Geometry, NAPX-G4-NC23
Question
A,B and C are vertices on the cube below.
What is the best description of ΔABC?
Worked Solution
AB =/ AC =/ BC
∠BCA=90°
∴ ABC is {{{correctAnswer}}}
U2FsdGVkX1/QAEf1gNY0gQBvuqAszZDdbDaGoi5L40l+xb0OOlB/7irVBk3Vidxnr/7gryzn1uWugDPWQXyzsHNiY/2nBjgQsfsrHEae4+3ceTwLNT/J21khtyi6tBd+JLwYiutch+Rm+w7bg4NFubU/7qHhJf4USL2hn5DotR25kPi46DT19vXaUGCxddf8adacpL9ZfKuB4OMvMtjOpZsiFUxGPVsn/Vi9bRdiZMA6S9mB1Ss0OnWa58ZbKSfgnQBC8CjaR55ktuqzLj9F8a3U48frbdzJVEwtHlFpZdZYq5tAKuqUK3UcWFzjvj+5Yv+JlIzdn90I9gftk+anqh9TVDp6R/m9Ky9E2GnjWLr2Eac0yVFL6U6fqcSqsVY7mt6739lZ7A5zDxE9YvyhuPA+ZwCsjNyDNtTVtYAxnRExmhEm6S344bblVegTH640f9/0YYcOWshDaMHIMLVO1bMsLoU6ljZgQwLKBfrHLieFs8SIlc50XSyfzy80zxCJrILPNmeUazKDJbG07nSnh/UriwzPY+xTa6USUWMFnU+OpzrhxO2CfpgBPZ6iydWvSHA0v6lVztOpogry0VODvA64bk+l4vYKWrlM1Z8/6+j/CnP9jYTndEeacLGzmsDmfzPsWaq9N387ZMuW6Rr3ky4k0/6GHjn3/FoQVXMzUgYzZ5ncPHx17cHqjN3B6FSD3p6sYUv+bCsp4UrsFyE47QMYeKGuCbVFi4xIfj8eZPQzyecT7Wg4WQ0tNYLZQuufrBin8EE123BgdMPCjN3/TkyQMptMuYrhjuEYi6wQTSzHtT9EZ04EcT8kH1Pfeq/O+dKlsYmDGuaS11bs89te7Nme1I/48CQAt6HbMWy5cvErmLPMlt7zxDkSf2lFXY6rGkT5GW62uqnsMwL8kn+8jsh/R1UX3zDODrj30/z5TBltscxFn/Vnvp7cA5r/HgwTJ7fKYgYRBeBoU5Sz28UZYx1Wur/pYFnywtZ0aJYebxfd1jEPU4CyBwaLGLPkzs/COYru36VM+2ho4VTExusMg5VeS+2b43E6B7tVKPNY3boMw/A57EsEk6TpQD/YOBYMiW1/4MjELwUtnGYZ4qzs3gXR1b96UuAWMEyQjFrhX6U/s2rAy3XBkYweK0aENqjgQaJkGAOwFHMb5ebZE4JaJSy+PdEMVHkWeabWVDl61S6rUxdwqeeF7uf9wIrS7TyEvJ4BpOQ5M9ZBQlh1vR4t3Iox/+lHwqv3yGNBBi+/wrZBxzP5H8op//lvVwxZHi7YurPsC7rk9izsbWOFn0kk3BYUvzz/SD7pjTk1e6uHhoHiocraXEcgInry0m68zkO8v55hM1VvC3O0BFREbQ78AEvpcoN8YN46Ldx0S+q0kEl+F0Q+EwFkTwJTF/lYge6npGhvJimCpiTouZM1cQXhmZGDeihA/HtX6Gw7xb2FG9gkvcbENmvCZsKvSExx01mIPT81iFSdEZ/c6cG2WGkJkEk7Oksznxeh+KCn1qXzhs0D5GqyB3s20e0suy2GnlxYO0m+yvQJe4yEGPbJ3NY6OQQYMdAEPFx5AhfVOcFkbRvX5XNkr7aAc+jPM1o+S7Eq29fSmxrIotFGk7RcFbbA7UBs3KvKn/V0eUD/iPq5WSqAMFss4kznN0mBQj9uRnOwO608ARyH6ZfY2fPuxGn99cnRGlgUhjs3u1WvEluToEOp/fbFBmo+pHOaCCcgku9XtvVRzxmYRsJQNx3NXhTLe5szvEX3kd1Z3amzu6TkD1eSya9mo0oov/f9yEY6zVElmVJvgh2Olo3XzYZ82qQHxPbotxFWjgwj5j1SrGpl34GFDphy/zAjU6GKkX06KW9rHw6NfZs/yEldWqkraEN5smtUWFnDnIlBFguwHBNPs3qxhG3KbaqB7i98l5I6Tf5PUY4eydxBC8ZZ5TxvpNOu/tbweWXK4c08quxzKy9wkqUXQVvyIh+dYREwvuDYGrgbpIxUiC4EyC52OP/KCgv6KqHUIVO2xUVuFv0htGTlvvesaANlGcReEFuBBj4zOS0nP3d9du+Q8W01V2cpUHDFohY5PvHLjS3EyrZAFzJflZoecxz1fTLzGm73JnMHkLZKmnvjjkU6SxVBQFPJAh4PQ/6yS3oF4NC/LqSUFycxzdnWc26k8h1SSWNaarru4SAHyZpoipza3gbr+Ci3ObJUwzChxg2mkzqxmPJL1o2DCvDxi944giBHSizUKLlfEuMw6uA3Lq++AdBHzmT5YTbR1aj4qZe8oTSfWuvUGoBzMSU83lAv7I57eM/lVWqBjSxF9eq4vkpUHGva6M5hr6Ar/9j7PxPZo3P7mrjJhKG5w+cEbEWopZPYFx+r3G91GSrxwX8lZKnWwbrSoFLAcEheFy53Y382kNYaxbncbcBSqVOluWGqx6N50XgD2Pq1e0hEuUhG8w/R9Xw2f2oNy9V7e5dbKwNJsiBSYu5pReibet5lNvZ7Xkue8sIhwcO4T04eBFmFYZ1rAp2nw3YG2NKOEBJwoUnovRpUYpQUKi9pjvUu/Nqw+wjnUJCkpaRjBJdFnKUiFnVe1Xus9eCaNVEfkaRn99TLjknCbgJoOPL2ABbchA4v0kQdFMwlrClNo/wThwf+ONWN3xepXa3ACLFbwUrywYj0G53aM2Q5tQNBdLqkds8fDEa7OcnQQ5Vbrz9t4yC+LlF/I0wX2SjIaed+2FyOdrr6lrZ/zB8OyTKEvkoVBssXP0X/WiFoyQNzuiuuKqQ1XdeeXTMnJ9+4EsOuIi7usMF0wRv/A1PwxAeZXDhzbHj8NndyHLRLgjyTw0a2OC9QzSXKCG/4w4j1fi7BcpmxSCOl/3QvRIy+bT2YC0LL2Ono1rDAkQ/r9b9tJ5zTMdXS1GQm8062eGJzBhy/iQBAmMHqsaLWFAXM/RvhvFVdhxyPKckINyRHitx2sZJcWNzfWcjjH8j3rnIZzUyEnLUjl8px/X//amYvCGVnLqb3aiNVr7iuQsvDcbpWg1hd6O1pPfBT1Uo+J92mmA0FWTBE4jkTIqEO4uBjZeHZAB6/r3UMd+FsE8CSZJ8RPUUf3E09W/R1TEve17dLoqXq7EFY9MZ0KX5WB5SEOI7WRqpuU4ZU7RCmY9tR8UaSGWLDhIhszXsqM0d/oHcu56w7BeCBhkq+hmBQzQceYZ7Cqs6GouOv2NdUtsP26AgkWBXUrb5jWrwu2RJ3kILKgYgcW7fCP0tGkJ7e9mvFDa4vsREYKIe3uQR9IdMh42vZQjvPrwm5B28REszHL8LdKiuyT8wzhpVKCOso6pFDBGPanfV/tHIDrmF2YyY+OAneud/xQitVswixXqz66/OqyPfTWgQwGMSDq8HkHM5GelBd2d2xKrAGYx9Gt5tcTthQuLG+3BYua71OV6tb+HsRU14ROE9kNS3Ty2IfRX6ApzosI8wh1H3xGkDWmTWLfOnq4tjm4NGn9UGn2rJpdo9zxNQQv5fj1e4rSqLsYCAGMBKHKpdSkzM38EMzi5yhUmPYC3d6J5j9Pzqu5Tx4HZFrn07k+1nIs5QXXW7XlxNVqKRWmi1Vkgbe8JoexuVUkjovRjJz1LB+0NySLF5Z4j6eB4W0wOrjEh9vivVADo2Id+3dDj+D7gqXruU86LxpE230cm+wEpiZQUWm4iWvQXvYv5/HQwYubtnuWhqTfN7dYic5z+X8/bsxSmNKBBxxwdFdGFoXNpv37Jy/aDMEwoXFtE3MIk1L0HRuuimK7JLvNxUyAcEuhEuwblV43wEW7gJCj8ioou/Wz6H9e5BWYjPlNwnUrPXnVMlEJojaLu+q7jqMs3aY0ehTRIBqileskIbNTv11I32bwSUokL9ZHwb8m7YakHL0oDUguW1xTV/OLoyTaaDUyBIn3goY2Ny52dAw2byT/H+Ns45CfSuDjAjVUv9griKKDZCIg7kSA+PRCqTZMUjeSscWq30snuQujX8XMsNjgnx0AbrPE6f+1Dbv90ulva6badAQ5lVGqPZIjWtPPptDlsFO7fM1Ozj8GVTx33uuONPTTyWEsYGhQpdVKoqwD6U5oC7buXz5j3Tw2DR1AcirZLDzl1knN71gtvbJi4S9CRXwTQ1Xgds+YRaA6CbUK8UFwKPAYzjxEDH9FDq/WH2OrWnMXh9v04RkXpV7EWGeqgZ3e0xCfa2anPfvPnhJ5+PaCg0pkFXTQpIYjYRHnUg98yPA/d9ww/E7fav1nM+DGln4St6oXgviGXrYbh2dhpvymZJuyEKKueVBeqdKMjkMQXrg6OD5bSKt16gEk9V0fIrPj7YWKDyptzkhvZVeWle5Q1Z7zTRfjPWCaqptxO1QP30ks8JJitHIjwMeI615pBGAPYA9DR6QUvDybux7Gc8hDeeSPUl9DI2/B9ZVUOaOPcpAZ3HximMrnpSE0rwvCqxan0H7LUDlM0HcqcdIzoBIwrfg/Eb3yuPy19NJfYvlJEiWV5V0SpRtdLuEcWJoAjzY3yTvx7AJNUYCnDCsS4OLV3P2nLL103G9USxeP5ErqPEb2OCWQVb9/++AvdrwxVUI+8Vscpc4dKcT/lFVWjLUD48K3r5/LR0FU0ZAaobS+WflOf23mZXwD6CaaS1y0YfptxDhP46J5eGfFw+YnP7KR6RGfryQlmqBOL4rBO1m5czzKG3zXMZJe3C/Nm35k3HU8WpPAJOo+PDMkt2WbpGJ91cu6bjVKjv3YIDOdJv92agxA1V4ARtMGkkpvf5tlp3mG9lpIHRA0jwZnPOgJZcTPUhggEVRJaptXVxPihfM4MxT0LUvJiyImFgf7QAvBlqALKfttAF9F4M4fptaB5QBYXD9mzOoRqBlfgXqH8tt1CeKqK7uByM68VCZVIK6CLOzJx9FVK+/Z63lzP7EHAJ4ZkXiBJUlXqulMzJDtixwA6C11TPlcYCRxP66z3XXWZc3s5xp3c1Dpl/eJKk8tInF8DIVP1C/63KkcfFzh3awNUzuRwY/cA7uygdcIIurqVJFdSd250i4qW74t08b+D/kFUAPbfR8Rj/zN+JHaQDEd9MZzPweeJJ0ePa9bSH/PUXV4XGHYNxkSUcF4O/C9zJFX/WHt3ofRFBHZM7K9lGZgGgdRlkAVto8jvkUjL7eFO/3g4qoTgtu1b46LpNfnhrqhC7g40jsgfX2cxR8wf05tDCrfS1Thq1UonabsUaY3CCH/hEo4wNW5nSmQPNxDAZ9X2zKnBXsUqmsCDDVX6xPETkHWOH7kt6xRos0Fcsr61DP8D5S0zgKkpQUSh1vE+DOkhQZ2POWoMnHJ+OP3is3CWmXxCjuWbApjur7vxrycVXP+PLziyh3IMrrrza5r/Zrluem7d/C4GIueEnibjHTrecudwUdUibJE6f7JNtGezlUvb4UUbo4fE8banENiHn/S8L0XTH3l45tQZexBiWIRXoIEiCb3k9AJ+hCX4a2EtNIbGGTccX7UYJ1eMKP07BKS1FDHQ9EKh09V5GIRC5vvqVXKVKBM6PzYwIdqPrHpitMWnicmzw4dvyUSaw7mPr0/ynMQsrNezU1pnzqYUbaheWr6RCxu18Y2SkC/f6iO00MoRki0gxH7GDmm40muQ1MpZ6dnt/YSZ63V9HDbWXXnYOyx3nyaVCu3kwKyLBzvAX5AvB/rh5FHxiawyvZcfR6QJfG2oMK5O6rpy85SSvWmjO3r7pYT8a/h3ckoIllt0wpl034uiF+JtT8bm30k7NOIrbt+8iVwx9W+fybJdhKx1YcODgCdqDkFDjmOpjjv6IWe8+cgrKYSDkV5ZwmBDuMOCqRUqORCGq2psI4J81tLr603GlFBH55WlDRQcNRKbCPdQqv2x5GeKM8LoOzLQNFNwhtbA1Llad9pnT7iX1bHohrArnJRE2y9JoxQgQsCNnLRJYUGUCg6zpKqJ099/Va2GHwhsrqX2v9s+q5dnP1K/u9YwmXrQhZVy8OGyWe4Zt1Nzp7zdtdzGv9e/TB0nNg7n64QYXyUq6esgKAgqlrzPAQZTS2K71RZ76+JwT/bghkgQTUKMa6SfTyh6TiTkbcE23l9+ag70EMjtOJKRLcEp7ky/K+QUt/Sgo/aGOHwhUfZfHWTA3C0AoLMr1+2w+zu+hDlnqAGOygcmsTh6hMp/WMhegTYewEzT7anx5Y3ujF3x6Zmy8jS3wQv+WTJD2h2Szlo/CRTvFR3POcAvcpV/bo6jz9LkdQ2AFSutJGN2LjYm0prcFq1k5jAfQE1Lnlj19wA/TrGf3fjSZMWfxAEzu50r5c3n+hwrI5KX9wRXwFbfYlC5B2P2gs49TGrsw0XOer4ptt8DZr+0UGrZkzhPJgifIUn3i03J21NY6LxexXCcknoZYNsDZKo1mmoJ5CiDErmDGJVRv1xiBn7WxJ9oZ0x+UYHh0wY/rlMBCcq+ttbuxY6Qco1WldfSvb3t+36octHM5wofhvUhBXkyxMxQIx6zI0qACx89T66+BgSJdOqfSgeG2FvHLUaEyI63Yf3PFvALl2JDdPKwbCLB/gfGjzHkz1HeIFrMp30xRttkWkKoBh3QDtXDLBXgs8M0BwulnFAZXOK4oyJCuM/+hUI0JzB32mg/rM7qTxkOiqsVB0GYbh+cayW3QPwR6kvFdTewID2ZcBAScM642u6XBZYfrrl19wR8f2SpjVfG09/GdD0gbXMR88+3dqD/shpdMN+4E4SfM29NbJMJbl/U7k1zhVhHihE+KLxcW87SntBcI/Z8zOXfmf05NGuHZY1jwVKTplQv28NiCsaWbeDZEw3rgBdD360XUC8gMXgQdUqbJitN3abhsoDht67vGapQ99TMkfVDz1Gdc1UVkH4MGwec8rxVY/IMidXcoFWbQPDIPaVk2pUoMfedfl/G5TqqhwVguv2CRDeVTHjOQeozcLR83KIIyegn83JxrW4jfiAUrDT5yzmtSZE735EDcupk6GIZehXWyVt7Roo6oltCu/acrqZ8zgz0/F3g7xXSCMPtkc6FydXzDx1UcgKDmxG7AdAVw06136GQ0XaZ51BWicaW1nNUtHVtGZo6VnvSss3PDoJGs5PcsBUydwMolgJ/XS3jl8IhqWwW8GoANtIJH6LrDU84UTmIcFVIIDKXMVvglWTPaZZajhuU1kSOJ53xvFasiX29tKgq4hU1rA90j+O3j6YddutZIxlailJW0EiV32In86zKaDaorgvquwEvVwl+VR2v1OfRoSBKBTcevJ6FhSfxMPt09r+nvT0npja63dRaPaXOyXDnbtZsjfBBB5S1XQbsZZn+9qNWoFxxJz8j0cMOsl6Z8alIqAou/Zh0i7dvW6Cj7h1chmse2V+akefTgVfLzEf+ouC25A7Xlf1dL9aGPuKCFW88CqaQc9s4qrm7eB4ZAgWmHeZmlpjccZt5idM3jCQcV6lzOB6b0yFhw+/rhscrTDGj7F1c6Cqx87d5Z5UK3FXtkMFzXMuK+2nHhHa+pnekk4g5pYk1KsuVyeLD11cfIKNEqV+HhGBMTNN7fE9lyMxmgPNJjF2c7G03v4F2gSy/fdy83uWP60WbzlCexUt2BNgLG9xZG7/KexfCKPrd/8HdR5GmJ4o+/DT5x8i8VCCBH/JpIUg3sZ7U9WkUlQONIIJqIilY5YLCEGQhvMF94SYCG7xNryUzaxbWBis6TGKXNZ74SyDwdOwcHbmScpN9UI3NFnq7OiJOOKxRjM1eG38yb1fWplNZQ7xYpHqwaiGAVFE8372yywnPPE18gXnCLy8fUrCzuSmWNg2gbLc+NjXtQWH30x4E4vbVhcbpd6R0FdLtfUCWjbUl1bO+pFM/NgrkI+1VnRHq0/3T8PJcRD66K/+Qk7EBm4ylIvb88YTOPegYjmQmRjj4uRh3RSxoT1zGnOlHnyM146rCsc8HnSacxpSvWmKDQt1NtZtnO1QZ7ir22YgfsU4TdM/2NLbQbYz1D/jSjqAAOsTHeIaIcvFSeM/qXx0WCdzB6+lt3TXzi3r+bjLuuTk0/uqYRdM6IKfG4m38Vv6OlVAVH+E82Tkcnx9blq9AOA/8uIvDtxHArqslSRaUAgDjHsEUeTDGKnjUuWYKemr6WU0BF2UwDcyGSGT4y5tv410BDkMfWPXhg2qGd098IZWadnACR9D1f9irFKRv/h2E3eqHGcUkQZzk4LAHA/sgj/mFOZK8PMTmAZmA9OURu4KryGgSo3Hzjhccz3WZR3EcisOwt+n4m0npryw27KY3nm53baw1nqFmskZvNAJd9XQwHyR6r5h5VitJXrrDpa84M1sZSd7eAn6i5OAxXJ/bCe4pYlmUra512HUVyNL/IfBxqcGUXN+At0smIPIkl3ZUNnIBLH0C+C3wiLeJqyQO8k2IMn3MLxbq84mcgqlnMW1VbiRM7NzJ21Bx9hWE3HRGcF2/l/ya0IwtwDBuAfG7abxMeLP6naXYwYpDQd60ymlMulwj8vZi6ULFIIcaEzUkvs2w2dL5KDizKR7Ds5mXkLntQR0wAbyaAaavTRYNzle7chZb4sjeENhbz0n/j8IcCMlDlOSEEezID8yLofxy63hbZn7yLyk3HN0DigsQPWYmT05e7t5mRDEDzZpGvoqyBXL3uvt82wMnomo5GrPydBTvsVOv995ElDkUpj0Uz7YH+inRg0aPwsrqUaRvQStECW9HnswjiLZxPGvbcxxr5tfEguZpONb7mHE77YNkJe1LeI38elViAj0YDLQAMWqTLCsxQu1gjUBAubgQGNbuzDeUeYlDcSjQKRVHmkHthFB2DSHzpBiW+L5EimJPyCvuAtZDggFDl6aKNmxUXd8puKg648Fh6SK33aBVWEk7CCRYv9FjrDwBVUGolcayi/Fd+uVAXz3/Fg1HuVdBjz5Xb3P99ikfOD7eNShTkvVTjNWJwSAhAMalkDroBVm3zJIsEmclAWiq10mgjEqrLLuobQ0jVLdEKS8xsUWviIUupsoYY263vpYcP3MxaRo1O+HtekwfcL507RNlFjsojRFRcNt8CX/Gv8IJS8d73CJuG8CcTGuVw/ARWrs+dGLYxC9hBpqU5O6wuZX4s/F/LAqGgjnGkdeKenjOg+l/YUIghR0uP1ip756BTsk72jyNie7Bzhabc4nm4YFSm36SSQWFexdJM+fMHUj1QgqrWl4ymtqlFoy/zrUiyKjCitTjoru2Ad3TTZrWoc9d6zpvot4NHRd7Qhh3D0lg6kCw6KazYTf5AWIHzFiGq1G9w/J0Bp7IO/ZpNVvpO/y6p/eDzCyRu/FBj+udFnEmTsYds5gBhJzry/jXz5DTL7t+tuB8MvSFoYdyskBdh00oUgmScjhR2jeiJZWa8BRDuMsjaLk8cVtyvTN2ekRmYCtekkegKrnWFTkcPwZoaLwrXG3RbrcVtReHarP/wo2AIdgOm6zjYxQnePuRF0ddgR/U3Qp6Rajq8ORKzqlGNEjCYx9ld6JMb9tg6E/xMklPll3v4et2f27pR7OdgjphbhqguQbX9v/mlOYfZxdpxEaFIhgsG3/w==
Variant 0
DifficultyLevel
671
Question
A,B and C are vertices on the cube below.
What is the best description of ΔABC?
Worked Solution
AB =/ AC =/ BC
∠BCA=90°
∴ ABC is right-angled
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers