6FJPu1iIXB1BuDwoEGeASIfJS9tbw7K8BrkI3/rD+F+eV8YSh7+pn1g5J4J6Wz8jZ1kGKVzDF5AxaUfXMxhW3GNbkQ7krwI5Qi8sxq61SKR780eS14b18ID7ENF5vQZxU21W81dc0JAzQnVGfMyHowtqrvtnM+qmpZoedi/llkGDPtVE3HVAV4TlvF9q0gExeKRt6LAJJX3wGOvtFKAPkqm5b8Mt5fkFrH3pjvIC7dncCFNix5dxslj8ZPtIJSD7HKO7dQ4i8HdrJeY8/lQqsMdXCzW/JpFcnz2QCPDrMpMkuHI7gId8qTBomKPDHC1hPijFQIVGgZ7Axwk84DUZ4KDZLc6eDxsrVWkKriNpwEUOnv3R/ZYu9Mqib7jHo8oD07JbwMh3D7OVsy9Voe/sXU5X1fdMdz3W5h24fgcO9FeKGeHsbR0fgqW060z7ybJEYsJ6swzFVaqWAywyLU+KmzwtO5B4MmS4ohVGPjguOdP/cs3yHMy50C2NkyGpTUdjI2/3i+Y21cCVJiLVZ2o/OKaXpExy4jW1AWpejvFhe7kRqXxNi7zmJcYIP+vqnHRFrST1piRwIaBhmurdjqdIiIWZnjBm+dHi5DQUxvwOCRoGUDXf7yH19YCEJMGvhuOktq9o////opuVRsk8Wi9D9fB9QQNPo4FRntD1w8lyDS1+gJDngKser9s9WDRtoCX5vOykKMvvK27NUuMDkH+S1VTlinxF+4cxlfTBBspVD9scgo4QPK7xV9mptnppfzhFvQZUqEJwQdA2hw1m8gkqoscGrodQQ0WXJLTiZOKZMB78HEEe9+7CH7gZ+jEEcn2aAsklod8V00QBOb/Q+YiwLtoIj3zOmJ0BDV6YEswLwFOCv6VAxsZc0oMk888w6MoVwYkBB6788RTssSeiTENtIk6nqlPsx2wYiAglWs+s5+UW4H6cZ4dxce3gt9dFQ+9aoJfFJDbmJkgqgw5rr64kbm+E1DjLLDMeTZOnCaUku7/xkyZ+GUJ73armPv+3AGlgDhmino41k16Ht/idbO0ZA6W7V2kNsGmBqx4QztfesIKh/C/oeMq5+Ib63IqSp38KiLui7zlswzsQNkLmZg78ZYOYO7ilQKuy4YOUCYBCHJnmrT+7K9rsm7q+Bc0MQvCzVRx6vaJs1v1iEMgCMD4ypql+sldVZaVRnnVQvWjkp6PM8FXzyGWBzrtV/BUhrTIGVxP1vRajpOBjlys7yP0aaNQS1W56ypc7D45wJhBszdg7c+upk4/PWzVLAkyGHbtRpdOimjUAZ8DRCbUeNg5sm6iNHj8l/COHxAh04WubufKYflZwl0W7ubMYE0ZI5aDieDVyiNqBXEGOSjpQg5mgIiB4XaerYp3XjNqvu4QWhSIdwEXmxYR75HqvkhnxEe7Wk0oXqNsGjOkzaT5t10M/ZwOK4oHzYCg3uLXTU5cU2AVD0P2aSddwM45fkw6TKBy2LHRvMaZbPVvf9/zpGarrX4onur9OaM7IepLTrEKQvY466A2xsd9y+QdlUnK1jIq/8jZNBg5dw6dlE/xp+gpJPrl2WF15YIXeSe3A1xgA4ZAUl20bvHAZAN+rvaPz89CmGjW1YHZL5nKQAXf9evrs6Fu5gJq+/caGZdvmmONrKziW6f+5cFEEualxKOsoF7AYJzShbVv8h7HXoo3ipPY+b/DKmOg9tLoE+kf03iVt3+UcggxIFkJqOb7PxyqhCiycb3AFjHKbc9FWqEsmeHcHn0gJTCpnEz3O1rD567JQhGW5a5OkrmWDVz1EySoIf6O9pqOrWcnibtjyaHDfvi/MTzwRRCdIuokV8sHsa2Pf8vZ1ekdSTRbzVo0X1K5B6dAdhAtKz/MXKlJXeZhYXO2csYtNQUe7jh3dM7qsd/7TrMzAQuTFQ5couvCHeBtlDKXC7A5Izea0DHlcIaHDsSHE65gtv1Ft1tZv9IldwlyuF9vzgpJuOdLjgXoS78Bu3iK8hLG4sy68OJakBe0x5+j3z+WrFWeauI+n40xl5Gu52sSBtFGqLAnY3SnxXXZ15LZfw1p+Epmg2blb9cVmwsOWZcBcKuP2RJlfYguBu+IJw7zcjJTyJjNRrmE+Jj1uYBx9vopa4NKZLMSxNFdMERsoOOsOA8xXJA2rUCCT/FChJXIAbBFqthnz8kn1Em2TkQkJRH+tGtAyUz95iJKvSM96fGS5aL2YF5V2etifBkHWhCr0KjSDQDfg4KQgiLmSf3cp9fikPJH34KhDHrPKzc5wnBEe9/vY7a2Bb/mng4IOG3NhpO8KI8g7+IQIHpy7rSs55OtBTGLSKCXwwdWHjnGk3vctSglW6rO7ERwbyYqyh8dX2hLNNaqdieVLEYLy17H70couqAfAyQc+TEsb7fxcrSgOc14mIe3IV6/g99FDYycm6q+cYiaVHoEb93VmjGqbMVEd+kC5Ag8V9MGd4Pus6gHUJU1FolrzL8xUiTDpo/H490AyhpnKbOFvTEdDz3PKq6L+ioVVIo6qLk2jUY0gQMLIP+ivLvltmtzj3BZIiVgk2Anh6+yGtzEliJCfmYrhgq7tUMA6JZ47SP5TEIo2mNg0EV5bU2Od85DLxUJGSxlxjJWdcAk6nnksCUbZwTcAT7kUGUfevz+WYMK233p79Bn2cBdupMbuR0Bu0VEV0cDgH6Q4blEXIymHDc38kBdTFSOYrTmA3Ts2un2dq5i42c5F3HNoqpzaQprNTMP7SKBtJ14RUNjP7ptnNQMaPA6qYBbNG1rPfqYF324nKvnlwFxpDU0C34zCZmO29nn4ADdrskEZF4qqj+Fzz6eIk/LGt4FJvGW1cGBPjZcpqvDjnnPdH8urPZjmoUfWSw94I/vQa3uRxWxgJBihFmArO3tiwZEec5NzwQ73oev1vn22xKxUXQIX/pKydl7vDEkk3tQhlDpn8JLc94sH7q3dpHfEaOmqlANZIVzm70TdDnX8pWUsXAFR7Z9wuI4hidCWOI9Au/Geo+yphpaKjRGnIjj+yRUwIdTDkMN2tluiyTCNgyRuMXYeU/DQvXp/3D44wshapiVzZdF1OFUQ3NL71zDlp2Q54dF4fFRh1Wjbek1OqmjqZjKN6ZF0TB8hcxbYxGtVGfcvASmo2Kax2b+nwP4z2XGueULOn5c8j5qlvsXSHMYsB4hL+uIxKYMso+nmYCZdlz1NTYYwGsynLmPkaCSY7Cp0PDiXJT8O/TVfs+ubtGwy5ShM32kUlWefDXfHk9PLDtFM9cbqMOCKOuFgCuH3JHbQT6EGEE8arGdRGS9mrWPlOG0cR1Ux3d8FVBhO3Dpr+Lot7yU2M6wyeWIhtpp7Dzy8w5OMXe6lW7KSJlihob7HWvEcARvlCt1vMogh4VbBCjEWPjOlI8ZHP0IyzbicMNGg0EEymGULvZghH5U+R2sYOorcyeO35majouPzb96dz+dP3JKEulrWU7vTd+hGbsC7Nh70Yz2XdI31z9vaPwVEo0Gq/cPsnVOiC/h4Jv7jRMAOlnk6D87wPqBM8Uiwb4VBhtSk7LjrAZyQEFc7AGAILmMxA1pZRcuu4nlkLRtd/vAGNsjlKTqhb3NJYHkafezPY390XQrzf1NKgeb+b1CwTjYpWBrcy+SKKiJy3pu+kI9aujb4l9S0hTxSZtOTGpDoZNqB+mAJocuWai2fZZVJPNKvJ06o5n31nhLBGhjMN5NTJq/LFV/33w6IVuO4CcvBFKuwH5zYLCRZinJ28hGQAHTJ+hd1MlgykLRGc9i0nqjysZLbuaHrTHB0liJ4yQmW0/75RQ34WedG7dDU8BjJ71UcCN+yOMnAWApvh55mbjHXiYeqHwgBQJOG6U9+m4klg0dtYmqg5Yxqb+e2YNqKetY8DEZ+ThcdMXmP2s92gfURgdEcJkgY/9ioQLY/03HIQ9IFe+24yomHxC3pQQe5dKJuj+y0zUvKzEws+YMYDFuEEyd5VhCZLMBWrm4JrpKVUj/imcYKr9o2jpLzCPo4VfXwuKTYjDmDUGef9OWL0jyy3wpCg6qgIOweX+qidxk6QIaJCZO5tbhms6noS7dwbPYmC+5UEEHzavDdYFqaqwa7V8xAATg3owubtejuRLdQy5saCZlbxoZKQ1hCGtpwvPmJSjQyEpIUW1x2KR0cKPggYM8fd/+VT927AUcB5b+VNvvTkrlQF3d4mscXDebYDJpw+HqPWnP0aRlcdDqHZZLw7TqU8uNYIU4F6DOviHwin9Ksz1w0fPnSUPZ4biij2uPNcA9WvzYtgfDILy4P1eHbI6OeIBEBErwq5rpr00iIdWaRCckNjZ6sEm5MXYS5pObYrbr7boQi0Mbg/mse1xqo0HeBDJm/Fbo9wOvpC0pSzLYZdABQ9BOL62UGWWrSEoT5PH10qIWZ+XWiUpClWbFjWqd/grCzo8xd2MSaOp29LhYGuFF0SobCgGznboQPIl5zPXblY/HFTV4lS2+7BlDnKpd6UW7NBRP3sPYstOB9uatyBSbZbkMRIyRu+2tcqWR3DP47QqoMEroZNHkQW8/c4WOj7iMCGC5kf2KkPfP+lQoButmqDU985PBu2Tijza5y2ZvqEJKoGX3EjoqzJoENoC5w64QZ7h7pNcuYjckmLU/5a03Owd6GIcDkJP6XkJAdRZByHKgJQ1KKGk7G5lrHt4zFnJqiZ0XonmuLqAgNT8TZAUazJb+0diauIzFKogyJddmP82hhB+6X6mtMyuHUEnZsXbQjb+W8ztUWkkPSfYANHOUpQzMMgh5mYUYtK84pSpgG+04ZK4SN55KtgAx5LYyHJrlyWdW82wev599zlMRYfQKtj5gJTvD7o6hlcBprJgXC4pji5KUUCZ+mjxaARNod1oElHNwxKMeI2EMFSsh2ZrUIY79H/JB5JKKMW2IK/Sc1KxWSHZzWqzKM8wMZL9MMePeG44gNsvd9PhgKMHwnWdvcv3WZcMfFVnv+QoQZR6nq1yH/YEWRFOwvLYOD9lID5crYZ+pXDwnBeVN9sjjGGv2Vhc7ybRVcDcrBne/HKnLZmHdx80bup9Ga80+bTkfvGP4PiiYEjyFkPY30SHB6aeMahwf3XFL4C1askFzHr7lGGLZ1BtgJxknBRKlm9iAHTlsQXzF6xR8riBitGvWpIeI6em18n+tS6fQQvd4wN6bMDay8x9L9QMEiaSr0CBbh7pqbRvfbKGOy+DkI18LWhoAbm64OjTWxSFrAqkI85Tmdr7RfAZgmYY0mOUgKg402sp5PBAuoeP36xvaZtH2P7KU+ndxDLsCEoQPVW4ENRs5rTxjpgLZqKvQut8HXpFSK4ChN6F4eWcf4L56dH9tMcFQ8/59upNBFDlLw32BQC/Umk3EQcjEu+aOpoGQaGD+3BYI/3AVduWzlsjIvKOUL4BpPheVwQ5XH+V1/wi4XbwDX2v6Qd1CryLpmxxgWJ4gSK4xn6Mj/xvoZMdhoO585IqTGVYt6vlI63pd8iXgNrVdkX8a1SmCuLkOYJOZpXpP18Z882mVepoO/lA7ysKe+nx2xHLReQmkZXwt1fVzzC97VlstzoVCQ6qMeL6iwoa6c0eqEbA+rsqAE1Fuhj1CW5Ic13L6bgHHceuVM2Ova3n6BERcGCqZBNM5smqUqpWWXNySLomc8LJj1WAyz/uwl4wURHgQkcEROvXfCuCnX7V+PKQtNUxp87eEc55zgJk9p7+utlPL/6ykTdcCdkDfdmlQJL0Q3MtE5iDIwiQR7sXq5AU8IKng6fvWotUOZUF0XOJZgrU/grIVxZHVWwo+GvVlRQXmr3KRrNGtq8b0U3MzhZpV/DgFsq2jmxcp8orIVSviE9SFBGXtCx/jSKM1e5oA3g1THG4Az1vK8QweVwuFtOp2z9UeHmph9xvun6Xhfe/xiW5NPsOztEZ0sEVGFod6DP1o/NAjyMZJTD4qEWCPSigMxBQResNA1B0pbpFYBylpUzGb7WMZwNqe0yiFbEvr/eyQAvVnBhYjL8VKVTUl46QTEHNv+zHWtrBFF9mIq/oqwf8xUb2obJm3V1Pgky5TbUw75/dVCPeFeOeP+5chvsYY66gdq4v0atRhUxSUe+gDlhHOGc7Z24TH5vAJScbJjTauoumou6FNZLhk9rWCHa3PX4WZBVWafcir4tug/cr4LpvTE9SY0J/IpT8zJA90Uy/8qJaTb+afTZmqWDRoy4GETvqtdSt6wgMlQwuWSPWVuiYrSoMZOtmrNggB3qb1gEfuF++1aGW8HvYKhOG3VJgScvp6X5rTsQ29DDOPtmgO0sGy+vFrC5A4rlUuSlqHtXZhHEsENgB1cH+99COVU6cxgX5W7ULXrCz+ie+N+EzAIb5qYf3xXYZTXNSy6QcR6iHkZhnSnM+nV9OcD71iWuyOHMvBwfknHXVI44VcDrZw/ACHRIOd+cuA1yQ3ylea4/+rzCMnPY8n02y7VpgfKR9ddXCfFvkPm6++YWmXQ9VCQD73m3OQxDNPjqAu9lXblO5UwnYX0rhlrWtuPZvLWK6bemQrvIsd12Luu9/6bu7ibCUhfbEYfadEfgJxu6efSkKKqzZQ7X6LhH9fXa85rEPTXTv+4upUCD9sIYSLjZJY+HLaXYECrXwRKdG0yEInLftR/3k5dou0zkrTSpyNr0Tgv+6CjWgmVNAuDlvB0z+2cX3omno50nHkMcOGdM0g4ZXEgpUNjDYDX1NQ9S7Jxr02nIAIHwMAyIu+dtJ3tFyE6nA3aHMRbriYPxniih3Y7OjKwI0HfH+qGuoc1iJS9l2q0jw/0kOwvoDYRoFfKU0IxgRjbhNpmVFTFmTdZEDxY6YWxX28PwuwGfUOmNcAOAo13HZAFYPwd2fCxQioqFDJ8SUU/vSDeSRnw5CMrhphTaQ4sVMVw4OsXv9YEUjYY6Hyq43/PQk+pGcg+iUwiepYSXLNzp4zNQ5c00QZM3RIJssTQMqz/fTWBlhAwN7/ZFgyCgDFzZZgZBfnNYRSewJVP3tbATCkJ3l5efj+15ZkQz4qDl3xhyPFuKsL8rl3yf3TUqGHjs0dqqRRZsDb42CPntsrIq6thCfaU77CYilW4Am4mcl1+PTYKocrzcr5su+C7gQhKgHwc7WLNYSDOldMjrWZ2Fh3wZtWLgmFI6j/aF0VBM1PvtoW0/gnJ2uXm5nZ8Uu3OzEGwo0cpYESBRvfgpmSj7R81zYirG0PK8W+TLm98V1/9v9F27ZRqHtSAf0CqPoZwiSb9Q6useiRG7Y3eNePWHBXTsVuQFkBUG/y3NFoZWb0Yib5iTaEZxU9OY4mL/FAKUPPdIEHxNUhkEFQ0uftJG+sUMaklsG5qF/qI2NWxn3EKWatkNBW3l+0J8nmbmYnzqjfCZr2F8j2H01hp5ghhsPisnF2Inpc0CYmACu6IfjmNLRMVRSkySn+FpnbKLPod2G5OrUFMHI5fe7GIrjlIhK8LVEmNHXmOYt0g65eEJKJH+2R3/i7Mm3Ee5/Ww0Og43m8Zb5kNKZ+4g1dC/hQulXhkoGbbGrMBKvIRVqjWM0lNOD31lvqC584Xhtk477d/6aFmgVsGprBkxx2ZmxdDmqdgZ4C16FIDfn6VyQarO+oN3EUG23CvvA0EkRHzl8jMY8ym9EA7Vps0BC3TGj5acni8TKbnwHOjHvmpcoumXndJCRrFMuuD3R7WkT6oMbcb8xRkEXNklTmJhNYi3y6ftmR9ADVwYE02HrYayEzeI/2s6h8eutaiinwUdFxRWNfc8wiIoA03enBMZbyejUYyOLNasNgPQ0iI39DNoO0WiQJe5yHEUO+X6q3PjbeeSEvIoTNS2n16XaUg+3iG5cGJEYQK/xuGn3hRh2dWyWNZGO7N84a9M6s68036M8dDni3rdCHdFOPoxTgJAxTy/252y98reJZSMhscHE1lzbtb+gb2QsZEJWdEFcO7erYRkjBi16tUQSJDGk3cjgAJL0GzS5JfRKkMByxMhPexd3hQ9SSij6SgdRouSwk1Cei55cjDeuXKrOKxCrYxUnoA/shB2KwddO1W1P21fZCccVX29BmAC/rpffvsVZBAJG9olpLntfH5mWNz/Nu7uO/UZip55FYkFucsC+wfmXwfRWYF0ofyCLbs2195XwxAxvnKuiWlsV5SNFf7nXfgtOD1FS19PHYg04tWGqMzcC8O5+IFwWsGcWvX/EkP55pEc61Y6++eoaF2HffxSqx7hJqUdT872Jnlq53uYwh1gI73ycYit5RIb5Cki4zVUHlFiGR8OobH2EWjWOaU4j+EGDF0paMibI2Pwr0AQMQKxHilWZ0BnObTX+CjWmciCeQLtFYisbJkKfagxBy5plpyLlmd/xXCd2iVoaJcjBo5SWXvf9L8E8Z4JWL6ltPMdDwsps6z1GXN7FQ6wMDRngkHQftVo8GG/eEq7xsnPmHS33jVoBkZWuknzPLT1atAzPkYfqfPAY3COB8IcG9uZKEU7GFQgGpNIBSbICJoqZ4+e0rGHcYyZCKywdXnhEDHHDQMrLigGRx2jr9aKekZZFl6+UOB5lf0+Rnm/iAtE7dEtz0RXXhxhBvZEn+Mem3Qc0PqElJk1w6tEoqs2Ub4Ou05sqckKO+dD66PGLhukKFpOc6d3jc2cY7RlEhVQD6EnCyfI1VWbkMm+fPYZ7wwJD/K+PjLtoLAA5eqWFON+9XLxFHi4yVP59Omb8t6RY4muHU7TP7okXQ8okp8xTTyerRWrWD2V+WSLtSQcKhLMa9pteOB24+AEIteZcoKy2Y8Aa770rDP8CJzL+s1TjFNXtBK90/1wVGNBq3O/YnwAi+Yb82g9Qvfo0UuYCTEIcni8XLaAez4An6KnWJVIYEzadziqe+KVtbhLIOzIeBJNHVwDGTv4IGh2mXAavqr61vJk5HwmwEE6N4YOfqAU6DPLkkBw1QzsYwnfA2UTzylGIw0nLZechjIyhE0xcz6sy+6FGoJ6jxMCtKjy/yTcLQBozAnap4qGri7oy+CU+nDA02Ya2XkTJA8xwVr6nsNl3DvnGMH5bi/CqgAmYFb8W+v9gBhuX5lf9NHbk8vjRZ1GrCNvkscjG6UF32VvnE0ujFH0XNBzrcvBt6HuAV/jWGOqOxdQRyf3+QZSo6+QgPlsaUQU2vxxb4twbWtM8UopRoha3mkugOnwZ482rIDPTTj137faCdN1vNzFIAiQEOMhlhLTygC3FTZ6kyl3cYEJsXOuxS3GBbNY7B/UISHcPYQ0wU3D5aQ1NWnpx1sf2xt22M3XCNfne7+iLKUr2kT2PvGADHaCs/84JxvInYKV0tcFSexlp7S+Su99G0Dx/KdO+P3oNK/NgyUwut8QMfnTrLTRnytDxl63553FHtaz8EJci/3i3kEqE/7s3jxfI4givtBtWKpo3UlHKdUNX3zJUQhC1eANhG2450aYPUeSEa8+NUzlsDiw/PPXQqJf2mVGT40Xw1JvgUlT+qkc9f4nIM4iff1NFJNy9CjZ9emxrUHx0gAmz1+rIIPeVE6fxsNkPsyjlIFQ9HaKMSjMEDRwZY2kJpNrFC/mR5CE0bdV1DBEjh+8dHR7MVEmAas0N3XH0jlJ9pXXvLubzfzMFtNOmgMM/HX75StyulCQEZKe1jSvwOnhkONz0H2u6DAQYq2KYkWSf+gNUbHkW/wsuNzyWW0ulH2/UfDHhTCFfh1JlrYWcbaY3XMVX48RNP8tMWt9wa/r32T5NlrwITbcS2/7ZCvjMCO3ezhZCLxXSQzSfBh7HwxdCSLUiQobVPmnVhxd3IkcL8aNyQnt22gL073jZLM4Dgfr8Njgapl7D3lV3E8vLVp9DWb82waMB2t57jouzFXTIh0vcMrIVfXKB/O+5b0J/ets9hBlPFLJLujNBZt2mptPJKcwUjQ4CSZRzlry3yDujW28ZU6LMJJ5l1f7NUbldwxlCp7ROdBlUSymylphhagQBCH7HGI8SR+EYoIf0RE2QQ5WgbDXNhitpOgX6DHx0hhAHqwqVCrj4s5HQb3E/KkFtL4IRXxtFiQLlUfPfHRY7zNjFm6d0IalrZZYKfH3P/DoN8Wo2WQgmFMPl6ezDZJPcBOBpCwgL43Jn24S8J119+VV62zex7pQ2JNyfazO89NqKdBD4rr4oNVeSyXPinx4kPfLdmrCAZvod+m3V5keLdy/iaWuJs0ZlHH2+A6V7cwUXWTQOycNebySk0WBdmcOUmN3mVuA0DuXQm6J8AKh9q7dP7v7bckfoLwGfc7zKrO1zpkd5zsKc5JkBMbgJ1TZC/c0Lgx4x6vS/mgLrEK9+Oe8WbDh/rADFyOznZ96RxTLrvC8ZVzItJYevRZQwd10tg4QvZngC2o27MRiK0t5daNGxav0y8parVPnlaoV7SuZ3Xvs2uONZ545+dVms6vK5PK1GciolzE/30+a8CeD/tUeIyen9hlU36rfNu6a92mDuvBSnzFrQu6cnZWAXeBeXsVQ5F4SqRCL4TY2sNNqCV7KEznHMPn05I95qZ3lXVve9npjCE7e5A955amI5fvVLqE/bO8COU9nuPBsoqqHYyG2bNzOzaaDT1deSZQIbxEZ9+lYRBSk4kASl2/ziwLpeyoUBvrb6HQXkzUjUkzA++CpaIX/v5Hd3tlxcH/xbI15gkGGOri6337ZKlyCvMFY9Kzvj7Jb26ifHupDWEuGsG40FtP7bUzJd54pmnfg++2FIVT4a14aJkj6GW/s/v1GCh3eS0FrJ0IigSU7ATfoaWzAW3P0/zmVbYFUc+vRx9Dc4pSpMCvM4XH/4qjix2F3e29SYxNs+YLD6RmYosP4ANW0tuGW5Zp4
Variant 2
DifficultyLevel
611
Question
200=2000−5n
What is the value of n?
Worked Solution
Strategy 1
By trial and error using given options:
|
|
200 |
= 2000 − 59000 |
|
= 2000 − 1800 |
|
= 200 ✓ |
∴n = 9000
Strategy 2 (advanced)
|
|
200 |
= 2000 − 5n |
5n |
= 2000 − 200 |
n |
= 5 × 1800 |
|
= 9000 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $200 = 2000 - \dfrac{\large n}{5}$
What is the value of $\large n$? |
workedSolution | Strategy 1
By trial and error using given options:
>| | |
| -------------: | ---------- |
| 200 | = 2000 $-$ $\dfrac{9000}{5}$ |
| | = 2000 $-$ 1800 |
| | = 200 $\checkmark$ |
$\therefore \large n$ = {{{correctAnswer}}}
Strategy 2 (advanced)
>| | |
| -------------: | ---------- |
| 200 | = 2000 $-$ $\dfrac{\large n}{5}$ |
| $\dfrac{\large n}{5}$ | \= 2000 $-$ 200 |
| $\large n$ | \= 5 $\times$ 1800 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+gCgciomcUUa3Y2y8C+wOFpGYeOwwNGFFQveCz/dpYUfCjBt1lh4lCdmxikxZLPuU55JqNdTfymnhIVDJAL9WOiNQCu5b7070T25EdGcy+XWAgxWu3YaV4ImkhsXmBXMGcYXAMAw1jGAdINSpc47x3oAynrGXzONnhzVD/Jr1c5D8+5h5uNAWw1Xt7PZqPrdCp3DZLouF/zPErobTGRQWuUkijrLfm5AGV17l8FM68TXx734+V0/n7Yw2rYZJ9YPSr76KTX2d0YQeeyXnXuaVbeBYxvFjLB7nTLs/ehBTYodnnns3grvW+RK9mi25vfjn1/sNsSEUmMhQsHptQltYnveUfQxe/1AHkWS/xLnsffRPrcUgzGkfBpoV9FhamIfa5MD55ZMqs44DEo/RITzgcTbjkWZPS2/Pu0jl5FFyrJ4TNv1R60dam2mOmAzriW3wEf9MBj8e+NLwksWNcFWG48WE/soaa+/6I7aO0tbrXDTZ747+EBeZzhyhQykdL3TlTjhypd5FG9IEwsBJB8vHYaO5RuFEyPgOW4andLWlQ8ODv4dm78BXyMdgfwiiN1x1JHbApsrcCzg3ePdqmNYIDeryMCNetxCJncXXBhPrcseP5QvrgZVYoetvrsm5+hohhDxoOaBepL8HExQbGZNUGF9q7HYLCNDAEMXt51nGUPP9ONyuMT84713fyI6gQkhwaXAr31r2lvlDejIR2qyvPLGU0ZRmEbJsYKQsgf4p1Qb7IylU3hSqNeV0gkvdp6RqAi5cuiOhSa4Ih0nQPt1p/i0cK4KUanli9SvffIiL6/aXG6Ex8NmYyyf35lfNY1xHUZNQLWTXJoU0U17pybGGDJAc5KWZSlmJHEtvp46AmoNyYodellaCU66dT7P6wM72he1VGRwv5UrJRAnWEpnue3+dtbgoqlN3/qSA+qAS9U5xNkse4PgftRXLk2dxqOLU1yjjsiCMx+dE01pzM9ShoZn/5UcIEWBIbH7gD92fCL7CoONG4Pda2D/sYJQthqaDecRhU+I8wpMzO940XiQd/g8jmRQ5sJitNaHTvPf6aBxtNrs9GxxjqJOAmPRn/wtDi80z565CbzzfjmDNyfRB8xkAIDUNttGmAscG9yktEEoXaiTWFlqeCBfuDbM1sBRj1NpbBUwx4vCsC/9C7K3Pm/5QIteeCK6khCDMVc3wJ6z82e0XEpwXkvfhUo+5uPJGicTpK3Y1v9qjKa6dcYTaNJ3xTiGOX6dLXiIOLyKj0D0SeeACJclvrs9MTrshMMLroe2+QXGCyFTJLXjQ72rTPK/wm5AKeUeJ7zeDN+I7G97SHMge8kdv/Z3I8F19xWjonM1Ustw8itqg4UkWhbl7gc85McbL+1rscBCbi7ncAbUYx2l2PcU4JWXCREDv8U1gNwkuNKPkhdioIJ0uDCMHHKyuL8tZ4TBYsKADXxmF5uexgsUL3gQGhdZd4PSxu/8XI7ggDeJYqEBiP0PXU+xKrqiOqhewHJpEP1k0ZghLJLxJo8j5TyJZN9JU8cBpJBlVlqAKdxEYuG/O/SW4VyBKyPZ21hiqwxjy3A3csmqslWXyWjp8+6q3rD35ZDSorS6zW86WBadics/L1iAr/O/iRpieLWfcFAHk5f2xYKjjGXacubjvNtmcD0vAabaTNiu8jSGU8HEMrUAnImlBv10ID3pJ+MjnSY5CDFWwz2FrxaYcKH4myf6nOmL0VZ/f4bScO8OlU2a28npefy7IpCfoU238TBHq+KoJF6BtYvfnDaZaV0385uvdJHP7vl6GxehBbyxfJqZU06xzJiW84I/DE6lty1wN8x4vzdGO+Pj360rikjw4gqjqz9t3P91XKRLMx8AYadK1+qVozv3GEj57YABMTa1jlihbZUYoBlEq5WcbS50dg5yR/nQr8IEj8LwtAUyckqCd+UhXCIkVPqlaLIsR7NIQaZgoWV+yJVrletH237qR3/zTzejHSDK6cfLTjPgcYz9KEUwQpeB7yhQL9FSCSIBDyKoh4mU6Bnm3b7wg/Qzrk0m+MqWWcYO8RiTP24EhsS9fOCMen+r1qBcjwfoFNMJmjmGdihgjn4zi50+Xffy6baxPUpUIvqH5n23sGP/qWyqTFp2Q9015RHnrlp/3rfP7hRXg0FhJcLFA8tXReu70FGWPPoLaKh8bjfp38FApVSEsFZclitARndMInaLR33JwQB9CMSIvm8ywhJc3ZSNA4/1xk9lsgmcryCVVefCkA1cvMZa6aEqFRez06k+AnofYN39b0hVB5TxI9etE+vUrSy6GNWRJQWDv8fetyoslB9Ajv6Jhg4hojvkVRnsJIlCDKWi0gBK1cRxEq8+J5W9udQOj8tPymqOzxYGDeJG6X7JewKmgJ8BDfmJXvdkb7tS1aFLdBHnGSyHI2qw2G8es4ELHs6Owyj0v/Yc3QzzpxYb1LXydt3L/Aho0xFGtGZ02ttcKQJUFmXKdFnOm35oxa4eZXbgTDvD1HcKzjFSFiNdHlQReyp2zUr9KjlCdrpTjxNgPlXmuXtI6iSwJLJknpHKOehvxfEuoV5AZXo8eUT9O7Fi/0Vftm3feRfxvXshfxFY8/jvku0iBftq9wFYwPskmUMqiOy1tjJeIwgImA8X37M3Hy4OsOZrhxcL5osaPfaPBjBWfNMxgKeApjLRuIklGf74pAw2AcR7ymltKi7BqXp6Y0cJg71MbhJQ6/Utjk9V2Mp7VKXsmv9wI3Ne4SmIkKWx60qmnGJZqprbo5nNzFsYSY0EZ4Zru3+U8gbTpk3WtJgmq3fytua4H/T3rFy8ACBojQVOaLjoa9PxzwLrlIMqHsUIgRNE9T2a5Daa5M8L6GrdaITz625/Jvg7DgSRbDAednGmwC5zYpeHVHHmjOyexBbDoHI4KUUAe3Q8FS4jJBPr7jucdhltosSMPL2qNNBmZxuRU/m1tgHu+eUbOa67Mb8MhsUSPRFTBnXBBMWJlL6B6rMIKOBANXoIKAIQ9cS3s4j+mpoI0szj5MfVq01SyI5fFIP6De72renYxBVo/yuTsgB8OL9yYUKukB7JbcOVo1vS1epXnNDBS6nIycmPhEMf+jcFKfu76KwT7AkUgJ3OCZWUbWi4qrdUQge8NWRgbkdsPbwjVV2OwoWoYLByUw8VHj/WQC7inC9qM+htXWCRtlT8pdkQ3SfpKs4EZ5lzK0IwlJNKBBHjPxO+NrbRczCgz9AQMQFRRC7OGOReLcFqdUqmK60jYvv6kqfySRnM/jc+j7R9vy0VVS2RkaiiI7pI9Ku3Af64M8Ss8UPNyhtAcBCKJnHiHto6Mq8XEotN8p7c23eo0NDvvVc0YXcmE5DxR6SOpKTHpbRO51FQDimsOS/VfaWIbKMiqhuzTAptk4fo2+rU2fZPR5Dm2yXb8vb4lw6lcVr5s07Up26asch4mLvdhvWYoAWMonivj6GV3yu4rjao+wuxwh2PTQl9OvPzgwgJCTRzA15/k7OWyeV2INsafCgY08wUOO47vJ1p9OcHVGOPlMsZj8DPRENL9lwcuWlw1jeDzBUMmXIs6NjPbYbXy3RC4XQyzCR/8qa4wFmDpTp40KNfWs2iHpExL9xszr3dKbgQxyMhCrI0H25vgp7M5wGeKMPS220eys5klsLxRJLJIjI5MrsBHtV9GBk1hNYgs61urgKIAO3eV5Ngt9vmREfVJtjuWE5vliuS8dGCKUNn43Xar1Pld6/GniyzBspgkZ3ml2AxA5koOKC7LHyFPLj/WFhuqtfcq8yepTPHZ3W+/UUOnLB5iItHfAq2owXi6TIVmk/iYVuWt305+LJEEUg3WvaI13zFkRHnDAcGykUCdoLTMuVx0Bue1jmSgUuixEl1a+kDblz185cHZBRtSAu7o0kHZu/OjmHa7y4C5cCU44N+ROY0iN2/DZmkswTR0+y+mR8mdE2di+WJb7upe8Wrzy6h5rABgHYZKqB0LoeO5T4hlPUyqr02fD3D6ejZ+mjNyTUUh64kFnCg7PcyJwKqr3FDFVXCFttUHEnYg4XEPAiVIncvX93FY9XzCdhSdZrorLPlPawj4BWEJivSaaRBuus+IR/kxS23Bm0tDfrAmwv/4ST3YCGOVkj4Ude1B5LBSewWQqkeg4B+vVGiOmT4x4EePyipsqKiNpJWQFpDgwqnFSnwJ/ZBKlT8/e8xCIYRSkVuv3liLGAXZSkVLLoBzHnTKPPkL0yI+oNbukq5HOoVIygCA/lCe30phPsoELxF8htn/0mEt3QE/7RnQc1HsNPDZ3nV9c099rjb3aX/BB8jwq6kLCLs+RJayv7G4nNOcr+8Jd67d9ZbVYcgk4ltfqPdItuM319K9Tg+Zw3TOrwdJK0oQeqMlRgWfA6LHjTnNtYaFu9EtznRTKzKABVsMvZXoPkNTER3S55CezUAYoXe0ooyakYyHlVNf5iGoMwdk8lfbr2VuiUzIbuODSdcje7zfpOlvDH7lvzMjsLrvMLPAdGpnJbuawQc5SVvZndK10JOKB3rXXbBf2TzRbfA47af3esjrsW4+dhGHdLFokbKjlEQM+V34KZlwpwrzox3Xuw3+a4KAa8EPu3aR1WfgSSkA1Njef1fpniHClKXh/V1zcVkwqOLSh5nqh+cyy8dnTiJIbo6GwLw1b8lYqyO7a8hI46TePoWACBRsxkZXAjuDcDpzNepu5m6k7s+1MligX6FSeyOnpoH01H4yiReSbPJfmyYqNNMOzTTbKDtSe2IC4KiePjxSaNM1BT0iQJvBTIZNKjspxy0N9JIuUVT1OxLJrmbpY4iy7R6iXYzQ+qWpvDgWun8J4/7+xg70PPTNwC11IVfCG7esyi8XLWeEFt/7ZhfKiwTzYtj3i3jbeg+/TkVOuOspc9uIc6VqQuxxht/pJCi7iMBJgbdTJlpdswLh735WznfSw7BrQs9EE/MPw9pnNnWbFppCtkRrM31wsDr7uJYtrleBEcVOH23yh47sXZG+Mo+rUQYsFo/+xDxth5lwOl+LfzxLSuAOrB+SB31RmgcQ7zNkjV4Vqhcz6ZmrM3IsVN/3JVdzQvPlWejTXG1HJQbN/mjj0xPXie/WJAQ32IBKoMk99sOk1ir1eq/s4gSb7ezgbyedm8Q4fJVv6D5LS7XpXuRW0mw7l7dGk0gA1v3wAgy7yjG47vhFC90sd9WhJFW+w5+iIL1uyyCdZxwLWKI2BiNFdH5YjXNy7Qk8rUIhf8erRNwwlEvWCZyCTPEsThFhzJmTT+EhSrUAni5sm4oud2O6ZuCtWrVnF/KOXsM8azFwDsPfSOoEF0wim1lhI9t1zTbK+15XPCgcL2tYac5H2fx2nLWbjWsYu47RNlq2GVIXAvmmGm4fz9FblAO/pMxvsH7PLCLRFYymrDwdxPXEFp6S0FpNzITZDAol9XvriaVDY12QdHhwfuChK3c1cOO3fbzvIY6PPOqbFki4XLox/EHvSUygjGvK4xmT8jy2aqDgDZq7XowOU1jZn2jQg2e67kB4MS9LPyM7t4tg9xQ03wLduPxpBj4Y3ulSCJx+JF6m0mEhifsYR+RsLY+pqrgvMpB9P8ZZTfGzZN6+3NcNq0Gk/AGQOTNXV0BYqEA4TDp/VYE+cFtBpCxHiN5y9kSdwwOxv8ZOesgLbQHhILLWZTTY8f4fc1WY1wjDkFEEBnOpm2hd0wnCU2xZy69tYbDVU8j52NDI6UJjdgQ8azUXx2IRWeJ4jSYMT4+wFoxMcJufeZPwDC0J2QkaTsvFSMmC88cgnIpkLtxaeh/yiYve1bHn+Anuoia7MhKNuKoUaLFXeyvA/77viHUT3EBl6QGRnrx9bzMDM3JrPf6BqF7hIo1IkdkinG6PSPSZVU/49wjjTJLWz8iGkS2GOIsNsYhpmt4bJ6IHV2PDw/k6yiGkzzERMjoAxQ4xM6O0viU02dbeEwwrFF7G3/VbFYVy+pSFzMXr/IP9i5r1uVvGVIwB2yCOVOZxHdhHH0+OnQegU4kkZGVk7N2ioZ3r+1hfFwmf/bPAjBTSsyuhA2sSM0tqa5qucBmGHDT6a+e4kNkVgQyVY1VyaMe6eAM6iFPbpqCQCVTxgtuA3pZDYz0blueIWnO4KMhucTUQU4FzH7q5HxAYaeJPQXB0AG7tnnEyNpMgUDhtusA1ys2RRYcbzz/1bkYpBY+CyGdPSj7OYE6jGIM4ay4HeGG3LYpLdNvyGSbsSa+Zcg8Xd+GK+7c7aELCLFlp0ysXbveYybWc2xjdqpmxG935m5QHBlhjZCs/afVGp89VX4bM/g0ODIG8eb1EpwO1qcRNiy5SHZu6z1n0a2zEKxIysTs55WUHRC2HCxqOz1LOZa0sj34/YnZUcNNDEWLPpd1DEKTupBn6AZs/XY9gMZmgHso/EmEL2SBRsa4zawZyciPM0CNixh4XfINkm6wQC4WHgwrcc6jUyjcoU6v9ESnWqxsT9t8RQYFaiqUhax3/jxxfEUR9oBi7LwwKZMMoxoewpa8e1p8WIVbuRvcMaayfNUO+AELEz38RzX13Y/Hb7sVKSWd0OuRRTIPpjWf632rUDBHk5EBxZvryKhFD9jotuapuXXgONCPnPGiQgLXDIjOb6QOU0GWcXJvv20IR/Z90acZFO1l8PwKDLzfVzpz2kd8nrBINub7C5ztO0Qzq2MbIAdM51udFep1iP9I0PJck9vUKAtb6uuRZWhj83/NXDkkOJpWfIly+lD9qzMRJvGRq6CMHEIluLDysLjIaElmxeAbkq3OD1wvMn7msTBe8zxL+mryeWJS6bc1qAFIdaBTjFA80Z+ZIW1m2ebx/7uq9YP80sQo1V1u4O0vIYG7PcDqAJVLzWwTK8usrHDpB58CLgTDexxX+LqlaTYOT/ViNXFzaZQJt4bZmA8C6tBHsLoqR+dwDgj01XglGYOHM90Z6EZcfzUNNKjPCuVb9hGOtUuX3i1LidqPXaS5iEBH0Zs1eHRQRiaBUNwnIgPyrxhXjp/NqCYhntkcHVyI4X2YXLywygpjldFi8L1faT/O8cjVyF5ZaYAd1i35Mhrh6CDimVhRbJ51LYPmMsg8dLDSd3ITtbR6WLagdH1UcuZVQh3kvsoK9YokSTzCGPaDbJirJsuZ5tHh4H4D/XWmxrgZ2Xfyiotu1QDDfUJX2f7R2pnfW43dH/f2TgHp/F/WfIWSP5LRRyEmM96EouJJlvFNQ3XK82BqTPJweRrsw/o1e7AJgn/pr4cL1S+8rn2uJ5f3X1Eift7s2UpoVXAgLGJBOF5XYV5I9ExCahhE9DdN/61LN1DiDBluLqNL2LUgFcgKUvVouVURxhuwn+ChrMA1KjUNkgmwpMCvUUS5e3i7zLa0cz70g1wzOXWojsomKZtNUU1SBEnPjc51REKS/l96xqMnCqzV6/IKGvEEkXzM8UEG+BK29adym6zoWqQbrzPKN/DmQ3qvkRJYLarAAAHbzQoCnjxmqHxbtDVCvKgyduJlALzBOaRm4wAWYi+AdcInmZ1iTeNWKUJlKK5tzaNRkIvs1WedwzPFMbZAoxRKuFCNyfnlE+IdglwrULUIviJfU1Npdd8CDfRyszgp6CvMIJtJpZsEYlWdgkVPpgM6XxSLwVMdsvedZAE8jOWqBV6YihupvqzBEkVuBlLdFNG+bRrt/kaj2NR7139Wz3kBpcVD2nQDF7+qQGnyRAFkbchdEnYT4IyYP0UmpD4J05sliSOW5+XQGw9ag877Zhf2/hgASiy46UTtVbE8iJFuDSqn2ch1G7urQTLXbjywFcy/9wTMdbvr6xRvvSqiT9TGRPM79wNBXQDbqTHtwLcXXmoHRzPe9RmOhUA1H/4mplXXqygkV1UeI8NEMuw2mTWAz8ZMWeKmYN6oJ9L0Iyoa0uaurUCt1edgri4CEsZJmo6/SsNrqCC6c3q+1cvM+PeGTt6ICisa7dixT/4YkcXoOEZwIWToUG8STSL/isnHlXV1kplllhsWTxbby2Pk2Ug2qQ76esvEf1D5yF6oo/7n81ufwmcUnwJygfOHBOLZ+DkvmDbFJmsKqGgZLRi9tfzdZEVTErrKr6nVTNkZPLcMzOjCMhx+BJqmXZO2LQEVl/UV9U2yuj9pM2xHb+K3pDlvPAVz7C3JABt5swyM8XISx87o/t8zg9XVvTJLY23+ypuaimhLsq4udFpTAy02EPbkVNIGl7wn1Jr4Nm2H7T5JcfwWxCf8K6SIYz5KtncFo7po64L3NwS91SraPqO5E33L4tBDZWUrplEprNM31c3ACkevte+vliSjVbbq16+MXDiCKXgAi5v98vVDlA51IjrpTPUyCP3+jicFAoEIpc+4HbLcUCxvqIlqHL4QphFVSbMy3H3jD4Ig65Tj8A3wBAaVIh0V3+2DY9UtF7IlyUUpbiDSJWQg1MKB7Nv9jabryBNp2jWf2PTe39L5WUbzTEm7/tUBtpmVVUKgfFVWWkKHf/b83aH8ppnw3ZxA+PIavNRXxNBDuGvvqwrwVr49Kmbn3DtMUUez0yXcaantld3taQJo6SKr6YAqzhM35eOkfsrLlM75AzosUf/x81ImPVV8fiNaUTyRs4IND7muxQL41XHlDtrUBhh40rdoLAi+11daJaYl9VDpjXu+TB9pgMZE6XZHTrYBN1sum5XaNsTyaopKpo3pzoS9qXsAA4vK+dyCTcoKxyMTXtnyOuzax73Jzy86fK6Fpj+QKrv6fU5kTXSSljHNnBUyyy+ToVJlKf/8p8Kq6Nyu8VH8JvrgU7yXLiake2ZL6ES4F1vgK46/3EuZSVfd5DjVTi64lEjloPWMm4YJzFvJ3fbnTvJWqW1gvuusaD0TZZuAVrPzc+bbZp5NajD4Wyhrmc3SUWmr8tM9S2DQV1Qfl32D/QTFw4sCUb5NGazG8Lb//7LeDFUsjiYn5MTWEYEY8mXB3ltKHu5rHuzDxSIzIEoifF7JNueJ2tsUQLUk6E/eftXT95OBPNxPT+EnRNER6w7JoGHNnafh5kZdQRNJAPyXwcARlTtp3naOoGNtR5ReeamYhfi9olfxNTy6u/qMLgrH3juVupjA4W0xhyeaIVZKN5Yd3q7qvdOXtWkoraD9wcyBfiYPdx2hFukY6nwngfOiAUPrbKMQheyradaQsLBDZt+OK3wS/Oe9toHXvBg/PduCGvIntRFCpcl0fSYvB5eIdq/ZTuvKg574DxLpFfl5Qe6udE/4jIUJSYhoZCUpgvXZgSk5FJ4BzcnTW+aZL+YcqYpLjYcK8fUSUkjxQJ3xf5HZ3NJiFrSjXfv2AKnlVnIyGAiXPKHGNjEJvSkFlIfI4A/yQ6kd8DWpRS/8gLNyLFrwH8VBpbdT3MGCc6GXjCsUMDFDmiJVWqW72ug2qWmnGVgoeUhUsh8s7T/FS9Lpn7a0lrXwA/IWh2pRVGutiGVGv/mhP5o+y6q1D620+oUnSzDqYA9tGGFM1/WwAhWHH/yGJM5tfRHVeEL7oCI4CsOYZRoYPfEEibXfac3grYkL4ztobYA/x8RNnB4NagTPdSK1X+sNyhS+r3Eem6eXXlnzVTWV2wYCnqSq1aopmgVWuj1xdgyN4KmZwlwkPDDc47J7v+1HZWduRKnfwjX9XPmgb/gxECCHiooaqKFHirYpl9PvIJSK3efHr0SECd8JJK/IPI+6J2ITbqEAWLYQRmv2E1WKLrKOdqq7hWA9C3eZ4qcy784GWXitzKT39fgWPErLm8av2Kexa2Q99Y89pYHwv8kldTPyIzCOX+XC1ZkuI3ktstIQ+QOHAFdysHWyIRm8TM4CceEuAKbJH03biTnAZCaCGBzYA3tSJoFFyjh9HZILRnfMnssYVM1Qrkz5mLtSxXLfRvW6b8BuD3u6v8XINLoyKBzT5QEyIzUl1kGUcxrSELJ4cWp/ZOt5I6NyAGuPsCNfSG5o8VbkJ0GuluLl7q7f/IyZoxUJ1l0uueDGBNPmkNm96TqyY81aa80Z42uWWbE1kVfO8v5KLPc8M7YPgouF5ZX8haiDa8sk2Xt0ZqCbRsE2mIpQi5xtmC6l5SQPqUgxF1WBQbyZvah1e2969jooCJpfZXNItKyej2M6p39ez9SLK/xKNH8lbl1Hoe0sNYLAPHuCCC5Whh7M3tTKXEE2rZ1nKQtzzgF3OKFQTRySB6OcHBSHjHJ/4BcL8YzfFAERzOu8UutbAPQSoegntfap1rHLII29LNF1Uv/XEoRyO7HQ0ZETLiZEDBgYXhwVADVX0F2YdZ3jhk153KN9SU/Dmb1ZQR7oW6UT2LSOL/JZGZ2iIj2qDSTt89HHCy6jT4iWhj4JBgNAIGibWyBvrXHcnJ2lQNGhqsPIsjAdNZCVfuab56AwpAoBZxcjyYbyn4RwOxURLFmyalyTGuUsNr4rlWN6+qEKDCb2TmT56M16LHaaqUyDgn6v3Z/9ncRfAE7Xpjmt1fvS2Blrnpzj5pmD9FoCv/A0/qbHArEHtfxE1QfrPadHB6Vsvk52jWksumS7Nu61xdXeViFJYmeaDrVabGcr5WAI/mw8jXSGmMqXsuztSv78BX2Pys5RA81YdNu/I3uVv0HCSHF5IiaTspubRb2NFtvzvtTUcXumnqZ1bheOiHPkGbIgbedNckkw0tplL8B3idyZkPoogEovGOWdHUFAeOlwhLlXgDjPyT0BeNPDLzDmaPRtOKBqzsQudemHlib+MFI+cE6Y8caFux+IOAL9HMsyOcS4aPoEoWClAg0dfJ6AMiIXbnU6IXfthxaG8UaZv4+lLL7rAHtWB2Ha48FzfW4s9sjY6L9bVE8W9oMNANF6CUjD1fxBf3quu9fm0BDR73mq5rGXEWf3ahzq7Ok90Qqxpj2RUIK6UGTTKTrfgnlqmqTQu31tJsVb6Ox7pLW1sHxC4Z7SwzerGnd/qd7AstQgaVc8uqcBRn8MS91n5Xx5coCtct/l0Mbcib8OhZYYjoc/dgbhU6J/rRdghdLAeQYFnMZlGSh4YsfNir/9evRLvseB7WpU0gaQQwYIv4QVY2xwiFiimfiTn9GJ3OXGLRSbqFVtOkT/lsm0QdmClJLS/Uw7VWCV1v5iaASRd6kVpSPTKYVq4jQGAnfIsG1dXftili/WU4v6ogX5fuSNFFKfaDPzWtCHN1YPovrLRIRqvu5LVKWL8UOo7QwmNYuMKcO8ZaJTWo8F4mNc/1k+WR04k87KpFd7I+u2sqwhDCr2tlapRCip3hkULOrqwMdDH7mlJy5FyYxNz4RGp0tOfC4iou2UNLMpJXXLeBI7+9ZO6ID5+vW6FZjK6uS/hjDfrGs+n6OgN/sU7HnwlNu/kuaOGUoJwdPUI6lZ+yBHmKVs+Qay+hjr5HMXKIyo8zQWvxxRf3jPJdednf1nNPRgQwiZaWxh6h3qzBSRaQiO+Nb/5OpQQr+9Oss9eYYQuBRXrW15jANbu8xavAMc8zaNdw+Xo9EYo2FZN7FKXgVF71X6CLHnm0iQC4rPrSuR7VYveA91kBj/EuYP27bdFe/yp4d192AGhkrF19hyeI34+zDQ+1qMugDnRY6/WGJkKRYJ8BLlpzNyA0t+5o7um+5kKbxZAza6VI2H+NTZL3k0+FIesvI8TigFif8C1nMhcWjGP8J8SJPaUwB8QXe+S9r0zz0+eKt/55VX+exojSv8UVKbMmIjRf6c/qffXbXASyFeoGgA05YzmRqq+HlGZ+RYOR1FDA/VQ0DJn1k7M+oM8IsGxKltaL7eKbRZpXAyRSc+6e416tnmuZX1FH8AXcMnYW6zNkh9xQY/A6SpHW2XKTDjhKbsDE8vABmbrttm2Y+uuy5xn6Cr9hq+ojL7o8nNY7Q2u98KJp1BIo5w0bLzUb0i47TuJjRds/fGUmb173O6w6VfMqM645LKB4hIcX8Svjm0xVp1E4+DLP/oh/UL+7nLl46/UZ9OkBULm1BMv664c3TqtiIE0+jAIGNCbTEVh5aAAeDZfa+ItBlmmzoHTw6xsEXTN2e15Oh9O62bODsy87XZfXiw+o9qnvftaRgrV7RcsLhrMAGHGEeSZlazCtvnfuZ27mamqVJ9LUpyOcjXdhWddUe1k0xee3RnjTbT8Zimu09gOqlseXNrwgRoHiXG0SGfLl73d+mt7g+lYTbNQxpXjzSQshqdBtVllu6nTE2eMuDQ5RT4Go5kprDGlgbxto8DkaDgsm/bD3kpOXfuaSAvEJDfQ5JVrnccn+nkVQzVJ2Vwc6URwdeRjgeeVXvghsQMq7LBl7g0GrC2j6nuKlczHXcinlUU7YBdqWSAIaHASJm3LjAbHChEZO2fKMLAEY7Qq0UFIL4t0MHENX9JjVoQDuNd8rcaxf561+CZhn+xM4jGPewa7WT6P353Cs06LiTCw91esmziXjoQ934BwW5sbM9oYoHnt6d5eoTZgBxQN263Eyt2IRp1PCqHmMcazA7domBYvcjPEfjFFij/FWfetgf+7+H3BQEMF99KgXCo7GpltDh87jzZgif/M/LzscfqDoRLTSLYhctMIgnrZCKIt7tieVE3vjPClmkZIl7wI5auuhx6Tf7TnyNPF/AgkOFE2QxV7Wrtap0ypj1/sdt1cGByb5JjwqMwILVJRtAJq8fiUIZXzHmFV7yYTmdXConp93qP/lnxrTNRULjXDqNQz7dka4Wx5PRA1MHWU/+MT3WgXPhdUFc5fkOzwTlVv6q4GgBCsE6n+AmgzaahNAWxQvlxUJsCAkcqMl9GIClD2PkK5OAqX9bBNWoGH4Exz+GCqQcdRtR2jXxWdoXmJljhJAeNT5kkCu3QhYoKsW9/Wx6ptUTJ1B0jNwT1PKTo4gV4QhucU5xHKt5uKCZtXzWklbtaR3ooLep6pjlbwbEWEnwkFAdjaLEKlJvpqKsv7dqB61yW8myLogJ6nDEFXQcm16HCxet1ybV0kpBTHpDkNmKtAFNYdobUIbPGGeAArhDnFi1XHdLDKOyqD3c58bdZkvG41kC4gct+K+XlOGTQ34cAbIedbFITfRk5UtvYP036uafSSey8K9kG2952Y5vENTndJ+doKK3CQUPEf7cbkeHia0V71cNU3thYdmQ/fhK0F59RaBKUrCXKdQ2XDupvvu8dowxlENwbnHjVRaKF/B1dcnMcj0J9aMB2QPqwSqXHqIKDCfCB4Dm2sKzn86qfkdgIxPOBftq6IcmwmKgAwgYd84U7wj1C+bqD4sGV7KAU0RkmYJxm7whtvHvn7P3reX+oQFfr10lJBI1MfmMmcBb2mdGTjDx4FXihfQ1SYvE41ry5V9Vw0X2kAEhOp+LmSIetv5pahAtHp4SCIRvYiVZYyg9hE25zEJ9VmpojhIk15ZKVOkWklATX+yg/9EH1v7LWPcsxrMZmgLBmI8dK3vadFbkZEVN2xItkJojddW6DssCFMk9NCtxI6To4wFMNozyGp4mHFG2b6jyMkK0k6NGAeXd3tDbqtqzv6X3MI4H7s4/UhPBvcxK+4GPP0AOiLl1bvejc+W2Z5LXkju9FnIm7NBIPqVtMiz0uyccbWNnWb9zJbzOmjW1Tpk8M5SYqc6JZrzUeHlnpb0gtJ6XDf201oH8etkMKOWIAn9zFIlKGcpX2Ic0YanzolqRApas4e0D2bogEqFW3hvdyoQ6KQp4zkl6Fnq5xBYbrm+YNnFyGrqb+RJGIw4fqIfIvFqiSTXoap7RLe/P535+7tzOPbnWPuhQ+pfjw4Zodcr0+4TYXP1HChFNsTm4agOHWigPfJeqFs4sfFC7Eo2MOd1yHNn6Bqc5CiwqTh2/bOvIAuz3zsPIpanquU+wnT5jLFQ/YJo1k/ckSXIwg344IPU+uQx4JTsWJToof2FCorGHKhwb/zT8LTmHZJc8NGD3aXIhBXMLFtLzdIUBMQjlJZUquS+kWfkHxJMCCfAeYfOvFqKMK9UY1b26LJMRycdYlhn3ECsn2LFgNiJjSbS7han37rfJ15tI+OCafjJ9oTlsnnCYm43jn+GBewgo/YaKLR2cIwjIQbWyvbsKcvTQZQy9PlzwjfJDlRe+uTqf5zYT+hf9y16rDg5QhsFe9ye6UR3guUq+GcU8RXdz9JIH3AXib9iBoijlIFow4B+35arH7mvf2aSfex0KK6wbFcWX9xpQr7JE9w1hThWFgOYEVo5B8T6Ca8qtQ700UFBsD0PsdOdwHwGS8kHqC8++rTHBsD9H307mLYca2NUNUXUp09Faq2r9XAYxPGXnBSno58CaS4M4V9mr5gNLbEH3GRDuw84cMb1wOk8fhqyMWt+iQHXaRVHP5GAZomWOPHWuD3w7IngYRjmHlKF7jj+FCtxzDLwYwtKGdk7xOtCCeVjNMRZP0kR2rNUFFHvqNLqDDi7n4bLjywmiaKQk3Sr38ns/kNNeTNi6/GpgrVz2A9tXkWgyQvucAMZ60tBKYpjqYDU3z7mM7oB+NpDZ/c+8Ck5fXdNhax0VEEp2FBZwKUuKmQ/imAbTWd+XenWpxsfGiaySYRHorbZnnLtMZ94BdDotWYlhBmpZL4DqZGyfaLPVihwfuuTPWxTv7NxUO0EqiA36sQ4sGMLEFSpfm4NSQD/Tcwe44cYhXu6I3D8fa6cSO6gvDauzYJTzLbyF5kzPbeC0i+nfF1qPMCc02LB94NyNDXKD7367eSmoiTXYH+h43Vm1BFZYdXjcgvc+98NXe3FGhq+VlPM8Eptrpnol0G60zJq7Ncn+Pvs4YM81k875iJbpcVkrR86KMygRJHlSMACj4TNR0q30XIye5JrxUJKjjO/1r6zLhStcik3KLSxGhlHChBmCIiTFaEK6Bd7nAiFauIVRnihlSt6BUetkV/QIkkuaP+oPWqK/ys8vhXo0SINKMo7VjxR5n+ww6UFaYOsG3TGM+DFG0g7/PFXaEoxa4ZIN3r7wuwVlXQJXMnA9H59Tc+8+c4fjKXzU2sDP9vfA+D0pbu6Xt0dEoynIO3uHSacxP+/wIdghtQs+yfrq0QW1Fuh5k76OHjxKdGhLOj8XhQvnPsIajAWKkHRj/2i4EKUh460BFmH296HmhArBdj7QR42eEUFquvlm3YcC7RZmeV6o0AV50ltoIozP26lnKAR3p79Ha1V2bkYGTP7f/oPdq9ICYfeDLMuGf5twfHf7AT3z/hIRsiXNml4tYbNCAquQDQoxs6WZpcy2lPNOg1oPBP752JcICI5RjVLSNdTiHRRMdponpijh2p1upiRCRQ/10SFoC2mVNBWBbLN/zvQnlM39kg1keF7/wO8C6Y60bK+TpoJyJMVIwW0n3FNq5zou512dPSCBYDCCPHhN6Wg4Z9JJh+P7a/uIDjnOZHnFc3FZnBktmhL9A9ri786JIPuNTs7VPmIRgeyOtWkMJLOZ0JZ28yGst7xJ4ScD70SEZBnOzZX1o53vP5AH+tLnPt2snwAcNjKumpptu4MabGcgFmYnS4UUrjCbt01FyOO2Jbgdnd5PVDwhxOi8FIEXiVxBSpK+Ra7CBn0MTVRr2pYSmE5VY3jSttcY2P/2GI+lNTV7PPb5K6WJWjCj7dBjF2udm+mjXbnHmQHk/7LaQJqZr8KexaulpcZxNM/VFuT2ChISX8FkhdN9TWXDSrlqq1waAnEHkwS7eTvt5AizFusAq6GtpL0CPyl7wSt8WYDvSEon+VWzyWmIUM4bQOL/jgOpjeANs/2/faienM9YnBrUxnDjUuP4SYzCY0PCHaQrzC7XLtaP0+GUzMYPs3EGMfwy2i6ssLlcM/fagJLwWNBUZeBkHb1np0wtL7TahHpGi88OJySr/TcJ94f4VztxHqcO5x2uMlGpShzDv9vKJbzve+tT7Y1HMf+m7Q7EfU+OE2j0vE+QdwtonYvxt7hi+tFBZ6uFKbyhwRZZ5llM83l5JPdKgGUlPkN0hDBX1qSTX6frQMVs+HYOyDnHhLtE+4iD9kVU7aLtXdGjWkxhNBmOfUMGwO8cCGCqGRIdtBwqcEaM2/hLFv6JWNU/8zaDCtfNLXe0twaPN3/5D7pfPva0pPrv4un2cUqG9ZnbzYLu1YQbZusZOSad3U5hEyerfBjjwNneDZ1+PEFekBlDlpkwtCYQ1sM2qMBs1R5JqIhLbLC1dbhw32fEhoGDzZgtejg6ROlKvxKQVUbjKKLrtOVDAolSIefKw/JCLs+jFUOZObr/ntuA9/FkVEkFGD1H99n9JB3u06PJF8S8ESELjFqYWT/Zf/h336OHNxf2VbxCXixmeMA9K6FL7mjHIDDmHCR9BplYkMScv+AIlc+btxh+LolMoZ1qLXYm1dcmtiIDoASOk7uommPuk3nbxIuQGU+IW5fXBex/0/eRDfuqKMQeucxFlfR/SokjLsiXLrlQEAzvxQ29Np2oh3Olzgt0BykKC0ek6l/iaLN3D9s1X5b25BIDHJ5iuAvQsdXeIawvouQMMPRbUi55mp+AF8xWf3qS+ZX3rZzQGCI7M5YNgCihSQHyU2bFexVyZwVUpkVwdqIUztKTS/ldUsjj6IKZPD0PyOrKiB0A1iDeHrW3vAJJF+wnkYzi8iVUOhj4FJkVG5nN5itlIdnocvdzIimCcg3tRTyvgOiVOcPEHt6+Swsh4AYzfbdHOIXMGTq/yHzB1r55mrbkFkM/R2zLABG2tK+0PDOOHJvxWwV04ORBFCXqRBcYhnBorm/ookvWPb9XLG1WzVRLctHICELc7cj5lKqzYn2+ADklBnv2Dom6riiIOFZjxpVnJ5H9u55D85shpwid9DOzg9tXjVRZlssmLp+wMjA0Z9aKumUROVyOHOANy8xm8/4O5M9wRwhYXrl5Ca7qcHLDg2lYCSbsFNcPIttFnhLt/rsfNgMqrCTz0TpJ5q6m4D2IBy/+D6XmkINZzY1EFUGWu3WswjnqDpW1Gvy5EGahK2jYC49R78c6SH5gyfcQY2ursPAXbrX2cxfe418Bxg5qv0h2rSZLxvcjTZzUzJWCtBbHBRfuCPM2PP1qx5DtGpdBGXyE8FL2llvGt1xv6pGsTTp/nUIpwicEhuXTZ9SshH2WhjnWNhstmWt57tfU+te69xJx0HPgEfpWFoYppwfWkoMA/mZn8oBH3EuagPm3oPEBaC3uF8pFztXWCFSX+PuVdPWglCrMNUwK7YTqvdHUEIpAUU4IqeER+9Gu7adEDF2hpQbjyKrBZKkqR53pbnHhAbAn3tr9fXILoVSgvFC8CRLKpe0plDE4UNhjllFfGIUnBFxdAEMiwegTWvkquqh9+bLBqrcUqerrIsFFgPu+Al1iK+3pDNrVk/T+zHbUsRWF+mK7sfHtTo4Jy7XUBDTwqLFtFoXIkwL1Ve1MJUj85TDiUEu21gBp3yvUhjpmHhWqsg5eQIXLlczHOnRbsp0YLyQOjFRdQdqdrUpm9hb+QHX9BO9xFbSpu9Zob5nnRi9vB/eZPefQRvugQ8Gn+MlRc+6GcS7BmfrHoXdz2aQXFUy19u/wmuOI6KbP4Z8UOYXg+AvyCS8drvydyd/N5J2HpMfFFcV5i/JkXrkGQm63KVY6V1tenhWEaCoz/u1lcGhJfiip0bdlxrCRIrUHxH9iA191qylQY44XjFen6TIAakM0J8q/+hdF152okK8/0jghLwahpQnbGiLSq3NgiB1Snjy4v1Y+52HvyoazMXorBCN4RMLSP4xNaUUiF0M6RPerly8JhLOzib4tizlnu9pfZv+gWI62v2FkY6O8F83SxOpJ9QGUZUn36xshhqKxMNH4wtH4e8yCqW5PCCcps2QBqbALI4Mmt2QXqz+s+B+yqlnL6BHRgtavep+ID+EUUHW1jLQfdLcFB8XqaAfrgyuAlhrppiwY4B8vweFsIuRj8l3yTYJFW/aa4fSlVVByARc7a4AIxDJGzxkRFjBWH+g+ZRfga2kk62mIFhq/MtJcPK0RlvWXAPZKgyknST8mHtZIgC7PLLTvPYkCdEYDTpq8oY=
Variant 3
DifficultyLevel
614
Question
180=2000−6y
What is the value of y?
Worked Solution
Strategy 1
By trial and error using given options:
|
|
180 |
= 2000 − 610 920 |
|
= 2000 − 1820 |
|
= 180 ✓ |
∴y = 10 920
Strategy 2 (advanced)
|
|
180 |
= 2000 − 6y |
6y |
= 2000 − 180 |
y |
= 6 × 1820 |
|
= 10 920 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $180 = 2000 - \dfrac{\large y}{6}$
What is the value of $\large y$? |
workedSolution | Strategy 1
By trial and error using given options:
>| | |
| -------------: | ---------- |
| 180 | = 2000 $-$ $\dfrac{10\ 920}{6}$ |
| | = 2000 $-$ 1820 |
| | = 180 $\checkmark$ |
$\therefore \large y$ = {{{correctAnswer}}}
Strategy 2 (advanced)
>| | |
| -------------: | ---------- |
| 180 | = 2000 $-$ $\dfrac{\large y}{6}$ |
| $\dfrac{\large y}{6}$ | \= 2000 $-$ 180 |
| $\large y$ | \= 6 $\times$ 1820 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX198pxuvJNIvf+oFhbi25cAOPf/1TBHM2iW9NWuSA/j2TbN+4Va3g3K8V42qMUahRtyNfL0C0dZw2rMdSDrS5KuWKw0dSe0KfxI/7mDXMfr1ryIndlM69MDWCHslCzdHwalF+V/S2vuCDuSduM5Hdkv3Fjc7HCibl06aCnVyVG0d6F/2pBWDnV0HhI7by7LabGtWzH9zfUuXiOuw6Gq6DqeXKkMkU6aZXuvF6iPvFlM6Pn5hRhPX7vBSq2CYQDlV+D0vVdHJzrwmfYHbkZwbghk5lA6+kSrvfzBxL8f+qlHrdJv+NI1YCMJU8F59+bsAQiFjoQdVRGzeqDeHZWmJ5Wc7Iu6k1Z5n5TlpyQTT/jjeTKMipftjABNNozDkkUnp66fZ/LRD2q3pvGnhXUxMhNJ9mNk8BUj6d2NLYUIPxsBbjBwI+9O2sNNuS2c1f1P33KDDg2p8nBOvkdtAk/Ps2iPZJeLU1tcjZIBecw+p/pUE5/arpkFX1PjhkNABaZIVY+JyaUY/Bc+SM/S6uVvk+QPmjyDIbUyb9dVmTIBBsZuqdYUnVndtBki39U3uEty/apI2etU1fIfMCpRgBmTtJQDlVbV2aJR7/AMb7lX9orgerCW7wLzDxfkADqWvak889Jvd24cMO+CprvUfj4y1r/QbSMoBhrTb0aI4DGMnsv8DG+ykA39s3533ba3eKYgRqnSirRZJqU86qG6YY1mgUch3//7WlVBc2rYMLZHcZGWAcJ2Vw+8sCrj0nfHMkEu6FS92lAictBVOM9Ep+Tk9O0CLAaj0RnBh0UOezrS19H1XGoy7FQrQ8N38NP5N3ztmMUbx4mCRabTiAnbXGfZMy/sZvXboFIfbxWUgzzAGPxbDAG6jJIcMXiIpyYtdLAfVeqN15TpA/nsnVHxjoeCD+iOhXvL4+9BsR4diHnHf+mfAaDv4AXU+mlFiyJlInXLLKHPuowpDQDUMGxJReu9nQZDzhEJn08Hq+l0FotBXOwRruUVrQk/trq7Dh2N2A8AhpdUVGUOW9ghQ+0lEpBRILVO/vvJWWXYuAehbnh2flaq65jVY/0khMVQn7sSf2AjapST0VC8d8OzBdyzbWFQ/kq5ozrLKgG8dmiNUeUhcmHurwqmP+AVuQ22EdiWz4FORWnw7ZicnjdDIfXyvPEPlg4CwEZLGE7hW71jIjp3RAK5DlEm8com7tH+egGJSVHL3rXApEMy7w55kUVeGp3iQPs4MKjSinta0SM0PjjelMnUlEp0gndE2mUyG7LUNvqZD0gn0aG9JW706sHaVhQMWBZS7ALbeXQLGmqDEWjmyDiN9hkdVTI6PLSmEmzUvRrXp/tjMNpzfZWjRCFZukurF81d/0jwUI0dX9f4GVy8LLcJ8vRfKQ41wIJETPuFcF8C0HNLMAukyY6gi5Q2sc9EZob2IswMDtwR2jV7aeIjk/qjTrMr2yBDZgWiGAaBwO/I45rfSwavnK2AFsEilBcJCcGRVop83AUPyz81aLwe4jkWJbnP49Kyl1RSTCA6FIdl9IeXYtFjZ37aly1OO+mwrpN2HZt9KaxL+A+dSpnqgcaYanLpigawwL/pGHOC6caAxSCLKxVJhUmA/FkHkZQvUbS7gdp2Qr90BkkIXIZD4943CXzlH5s7zojx4gjlPxAbvgYW0vhzbAFW+dJZ1QEih/74u/90MlclQl31cjGExrqivCAyV4wkThg+JTkr5fQrcKNq7VtH1aFrZTO/iIuUSntXQmjvQPem81UMixxmJ7Zfq+jBEq50QQIGUMezkxIvSlReO67j6J0Ha+UFyGqFj1TwLaoq2gcYa7n+lcatL0ErwcJm07eCwG0WcLVd32dTjVtw18+/T6tHzhte5bFAxv6aPIh0eKrG7f3E6zJny4ehGC+70feYJBzces9gbBR3qQSdmlt8IOS/p727mmm04MGP4c3DTQGMme8E/vKLjmbHuv0L/CrjuCxkJwe58gEXpWZ9Mhw2E967BMgmBPDFAuLPUov+oq+oTfxjjJ47gnK2A3++FzzVZKSRSqwoN55QFssgHi2lGZ6XmUywCznKyLCsWpFtYV2uSrQoASj5mYO3fsHlWl9mnEuPp5QbdNM7iq27/Xqb31ZlONISpPrtB54rG0VN1Ge0v8AKF9GOjJY+RIADZic+qg3BgXmD9NWgLm5oXazJj5q693fLJ3Qe4vS7lxrsDG3cXxLrLHg7BZnCfSf9vhroPiTFXcEQ6BToog58daumlxhuzxcG7n5+faVwJDxGZxAsrAPI8N1XlXo5FC77M7e7eD7mZFJvDEaAfY5vHJ1eRQfriQalBkmBu8qfz3YTunZROw8FeU7SgjLnmrxE9rxK3FyEdGhofpLvJyjt5sEjPxGaGtt6S4Vq8R36WzNnqOD4Rc1sokLIkclsHt0agdR29lNkbPyLFEBE1gLyRcNmYo12AbxvlxuX28qBobjvjlcq4aLcYf2NYWIODRO+ENz0XHSTR6mW112xyavtdnYAKZBdlK+BPsLPBooenf2JqBmTDelD5I1extDrLKUyBEDpqsj9CXjVyZ1MaaFrHT1CBBuD3QE1CRdPXT6I15G4DMupdDeNnCAhAAc8rDwQQrIwuu9h1LY/PCDTHPffrQ+DROq+m1CoJOc4GcFORZWvVj4oWIQsOi+jz1HkKWflZgbNX7dsc6yQwBmTIO8ZsuVdpZJzEgem86IVa1FaBXdV0HhSrT5PrMYw2jelNArt2OIH6Dzoy4QSRgAyBcL6VwvMFPvqMgvk7ecMlbk9cKd5GxwobsEEJMEH30dVOGU+TbYlgm6w8J4WUgn6XoUfvCGWcdcECLJydwrTaTcP75XKOUmfrqnlEEe4Y6bW4a4BSSxjwB37S858E3wXPU2tEL63Whr3UIjqIs/o62Cz5XG6ScfgrNRQY2Y7YXDd09LZ/F8hZvNZMmaDmncvTw2Q+HWNXutmuiWM2llK3sqBmb6Bsf9U9ZWGVOCbOtAQGOX+GfZT9HDHRw8C5DtjO2cpHh1ie/JOUl2N2HIFyKeiQ44TQ0YADiK/5KNor8MGZ2wwU27pYZC2F1feFsfwZjrYBHUrrjVKPq7Rnk6i29QT4JjWoQb2nlxAnznViOyG4ZSPMlVBVw0Ms/a6lAWRzMIo1vCW8wDOINAG3fkYGLdd1eP0oHRjm/kpeL/UOzwqzpWuK3T8ywlWFwmcb+Uh4wRgPPiRJXbsKS0zn7jS+VGR9ANT5ZliVTZG/cdbWK5ayjeJT2EevopCy+WwXFu4Wo33SKKIHEGERvlvl0SWJXnlqli3fME9WOun+XwgS4uhhdIyJhN8AWKQKUE4Qx0huhvIQDx2ntmssS7UfSPjMKb33v6hJPvFw1oHxPmYJUv3z3lnnbeEByXTfJLJ8WIqps77Ae3TGAX99k6fAGwmH/FaOavnTnGeXKdE0wCZvwc2yPluh56FWEhCMDUnZ5O/pRY61B1BAN6r6juLg1pyqdUD9ZHovo/wUcqWj1pzqETT69FuV7l2a5VbcEKYBF5+98mGjxCwV5ut45AreR6plF/A7/TFxnwbXZ6fjXDLNGd6GTCyAZ99fAkTYJyLBsCCROQ+doXWaf1HSf1xgWKETr+JsTXWh6d9i9etZ4jwCiHHIkpu1kHpuSCx2Io57A1BLNZTCz3ljunR19w9if7QzUog/7ik5x2HE5mng3kknAvxvpqIqEZoRkoBQhTLS8xvzW2CWAdHkYl+G3h4jnwoivj17p41UmuhYOIj6LJqtMBlJoFQW+eLmehh+IugmYirKcrI1HP9B9rdtRGNGSW5Xd0JiPifePOeb5zbhKyWfo2Nn+bzKR4y4a92e09na9Yf4+2VdDk8kqEXDY744F3V1EvIt3vsBcWzYmf+y4Qnr9NiC141e+2sjV219bCM9hntRsNg0fIixYLTzgeTGm0le9YEbpsOEVdasfi0M23aeprs2Q2K0NcLHRN7fzakRLe/qAq3QJLxEWl2VjxoknIOjzvBYwfcpD4oW+7GkTqWWmEXXWDet46OEWh/R/VH9Iqr8rPEAtIE2Alfmwe3TxfTPaIeg7TjaEspvdTYjxuUh/OUlNqFhIjadOIGV6HHTPmfc5LW695GQvrvUTPc+CKCglZGmeTMjwFOSfA1jRVYakudFIxTtt4PzGY2PeBdRtsglYWokfWBQjpMyNfOd1BpaKEtzgUZFNyDIh+F2+FXDh+9FZfCY3q7RGZttyIiBKVQmjHTDUcSwJktNXtrBrlSylRbU5k6hWlnsqOVVPfaxRgC7UjSOGXdSbf/F3RYrWdMIzn6IxVglGeieu0fB1sx+Dg8JZ3JSruQ+OLS4M9XsSmngerFFzFqvVSLDKuZsZWJPF4jKO1wqz3KQj69yOHcwL8VQUO2g+V+00k1s6lxl4iXE/2opE8qQX0n2SNkfO0jiTW6ksrRHcr8NOzMuEP6loXQP0XKBlSUVzQvMoAx4GKfTnHODDXEV3pvns6OBNLN77OE4DPBNzs1HLgHmo6X6hNTVt89kWicp+m4q93acTeTbmj7asIr+9xGAzsrzkAM+5+Z+bOPTLoD3q7pEucbL9eRIYhzI+DHWDX8oZtQD6Wyk42KophTI5WaZoCwaMGz1TzSRO0qJZj5nsh3jA/ZoEYv0zufou1yP5HBGIU00QLsHv3zZiApVciuT2JH8ykzXK2syBDV4wWy5qlYpjozrlN0rMF7cTyqTXp/KNXxgPRWDhJf2IEcVLBTaGP8AVF/mZWUfBUrRg9VjL9A+B3+Zexb8YANYSG3gTs9cmbGndn52uWQXnc7XNNbTOa/3aAtMaCO/SwHu2LO4XwwxZC4Snjm/5i1tNppn75mDDLa4C1FdThiPk6/qfoFzFEwRN/p8siWEHD86QD/0dFDPokNXnhVA0tmhZpVofM976yL/ht6IH+1okNN/rC3PB9tBhW7D5zlrxmzb9FO573lG7OZBwfwH5Ry4a5hzjoPr3mFFRs5MxI+pyU5WvlpZRbbLuzifNYAVzdzwqzGd2aZ/zRaEiJ7ppaVpckNzj6RStLvUwWwpFABCnaUPvMkNd+gJgDEuvEIOhbNLhMHT37bycygo1v/KHt0lAFbnpXmR7ivWusfxdxJxwxcrBWqLkASeMyKNhFXLe/EbmLI3jLDxujinALEuxwN4c/IN3q73cLJLdjrCbCVOdv+6PxRM5Td2au9yYBAYNf7bVRkjSPzoUfw+2aJFMmwWfSs7XU6MiWoLuq+2zamz48U9pP1oqcrsh51VQEwyppPxF8bH+ifQLJgYWR7bbxWeB48Yv7qOedLk82BFskExv+kN5zYeWC3yIzlPfCnIUbSeHcAq/qUOkfm5O1FJ+QmofnlXL1Abwtf8Inr0EsZyV3hk9JYmgklPVYQCYwd6sbU9odr3tReOBjwN51NhOCmwVBzqAcn1GimMR9zZCT6bU1XkLnjWw91MDpPdrsGRpEAhbdR+S2QUnOPUjD2Lnlm57ppJBMwN7ZFL6bpZ/cVif5miOvaE0DPum+ApEn33vvlZBo9ibyuUlrFP1r1dmKRAooSXAhFGLXXzqb79jDRicO91GYrTGqg6Z9XSxDfzJEGVcjE1bno/SRyNB4lyqgvq8gXInGweBe9sfcMlAscchYUSsrFCggWdOQiC3bM7/bSF+ixuhXYjOBAKpOgV6Na348UgGrrvqgoyE0Z83+76cwujWoWyz7Ihs52l+i39W1Ij19bvdAYpKQBhMzYeeSGG1OUqVxOicmB49GS4hiM4Kf7TgotEBSJEowJdphnz5nrb8xj+eXmc+h4XmA+SXaG7Vg5rDcXhAHqWhmUojHSJFWODZGpcOAL4P6bccY8PERViNS/ix0zLNIrUuwNgUGjtqlFJQEzBxdY3rvB6bgUgvL+JgDtWYtkPdBqt0+614O+EYPmCLKNZzOT9HWmG5RnlNmhieR/FjrcB+gMHTE4szvAAKrlsYmeFYoAxt3Os8oDEt1tvI2t45j5F6arjOJptvNQ3upd4nrnlLwVFOyWFbvqfmaB62iFy7rXdp3k+OPbq4P+TYGCFsGiQHLbsjdj+xTRFXrAfQlEJ71sp66llcOZenOnmszI4o8SbshNW3YNyAsvRLLZgZbOqDEWJuvhtmBGfLTmkJl7LwubX5LmGn/nV0NIevfnK06EzTgjfvUAHYRH7C+Qk7OOIfVVTdTcgZsBNod8Wc5HHhOrfXNhcVA3pR4j+CvfQh/dMXmPqisplci8RYlXcuQPlT0uTaApTXZmFKTTXPNLrhuJIQDjBVuU4ulf8cGMeAskWsHuSbpqAavea6sL1ARCPc9UWc5Gana1NZF+f61sXGJsycF0R7yfYppkxYdgCuaI+PtdyuTnf1GHjLI0IN+owJ4TSysAmIdgcTugT4pr89RBpnxRG4uVA5b4wx85L6FhXe8KFQRZhPDtt5TpuRe2Osq2WPTU0gZmItLbREleilBXKiKw9C++90Uwqy4ryNo4hyqUqeWKyiOncHzZ4JXfm3N0EdMZd0138y3JDmr/qxQOFnaB9SvfI8B88bQzp3ETTmKwtojtjWmBGFeqJNfBd75Z0jwfzy/3HruUTJkj6Sd2y61csvxaYMWFYQdOU0toBB2CvsPw2OcT8Sqxtutyz/F/wCd7nlc/HfLepR6MQTlxujwrsBu62sG+AZHmtrMkDq8897RX518Rhh7MElYR7HwGfx2k5/nrvuUWySuGZF6taLeisugCjJKs7W2bEtzXhu7NZDKlNLLxRNNee0RDcBVE6nLlZsvmrsE46vtL8gk1arvJNRJBbVwDJshTbKWQNpYwv34xCRW1XUm8x+tbnagxMDeCaePh3fDSwUQvkK8W0FMxNh7a70CTOdG20wHvuAdoXYtEm8kZGI0l0pqXYW7z1YN681DMUO/ujDp+/5zT7YFLOqsWRs9s8V1CTEpIydAX4hahrRWic4wQHYJp60Mlit53j+aUUqOOmb42tRVqbXnFFcIeaSj2k3ICvX2MSxLYiIMPv1dCEEvu9OLwj3+EOm0+11ymnI+i7r9+ELVm0CzRXUo9vHaOmPYv9++93KH9SUaA0yWJI1TqzZs5daQ8QY8z0gYBWKIA/Jx0zgWGitOBtHhnbTzXh94CFRfN0JoaF4Tyvhdp2uFQOMHcMKsRXdUEBHIVtz7qOAFYfYIMS/YLCG23H8LSbvMaiz9QBU3NjRuK8oDl/ho0RcB+NiV2SsiM9yNj5jyoxILhjnHaiAt5l1qDtgxh5qFfkrJJYq5AU8FVGep9VWxp914vxD8JocDCOXDBteaObEdVUstF3zA4sTIYl1shQYPBnLNeP7qmYTPHm3MWC3cXXWKw3jrOJj0j8sRc5rl5JcxgFtfq3NOnUpch6+ubjPwyCYc5bFM/PhIQToQKELPYJTHRhTILOoMuoU09L/Hi+9l5BQavCqEIDjXl57sNU7qe3Oeb3MkWqdFF7ktVvga16ujL6dw1fdL4JMhHmCm2iSpUTTfsazOCne7uhqGLQMxVmGIa7zRzwAQp5ozwIOFeQujT8eTYTy52azB4KqZA+f04SXtSSCJnjVVpn5G+2tLbySub9WknXA/3q+lt5wzpoiSxY7YCNum56D1ivIUUvF0jGnqicwyzfZWDm9NZYeHGDSK4QKuUhdXRsQq+0dPSP9Ij+8H4qbib+RrMItloxuhuCGD3Fq6W1k7OEDkwflP3DjN1Esg8ikn8wOzIFkXfj7x9tNwOo1qQPOoAmVWk9zG9HaEW2fRKowvR8Gpry4gdlv4uBOG1shjv/sYnv8r/7mnzCpIFIimuMogP96ZRZ6bmrKyZDgA4W6tdQ4zxlXxOgwHsGkUdxbNRQnpuo67lrk9K238ji0lHOXckdY/OEs25hAR1wCSqsqUZGya2dAJgK8PYsNi83F68zcu4SmdGrKKuMHPWQbS89XJ0hJOvuxgvYERWiOK4luB60C/Ctt1b22h/OezBedGC4P9B9IGgtBjdPi4XMNvTWiKJqYsygJYmlBEOArgUewY8Ck3Ac+GniCaWZL7pIZFRwcI2WLsM8pajd6n2Tu1XY7Ljnfn1Tij5zr8MFI87+tvghRTXjw9fT2Sv8DFefWR4jRU7kQ290S/x3y9jkO8rgcEHuTx76JHHf5iRuNW2kFMSlYhD41t9A6JCh/+3k+N3ulzQGs/etfgxMaF4kEdVzucPgZ4d1gndvathvlnPEe9p/8Z+Z0MU1gAei05Lzp6U0Mb26urs+/+AIAdrqXq6DAAiuvilOSnP/eCKyHdmaIK9zFORnbmCQVx/S/rEBeSFDD6CZCVF0kWJVKKwHGD5EWdnOAbqIjr73kI94FXU4sZoeZ1zqiDj7sahaQk0vN78meXVteySbnZk1ZL/2rW7AhD5F/+HHczgiNI9amkRbyScBg7y6dSOCQjK2yKwTSbXDl/SRo8kxp7a+8T+TEqQKmCKm0HaHfIVAJ5pTcyqyKrJzuQ/ALC/J1WjUE4jrPjPN0HqeIhMzCQv88R7/KHW5zyylWIugSdqezC2o69jFh7GxiFsmw9Y8fSVoRHpspzFvCQi++g1hFWOCQTPJphYyc6Jg8GvbcvJRKAVn3ZkeJpMVf6DUz6KCqJKbO4ht6goBRKAX/au0LywkJdIpO8LHGZyowBC37SVZ7Sacjo/mBvMjZ89Ci7cbrNtHeaTb9ptJYAMfCRYN/s/hHNAOvlzVwRuxZdeowbDAuQBhgE0eVxOzlMiU07pcZjFwJOwXIw6ML6DUuwEBXaS3iBJPAAam/t0dI361c8EjeMXXTsiz1UtxQtR5K4J2OJ+RqRUEvIan0xuCDOLImYgz+IcNLyH9Zs3aLnAX5Pi0/feao1sjvmBYg6zNerT0wjjpW1yfXh+4yfXDqAV2k1r1qk9eOjUX5IVmlXxPWNVj5oMTxK9HXe670WyWfLUABYVqYEkXtMz6U6k3cxBpnDyAwJ/VwLM6/aq3GX1YMG79GX2f49D7y+wasIJ985b5BVsEb1az/WAVrQvA3xX5g5i2zVWR7Ol5iawKtNPJzvlMz61g+uhDjaZ7nVVsDU6Aw+gkEZu/xuY1cponnotAzPMDfXhVJPwoQPycd2VVQY8ZuZQLyN9mkXuRlDKsu+2q1VESbTSKc5g73KnrD5rJi5adM23K6hIbKEbUhtQKfWfkCnCixufL8f0wSl3kJytskJHf8DUaMinTKiQ7F829zJAEyodZ7N+5RiHLkzylWl4CsMqq9en+OkB1ojKHXlcHzRPg+ZlNyD2wSGMWUZ8LasvdUpJ1UMnmjLhuGIOQMRdEifV/moddatYJBRjKf16XZAdhU344RWV2MAfPpcTggPc+2LArL+Zb0dfvEJj8I9mj9Yoo0rFI4kCyK2dDgaqQrfP1fH88JjT8cXAkF+vkWvpdKwHQTbR4qIaNVNNH8GqPG8ySsaMCai6Hu7W+CPcDKz54I0nPxyi7q+RXfPYBPx9n9rABQ1NGzW9qYyx0VUozgt9jJUbvkrXwi10C7aXTNHfG7rRi5sYDK/3tQZRZwJiydtIcClDDQFpLqQYrKowX3gmBq4Bsg6I/mr79AU0bhTqi8JBiPEinCHp1Rh7bIiXXSDefYSmMYFk+xD6YbImWoPR6M4G14vNAmFzo14irxa7ReMBCdYEgfFHZcHI0ddThtdxApFKlgPwi6645btcz/NcSbRkjyqq0GVzEFZnHQegufF5glJ5dg382KikQmoN8CurfHxxe/RPlup10L+i8WU00LkcKWzFMMpkGAK01KKiAM8I2gIVvGz6tq1EKc9ZkQs0OM1d17+B9APjAYR75RBcO0F53kOjc+MWD5Qwx0n8j8zuiAhoK79yZjYoHzwVNN3QU0nJcLo5wh1NrNGMAil7PyiQZJMSE+c2MTv+Lnlvi4I3oUAyQb0rxi7JwdxFj5XY5AE+V4csHtjkwhJ7XDn7gawiDnROYCjZbGeuvQkEVU0HUSHk6nhAllvt613hiOaYwLbtRh3PRriVbnuQwdBnXMGNSh3gGeOq4iZPOhWOXPndTMl0pwOMrHlo6ggFpBUNkf0J7F1x9rR/vCXi4nZNwE3yoVQqt9nbB2JQOCLba6sYQKwdG/m6kQXsnzpXb8vFeHjALkLq6JxLQj8wTtN2D1VBXdWNZxvZhjK0kOXJXgfdPUJSbH4/MF5/7gQ8Dyu4YN5ordRZIDi9DWBsDm8T0m367HWqPbxu0xfZ1evcw/BrF47CHrB+0yjy6JzEaNy1AM8PyOYMhePhBo7mkfVp7IqacS2WZoqDC0Nl+8tu6KCYUsnB7GRrRXFoSowRbnMqsgvu3OqbpX9cwEaV2unRsFrtaWB6cp7/OKd+TbSCPsza0qCUuPUkwJmH0QwqWF5dvvJ2v7Qz5abFUTcHQ1/uYo+SbUTpw44RVRkm0J/heHMyl/EYQXxed+WKrbt3rnzd2KLvkr9zth92ISc4kF5E3tUw6REp4b/kBzb0d3sSbLep2OEf7n0Rgez3v51iKHaICQcLog0guzsj3KDrt6FqwyHYQt2cV2nCKUtl6HkHJ735Uu3OeQlPIJDaLuGef/qoOR8h8ve94bo8h4AHADysOGqZsRIPEANXh+FXajSkMEqIocLuPJ1c33ttovGmnblaQgvN53K8J0aZTw+H3RgAQYBm6VnY7Dvo051OcOFX1ygaokPBnklUldSzHWYB1JRkdVO7hbP6/aWn+3iB5JHEcZqwSirF9S4xDpsMu6GpzLHEJUAPbCG4y2GUS69Z9JdqbNc89g3fB/jcbRRQoMtHzmacqcxhK83adbwt7HJI2J1TyAJVZNFF6zUb6heMtcCEIXHDgyojS0kOmW0pBbXZ1senIKF6WV7Be5ViTcFVRYG1wvuxNGkqyeXi8rpt7GDM+Livc9W1PTR3mKyuSqV/l6g2WIeNqM0hovKazKp5L7d2rsohSMi9h0stIQpfcKD/k4MZ4njPGXJwggvvkYN6hw8+iWr+s2akOCmjp3PGZ/rg+voQzWsau2smY4gzkqhfpk5jj+GPGILCPs43Kj8hzTCBx5nNfxeIFt2nLlGOtSo2F/xANQfo7n5JSmHC/uriMOHpARWGYfwfikgcSg9H/OzjpdUQDiTaynYB8iquggUEc7PumXybqJxDdmQYfGl2FKzig/2TKUFb2luZ+IczPPr1+IJxuWI4x8Hge1C5UiEF+XGPX5EIIYYnsGCeDbW+bQSP+gVzxNOtLm729Sx4bKtLp+xkMpJjNRhAIajEN4vbzC3gpAG92UJxVFKqdr99PWewUYnJpiBGxeHIwKap5biTwMdRRl5wMxJxZt8jYUh6HGO900spSsUfWmA/grkItfeQbUyKiwjEWTppRPoOEOSl+ym+mERTD6uI8UGf4dbsqFdRvQCgzjxBQCPivB0uebxRX8j2loHEOJEcrxf7YW68rD6sqByNfhzvvFit/fivTEp4013mcj9jiTe+jOIBTZg37l6dsUKQmeeebj/z62pHozLURTswlzcLiG1c3C3xr+A51wBFs6Mdtz5sUWFjBYudkC2U/km2k+siIGr+2Pwkqri/5xspJFwQ5CQ6wYTO9rxeZNyChx1QmuXE6e5QD0QGgd1vzCrZvr/gaYqvALxXI7YTz49Vd9UQv8POlhZf5n3bPDLz2jPkU5rJm2jIJDU2J69TzommvIPJ+mn3Jt3CMUhkQCKB7Q9HhRDAS39/DwR8xDb/r+g9O235mEsty6WwQGKSDrmvOeafWd4l8U7chsBKH4Ga6BhtGTTJvtDc8DvMUCqWZEdAKIAuXeDKtCE7sHOqjelVZU7nz2dlDLr4HlwIyxOr7v7qlqhOmNPZVZHRxj5YMbF5pCNPAi+blSKkHodyuvTN1WgBXzIC8rbGaoY0+Kb8yVzVZZehGjTZ7pCBFuTMdF8FN/nc40ynG2VnNoVe9DJ4QoxDuxGO9BSph6gt+TAY6uN4Uri6fbt7BQBUu2eoM/6EsUB0fftfOsYw8kue/ArkziKJAJ1b5rkS0fgOtbYfQxYfjPSjAHvYxKOmo7o6eTXVBcd0O7kRBCwJkRvV/4HaE+hL7kxaC+5Pb4u/K1iHPqeJKRUZcVMZdWamMHvLl06T1ecnv6MM5HntAYTHgi+pZW22nJKnXCJ1Xu5SQBAn93+sL4S9AE9CUaq3mcQwXd+BuNWUyzNtwTqbJiOfqBmNaLWRaZHSttYUOMFgbxWzvHQiw+DrsDdn9eiAog3vRMJWn6ZAUEbU8WTHGivzhscgZRDPcOOj5v69ftYw4QH69GHs4rFJ9UPHagvkEC+QCMbjj9u5Q8Pt4e22Y8duKVIJKRcr1UkLzvouIqLDtom9OyKnE9u5TA47YU3qQ3/h5SwMDSsQlIWhABWa1u95taED2aKwouQSCt0BJ4nfNUUdAREnEQtGhdv9E98XZnOOT3bkuS4DnPBM9vQEOO1BtDIXAunTUYWXLDpKf0p3L2xukh8b8Qs+n3AbTrWhVorZ55E1u6dhtOeHKTTwc/w+6yBTZT+YJZUFDiUHLEXc4XMMsvjWqdy6UONA2F3+sT/xJepHwPtNoH8vUstZH5ULO0erZ/WNX3d78Ggg7yrmw92q46T48+3bD5E7joksDAGu9zJAjmfpYBNVRCu7ylwDzTKiWNRYPwof8OUJbeIBCkhG1PIrKZebBtn9rntG3Fu2uYcWfTp1dhfhglbkgMfRxt0VdcFHjAipYr5d63ikNCOq+XCmlSEeMIAD1+6asQ7I75KnHQOuVMA0aiz4aCm9emYFjWKm/QMhkxU9NAUVT8O7qOVh9bco2Zm/Ys6tKZDUyfeJBA/o985Kq1GJn5p/j741Ll3gc7WQVaoGtl5APzDV9zKlx9d55PiKXcS0PSR2SFbMHfwPu38dqxvFyk8f36/op5uoWD8LkAEDo4TDec+09sBkAzXcEtSiyx12g1fnsOdA4hmoX8kRCkYj9hQ802iW2ZTdnUWqMk3s5PyAF7Dasm6eDyhFes9EEwsVFDM4CCJKD/6RQFnEacP7KBAlzJR7q360+F1vM76NeeqmaJll9ZviAQ/KU1iCDlaXCTeeRqfTBsKgEHGmJNcghwtR8SqFB3LcnDNbb1H5ugMiCpfgo7KX6kpHeSViASHJqS08thCX9W2wR3nsWCnA4jFwN7yDKBge6e4SU/ckgqV3W9+QzQrhDfGk6tyUkILXzllUX2kzhDyId0r8/esgTGpAsie5ySP16QqR4OLILwi8cBOKTfRchE1exPMZWQhsQJepqcjFYSEhyPy6/Fm0jJL1DuxfwK2+DdKCjygVrbZZAsqZNsqDcic6+YCPsn6HjaIUGj7QhX/QIsm9s16X651qa3NGQzl08edflfFja1RXwrymg0SRuLVVBFbAvlJpmFOERPcQqOXI8dvRntZbx+MT358xGlL2suxeS7VCWoS+T1CP09ypHqDFKdiZBazzvmNzdDBHeZ7oWk+guL+xfwKmeID0GGX8jZgET8xZNXFZgh9klQPdmp4+D64RS5Y3fKIdZBr2hXabe2HVZccpiXyn0iFR1BTLQQkYC3cWxAk6dzQBKlOq1Xgu3GTYkc+tby7GuYe1ZJtT6o9+wepLchwDK4x8XFR0WhavrOJCYrsTsoRoCk8e+/7HrLbj8mUVciCStTa8324QD/fBDQQrQmgX300UwJEKTK4qKwh2MFyesu3tBD9sB9xXtmEUs9cpDajOmWQVOZeWprJj1RveQIFgo8hGMownwBjYf1pe5lmCE9BKoJGrT2pUbWGWVAlLCW1y18j8c4c0v3/HR54SHi0sMXxpbl1XPxJanowCkaBAWLp9QJF4/oPmgpKywJqocOZBVKsKxRtSXNDGdA8GlKbLlKWndI/2GYop36ipCe4PKgs9GAd6WLNF/52YIrpowZ8fBlvNI7LusIEnVHCeYN0W2LYKGiL6SHwSPBVIWtJjscvyB3qZYdO+aVfNjHh3qq7zxS1Mx+CsN7OlWL4xI1+xoATwMYwY/d44IBB5IBDEYwXqz28Zyuhu+mzyjAjKLQlJWav0dX6uHZEnpyDfOi1KXkIFVTMW+SsuSiatTg2AhgwPgpWmIg4uf3CfBmSvwowVKdsRzcP4jI9E/jEF4Ed2cbB5O3Df9Uvgi2ZHYrW/mIwF2roPVptbxAQXfK2zq9tjCOpdjzinbFn7rpTx1corIwGJIY9RohLpWw7NK363xXM990HWsbq81KUG6ndzvyzg5F1p+n2/JHSBicpCO5aN4CHSg0pvORHqLrTe/+NTKOEL3a/coWprNnsuD4w2LK5QG0KZzR9TkvmZ6qjVzOm0izLT5QhDQ0j09PvfekciuGLWe10663GwmplFmJ2EBnKiD32UoJPbEIrxbmCJHSu/oWP+iSk0JoP3Y+TS1zpq1K3pz5e1MP/DD3mVX+k7HLxhfNRUeOCynU2TFYUFZvDJPn/gRUJoHpsaC29ZElEp8BOz6077OwVuvTA9qeRMPScBLZAHxDgw13dhcg7iCxWNC/asiJAhCtWrgbB3He29GJ3PrkrLVUc9++INdBuBrw0/c/RWKxno8RLTLxPlZSrEUyP20VrXVI90FGxRjAqzF8rTXHm/C1wRHuv+r+PPCjNk1U09HYInapSWCBbca8Kt9A9kpV3ouFtLCyYbsx/S5wIbZ3TTinWykiFVSStwzees07C28B96Behq8urY19ZTenDMaoYdXSTXPOqsGhXbdZItqqFezO/uQVVTgWY2PwVvlE5g6xDboLMmq+J6vloVmiYPWzhudOoVjVsyRh+quMoaC8e8Rfft7fEXftMQbXBaWucFmz6pZa+NF/XswgOZJP4TE7T91/JvKL4WaPrPxs5o3Ff023kD6yv1DqxrhI0n5q1nqaKwj2mRt6NJyPo5QhMDfPe1ANdua+J3vBh7Xmg7CerqqlAoSgPCYE0+1j5hPg9qIpPe0k4EPBZPX9xC58IO71LZUnP97IKZw0Vtw3KsV09XTNSEEmG1rjQuBPQisus6aB+ftqjATcmAqy3RoJyhC9hBECVwDpoW7Wulg+U8iv/lUbmMEGxa55oqFsKFhncUGJXRZgp7ITubEH329NJdk3MrdPXLeaV99dW/buegq9p1GChVDHFehfSNQ8eEXQcpUPkyqDTtbekxOivF/TeQBl6pJja/YuGf1DDQoSLqhpyVLmIw/tzM6DHS9eDOmCAbHtsjG5XcKqSX0QnT3N+E9loEILEZOC85fdnmyIb0sTfCqsYI3upZTdE/8lk4iubizaeC6rY7MrJDSZwO7PQLKWv8LM/rReZuEaylAiJ2sOol3oD0RTVzT8utaTL95PHNmBj2Sm3ovc+lnZ7do9b7UGzAh+Ir5nmHyoJKIbqPW8L0nDsxFfuKL0fQ2HvokdxXFr2JEPNH6oG7iV59qXr243tXz9KjVLknZ5nOP+1PJfOD8EdmFk7DkMLFb6dHTZfEJ7s1gLWbIUeUnJIT/C/CjDK4pdBEd7UzvGuJ/XSOf459x4WGjLH5Mt7Ee0ZjEv6tpWrim8iO8rdAdTRQte8jt0jlMubt0OxVDiXzN6KXgfM64xy5XglGg+vyGeZsNOqcVjlabNzzjqwNcf8FXTdSP4EgMy+BciRBv04/jJVnXOw49Ps7EjtJShXNN5ZlpdQG1ZO+yVlpvCbZSp4zmizUDtwQGkfsiuVdxYOSnNa+RyVBIxIrAcN2jsp30N+LEUL9oP8eUEIj5ajoD246/LQKm/LpQbz4co/c+S7Fd7wTdz9WQx1ouacdt88b22t7QC8VnScs5Sfwa9F5kvtx7pN3SEkKurSaOQFLPUSaxk9PRKhEt7nK5oBzktwKoI7uq7J4eVh7EmZ4TKfuSbMXY78oeXI0/GsLde2AaApPgwpd41cDx15wvmuYpgb46FgKX4t3gnlNAOBqEPVdOqKWFyITxHPhIzCuKC2/u+ZSPWARqa0iW0nE9q5z8VeSykkBXwzMLP9plAjkTaUFuoJyiL4xHWibeox0GKBuEruG4xVXEG1wcJwVI5f4HChEpkHn5DzCn8eI4DzjLKsrZ3uUYEQUXGI1B6vxR7FsXx6CBz5lTfAWXbF8/EennakLkSXCQMYLsUro0xk5rIocH7lkuwbN5Mw+35nb8LxuSwT4wMLzsDGma6SLyfv162xhsWv17WFB6CfO1uz5Roua3q5XAUjsPcQfVbe+3krElg1pOvcEhhy701qRted4My6ZvgxGLLcTeSs0r24rpPYuuryzYO5xGqEiPx0CySwqrPzFtxmhA2/BM7zfcntGPSJ9FOEMjFatgK6oQlPd0kS5GOZ49yxawBIV9+yDHsKARrCy7A1m+P1yKT3Jpw94D4XByM6zoW6UihEmfNJQvGfQ1dcFwWdXT3FBms9U7vh9JaBZpdgMMzR7UA2q9DH39ON9x1m49UYcof9qpBKDr+nKtLn/Lo44HUAufXINVY4CW6lEVLOzD5f6SR+oCOgIXuG4Hxa7i1AFm3MDMq34C8ZQa6xbwEwndo0aLYf+g72mVbdhHCpKLf7DygaC/Aby0ho4MAW4YKTZGczE9MAibHrbkebSJH0flNfyWtlU4w/vJv3YhpyUNVn8u1z+E6ojpvzv1pGvxhO9jvnWDF5O9YRUuXfNMI/qVqdKs5chyvw3ROV+l/yLMUjgPXyei9PX22ezdGNGYA+7f6y7rvj7DbjH0cjFH3va+zgVCB7olWxYGpOjy2tULLiClNe6ve07zlgExq+HADuCM61YkqlMP3l1hyZy4UpqMnM+oV3gR4gT27omEogQ6JJciJOzALneW7AGkPORIsS+FdEMwuMnE4IwV8a9kh9uJVTvMxqz4NfwPczF99K+Ynywpi+3wbEE9KYXcaqnk7POWDSfPyjxrGvuHC+MJVCd4idi/dWx8TQT4E4Pz3Ub3ZU9ukWEum9oupnCgdVDHcfJarfeyHUfs/a8hysR0xt0gvpZx+PNsxl84/Py429sJAesMmTvBuACPimFPJjmhlVWvr2IG+0X+nIG2TZ1Mr6wpZFBTYfXBFarDFsbX4mRZz6viRzGUqKwyFBe2ksclkuO2ZYu845mZLApn9no9fe6DgKe8QqjnmUlfHSPylSXFaBbqrh07YlTH31bp4GjDbekmnfe23ee4RXXHKqJY7xdJzsx+bJV6M/yhJrs41TlsqZO93yqXLLi9k0vXPo32W9mzOU6xLPY2L03vypfYLUReD21tnZAlD6zU4+V+5IQUls2p8sbGoWwGF118KRFv0AIwUDGxUwllcest4+P9VTxGEXofGpUZd120pOfwDAR25Z98MG5vGhGLVocFIomHEEH4onqMfOaq0QSiw13ISshFV3rJrnc2XKRjTTXGUHhuxovaukC42TBIF/XPvakjo+AztS9y2rooRvV5uAIbrtP95ZXwmx9Gn/9+tuACl/5mHxBxHqFYUtNgS79MY0lUBJxPZVavXedgSwN+bHrBv+EQ8+QTbsqDy1T0/ThGthSWUhgwa5OKTFcd9M7PqxSLph64+AMPd+gnAQSh4yxcP/hex67ifPRSOx7u44O/TMw1Cv150QdzV8MCwrkGIPe16Z/Vicb6rzY4Z1vEDsMaEoNhvaq8MGnCHp5Y6GsA5zVycjpCPFMdJalFdLryG7eFaMiKvypf7lyiIRqq4mYGW/Muh8M40+NewLBtyiGmA78bEIzO7YxBbkVghm0x8WDdZQcbcnSl0876y+bUnV57KADLeaFTSI8B55WKxojSIynr/hWc02Vu5Zx/Yr/B13nWSNJrnjXvACWzmRBIb8BSsIS2H3VYD3sHWLsRfZERWsifxKHe5FRaWpH2b1cjiVr7xTkLsVZwKQ0GgVkiDc5C2fPPldDTFKbp5gufDAy5+0Fi
Variant 4
DifficultyLevel
622
Question
250=5000−10p
What is the value of p?
Worked Solution
Strategy 1
By trial and error using given options:
|
|
250 |
= 5000 − 1047 500 |
|
= 5000 − 4750 |
|
= 250 ✓ |
∴p = 47 500
Strategy 2 (advanced)
|
|
250 |
= 5000 − 10p |
10p |
= 5000 − 250 |
p |
= 10 × 4750 |
|
= 47 500 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $250 = 5000 - \dfrac{\large p}{10}$
What is the value of $\large p$? |
workedSolution | Strategy 1
By trial and error using given options:
>| | |
| -------------: | ---------- |
| 250 | = 5000 $-$ $\dfrac{47\ 500}{10}$ |
| | = 5000 $-$ 4750 |
| | = 250 $\checkmark$ |
$\therefore \large p$ = {{{correctAnswer}}}
Strategy 2 (advanced)
>| | |
| -------------: | ---------- |
| 250 | = 5000 $-$ $\dfrac{\large p}{10}$ |
| $\dfrac{\large p}{10}$ | \= 5000 $-$ 250 |
| $\large p$ | \= 10 $\times$ 4750 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18kYJ5KQM9K094JMyuABcNlhEGkw1TtqyQVoIqPE2tRvoVJIR6eWUeX/U4RHzm5LzVump/Pl/k+UXXKxcsl7uUA1P7Dgastm0hdI3CaWXgk1+zXelkMaVzFpF4WOculFEEWRZf8x4u6UZSMyGfWqI682Mo09g1fxOL0wkL69kaLQ99tvpi2Qjr0lkU6Qp9Z/pW9cCB9ncsXd5GUZf8kmIrDBXMYW+PkCpw/X84gvdW1FyXH+MRyVBipo3Lr2ZfhYdCBS+aPPandAx7KZxhAiINeEqVb9b2vOa0HFSOquMG7r+odIbdQWQF/dp9S2SnEyb1RgXSO2Ny7Npn2ssOGN04tVIXFvFwMl4UkHAa+aewMzNwMV3UB4woSPaZSPtC9I+Fa/CnVNt1gm3HtWBxoNaTcoZxc1Bz89hC0usDnBtz2YTbJj7W8qP3/15Ggg0x9t01ijMHunmLMzECW8O+w6hJnTW4gvALwgfW6nrkiOTCzEx/zftbxO9RjYa9zwc/2EYnydvR+WSIn+lE1x19zhisrV+uilemscKfLznEE00XCJx35bSKmoRzTyOQNLvHzMt4QI+NJHrn7dEAfTAclQm8LX2DXKoG6+mnOMCTxqjwMWtjDl2fZhElJcKmGZ6vgMLF9dxfh4F/OzU6ohfHiC40A5MBCcDfbZyG0NMrahzjx+qNcCFgMjjXPBVcNoMu0R2/UXTVG8XkBhfSkoaLvX+LZzEHEaFyn7YafREp4EgUfcldqKAcIGa8m4dO+VXwXKNrVwxHzNm5XFeibRm1AGrk5t3gEP8lxx+c0uXSOJNYkSjZG6USB2o3CoQp9A82lh9XvB/r1OBKtnrcyf7HgQ2qNYjG3fWReSTosCTljQtfUFT3rrG4fv29eE3NlziTjcAp9ATlrgWuVAPCPGk9yz0ja8OXZaAJzUD96jp/pRK43B+zJlcM9F7gJVvcJpqiFGtMNBHvY0gjYYKnyw1xi28lGohdhxVkB1uYxqyjX3WA26ZFXZrtiVxmrpuOJqVweHB2PHhDv4h8XOO56lUSHbz05M5lkWostUCR9I7RXuA02Z1wuKeBxdBZZd5vT0TR16nrKrNAL84UDEYLwHXfGbKCeHThb8Vh2rhlG07ySZvAJTTP0qkozy3vH962d/YxDtAoH8HjY/W8RHXxYoLDFZ9SvajSSo96084/Qmpf92oVPouDO+bWQLxk4MtDYR6REErwWzAdycLIbRHmmYlgHHpGnTXszfGcOpweJPXbUSU47cy6gP6NTDYWy0n56N8Ow9DKiOwDQ0Hn3dMm/vh4BVcAgDSPycqgKNEVm2OjXkSuo8O1/6d0/EimHd8nRVRCwVxpJIuMNn+G+zkbbES414ACyXYkdlv8UYAD1Q/xR+9gLD0deHBwKG+TXRnb6Pedd6/BoUyjwzw8rwdF/tx0zcUSKv5lKscvTfz1UJ/DLdVQFjkUUHDrmv+HWQ6qIjMwN+kUxGfv7JfZIjvNZs2ucZy2UznWtiCLywwQALqBrFb3tHpZXwtVQ69+vB9M4Uo03tkrU2+P5H4NPZuvIkq2EkaYxQi9ImIKfqp+UFNPg5KQZ8Kc6IZCPUOusgcsilmrGDdB5vrq1vxj0/vGmU8BZ21Zya3/2ElNq0PicIWS6wMzpcHEHkhBgHe/Z/koCAfTK+o4gFiKoEzW6iEH4QQVZU8ulV54HKiOvF/Eil5UFWyiGzRTeDBq+GPwckRpznKaYf0NC8dwISkri/umLSXN8gsyeg5UkojMhzD5Ui12Eu6kFPYvQjoPBPubcnG03l3ZsEq1ybB9REow3T4wEjyVCZz9dXVgaFwIH3Jz6kdHU4ek7a2XCCi6fZKEjhEdvpVErpa9tF9NPtlHktNn0TPln9oTpfZkzadgYD7QEK8Td5+oLg22tTp9qZ14/pLEDpRhpJvdU7PGH0EulEUDURIqvFvMKJnh5qO/63BkjCgZ1ZxnKeFo3JLgbruYXyZ8qC2+4B/5y0xn866kCtIG7aFqczRTg9OYxKOchU33YtfMZ3u3tDsqkEWHBLDUXcBmb97MCZsdOPH/Iz9fleMYIQgpJSX1UmN9VkK2mPLcGa2wENQUa7ywcYzSkrHpjXCyZe7YFcpnCU/9FCRT38p01GPv7AhTSSqxYZ+7ncUo1o2cLAsDOW/XxeFOdD7JqJZnEqwW9UHzbz59Z7+t6xsBP3RmF/MT5WxQlwJvZU/Q0q2j0ubSpDzZBkIuzoxVLFU3aVjKdIMFDVjPfD5ZgOoVF8eIh1Kzwd5I6jgZWYkY8zl5BljcafKjalefZbjSqmTd/hQDOV39EfMfYG0O3sD7hLgQOs7jrGNnkwYAKW4R5aV7cH3mOO8zQdueKLs4GGPymw8w7b0qGUN6LD8g4/km02VScCs50yM2Q50ACOXnlCfN8KKZwnEu4ARFgh1xlYHKRev16vXk0qU5l1Av4zFZ0O2hGDZNg1Rlg4+clr8zNNyJwbY7IWOanFxlExs01IWFz4nKds18f9eTq0V9dtrqUOsAFQ91GaalbgfVmauqUSCXbfspmy8WrORse2MGaqGDYfvLXMRNNmfaqTISyRRWtQ/MJMahkLvJrk7ldHni4HeFtWLCj0AFL/4PBtWZ/Z4xlBq+AkQphdnhg+BMdncho3AmVHzjMXAcy+Cy0VuBqjdQZsGG72MFNnKM3nyeEJTMcBw/f1252/SOlDupA43l9aWZyXlMK3P4z7eXjhAGIlVIvSpTysTeGEg1dfocV8quC6StgIfMuJtF3Ep8f0N+6a5rZ/KwZZlzQehW1MiJnCFHfamGICR7QdYuIR14spIINTYkGZYJvW8x9W98a27WcoqJ5ev6H42LeIoVczBPO8bcOij+PWmlqfkuceBXtreXbqmK4swnWCenjCXajM9kY8m/58r+xzgdbNlRy3X0oisO5koUQLMLPbrPb2UqosBKsd7yWLteBN2EvD8/wDpc4VefLhaTag3w+Uo5rw2h0Y92CU3V8qMBDKNEoa0wSE3KeMeu/SlP3nklndWoqv1ZaWXaQ90jxg7XFE2p1ER+YuuKzGcRAO6m55vj4qR7eQ0vPwhIklGAbDrbhko1ft7h1N1dnSv7xS6M7t+T1a/iUmzE6IGyZJUKQw6Jq4v/LRn8ma+qSCaYtjlfSSn1B+IEaQpK0PLtvU8pGPUkL+vsYY0QmwOK1XAkp9f2MgggyRbI9xQKYlKRkfGmfW3n4dk86ezcvrbUz2yOM0Hs6mFFYm/UZyNz5vBEOMnO5vbGi4scXTdId8NK8znLaup2FWfq/XraXNIYBWZe5d0X7mJRDfF1BU/uRwWsEFz5P/sfi4DAusIqNmCPPyOYnQy4+up8C6iFBP6YapYseo6z07wYxBqk6Nm5ifkICfcnnQi/nkFAsF3I4oI453t3REfR++eiodoGk7Gizqlsg9MPJWcWAdr5nBGzSHEhQLE3G2Eqhau2aeacw0yMnirYtdUe0EIDOjhPdlp39THEMq5gpSM/rOF5FQ6PGQZhnS7aelrZ42Fmp1bFawSBfJ7kT4+gKaLiEfQOmIojve5K2qFVXjm1m4uuC7BRI6q3lXjPXo/Ewr56YZlxO9poHKqvftC/VE1L3sK23R8cJSRuB6L7tbt2ERfEhQ3dIb/KRCoh0HMvmKCKmpzcISmCbho0tzW89yajOgkwXG/euKMKB1YwsFKjZhFMOH9GCihAfEZ1ArS+wNQX3z1yLcwMJRR83U1K9brmwJbmIRL+jppX+G3ApHsOyc34NzdPauHNytGxD00gW/Ab66BUrOHK8NZ9yiP4g+GTlNUlLyzuWuycLTv1+id/doETnCeXZG3730UaRD5p/oWPPqn+JV8MRhFaw/5o4G1do+KNG+Hr7dFgQWigd9J8eao4Uk4hjhre2ijF/mCZaxEX1hGaq+IeN0c7SYqvawriXggTjZdNiE9LqXQS8YLN+s6pEeGU5Iyi9VuXVvcMZVQh09Wxpx82F0MQlmDdvWLsHlM/l4JFfeonuX8Rkzc12T83eSQV8+/L6n3hHY8tJcsQLIIiugAkghCdMCrzmb1aTCxz3XTqbntEIjPy0xKviubCKdn6a9a3HnaXls0Nt79reLoZybjj/twkIUo/Dg29CDf/t9cFri1nEuYWBGSNDSRR9rriqpHrPA+7mwiMAmFRvbO4NNdkPhvMdpyvBo2OlM3S4bzF7hAJg/l49kYR0uVLX5NOw++m0k8ySrSqBkUIjBK89D2CsemIkuBuVAL8WJQOUvl+MAT99i1gNWEWqk56PjVsW51y044ltLQcV5fNV0He97fmTfRFTJt2tNTSqOSMfyxffR1wQJflTK34PZL7JHUl3kAD5mPtrBkd/fcEuqByqftADzJfD3Td67CoSxuZuFKyUD8WtMkJYUHVKdMdMGcZVQb8l491m8+cLq6nuPIFFP1oCJJk2bWB4sr7hLUIuUOxJslUGA+TMaS45bBVcB2wflxQPOOck7yCMdt0OS2xA+4Am6koX68/3uGz8UxgCIrgv6A7gDLMWMz5MK9kMakUHVMtDgkXnIFnPV4hvgjbx8TZLIw2P7CTUMaF/PGJKDgfRuX3Rs9/uPBWCbB3aq/pczcb4O5e6j67W8/GDxX9vCuu8ovJDrAUBUP1FbZ15C1r/s+RW3wNUttKY8G8UXqReOnHzT7dJk227AIPwHKC5ur8DQpgL21gdzTM8wqOXD+2pET90eTnVOIhyNDduqlMuDAje7TjvB9sa2WPRz+QjcMgE1WuBSUDzxcRSNzD5pvS1HQ600R9ll9yOZ6PfEZeFfydutukBRMuSjuUa/Uvr+zDLKxInbqCUviPPC7/3HTqnddHoqkbnzzgC9hIv8lDZji29QFVLNSfQFwZvhPn8mSawrfN/5RC5w7SIrjqJLGgV8ZBHf5y39gTRntkqafEAdYAIa9234NjX+U7mpySWbEnS/RMlZRFKh7CPZKn27uDVr4FswZDMd2vSIeunRU5BBoOEP2aMwdzp+fQK0WLMnmCF7V6R5r9G6s5Zj511Ko5mucRupP7AGb8d/+gSZpS/7baZXQ/8C1EkxJP0ObwV7DoY3hbZs/zmyb9quFJTvwCL49tqnsiaPsuEASu9KE5eO86Lrn2C9u4ewgXraiiEo1PfewzWwbm0j3HqdKZh247j8Vux3H085LOvHCnPOwTfo1fdWix3LfogCSxuHvVLBdb7DI3jO0HcgNVEqpdVLz2pRq37Cy0zE+GwVSlqbUK6WSyI0YORti/DXNlvsoLMBK97cXQ02NYGi71iyZR/LoNYOSHYSVFeRARCd6TnJ8j7pSzt9fihFU6D7ovUwnMTFHFOEoViTrO1TkL67zTblyBee8PooI09UKELXwU1GaayQekEhOYROvt5KTQQSGzFWIE/IxOAHdLAgp/vJw9p+qQCF1F7aDCY+BuHoQUIGdPvNOChetnZV+pOzZDRj/5pZJ2N3LEnrUQG7TAYGBxX7pKXfbYR0R8tQz+0gwfzb0hGSrL4ycZXloVci/GnWVFlkq88Dah6j41VYegZOEyET3hxzOv3M8zowE8uXk0kkIiQWlVxbUjtL3jWXAtLNSVeajiZ7btpMEj7LJuKwYrV3b8Zj+Lpu48modsl1PcPiaf72C0UQdY+oyaTB4H1yEs65h2Dl/OxuJW2pj5oAnQioRHH1/u+0UZ3EKKEgYxwvXdPM8l6BXRfpMrXki/m/u1VtBgwqcZb1JLGW+XSmuAue5F5Umed9jeqfxSo5NwL0yMlL6VgvAX82AC2jpw1A7Aq5QFh5o8BJWxJUlWDpVkC1e5mH5AB51dJzvpurBq6gj2o/Zo9KqDyq2TwIeVFJ1tI2fMQRGWhKquNQQj2SBMhafxYjLE2URkCWGrs1cyLASZUVJP/8VKemlLqP58aKZHtZ9qRhtEj0yngvy42YJl1XXNIzmkk2XE9iKSca2JEh5DxIvwSzhwJFtzElDCKSkYVID2utrNLLz6d8TNY4Ffepq0eOgieAbRKiEUjqOxudxv7vU9e+Ggl3c0bwMvhzHsRdINMIi394Tuppp39Eh+eh8xVwcPBZyF1n6hcY/UPjLDH0beo+BeURWuhoCQiPuX6UcElSP2OLsgC8t8L8v2U3yS4eyeLu3oMSq/kmM8fZD7VLBaKFYPh0CuRw49aU8026hW6mk38GWy8txDPFfZqNzumz5vRfGtDZbeN7ZcZzTYoTTLsvW23GYjM6TK2l8Cu5xTF8chgJZbWVm8I1931ZAXxQPAYbGa4UQry53cnwNGL8u5yj4fSCtMa+3I/srv7kguCE312vtlYtwS8iRyHNV91cemkEcILseIJlXFr2eCxJw8RvPXUQTqJVgWBfb/9cLRdxD8Y/cSA7X3kl4yQvtPBswRq5r/l4QimQdyH+pSngv/9t8Y8BtHyfoJnBl3TXLYAGjG9IomKBFQdPsZfe6+rHx8TXsDEfjOPqxq9Lwj2rCXnE9k1QmB8457FwhIfVhwYu58MQiWk/7/7t0xfbZ6Z22TkH0KHlKKExTvXZpEQ1xhjIw99eiKN7CG9Yp9TjNzY1+15Pt/APPW+ZPJ78fVAEyAdRF7KbQCH36Q1djrCMNyHjL+lSidQLcjiG+y8tshvAD7HpawL1yckpcp14TW7ZcZPQvSvcr3K0kP/qbWGoohpAx3nk3y2VpM8Ics8sNugCXqUFlsaU1Z0U6kj5SzZFnqF0hjt7qvXOpH3SaZN8ovBWTFIWxg+T5FoXhCUZzgZ9otcnzkU+ko+Bc3jSm2ZH/lC2BIpuGXxIFVKKrlok2WBeQT6VN8HTYrGdU8mhe7MRDAe5NY3fUu4+fi619Qdef4SZBC3paXtW469O79K7i71T/yRSCDUytrpLA5bLEUoESJ+CakQPIeuzSvG4cnw7MVv9/VkDCbYBekw3KxjAfowbxlonkDlUt5By9LYH/NM4sPEdHDH3qkyp8qaYNjlqD4ei/ewChFbfL2JGqoKeXHQ0ud2ItKyJxcZSRUW/YHjsRqvG0N6ebGziIYNRwMC2kdmRu6q+Xge5CBXLmTBZz3OjpEO1ERutep3fRiODRCGzQg2jFdrHhrU2kO+A4bLtCRWtBi4LJ2FSFfs/nlEJOOB6Tg/7YfmLopS4WQM26rcpfGRSiknybAHOdG4W/ecPDUghBWlWgco6ilPoPl4AzBhoe9A+NEldjNehKlb0UcX0Hpzo3eRJIrTHj7LlABPMNgfedp4PKDylo3UYlvZ+k+u0m4as5YfBm/a2bgMIPecDt1yWgwxvS1HyO30RTqR9OABNc+QlBkKdP1GRMz/zjNZG0m79M4mMldzi9BjGsvJjvARHgCUpETMJb1X0sj8GTSg6bJOdHeChllgfAQ7FMxvwJQeVidYAUZSAPpcNb3C/Szl1N11i0YAh6oKoMafroFKTTatFI8QwKhWxZyxn8PSR76EsmLuy0HoKo+BhIMRmEyek6+7bjrAqBhUBcSiVidwHMOK9GlbKai+xYTSqT1TZnne7/addVkPslUYcs6INcCSUZpkqEItw3VH6cjAzD/x5tynMRNehCg2kcmM+n4JZ9UqGRSImOwGhFfi3gWSOWzAnSSMKw20eM1BG6PQjR0//JyBLYYVYfZ6Jcr+lPKbG7UTb6tJXmEp0BUC2SVJQ78OQ3fJcDeNqO2QxIZQo3MELuNGNMGyr/FLOJnieU+oVubWAloNDoAvlmhGo0ridxoxcGkZwKpoo1ThJyJB35017uoOgsVCqD40vMAKmH9iErrbw1807Ag1htcQdaD6ABeQ07W+K+1PX4sAzu1zcVoWJ6F1TgkSjgJehRVNadF8HQzsVxlyy6xq2CF6OeoXW11TvGSerYCciui+EUk++9xG+1AJm/wpF477d0M8qNjyze4cpLkhG/iSK/FHE+E5f+ZAnZg7N5R0ojZC4rYmeeAoSM8x9RZI4ATpvobZQcdn4Jt266G9shaogNjy3enyiu/AheoD/0cxOSB/xyn9jSW5xoU5h9pvJ9RFMO0HZGkN+gnyCGYg3goj+v6uPpsU45+oZjRo1QXpUUTgvneeKs7KtDkB5xkKYd1zPh79dz727nIEXu4kStQ6odMeHhs8VLhdlMj3D06ZqTxb/2wtDAhRJjTqqfhhcXP1kdtqQOwCOTZ/DXKBHut8XLP+zibq+LgzFVolPI2FsGMbOru/M84zZU65Q1pC95B0678fbQdhUzb/hPdNDN707V5iTwyrKbuGbi1+FHdRgeWiQL+Qfz7EyRgWvGtcJ0I4Of6h1P8g/c8fksIIunlnT4QMutiCmuDaXTPDrmTtC9DMOsFl9H6Gz1ZBszmL4rcZLG+FZIIS3HQSQCpyJipUQzNLSpxvYEapt+kHvfn5CjUbIDy0J5m1PC/Q7NJrGJg8vZh68f/jQogdkON5K70VJaOg54NXrIrACzb5Fzj0duDaye/6l+vw10wFoBYF0pwCcQdZLwUqZLgbBKUxSP5fUnSgDxusuETrCmjwEwKkTCWMOSzG+rtlft+JyCq5odfrryYnSr948yShNP12DRvbgJGXpPTzkXT8zY4ZPy3eOLIO9siNFz+ZoNkOF7Q67kBNENc5VToHWqJou20HlTR1JxFtbw8Pyif5XBwXRhkISrzGQevVPuPSHSsolprtpGTRyLO2S/ei+o6dsvFd2reeQD6pMVKk4jZM4LrXFPHgbzrt7XWDdsf0GLzL3fv9YFaNGzyLr5hqPbPTkCMfF4TByH/0BoDcTUq2uIdmdEMZoxsXvdQuKIBH9c/i/hDGJLB56FtHy47PM3VL1IffbFnZ/idw0v6JVHGug0XDfMKn+sODDHLza6/usDszx8Hxusp86lQTwzOgOw9p5lWTZuqnr4VMeob57YHXKSP3rqUdvw5d7em2gH4T+LHiN6RkaybHYww/nieP1IMAQY8ybr3N36OITOBCgJ+5e2WBNqVRJA7G0RZYBOoRaoLqjZ2MYiiHmQfW+lDWetsWjdM5n5IMYpnNpUa1D+qVgAknLYa4uNQApcnIVee22cSexEqhH28gX2XSuhDQvwha9owfA32GTlSfOhKSfJtk0ETH0JKlotBl2XfwAO+pqRxsNJisrsqdP3ZZTfc3rXFJDiGUnogKPqo+4QA4+kc2i/iCWu8MEao7d2IS4ZZVsIKYTlpRmDLjjdQQ2CnB5YLjP+dUqQRbsLWivHDj0aQo/yasuUThiJa1PuFg8appEYbnaW5MDyCB7b/OaUIet1Oej2hyeoqyX3Vw6y9021xfAQdV5EchD1BGeoAAN+bjsgWBvO/Ec8DfHvwFvhCPMzhmAz/hrhIxF3B2WJ6rbjZYt2Dq3DN6IUedTgzSh2wfnnyCT3ew0sCyfnSMxeHYIJs32nZe7vyLpisFMbBVmP4piUsqcKmGDkKWVKRHppZfFtW2XnATV6qBhPBvrM+cQAi7YHTxKobYjSd+2Cr2JdvRtmyqCCQa31hSQrm9aRTySAPmuGsCpWnO6ysBGQrjGEBn0uIkm9c9eCO2PJpGWjzgPq56tY7S/wxvRH9LGm7YfqqWZyk1gsaFW3BKeI72Kue7iXlLTiqrfxpa1gU3wtuu20aTen7MzavJGaqLqSxQE92cuCwO2ZMRCCNVD+tyyYFIKHcQCvZUwf4kbjoIzQNvU6vvxOxX7umTYeyg7PcoNCEtg5Z6xqP4WFShhaTIBdyPjNefKhax4h1aAJnXKxW7IDREZN8mjd2qhOkJxfjIeB+NKgPfc9eVm+zJD9GcUnc89lX3P4SViFGhsxhScSQX2ogB4QZSGlh4SO4e2IiEyJYbqYDQRp72WfQmuWjd4Uc8TwJoUrjGpMQJUTKJo1akFB1zZSKanTPBIbwKZ1VtwHILxjrOserooMm80lvWo97QNQvzwc+ArM4V6ZV+f8GLQLXHvCjnsjkanzAh56ZX2LI/q3WkBHP2fkTyT7Wc28oixC7hFL8jvU3TU+d4yMcTwkhJq47hX5loIYtsaN2hlA4WD9J+yNUSRZJnrRGP9yAmTM3xwCHwvUE5VehQW0PY2vPMPXlaKEkDkQ4MULUvWoPeAOnl2yl4+gK6hCchpz8WImgFuqcbGkYlQ/qRL8u+cXxeQ/D9X447cngzQvMaMaIwdQ+fO7jnBBfnCDsUCHGsxBfug5tALMSz1A6Bym6UBFc89UsG+f4EMPDV4QkyxkblcpEAaxp+ll8b9webgyGn/dHxU1tC0ZIR5zT9knEkfKNzxWbUCLsdQDzs5ksJJzK2djjN05gQof8it45Jmqz4z7ZveuSrhWOOD/21G6BbOVjdmTr0SrZO0gSM6CxF4nCCO7cv8AXO1RwNYTDno2FFPmw2YtLlonw6J91vKv39AH9q+FHyZSMfohaI0Ico/k8/fQLtKt3Ponzt9LJ4rnc9mi6+BboA+i5v1w11f34sSBYeDvHLvgcAScdzIZYdHhD4O0GEZ7jf6O6TCZEq9a4ZY/K3ncSxjtplyCht4oPsmltKg5GzQfvqAYowr3WHcwwPTTVsTBcAPHGQrb+K29qKTHTgwyfpvV4tsgWiPBgz/4YcEJxsR0E7a80UoIoiXmkio1vD4Rr9sox9GWIsWViTnuDJdoZ1EypldWSgxFYwMflZqXAJVvhOxuELZTqrng3NiPxd8/7Fh9LY4OMe2BnOArxhsF1DNiB0I0hI8zskkqTHX2Wi89LqHES9Tf4Nruk5cHLFZkLF4dPcqIHPlHKScbk2pXXOduuGp9JUF4d3fb2F7BAeI8SJAKYJrvtKfipVQbDKOv+kRZqmVqU3250dT1+SqFpwhCDArC7p+fvIvvwnew1ExsZIR7gy7DAnxeeCLuuh9zoHl/tqwrg0eadAzGW4/CA8zkEInYkx24zMwBBBVQyOHQOuXdIhUY20pz5wLtbkO9tHkdJVroxlZuBclOg7rv+K3L3+eYakHFpp8hmvSwSvXHHjR1VIaBHrXHCK7sQJxpSeECu3ootOhrB43Sp4DXV+fy/F+ISKVmG84WY3r08oiiqt57f3WbkJB7/+ggeA4Gh9qkpYdSn2LbajKz8qE7ZWpO7Gb7H6PJv2JqLolXdLZLhUStsKuC6V6lUtw6T5irvkc+paEz0Xn7v7E0/FLMuDvti1pFgGsfdGIFwAePAGi7Qce2j6hmlv+a+pOs6VTUfq4+lt5R3iP2Ep2x7MlQM32VVHRkCdAoP+aamni4s/pqvHd9dkTSPPUGQ/tPwqHhLE+2PhPxZaBM8M2kRNzdWqa3JVSzlbHVJq0wpuPsaN1vNh3zXGBYgzeSm+u6cQrBcM44H934/YZB7VS1FivvBe400MPjdv/EnIYsbGhwhCRH7jdfcakN1oY68dB62/omqOoU66ns7SENd4/r720zxUR9S6kSnIf+CoFP3JjHEsDBcyA63McFrdx/kgljVyMbdIfySfuNuAwfREEdOr5vPekebLRDCMI0fpPn4iS98Dtl/cukyemJqyDpfKeadqa/a9AJEzJp/JiiaK4vHWt1mxklZPu39j/wOBJiTfjC7GCvjuCFaa15HyC1x7dQ8hwPSEiaUHzWe7T5qfOLgWn9/Dr9MfByaJeP2RAMRVTIFUjHNEOo8zWBnYe6iRyqzrBpbyUzM100mQrZulIsx3q9YWgu18dRTEkYNJ5iBDJ3vvpitkx5Bj2OSDAjSXS2sVvklHTYwLF16b+mEtQx3qRRe/NMB9Gdo5YKtZODg846ZpOptTH/Ekn+A9HrFAt6C+JidGBPK0zXyOYtQ8ofi+benwlJKIw80jpKCXrm1lDCPZVFuxOzButlbrnpTm4eePrOcNgK70svVvtMai+TlDPs/QXQuxKNeIlBgh/TbSldHAkSh32np7g5P4DL/ifm9Xz/CMzuRKcigUydr51GUuNdrKWx0fvn3Y9/GmRKfN8I2Kqp7huWU6lHIzSXvPYJSbEduZpN6QIxvDlfNc/RFskg1+cvCNTwm5CKNE8l2mGdfzzo13A+sZrNDqvVizXXQcukPjYihzBRyRFYakdWqlJalUPG8zn1alMXg3Rgx4BwYJ0Q4FvxN1enSvr79aT9D5n1QrK7W+YvbPbMBJBFxYFFEJQesck1ikZWLP1bNVwIzEf5iT2DhtOyRNmRz/WUsmjU49nIvlr/O1Xj5y920ivqncQ/tV9nWQ3qmqSkgQeJoLHInwxZ4lpZtE3GgfB7uC4i2+UDh1bw+AIXUG6O2DEbsELGT4yodjPFcUKm9/2Wl1X0gf+ASiH9XSxJXwmTyCGnD+O7fC3iNVDsb2uXUqu4wztMGFxcyFADN1OUOlp1WZ94tgoQXm/kAMacFwTy/d3aP7fFJVMdYeElT4SINH0tk7YS/24vVlbNERq9LxBfe8gkg9rxJheJPPSLK6tT/l8EGKKZvKyP87pyPHx+6Sgadx0nEAk0oDoMMIYq2ow6Osbbz3XJm0z72KlnRZ7Gd0cwZTe2DZOLdhQVNIhO1hWwdWc0Fnk2Rqhy4p5SkqJzn5UEQUBIrtGpvCC5OIZvXTrh4KezK7y6+nMfweEYMyGgfctzaslV3Fr8iTzYpuNzzXs2Stsag5Xz3g6ZMuxoq7Nn9T9h5jwEezvWkCZhG1QQtM/5AtoOdvEtE8fKM26r0AI5sePjOJ3CYAS43ZUMEqaoTT6aYlVfLBYFrBAIfce5FPvHt6ovAVCUwBZFZP/xHwmp2MdE2BQ2WZhluaA12DNfPgsnjEWssl5on3WRp5hsZ+OTMSusjsrttEIwTVoG6cCwPc+Ec2lHE/oQRSCVn4uOSKalTrgIEV3YlBfSZWZAftUXHAMleIfmj+Tc9ZxE3jMnEPisMITdqAIlEsdhMSWJxRulmVT0C8JFTSyJDMIrDIdeLk9SV9WcEEsD0ktbEVcwubDnamo6JTiHtqH1nbDRYhgckMH3nUiSq7I4onwwEZpnDMTMbAewF7IulF92WbX8fRZ+mlkNPdtZ/Ll26LBZcBmuvmK5PhA1pIucc5XOT/ugI7rwydBslwCApECl8n3+bgMWQLNBetyo83Gj2MTU22FpcKx/UNSYZa8CTD3iWIr7Qaegj8NeO16Xdnc74EbpFVKjjCycOLcr4XuQUxTen0uWASaPEctXGst8zGu1Fk2DIcYoygf/ZEH9KNX6JLmLLqxKMm2RxRgout+ml6nKj8ZumPiZgfGtLeZKnHT1tXDK9hfPWhfaYEIF2ve9Y8q+bEVtfRqD5g6KrV1dOe72JusA6zr2w5K8cSpX+gyxVR9C0touszlViPPlDU6EZXBQRPiuV5PlNOdhWF+H+FIY9GNgh8fza81SKiFN+eXiUVkW1EkH4sScd+1QaGyG9qCXyF6cLFS47t1kBXb8UlJ7WrXHHWbNn2P+68zzziFV/9paMFpUOuBCfoDzhzF1YHzzKAAOLFaiwfMokH7DInERMrpRBJObqEPv50w59Ajc/3Igqev2zSoY8uyGKMRTP+3OK5aWjndhBjiMUtcBALHXjpq9pDJ7xHVAICpa902u/h2x/yAupC2EdX7wwM65oE8UDY4xxJB/T5zgzC9lf67tDzFUpKkoM54ksv8RJ4PQSpwXUUPcrD6HjE9Rtp6xvXN2FMGjMPYkWcmlObPuQiiYul7+EsXj16ON5UWa3Dxe8HvSr5/uUsuoV/0B4+EKmVN9cKls8Vk0ugSkstxoW86u/7MfyM9lTa2nndMqy2jLyKPxOANAlgVwLfL0rdgwCjqBDc4LAAjkVhO76FAjzRrTKsJCj1ovt6wzVcKsmX9DU4exkUbL6ig06gICVBVksrEp3I9/O+YuzNQ5FXPDSsvgSE8AGUtn8hSYLnstArXFKZAFOBVjm5JFEK3D1Ze5ZYUtQ68kyrFufgUfjLmpKeQeU5DqdXQ7No82SqyD/vzt2bs9bF+1hVbo6h8ocMRXEZDdDBKgBkl2wq36VUNmK/meFd7tiFDIOK/vdzZCY08TzfvO9Moz0FYkiIJc68nY6vva+tQIYp9M20w3kaNCSsScWzuwOnpsx5QA0ZvYjeIyhy7sOWGGbCy9AUKhcJM4p3O07GHLbhtbVdww4km6/WuFohvRGTpYgaoYmsX9zzQwA8FfqvJpVRl9RLRRoFOEp6fUyu6PjcpbBx2wamdxgBKyI/QZ5vYeyWkbHCwiDjK+CKq74birTkeTUqvyDA98gzSRLINR43PO2nmP7H9mYlusB50d7RZJKjGne6WZpsN3x+idR3vDOGZ52w7Oz4sxHRVGFK4hflUgSGF5qEXtyayEelBeCvDm4TLrI8IGFwoeyE7WRBljLKSngGYPuOLzYyvzqVH/TyDqncbLuKc2pj6dBhJFM3I489vITQsrl9p/DdMRXMepib9TMY+fqG2lEug3IRSe5uk7dXS3cSI1R8GzbdH//7RxuZoJNkoX6iY3OjPLaQS2e77ocnuEHC8IUS1a0L/NtkGljZsvmAkybxaw7Eu4xCy/GHOKOitCwVBikULZjmXQw6jUZ5O5JM7PZouXUs/quBS57CPLOIDK+pjMS5B19LtxKK0irA8EuTpCl130z7SGtMFgPJfkoOzqkTWW9tfr/U4nwbKHc0YYevx6cSpHxytUOKyQarwF/Ld7vL+vDvMdnlW3SH/UP+qqTK8n6jl/M9db68MajYjIs4JCY8C+0lcvm02INClVT5+Plulbcl27AimsAHa7bqKPk7x69ch57oBHQfsxJCNC1eYJYSzDpsAa0SWLPFtomswrUxhwIoMGc75WzL8uJS1vz5KwTSM/1DXRHmbr83wqHE0ftGjKdDPMO3KqhMG3JLG/+JYhZmK0xL1566b4LKOurVPJR+1ISau1XdcIwhpo1sMvEFt3PAaQGioEOryIdfPHurj97YAJmV4mwd2e7vGg4TrTOI7vo2URzU+/DgQNmqffKOEct8feI6FSIMZz4nCNg7iJGlPEZ0QNYLA46a2ckMN7QA7Yj7c/Wi8hrxFonyzD6dE3tfPA49ZS/K/8Jebn1ACtS93QTaGQJgFnRn7GkuHAUL+FNWeptQ+AcucvwVgrj5mwTUMOy0j6mzKBcNu8AvCB5uAA8frQvwKFdHkVX8gtTvtOCrOhVfzF8ROUBMPgtm6vO9Y/6vTEieoTkFPRqa097Hfxhb2lrj3RnZLi84JLfvYSefC8pwyw1a6qf6R7tiuYPj4UPR4cLePPjJp3lrpxWy3p26ItXzeVWZ9q2C/Zs9o/oj5vWFmk1jI14mu8YheTP4n4qJLEgUOEyodHa+qskhw2T4jFGIvpJah+8r0+APhdQ3EzbIy+oSoCPfcr61iAtraoRN0EbDK0R10uOAaXB2Bnb4FeGZ2a0wmUM/SPYKTc8o6Z0GYnwnFqtDpz5t4hReko9avGL42oUiVS1TM+wOjEKW8jJgdKZxajfmisBzzsSCRGW42Ngsib46MJn4iv/Bo/sPhoth2BsltnZC/FAOeCArp4shffN7xcRKHKAI8AUdyX/QeAgK9LZA/en/SGHkAct9H8/yWZq+F8qz0CisRTlYUsqWhaxT6Nd5b4ZNw+20PKPeWgJavGPg8WvKNomtznwgzY/2jyYN6s1/tVymyEvd4iqTiq49c8ffYhGz+QiTI1WGzpaMDKNxIQAhLA7u8yuHeEB5skUdO1ruuPHqwzijcqxwbdnVuwvQFhDs3GUBI5/B0iDJqSKEGeFCGEJkkHWrKLq+x7IliGgd+PEpCixMqz+5ilaI3YpYf4p4jk/PKS34FbY5AJUBPdWArcWSlGAmBBgsioOuXiiRyNVsAQLOQ3FCy59U2juevEPUUTac4YHpvu+fThuYZ0F2nTxsM/SNyCi5mh5U8oSXTPi7X1Y5FEuNHlGs7tqDnhfSavHaBe8v5W35Ydx8ZOh+EDJtvPtrejJgr3Ii8lyFqZYPUq8QvfHu48lFclpH199IV5gGRGEPJPPvSlMM9efL9CUwkd3WccgInTqgSa+BF9rUuKEKwh8dS9UHTgUoQyi6T2X29fl6WBHNMktw1X6c3zXgERyBlS6ngz+BPwlBV8p+sTH/sjEX2t0l0GLneFGljOYnS43G8woH8lUv7W1ipLT3KyZnLyJrY/wjyaF8yOXHjO+dmjVJ495WPY2h6+W2QYAeDfu473cZXwDnxecKKK1PGTOENzXbrkd0yooBMQ8C/I0Ty+Zb/N21z6rLvawO8VwrOoC3JNetAtdJqU1Cfjno68P4mJRn2hzoKZwjJ317wGoYLHHT6So+fcqdLHiFM1tXpgnmBG3QKvSbSB/ALZ1roIxhIFsOZvOqMgTJfyaXa8OeOt1IP/EWHrTnoKJ49PyNone4Oje9GMHPZS1vxnz5XKUunGiIvmz07x6J9bipAy6e5vYnD8l7yJX5yeL5+35kvie1PVLdvVlQN4Ctx4oGylk1Nda0s53MQTLBFN9KBWwu5TbbiNMn11cXwxizb0A8gqn87AYbtnRVdxZdl6VIlXGiz/WzRXXrcuAM3vpIB6cbDJg3X7qx+gmrrnQ0Ef/PdNITEiszBjscRCvEiSh8cOnAu+j0ksGiQGfMAjEITIaN/tPCmWuX5YAC39UMqPER/O9/iPfXMQK5FMBin/M4aiqSAFJBEjt6Qqgtor6D5vd82Jd1Mazf9OMBFYZLIXsKkUfYV+esT9VwjrRAKkZxdwv9oR6wVyPwjrK/0gjfSp8TTC/pe1CYFsGUw6jSjXoun0CiJYwMuOhUYPb6ewviz3wIKQJEHi6QAZmx18uLDIz33xTl2G30a+NSaEw7JieG1akuY956urC6SbogcjE372y9jCHAP2/3i79JCP/LBPzveJnzW29nZAQwu1UoL41pDJZtgg5UFAAjOaWw6biJKx+9vH2E2Zlpl/ggcYOpWlWcecB6pBEfUOouZGxsuhVAA8Yk/2Iui0RWDKyo2v5L9FITBm1R7jxok7ErCfR9r1RaXPFDt1hUuduad2UffvDZvwRAuN4AtHKl13T8/A0faj8aO4po5iQlUZR9I4UgQ2Wy9waXFc/Q1Ma8XEZzvLmRqkxkYvl+qbWTsSkH7rq4R4f2iOCXyQcY6yb177XlNl/fZWPQQ7rfGBPnR8LnE/ONcJFi7Go+/ikgiVd5KrbkTiHd1Lqa/OX/ETwWs5QVD2+TEHTDefMFZgn8ypSoKZNa4sbvkC2RYlcNwTbptpuw2XQsL5Ki/U/USR0BWxUXntdsbk83z0HXVp8PUsWnXxU64XYLVJ8lgsUOonM1q1qbm40jFiK+dEliVZHrBMgLuoLxkQ7MDe2lfgfqR9ADltx55c2XugxGBug1B1Jn54lCz6eZCN34k8y6kaowoEQW6ntMYHxMFk5fbnUGSxmQTZgrRNr27T+nOGg=
Variant 5
DifficultyLevel
615
Question
90=200−6m
What is the value of m?
Worked Solution
Strategy 1
By trial and error using given options:
|
|
90 |
= 200 − 6660 |
|
= 200 − 110 |
|
= 90 ✓ |
∴m = 660
Strategy 2 (advanced)
|
|
90 |
= 200 − 6m |
6m |
= 200 − 90 |
m |
= 6 × 110 |
|
= 660 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $90 = 200 - \dfrac{\large m}{6}$
What is the value of $\large m$? |
workedSolution | Strategy 1
By trial and error using given options:
>| | |
| -------------: | ---------- |
| 90 | = 200 $-$ $\dfrac{660}{6}$ |
| | = 200 $-$ 110 |
| | = 90 $\checkmark$ |
$\therefore \large m$ = {{{correctAnswer}}}
Strategy 2 (advanced)
>| | |
| -------------: | ---------- |
| 90 | = 200 $-$ $\dfrac{\large m}{6}$ |
| $\dfrac{\large m}{6}$ | \= 200 $-$ 90 |
| $\large m$ | \= 6 $\times$ 110 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers