Measurement, NAPX-I4-CA29 SA
U2FsdGVkX19tzisEcWN/3XmWp92QiZ0iw8ZEnnkvy2rWRl1lqK/+PLziFAyTUQH8T4XTXNWXPCvl4eZV2eQ1mpwui+bIisidxj8L7HNsZaVpBX6/4EVGh6Orn/CV+ABhr5XyTPqiW71CcRMUQND9kHp+xt/bbxr3r96DNCAz9+QLxA+gSLJgm340E5jjXmiTahI8JggXE3O1+Gy40S2eyFXr+4vCM+MmU20gOsJWaw3+41/tswXr1zzdqwF87pNNFHwAkJ4Kp3D+nldXESOg1Q5nufNvC80gIvzQZC4n3NlUc6WuyRusima3B470pcicko4dahPIWFTLoTiIx0a2Itzn4OltwWKMwhRF/axDvQ8F+aErytduTqLx6sGSrVxvntkvhe9hpgoCFQyXIfeyNMYqb6RXdaEWmy0cMCBuHNjWttJs3lxvFAIyDZe9hsyvMnz5sOYts+kaSUwTPF64Jg3nceETq1sXei9QBRE5llQrmwE7PzkzfvREuxAOl+J4Hda2aEWUrYvvjHUciIfsyl7ZsHeV0LgY13V47K7+c1NaB4Y8ozMQVq2T/XYM9eV+oder5bGKC5RCU+JvgGTOfqwIsg0vpVUYIGohleuFs8u/5gRXszdP/OXtdlB2iq8WbDVXdbThNl49bpl8ZkQ7IPT++QdRazN5Uv88s74zN1F/0G69CBqpJyfAfn8g0hXssw2GHj+KIpmFxDJSYZm9wFQHRuONwZe3HPMdHx0/wrYRM4OoD9Y4N43G4tpvdizoKO9y6iGts7C2nFzjPc/gbt3dEQKwbRn30G8v/geRay70bZEGlkbqbrzr/G7WMD+Lo98+DiREAOekzTd/2wuD9hCxRA9nf07iZvyt7kD8VncRmYDseqyr4YH0p80iTle5and1iEXkrJL2/QudrM3p1R0U7TdV66xBainQ3iz2xAKLKEbLHcAWvGBsv+OEMkpvHRjPyMedFB/rW/1jJOhQUDJ1XXyzFJQDblEHsnMMNGZhqmmfmeu5+fSQBpHyJu6qt0xJKDvg7z1NNlBxVA771b2T+XZ8kCqG/ur22CeZiT80CB254eUYdualha3QJEjbp3XQ4cPNSya8OchE8FHppslEFLoMIY7esb7q5xwXbD8GXxfY7no698C2wRMvCELjElkHQXnfMxF/Kb8UBfe5pD2j6JfGW2Sq468/ale6F71d9vPvMw5ENU91+T507RmM/exX/jDj2u739JWKca4JHx681AFXRyBz9yKZs+QVnMsGMrko1m9MqnoD7DvI8abK3Othv/QU74kdFD6pDOteuc13LuP+JRWVUHdQj94eYG3j1y0jNe/afAQ5N5zeNtqAytO6v8h4MtN/zjkusM9md1tk2n6dSvok2lLVccWVt+ugwcQdYWvxBX/yosWGSsY09QRDQT0cYhEFNi4vTc7IxBtYUISXbwAPBEV728ZK3mejCs2mjOHQNKst9+JIYMhTlmefG6U/lX2qW45tXgw/0injSB6xQWuE1oE7nGuCR9RWSk07/I77eQLiAi6Nd5ONXNBE1t+kcOyar6dAkj0uFh2D656ED68Mnevokqg3pDOTL8MZGG7k7urW2xs+SxzLJ91QntNx1xam8YIhpa40ci60MMsDpRHfTkLSj6+Ofgcz9b0ygJdbH4cR9h02gED6pBHXpCgdY3PTzCsNlDo0HSH+aODuzLnqhE7zsY5edmHin9+6djVvEsx0lvO/L8FBqEpezsORWhlPNhIqGAW/MnI1ARH9WzrQ5EdSnW2Cfjl80dqJZ5WD3UdrV4UKaF16vWQcDiCeNOpKTq1VMMnxhH60Odwyih2ORqwTAR15FK51VM+nTXmjZR+ePb26SST+4+qTKgB3n7ZrtCwf2vJMVb7x7w8qFMrnbppPY7I0sY4RcB6oKH4WI8ub9REbHP52bzFPR0xbEIyiA9IXeFXJkHCCDw1OnaSypszq7Ee4SJm/t77CYGuYJLxQoKZeHEXNoCn47G6eAwN/i6fyCQ9d/2Zjz3K5hbkkOCp8zP9TgT2y/Gf4m7B7vfqnPOVNgHJAnfyjLgPUnWcgUrGYOYBKSSXV94rABRLxk6DlhGW8oUQQTrcQqSqH13kHpo7sPoQkNo78hVWHKXgE6omv1JW579U5anp0go8sN8P2IDdTwXu/m6hqO2He9gvAxrwe283P0GkE44roap3XU1lQfBS1yIL7Ew8BuAvZs0aVmrGTiV8oCZlTBGVMUAWdMD1PrYbUn1z/Cdgr39HwTFDd0Hi4LuYJ8aI+28vRtVq11q+37IBx8PU9+RehwlHGGWEBPihamVRMdPA2qLE1AFNQ6nE8lis6ThjFNXgNzxEQQPOKt9YitRxZ9w/XKPy9HrGicbvbeC/fQFRKyqv/ajwDw1zzQiScFoRbWzWu5ZdJmpRxteyd7NHDSG39glCisa7IoQsDWJl4/2ken5GF5SLrWEkPV2a5nW35l865FtYq1s+rAESk/w3a2sN8GDfxV1DG9MpsvTXGID87Puqjyd2xIY/fW/huR/eFBoLi7tHYsVQgkeTJ4Pp72CtjBrEFPH96aMr5VAoXNC4go18S9wj4ptKn6U96bMkHTWc5i79LS77e92AXVHVAItnziS5LhUS5Nf6shucvJZEZCfC50gEYaYAqwFaTEXFB3JbY0eu2rTJNSc84iMaK9uJHlEbTbRKXH3DLt5zLC+9ftimnk89q3vHIXuXwiHraqvHVpOrPm2hM+kTN5RYKW4oqDmvdJDtY1qSgrhRBiT45J16ObtqBaviM4ZIAnSCI0QZbpC/zTh8phKK3YnHKmyIrac5CUe2zfGqRL9Hg+Bdtc/WPW0QcS4Iv17T7ZtX5NDnIGJj5OR52SVYWDUBp/xChchH4JQeTCPWX7yKH6tB/mPslx1weKG6UVBvRSf9asfqM6clbXXVgikH7uCZ/bjhojf3vvZtOfAIjEaRF061trbkHN4WBHQVCQ8TkXN+6lea8FsVyXeLULJwXfu0P+wGgllu7r4TzYgjFItKrbEU4Xd20Wiphw76x9QkjMAKtoWpHUaOPwA5Gez/SOzy4+/HdBbSl3NWDdmSA9SURnTxnPFwH/TeUzr62n7Gkld0hq8n0Tl9EcGP9slw8ggRppm1uT7241G08iUkv4miUfGKFgCWwZ43n0X5IoAbI5Ok2/vsRg9pz7C2fUMJygXwonuSPERZtT93Q4kXbsc7UgglHHgZ4Bk3LVlFASFL+gQklHXK7+G3I7dhCD30gsOAvOrc4nIO677tLLn7fZ3RzCCu6CE+SbxVn9wLfU7ObSTaK3UkNu6Ig4PwCskmRo9xsRIdIvh/5a1DelQOiqGAxxmcUR3LHLU2vrwAkUSwOSaOJeAv7SHDo4Z3pIE21+5t1JjhnxcP4c4v/MX8ijJ4BO08Iq5V9QZovanN1FcmeoLCaDpbgVXKW5zBw4ZI/gyfbMCyG+9oZP1NTL14UX/YUeLHXZMIHt8swpY7sMhUbSIktGqdaSqUw+WAdV+i4cOSw1S88V46DEJG9hwhNtmkSPVvwTwHSEAcLEJ34j6tsCRm0xiUd5pZppQverXOArX3SO+iy3JKKUKFSGsTPj0fA3Nwvl3xQEUkz8MxAkxlnxaO69TptVc5E0XMeyV+rz1IFy8nLgpzxTNMDy6Ygx/yHjPpqn7g2b5uBo6r3JRpA2trplRdLt71d6DcHUax257bA3CLqoRnM4X8mdHq3CltgedzrDXe3VDMocRCZ3xvrwACDjOuR4oebn+kcgzUvZxq8eaDaqAMLTMSh0fDtNhVXAjLupTwuDrLv4hGfAjm+t8v56iWmMibLy7Au7ujRT2p1CjI1g4DUQNzv/NUIUBNk8B8QH8SeYhZGuh/jPJ1JrxulIfefsP48VxXc5TWatwraK9Sc4+LIE02qY7O6YrWUVHNr7YLXjKoc9MK8cL31IjKvDb8/edeOCDRcGaqMk45wS85GEc+92FFA6qujycZHjhOEAez+RFjqdRAmN6nXoGQHFrvmt4T7KBFEKgAt81eXLhGiOK/cTTa6OIEPuWnyeKburvFMXSiarV5a+f/DnC/9veDxhx3g6Q77ss8sKgvrfmtDqe8/FY6VBw3xs2enxZHW4cSAoEhcveikmPuv+BHdz9gRVhuDm0L9+bxuNfNBdMZqZYfCAcPeM7Iyqs+NiSfP/uzA1D/RH5A7cwaSOOY3jRX9HjyW5DmkywVHv7lgVDCQU5u2A4vdXWhObNOObGKicA/BF52sxyQleqeJpuGwh/fchIsBA4xkYUhgNM8ieb4AOqj70bqvh7N1hp9xsGA/YoHLh8omRS/MnNnhPBoGNExl69lvtqYCaCkiZhUCWVGfKpY7YZZ/A6RRb2PkQoALv3soGVAs+rik8wj1orbtY6eGGgEn26IYCsigqtOIcyMlnMz01KSbIgetbfKI3qxBo1x503MjCrO5/yd5LLCGO5VQ6nrkZhDOwa0HxIxUvxqvU/j2M3Fboc6QQzkxuTBeRup1gRHiVgfNVllWOiu+VzPY7vqVQtr2gcAF4vmjvfV5rTVje/r7i6/vEzRWXKtuvhnPKNQiVs+wWUXMT/uI8D/FZ4KJva+nMqPbew5MayXKbyijOw5ztDIBGHYcIbX4dxdgHNNbogpheeLg7AdfI9DODV6s4F2NwL1PSPjgn1YNfLqJ1dgMde8xgSqbHpBD+T8NJOspZETnM4LtrOI+7fsONjGoPgn0ffe/8OVzC/J7xAw/HzK3uu9wSNiQGbvP8JuU37KqZwTrz0rtY9atjWhaJAa1IeSxVxzh/+AUsQpk84g8/rgDPaQts4GxKbe44pkfVHeZhNq5Gmh1F3DP0NDM5Ivl5+FAWivsY+tL35dOTNfJLQYtxBsM9Rp+kwG/cdSGZIh7j6bqNOeaDI218N0bEKK6mr2N4HIzQPQlocjnIfPUQjHPkUMnVE7dI3THu2Lmu76dlYg4MfaGLtV1ZVmHsv2JnFGiPOhgdzCGi2AblaPLoc0dYwrpy6D4B51xDs69htMPh2N7flV9gq7gKx7jYXib+XSy0ghRnnQ0eFA9Ll0eUdgnzqhAT8Lv2vpuXNl5wpDaW3GUqNFq1/8CW9HIdUpj7abJ4HCxV+3FKX6qF5j3dBw8X1oAxKycCo34/RrVzVt/RwC4nqJUpRHB+OwweAuYnPgfuFAUl3Cn3BWbCALLBL82O4bTFc0TvbMz1/tXN1Mj853h9RZR+B5NcaXXDLu3ArC6uJayzDcR9KuEUMipv6QCxM+eTYC+NsjQFNzbp5lkGgyErU3tIgvZDUiA4U2eB6nh7hgt/rnrUsM0H5zvBz6eB1o/8BR11OZ3mFS5nFpZdSBbc2jMPpzJjZVthKfvdGQYAgYyTv9Ar9PWa4bqwQUREVLjg6iJc40ESh26Ik9U1d23tclYuaszYiLpe885ZdE9C2oTx7kcsNwK76UyKoJGcmbaReqhYz3Q/UQGJ43pCJIFjuaH9qN7zd75MCUcS652YUQULoSvGPHdpRwoR5QlFEPaE9oBriy7TaV+hjxYfXAQCCxxF1q5MK2/HL+WFzyQNW0BXjfOEX3yVeSdURSjv79gFNPtyna+8vEOa3TVzXKJn2dUQ2eSu0/GiziBgtpkc3FnY5M8+vcfqROy75COn46BHl9Hg6w89M8fmT/Iby5t5VcjF/eHAbAaWsbtxca/gQn+AZUcpB9oKfov0e+VKIIp8akBxhKv22fVemwADEzZb+9asGHrQMKjjc4Sf/KgLveNPUwh5J0wjEPCsMFJMm59h6zy1bEi3X7Q3pbWd4xjKfJjJAgrU18zq8eqGXaHU8JsLFB6gEGcgtLnF4O+IuRGYpUl+1psJ6ByP5aBZT9hCX7zOlGNGm7GYqoSl39lEjUEuJI1ivA/fyYDJXgLWP4wL3GQscxud8EJoRi8piIV/NOVyd7G2LZiib0KGuo7j923iCI8BPnpqS0QkNJh76TahMVb+pdtMhwHDZCjBuEPgANqmK7MTPfGhZiDhV0FSC9PifCtaESwSE/CbfL5GSVxwGz5d68zel6FvoR+pe9NhB7BexiwJtY3A0G89uEc7lGALPQDAIO6zXz7cc8XxFfqSkRdrfhcRbiu60mcvy71wTncyKMbrhIIfg6V+r/rvogFO3i7aA/0mPpKkw3IFMtT7c0WPKW17JGTkhiXiIAZa9u2Ph9FjJ2iBEXVfnZgsaY9ReO5F45vHWuWZBFVz52bNfMEl+VZR4DEBY1HzpDf1+l8Yc38Cm6BLrrSDRtLQSjMQbuU6gB4zLogqxtzO/PZbJv/XsCQnNXFPVjeWkEuB/yprpkvvkLB3zNSHPnMelMqE4Otu/Qlrf3UV+c/njVviD5uC0eTNDsbKxBNmW+KuvK0OC76j4IUTFLDVHEDMRWqTapKpGyqMLXDvH59p3y03xMJXyZEeo4BeSvrSVpXVtgk8WhJfxeWTKkKg8xps8gj6TDeyh6LkSDv6mQpHIvk4Drh60IXbk3fbwxIPliXQdRplRHVm+nY4YNEVj8rc59alr28tDA5ggLyNlegGEkE5GdWzW5BSdj8N7UgoZ3W/bilhp+nGtg3v0e8BRTuvpjlnedmclkvp3wx3WgCA1KELpFZI8MOD/tI9WWgdsuzI8ib1H6i3j73O+Csb1uLRVGeLtnpJ0Ngp+mN1f1aBQhOHvUlvXS/3G5nb7nlYhWBqI6KcHlN+wU5OoB8NYz68yeqxDHfNHD4IdUSjZoxsRNgMgymE3A5narNf9Nm8LT6oBPBAjL3aAJ5elBxYZk4nk7dlRoZujIlK9/gPM7Gapx3A34/8++wCON/GiwjfmpKW0jBFY1qtqIiZiV7Kr1zTL+gIzkSvsQ+8yYZjmdzRKWBeBjswrYdJPe6vEX3ACwgHqZ2VsLBUXSgyxRw00YFBRLFAOYoXodGLO1OqOIKU9WDvN0X4rsa+RHmd9ShSwJZ4zSxJf7S9j49+hP4BZ2TIlmqnHGjFzHNZ0lsEoZ0tAz2bxfZAozwVW9C67ZT5JZEp2G3HPgTSlooy65K91pKL+FUA4hjSOHMlpOK7IEQk6BxLwop+c6PcUSsy2qlq8T3yK5yGmBnvYYEOj+wGs5kME6EKUBlUM3Pg21icD/QzLB+3KzACuaA+CL/caq0SOSQvWnkJYxhE3ykOiwpqtep3XADz0G3c9O4yeicOpj7ye0P5FYEx7dN0TqehTLqMSENNYj+kf8jWd0EWYrMHsA8hmFnvCJ6AtXFwDChDgblMhMUDeK3+Lswvpsc8jUjoMu64N7PTE1/Xi7Bgcrsdj/iVPIzw111scBowkvvcJ3UdLwAfhYgYzjCkUuhw47NpjfK6f5LgY/x2sO57+fBas7jrG2uVUrC/bNCwK4XzPNPY9P/vNeWte4WlUFSC1l2XYy2zgHB3F79a9WH4V4SPA3qcv42kxxGHS5ihT0H0+BIN3746Of0i2oJ6Cjiu4CvuKlJViy6GQIJpN2AjFGINHP4uZXQJnPxLnWo++S/3iuWST/wAx7ORQXoxzGsWIld1s1lqqn8iv6jXQ3BtAD0pEJN6/T8NZ2dW5IkZES3mXZpl42kD0vP2vuI2BqYXoV+6SzNHWO20qQybJ7lZby/lT4R8O28wmO6Whp7p+IcvRViyLi5h/ncXCPYbVBOnW4f5BzWvaTgWwptknC7DonK+0g9D1N22xnEp+SkUbBHcqKPc/i6mppmQqlOaY5l0RwtENz45u1FcZ4LYL7az6OwtdufWo9hZF1dkAzQ1c923ReFjXr056p2vkg8x4CwUNo4Ns0iEdM9EFNH0thzEaiIP3b5rJgzSAZEWkcludw3cQyztq16NXw7JbSmbKbiU2gMKtWtlzFfEicUoKrHVlJd/zClDXWCnxHHekXqclQdDfbPeTzRuK6H37LXW2TkThZOz2CVlNdPdVvRL77EhuAF2SGHsuXN1nCdpCWcc5As1iChcQGSWfUP76QM1h3KiFdf4aDixvtJOS8iB6pa4DI6AqOKdsTFrKnCuIPQH08NQtKdMZxxNFG0KazdOfl8rswG5SOE6FnZzUAJUefPNdZvQ96y4CebrURqTKM23ZBaRnaPFsXsCb576VWcovOZYhef8E016OoqZjiVzFOkAkvcMSoYZ8/JbaqKyopquaOTUOhvbF59lky/gga3cZffUIX76DUvJ2E2/IIpc+VTfeT50zaTdVtTj7HoaPE5WDsa1xRAg71t4PzP2pQHGtGeWPgm3dOcp7ulhBb4KSwOyE5Oxrxn2+mMCxnRjysZhnCzAlwuBvyWWiuE/J2d6uAALT4rbvEKBsqXaHEvLiS0ikvk0pDy04Wvz/pWqB9vIBQjQwu5W/Ubz2FJ0y57QW4HdeNcXE2UdDH0YjkOz2CZcDxSg75ZNpvMnQN+kr6qATDreXKtnAC4uOR28S0fj/J4IBCTjIXG58omlgFNok1MTD/nI+0tqkE96mvwFLzd71eB5jFu7lXa3Z0YJ/o0MMsBog5fro9q7gZ8x+opkwkVWYYcsF0WITUrO/xLKaorZ3VLbmnhSyK/muQPdCA9NZVgwbGmTat/dthCHxrTkvIq7i5rKnKGAcDav7nZOZUO1eEZ7kt2M/orw01d0pmXcxiAmtGFG+/AvG4u1J3gwUzQ4eubkK/+a/nI93m4ro/t5/3kWbTzez125sNDcxlWlluqzgrlHA2xhYBYElF2LGps+BiPNDJ3IZo9GD6R2OyDyN6Y6fY8FEQXKWvsvRAQoxtWRbXN2Q/wMsqXiN+mUbDyk2x5ZtrkvrUQ9VpmGKgnySIt+sSNNTUIehgcqqWQE+a6RpPGw2KwxW9Q6y/Za/1hWpu7OgGh7h6Ml2bvkKJJgQjtASrbfFi2+UR+kSflIdNuEJeTA4tIg3oczcDkrOO16hAuzsmpLjCKECVIfC/sTAwlPxxOMPK2+SddyzRtBCoyosyXt4VgLkEpbdOWIAf9yywT6cNdlylV2rs4SwZ/ekZ9pn3D1JLZ4/Bdncdv7U+SHF5oLkfhPmqGppZEReRjCQVMgAdKGos88tf0QKxncD7/qMHMA/dD3ls1N50MDPz5iY5SMXNO4ISichqglVklE26Qc6GcXkctY0teoOK/QhT2Mi3kfa6xCLWeAcZ05n3I7LxaIKyWaMekxeHnE+9rQMskKbPD/kD/mCxBXy95BFUs7nd7GXbZSInw02D5R57Wu6+dRe6JB1XK2JBF6z/qYGfn/UjnhTBMEVgMjhM7QAlmG6C7iFOiLEoAhe+jY+qd+maPv4F9BZn7fKuYCxbOJZheZNdKWeZ1Ct70R74Q/EyH8rQFYjAa5ismTkeF07oAon59aHXsI7WwV4TRBhxzmct8XmMwk8kOwATg5lEblg9D3d/Zf+yrJskrUBe97MrpvHZO4UEgUnzcs19nbCZKaSU88RHniGFWpCKhWtGsbK3kSwe02FRt+AfQ29ZbYxeceJ0HhUnjXyRUHzkH1DFGDx21JhtyTsEN/uFy3z1/LOi4BvOuhE6BI3QvtDRRdvnE3+CGI/VbQfKnt27Ll+PjCybqUNvy+DXLb05U3NitjiUMldDd42Xugac56cmuFXZRVznRUnL1t3ieUcpt+S7TsA7Fpbs1oPBbQUsCsfu4OJSe8HhiMFrFm0XlrRqU4IADZVXqdx8sC4gwdVwK+eYTnbJMJqmBdHbe6CCqXCaA6eZe/yi58u4IS6GM0kEq7RIYTR9ZhEXrMIu9kcLn7Nm+mpE30cKVvFlp9jYtaAg14io3qO5npCHquF4nMIpyxlIL4d5PUC0UuM75376QR79IQpafH4iWY4dvirbl9JtSYE7VAzn2KF+xMNQCcZCNrig8kDvLlP3Pqe52jiXaxM11lqs9YTzf/3UA13j3UMhD63xc5Mq/q9g+5pqMcnbnTcRhF8pxASVtSOyD5D1GMm8FI0u3cha41odctcLZBlPS69kpZL51ifRgbb02PNu8im+2weSTHs3eUpt45fQu7mlL9nwr5TF4t+h8RIbINd3S+D3OKrFsnZblmJenqYF2xWVU0pmnWNh9dFpfAYf3trU7rdGpK5yDqdn+nkD0tt4+UbVByz68nWi8JrufkroqivIHiwI2j2960Bw/LRuxF6y5KGwwhuzvXX8ypAwL/9m2yMroK6Ku6Dqhfc0MJ2OL1RnG2XGJ8v16Q98FpM1HM5pmRX2f6/vafA1LZow+ZMofFtxg9l0AuQotQ+o6An7qytWGDvt8E5K7x7xZG4WFXSn1wfBg8bT/VXhDwXr3hkGCx+cqdaVChELj/t0qB4UAcnMICvy1cabjFQ0Fm68+d9HLKOYcrsQvd/YSV4V13fqgJAbV3GrKZLdz/QgpMAYsECbtWlREpOHjcmhufO24rYsU91mEn7rElcOBfX1076BRvcQ0UxT2JfDDOnXd0LzeEsNJiJAQhYLR/7RBY3t7e1e25nApwAIO0asURxQ1WvVw+jTlrHfpPxM5dXktVyEvkAsvrlf4TtGvyRFWfg6fY+bR3PmOOuzXsAz7sPshnVWRW9YIiDDS/Mg4Q4idlakcBCLikErScTi1zQIZ2dqnTMGBmnRAp2TjoWfNKUkFwoAVy8RLtOzMKZZE2IoVIVzKI5oyefkDmIj9yG4U1zllmU+uXpABtRadyswLQyypT9VGb4KpER9jTKZBdRlTDAnnTkCf2hYJBvMvSBk7SFZgYzFYz6xDV+h3u5MyWn52kmOk43lki2uERN3Kyfl5v2ztvm2toLlhhEtz6AOnMampXPr3I+TjY6DmbFY4+gGvtzY45YA4b6VxhqOjR1qkFG2NmD9Kv+m6C46k1VoF+5dwj85zYA7djGQscOSRPvmbxHSsGmlIpNEdtSpRdBLdCB0CS+RT5j88yMjPTaZf4mmRZoWgKFJqiVwp5HIfYTBbO48E5ymV3kSG00Oom5Rt8R92H8ya0DMWgUStJTuFmDCnfCX+LhnxLkp5UH4SN/2M12xhV0CmCAIvHx8WLLklpPNJrvJEq1jgPRsEQduuZwtrVTDRyeSRkqhp0iDAr7ZgiYNG45+lfLz4jqF5pS59j/qKHzV5oEGa5tpJBfwBMRp5EdQtZUJPlN+e+ZDBpKcLP852+bScVJ5W4zVc9smVwfxccUec9gEm7GYJQtc6Kmzz9jpyUhn3f9wR+PO18BN9E+b/2vbtBjS0wGI0cG0QgAmZLUmxY0Z+JUyLsVlYlwJ4+Y652BxxH6I8Jg0C0Dtysd9NfqLWbfxv0i8bEfKTnU9GAum8BpJFnHhFnQ==
Variant 0
DifficultyLevel
731
Question
An archery target has the following dimensions.
What is the area of the entire target?
Use π = 3.14 and round your answer to the nearest square centimetre.
Worked Solution
|
|
Area |
= πr2 |
|
= π × (4+3.5×4)2 |
|
= 3.14 × 182 |
|
= 1017.36... |
|
= 1017 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
An archery target has the following dimensions.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-I4-CA29.svg 420 indent3 vpad
What is the area of the entire target?
Use $\large \pi$ = 3.14 and round your answer to the nearest square centimetre. |
workedSolution |
|||
|-|-|
|Area|= $\large \pi r$$^2$|
||= $\large \pi$ $\times\ (4 + 3.5 \times 4)^2$|
||= 3.14 $\times\ 18^2$|
||= 1017.36...|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 1017 | |
U2FsdGVkX19AywtSOzSbwmzIN6hBwjFD/wdoGm7gqu2wPRazjbndHJDpyeEoRvIVFIDeZMTUehLlE6G+YRNTF4uw4sgh7f6Ez1a5bs/LuQWyv88Z1isbWNx9EQyJPwwhNDulz5HUMNeDugE9x9tIFnfLW4DV+yOGJXl8jRzFc/rGVVpCYJ8/6dffAZ9xr4LIKulfy128k4Wh+RPvD/K4S3qYdyoUl8ePjafC4h5YIq/JI+dve0N/oVcrZoVHjmkySiwmxm6QcDeMwWkGBI5qLU2Sv/qGYhxtve7T2FH6hkaQAz0oib8sHmWgTkll9iyDSR93nymeqtsT/QTOTM8Pt76MkS++4FR+KAWKFrjRElWajZ0VvKZxuGO0CAPXvGdRyjZSgxcRaeh9O8Z9kCTM6pmBZ+S96yg3254WaR0Ns71iOE16UHufcj6Bglq4FOvYS6PfkSKrA8lO3pvensvsgY2CLZ60ZQb4zJQOUn7prHHjKfMfguZ7/Sk6+iboya0jHN2nlH3klGMGWXdb3W+lNyS5SuOPCpHJarMybl8b35KoC/ZPglWwGuUu6fL8FZih/g/g5l1ljf76vnWUP1iSTvUKB36IlhK8WCxrxD5MQjEcHPswLsiZeXFJzdMoijmRzRN1zdnSOA2Kkh7BlIPdPptaEX10qDHkQPswGPXWoZKBmg/eRYzHGWDW6w3SREtTo+WSyHKnXOgHqfm3xR7P1qV6K5PT+E2RtD0G1ziTQLTK2xkEOBc2ld+Ftot4k+ddfrUGbrJQ+FPCq0479SA9SN4ev/kJlK9HL43ZE03iEP5cEsMFxXneMHPss4LfxGGd4syaXy43+/gkzMaoUeIxb+3uz96o9+iWtVnTQTEnrEppy/X7u9eNCbMPglCY+OrR5VOrg6x957g1xX0pJhCQTFGBwZakdSdI7vKgPSlEYrrSxuNmzX596I7ckoeKbLKuqQl3XwVPUXRERAt7i684dZJJpUlDaultDb6pgH6oUZFBDbiEOVZyHeGDnuEIMfJwE89kv0Qvd1SkvwMMnTXL3Znfl03TIE/u7Lj0ikoIuV9vDuXuVTg1OrsNvPFe3dUXj05dMHyobk8WVqgHcMljTeOd3QDe6dwlQwKKxd7EAy278PN0ZP5rrMMKv0dRFzrTR8yesaoGs4t6JScqMK/z4pha2ie41BDPn0WMaeM6/VWSiv7R/pRaJnenIMn0FGTmnDaIBdpGgBkmAYjhrLXpZVBf7+2Q3AVt6EQTSostGE+GjipZ6N6qsNieBAU4RhP4jKQGXM7dO3KBiNO9UA36+deJdUXW8+O8SlubSmBwJf4USNs6lOftFbsv/N1/XWglhg+3Vguv2MDRGL+BqoAKZbYgvn96dejzjZ9Cbd7hdZ2BlEuyI2ntintrSw19xLve77p0YGP9OISOH6S8mg3XwkdbLJFauf/KTdGps3AcSRO9FXmWsdg9mUq6peI/lJ/VGEOE0Ebj4D5+z+VJHQ6ff2V498dRgkDCTh99Zkic27RVpyzBDnMB/eQG78EfjHon9niL5fWE9B2vs/XgqK3Yk/XKV1L+F04j/qfheWyMHDJ+EZnUDClZAP5gk77VAEFvHvMAJZsLagdgG3r6Ez6ve7USfMwTOF48XXeaTTxi192FTyLwBbzO5YCJ2SPHsPkmPTrW21OCxWOnI8hw7kNd1qb5pLCJjder84MSizcLFYLh6P2XJTap36Dmf3mSEErewTgViAJd6nqTpLIZ+tBYJ9NOFce6nTX/f0lNBRhVmZU9n/jWvNuLit7N1QZcbnbLZRvpp/LoG1vDVwzp8LrNEYfQKwc9nvjftLVwPaU3lCAUOOr5VG1AL1cTKf4XiPI3/L2yfUJs8HrHV71N0PR6eWbl1HJtZpUdw+fZAkQdXtBvbbPQVXqePPqjc9NnIGENQQNmoEWdZdlYFKO9Abmtv9ANnwySKTMvuX9n+3fOTLku2TpdUA7+ZZWehdvOTO1g05QtkHdyD1hcer3LfMAOeTUmH7zNorjL38xJmrRsXo6o3oqm4H2brO9Z/MYlZvDHtA1vCGMOUv/GTB2N8nsutqPFBLYYxxYD7T3SnDM6QXhlP66B8xAsp37Kv/G1e7DXGCGOXshcytAxXPgVHtrR5ii1+T3ReqS3Y8CKJvEWTbQiOjRCMuesf/jNfGC0leHEA90lrfTFJpKhFKuQYRc/EQhIaYVV1GQoy6dCRckYaPQOmso1vWQNp80oWWGk/z/r9ygo8rAk9Av/pZtSb7UpMAvLWsZR3YsI900WX7vkJ5g3nPhprWWYTAueSHdUMLQTB7JlbNjAsqB+rSHZn50Xm54OKuDtC9StUZdJn19lR1jJQXWkl7U2R2KDkLd/feuUm7g5Yrcnf8zkLcgrChOK8FB7cLxlodImqjKgh+PomDs3L3VJto+sniuEedqZclR27fWhnIwXv9Q/Q87UwRkumPR7zLUcKr8iW+pN0/eMtVS2l+lsumxBjdS9kM8cPwZ9D6gPBfXi62f0YxLrW8pQrpboH+MiULt7PrOyHch+GRER2O4ClDIXcYGacbUZ65ksGawFuQaKjbh0RkbXxV+b5WFyGneTjh6OdIPBtMf5XB+5R+yXRWln3m86xHgq0eLg0FoD2HvmER980bVus9VtWOOqoRGTnbUIWVe6wOgQnbZWnsxl1EXZmt2WRyxEeUxaPHrnK101SYcYrZRBlokhOZshTVWpALBLObBVTBzvjMvPb02BmG1V+PECGCEr52mPPlBgSqn1xFsYF5o6OFNWgo3MFCrDY9Yz4TjshM4ENGMGTuX+hHxemZThmbcDIpgt3E5ez6G6+m6NW+/7JPNKWKiFy96FlftUnLIwsg8CebXHIFTx3qMQ0FRXhbqxaEo9XCkChFbIf6uHb+aaB6nya6QGmK6xEhihnSXmG7ugVO/NCfuAssaJc11hiXkAwRznMmV2NKhlpOIkRe1+1hED9eSmiyyqOvDoVuvINKAqoGYGQosgrADniXfQcg5e8PLC5WGQZnGzfUsU4ZuoInOPwZ12DJVo3uQhylxllcVSIJuWNdU2v6hzxo0GUI160injp+l3YV+UyLxDJCXUd8gj0ywgfq4nu2GAPEfuj3NDkUZZ0UXNFNtku4Nb0HfYHC9ie1MfRXprsiaAId+d06Q6ZaAcd9V7jbWHikSwXErkoDQU1I5rItpP0V6Tr6do3hqfV+vUhfojKu8ODdbZjioU7XAhezlXdT2zZgzHDZ0fGmKoYCazRq2tsv844NDofnXqFf5DMzoeUTh8+sfzXQOXaio76FuLvWRJ2J5x1Bb98ZMv7x6YIAYnz7BTgrVCCOLaf9I4lbGl1dWv44T38IIRz+cshHzNcRM0D+SuhWVF7pImC+alw7nBXoEYLi2kQQ/kVj7z6+XxrDf+rXYZlVA+80fl89++/gHarCsEL7tcuet2xhUlyW/dpBWf9ZIj1VBIqj2ct4j1G1gQ0WinFDrMw8s7wNzLo5YI8VsbboJa1sWMCDHEOkv8E7KQ8rtT96cLWUz9BeJhS1fW2qbBAkQuG0J/9tQv1gVYcACB8CfvbOqJ4dpzbZX2I4Ep1glIw+fnJn5UVLvQnXdVA2OqmwJyf+BfSy+ggVHiDngtiWXbrmAVj7g1HU5OByMc/RTsg/G1vQlkJtJ5kuUffrcMsV2A59l+N5qXoD6CA9i2PGasDEAbilMOWUBkAwEQcsShZXQJ/jsiIeLEhN9vWBxEAIix4bu1TMU1kZFU7kmUMK6Ek5P3IXVYgD/k5odtQmqSaEApAUhYmT1Hx5pIKnLDsjeBO8XsutYn0HO4xHzFmHRpkWdFFMmBS/qjeyZp4rOYnMCwWYQGLgTniCjiKB1xiOHutxRWy/XDYBWddxtWsOuUYZXsT8hMSZdc6OdJx/w413kKO1DwbkK9EO5H4rnmdMxYsdIY9UlafPjIUPFssPeZStnSvRqQrlFlQWjSbmaN9ajqBnSHnmx7poLBFuaOVbfpsjoY138cUaGSbWjtuqdV03n5alzug5fdiWJrJ+KKuIx61Ma5Ehv7seErI8hxPd299+q1o2/HgLK+I/eASsrHoWHIwzkdBJDgAK9DxXlyh7JNGOoaKwvnyQPO6FOUfud6bwr7xqTFay24y47iR6p3tZsW1iJ6yoPrHPL2VexMUVjS/sOHbdO7tXiFEaY9CD+lKHweyDC/0AhX8qcJHfRkMo6BydoVjyUuw7Mf/eN7vef/XDAN8ZybngWRKaZez5WgrnKQYbWQflubV+fbFu38rEja2A1Kadt0yqpdGJBYTy4yZVXUucGHlZb9VGlbYlJLWJaDqyNqb0DbMcdXpxOk5T1fXqtCrOgKS881Skfap8v4VgiE4wOPp5ri34b7IziH0fSlJZySVKoeLZmw6jqTTfMAFp0Bu5/FAV34UJLUtRTd8UI6oSJGuzhE9I36CZoE2JOrP7Lo2KyNFPeL0bAjUmCNGk8gWxnW3DkrR6ceQYS5Zl9DZfQCVtm1BxGtndEEmrHpTDuTi+zB4vNFjoOuRtkXma1GeMVTU2oxTrhze9k6uHg92hvCV4JP8x9JgEHeRcA9wZi9ar7qgs/MlzVMH86F32/1V5dKqmDonwRzIGqEDGEf9oVreVSxMsvfaQiNd/pcHGNpywltVf872vE8iOZgxqlVN6aQBoyTPE2eVEPJnMaxUIxvylwM4ltMKS/bEuYLnCGz5E+hRgqDKNOwsV3bdNenZ5fsoSsWv5FlNTWwlZB64RGScEdB2OHPwrgVeKMmTUlWEUFnqCthwTstOq8pO9+zmOFnRCtrzjXyMmXbhwjCsP7IIt8kL1wqDJLekFEalfVEhZJx1I6IYlOUjHGgwz+JkcjEBqG0iNdw+CyWbWtE+DQl3ikM+DBrAw4G5FyeZ0YRijsTuPbEq6ys2GZr+Od8/ebCfyTS4wjwthIgRHUtaxxjDIqiKtPDfRwW/g3fVNDfuz6TjlFfN/9f59zlBMMkmMkfCRAhqqcgstC6EYgqMRSdxZM1qZAT1VPuMad8W+8gQHY3hSQoVxXYdUM3mCeir5o9ukp18xKA1nHymP5b/dqvOATMlu/shSw74rGtQuKNXl5sGumyDWi8re37rNeK8/tYxVVhCw1ON5veCri24lPaSXbjTmX4GDo0RN5ejbKz9ePu2Unxt5mLGok2n+mxxDuvgNsTlyoMFthwp0lvuAdWIg47+mlvHGinHWDVF3mKpMO3AiHvu0EjZqN1M3fsjJZNRiot2u+9q0VamiwJg2eVfQzHXBGV0xds6vYfBhCK3mTC1BuNYxt2HVGMR+jlaWsJWVz7a5hY/5H7Y4Brtj8jTjyGTzoJhv/RS6H6W9HVsWFfGDlaziabcvVZdVH5suoR3M21uHacSv88sU2eo+98O8244v3zrr/3Iy4JV3BOVtZwrEXidYsNPYf687vWUQwkaJjEoFW+rpPRZPGf2FsCxCQYF7VSmasVxpeM/A0tzvZAbmEjmxgPNLz9Uv+uRsQj3543s6auhfFaa5Nh4gHM7ywN6W8yvz5YyzBf7Z0Twvm5e0tH2+9FjFiUCwTw5S0oV3kiqL5l79GsTP/oTjUC9h5kH+obDsWSLqpdmQ/SIYwuiBDSw0uJoK4OkdDthOrOtnuM4blNnv7j5ZNGZpShkRpmFHN9QdPL4M9un6tCKTnq0v6TjSRirrvTHX9PSJUEOsFc9u/bu6tkDU6y+KLvLBhZWvAhqZZWyxqR5uZb3Nr5A5J4+7fHtFbEDMppHLyOgjGxWYoVAD2+Uf4WdUFb1M0b2fsN2xLFzI98UxwyuPTrUP9/+/VfO4/sUEhl4F7iebBDa5KeS95nulQlo6yfk5waM+a43oS/FJj4zDg1vSYjuRVarw9yM1yrhDjNzKfX//FMASZ42AGMDwgTayJqyWat96k3pb3gGs2PzkYoku1Rh3XSRqYvp+0jWiUx1ApAybihN8Uh7ZPdQxwGXx5PjPyPv4kTv9mPe2dJWBf9xwXaxdOZuCYkww97IHdIXo34SmS+51tWlKnliGycYrWY9qeHApfLZxQtXJVklXO5+g6UV4fgZ2I3pzsQf0rJ4kQao2DPrb3EGOgBVll+GR9dsBDLHZj8va3uFxNaa+tu8UFj/hu1KW37YAWFYDSK6yVRMGk1cvCozMXr+rDwxXJ6nx86WGepyF484RwW41cB5SN2PShidO98QYHn0KUzu/ofB4Z3uhOfml2gdqbqMsdoESE8f5np8d8yMv4B60sX9xieN2WmGq5j+MGDLPA0xuv9ilNAdKqkiIYDf/PTwB1wwmatFPIt+SHrmT3XFlvwW1848APWX8WuMPpFG5UdX4ctEubAwkDH1cjPxtY7+VO/dtlszj3vOOkeVr7L6Zf8MPuYvXlpBgp/sL5PRaHn/y1f+s20+WNS8zP0KsU0rghqU/lLGTKrJNrK60Gsu2TklDR3IHUsnRIWpYe8ZePi9o+zsgkNm6XhsH7Cf/N8fUwnxXKfRdPzp3lI1b4zI+DIlq/X55uVKiheAS9NxuhEqVnfVgzIWRsVXbsmtEBGLr8rZ2dkzvtSIsTN1jv1SdzZoCPnqX3dnooTuq9eK/mYpG7yrd5/kny3Zk1OWgc5Yy1vLRa+PLCPvdP1wIIb4AQ/SsRsGxdShdjLNISaglHsgd0nxi6vOs8eZ8z+K5rEvwzCbCpahUD3Gaec3344W39eL0q3K+d+smHUi5il2rUdiPmoCjCeVbILcpvvGNzKop1ZU0m2UdJuq8+MXa7z6Ov0yWssigp39pW+2tP8niJpudwMEY7AuJxDCE8nXVEpnkE+TVwNC4OTMKzWfJWUJgMM5B9DNWSfKOm05yalVpJWe4gAkmj5+VMoEBWRmeV7bSdKMMmBHlnABBx4ZpXlHpB6KkJpw2Vbo5lD+0aHaOoHvZVBMH1o6g/Fb0ix8T0voZHDS2qv9T1RIBigbsR0PADE/EExj7BxQRS/f52bQ7yUrvIq/N+b5aJ+TuDoXA1hR3R4rAHSutA/jFRdbStnAy5aTlXzHMr+d27MWBAmTHLTZ4Qzo4h1D7se7pAfzY9uPWUD6ZwwiHijBSytVxsDKeRh0cdND7OkrL+j0SVQWIP9yoB7wonLw1yKNBa+XlNB+q3j5xy52cWoOcYxX3cNTOBeTa31/0cdAz+A9aRe+ffQ/UdHADHpRAQSqbfhXSvAwrhrho6fzliuQU1WKlw9vvL6bSghpLUWigYxyyR/uhvPawVyTGod6ywNl2+gCin1BQwZfXcWwhgXkqZ+ihk1Kv+PLeVM31y/IlmAm474n3x9n+RkTumZr0Kwpsz0IJiBfgrRZUUolgr6oSIhrUZJpCNsG2ggRuDXkHagnOLABQPKDsPl3zgkszCEK9cWN0UZyJc0pC+yNSiIvh1ZgOidzk+V2JGCsCrpB+z7VxMraGVWEbTLG+lwwknocPrROYpM04cfgHj/+CQQ/eXwww/0paMW/RzZ462SX3pRGGwe1gmMCiDYecekCDWDno0S8C3TIaTpYct1o7S+ZtFYY7igF1wd81kiswsVkpGRGcqpAodphOy9mzsh3QsEprnqVsymdjAVD909gNTptVsvjtP2JhcfuToMgsyCJLMTz1d3ztrYxcOsqe33yaQv/bK4JeSx5lyKRM88uR4Eflg4nRObpimI52LPdfChXR1EhkXBu6yCdOfQ8E9m5vuZA+Rlt5/EvUh/gHuCxoAUmCodNaQD0I/+L31EwgexLd+B0XqIlmIHQepMLZgVl+Io2YrRXhEa1hJe+nz9BrUvxt/KALT40SAIp+91xLrKK9LuA/K3bgW68yzpwr/vu/s0p+9Rw1M84wOfjTTCXZnmjSad6xi7zLHcngWXvLP3sCStXtvP+9/utg422ctHCGaY+urPjDhjiI2Winb9lmsXuSP82VqVFGEg8enb27wFFW8JY0b/GoGqIsa1y3sYp92Bg61VFDS4+0EE74+uC3V8Y8Kzbg5rXRyT9CKDLJaHnXKu7C5NwDpLagNBKOW+0nrOwqAxOLixIoBSCBvL19kmETFO905Gl2IeX9oWm/TseQBHMRiSSmRqSIt5oLN2qJmHQ3/6TB9vjcAANgeKpJ66iDaBo1D0LSCNjEhCR4BqU1YTFARQ7crD1ufRSLR0mR9OGemWcvLKwb06tTy2QPu2e/DhB/NQWD8Q+OdCMXKJZmHE3EEP6arXzlRSCH8CG2M7hiHS7RmVTm4w/lVR52/S5vJ1tcGVXhxnQhdLT+ro2TztBpY0t43CG9sAdvF1mIzx/fgTy8xUzYL/87cRZzgeHMwjnAd3nge3jYUpvyj+5hGNvuSBZHib5g9bheSDPMqQOutfXvfkci8jcm12aoSREjSAdI6XLfWFuNEF9SuHCywUSpi2pA8BSKvUwRjbTBZYroZyZbCxuvtY4fLCw//J6oVi4qT7oQZDWn+5KauPl0w70BVY+JHIbdIxrcO1QAjtGZgitWYGkR1ghrE6YxLuG68p9SRPv3sZu81e+rZSFsx91sPqO0412Mh5EyDG3WI9BOp5l8c/P5H5+ssRNruZg+mbBD7G2uEwvXSPO282zZRacw2yKM5zdvgbd4V8VJJt7IJpgEsZTXaejy7ZHB6acx8Y8HMo64JB43J4o2p27zkgCT18of1wuWg7N2867/x/kmQckRfwKEGMmxiN0BqqRNHpmkplwKazwQk0NtQc/mVZgBHjBb3H4YLTgb54pduVcPB+H5KDfklOJfi/+dYB7XbKWgBqCiv1RZnV3RXdg5pG4FxW19/LPsDNGQV769K6Z605CITJ2K70IZjghqSlnwul5FCT39hNs9LWywUNcaDRvTTtVnfgTsCpmVqxQMykSEiHmQPFNKXTqpBaoX1Z/71AfnCpAAyj3aJ60UW1NtA13f7VWY+17LOlpTrvIpLSn25bYaQSqJzklNxCWaXne1GBR0ZpuFYZQ+icHk3SgC90quGWrkmeITENd3UgqB+U/uCkQ1XfAAEKTuTwA/4xnKFpSKnwwVlkmQfl8lRV40bATEAvkvP4x/YCwDblrRVBe6ULnnwuXPX2ml4GTLtL7Q0bD6VYxRv62GUD6jaCdHHWxfbbB64zBE4g8Kq6GSUW/fxBboPNINfdBeIOjUwmdm6QtCcODe/fKuWIug2sIuAiWy7+i+jlvU3aEC3VrhRNNvaBQIJhtpJ+n5Lxo53ZH4xpsnnvSx8TjifQ+bLUfYAueBX7qo+phYn1vjoER8u/zswmBqltLIcO7NdiBsISqDfY0dCiA6pMnfndSrniqd8Xla5qgnBlsE/dAns0xfpxk2L/N7rdruxSvPswEVQd3fwUGXJDp/DotzCeZ4WtllZI2qOV4YL3oDZR+wE1JK28Uw1rMITjx/UtU226/G3pyGzuuTC6JzD3UoQWqyxgYgtRPWSH3WRNCyCZi7MA/7KbUhzmZ/LbDrKEr2Fp6+PnFLy/oBZ0GLZKSmyrpiuvDSIksjF0iolSAKZtZ/Wpj1M/GJI8oZ32KGZ0l+3ZWMH7OrLU8UnAVvZJgQjMEWWQWjEN1FBAkigyPA9RdSotqVuKRFDdf/WB9HsapqIsWge6D9O2DMHBSWvdeVsYr5J7NEWR96HWqzOJYFc7L0CIT0eUukjxSs8J2GR7RNNunNDpk0CB8/9SMjkP0SEj8yHul2bCKtox+c4bBLpb85F6VyMLSuRPf8+EIOhHL88VcBClzaGJI2m0LZlG0Za4Ij8ueBXAROl4Ovek3sQyGb2IIoMKd8ZZ7iHgyLVxdtEggs8IuuUb1Eqsrt5291ipxpEiNydaUSlspPlHP3YPISFI17pIbIInFrk/qmT9zCR4kOA8bmTMJM/nmRyaUQiAxeIw/ENBq6AH5Lyl9f5qhzFnHGr+QhIgwjb9dLFGxuce9YUT6PaF9tOwhyIkZG6tI/NZP8YObjIS75Gz319yThw9AHWoGMMflt2WxZQ5Fch+ADZ1HUsnXRgq/uU/LHiAxMERgPSdei7B4Um6WhMorRXtTLMeBCkVfrS0Si6FHXJrkFbwxCS1hupFqenYVHK1XOdrV4az9bWSBA5Rf0++5HcTfImhNC2kA292qwdu+/8KwgC7L/qZM3xYinNNAa8W+ZQrPQq6kgA+Hs1/txTIAnyZsCfXZ0Gepj/mkdurjJYVQNujm8YE9pf+sareDMRbl7MsXrzcx6DTalORPTuGLwCgvNhNz7CRC2bQyth2eCvo/7+CyZMgc5CeRji+af7dJOJlweESRUbWSusnYq2bGvrXKJwCrbLSy6pbhHRRMFOpyc1IROkVr74NQjFDbQELsJrWLmGtoX2u4VRt6BjjvTp6YCA14eRExbYi4t0IujcJw6rCdLsaUQHrnLeHrcyGRS0qw3dzbnSMAgdYrAb1KlLYgXESKPxMmww7KZH2V3icDagzGXfEpY2rGZ/aagA85HKjUm2Rsyo7zUUD2tjuxty0tDu3RnDDEV07U5XvhjVWzfd9YwyQrla96fZWxKGwFKlHn+1P9+fQ25guVxahxmDdUi7NXqJizzZbZ2U6JrnpXZilBSBUAuCraXb+YISgnaujr88MXW809m/UrPA2SLcWsIlEq5mIoqI518f1X3+OO4fSTpmHVPyvQX4w+3Cc7X9M5yHoAm3e0kxXJGJzeS3PvQcJhlTzIU9mhbWQ8z0ryImVhEGtacfR7tAqTHeNETTNgyBKCjBzDyL37G+vF6wRAwGQxEC4paGpMH2gEBjw3bTFEOtXhaRMclpk/4NEgiBfOYVINmMzUYC07mddGdkuTCT1nRXhEEmxneNGzJqA58ZG3OIVNJB58dnzvJB6jU3F8KnZkWmgqEy4TxmrhJNeXKKDa4KtMOF44YC6iDSm+chDgHCeJzAfE7XrRphMUa40uKMlpyzh+AhBsFi0tsLy7ZJ8mifJT6dr2c35FeQK+3KTSD1IdkBO+quRapx0HmBzBe5DgYjYzwneV8fA8g4v3eujy6UbFl0igPl5ofH19jNASboFxwtNcwDI9Lubzvw2UM+wWY8fVgn73gRE3/Z2j7+qBCJ4xngqR/mfzzrBFje71aYJTVI8Px57xxqF20Nf7+kClMvEeKilExyPK5zbYVkfW9CDZaahOk2hHYb/nt+ZtdDy+qKAhEl/GfCdS9UP8VWeEf1VbhlyAnvHEsgSUFlMx34ecOWpSXblEeSfeKMkaQPtZuH00DiZKDKRfoIgBCHzV0fMT17qAVDxyCVsT443xUT1o/9H2vKIXN0d+YZaL1aZsKBQZkjZJkhED74fH82+0IDu7JkIUWQHL2AbqSWeseiNyiR8J5A08tSuG6nrTWu/LGJFn3kvW1IV9GkduWi4gR/Xs9ujJ+Ww4pYmXyK8iuD3K+KoKu0lTxH++WkU/OtuO2YgpydP6hRWWK4eRgS2/FS38lCHKCClHxdRdndMX0MEHYbxk4GagjKZ9DL/OGsbIpgYwaeymIbex5BQHI9/7Jc1yb7h3YzcFrfPNRuy0zcs0ZDbXKQsjqFe167T34jNeqk0A9qaWUUS6p8uq7QXzK0nW395YTC0yxfgLqWoVhCqJMTmJVtimu6EPFiVJRQAr53vHe2wZOQQZwWswyHMF0v6F8BX/Qngc5tXaB0zvIzmU7JWF/MkVx2jDOCNUvu7D/0MKwAcaScfnXjE+omfoL4xbpycB2lLc/1lvHrxg4ZwWOduSqK38aH58CV4m/PiZcZO44/DkSI9tu4TGZuJVBcVGfcCFPgW50OlAAAJulvzsTYwMkD60xSaFFXYKsO1/BBswgMcEfp4BfLUL4/DrFM=
Variant 1
DifficultyLevel
730
Question
A small plate has the following dimensions.
What is the area of the entire plate?
Use π = 3.14 and round your answer to the nearest square centimetre.
Worked Solution
|
|
Area |
= πr2 |
|
= π × (3.5+3+4+5)2 |
|
= 3.14 × 15.52 |
|
= 754.385 |
|
= 754 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
A small plate has the following dimensions.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX-I4-CA29-SA_1nts.svg 500 indent1 vpad
What is the area of the entire plate?
Use $\large \pi$ = 3.14 and round your answer to the nearest square centimetre. |
workedSolution |
|||
|-|-|
|Area|= $\large \pi r$$^2$|
||= $\large \pi$ $\times\ (3.5 + 3 + 4 + 5)^2$|
||= 3.14 $\times\ 15.5^2$|
||= 754.385|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 754 | |
U2FsdGVkX1/cMrAb4PCZluwTj9TPx+3DVgswDAsY3DlwnzzB1YKx/5YDzHDB1Qjarjy6Jsl02q0US2b7m0t4GsohcRlhn9TSN7bazRHkakFAUDT4pr8LqgOpLlcmoeodiIt+5p6rnzXOhPFtjK+jjhLt6CxfHQZvOhHk3QYaIFTCGrynrzrZX5ubkXIXjmQV69GNQ4/3z5oVgW0VheDX+dZZta6+Tg/fNjDLQy/PdMbsasooi/tg6gjs0QW0fO40xHvkzB24RBQBhV7tNnPFIaAfP6FSghj9t0SnWcPf+LWVlLkuNL9mcNU8NoTnU/sp9TZPadZPkIT5We9DZhdjRgWP1FFnrd92NPpefUzzJr1OiUC0VaI3zpNJOBQ3xTHFiSZWJXXsggAQGmlh1FHx7FFUGht0n/iIDJma3GkFDFU9yIMSiFFm9XD7kPiCavuDVp08a243PlURJGlym5dxCCEGGpo1jp2aqvIPahGWnfrTKtINMpWP9LtLAAGo18cMq3HpRleSHy4vVAQ0k+KW89sFAe5NeGHXESMDzsq0tSLJb88z3+LLK8er2NMqwzO3q+tNgG5W1SlxX8ZxWDVdAVejKIkCS1nAo6tYUA6ohB9FakiRhDWNghhjXQ6pB5ImUP+VKBEWd1cMqjRxsUT3+2pCa1HV12h9CrhvDnoJv5f7JdlU31Npd2I4ph4rCf8rWlPUDmjwv9WYZ6KcDXJGnjibxDyHh4EcB4vGhpggG4uG/RFa0uwxZmaywMuFPivDXRUknAf66Jwy/rZhDN3ahfVDA9zfa3/MEp8oG1G8GHPL6Vx3bNpZu6qKXtDk2JyR3T347VrrodWWrGyLL7WWIWQAbyIY3rC8zxIuhxV9HGSfTvCuaVrriLzmlCVkzIMzDwjpfGSm95fpFUaKZUPNvK0OvdmNA4ooOyHjhyzyapYVV4Fkqz5R70AdW935aCnoJ8AxSn1sphiWQfgBT9fG50bll/McWH7AE4hJhtCkbjW5krjyRILf/+yDoD46cuUQ6a3Jhb+4R01B+64g5PsN3CZF2qweLIeyHE+5G6v9EsVHlX8J6s7Ni58041DhHaNkAg9ZEwmCcgvpuQPVx4mj5aSU0LoibemLKJ/UwE2eZa/VbtfATw9a8M6FAbViAPRYBdD2liIACmVzV5k4RuS5Kv9JksjucmGFUKOoJnrpuBY0M81PJxK70EKdTUczRhUF6KaUYGlfQBh+in7cafTtNcm4/Cy+bsT7H3Z1jSiU2IivOTYQmENaU6d52UfVkYSuIY1TwoTA6oT0nqGTkX8B+IDotvWR/pMSLfhKribglo27i28BWe9Doh4sG/87wbH3a0F6OGbe76cgSP9aYFTr2HpSM62k9SuAq6EfNjjaPA2HdamzpQsbkt3uu/RVpjtMFZlH+nae5g/dRU+tUM8VXS1jL39iRHPFJqEHxPzbyes5xB4RjLvcnnRMgzbQdwPTpmKxQCt0SiY/FOWGZtemqrpEKpY2sv/OKVN1ISBlOHtfq4zuaSw3feW1Zqp/QAx6l9nV2Mdix2W/Lsn2FuCNJImMN4HeTr2dJrlPgWfp6lpcQAlOPgSo4B3YuKWTTFay5lXaRARgOt9kChEhvQ24FlPOy3KJGqlC+lcNvZx0QRbsI79E88Z9SAjIWHu+vOujgWxcSDnZbjtyl2dI7R3l6IKo1ABuZiNKY6VmdVd9FR4w6bw/N23m1hOpMgtR4ltAaUyEWON0R/xJZKt+pBsFQanUpXMASqfv6E6S26DTKjTqGZhw1Mp9Ryey4GuizSbRfSVLRkTMg6bqcuyg/l3DXYO3ccVDB/j54CWBf9Fiimw7776JAKkML/V/OapciPEDkLg8VtEyBbIc8TLU9+27bPaDr3tYlOh8g8PYQcli4A3ikYE84CrDJm20RFRP1yBfUMO+OZQkczAim6abeD0uUYfMYom+GFcfnV3QlYITxRV5ndiHE7wGM/gdZ6WmCJPGkkVV22m53zHvwBm8lT58D7xhlHd2WkcUHMqdjhUv1Rtu4xbiFr4/1c0HYXlbH47Fq5eCnrDFd0L0aDbIohdy1Bqsc4B+taeUVBQbBB/sIxgapqV+7o9prrafGGahGM0AKMJOIU77xWzmDHGALDA1gUTlWLi2WS/iUMG0IeoC1fWrfZ0NjViT3414hBOUyFCw23zRtrOESvwkvsWgWdMWh8S07mCixbUCd7D7oV0ErUpxDspYomTZx3C2kxsLtkVgMJ4gXoghg8swqz01+FJkcxv5UYO6VYsYp3A0XMyTJdLMyPDu7qmbmMY5YCsZROHQenPz6Iv7ZV8XhhyVaCNTuuyagubVeaOHe+mblLTO31VBlPL5AwHl8TfJZBlpRoW+KhvHtEIOtqQB5mHJaxPgY/ffCX9RRW141VNkp/Tjz6KxleZDrssQvO4yX7iRcVP+nYlsy+s8t1xNfPK5+a2NPezpGrRtmf8QZaQhOnVXvWSZ2jHBL4hghkJ/HEvLEY0Pu3DhB1qi69AgUx3DP1a8bq+WAXYaE1x7qfwTD+cLrZ/+gHyvITvhNbWcFb7M2/y8odG69aaXZbTdt5dWi3buwXml0NBxW4qpt2DuDJvXlS/fkgYE97k2BHDsDphuWopHdpDC+sYHFjK3Qyph766ZMza0vPMXN/ANmr0KsOlGN6YRwgImUZeY54XEoJcBNxQhd96aaoz3OG+r47RUx8AnlCO2KOoW4QURIR4l7bSlbrcaXkTyBosT1Lixq54mDwVbh3E2jA/qUEJr6mDrS3KJHUmkrE0gLoM92KVmmaLfMRYtJt/O1MLmV486nGUa2hMkAfGybba21O0adEQx4MMsYlD9liJRzZdDl2r8pthEUvSdnSIGhOgwHDb8M7+0LMc/hUpguCnvbVkbBJX8na+4w/D7hdHmqoxFWReozdf3jjL93arMcU7vIbGYU0AV8zeqRep0WYl8+R8sQ1TnNkBGEWEqBE0rVoAb1gNDyMaYVPpBWdlMo0O61YCUbbwBCUPbUmMYUXofFJT74oLUjE9wkKzsGNyCio2hJJhR/JqQkUXNIDL91qtf+cDRgjMiVc+B/O6YbpfbAwF+FEh68YackDkVNX6a2ncPBsoC7JbcAfDfQ40BZJzRWz7G0poisw3oUT341N3PKVM0dcJ8V2//48C8HIMXQ4O2pWpDKmAg5cQgVzeh14H5iNSSZCIDyN93YdxRDaMW4JNgT9tYqyXrZczxxA3UCp3fqWzsDH5yCfSRD4k1yF6loIDHF/B3eqv1PTGFZae+BZKWuTIzKaoUWGzXPeeF/2O5rMWeJZok2rUIDZbp2+86SFPoGiMW7jKSV5x8BXujsw0DS0lsLqL+pewZN/ws4ak917+VqtDV+3S36vFtlovJcpUBa9okuzhM3iJK+JFIIEmUvLoq9+bPKmDUMpUyQI9YdKd5Nge+QfsayXJdk4Uyi8kob+77FaN+LoWMx3qXeHJ9dZcQIzvokJAlOOgKTn3dytZOUI+Qlvlv4+TbuGk1dgAJXwxN9ujgLyyOqiY1lbdwmrakn27CGgc7BMrDlVs0Kd+KCPJxmUVjLo604TqckU8v2MLPOXePeK9LRzmP7DV1w2ciTDi7IlRfAp6uiWDsrzKsDupzq0H/sN+iMq6FbOTcGOgw4K1KDMWEWoT3FYmB17Mc/mgl1zqAcIvy3wglKBnkiNE/HG5sqsUiBY+UuOXI5QnRuoCQxTNhPKMhtakUpEenNQ8eLGNmU1Wu4ZOUwJwl2yQitrMU1Le46+H0iqJGRmaF+vU3nH3+ZmbHlJdHm7r324znN3gi/9qcpS8Ej/kGH4Su8IrfKdTlOj60M7fILxq5jvMMtlZ9POfhVu8SfvYsddokypf/ynBz3hwep0Qyvpffw9hKRLkgzuHibpDf+X5isDrrGgIizDPBHJHQ5s/qznZPOKoggVGrUWd/abcvWann+zSWAwMcA8zQR8vnWClFOqlR8rdu/OVM65PiHtlg/EdJ1fxDN8LpMYsRuTffk4G2KjsvCnDSHULI7VkMfNaH8u7a5RicIrbXpBFWMoaZWetUdr8GL2HLg+Z8yEM6U6fjcn3kJEhDbIvLmm7n/6ZCfQkjXgt3bShVgsXxekS8UoYXmgQD3JHbtMhtj9MGtUnIAaucHy5DUeBv940/RuqVOzDAzW4M4RB9YEYX6kytZQ2sFsrlC2lrWHmBq5iil2Gg3tIqQIVaikNNv4rklu4Xw5qmyW6nutiqzR5LqFEQZ7c79aIwiFn7m/iKka4pwU+ws6f6SWJQMLF/of5W7E1Hyl+Py5X6MuDTqboQdSFFXVX7VwVQN75hv7QnDNK5ifxfRKD8WXzWFmaKcWdiftyYNltmrc+op2BYRjEZnetd+o1zB7bV4KM3shUL9dJUK5Gi94/kPqbs5NxvSKVwc+JJORKLK7qg1DKvytm3qIp2O3tfPKJXIsT25h+peD3uSKFvPNSw1ceQ3jCV6dWaeB90k9kkbtwoz7XMY1lA5ZfqtYIuv/2icWbQrRcmxGpBGJa2v2Fy4jsQEV+OgFiuH+kxzvexgOpXEss0CoZdg5vRPx1/nP2IMEjMlTvF70hWUGZuHU3rCgNO/vl4UYLSgrTeTkHJC0chCGUYBDmeVIkCxb0aa3ABZVqYjZGeTy0t7gOm0SEK6AEqJkIoVrpv2AJ9dYhFjfgq26Ta0nYvlgZUAI0NaTduzadSKmdDIGy5zkmQ0SfljooOwKgf6AFJAWgnsfwo/IfXQnBkNliqlMEAMoxa0QNE6ZHFaKFIMDjJdYwcMr9SZUKZK9GKKpDYSGWJNwSZRxmRN8Ws/yoh+a0saANmLOTezhBjZx4Zvz2YSiRrW9rnzdIYyRaKnCtdNK864fT5ltl1J17sU6OkBVBqZ3kesgpL4TAO4q2MrsO2Eipk3+QZUqCKHw8ZwqDEj8MWEaHrfVvbssc+wLX1W1hc0tSt4s+QWZCwiP6ENrgjK6xEADdD4jPnCXmtQkT3MeCPHkIHpLbRADan0Qs7CClr7UYFJ9dz7NckSUX7KX9lS4drhNraDEp5WGActndn2O2hVtfkcGmDXseC9nooSqh9z8bsuCXmZmZLsNto2ATm8z7N4IFxIPvI/93sWvhpYS4Efu652g+ZuSab9G1WuFsWpTkQXqvjXJLd6AkXoNFrJ0VVyMYsukw1t1It9DT5Dsfn4EDJYMzix0b25K7GyfPTF52jHpi2tefWraZG8qG9unMSU+3O+WDiPNuy/S78Wff5o/VyyPdTx6HWhXiK3h3sHSqSDSyV7FUrWrlfJwdAdQiqZZUOCY5OyBLt7S1Fw3V2+glX0H/50fYxoPEkIyK1vrkMlVqMfS7AV+MXMpmuCPZJdAkneaTIYU/egubhmkc9d7fCOPzCgJ3tb/hc7hNm5OtEMEJvdKx83p/Jzb1kQOwEhVjfqneaMClsArg0CzDiAGLkeTc0wereGF+Irsn8p/ahQSnc70Pceos/5rsvmgfC2z8J3IyEp4lw8YYyiZMO7K4NH+SCsvM4lctsk5R3VxkrufwtLcOQj2yZb9mOJrp6ZQjeFoodzG4HYK8gGMiCqhcBAMNr8IUfINuUeEUsOuiLFh5KrgzTXa4PTnPof0jlRmgtTFvwszgNf8gWeYCvaLMS9cwAmzMH2DwDxV0DCZ7/iReTF6VzrT5cCBmtCSO9CuplFK6LNQedqlZ6EpIFcQ8ezo2foUinekp0238zYS8fzVfbuaoGdBMzueG2ZngK2QMVeh8nRSuyzLKlzG86/wlTphMm8CaGm9spZjN/e6hEDhxaiN7HKXH58tErAKIrsxeQL86ypKffMJ3pIqE+lgdvuOJk73k46k3uq8bWV8sxXXfibP955h7RF77kN02WWphb4ldZHHz7eGfWsQXOYMSe1QG9iKa20d6ZSUXl8bxl+QCf/H7YnxlMt60MeoMRKz/SkLh/SvPH5HhrIOhqLIQlOJKGf5KQU/6uFt8xrmHKcpX9mVGvYP/WhXKhl82aX8KORszO8ZMR4tbHiirII1kNZblsIigvHBH749nwmMTlH3Ci1ytajpBaF0re2M7nzYEclnRyKw12uBJwNDafFBRcXDTdzmFM2Fb0mw5oE/uZaO2RGAC3WWRQQ41cCg09JybY+sM7+0YnfhDiSPYXpUIw4yqeIx3lkJuwHR3xaIL5Cs2YMrdsKTDV3cGtrtIJHoyofEpFpae93scHCOIz0VY1NuFu6sUB7Hf9ij+NTvNci9WnOWmaZDVxmsd38LQIOaVySCLBkUO3kjkFFJ6RjdOv7GZtBWXwoJp1M9e6yERblBBaLXBUcDNE4+UIRJS5H53aFlgfizCjNdYPp65l2C6fZGg1zjTtcMDbEJau6nJd9wG0mWaEhyT3YUi3NPMQRTubEJVKzIIVWmbdFRENW+EKbiTrD6ggdWP/i/pLbD7m+M4pn7WTCu0PzctCKY4b8n6VC5nmBhAX86pKipPgj628HQ7BvPW8CeUKG+7mLYHeNzgrxsyEVxT/MYd4r0nmJL/VI/xN1z75k0t2J9Nb0ThvpeA4fMOh6owGTgyuUff6DzsP7i2PlnQUScdQwrTHssG9i8yjBoImzyHmmD+iz0biTuU5KD1dxvImQPN/gCkL3fhOXqYQAVEIaHKuLt5GLYq/t6CrESY1+Odw+NjB/B7Wt7yuGy11Geo5+J90mSZ0UC3Hvjqw7rndrcDBN6/dDGMo/XAAfhdpPHECISm4yTuSeQL90t/oM5tFeggkbvR8zJgZWIozUClSMVkkU6gTUEfBFUP6A+q+HGnE6gJkBoqnoNt33/Dt/mcxIZK1PfiCuj60+OBL4+p1OkPOk35NUcTcl3JD48psK3dUl2TBB0arMI7uvy9uwYrvr6NQ5V8YI+XYIuiZ6cU04GnNwn1TjtERg541qsg3hAil/DYrA3HMTYqPcPVDpzUFLUiDoqP9C7l3UOnwOCNwQCJMltCPU5d+FVBA2beNFofZGD5P2jWdO50MpjSzeake3zUo4lDdCK8a3po4bO3Jz68S+jqDCLH9efPnVuwO/MEV6hbYhZ4/2GZyAguoMuOSF7ObXn7aewHxHpEFVSsZ9ca42VGtEz+4MpxZFIhb77cCuIrEX9Zs7dQ38wn+GyjqZ/grbnOj1+dXOJ22trg0YTferfNPbwknrxpdcxYrkpdAV64ybYg9J3ESzOFZOB1gUjOGUBoGI0UQOocmhdOx8+4VKqO1cF5b269wC6yU1xmQngTEmgORqjNx97m4xwKuBF7d0j2oped3soinVxoKPY7D0j/cVC8s4b0lu8hVXtb8kRyr8pFLgFCIxS7INXyRgUKWof2HaTh3E5S1ekN32bzvszcvzL4REhTobsLVmN1muOs9IP3a+scAjzmbwBLsODZm4a+EaoZX7Et1F6d+OsC32cYlEuPjgjoKFcOFBbf63kOMRVllEQgSFFEQ+iiCmNxq4TzVp4U3DabGeYWe0BvYnXh2pczW+cciLszrBsq7Q5spxf14JSnN5ZFF891xumPX4s9jCQjcF9k5SSxTcaMZ/79gUd04k7JjsJ54NpmkQU1EFZq1GT6S/hDdtclMoEpjRlhzBPKlVKoiJDwWKHPN6BuZRWDP31Fvl3K339hOOS0HM1rJ5se6WQpFvpbas3rKYgJYqecSMO0vUphIXtR81gDDaLqBqZTaFgF3WSiJlymM82L4u39I6YAjwkBYGOftNC1ezSQsrixTiX9gHJLnorS8tYN1kG8+bMXQzKrsbdn6AhxfxALoxVcw0jPqtQyJB24PNdT3coXXAWDl+75gqhdFI0tvohZR/pGcdYmjgAe+hDK8nmFUbV2LonPGqaAt2DietO2hx6jX0byVE79EuIkQWrdDpOfJ33q5gx3D4d/MqYUTRKm04ubS5xyWAx4M70u5+5PtiZHi9K/FWelxSlNWLyJ92iz+wHtJYuYRRvFVEi/lQq5PyZqWNrDmlFTCUPHK3LEdUraV4BK5FcNuaSY2enbKX0XvZzGyzFCvEB9tFbW8ENSnCT7iEd/n+kSPid2zuacPVqBJWLudk5gokMx7anOdXMggPMKsaBKnxizI/hDqDIoF6kOJXUkDSxDztGVLG1jeDlCQC59vtMBry+kMpqKG6JB7mfvyywDph6wOOKTS5sHM1ZtYX18c/AObQvmwr25isXawKL/QLL4H1awldQp5LXm6HVSjtvs7Xy8o3lUQwgr9SgadKitEd5E+9hd5dBnzQsBp6zrpCdM86iOlDD9S46kchU83stcge+otMOx9vlus2FR167Cm1kvTTW0hcnmjRAxXAQHAHoQejTHOsU2lW/hYPNS1XDApCob4CAitOtsqttL/ksgflIKz/3kjHJDuKwXIXTnJH7010G7JfJ+ZaGknM7RXaX2ZVI6ZS2AMaS0ovQAeH4eQLPfqv4EXVQ9RWP3rHMKVcJbRmE03r/l+E43e8lyElloAKzVV/vuQLYNn0vh0w99+TlyuzKNDraC/w433HlwZrYgU7s+KaPdfGbvygHybkYGM6bmxwYEqKskkal7Qe7HmquXrUxUvhSmRqDROTNFi5fF/IbeH2gOBS+schgCEiq4qFVUm4/Zq5ctPkqiZt7UWMAcMsXTC0fGRxLIZE1OavmZ+3XWau3Q+/YnhSmPyUuNCSXInIOrsYrGhf7OJiADWd9p8eWnOVLKL7WCEAse1AMPLBTnWma3s+lgOvK+3Up5UGU1L111b4NxzJGiWtp6eAB5Fme4bEjzl08yi+QRFVQf4/hjiwaCG59/Yi8szEbDvdoi8NkNiHQ7xZ9PhwOegxLfM3d5My0pF8qAgXYm0mvp1pu9DmnR2WL82Kq9aJ8/XTd/15wO6bnjvQL/I2bMArSBvBnz4l/mhTRZSRe1ey+rQXsPtMsHtXohzoj/97JXt1OFEDwQhlZuKU9ES1fQR4VrQguD653F2OYGYSPBO3IOJG2+73Jp8CwAqU+x3lFaS0Rt8ieVBSPslaUE5LYnec1k8/H4KWuD2EInGhDcus20h5GqbAZg57HP/LGyfcelKOC3HzlesKSrW8zJeFQkb1NsQbEWz5kdPnmP8AW+aJcN08kL2yp1PPxqOnYbqf1BU5leFaMfLJSJjlijKRvc7LYPLpX8UdR3pZIQtn8UXnvsarXcIAUdBMKlJk8WS2CW+zmgbhCpzLhikPfkajCsmFGr+z/N/ZZrv6ECLQOLkKdS2xcXXT20sjB4LhxrbyiwnfIX+/U082XT4wQC3T+A5YE+JjZnjln79gu1vlt9LgBL1OHRfZI5jffSzotPEdAojWj8GytTInZ9Ubi89vTMr+xFyqVUZwVOTi5mrYUaRHhdA71c2MbkJwVfL6d1H3kN1QZl+jvqIlsKb4wQA3zZEwWhPV+hbWFHtPmnkzeCwsGtWPfLuV2bjUZz3fygkoKLHKfg6TEGvlZgA1s+IA3x8vQ+4ymxnq2LMQyfoheKgIioUtb2dz/dvlPZA4FtLTFGD6NdODoSw+y3QYOOv6V1zOwG6UDlVZe13TQCwJcAGj320Oz5wGfPTZ36eXVkwJgnvQ6ZrEXNzb9zB6w9WGPbErUJFxOiYzzMt85nGIOISlu+0r+DAUxImOaPf+rxtQrMsYtul7+kUuPxZJxrbi//oadA2V/gQnsazXs/jx6AUMPGv4BX1UI4H+9+No+OvFSAQUnn/IDF8x4l8/ujmW2/hSpmBOGDhjbYESoK5E9VxvKxR98ADYHFOcQMO8Yd5qrOjd7OeKyWMrfvesAsyhGm6exZPMq42NLmSrza2UZMW4ndwvhFthEzgW0ne3M0y81D60TXJjocLBobeMty0pDFkQwnYzITPfjG6UXCpZVAsG1LX7ULWqzqjT5HrAN55uK7FGifC4cJPHu6RQCDU7b2A4BgCA1/lvOUNRlup5e+I6JlHMFXP/lgjuYpd3C7G1hrRlIvkq8yrd1PiRb/pP9aMT9T/25xN8OgI27pzswXsZo5LQ0Wp5TZCwR+Foov+tY/NIWBlUB0j5xfFH/10Yu6ebpK1HYAgApAj3zq8SpUDYbep3s7tMwrcHowGAxsyYzXmDETPLMzaRDnHcbnt6vcalhEzXSF0GGQtBQ8zyj6vDtsOGmpN4Eq5i85YBJTWOCum/zbpAvXeGEEK4EBI0fnLUkRC8PEzmQyokv5rfRX6Bj93jOslo9/mXGsiPWz+8RY0nH/1CFtnw24ta/vR7lStG7e46FUUCFmUgrjZT55IZ7WmQun3dq6z8ULOh/7tn66ZDGgY1wYe0D6gZCnVIU6TANgZ0HogEdbs6XLlCMGKEc/XnJK1J87S28sWlANBcihhpDZpamODZ5ra0tKz5fYkfu4zxqH7z+UoDxc6KwVAXAKzB03rW/U5Go1yJzVb2w+3DCft/1wwTfD/gui68WZa3Z3qQwF6JBXDlcz6vAFPQThb1Q0Fl881/i6FRH4wH+K0XYA7esyOBygO+B7YLFcOcATo0KGyUvDLprq6hMRMKnDn0nlL4ylVU5vn7dio+A9rlredHw9oNlTgYMaLxr+F+o00hUFjEzyTWJ9zCvHSfEQqAxW+5EasaW7TszwoTtSxWCJz0PlMyu/7oPjmvbrC8clVl2aMrf057UF8eN3UcXJuU4zFC2HiudrCUSyYG7fodjNIA1NFkAoq3MlsLGQbHLkct3VFsuIIVNNuCy2vUERWXhD0323OjJ6QBNDykpP/QK4QGPqtPt7iirYhB6K5CHHjAGUBJ9ml4mCKoRhLcsnkDrusb9AVF0N6YFq4eu/z7iIhlBhR3P9GfZQFt/YqicVmhthVazFVVCYGJofi98gJm169BW09C8gmnsyTv3HPieDLHxPEIrlx2SPqwDJT+Kvw+JNtj95Q2Iuqq6xOO39BDnKj8UOBZOSf102D45QFQnx2LDuD66FtqNsCXfbmqSCrjHHybWvGTRb/dw/MQ23wQuKYPy6vdHpOXVslBJGTN/Ugk1w4P2DvmmDjLVnDSCXadB1re9oGups15GDW0rXVgs1kGhkPPKcguP6vUkD3UXXWoOOD4IkJRNSl0b7hLo7f4IVDuBy1BIxvhRT1lhYRFIDSDVhTcOZG8BONL79SOrSEuhUXlL6IwszSQmT4/+mB9J39B4cybEuokFZeCsDih7FeKcSHx3q1dxBel0Glc4/iF7ZDJDG/L5Pq6U7zz5Fxg1I/+6wJXs58ADygmHe9o/XeBzvMqdtnRl64Q7X9Gi+3y/ev
Variant 2
DifficultyLevel
729
Question
The base of a cat basket has the following dimensions.
What is the area of the entire base?
Use π = 3.14 and round your answer to the nearest square centimetre.
Worked Solution
|
|
Area |
= πr2 |
|
= π × (10+8×4)2 |
|
= 3.14 × 422 |
|
= 5538.96 |
|
= 5539 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The base of a cat basket has the following dimensions.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX-I4-CA29-SA_2nts.svg 500 indent1 vpad
What is the area of the entire base?
Use $\large \pi$ = 3.14 and round your answer to the nearest square centimetre. |
workedSolution |
|||
|-|-|
|Area|= $\large \pi r$$^2$|
||= $\large \pi$ $\times\ (10 + 8 \times 4)^2$|
||= 3.14 $\times\ 42^2$|
||= 5538.96|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 5539 | |
U2FsdGVkX1/LyMNt5mAeWcBx6rBSw7Fpu/9iSi9+4NIb8APjNPnyJntaVTWloSeXEqQVDM6sqxIeLU07d0Z0QhHn4zSTqATISycegU586S4RWZaCeO60B2igoTvl3YpIX6zgSQanQ/NflAUlB1YEGi/IDcw2bwJKvo06xarRZDgbdlqwqofrnxWqPIxu6vwOeKhXmV8b47l2jzUSZGP+r3dTB1IhIrTLLtFSOMzAjc0dBP9haCL/UDTaNlBxeSLuhuHeoOL47Gw6/v9kQE2bpR+/PEuCKRhDaw9CJxmYWEaPFkLu2/3Ulp6Gc/3Yea4IsbGJ860OewYuVyWS3e6A+NvJIxsCvcSJ1gH7PwK3bKEcWIP5vLQa9j9mCrtD1tOBUoXRfOLGaUdRjauBpKheGuHgaFt//fT9doFP/sxqMPG54de94A3tR/mJ4bY2N3lv1PuK6uk/I2cZLY7iMzFU9vPEtDB34ZNUD/88eBRqF1FWel42t48eR9HlNZWe+rQMY3YtRpEnavWAb60rQYCIkvq9Sw8+h9T5Gh98O1kP7yT2SSkZYWHZnamgbzEZJnFqMhfwO4MBdniuf8uKcjIyOZsmuTASXqY0PGkczh6e2JIBstaCI1+PQRLgA6P3K3/ewlpm9TZa8EBSyssxUm79tQSigiRC0WBpMYJqjlCVU0toi3WhfrgCFFRq/Ag4JQIgQ+XX3mlEtfMVm/guMafvaJmuLueiQ0zKkphHCMtpy56ZMvKIx5vXLzk/SYYrFd+VlKODjN6GnMcmkofS60hYIJtP4WvoR6HWCI3+rwkZBZZKF/wZA0wffxnwu7D9ZajXf7hhKoAVj0d603CuRzryfGYyTRjYLP0Xn0APCBcPH2EdSEMW4NUh6Unv9DxeHtWB5ObgEFB0TLI+VsTJPHEWOxhs1nwXcYUKL67LULqsgZpiGGCZVhTU3Hx8stc0ItojuVOKnQFRz0j8Wc7GBA0kQ/xrvdxGzGThIRLX6LAedZXd5yjOk8JzOXjXDVR0hIqUj8df7/YZ8c2lFlrWfVkcC401uWYIXlmMXqr1nNKKSbOMUfuQRtXEj4POkKvHG5GhHwpNVLZQq0ttJu6Evbj5dviFcZYEj3s5tayb81f9nOmT1Krxoecep2dH4iH/Qh5FwxHfK8HH1fAwuzGV7+OEzCrIQSRlrveSZ2GFJCia2TquNh/5+W1kBqDl4QXtB5EswnN3uynNEsM+O+1XAYojPVh5khjG2MbQgT2ng7rNFjI1d+uLI1GsDrrqNBzWF6keDoHWO2Ug/15TvGoPUnYIXeLNqZVputBDuPs+jsC9c1ayI1uTIKeiOGq68Wzgva5tsk9tKaRy/RIO4/K9rj30qptqROccpILinko43fFYYS6fymLleHhwcWODFgs1J/pwSCS7Ybe9xumThMK5UKAygoBOJ3WHGXi429p4qjIaxBLZPJw6VGN8kpK08gwHX3Yq8NpKEbRG9vkvwI4bJwm6YKmVCh3homRPH5/nraxAVD8V9bH7yYKtrNENNBHJoMCCWjIYn9erwUKBgY5/IdG30+J9tBapYkPFsPfzxho9FomP1g2tebx0exNZUSdLkWr+etAX1AqDwQfxXLVE79uwyO8MnNYSuCq4S4rJYrx+1+TWVkcM+WbD0TbFxC5rCPYU8A3P5lsYRmhDztlmK1o03MoERegg5pTHzPO2TA7iuQoJ9yOL4IjV9CLMDMuefBBj8mxWh0B9KrXg94qhTZaVrCuYX9IycROPT9vrUI1tYzE7m+ri0jkcJIxQCUBOJCauVly4vXOQ6hXmM54dwKwiRcCE6GhFeFZ4FoHYMRMu+Nm8dW13fScvzs6rLP6tvyKOek4xBkW49zHG77XV7OaFwWdPw+tlL/k+vQGP2SMe1tvm0PHGLtUTcfWAq3fpZ4wzXC/h2QZE//6+Az/J5cDWoBqEOjdKFLSOMoX8cGeEmOU1KW7QnHtQPJwZWDj95TjEpwF7D7gKuHvEYtgnmxJosRKw9pGS0nR1QEwJZ89KUpGuPP+EzdEvdNI0gXDRhRr6rYK0FIijGlwIOXpBzFmxVA5iDjrePW7Kek7TrD2kw9qR1PfANctF//C/+wGL9odi1nR2eTRvqWDUINPko+dRldPxqGQwFDNmzGmuOwuBcDIauGMUoKue4qAaxn1clBKLEJEL2atmLOx+FyLtY03QXTQqMb+d/jFbHX2wyB0+bi+jBRFh3oOj4C8ceyhcF8/Az9ubmjSg2HcQBPEVhNjLfBeUGvV53UjnwG4K8gN9GB8lYcU5jDK4z7cBHby81FYGzTdg1KyqGw6qm2QlJgKZzMPu1c5MLb0+49uA3v1MU3xQhGj3DvUcuKwEEQo5LWNRSp4cPGiRMY88AEQQL2+g0hTzCe2+TNY/pVGI292us/pxaMCEk1jc+No4vYdpvnJMVHQKpbdqUcfpDtJ1KMkK1BKyEBvAG5eoAp1GtZ5IkIvPMGSP4EFfyQoVceLsqMPLaSlYBvipQKt3t6RTSSvheQw4v2TvxD7vjT7gK3el9G4+afB7sNbabCR7UnXK1W2PuOOe9uzhmO+2EkiOrfBN+7z1Q/5EwmGVcP6MkoeSKQOFhaydlFEAwt2pQunbAcAL4Pqxvx3mJSEhPWLEdVPu09TiSMn9oSsp7ujDGI7ItArvIoZQj3vLwtdFh1HXestuNV5mlT+t2EU119dkdBtWRwt0BlsnjwtniIur/nybXL+WQll1wc3ZUtkYPl/55mhJizyIDmwlDtdOUDSszznR7eQVWgZBHMX6kSrO/Ye80ozVAG0MS1DLrVxpZlfxU9bv6WEFTjXjGbmDJ9oqHVSdR4m1vBu6unakRH7qfY+Tl99vRVAfDZFsvZt/5oU3WZJXNiL+2IVvMPm7yCv4wpfp9V754Pb0kgrStFc1URCH/7Vsk2h2mofQEggt31fFy4dgBCj8WaExBPtAQBmvbR2y9c/ETtM15u+r0OHQaiwi1XdE1eTO9GO8Uld9UdWb53RrxxeO/RjuXQtfBRu/cRTudRXiq6GkZs49ErxXiE4p3Yh49kQjfd+DrTwEHM0JmlXJ6WhMSGxiACbgKHFUaWZKgk/6kTQua/G+a8C7x9syeGXU0B2iBS7luL4C/AD1yoxGuyi+WraW+pzr1XqdoyG55Qko5Wdtx2fs/UK9JF5pNfvmkPTFTRIfF/KRr0ztnKBuaO0zN9u6QwHG8QtK+5PBhPyNXMDbkwXbMFs9pgiOmyphCH4YsYEgGJKRU0Si81NHBQ5QhJX6or4T6DDMpt7zJ55UzVn993e13eguOXW+iJ29CPZ0xWhp4ojYjsAN2Fb/v2b/4djEma4nJaEZlyB1y8KKjKZJSKV3e4VC6o19ExCn3dyBPejeGevcqk/vwfPpJLV/+1HjWA9bwqJYeJ/7/Ta/9Kg4EU2kDs7zBWTWokZR9OsXM/Nf0DIxRlo35hjuFvuo4dDLiKLMotUV4/BrGkiN9WxPjoHb4NoQwxknmcTUWXag5h+vrS9xUamEpsYIPDjTmPIV+Q/PTY0lT1HzFiUWstJEZTg/nLFtMrtOIihiI2bThLulftciqQYYfbrXD/efzLHL6/wPEr69UYe/eILt7OeVrXTrh6jY7ZCy65H7TkaZvwCl3C25Mcbz2mGuYEA8FzrzIRvqzdJxDTvlCapNBLYYxeCcv4P02lffGLqQik1xsXfGIQo3QWn3mIi5ww2dw9A/SiL0Rsg6V3ykItiJLPx8e7VcNIxbpZGn4F/LIXULPy2Dsth/3Lyxum+8ApuDl6WzNUAvDIVcYBecbMCiG9FbN/72XBpnMnF0F0Nafj/XGyrslWB9AVs5v1jjNbdY5Ep4PcOUk/m8WISGv98mhMVl+2vj9NRsw/MVLlcDbFivU8qiEzMiFbt7jsSCwfVuIoNpXtXp7Tjb7+qaJcuWxPeG8k3IZM411S232rWUm3wN33gohVI5qBJG8dWNNVFXxQQXttxaywLA2kfSkmu01ajkuBlgPStNOtqR1eue2mdnMF/6lRrvKc4cwBcCfEh7GmEHaRDMLU7BKsz7AEZoG6angkq/vG09pNxbSIgYrUtfmVrE0vvPWJngE8AFAa5zujzgbiLeDeC9pA0JrIjwUWO3lavdqG7K7o7386Xrh/aXNVQkd7bZ0hMXWd818PvwJT/goCrIzOex3FnYk1ZGgfSj7BcMr2c7i5wgKg1W+/ZnPZpMMXSnlNPMDXmEpikvKnZEpGo+banrt84CkF74tm1HBnQZJrKxaxxKVllKDYz4KXeImmcGjannUKbRa7aOmE8gN7QC5YnHO/MFOuRM0ahVybZoJo24nacnyFh7ZV31vUSHJ82aiJm7fDJD/e9AYj8CjrzHaIwbiDl1Y/zUvIZphDiJmepekMEzF04v3an2vBufJi/wLu6WZtbcDsDOl7VM2OJDcR68azOe3cWBCmTEUKHbQHXuSgyM52boOAwxRdwY27nrozEv0Qm4Jh7mDYkMthCUI+dvW5eM1Ngy55GbbrwLNvQL0Zyj5EsBJmSm5A8c8czND2R9CCcR6AkDTEATwRb5CjD/+yOxyZhHJ9Zeg2NN6YPBknRjAvUns/osjipdzZ+vXcIYs3EeW7y/8F0/gKGtUpiURvJNti8Qn4+V8ab2qR0oQLLOC8p1NLG+cNKZQjoFL5QVNaibN/7sbfOuC0J3QqfH1rxYNWMTmxGVMmkC70HeU7rO0sX5Kbx+gB6EDauecP/roBf0nbzJGQv3NzyZgHm2EcMH3l7aLzXp/rBDw8vTVoHRfwKQFfNt97O/PVhtFTXVdJHgAuLmk4LAL9lrnQEpsH4DUZ79Al5xW6hD1yq4td6CMjv1SF+L4n0ce5l09wrnyJufevcTeZFrZemn709yU/PY3hvx/6atVYQZ+Atz80Ze5ibqfVuC894Dog90rYkSazwXwy+b4yBC2y9wI6R4470XrzZKP+AOLk39nSTygw+foMKkicTYzIIM2xkVxzpM635LATnhg3RA7iQM4gOhb2itlbxNNDG8KCOzrAaRYAiEtCaS4y5ibttD6/r72RdWq06zPzfpGwTXBrFaCqXKBT+UEzOZKV0PHHKjbY7KH+snqZG7egfx5aBTPzB2sByD0yObqqJBeB5nYYtk+NstzSO7Sf/Lx4Ls0lMwyWvsV3n2Grq9FobWgBWFvefIPCGUO2Sj90HKYhD69cCu26INBjk2+2ZG6eu+wZWKf1DqizzqhT7Oqx0+1c9uemhs0R+Vxjqs1bj2FzmXJm8pNgEUbP2sJ+tLuOTK9YYik94G/XzcA+kDo0LARCSQ2rh2Haei5LgT7sb9iovs7X4KroF0jxT30f31nRAqg+rttTbyn7q6b+0RIqtTd6IPt4Rp8oIEp1MGhw2A34b/Z5376kzKYwQW9YnOtqJU6qSgd9sYctDkileqX9hF+dS8stz0GnBBPGIMK2iBlnco9gJm+6SmjbNkoSnGxxpDcbLLfH7rLp7W7QzB1A70h7OBR2FGUyujSh2n91wKl8waiWE1X5YLVuMnDVn1CyDiVpr8D3D33Xw4LUUm5UTZXNZw3abSUhzou051SlMVhB1wr5iLUaSa+NMOljLjeSrXkBRpXxqhweJsoZP4MhJYiUbp0li1cHF0OqM3l604bAn0okUYoq7OdL+RITGs41P3YYTqBIyyvPC7SIytmeH4xUFesMtPRJK2VIUafWRnwxyBP6tZga1T1LfwldHZUEVfpMRLu7/jJILt6LQFVaLHNokegJx7QN+5Mkam2eeiUGi2eXUdEt2kPNitL9+/mCL0vdxlx/dLKGWR1hgJ8nKNQ0r+izcWZbpGo6OM2oGqYeD8iN8k0+ufu4p/DfBL3A0NnxGdfmJiUxv5w5sgMAoJ3fvSnDKAXg8TSXfWKR5hOWxgdFOx1RadblCORjrAXM8oiUp2VZf8GzOj1wiRPkGUF4P9ylxpxP0o4ZpQ1abssVnxA3vBDcH3G1/KtG6i3nLY8xwwM/mSs3p07Bm0CX63oCjS2k4JZJOVRbNkeV/jW3eerfaN6baLQGiT3vjqKQOzvJFnlfcHpFSSkDXAf0G1ByRpfWzd3PndGEbXwTs3lIt+ksFbTTJZsQxT9wLW5hJnw7iMdglHWW4YeNZIaDYX5O9MxxZFrinunkcOVh8T/a3cvzdZk/o73SWHZmdPDM5t4TWLD2OTmbq3KHi468DSaDt+nGVkXjlzrDeX26/vVZlJnIoJADdeodV9H3YX6C+Vbqb1Dx8fpb848pFy9tSbmqL2QMNKT1Tmcbksp9k9w328Rg+BOSxT0ZtdiuoY4J1VCAjFLMHUpi0af8AsGxzfn9BUis1krQxmsGIYHnJ5PVe9JrS0j68Vr/4PXctXALxoxRCSnoHZok2r5+NW3SXkJya1BDoSQsp8yz1dkJDeljj3GTZXf+MxDpySFlTSITR0AyC0aOTx1BXwC9BrfcoPLH4XHHoGH5tp30EWEFxWfC9h2HD0k/HbJNhwwR3+rHRkuD+JCvtaqVYAJ+CJP459ZoOX+jfYHBxWIXrLzsKPJ8KuNPEY/El+muEzMWnb6iFtsHDa5jgWaC+iTPpQr60ZWKan1M4+Fe9zeBG8R6dEzboS+vd0pP5Buj5sZtk6hsBOklW2ylbbEKDf+KTX/dvQXtXmfqC+82GNZCEu+AhuT/MyVbVJ3vpVzhj2F6yC7ixou6S67LNqEF4TgZmqkeG8Olf2JW8OU2xeV0Yb5IZ689xKMCxBn4g/S/rryhQuTc/k+14QScYjXmIXjjStw7evfkno4GiZqYfXNDugsQ6ghrgx2noesZoVBnT6CODjSzBJnJNVXp8ITwiBiHkg2VsaHyA6/CbVGH0NJRQF1d+dHY4WbeSkC5tNfkrCxJATUPlgooJkYwWjDQtsPo0jguc1mzm1ZS2vWYNrBiOvtRR17Q0si8JPTZpKCxnYyNBhDq2Jj5mCBZWwZKLt85BNOJVmqZKFRcjiN+2/hxH2fc7NJALurNYTNnX8BGVX/83f5A61mHWNC2rYd6XRDuuuyiPsVvWvsOslzk87cgtW27xGyw1swwSWbnnRN6nZNPfDKQMgiKMeUES2krowR01awPmXHWTMoyjvoQhBeaENj0MWMZDIs17XEnsVe1pyhc4s9DkBSH4URaZV0kp8VF1vWBfSXe96bCW4W9GrRLBELfNX3Vp0PWmeM+u7tW7S09J2+rP6snXRBdzBMxwWl0yKOGnM9ENQQgxUmBE9iQBMnn/gcx/v375VEIXI4/P8eQobgRmEMaKJLHgLsluf0vCc0BuGKfdK31c3OdpukM4SqF4WmVpqAIEzSNYBcSrfBZ8mY1toivk5XzxqaCU0sx6Ahr+g3z2AZYaPWCm3ErOR6LLNT5JH36wR+UVFx1pl7SNQ6S80dFaMsgA0HxscD89uooRFoNrg+buJgQnJURO+r9CvYlzsw/Qf8o3UkkZaANq64B/QuFduAXFWxqDK4BoSpSNOLIdTTN+6tBaiAdowGIU2Z+9+FZKHgkEhdFNQWs7prsihWFlofgv3DMd6oR5GvLiplspKQDTikNO2m1WpIjoglfhjApTbC63etCJuJby5Q9b7vRpujVCwuAnj08z9IlFmEwOueZxLkoLmSs3Qkz0FBJH25moRwo2qlUHBE6xM6hmcE1qVyh7VCgVnS8CT1RaujMBDTeRnEasRWXGi9OG6CuY9iZ+28A4qlnBjdkoNts+3e8agvGSP7AB8G3/RbUNHzv+tvKYyOZol3I9weux0Im/Mu4WMPJ7xwPyGH9iupruB7gJHbl001eHz/OAOhxNjPFYu3M406+uwVEekA/PuX3IQ3u+qE7ATyPM01OSS4R1/BYVqvroBCOfnZhQMsLF2V+YPWGDLrIWYt+1HLCio0udUQxFh0BI/e+++lLY1P6RcOIxW4Jp/qI+Qa4bB3A4WxvD3+TMGuO8RYDW1KjjWweS+lDKwq0XfkBxTeoyc/j4vtJViLEyVt5COHspdykFoFB7iiLf4G6rn3w4IwPT8l+zPQgHgnoiRR4i4rk4QpHQVq037G6MBCQbe+ZrDgapoYeiIS8r20YIl3i3syjHz80PL3Lj4X28GNj0v2PP6XuZOXoF6ETt9tAdtOG76aBUdGDFNgVqGkY7KFpec7HnIq2iY8/iQ1nRS5StcfxfmCndhyVBrDQ5jCSk2UD3W5ZEnYzkp5p3ZW1vEdpLh0S2gl3ZkEUGYy2zCcbXJzDl1d3LkhSMqfQWOQFOtr1huh8wdDduRPORXQFMHJfKiSf64z5rFG07b1zEdIp4BqYL9D4luRh/D3JjggJafSe1y2y78f/D18gpDxm4FvGruRNJmPur7nLIy1i2221pxy/DDjC2iBbWoMS+byGVCVjZm2iKNgSpCGv/qijMxE5iK5tFbYQHbWmXBzyBOoohSwUwSKfq81sjWwymV6asAsk7+9+hTuHyrEzLoBj2JmePcToT7kGfSVmWTaOljMaFuFFbmwuCBlym9z17A8YNQfcL1aWn5ySH1avK6HFLW2ZfJXsf0rNshB5ia5hKuoRQECgztqC+SLap5z+InI1lAx8guh+WHwiJVsOCOqjRkHXpQe5YDyn+Fyq0u9RcDXTp7mgl9mWKRnV9uGjP65xqSA1xIppNS/KBqfqrLm4G8R2g3u9BbE847FAcil+LZ1LVznH055O3uOD1SoXgD8T0/8VJbYsJy7z4/+93XTp5huDM9nNBmdzhQqdtahSutqewIhrlB9PGbqj9UPbI6gIc63oNHcexJhL+fzdptDpz+REorwsMoyNrU+gyl+dRqtNFZHHNin9+BXHDaRBfmE7s208ULcCGV/U49L53a0pGrxGQm6YCwimXwN/6wNdM7ZK4kQQHKIlQg6tscao+h3bjGMBcHbX+VJ3P7gR2aNGwdXac11BlxKy1077xEMhsHickGtG2K7EQpoa0MhyfCqFVeXD3Ig+epS8r+GTpvHrSYytaP+h/TRzKFzl64efViTrZirDFteR+zjR68KLH5Qa7lzWZ4Bqeq2DFABfwYNrg1OTE6ZZmq8yujHpjg6Rl9dBZMJB5ORJHLq2dZtfqsQCdtnZP762kRg+Z36CExN9oqkhI052hQ484YahrfKxPQr/im6rCC+hwn0QRiWfGjfxWgNgNWPcr+cOc2+/ZSuSn7uvJDPGK3Zd4wcygmJLlJddsPzeyLrkLGJRgy4XLuqIdZAt3VCmie48U1KwyrrpQrL8YecBJK/JyZ3MuajsTVCA01sBq0XdSOcyB0BODgS8uDp8dKD9IZD4R/nuF5CpTpI+86Vq7BpYmYmj4n/kmf/3yz7bPmijvOmfTATk3mYnMPWJWTIZOsyYjhw7saIp/TseU76zk7gECJWU0v8ngrQHDyuQryC8wzEYXUdCN7z+MDXlszN5llmwU+L1rzmQvZp9C3EZLezIXxAQuXUFKL8CI9gMoq654QgXdSJfqVlGSRT+qmfMEu3b0+I62g9xbtPL1W+UwfPPwRvY91NzyjrWU9yUNC4CjXZPOZyiWGyGDiexdfZDi4kNEPOU64jipRv99fxW+hCD/yQna/QzTV9rtBGvS8vy5AJdBJHxzMx526XpOHgWcGTEfsMrqhTtBfwLdGwVxhA4ysfSdHIUjNDXmXt1tq+tpTXtodFiLzAgyrkpCY0+ED/ODtSCJH4JoCzTWHmln7eXZDyo7+U78QYL/WXcSnMvbtH6fubVcjEbBmT9xOjHIa12k69xF34ZW0T6lVPldATG5C6cZM2uvHCXfTShsDuJTv7k+vMNCsWa/JPk3F2iyLkP5k16RKGsMpRnIeu7OawEb8i9FuITSDNMtTFOln1hMgwRPobAXZdd6dWpAV6jFjff0kkFYTP39Yd5mcB+48bWuUwRtA2wEO6sb/IKOj0Of0aUiVyJBLBnuFn9lGiJelgTzcK2tveWFoQ6RCn49QG7AQBXvBqJc2XXt06TF8GuXWqwazN9uOgxHwi7tkMCyyNmBcTqGuLsmQYDrNbl79NVZMF5FoXRycGu4DGSgbR9ToKnusASPoN8DVG5UJ1SYoBUanOPhDVaWwPd14l4TjeuZOdiIoEexJZRYgTtA084oEHL+EZyxV1RmemOT5Vg66ApATzx+MbSOPr2AGbwVShA+YClexMmAaXFzE6OGi5ME5mHkL4R6YacgyPzg0ykFJna9q08Qiwjxsn77SezBIbv4QIXP+crPapi09VptcXN/AVI12k5u+KmYW6/+06h72DaWJWSCJM06ywNzpCkVHJE4twzQyH60svJQUS58Hb8BAGLyy7I7SyW8owT/A/2KYSrE3qZqqjY5Mk4KyXCOZA3sDh/ldbfaYM89NiXYlYbczc6RjaG3d+L4vnP7ZxulE+vQomd0TTYi6p8ZsrPDJL4aMExBCw4HOxD0H1RxCzcT4vdE0A1ogxhlTlwj5xWxQfBZ4TSomVaU2x0Cd+3vSzoCxS13wFgzP4+Vz5KwGejgjnmKs6o/O+Qsu89DYiF2TRNthxZUvLXn4OvS5Md6XpWTrH8fImjTqU1H6wFLNgaSNUjSRE3BVcusH7iH51D/tzz1loduPTB9qjKtN6l3A2+eTS22cx1M5qKavAZUvCUCTWhsWu7mwRhCyF/kCiw6VTdwvl0weboMYkDhyAxiS6Akq30ufv9I+gLa0zjhhg7QBCwO1j6zr68V0dzqGaMPl6RM96kLHYhT3Z8HvrTYY6IGypHHPEA8fJ37oASkczCC85PZa3QZY6Fj1Zetw7PyyGXkjORw4lV0OdYsNW1at/Cxp1y6o6kQFan7V+E9bx7ePRs/tnaH3EEsEXtkGTG1BlJ0IJaAUxfegYnV3153cnvjQ1ZeAxHs4hsxX4IruusWUtKPZKpjt7tZ2oCSU+wAZ4xW1mgKZ6mPuWEKxAK9ri4D1zaPW/crVsk9kZvkXuzqZtkobzBEjyw/jjYgWgpXItYaPRzVFhmzu2RpJmmPOOgqYokzat0pWAhyAqGhz14zFTQU8tYGmayedzG1bCXlH1OG3ZK8phiWvy1OKfY7+WCTfS+w2TUn1vXBQZvhcPNg9uLu/oVmatw1h1gWzt3cPZ2XsK8dbkd6ROR5LDwn8qyTsw74VjpN1j27wLLYskW2aPKK/WpOmOOmsnKwOBLfI7e7Myi1KVm9A55i9lK6KTO0ljGvY2agauiM4rzVtjS8eXRY8jK4zcQsz2nbZu5Ps8gD4avDLWxRgCpKN6uIZCrRmiexZRy6YjaQrcrg/1eozWd3LlaZ4PIBVf/mqi15IbL9tF9fczFyOzM6k8njnATsvIYofc7E4bKOtNA02QBUnV61XUBoiFJXkdxCYTNegSamuZsHJ+htn6P398LLtCkgXeYleiM1oYgOxwmgPwNG73idbn5S/XJDmVeUG3fJ2DngOMbhcL/gB1xcN2y7rnHFlwYO8i2i492GdMw==
Variant 3
DifficultyLevel
728
Question
A placemat has the following dimensions.
What is the area of the entire placemat?
Use π = 3.14 and round your answer to the nearest square centimetre.
Worked Solution
|
|
Area |
= πr2 |
|
= π × (7.5+6.5×4)2 |
|
= 3.14 × 33.52 |
|
= 3523.865 |
|
= 3524 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A placemat has the following dimensions.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX-I4-CA29-SA_3nts.svg 500 indent1 vpad
What is the area of the entire placemat?
Use $\large \pi$ = 3.14 and round your answer to the nearest square centimetre. |
workedSolution |
|||
|-|-|
|Area|= $\large \pi r$$^2$|
||= $\large \pi$ $\times\ (7.5 + 6.5 \times 4)^2$|
||= 3.14 $\times\ 33.5^2$|
||= 3523.865|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 3524 | |
U2FsdGVkX1+S8xwlnSZlhpCQipYUZx3iP4oKWhVZUD2SM4NFifacadS6CGAuOR0qc4iBnRWar+75KwEwlffUzA0cPYvRSJcAQWF0k3BX7cwzaxwMJQkqVFDyEodE/nLAtHpDRrduSj6XSLU5bkUxlohaMsRonJx9nRIYwS2SLlCX99e+pE5BuEdXI2jIuO5GD6DUNWJCfT7A1IFerJxNzoAIKj0O6kPQHfVrQlRhNmXIa0hOaITaO7eD8WIA2FOFi9lGJ49ooB0gc9yprbIuKUyVnMhwkLKCX9XtwAj1Dv53HsRWVK3fNsny1FcEjrjgIlPRI40lHQnkZIGsNZjAW6y6Xq2UDQioe9BR5CFOGC+PWpfWqXvgYKPKWnyAwcPJmnejRftWvbEXimOh519cP/VQOnfJr9mVJ8ta2m/QpqTnd+2ocsGe1/T+f+c7ObAa3eTHfhOehmDrSDZQtLD3/wtL49iGvG6hjUolliUeRQjDaPYfRRDb0drPSJCm8C5GCNarw8PJxFt81zluNnprfwnzRXpvWlDTY2vM+ZGoxWpLFl0Lw465NGUydWy63AnQXma7drDq9jFCVbc1KAAhdFykZ1r/Vb3d1XotRM1PEuAIrTlwG7LISvRguBnx5x7I9TuybPH1SSp/gKzIMNO27eAl3hnldaiT/wliwvDzag5ee5AyeQEd1IkLq1+zYE81FNABidgF2iMV5nznYrvV3fQzCedG4cxQzFa++uvM+3R+QdiR+IodhsNDcUawM6UayUoHOV4wvo2yMhvCnB2h4fXB6CQuTriE5uLKMLxzsCs4O0QFIG867DIvcbmbm9Xv9JqWS8h9T+lNTuhy9fEpODOFd++RSvZ864Ric4DTeJMX1Gg8pYHzPDHErZb7BIHvtQufqASKrN0KXPPU/Mfb9+zoiSnA3SsNwiCuboDS5Wy574sFKZzot024t27pZEGb16NVdbaWrU+VDqp/y5dS6yAC3oZNuw69FKR1AgfZu8nDD+8pl014aJatNGXBH3I/0jOdalzYnCAhIB9vaRNoihu/YblPW3OgYqF4C8eunmXPmfh5t5ZXrOrx9oDEqaWwDEWtQzv3JSZIBlY3klAvDYSrc1MH0nucx/3vKPKaeU0eKeebtEcipBmViKivn6hIkdT3GXs4M5JMZJpdFtqJvBeDiqM6Iv7Ypz6hfRYSlsBiPmvmFAhNcmFdwWin7YE9JmsCiUMcOt0gliXqlaILSD/UEsOtfx24Eg0QaradJvfQxLO9Oy89tLtAoGmxrsAWCnqOPt/kkYcN+imR3pxP+SHc25aOctrgov9nP4bRJ0A44rRsh1l4pzsWVoZ7KMgVjG9MkJNvcqVtexVbhfX7FIpHhdQXZaP2RLRmvMXF5oonLncvIU6kMI7LaBC4Of9j3a1+RKI3f9plByCuvt0wM1WqX6ZSinrRvL0/kWo666utnGxOle/6L/KZ5vkfSFOFXycuItV1ZHrzaAuNdoSB3aYo4SY1ZeNJwUDBTArybekWQSHitngKQxRxV+34uogRj10PdtniIZuDxuOYfl4SnQA8oCudE+rdQrv45PENJzNgS5/ZplXpnzfzdx5a99Cu0ykX06AbkV0gbjv/f8hsU4uBYN/h+aODhO6nj32yZvZ+xlZO+RGWUIvHFLv13rWaJYJsngkjX+qZAtC5DEsKpZHg185k2XL9sa1DbqOOGFvO5v8wk7YO0T3ZnRgp3f1xfh+j41MhVDBSw1yB2405KKMOgEPRM9a9dd0q1Eno+RLvNQ7GIaIXA/Doztb+FxSsgpyzxOZDla3Inv+wR/422ba/kUO6bBvZYmwaYy0wuhvo34JNM2D7Gw5toZ3ngRjCGDCnMorLSGG6Se2vbWiUbc9D2JfqNTORLaL1cPNa6CxZvd1I6M6agKwLGYcvsxgZOXq+gvTR692UNO5dcgMReMjUqSU3v59oy7fC4FayNhOvcqSyLCrAMB+R657WGXTGyKjWHYO4v1424/BH7tBfqAg5V5YSyYMTMFJBm7Dkg4cgcYZznGlAaGj0r+Gz0/4/IAjT0xjRlCPZXJizH0Oyeue6KTcVDVgEQuNJtLNkHfdAJvHmUuAQOhulutVVyJFfEt9wrRg23UxkkkmOE2DDP6n6ZyY0G7QFFiPuksSw9Z5obZqOF1L511qrASlExon64xZ7L67VdvqmbY2xF3EShXf9Zyz8tfEHOINToCNg+iW4RTnfZmGIRWEFRfL8JJ0g9gVfxqP6QPDZR/XSXbB35AAydvbgVPTUPxsPhkzHHovvTTMDdGu5HYqa7qpowaIIVcRDAJFpvp/gaVU9cnyy/xE2FldmaLMS4cF/9rmVpoiw8kVdl2D3ZBukaRWR1xsSIt5Jn7/FKSR4/CYMGJ/SVpQNKQiSykZnmL7azhOJ46EC1BNuebdt539kf+3MfkpbAc/bHe493T1kEDJxdynqkTbnPiCQKiiqYBn76vZhDv35hLaLSaOlpNCypvzd66rGPlFB4o0aSgQZbMocQFztlWA1s8zI54/SFHv7vV9d8emfz48ZoBBjbQQ5fg/VWNrTqlqYlDBy1IhX1pK4g4xMvQz1JzQdGggE6uh+7Yx/D1d3Oc5u7GIpdeLLICZPxIkcIuU3Q/RT8ZuK5LVt+4udsorDJgMOelmoduqUtq+Nr7a5n6qiZFlZ6mVsrInyJtRM3QoHaecIYfW1jvd30a6nDQQZk9nAXef+bOjQbI7x/SsLtRbMFAi1Q7SheweeIqYNw9xScRs8o0ihXZ7yWsUj0sulTf0BXU1LZwN+GQk7cq8iF8piuMFCy9x+uu/PCSVptw2oWcOL8BEr3pvifoi6XIB7K0IIoL0Xu5MfFgry4/TcFitny/9Vv58P96goaeXsKNtEaN1HvCH402/3wyljiTihD61nZMv4g5iYkz2nd4EZ+ksOUpnO5y8QmVuIz4uQH2lvtHDpdYlBGZFvN2botsdfbC6YxB+znUEW2O8rBryfJWPItqat//oVT40FoqgXK+oz5PYv+m2TB5sMxUSAPpfgGl0/ENrAsWHvgN1zFH4okRQZ9D+92CWHh6go7gt2YevZOa8zuOUl5z7gxdH7dxoysXuyAR2rOZYcSqE3TZYvxtXxI3YmxelfNGY5E2bPXrvFfz6kjnT9e8a9GofKLaB977CBSSOXY1RjF5CDBmOVS1IWUZq8yu2rp7QRrFqz5M+dXDrYzTUWPZHUgVcPvrI/MuuXo0jd35mcoMBeEwvuzbzER1TNUw5mKhMf3yJU1gAYTIMyk36UFlHFw9cOmbm9JMdZ7xub5By+rsN5x0rGoEoQcEx0wMf8LadnrdvatP7KwQS05KRIy/tQU/CaTvkzA/4KIcx1/m0wkPiOy/HDHfydyqlT89vYfkQMT5xR97yjSJAhjWsuvdKJ1iVrX7egDkh/ZBRGWMyQy79yVk9/tMQqbKL3qvp4a8zzuPmJgd0llzCy/4cSrxvOxKKh8sQnatqhjCZ97aaroVMA0P8dMPIhkdCOhNDrY6whG7sW5RQEKSX7tmeyWih6vYBtaBstWMp12ZYY6rpw2LuVVZlmYtNhWMaIf9td98HVjLLszBbp5DmEwRpfjj9bLVX8VN/VgMkzRfvQQ8aexYJTGvcbANnoznjk4gr9TkvB1LBGCZ2AE6zfBY/r9rUPqrVq2458StGCMm4kUsKPT20cTv6zY6zcgPucUdGVyb/qiP8MmzW0Tw7rltvpVJkE8FXTqDJ8LFFu12sOTL4UP3Ohk5oOa3pI1lJQhxMNOPP8vI0MJAmQ847bJ5ZB1Swekx7dWnNvTpE8j4m0YJp6Awjd/3o+l3QuMx0jHZlIZ3LqtfI5RB6uYTWuQu/mVG9vx8Z1Zzexspzn9DcCxwW4QN6CG78nhMP7vXPQI7EBS2c8DjvLSnAY7KhxxhXuvSTz4NJwYBmUGcKfano3e6KZfqkAvxh5wDC12BSfR0QZ0KvLPotjsTXLNqXvpO6odn1UahRJUEE88a+60QnzqByuY11WhnatWLCaadrFBE4FIKuU+DN2GgcCoy9ixcNgtJmRX51tXgq7G6gd+P65qYIqLs7Soe5E04iC4lS3/KkQmIhzUcgC4AzQeHGs7kpe2mmpCdH+2a0bafaJO7yTVKHsDoTtd5Zdbh3dwhKhSa6CfRupEtj6ADP0BELgLhf9kCJFUx5EOe4AfC6yVCT76MZnZw9j/Yx3a28boI5+mVGdbr8dgz01HVrmKPk9TvqNuEY1upJPZUD90ohC+NSPqy/VXE8Mc1Iq4j1/FkGTMZDrcmIUfswZsi0t+D7l/n6QmFrfdx/RCYpxSOrwnwXHKJPiX7yABnXIviVY/dsPpKzO52c8KkoOUTr01UdUpAcWzVifMyUDTTl82OamYczb9rOVHn+VpswMICCtQjj50Bg6wgbetiX07SvPfmgNEZRFTPX159OEyJg3THUEVkA+yPypyvfwYo/qcZ7NZuoX/yp3BJoHOvpZ/enJJLv3WJd5GaFgZX7YKe9HVcgal8oW24BzHWOP4Ak4X7HLMN0CaeSC6StmcMq67oqdJ1IalMznmiHYALbwLPFfrCbuBL8Un6kZ4KIvYdP/xSsiVEOwq9fxR0Q6DYlm/v0kSmEn/ODOKY0guRoEeDbvXhowUF7emKG+vn17qo09tVlCv14syYSJ2hangiuR9oAIZcT0304z33l3nvKzq0xbSkX70VoZG2gTbH6InLnmZMq28pObcuXdF9j9Gw4E7FuT/fA2JP0+uNrMHKXgbM10ZLNIkltb/qPwQZZkEBgEJHc+6K3wwQzlDDnhzJGqEtSxFFz4IIaYHz0LRB6q1ymKivgPDzTa0bOA1Auexj4YMoF/z6RFUwtq3mGg0unjp4wrZCA0A2YLcMVI5UVF5Ife8Ww/oYB4FT5PH1DdR7pheOQtjmkO/4FaMOuuN3VlpXdTFVbpbaDglBoVhSPSm9LHF7H2XGWWv/lMRvepNcIyYHJ5cVhO8cGsfndWjLCH1OEubF5OtbU415Jx83nMziglRv+c2foTi7th9nRk/NAvBsBxVb7GZJgKulDQfD5XKSX+03yRVlqS8ACbM8Qr5GTeikyB0DXgeeWwJOYmZncV5q9VNEml789es7FxCbCuPdApwfb9xZE1O8TOeA7t8no0p11nsJDNSiw/J1fwY5GObU11xWwenE1KCcNTo4wN/8ehd5l/WAHYz5rn0d7GwUM1kJmPTE0xjG/nOc6EkgDlUF9QXgI7pvqkoFLbwaq+0BaYHBCOnFjIEq5Vyb/etN8DqDqwBRPhVi9zOfu3OrtMDX4fF/MulbqP7e2hsnw8cubFgDAQNrJwVAOkZW57681p4uR8sINk94H05/bnt35UCRXw7xXNJTyefk4NtwOec/7Purldlx6IP+rzHW+ztYV+sVNjGahPXrA45qmm0lFnpXPnsFRYVNTMdwpBys1uiBseCHVYZPjd/4KxsQlUmaTcztrr+IOfeMR7en4bLU0cTF/p1w6trI8zH6GasHvvgn/VCLzrj506IU7pnm4Q6yBtUGB9iglCtaGAX8xjYopIpHDrz5YdnIYnakS0FaaOmAVt2c6zL9IiqCnTOiFG7TtP3YuWfb2u46xRDDvqRbXHfIpn5NB1oc5DaU+GIOwVDY0FaGzyAXDMTCI4+RzwBFK0vavDMlX9IghpQyz1poyvfjyI8t1hYRCw+OuyyYjPJLHHFi9stzMLAaLNcaIEy2m7Ayd1iA6APDRMwbsHq02ffrwzSfa+O3rCbIsfaEURMD5b5H3v/B0sz8paGGZPfYoLiKy8TZv8BulJaQyD+7jNCfbASDBjXlMUSCMD0M10csPgPpjtcsHY+2AozqmEqubPhZNtz8cfnRTt2G5KkWhA1mSgYx+ybbMnLnmqYqmIBmu5d+Bp8PVMYNRvsB6Qhcy2YndQzhIvEaHKZVydYrO48jtdbArJt7ADjTn4vFMi72zCPCgJ1FDZ0TlNhN+5AUUsFg6X4HLmgtea/LkPoqGc9JBG4t8seDsx/4Jo6sFWMC/QeqAaamDyj+COC167l1wCCYhrQj7v3wolcF07LTyNRLqcwOg5+aygRzImYj5Mhca1WQjnPt7vLncdUmIGB8bWqaKo6rf3UcoGG0FCKCRaEe1V6otT3H4ITAJ0LCNHHRg+aWjfbp43hq37/eAlWgsJ58L5eeVc6tVnQbMbrcQh0uJmWA3MWhaFz5aSZqZLIOSzQ2Gai81ITr/owpmXiVi+mRUmD0d3GT8pkj5dCnPztnxy6dnZSRocQGfFJSgtRHsIS5LAqiXtPACNlFiCmxtPSy0Yk/5t6b5AJfjjUPDSNHcTrAbn4cEK5bNvaUSNL/kBaUCI0PR1d/u6mQrgm7LnsRUzrU41CJh8xdmiIOgBC76xgGILBWW7WUjzzvuJ6LSoSqR8bW3mxC0NyisuVA+ipQFOQZfQiedFDU5Djg8O5YkA/OZOaa9odH0jjI1sRZQkpSnJhR0Rk6/DPX4GYvt/0rzF0QRcDT2FbIAKjeQCBdyXeh1O1yKfGXxnDcCw6O3XPtCCnzYRxRK0yQxTiiX3JqJrfhgz5PJ8W1bBuAfKeylyjHcKdVminfvPhLdKubnE9c8Z4oCeW/L/CZxMwnHDG4A4Yx2QG24NNx53pGCQq5A2j6rJ99Ovn4EHF/XEWll1Jnu8bv9/DmG4Z+ynHsKf3uKK0/dOAPjQVY9Gbh8GIyEBM/YKajxwEzoUEpMeHDWoSE6kx80q1rxtKdmrZXcMumHDNrOumMZvl3TcPAC874inbjRwBmZCmeJr7Jza4whjlIX+LhcUWrXv5YAkvYYOjWB5GRN4hCJHearqtx2tYjLY1S7wmdVyUr36HmsfSfjBV4H+7hIX0QX5aTucaNq7IhQDY8WPiknW4I82eu6Csv2Srg5xJwavNGnY8dyt5n0RrmobmpizeVN1V4hZA7WpX+ONaRqLvTVU+54PG8t/8g/DOoqP9/eWJCjQ8fB3I4v14LzTRccjwYRbLNvSMGba5Zc84BbWKo3xtI27mftWdaO2UENW01VdhzqYn2DPmOStiljOiSkOt7+eb864XGgoK1NBcJCnMyyHU0qt9IAcLkkGOeZd9tt6kko+BdI3I8np2FLF7hcNb3uh+FofCFpTrXGXxl8dDMWOrmi+Tq4wLaf8awnNDHJQWRY3uBCRcvuMoraLAuHz+ZZ3zShXiXee+6FnJkFhCaDewrp4K5Sl20yC5EfvR7IMgyDE/cMoQkwvIhEmcsrhrqo+CIoMWQqFnM4VOHcRRGhEd14y1hh3X66YQSFg4m+smqmoAT8wmHRAAb2z6Kbp2qqTYoW3IkkefGYksnCvTfhxfEsj4tyOs6CcvI9Xt6FGYv3QYEa+Tu63fkkZw7bT/zo+vkGuIkxh0dbgs8+hG4Y6zZ1kbqLdtVH9iTPcePLWb2HoH7mKHLFT7bkZAxL43BOnlO6xb64xiFJI13i9opDhbkoJhx8ZEsStI6AixUQnH2weG2BbNupAWzTsQAb/DOdOf9a+CnITRZLMIbPDbtI2uJj9+M//mFy7oLcdN+69cwIkeRoTpnjz3gTaIjINdXd3uwICcw91Dbv/hRtaZ6xuQmUEB1wdHmLxUd07KkLnP8z+JAcWo1xndngPAiz0M1obrW15ipP+zXDSJfS9WiwA4OS6k5T100ARm7j7p7t4eVGcTzWVImpclLSeZliB4O8hj/0nEMzAOrlbwsgYA91sxv5g/SqTQk8f6uXwsyy6MQ6FYIKHeL7z+VKiXw+rErXOscz2WaAKl3LMFQm2UeQXFb4duLdVWBDPKCuOsK5zedNeJutcqvy+jdHAPTljNhI5XUwEW/ULcoQJtwqWTC8ZspdWyOuSaG5y+qo+gCNlSwiNm4QcZYbtdH/3lM/qUHkizJ6boz60Luv3g22cykSlircZIUbNwac0v0xURCKYLFpw4DHCf9VJddHdEmE712ANLeW8Ve6ud8106+XwitpFuM1rXNMx4eN+XkCL+d4D09OAkRsdmtB3eJhhi0xVuxtR8nYVzgkpc4VhfZIxv0FP4ASqir+qAFKGaQSCIwufIGTJeU3K/6qtCGnQAbmgsbJtwvhT+Q9ybhalRLAdmV8Q8Gh3x9jBwZVyvkB6MTdb0gxS/dWF4Vut/rK3qkounhhUOy7mct/p1rlPhlUrrkvq5akp4N4ujNTKd0KY+1zBg3jMfVZGBJe+Q+1iBycD8ywVwZBcaKlQNFklrNvki+Zd5SddKAZ8lTLP7J39SEA2pJZt8tSzJnAk9BnTh5T2FBCcDCb4+HGAjVuYhDx9FESLBN/brhwGS9WE/4ZIpc5a4aWNjZJT+rQN79rL3zskauL5RPfd3RW43HdyeL7yhRLZNMZUQeo1ncIkuYTYoQaSzgNu++ofixnbrOdPwza876hX1CLIBTxnfbMlNBN1yga3oMpDvBPnaHS9VK1NDwNINbO9L/IHt28V++IqzGZkyNJtG1cFu0o3YeugyvfEjq2SyI5zykhTNYGJZX8ImP05zFfFxmhCQdNSoC1VgjnP87WnvET9JOdKO92gxUxfDv5lFb66WuCbLPM9PPflg9V+TpgA57B3FYpRkz6Hxw+fulBtDTwa8Nd4aqqS6q1Qahk4IHRwZG9so6x+g6mqmG1+ZoVe3S11xTSfdRHIJtJY7sefRuHshd9sHoM1icBD1FfDokoYgHFXyhKlYe0dHQoRBNBx7KwsBEY/4SkyVABRA2qgzpya1or0DPY7CU7J/3qHnYEVXlDmYo1M1SS7k9Tq4VsYMdlo6EDxsTmqlyM43RjRRzpvJiIljXhG36bc2Zsz5QvS+ex5a4o1/CtE9u2s0ZPDkihq19A0b5ZrnWgbnfhKGd+dReMYiO69LNaZQjncKolG7gAxQZy9aOhGs+rOXMvB58QhhHa7zsmhir9VCW7IiK7l3IcO3Xwxx1QXvhBo4D/cv+Srev5N8da2bdNUPfbnBgazqBucXEUW3LukHpeG8ZrIunAabdXT7z/rR1QJ+4IZhY1FdkRStYJw5EebZ+CM3+jJt1fc5EI2wrs1oNnPoAk6nBYwVQoJfypzzcDj1gsqFcxx+WW6YNvrvmJ+PugEjjNHFpRdBBYWBSA6sfrGXERoKUKj4aRR6tY3Nh0gNvrkXim62txfbCses9JqNPkYdnG15OenFnPH10do9T7EevnPo+T0A2y6oHazq7fH4h24LQjS90TL6ZqukAlR7OIuEW/bd7BB0062IXsjOw0Jg789svdoiZwKibcmtIJGDsw5upFKm8+FAh/DgrwW1nlh7GG5Th7I43t3ux6QK7L62XzrZqmJdjnJTiWgqioOHwNcGQ4RwBoK1LR4Rln+4xlGMVBggqicTgbb15MrsKsRNRbthn1/vcJbeLAbcdNgMmVg0bAgH8Fiul2M23WjTdlV2P2OjmVd3r96InrxclRMxs8FxSpALJc75fAipGvr1jmFoZ1Jk2HogG/AvqjmvpllsVS4y/e9FklWDAuupe68UwiNg6BmWxngROxZDp6GarVhC9DZHvYADW15ZEc4BJv2ZO5CBlFVsw3LIJ1TrImSKN875KPDsB86nwWuo5paXrwmcz0hT/cGLzAqExD5pWwT/rMvaKryt8uXY3zdJHaEtnCyBwGNP0KABi2ueGSR2xt42gM/va5iUU7jAhgvSWrsFuqVgrrVZSHtHE3rcbQyFaGU1+vX1MKsUZF6jIacwISFhhXjuaKxgSXe/Ls0/z3o+pA3oGm5/x1c+knEvvgh8gmiMw9fVD5C9KClkl7wjhrG3rjifnL+cMTPrOFo/1/K+zZ69VbY3fdBVoyinHvNEgMHVVqz2YCHpa0j4xBWpZEhEWRJ8yVNBUAkx+nc5QK0Y5785rme/eiqsF33sB5Edga8yFclZj8P6NZA3GT6yjRitA5i1zeoaQxIs2uiVWztzhzNXv74nr7WXb2mh8NM2dajI3w4GEJDPNXl48qJbIhneOcM95GMy2h+2uka4zjwk1vFXGEVystmCpJlS+iF4z6aeSoV5T0H4g/+KnUtyrYBPPHNBDw52hrmAjJm32OCJhSb5TzbGTUB3Jnss7+HcPhBWHmgJ+BBxDl+q9zkEPci/OofxnfVgdoXjd+emiXp/kwZ8xgoN0FGqbv73W2biDXl43lFc27N+JVyaOgPKRngfdlonPuws9vKywCmYJJO3/IHFu+W/PMQ9XXrjHcoiHgn/fz/ExzTXkJiSdet1V/zgiJyxkT4yG9JxXaRqM3NML26Vl4zcxD3DP5pARuD3Pi6k7ZEdF8Bo8UU1OvECWEW24lOT+NQcYx5wld2R6xcmDRvRwh5rxfjDlgXNQPMWLIbm/mlLzWJeUp2YnUQa7kpTbSc7XmzBiHpeJoel/Tge1JPL/m2tSzy4ibHfGLfKGW2dJtlIX1MIFh8LvEoO5JiXS5pipyESc4roKIfInsYFqS0czHB/Dh300UNXOxWWK3Ii30AEgquCNfRF1cwYaPPfs/Um6CPs3c/sI1ZO72o/wdHGfKPnTFfOgwGt18y5o3E/idJVrvmcfii6e2R26UiVY1BiVbt3q/ePogD60NL7Z10kgwpJPxoSMJOxoCMW5lN6FglEnRhoGtaVCDX9zYHLD2hDdfemIuns+FksCB4S6nbheYtKSgT+ymK1i2jfc3aaS7urwIWpFYwaWHPGwBqVziyAxoGNq/rtjpipe2YczHaMviIyI6q2dWqofb6H18EbYewXlNT127OCnNOl59oSe/l0g8lXEkUGvK1TluTkft8i8gE+HFvBK8e0AVrSI/ozwmQ6XaP27MI5mWqH4XA/EW/ngz555I+uvxmrYK12zF+27VlREcVscifle0DaAwJAJz/T8AiktpDKJKcAdBtonATHKvRrVTa02N3KwkM8p+JF7CXLZHMBl9YD8lP79byAvFpj4QHyTPp23r8/Q5q9wVw6cfinq5fGhiyNDUqIJX2lxtErzAEci6UE+9spdqk1v/xofMI6EpYCwM5aQPIBMlxToOEEKc5vxxaEf5uo1IH7aSZjUwFB5o/6D8xeLq0kZXTPpeilyBATNE6MAA67c41BqdtN6PrekmxLHmtA4Hcpxle4qOBQO+H5tv6zUDSjV5+C+/vqs6tu1UQhrJ0dhKGK2E3JjMxtoDomyaNM6o0WcJI4kHVB77bt1zWfQhBY83D+eDBHHk8SXpkD629PRjUEHpUayrbVvH1JDkOnlOOjzjbTr7saEP9kmIECtE2xFdAonFBZkHStGhunpb60jOtqzKMQ9Suw1ePlYSLvaE5Qd2CsGMqyX1z2oboz+Lk+/mEJCOJavb57qs2J+pcQ8w0Oo/j6m0PxUvgGdxdO0BkP/nZZji/l5bB5vQLtoBFglo9tiEPNWZkpqNpTJHyQPxi+MKL4S0L4jn4xzUYmO6HYSj28E2sAbkV9IB58b470nZZP5ulKjJRZ1V982h8L8Y=
Variant 4
DifficultyLevel
733
Question
A large circular sheet has the following dimensions.
What is the area of the entire sheet?
Use π = 3.14 and round your answer to the nearest square metre.
Worked Solution
|
|
Area |
= πr2 |
|
= π × (0.75+0.8×4)2 |
|
= 3.14 × 3.952 |
|
= 48.99185 |
|
= 49 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A large circular sheet has the following dimensions.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX-I4-CA29-SA_4nts.svg 500 indent1 vpad
What is the area of the entire sheet?
Use $\large \pi$ = 3.14 and round your answer to the nearest square metre. |
workedSolution |
|||
|-|-|
|Area|= $\large \pi r$$^2$|
||= $\large \pi$ $\times\ (0.75 + 0.8 \times 4)^2$|
||= 3.14 $\times\ 3.95^2$|
||= 48.99185|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 49 | |
U2FsdGVkX18BEHFGORB1bd01+RRvEoo5/n7sv7qyBYviFJ4tl1vM5ydXJGqy+bZmgKqGcoUhKrrH/BFwOj0WNphi07V7thXC5F3fjRUH4VekoQFP3ucJ6SCoWzQQaBqh2J0Y7J94cjAKT950c38ynbTlLr98gJOe5Sb45LUP1TJo3DZJJMp8azV7nK8quWUty0feSaqcrj4QWd3VVnGKbMVBnEcaNnBRaj22Cz3fGo3Oxf/93T8YVmf/ObnP0mcqpz7FSwcNhoKR/tTw90ZBfJ0veBRm68VJP+OrXZoNWDuuQD6bWJAwaIqSXRhAXrtOyyKSzNI1E+lrTsca9YgBA6gvlCOnEKghOAbJuKoVY0fAm+wLekqhbaaoXPokpQRO83P5QnoYc9SuZeUYGbnlE0HPmgCIcJrDaLSucaoEREHfhHr0+YjiypOYM2Z3Yir2NJZuGqn3AGdKpYb+s0HO8lDO3Up/3qQeyCnxkyS68Xc3BLS9ZHaPL9bEVjVDf5uZHzyz3RUOoEPJf+m55VNr5itDo9cH9v3aM2w1RAvytazfKHwA7AsDzzwtRmY6d/7aElwZJ8tBYfUPowrAWqa4QjE7llyYV0Jy3JLU+XUja+Eld7GJQopbpoOkZ7siYfCk3AzofCc0rYmJcgXe4x1gpCJtzhsDJm4g8IiZh4O/jGNQRkKAwcghSyjdSs+1ssaNEBc2Niqarmp3ggJbXCym6JVSHNG4Af+hnZ0krkEd/1K/Q2NKUBw85xqzFZx1EJbUAR2jfIbXSt7Iw8uyYKHnO/t+fGmDFREwzLI+QgigONb4nsMuK4fhLuDKpsysi+K7MucirNY+hA9tp45xLzlFAgwL4OxEhCGoiAMpHXloB6K55bbuM9W9+ZccY1mVQMOrT8NeZdSpTpGbVrtKxvMPDdfxssFhg1QK+kXF7eyKFOgpe+q4RPxh6Nd9B++eoAQRM+I8llv8OU2RZ3aqOL27KG/i30WThFt8Nwap45olcDUFVpeHT1glbCbY+yJF8G2vo8EYsormr58fxtD3F4Q7O9RwUBJ4/rxfes5TTwVd9dYJvEFEARHW5yTmlVhnAa+ue6M/G8pG35qCXkXW1iFd7dN5v0DRszqMvafGySIKf2gJnE2pDhor1fNe8ECs69jI/RnFOhzgcM+f4qKtaaAwIT5+xbQDa6nhwIFNewHjMvNIhe6AIbf8S7kLpKZw/2ZkJbA1NvhC1gJwDEHB2sFRIR95BRWnVMUDnv+sP10ayXUMhFpa7/N10KMz60gIjK0wO87Sc/yx9p6RzHY90y0y0C7TehB2BexCH/AVCc9WRnV/1ieU1zNK7Kai2CGfYEMlbLauyOr4x6i3mQB4xEVpqu0VYQBsLM5bi1dPZFq/uzF/jWwvwnDRMi28UANT7vnmag47csBe4somshvGMI9olOCJqxHLOgg5AWATYFMUASPN5pLgOaDLSymWDthPV8yKMq9af4eGV4Rm4wY3B75mMvQZjtBV/IIOqH4uTYxTP9B5CzkPFj0cCRgHuYsN0PGOokDAl09nKvuWvvIk4rWJkU3kUiA8JHYKFTo8sq4wH6HSOH1ZZ2QQvDb6yhtLdBAWrIl4kikdtNAI70G087kjxKwhC/YdEaBH44/Yh0zHE04vPmfWPr8zMb2rrNiNx4Tge2DSx+b6zgFMCCJZIkiOgFrWrx1fKWHuBQ01aNxkkzgcnIwlj6dffOds5vvbJGQKvOR/JViDTN1w8s1PzjiGmZO0i9ySrY1S2OmQAlm+Qu/G4xgaMY1HD073GvL9+mGok7YjvOg32AoeMbBHSK4NxunfeXDzx9mKUx3Re+5FQLxHSgTnwqViz/JWqSYuGxQ3RR0I+39MqFCYuWxHamuJEqOt3bOd/dvEPiZZJ95UiwuvTKhZabII2YS47BYRPdoDtF+yvDvefBBdXUNSk3jzT3Unmqb+lB60YBrPmtNG4ZqjXgWdJMKWettXPWKFcJsXATLTukkVI/ta7S1gMAddOje4p/phEUTaEpfR1pZqilMOF0/i2aI8Ykaj5y29kr8wazSP2NfJvOIdnw6lRT1qlDAwpLl32bsKZqHg+PfXpkwRl3p+cpQ3DdBq6HIUEmS0ep+2oQkC99ZFj73grUGiiRLSg7c3VwcNBKGyrgGYP0C4oiX5Mc/7+mnFts0ePLpdRzipw4bUYIvoQBJ4XP3I5oiJuQc1ZP4ZAqtqkGOkezHzsTU6yJjfjUwhGs3XeQ16iCLt3pZGs3a1rFEtMvgxr3qYNxnL8bdNOeELYtiRXxHN8SFa8iK4LaoxMdWtoliNPjZGRi53U0Ud5BMB3vUHphiZ2KraYa6FF55CleXp/Vy9mmUCE2oCbn7QJ7IjxIbEKjzo7ngivJbI/h+XkRORIdaGYXMalQkF9xkW/+zwFcaeZEGaiCU9m11UQrCkVidrbe+bhmgzoN4Wht+EKD6b34/QADZQRUkVkenn6TiEiqK/KO2wU28VuSo2UGxU/VRPJlYrez9Jrvi18Qt3hzJ300aVnKmmJjzIMsFmKQf3KBgquxrmwpuwqhuhyELLrHOxoHnWM4k5rOC7pQl322sbO5rIPlw8dmNDsStS/pgD9ykywFFfJjqtAQfAVFeUXcVCExH2I0euvESfrXQqast3Ot538GfVgNoWgRdBaDvwc/HITyASuMGaPEUcAvmqm7uKPnwkh+ox+Hm5RhNxHE5bIdvnlj9TkiNQG/eGno3+Xt95diUvdJY0zgM8olcqCdLhFn2JiuOczPZKDaLv1Gg5r+HN3B4G3Rg7obUto9ogHIH0mZVhTl0bFvVCeWr+SPuVWZU13Sy0ImUOJuy82PTdA9pCPEK7SgyXDMnQV0Gghws9vd9NNaq+mGvCHUUI76qiVaYhnNUBDi//j7u+ET4qS2Rwo0wK0ndCsifYS4eK/MrGSNo7sVR/Gyp2jn9/xAOwXuY2+w74VPGTPG8Cy/aSheHf2moMzM4SSULqpRULHhbKLxf3u5nHMfG9yPU/laUjebNhGqdMS7AhcFif1KSW/EGvVJ7ENDeSZIJn2xCjgvmq9Vd0l0lu/FFX2dP9vvYgfE6L2mT429cYZiHKUF1fIlcbys3y9V8mpd7Ni/VDCZxN5iR8qtHHkAYGS6qbTtIrh4B1A1wI+j9CrDCoVccyEByX4C5nXoAgw6go594PNTe2JsjpQ4F5LbcV3JZlwDsTxRUGgK3mdQpX5PLDSHO8eE9KO44Y3ejMS+OqoNSlxIzNzZzha/YUlaH8GdCQqobWlQTlSSjUeRkySjgnpyNfN9GrjRlOTavjvedG21qhaQwu2F7DBa10ocx5JOg1HqaDQEjT2lDKi8nQxcMIcak986zZ+tuO1iPCoCT/K4ltO6q2DdswIsJWZGrDiIU+sSS2MDnuqhkevw9nKFAzqQ/pKRhJcXv3iCc6gITuW16zKJfCAsn56z+QS5nxncWQANSekda6qUXPshWDTkZIcVogBJpjRzE5qH4SklxrsHqbSKAQFgoi1+mReuKo87IixdF1j9JwyiDXjmNuJLSknK7xvz4Q9VzvinZ6iAJftQjQu1EzJJpHbfUBPCyX2G56M1Pb5cFSFAqZ+xO7KEGuDr7tjWwwRNKFP7c88SFaP4T6xw0z5bLd0yxwXOCfdWTz1nPm2wso8MR8VDJqypsGt+kvkWUdSmyXtvMjUGPzUfXXVWzWHjrC4cllXc5XE+N0eOX5nGG7xXfO/hI2bpDAhI8a3/gyC8M7OTbAHcuhrxjeLum9axq9uP/7x5okAmUcTg4oF4ZoeiAuD/g4VjxA0vq3DwNsFDUED/BF0/MgqV1ieLesU6zsXduEQaROQHUsbSJay9NeAccDyJUtOcr02beXeyf0jNk5jsZrCP1CUv7Ggv5OD1JR1tpG6y0yn4mLLi7ZB6m+jgxD7tSEXgOO6CAy/ekvNuXKKGLYDjM6tz4xj/U+01qWd8ClbT34lfqv1Qrnokkz6TuMM/lMMg7MMpzNYOBBPabox55GezXbWC3SZ2J7FvCpvYb2UcsOjTuYsP7Llr/UKW6Xn73DPEPkslC/zNNYFZyQmyi74GzXOjiFIuSo5hOgvOFenckDuUujhW8SGAF6AxbeYLBYMtOJKaqPY1lnG8BiF/8f7x4OGrrlnO+S24uEDXJJOSJ94EP5x58e5hrn1zJtA30ck7FFATwisXCFcJn9QW0A5e/2ztu7bTo+oMr4drcyJjlDkX6/FUD7kLPSU4GPKiYo3Jcl8KSBYh5gy6FiGd+gM0Rcj8R5gnyHdKg6rtZj2tu9zRZi18IdxjGS7OJNCNZ6gq02N2wHogfXfHtOWHCkRAcQA3VFM0L9RmFfM2aC4+fS2GWcJnpjY8zrodNU+FClWiaBtiHQ2BScRhgWVVbRh0nDTQvOyms6bZ3gTIN7dLN4op2/6KgI3+DrKcxppoBl9tdGWNW54iHt4BWqT6QUOnnmDrHayJ5WGnDSGyAqw7m3vSpfzsC6aQo0bnaN3Ea7OuWP0IW8hD7lWTeQTVQVFudAxQ0wNtHKYItiTON90V7t6wbXUmRoxGFOH7IvPcaHYTBpQjrdcmz/l8QawliCzGLuhonwRDFim/qD1pj1ktwRDLjflcEJ3fH5uMuggNmIBuS8kE2H8qMKjAvsg2iZK6ThDoEtbbwrwOVRYwxisCN1HJw+U8+Xp8UOfle25Hv2bb6aXWzMk0KU9G5RCiIB5+I+aRDty6jFRqlnCud/DZn0aUp2PZNuGfSCfybqCdUAKr/dFZ+ZBSaWhX/CQjDxB9rMWMcEhJgwQ0LNouPAk4aLtFBIqkIudt7nVXu8PWRLAjX8YR9PMznS2wBbwLkFas10U/BuN14oJcMWO74VEcryMUbCXygBfLSFvakXH5iLYWt6NafLQZab9TvgEtsBtuSJoq/wgbwk2JnXGtsKk6an/0KOk8GhiB+E756bcgtOj/Y1gXW+RPLwDTUwdkiXnd+GPF5KCElFoEmsDCjsD4BQ7S0qRGZJxB+w/046AaUbmzXygkqCow7l7uvpnntl6cAF6zZrUZ+fOpTcBIoLyY9/5cCdgXjfvnXFGQzTHXJnXIhX9haAwDATrb8cmeXq4D4gd4S+VyHf3uKWJxb4raPB8h1+rQ1F6VFYoRXz2cxQwHT7JIb+oSOGb8h193X/oN8ogpffThNwodu0zmYN0jkm5i4rBQDQvOVHyS6c+YRYWdcXbisXXS6Tx+8Gnc5QfA/WYDHQNfB7xhqEjOgCug2lxq7NYUCDdtt4QYZCo8XsfQ+GQpFgjuymebuIToAEAZHaY9r2eJadv31FF1zMzMEjFMK/KmyPFzwjiS92XR6Ed/2RdMFrM4+qHfxgn0JOpvQ8QhUuDRG7zzT4el8tO7wtguOvB7FnuM3UAPRa0GUTd1KJYRq5w+XWpzpEko36/6wJ+iEkBfEf9PUtlYzx3TnqnP9/nIIrRVem7UC0jK8/vnOUn45/qUFfVpwPfE54kkfEwYyT0kydd917pDTgfPBsePne3vYFOmDbwHbO/Lj1ibQb2csF84qX/owFnpnzJtqEdjPaxTIibW3RvkIku72CccIhcM172SAVhRtb9JfPEA+h+UbVRUs5wCxexjNR9PDaa16NUBMvGMq9tg3qtkcmiNs1NFWe4VycUTCei7R525FtiJrRtlBB2VA8/CGVPRFtcsaGh5RchEQV/xAJxKYFKLp0TJpyfe/gThBEynGquwvGLQM6YanX6A0jyOScsONZANvtgoy9rBBF/owLgpwRpj/j55xVNWtWQbGGbSDW+3yGitDu7tbkCctsk9CnbItOUa4Ug6qmcV6ek16eqMvMZVeGNODYSmQ77S4Q098kDrTCLOHKsVtU6aYNla3o33GsiaWP2CGN8CtM3NEKS0qRXq7W2aBRjpWwOvD6UFnp9AlyRVqYqUbKHXbZ207exZjl7KJDMpj4CX7+jsiGGWd81xBx8qXIa6GMF8rGirtkHo3JISGRs4e/c3AMXKohLgk7EDAcIIWm9fGZN8J0BscubdgFdrQmvMNbM6OJ2+Z0HYupFPcrNMQSldJfhLL//0UfD8dwIHL9k8BRXZa1m0obTxLCgQ4+oQonQSds8HZfZ+4RG1WU292UmGD/IQxXxU9xvhaEDGlx2psCHHmI60E1jgjXHMXhe3+fzHF+qvoHCTyAjgoM924E+f1KKE9D+WAX0qNyLdJfLfiGmjv+q5IqZFu9T7+a5L1qi47nSCU+V/IoKnTFlyTORuIs/BjIJIhh0B54LrjhRVTYyIXQwGYpwB+wvyybZIkdKJ6I9CAPVktm4trLJE7fG43l7Rgc36okHgsnV0aO7Cj0+auTl9zlIp0RBphnZH0XlFZiV+bMaRqwei1iRSuNk9y9+FIUDlAhRED7xVk4nOMjcaJMu8LWI/GvaLj5nNx/yBCsDZgpRGNYSJPWwS84YQJHYdwYrEjLtKUzqQime9kaBTiMf5es12DzsmKORGtJtzXnWLtJlOR9f8j/wEyBWM/Y+eWQ5g5kgHLXWhJmqIzWedY/PQ2yUA8xmMLFDz+G6el/cW5rC4oLpxRuANkw0y7BhzL9JXUs4X9CNvYOEMvlMQ158gU90ggCaboDwk/uvkgD+rR+vaL6mi2mjGMXJyyQF+rd/W38/d0gXJU8QWIBWjzAAihZwsDtRofrRR3Hc7EaT3ZLpOwjCWsySjRzLNuACkRFyWbnMl8MojbQNJrhRaqHruEz4XOCIVLBavdHQhAb8nH3K2q9zGtNFoQUmWYYrbsWbt0SdB0uraRWWnE1pgiMIpE0gOk1qqxWB2QVYd+/4RA/td/HmIgvR5AIKSWPEGrBHzKHG14H6w98I88TdZau9Uvy9DTOrY7fNTB+MYJbh4HTjVRSoChJtgJiEZmPMCAQ9KajeiH/nPfP4IDys9yYfBfiRcnZc3YfEqW6QUMrc9oTyeZii0PgzIESirQDhX3yOmOi1HEG5qR7c5Lf8ECfClUDHijL/hADpnRc5j4jsKVM8gwlf6m4Qw9ixTMDijqe+qa/3fJWyHgS54oZLrrdK0idlsonboPGVBct9U3VITDLFzDpD+b7SBfV+UMjVN9UR5DAurX8LL/ywWke4ZxsmN3V4Sg5ME9mx54d6CL1I9qLZCFlP2Nk+r+qHtXznyKQ25n8SpZWoq7JDrptavoeRgh/I3ipiaMEXKiOjo+3Fp1NSRfE7dG5Rk/pLkLwgGVU+xFS7ksYcukMD6Ce8uh1DlblqYggB6muwl732U30kb4Dc07MIrt+skkBNNwksmVDwUTj3UqIE7Uvk4rt9Fv7Y8HGBkRdvqbyfL/GfqNpkJafM3TAtxqmFOOU9y57cky71v6bvdYK34mud18E0nI1o5DxRMm4Wl4OvLFdPP+YLXa34H5ygCO79AOVBPgtZ2SwVx9Q7Tqt3XNPtOl41qJtV0KWAdnHDLllG95AIrQzzeQgHjpW5koB0GN6no7rOnV6fKUOwhFOFlp22ZL4iWP3xiALjs8IWQuqyRD7VJeQv2Tf6I1eHLKZiNtc07rhWYvicX5CFAJzqoLNA4N6qkBitfbRD352BCOOQ1bZwANEVjZHhWlHGpikMRR2HYcH/bF6vG7bsNVOwc6Fngw4t436p+IyvmLePzrdzDHYim0kKZG+Ig05F1h/hHmhH6/IWfE5/NA7YJvwzql0YjBuZWnF0R3wAzHC+6bPq3MuMVSH6j3zro0YZLnTbm8FL+efpCJCdVk3D+jXx6VLYJuxfxF3CThSX4ZPpdK+3lRSVEmNter57n/KxhYO0N55EKjulf0QvRSN/drGlgvPjfxojK8sOzvUXtEECmeaLUnCNk5Lb2AjqdRmoBrAvZ/RHP8//HNFIiKLbxaCd6Hwx2H7Kj/wK/+Y8ugBBcg/KpYbMSBmRj5vW+TUOspqKTJy3FxkBpuBMGBjE6KgpU9vYF1CibDmLpiiuZbWcFVTVyNKsIEUBEifUwLjngizrtCnjELNDZsdBZY7w0jXwasPng5KNkqIIcKo9tEmPepQc9nvzlgOwlB2CgVkbhJSOL+pKQSSM6mtLYmiiCmhjgNp3LPDu9HXcAC99cvLxm7FSBVzoq3mjdthmeGb4DQFseoSoZ293eSUjYV9VYYh8WGmX+LHkEDkqPK0aZ9J8T+nyN/S9MEzxBXGQ2ZyteJv8N8Tp6ekkCaQDC+gmZyVYAraeRka//EUE8U1JmaS2qwtwKzhfh1wHQple2tIVCMf2TXfx0jdd20a2M5k3JqpNXSm2XCOpyRNCgRbkSujDvi7mTl9DVkuI3IFiUtVbh+ZPIp44jcox5wwtJGdsC26s2fTVbjXfLfhwMx2d+g9PfV9/RNH27FyhBbZsRIwaJwhLDVFGOMnVmiUvawtOi9cluXUhj8ojs4ZiMEMANU9wVPyx7w8Z+baO9g5kwt98G2xWqUm2CPheEAfnfrLzGXCda+KfpB2O/cSOkw9fb5RCSzVQHKEmgkVIa7X19RMWZNhCYpZ2B8paYyO7s13nb2QkXnMrwBwyxcCP3VIxHwGk3xLQ3x9g/m86ZJiqVYvBrSR1toAyQLucZZedI3cGoShGYFnp/niogL03AOj5GF8ubKJerCctrcyO5djw3Hz9ESS8j8hkUnmVwKfpVydU7nN1+Q0kmr+wTRf0nYY3oHwDCLgaRVFAfNj5qCkW/IqfOi+I1JF4HWZWx1M6gXtNbQrvaqSCpM2EF9KcgK947iT0CS1oIxOEZxWG65vYljBygvauETU17f8t9qEydBGVm5iELnNI3fxLkw8idIQwxftyq6/+7jHGyH6S1bN3epriYsv4hG88u4Iba3m+j3rLQA8jKlS4sfjhTPRGVerBnQHYzYhEtZ8+yQdd29bzFnDXs7RooBcWhIgrPQVczIj7n5jVuGJUDS3uZqx4H2r9JTOhycYeo66dn73MXnE/A4F5SEtBSMg9SWfdzjImKtC5BrJwS9+Gk68cPjhUZgtqFkpAZbd1bN4++oOUMoG0iEbDSnaIUhHP/3qM23tdJ98ilLSWUy7Iu22eC8febO3w6wQi5R7QGlnCw0+RJBWpMyaXJyt1mjjLQe075kEIptFSL0pPYBRZcaLSjeEsq5a3YtFYZOnF+rH83bHaYt3DhGpsPlp+nBLVa5s+PR6smcxWeP5Tg7p8mZVfkzx1N7Octj7xMS+KIHa0AqoFuouTLFNZR7hS2AO4EKXUVUhc79R5PfT5G9vuuXwa1P1LVoNFHZoCGusFGVHNtgtYnD20hm5lnqxmiQYZXqSYvf8s4YdBPr6DOo2qXqutMCHCoaOwhZ+huZVZsIcplY7cQzwpHoRrXcyEQrqFzhZiWdpDfHOvQHmqeV6QwZhf4yWD3YaZ7+Sf97KxdpYOUZnlzrvGljXMre2crqDI9iZkfWWiuQPqu2t60BuG3jCjp4EXq2OcfxHvwyCyyFH8qcVqkq+ZyYI9RzzYnKT04QN0G38PvWKmyRT381NSwMyv8Ud33OC0053552omvX9cBZ8lH5w0jw4MtFDbEnK5oa2Q92IfUOdqhM+qidQqQfPN9rIx8Fvp/E5/6OddMqjyOzaPpJTXVACxalNIFgHN4gbHnQntNfiUEa5ISk0j435Sh30MtILHXlpGsxphdYPcL1Q3BWvn8tXEEAC8lr+Db39y3ZVbhHCrZrv6tAFvtjDMEQx01pKhMOAK7JljJQr/BQT0hgtD5ESZrFveEpBF1pGZ+/USXR1mOvCuV86Pt5o/ao0NKJhWIWuTEyulo5kd7cNxvhhbOZ2mZmMZEEeBQDmHSYoZA4M62qlafNnXtDu9hKnUoKK7j1Dhzfe2LwyFkyOBrodoVcx1TLDnztv673+pCpwyQYRjSoE1Qt+h5P9L5Q7FxQRSQI6n7o7qYnBoRvU9CE1GdCHCXBD5KgwkV+wWYMr7sQ+fp2EtbnelifBaLTKAKB9TakwYAsizMU26JkqI/uganQJMSfLknjJdZwrDmXmBRS2a2jMwKqRYNIzLIOWMoVTuUUDq51ztGogze4A9yvkF5NuFiMYXNxC6P0+Lu/MqECrchYuCmxjyFcTRLO0EMVMu1Dl+qdFK4PT/Co4Tr5tfNdXJlV9PUJj890Zn7gg0kBp32kjf85mqM0XGDFS88JKOcE0W36h7kyZ+uR0h7D3kYoRdRUvtBs7crth6PjygXaTQdqCIPrk9QbdDcJ2KAujR2Rm4vHcDv7TYi7+oWF/y440Bxu4r9nGJ/tigOSTHM25v+4F/UjnjtYtGfPl+5gl8uzkfyXKeexCKxfkuOzIw/3ba7Gmq2jvB/nQ+cr3m/D2jevbkp2OOx15N8riS6VgU1C9B48W1BLWG/KUdkVVZ5ac+z/vTgkyu71dwKizwCTgR5YXA7+V0/0esBw51TOa1DbddU2a9CWM+5XToHNN5DvQj+g4dAIFppmaBWwMy9obBc/qqwIKUJO0JeOZXJ8ShpKE6F5q/q4Hqa1easql0TW0hnfK42CKYKssgLUjJKMzhPamKWQgG+maYqFLK1DZk0mGUw0K2gqMi0HJvAP3zVPgRkMNfyJiMzuMIUpg5U6aL1HMFBEg+fwz3KnEaDbcjlaxdyU13t/iY86ZM7iP36lweU3W7jvovMdUP9xXtUPy59JAWwRnq7hIqUM/mP6NzTX7OFb4hywFilxXhY2z843uX4NBegjgoi6yMYYW1K29zOiopOG5U6Mr9+1ulPC7lf9HBL/Au0e4iqENocIuNZZ8KU1mDzYIyMHqpbR0Ur1hyJxZReXZ7IYFw/Y5u5L6Ux1vnlQpUdDnup12DHTc2Be9n4M5chYyLaA3Kk8kBNCAZTXmlZyAvVNjObKPHLoC2YPxOdjNjAfdEA4WOcK6JxXDUMQg4hNCY2H4fMNA+guIY7iZXwXpTtcEStOwqqzF6rW9wtgAG4rosfT5a1ttKQg5idu1EqExWKJdb2mtzKM8mGDzcUK6DNxw1wl1LvIuFU3orl+3JDQh4WFG7IuFn8x6ysn1K2/h6SsrOXCzHeSVrgCqDXD1iu+2dSe62gur4GHck/9yEdJtRfM7rQAs1/j9EyHdhydkguGxPkzcAkenVPxMlo0bqicoACPtlL4I7JXH/jyLRbuSdQ8yn56dV/Jcm7ZZTlt4vUSZy1Cgho6IEEzeLNHvUi1Eo+VhSJD8hOHMAIhzfFQs/kDIBnqfZ/g10hrHzeT4MNZz5KqR7BY1qaRebvWtn/Qob8tXbH/ymmh39v/f6Yl5VyKOH0uWegrkvnLIkZl9+B/yoJzIfDBbVVwG/5TA52GQzN7g2ycCkAoRlmy4NqCTyfEMHi9k1sSNXUhEKjrK/9pqanvNtl/BgnjWmkjXh4Eq9QAbZvAGt2uKYT1O2fmsXB5PGxCbQoK1g6avEueiN6dBtUzHRLTUzZ/ghl66+5cZVx4RJpQ7ilhgkUfHp1EQw6fd6Czps/MwTazyHr1+iSjqnMCbX0oELvwXqdXvWEt28nLHcNCjk8rvfVAyiyxgyizEK7yr1jLr4NMLsRZkFvtcF++2mAnx3VdJ434HHpbxLQJ2KrbXXHTtDdZd
Variant 5
DifficultyLevel
737
Question
A baby's play mat has the following dimensions.
What is the area of the entire play mat?
Use π = 3.14 and round your answer to the nearest tenth of a square metre.
Worked Solution
Radius of inner circle = 25 cm = 0.25 m
|
|
Area |
= πr2 |
|
= π × (0.25+0.2×4)2 |
|
= 3.14 × 1.052 |
|
= 3.46185 |
|
= 3.5 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A baby's play mat has the following dimensions.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX-I4-CA29-SA_5nts.svg 500 indent1 vpad
What is the area of the entire play mat?
Use $\large \pi$ = 3.14 and round your answer to the nearest tenth of a square metre. |
workedSolution | Radius of inner circle = 25 cm = 0.25 m
|||
|-|-|
|Area|= $\large \pi r$$^2$|
||= $\large \pi$ $\times\ (0.25 + 0.2 \times 4)^2$|
||= 3.14 $\times\ 1.05^2$|
||= 3.46185|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 3.5 | |