20305
Question
What shape has an area greater than 4 square units?
Worked Solution
Consider triangle B:
|
|
Area |
= 21 × b × h |
|
= 21 × 3 × 3 |
|
= 4.5 square units |
∴ Triangle {{{correctAnswer}}}
U2FsdGVkX1+kUP+VjxYWnaa4E8HVCdJ34lJ0S+6ynEV1HVGpiQf2iZRc8qIxd0aMTMHIJ4XIsY72l5CT74JpbxQCqX66hzwZ3fLYHmYuM9W3fY8DaFVUZGn7Vdq5WwYsL78TcUN5fA/3OU68cCVqo35D0bYYK2Wv2KIxAnK7QLqQaCpxrwaNSuSE4Z0X6+iOEAPKPU9eH2842e85OSgbPhtBhjFcSsCGLbehIHvfpVMfOwI/0Gz7j7F0zkEptGwz225GNKatEZ13YXPeFFnaMWfIqHNuJEONCnNc/2XR2yP3MypHsgjIKboUTXiCRjngNYlfGw58Lk8RkmOnIJy671NQSVjjnBZ3A+35bPujEjgv0rQNaa+BhW1OFcr93t+hYsse9qaT+3OOeu+0qfkbFUhxZrTCv+wvhreqjx74E7K6ErWehZPTdKmCaqDTkbhufJBeS5esY1UE2q1AVnR1QY2eYo5FfBTrjC+BxNRszROKGMdAxoJp93A2MOepIlVsKVY5clbGVfLblSDD3uZ/HogUnp74VmI2NhNxmgkkIc5OXnA6Ozyrz3DYq+2EEu0PPARw9CKGGFzPDpr/TpTB+/uQuXg2EhwevZYvet7k4foR6D4UQCBISP5hsb7b4Rhtxo1XpVKxygwF+4TT1yNcaCQcNxbDWhQZe/fHDJ2cQE9jcNPbSgYjxQww08/pS/2AloHi6D4kox8CfKKvYmaRuT/qU53lZe0/t+ZQnaH0zCRT+5mxmDZwgiu+Ulgt4xWXjBXcxN78VPCSzjmHCMXtvjYKytD5jtaj/t56pHZZsQqKERvFo/yOkC5tCy/xLr22XM4+mtucbLQiJcA6sDtpvTaNu8cOVDajPAshtUFY5aw6PeiTU69485hcVXGZxTfa137dx39WULbougR4ecMYjTguOXWjBQdx17uDWmCLFc/RRR++Wc1ddJMFjl+APUkwlCLswS8FQMrrHWOYqwPqi0+j6HmFCLjcwWiGfRsAqdcBq/WD9oApN/zh9l4I4AShQ7hSjzSc/e6rger+Iq/wdNyRiqV5eXdXnc/9zSOlfZK+f2HId+L/p9gYkeSDzJz3KKC4Ky8qPPZnr8TQG51M1uTki9VLx+Rw7jzloOLt/9pV7vqNXWwW0CTcnbivEg2qSxGToDJKT/M6/UwsU3uj5fwNNj1JOn66zk9I74VOfdcTX5iZXAiVyrgSZs6VJtcdqfDVCYirYSEGFCSLllW8qHJ7I/CMQGcq5KEWSZ/AR43i3SwNRjnU1LtQtTDBd9sCWrsTcqlxgnhse2MovJCq39y2bg4X9nsVj094V/gTt6abh2O3WG+eHrA8V78RU8PjgnclZYjZVZ2h0kS3RKIiIwdhmV33P3T/mcGpms7zinhGiz+vi3tm0oWpR/m1SLGaJRlJGBPXrN8FwZbSJJvyqB95xYxK6D5YV/IWZiR0N7fh/pK+FSzR5MbChX+Y3gAaEfAPLnI31FJoI2wj82m6rC3HN4sYO/wW4aS2dam5GU2h/qqQQPEIcWqWtSIwmCQfWLqMsLDErZp1kxzZ4srCU24I1EMj0zzsVm9NIcQ4Z+2hL2EOz0hJaYP/3PIQRZsTFyrYx5p90vAWaHVbjNH5iLJ3m3Dm6teyKqT9hBiJf5voiMLq7T+koLa/3uxNaZ6w0m3QQmMX2EN5VApT8qAc483RqwPoKzmpXtoj3+P0UA8qPz74DVp8xGhXqthppy41D7HYBY3W4Sadtt0C56Cuy7dB73AFjDjVFg2sKzoY3iQ0SzXlxyqF6M2w1QVpLoF7sBCOLNFXwH8u9Aw7aCBR7rgFnTmHWDIMnYFeIdKS7yyytZFqLklqbyMbv1jSdW7aritBQLgwTgQTuT35hwKe6ahIoBfFoPQxJGOtwYzoQdGU4k9jtib/G3ng1A2YrVOWCDz9uTdG8Ti69+eNQzJ740UIsYw0cm6dnrNQK/IJvP9h2h+v2chzNNiLzsKTGOjPB8yghyFOEw/pxta6Qsut7Wvfd6fEK+0wiVZ4f1aK6iDjszXc/1iKnG14WmGgqONVKORldIHyM75kt7AsGDJ7Uns/Q23hW5QgT7HTPiTqw4mZs5WvzXRcRe+gjLUq+GVLVJi565NDVn6z+dEYCh7vEbdjSDr38LS08ayNJZ7bb2Vo0N0yZDKXHKUOnT2aPMKfC492NEfqlRp3xUQ69MW58daofT4nm7cEBSw9oeeK9JCtufXpBNcnbHUSdYqGC3ATsBMXqNbAq/4cy/d53ENdTwh58d3ht30wpVp4dVGMCGVgJEVDsIf3cu0HSlpFb0iaISX4jIt5ddEoauXa+nTiJshCmuZRd/w1k2H451FbPplQI4Z5E0mDZ80vDb5UP//vOMwJKUh1orSGy6kHBoqMBoQxpCm11xU4hhFV6zJ7slX+PwmIa/oiYN3Y85fiqmZNFkjVBvUBC6uQVpZy3T/Pi/sN+Usqx2y6qOskSncvL7r0/nD+kDM7BVM2hrFCEEdJH6c8sRqe8DcVxPleyw5Xk+GbOL8rN2xueBWCl5T71qMKdXoLIRFYEkgL6ew/mYcCLEdvjkmwcMB7XAsbOpMC4zSwTwK0CHg4qxALYRwKV7nv4dXCDbFS1YkN5qyIBXXuAwSF0095EA1OJt8Kgh2I7knZLYtrRM7w4/VjaHPUHSgNQLdy5GZIPTbY6/zvY+aZMeTJEBrOgv7mYqi8D7pb4UXuVJB+jn946CSArjcxF+wnhrr2k0xs3wdt6r8foS6FQThNA2dbV1OlghCtlU41ieudh0HxZX1NiRLePo3dFT3BFOBWgmlQX+Dsmj5+UEFQNeR2MOfd1voDhqUi2Z4YjwSocJ9GQIFLZwt4dgl9oVW7fEmYqtAq6VkZDfX8z0NtwLi+zBlVEIT0TuGD+3PtwMWWzYdgXW1boYqA9lJC4qmqPxY6Qaa+NDtqGblu9XbC1Vz35zZVu6a8cZ+58iRARA6asQLwziQnVUp+PIxVGmNC9gyQdrp+7dEVeubqNnS3M1hcR36WRf6C1DhcbeDrUbjKTvho2/bd18UpHXGpHcy8fXMu6QjxZG9Yan6XhEPEJyp0imLBW2Yl9hXgEZc97cBGJQhsDI6qC+jtkLEbrEZ37+7mkHLFLLyC2BUu3jq89MxaS3yTd56OMiRZmuLbHTPi0MHd7l/6GrYwo2ED5MZPHBwpiZjjcOsKPEqs+3Q4pSJDs/zFESgTMmfkYNH0NxfmNYSH2bypDvMm6b9ytjf1HQ5wFS99lHzamljNBQJ9DSnui8y9WL2AaBBat/BxPB9dAtpNx4xdDzROIA0ivjlD/EBWhhANezGZQKPpZ4C/INl4xTBe5Zmi3fYN5kRcwzWZfx7b05/ZNYjrnqxPyoYYP82hnwG4kEieo3fumXVm1Z2W/25LpVQkq7WLqLSysEMuTS5/0CczHSy/3afCQUUhshVnAGirjy5tza4xhCunqLGOHN9RRkxwwFrZsiUEFUCyECRRkZCy3drK6JeJ2cLxSA4f5PDYZXnR4Kbt02eksY+nE0eS7D+SoC2U1HTSpFbbKV6Y9VW6btwZp5vkaY8j61z9pnbyOQGSDheECx+HaWHvDIQTu3z7o7KA76neddG8D6lXGGuW3UqKb44dZvHiyhLPNoblbFVirzN8+iUeeIEX4yzQ0sw8tGcL5PIz+i4sc9w8RD4g9C/IqZNPkQ5TweaKZFXkboEE0L4+2bLYvuVrIYsAz92LsvWvuJle0FcNnuzzGhbMY0gZDz/wHd6rZ15yKyAgnKVoWArcbEO7MR+nVxxxAU09R0kvsqSI6D/nzotwHAhQZdX+Mv9eD+VQyhs8kwkX/cUXBzlefkV9UIPRnZKMZ7PlFsYDFVULmJ0a6y8eWQUty47zqpbc+5HeMeEVm3khexy5Q/806Rm4iVFj/Prvne1xIF8Dupc9/pJ0UQHMNykyqEog17/wsepiU9ftcsxIr+hhgRfTS4DDFYZyuXnnLx5BDpsrhpmncZP/Jrd4W4Qyru066iNTtbFze7bQdEDH7kDIeN8qwSsUHPK2VqT2cNb3YQyZ7Q7ATxBvp8T6W2MyqftoCYUZiSbKv83rktKXYTdMckUqLlGsyIYfKwXiQYRA+FnNtOfVVoJZDiVYVC1OYQMK42e7LaGB7usL6/S/hA02HkPPz9oQPw0PVfiMyi8H34YZI1X9i2IBZITP0o3uckLVxvYLpBFN1FvL/iqjgpgCp/2mDvQnYhEumIhnADZWJuirFbTCF8tPma3qGaK2if8UHLOx47cXDTHQsoFQBWHsgvvkdfZmCopZv5nihoR5QjoTc+QbhUOtv6sVjOzBgaG18m6BTtlcVZqACzTw8W2rISmPmSahlbvc0K1IecLqWdj6Rfpj7GZL6+EpGCYEwG3nxhuPbX4TsRBkHyTgK5wIFRHj/BQvTPjC2Aov8dPH47+VsRsBhcyrYvdC7373HiwbIpAvvpAnz++dvAjuW13JMEljhPJIj1COpIuu/a8qx3cITHEZlj0HjcoRD5XKOF2PvX+herjQprrFP758LTvG2D8/nhkBEOSjQtsHJ0rqjFeCTHFXJzIfw2k2xlCXOifnJC0fWgeM9klglTHRpGmToz5ES5HNv46zXmymULqkJosDygfbhdIExmQJ4Wb+EsrtwZnz2LOBli6gdETNMHhA2euq4qT4bH/n9gqL7QJfrYs2MIQU0nbfhl2kKkxPGPOsbQZYovsLlXzZE59Rvw2xtXHbPR1lbxEV217l3j44RoORdBx6Uxq7indoj2gmbA0ZlqEmnPaZxtdzxwyJOr8wsq3nobRNeWzuHWvR9id820l/teiybZ2aBZ6/A7C/EuSvIYlNTNsGmJYHmzBq95mcgf+G2ytkln4MSP7EwjOGWLtqrjSiB6yqZB8lpuP0thwheaZXsfOZyXDffZyaavqYbfllZIvznEaT+8OUR3Sh39+O5KCN8k8hsRK780tiC0oaM4wKrVOqbexjxWj5kcfgUXlG6w4jODvz3JE+Ho4Bwxi/MWEYku67+QzgPo6QDK11niY32/DwUlpHQl6PmGtc1E1SynWUgWMc89IO4kKoRhhmbHjc4oTWkilGjtrv932B76E+2KsApDTq9Jgk30Q1MFhsr2AkUrUIjYh0n34jJ2XDq0re3e2C1D1J9D9zm85jInKSETQ4HOJzmGqmeFt9Kc1BpHU/g7DodZAj3NudquH2Uu35gLP3uc7FSW9MiNSdi11Rm04ZN8fqj/ffBFQbK5kbbXenq5Sdje015xT/yi1018qgSNcZKwzxMD8ZZEHOq/LUE52Jjl1kugrGlbm/N0wGZzqn/iSceAVB7AcKqvSQ5HnKvCzMfD9PSo+V8am0LtZVoSfN9y2/jD92S5Tvf/xB9c4gK3bjm3oDxJAHgOknxzROBACfwh93nsdfH69Xiqc17MPFWKM0xlhQfTtM/Nj/SyERhZc5Gal/c97ligRznWy2FrNSAIoC9kP9z4SN0FEDNjB5VZ8IjVo+w4hqQgsJaJ9+dc97k1clOiFTsUajTPShj+16Cfc0nhKv8YvFE7bglXL3dtvz3AYWdPdHF20v+Z3/AuPmOkCGA6VoPsVG39uX20i3kyKLBDQm9EivmG+pBJf5kgHbhe0WmpzvQ1EWGiHlaXm2ROy3LtQ31oDxrzkU7CT5TEMXIX7CmjR0acbje+YJ/jQg4IuBzTwKq19MNA23B9U4hqdKDHkOPwBMYdv08+iroj5grcHNqpYEbnwQeHwtO2GnG5Mg73k/IAeSDzJQtpmtO/fWilEXkoHcvBmHRK87Sw0yA95vwLeKMO6/vtfBQvatbSgZbR1W5cuKIKzgrg3OBvg+haEDAHZLYl1HH3nlg/UtT0S+jv3zEePB6rsQQyCmCldwNhhDpLSYlw7CpgNNb1f40wuaqDmKJ13ZBNt7j9LxStcabHlRivNOwEd5CBtQY56QVVp7++HJc2mh1K0UQR8suROPT4QsqHBYTls8H09mh7qusI55CLVF16K5Zf0Vp93jv4mOT1x5iueQ0B13B1bmgWeH4iwbJWPPA3prbqu0XUqwQD+huYIPvTEwXUWnyKViNn3e56WGY0d1lhdUDypDbdV72YsEMTNAWh49n9QyFiOriVpql8cSLo5QN4QbXkc57d0L3vjnfZ8aPKTxKOC0/HBPdIfEVldoIFmZMEXFH8LTaPuNC/KImU3Ar7ABBbvhLihS/dcFq9Lqh8XcdnfWQVszMt5jIwnUwllymGxE0EO1+SnK8OBlqSqeSD6Oh5AxY472dccSL9HKw4oXrXiGrOmCjBoVBDi0wwAmxlwm7X/F4fJxxj495ZTWJ/AE21ws81hFlXrYdrB8UYcWyfR0mdRhvQndrhXaHMJs2nig3+bHFEkSeLFVVKWRYSMcLPcOytPB3SkiHdNSv31kbe8YmsLbjNdMwaJ0sOT/kQzVEuOlEpBgdiuxP/mra/N2G6ulMq/r13rXR0DD8h+bqdsM8QBJmWCrkTswa1x0zCKyDfCoG+Se8QlZ0ah5itNcUqef6ZMzG1MBJAZt0pARDmGw3m6t8s7OE/THvlER1ZO/qO92VzdCSLXz+hRVM7ASqJrwt42k5WRrberRHvoxXzJYYGx9HvuUPZ38jUF4N/NGXSGE0V515KMFlqiD2UU7RVW6Zj0f1UyymkYUqbtGuS+ftnOABebHYnbwkfba6xS+KltoLR0nW+675HyFXwRR7A7HlS0Uncq2FnZXZ7TPOl4s9oUHWaB/ZjSuOdPRqkYRNd8tx1InYEIWDpkWeHVZN8X2punXDuWnOnX3ZwfArjfD+bsPalT/A3NztdW2ehqK6Pcz60EL/eJb4E/pQxbGlyAuDTdGTyrBgtXD6NVUQ3wkMgwiTbHKBzrB25avQCLuh+T+7ashUgLLs6AstivzQJDW0iWsxgLvVM5z+TaIGIg198YOlrmHGmwY37pYXi3zRlZdsK9OjwZ6uvElxHFhUgyGO3m3BwQEyg5OppP6XztQW+StKN0X6m9zIxqQwWOyDHUv6NW7vbmXu8a4LQD6F1jTNSF84Ed7dT0T8s7LUHDh68Gqk8TpmQDFw3AsdwgVdo0l1jk7VUEc5/YPjcp+HqtSiyAgKrSU9GZxKJa2V9zROvYr087vV5zjILDQVHnEoSQFmCWd/zdWF7/wZrN+wM1TO9OOiBjENaTEoRL/UGUtuNSZNTeLzZoB9MnmAZPwQIlIm4Pyqqbyy7lRbcjwOIeuNeVPckm61P/70VXruyDFQhx17GjKLjid/bfVHiQzmpO6eciV9cRYE+cIuwQ0Jvf4NT4YvC9TjCdbGzXlobZzTT7IZgYQPYF6n8GlYlIB6kKd2ahOS/NQBjMoCELWqer2hFY47gaQl6rn4bH0mmyeIkVqPCHhF7qGM8fhgiJEr2pE7mFn7hZeAVvi5CZXmSRhJEsxfAaSJdCrhOX+YlBgsAVhZ6qOLNjvjpY/oi5gP8xadrJPGPmo+vlB7x4qCsGhtMLHc1PgRP+hIE9dh6X8utprmCPY/nkURy2Y12QTuvwq75/inUh0Xg7hYDELnOszGxk24CLLhfJhvtXYs9VNGAt2jIe96i8HLYs9pFjv5neV9wIrlFUM24o/MuxthAlm+AMviYf17YtXGv2aI/jzomqW6DVwLs9GUFIcu3hsKPRglEXcluWudD+Y/cGFeK33S2UhLpsKMCjINXjad3n17X0HRwMDSlrYgsH71GvGb+2PytZ1w3gD10xKovSWGejpq9gtZ5j9UmdRIppjoGf6YQtaKbHdaDYnDnC+cxX0EgnUzrN8wkP5k/iNGNNobYw1UnKzcUe01CL+nEJIKR2JJl1Yc7+fkrV8SrIgnW7kVp9DytBwiZEx4k9TF9RpHVLBEYQBdWT9qBalohjNW1OYF2DL9Kc75X/bgD06Gt5FB4xGin6as75UK5uDWQEZeoDI0wQmvKBb0/h4d7CZiZuXAe513CU0sAdYYDDDQTDzlZ6g2I3wmTroghY0AY7Q6SFQk2RqqMtmzkAw85KwnOsfiGbRaPGtXgCspCA58zeULVeAXtN498aGzPCMyGEbG6BluH+S7FEz+CwP1f0vyZ+clJt6gBKDIi1OKOLiG/tAOjAzCFxUmrs2HRFoVanYN3RYh4quESvnEj/oYd6n8GBpzI81x1/bdAVLV6icK+/YjzILQEQVrGoQRdXbDO0u27DSTa6GANmvDQEXrGId4PntK08NrvcmiDQNKYzFkcOlEwbibl1tifv7Lm5NUNAcFKsstUtI0ytWpTjnwJaos1SXm2MLCEYRxhzU30E+b4kIhVLEesL+lA7kNnblboWsNAAwmjOn8BMFpTs+7DTQHBC/25QApzzj+AasyLSnctw6oE2wiG1oEtm2BrxyYwCMcKBt5SCh3T/Aa/aaqKrqZYK+NweEoOnqhT5/0sIbGRBs9PmwiP3hdaWytc9IfwyGADRyVivYuouBS2OZ5H1KZLaKsificgeBqKmTmU4A1FRZxcbFCaBCyt1Q1P2EcRl1LE/Bg+Y6qLW1IWeZFzJvdKCkBLRuxzRlrrRqNQCarpAvAxzlw0nwUuIpiClp9UyWjBcNWEIVmGmQLsG67kCWCEtbO25CF8RgAnay25vHNM3bY1S0faTBNRj1f6ilhL01dzim8Z98DNFYzffWtSXqnVsXZj2Ez4VO6KV3Khdm2dreHhgtLNsxcT9ybT8=
Variant 0
DifficultyLevel
531
Question
What shape has an area greater than 4 square units?
Worked Solution
Consider triangle B:
|
|
Area |
= 21 × b × h |
|
= 21 × 3 × 3 |
|
= 4.5 square units |
∴ Triangle B
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers