Question
Megan has 81 cup of sugar.
She needs 121 cups of sugar for a cake recipe she is using.
How much more sugar does Megan need for the recipe?
Worked Solution
|
|
Sugar needed |
= 121−81 |
|
= {{{correctAnswer}}} |
U2FsdGVkX18SSETv3CQ+pOrvcLX/m3euxqgd46Oxr5jdqgGBDRdMU4rr4XSMaip+Zir7ofOob+kc58xIdJjUc9pTc7uUxmZWP/+KeN+aQvAagWr4/A6+1U4dF3HgDEKv8SCjwmus53eMusQ0Cx5X8+od6L0y9oOlAdl1cQbJh3bSy+w1wkJsqjm/WtB1tQsbGIVgzrLxvjfT/B8Et5zG63XFteah5RCXQUJlEmZT13QNO8i3VcBn6qztPNm8uGCzvCEUBu+vvYpieoGlrCwDmCSKixpGPpVLSX18y3RjEF80nO0kloNH03iDnu7F9z1RcUCLtXu3/9BBeSs2XUUk7j20FAUwJ2qUgo5Ec5eQR896vY8wxfMT0psRJeMDd2MNB5yPvEYx0D0k3//STeVCg4mvALr4njmKl3HC1GcGY/Rc2CQQUZt8E1LJCNSmo8GmFR/kecHD3kRcsFxfmFGKaVnObRsTYRa5R45cDYRppt8uwolXdlzP972WfwZKrc7bYa1J39l4fhhwgDNDM6A7E3HfT0pa6dBwj6K+aUPqk5HTAetG7PxlAWpwSrfRlV1mpVfLW4PCateZ7q3TU6a9+KLxDTV0qvXCufM1T/ueVmWHdPy2kylUGNA4BIVz4fSUNEw8E+PxHg6iyt/Wp3FzYRxXU+OEfTII9ot0AXF4HmQ3RC9b9TdHlwsfVA3Z+5wclxss19+lmrUjM9PQQDSG83lee3+iEu+iShgSsUSveayfVqQ0H8VeXeoCte54eQOWvBOS7Ox/YoVc84RjqUVN9OgBwpIgXMqncifL84UvGOkJGujL+APc2sJK7hGky6ttPswZYCanlVvheU5lxp0T4joZo1PLCsIhnfZmzUNOO4v1QBDN9ZgR3VBnfNfNnqFQk3q0U7v59zDXDVLk5atfLlgvMUX2vRnoMlv4KQEZzkJ+NJ1JBt8JiBC0fRIqUuG/2R1yMItyHYjpzorfct0RcPR4rBTglcaNH1EZvsWzsHqtLpESyECriK1jVGCiGj82dagxGZj1BX9kdFYTlZ3wFRNE2RyYlhNR+9CabBUeMV3vYT/RC5tSkt4dJDOCXlimYXpKOZtOE/5N4Q6GajOKqhEu1h5NAHoK+wj+1c8lkDYPq4kNMM5o4OWf2jlyUlBcyn3bPCmj8qmZ1Ol/x2e89+ZafgZ5G30DThUGgp9z+9bF9VMAlOji5j5p5YBybQi3Q5pGJz/69CoH6lN45XRyX07t60Wgq3Bb83PvuDz3CB4DkQ3Kb/r5jN9akZY512s7UA2M4Y4ejHIKy76HpYVW5UXMmIPezKLHpmXJk1tNq9io9l4xoW2v6lYIS10NDNCOlE07oHJi8sw19p4Jy1Smfjx3lmoHqvWDCwxAwGa76zzRAcjM5MWZHFwiZyGnyIVjkQW7I86biuBbj/VxRgCrqL4bvTcoaCNlN0UY/d7DoHYOnzeSwim7403CWIBhwHxAwhw4egVzaHrel3luY+DHOkB6UhFqmw2oHVWhvi4KbZ931vLymgdXKXyrMEHlNk/V/ZLs4qo2Lk12mwzi98ZP8c3RNQzPYnJad+BeHudow2uIuublsqzOtbebULDWdn8nvEbMg2aDmDByLEEiDk9f7ycVGhl8aDmwaOKdyto26JHh82/B4GpLh1kS8pnfhcINfjZ5IPF295MaSmylHI0/HKpmOdNEExACtgFs8k9Tyz07DS8n/DpJS55aKwRR9Yu6IInvu7hMM3VuJMWPBQOXt4CD/u1xdiv2kBN6+64idJa6ZoM/OBFv2x8Flr834NPlEQACkkPnXPOVjqZwmnXFvoiVC2Jco4iW6Tx09p3elmIT6OhqAOD3IYdfCrBiR4eFnuwMSY+K3qEobq05TJbmUnzN0Rn5tj9N2/3Y65+a/uMJFyqG+gCePf/t/CDl9k/fvFJKYdJtChe62Wpxt1NGWSq2gfUm4ZHHdfSAFTjvyZ76J7VVXZTBISK8uIkxgEUDd2PjUpvR4rJtwxPgdUPfYKhDSO1ZEvT2eWmFk4a52RS2z4vmgEj0oiNSijjh6h0Hty42Noor8ac/4ozQED3htDDKChAOZ5vIT+nkyKp/RwQnGAljPIv2MaewSrXhW+/rCCSzbJdUV3kWiGkkX6B3u7FrY1wxEkRFDV6n8XFzCFeQeaQUvFC8gL602i4xLtkb5HEZcMRNZesCfZUw39NFJY8p4UFepfgJ7A5iqrVr3ji5Rd1b5XqHx5PRydDApg3urrUHwEXcgSlz3p2+4jr3CJW8td1WvE+zI7oSBr6YAeM421IrvMY8k6CN5OCqNmtj6lV0iqXGWr9JEacPc6NeTpUfWD37coM3y22Q+QqeJkOsGi7ogVx0VotSBK0q4v3oKy9r7z24pNQpHVQ/qul9wWipLK0P0L/CsjCU6bG61nRBdRywQ0SaakTb6FyIENsBged2GidBJ1fUq2XBOgbHN4aORGV+C+M2tDH2/qNqkLw+KuSDbVmGMxSpATamartHylejQVuY0kTTzaRhWHfTszqAgyL5TSujqiCecblOBW0oxUz0xOAtMVtIfk963n7iLX5Gbk8IpHVL5q4nX6DoKUKTAcVl7cThxRNGB0qVUcC6acZ2/jAd1ViJi0qCyOnB0/Np40eIeNLl9enqNeg7s0Z1bEyK3lY/VIzOv35y3pKXS351AYcaRBu9705wq+x7xdALLYRiLlHoOgdwelYmbBZOTiazhvK+OCzae6J6SA+hAoF/jNUfs2cN8Yl6iEce99P/vku9WzaQ2qEW9UZ8ROOEkF9bQAGuAxHp17kjEgiqMN7MFozip/LbjTb3sCd2nPB5HGT+LnmtbMObejBV1jqgkXhceTFwGDHoTob40yYCRQdLWDkXiQXRaDKZ+Xxv1jcm6YKUNNq2mxnazF+a8aAzD1PlDtjvl9cvvsWSmQiR0ivs4ZWNtlCAPDm6YWLv9/nckh/Wn6zkwNkTg2FAe/9juHhNVVr1y94fGWwGcBEsQX93cfAOrmDGK5ZLoPQ/DbSMMGqjH1EQKJCrdXmL92egW7f74Caj7yfVtWIK5OvscvzKJ6P2YU1MGcPncmE0f60joaLJywhPPkMEEjRe1SO2ybFMbzvFDqzeG7ZoPRvxU7idgkYMFBKhp4migEVm/uVgJog3OfdLw83eGDgqBJ49kv9OmgrdO90bQcTt+25XPJMKiMV1gCZMUEqDJ5CVdHvMuoKOrijfwYJj79Gt2T1VXr6PbHsjKh32jN3PIXaQ2S/qRILfr9v7mO/6gmiXjmPq2/5fD6picMKyJT4synY7ZGEAyxzrZ7qu/NCUSj6L0HxlvC/602mAsLCVfitttG839QUyQiedsBV4qiPF4bXFiNiSEjnreWPc8xAGcdA9G6k+mvy35gs/loFxZ6FIxHIyUK6r7aKUgI4DdHyFKRDG37pT7BB5ohf/1UAVqXTmQaiWjWpfyIJ1029EmchSgxP/Yukv98uAMn3G+HPQXIaK1x0oMJepp4M+clKP+aoUgNyuOJX5diAbrSJZ6xEPtAgtDscAQ381rFCXgAgA5evIIT2sdAWpMNX8Wth6fHUHjcHJO4HkF7FVXUQc+Xsr7MyAxej1idvQqdDDbVYTvJAOW1gt1a+wgdwree5DvKaNSorfqCNLVPZLolBw2WsGZnw2cPt2bCtAHK6CuWo0avW7+FHdyODqJz5UZSoQzIbV4t1AUFH323/qthgDvAFjwTgAWbJRZ1Bbwb6b4AwalGMPmSViUbGXBi8zZd8BzFIzZEQJX1GoqKTLtcRCxX3/dfTYG4s/E/QO7ktr5X2pbHVQOFp5jHObgrGAagOy+dcanLkhds12iaASewlvRCokb4y0dUcJ1U2Ai3Xzc65QXyBc1izcmRnsIeyHknJULblJIIyJv6A1ALsFvjh+maOdg5MscYMoQtWyGwECKlje1pdOGOF8NmsAQTXr0HLWhPiA7PDeJrRF0/Tku8ytGjpGsxr6fBJ9DArCm6qpUnQSNsbbwiIMNznZFvBEmWNS6Ui0gye6szgNCN299GM+rZOZpr3sHtiFZ2kiIRrcooF9W8C3DNHmzf7MHu4/dmd/aoq0q9Yd0Mu6g+Qyu+vNZ5QNnakLda1wQm521KUlzQ7KM7b2AgdleQpbSJDt16b/wP/X+gdnWvh71v1dmaVR6hzfzdTHzCt3AK4vxI9p+/qEs/tIdWx80IlUlgUUr773hysAEDLZOSp3WnL0DdXibCZYbflBjEoiX81B8siMfmsbMgt6eF4dnuJ2XRcqEGF6PM26ooQw7uFNDdKZC38VrG8sLmV8f5Wr2eI4YlmZ58lrgS2zR2bM4mT4FLNK/YMIwm8DkrptRvynTs0AngUzBDD2cCbEm/0eznqGv1XZ48lHn+rKYys7MQbxoB2lxEgyo3JXK1C9RyGmhBrnG4wWSeFL3si0dq9BL2J9NabxdZ+y7SQr3+8pG2NoFBlgwBRPuNhKUmyafvlVRKVeabfxcvgoHZi9RFLEFwFuX5O4J9A/LapQJ6F0sIcL8lKWpFGaG723m1NF4mweGRyrAWz8CZv7lrYvEHauLf7YRN8gs4kza33oM2/Tf3EEB0su85PbzJw/ssKrDkY/oUHoFVT/xy4+MvVFOsNuyr3c/28K/CiKjCgglsbvcihTg86CU01JFgD3CGH9TGeYnTPnHjEOwrRhTq3l1zGuIa4CiEgycYVz8xSjPEQ+11Bc3h3MhfQoRF/ffw8HN/mx9jHeweuuEGFa+FN2MWvO9a3TVTpc55ux5cGMhtuvU+QXubuQgYZ0cHTn9BFaZzpGJ6z3oGKfJzzyGmVTBMX2cxDhK2GQ7bnqYZWFlJwn+O/82dsM1AKuR+RYxVYUhez/wFhe+FxhaKcfTvq8sYVTPoDQKgtN/YkalQ+t1PTEOldgQjG0fatocVm4lsNDyGwG9Qa4qaZ63ml5d2v3iP3MAANZFb3ug2ZcRVnzjquU1a5cmVLEua6uB4hm8OO1FMpwBxk5zp4zS8T7stB6gRRkx37T/mGn9hF04/EpwKfChsnMt0gNom7ppr72foHhkqv/4JE2Gysw/AMo4CFt9Y7V6Qv4OZGD0Jf+ktqUF8BMFg5bb7vJoFuhGG8hPlA71+rfbY3DkBtcWa6dCaCHXYaqOV+ozZ1ddky7iioq+TgQl7fmCYTofjMCANhVfleR59qGctjLMNkeXB/MHS3fKbp5QX1OMuQNEL67v2aRnZ2TpyWfhMzvfcTb+pHuN6HUfLbztfSGZxlEo0+nXS18mWobS0ElO0gL1vJ368qmtUiFCQmR+y9iKMB0Kg4cZhMCsRsCVmYl2rTIZCf0mkr7me/zC2I9NGhLzrDSD64zuYBVjcG9V+9DhRr6f2l1jDnUIx57/YsdP4PXijdhp4VstpmvpHa8TUzwo/IH0ANxgJ/WaVlRF+vJXkcQFkZoCNTqMMeCK5Nc2M7RO9Bi+UgJ1pS2fVRCdNvtx5WUpzm8a7PISlbhzgIU+FQPrqLa5oJ4azMLekebQUFO5W6a5X4+RTQ+hwhaEbKdvOX1FhpGvU73LbdH+9JgTfQJjSNGjz776ivZBxePpLXLevnzdMR5ugc2SNC+oDixzPg6UKAhln/U8PX+/xQ3c19l2WkbYFjIbdns4dc3EHls2yjUBgN0V8xCNxGKMvJNuiHL7OVZPgW78UO1tOeAFltuJkDuvc8eeMs9WS3YMQSY1KPBaaXmgPJJbD/ugiF0hf0dXq6Xq9rcchpFerbiFU0d3D57P31fX/2xqTRWWd3WzDOOJ3kHLBTWFsbwMBkWjymOsr44q3SFeWUWn9g/eJCiZJ28WkmBMal7blHo/QAJzAAno7humVc/lS+EwHqQPC1dUkruspXizmc7pMOaIOLfemJ2Z1RV1p2EULmh6LkUUphqxCM0GftKlOex8vw5mlcFezzyerKdCj3bpxXGruK/81F+bAsvEawFKDRKbYPnuoJxC4l1qZx3Mgf0d+G8srp+1LQfLsk5XzScYCwD/1x/4ZdLf05LRPtd4BsqttLfklIRy9Fl9ApQbB3hftEWiCWg2UgFFQVRxYUtFZeD6iq8dxw/jzieccd3MUB4ODlZflXMN9OU/vGKenrUppjDd+pkc6ma9sAZhuRmcvVIoYLxuEeWNrHZIX6mcFJUheKcjFUqSerMRJvJqo+sXsMPsNZNvzGCmd+ubdss+mZiyNgVm55TIrSd1GCUejyAObq/Y1D6alGZIh/4XWSf1r8Z6iQxWe4LIOQ/XdL9rXLH98u6IR9G/qRfJYzarbjle/F5Fj5/oFwYSJxY2RzmhEERG5xIDb8C3wHsczyDPXzrUmtVIp9uohwNzl5iWqUsGDoKq2L2GBI69zqPsWzQ/ntosfTSrijNV92Rm3dtMxHGo5ZS8Nhlb1d1uemXxb/Uz0MHJdTsISnDQrCULxrCY9ZMxiyImiS0H3sv3hjswtXMaO2hHMI5uIUWnvuJr3Fh/fv1SQlfPJyoAVgVu2XB7f8wnRMKFPCJ6ApqxXb8Kk/sri0IkSYaxmb14jG1f7XoFGfWa6uo2MWx+iKEbftWV7NPu+kTQn7Rs4dEZJ186EzODg9eknQNpATv/N/7DYnGwl/WKWtJv9EWISb8E66MkMGYl7IqHghs3MvxRE2ok7vZl371N8QTlKy0HdDhWyHQdDb1jKjk8utWOmgdRA8kswz8zYRgcfv9Vh2ORIoV+/4c23/Fb5YBzpA2TyNWIUBAyPdpzR92w+6FTc5B9xzli+msUaI1BwRtUJY5o4IZseQJhfPrk9N8SVELmdRtlWbq085YIgpozMFKDbV9iSmiIM5WjkSvlZLwt5Kh2u1CaAmO4/PS4R6tYFsyy4fE6yuG67e/vBnnwDTEJ7+f5Ua5EPHFUlWtmwr/EMypq6VeMGvEn58nKgtrpG1yDX+IMRvPCwhsFSsLlXXKuz/kb4rUw2GsKB8fEosk2STfmIBp56BS5hS7qCwceusnRtbCcHH9buppXD3SvLlVoqJHfI8Ig5XbQ1ikLutAGWeuhXIRgKO7b/qSVFMKEMOLJckmmYXgpqhkybBtOkwR2TCUrPY8wd1a26X0l34zxD2oRaqiVwJlvBweqB+hwp317/4Z/7C+Vlh03khJsOGX/erqFRk2o8Ij/PVPjk5lZ+eRj8LgmgaIzcKnBvcxiqIKSJSIM3oQl4bos+nmR9AF0lHRdxlKuKTq8uYEYKTSCY7vdZVZPpuRIDEI0NSMBsXH7iuwziNpv2pxHZ/HC4UV+Ua6zI1dt3EGByNPH6JmRuhVjvriEMExqJpzqOEaM+BG2ckTkXODA60/GfSGAAm8y5RvG4y/oaHX0jPKp4tO2JVFU7w/DnQK/mxV9DN2kZodzorAbxqlNh4qGXeHA3DCnnIZ2HLPdu/T+8TUSkiKjU3PRSZhse7VQqfg2F4wsJl3aA6nk8vp+76j/rWIwZq5cFaLiIv5vSsHWGFkPmHNZ7l3xyLbbLeh4DBfyR/u9kOchtkqm6GnAqv/OXsC8eZLetTF0M+ElxKSa4wZ7RaDELEEdlwDrg8T0Ce3+XkOQz89rHBh5Di7XBMbxD0lhlfmH8v8V7xx3Y6ILEuX0IhbdAr1O1d68xjs5fKSCRj06hpGBPH+v4tZgwLS8oPYg50if8iELmTH1pFr3Qkk+LBuOvsdi+oVMsn04v8OFcAnSJdyS0RTJ3AY46A+7w8UC1mq2IA/PSVf+JiLFFGoy+2+fOu9tFSLAra27z/0+pJlydcfisA/JGE+AwLxPepVig3q/xUDcxtCHmoRWKn8N/CTAGFa4cMGEwhFuzP4Y5/k21qgJsdo9rX82hNxFLsyQPQocJ00oHyRRa+jB3x+Zh7tLxU793yBfmTu1u9Zs81gTPvRlLlGGzG9wwVNrbVfLGt1YVkSBSoP/t5QSk4OC0mhcjVDNHhUcCKtesZ1kAw8QxkPwk02PyVjtQc94KRccnNp6gh6nDCIfnphqap2BT+fEw0pZCz221gRgvjZc4/kg89U9e2A6QC95dnADEoe5U0l2uPOgoofHMk49I8imZguu4KnTN7guJkg1CrD9IF0ZqZJUGUjjj5B3oQk32LNqhO2tkhVV7JQFe0OmtA4jaxVjRGfv90rhOl7uaXNMW64V7enYhbA2Bd4TKk8yEt4Pi668yrfN0720ow9DOVLRgTCbkgcC6r4myPQsnRK8YD4PhYu+VvuA2cZeDXh/Q8Ddv1de5NXchRkqZ5k+RrkmAw/Ex1F9yc8NRtv0H73FNScBl+bsNezIXg+Vf77NFK6Zl/PQdItp/vrhEbyyIEhhQpVtk4ZLdm7l33iJ5mDUpIEPYoVn9WvJNy2wrLWGt9kpM71x+KGzQuUiq5W6Zn04HKv1RmskS12AVljUI3Dabh/6+8qI5ScX8Zwe9STPA9aHWI9ZSn7MQolP9jJh1Iw+GNg/5g4TN2FpPf1jYwjoG0hhG5HfMHGg1k9Lt4xjwMr2gYVz6hJ3ZdJZOspspUNxp2wdzxDPo6J9AZMNSoLlkFRtyt1TeJPTec785w7KUtzTbkOSM3eQiOem7BkRiK9B4tk5DFH1dQUS8TKTu/wvy32BAu+0F5Meu7gLp/tqK6wMvzNK3YIrrWzGWqTQlXCqZjzGbONebM0fwKcsFs0eI4DU6IAK3YRyXB7avA8y7kDSsZgYRGTPyDk8a7LVYcnJa9FibzDipPzu18dP+RMDQd9VgCKC6sTPy94vBsICSm9hXT6Ju87bcHnsD23bcc0fbDKX4Kr0rVGxUgc3i9+GWWEkF/9wPk//uwiPqQC+da/M5nfaovyZbaYEtHCvVB+me5Bgmxlwl1bf0GEjU2hhMjlBMF3PW2FYCf8ysXLIdmKgBk4PQEEqyDU4NpDLY+50rFrdJQV43NZrViMXWlYii+07KkqlrZCHfsoQJU0smIo5TYz3PnqdWzg3jaFcbrR/aeao6lcJYqplSYxwD++CdROpk6dShnf6KVqxZp5J1xZYYlNJU+T6383w9XJq+N1Vs2Kqj3iigYWWrN42mDKwwaWktQZWerZwfUSJxV4BKTXQFJ1IC0xCwWvLgj+ZkTz/fk00msA5dhszFYt08pUU5Tg6gmAQl163jOeYbcBXCuiC15xZEuesYCrd9keojGQWR+MhFiSplIIda1eNV+GMZf3c44ligqxSjmAG7cBqhxca9m6zlVak467K17SAjQOSvTLxVF7hmggxAXn5MMYU4kP39CA34smd0Vb2ZBQnCnNsMK/H6uNi7ibdU8T2idbIUgG1JoLkGA4STJO0gHF1cn2dOroMfX3ExNDr8eOydp/3FfQzu4Ns8smh2kuglJPZRJDLX/rhdGtm4SMxmb2bga3U9NoaMn9V14VudYVlktNHDeXaI8dIYDsy8qpgIPiiWlA2ehHENs/VRav6cS7SLRbJQcgyaeS688rEEnJapfd0YcMbnX3FTAkJ74NlKCoBu1Z/PtpcGYSwOwqGhEW4On6PNyHa25eF3t+vbcFmocEQ6IvZodPNC5kyKWBUfBlAyo4K9xVhswEEZ0A9uulmMt9hCkCGqAu8dnsoP01jobQQzzOwMZCyInV9C5ZLv3x2p3qG1/MZZQSU9kJpEpfNIQsHnU6oU9ly8LMPauBXXEcfQju/x8WuiL0Sue+ZXwGNAeAkNX3YzkPLqboQHI/5L9u7FhDeKkxwmyf3nr1WHhnOotzod3ftBTLAkJBDKNzlbc3JbPOp9NUiWvKIEDlNKW76xi+2bY52zmECDNJNaQeAkAHrcXd0GEEwqQBfwMxuGsPH19J+tC4smCWz8tpZmnBzNpq4PaCyu8wSDvhrIvOh5QjtYi0JdoZPVeRKZE14WdjlVvvYbbsWNjjsMWJhV6O1qlP6Fi3gOql7Y5xGU79Ah61YqMD6qgSAiDgXqEtnGzpf7tUwnhVSctfxomQ9idOuyR8UqnkgbnXPIQ8piOkvJm2NuL1oHDhYXMZlDDptblHMk5+4+8Kg3sKwq3WYcNqTviD2wB8DRzzRsMvU0pTDMFR9cTNQ4zD7BqbONq/KSxzWg2y3Qya3MQebyz3BRfrGo2L7rJSZSuFU4mNhCLxIkdVcxGnSTMDBGk9kbHSYOmN3redKBQGCQJpyLlcG9AF7hFnUY4Pi+zNObkrm19tlwNIX7SaaH6YaHSpmZrb569zWDo29O0iPRRA1+0B+v8jDnaMUmbcZweDResjI32Ldhl7JuyIFU1qpu8IlxlfcLNTPIml7xXyg27C8I97aBeIiWK/LzBvT9AsuwIrmnAY50TBaFmhB/NvkivWdPYTnG7XDA/Fxla4AwQbzDIEEhsNec1zBBKMFm0Gjo7ewDfMjnX9LVrOd5BeE0fkjnHcY3vG/pWuvgM3A7T5Z2/MWH6XwUm++fuIkoL8Pp1XJg/7nRmMyi0F3EjBr/dz3gKGvRgHPK49UvzGWAVbxhCKAp76t/e7Uiaw2Kc6Csvj8xjHCuW3HrlKMdKFrTlPgjwbppGkWH2vLcLENTT8dg/iAh1mgiVxtEz/suG26Ykd5zbPuBL0kVAqI6Z5VUkpK8KAulgRHE4x5/55h57Nt50UPuSUuMt9qqY7WSyb5FHBlIW3PZuesj+UrM5F/7Vd7+aH/9DK72OI+92RvP2TzJfkkyZ6jxqlIZpyN/t5FOrCll/ylTW6oKfft30PIEAWRaodAhgi7sItejuA5DuwvBYHSfSou4TPO1jv/FGlHhlWlM/t98L5Afa1krUfYaZciz4kyocZ8v/dkpk/OBtENi0KfGo0i6bcrU52CTVlOCINMsFi5tQqhuvAnSPceWJUEFs3tudS+Dou1eZi53uAxXC9gZQCZvBQ12zv7U2lHfar62RMcF+WZjTeksinjP+FgDOmowGOePa9NVSv2ViYeE/+DXi4T71c6OC7g1ky9iOQtNruHxI8m5WugOAbjbBRALoedpV4O0rAGU9G+bYj9xCbtSx21dFyMWpBlrqHnO1He+voPbsy/ZNZtY+iyS3r752RzdPKTi+Nz+Xsq+ehKxKyAj/6/WIfleXp7rVVcfXjryVVW30LnM2PSagRkIISMSDRgUU9KCBlgA1PUl07v7ulg/JfY7Q56EI7nSAFxJxGNevoNvRWaZGGcW29U5CqfZ7ai3irJ2gZ46hEvu5RRELb3e1cZJg9BZBxMQsXGaGnkn6boHAjwU1c/Cr5bv7WB/C9Lk7+IT8N3CjDiE7fbeGZXIlsvEdb2/7sivcS8b83u7lKt1bhdRNZkOfXuOgtuwOSTTQk0az6UhRHhzSKjIAzEcza1XsBecRVOv8Q4xSkBJJcniIIg4eJ04D6Re/Ad9FfPIvGkUk96VWbA52vUPvJS2FVkf57GrAjZyc0MOeea1BrCsAArUoIOpZhHS4J7so2i2ewS7mllqpqjOK/0ZfUJgh1B7aIRjtxLYY0BpTTV13wcLaXNcJrPj+Cq69/b9kchlnvpwOMORVVqE+ikizbQ7xaQeWZV51riOewwl9j7SvXx+SsHAuoZUnbqSD8f5UOKzQnasddNsdVdCQVInd8tLVki0GSgbH7S7IwG2kpW6g47csHrOjG6wah8vhLn9MWyHIuDm0d4brDInQkARTpXlpSgVGPArNwezL7H/t8Q/rvqyt2ODLDZmukS1XdnncYJuvc3uEb6FdIFGg5BStw0mJRbJ7XpaJW7fkhvyrTJmrjCvIfi8HAydQLQr+ge69yd3E00+3KtiC8RGE+An9rQmyoH3fBpD5AtYLDN40pik9PwrtIqewyU+RDFpY5HKZBELSBEKTPlLJdB5w6kxnuDsVaBLfG+K+pp+P1XrdX6EiTesR5F/Zrz8jvzETLYL7FRkn5imo3YM2KvxIffLHA+nI+Ir7HgE0tZvOshq8KWqZq89QSbQ8l2XaQ9v3OaeYlzHdWmEOasEujsuTMfXbiq0svv4IN4ltfLtrrdRlsTFmzyD/VYe/XczGbQTXCEDdF22lMFGTiZyIWDjo5Asc/YSbqKYr+MQ4YjNnwWEIsXDvMjkKbxS/10Ium8nDQmXEBFtBaYqqOentjvCii2IRBCq7wQo7ruXVNMqiqBvsNKEZYUkb6ajTqKydhvTSWngNQpSpoybMVQbbIRUD8A3Aias0tuq78u//GiILhM89Ae77hBapE7awE8vZPKaq8zr5hSUlMDhSiy6IVFdansfohUiNIb/iOPxEyiiao4n/l8ZzVWdTYxvGF1x/DQE3t6tfaQQ7H+L+n9s/lj+jEfJnGcT/PsEIWGMNHcPMm/MF4vA2eOCAVTsEGvyFqB3S+Bv0f5WOX6WqGEEaLBmXXk+9wY1ZvZ2eP7Nf50Zc5vB1QWQmr5IoL4FbpbQmDsHaH03tzR5sYONbohu9gMd/+/m02ZUzNVhvCXCTapEKZ229XtRDmKxktPfvEKwcfhb91ojhCcBoH2hwwzCVpkIVNrPL4l4KTD5R6FL9keL6cF0CwJ1ck1att+71tbT7N01UPLIjkWtfFxb2RTNfMUDNfNjKFGCMTiArj+cM4eT2dQ+PYb156H9QrvITk+4rW8G2v0jd3Xq7gPAJUGBPq+xGGtr9z2tYm3TPsXwXurnz+7cEZfhB7UJCZcVUw7hekw6elbFMZJUNlXB8CcRGO24s3ulUvf7ruPj6HYdGBpka5dKspLKX73xfIarYMNAAdBK7WYKpLhkgscubh87AUTtapS3WkvvnQ97eJCCx+EAYfGlJ3Dgi6VW3nUq3YD+IerrJlW2kbA1LZ0MiWTF35S+gwA7IfqLS6/ZQPXt/r1A/vxzPF52r8g74QbHEHbTCxEcpzEucjOhrr9ozgmtSE4q/RRyULOMUtPYITTgx+/RirdFwZLRhwFbgXKGXBmnIqFxN6GyZqGUue43O01NP6YeSMf0iojowbuSiW6DUrQJXZgMJ7Dd/ciF2Q2gntXQbqNRNX784OPnHLJuhon4uEDlFYb/MOKor7Mu1vVymc9ystuXmx873iAKKMKqX4ZYw31+yHGQeiabDHBZsJvnvB3Egbf242Fw4PtnRdWQHGEPf/G9Wj8XPwHk0xKmDqS93/AEt5DhFqcfkHxh8XxRpFVXTozOyyZY3SEQIRcAQ36kxae39Fqd2qeS6BEJ+yWenoytfI+l1aE9hpsePPsxdyzRgAk8wIv5jrmtHhlhXHwg/PDMempg41OLPz+x10nDTucdEhCY61YiBf4GUrhfuYu4y55MPK/sSWurrUH6jtRkryaRtViVDCmzpvRcQvHbFelhw9NXxAngVRrC2M5CG9zOiLkRP+yYVoOjSF+UJMsaNIEIhGpBg/La8dIfGW54KMkf/uMHcmM+0IxottaX0/Bpb7keaJk3fybuwdYv842RON4caMRAv48HNfOtiz5z4D2iJUpQ66AAgtAeatg3ZDG3FcA8b4RfujcL4jJyFjTbVVlPeAjQDDMrQngRg+OHqQPFBASsFRxXMd4RDTcKYT4Wak7mFbRutSfY3n9la9b8qPg0BfYqYZ9WKgYYGd0YxCl+WZK1k4GqokyE1H4SvdXBCFJmQGW9e5lpDh9kwyCUw32TQkFGVmMP64SzmPy32ZCXt/srRU7/x649W8+HAPYIfLQJ9r/wLJysYHO6BDXWQDHti/WK0w+MX5By/SiO7649WPG7lXupbznHThF91hMWuMoowfwPGpQ6brT0m5zjfuLcTd1ooJA5FCEf27HL+xCRwE9zNl/GYH2/FaRmnuWoveBu0YSge11qfsSPNBxJh/Cyp2DPsW5VjbtrQL8LuxLIuoti1B+dxNcdrz1mKHF7hLA010/bdHIBSHyJ2FJ3eXN0qTcpqUfXP4baDYuGF68Z/+HInLoXvaFvKwsEwSMS/uztPBCAV5/oImhDJWqMNejhA2TroLHjUT6DLhs7gVXfs7+JMrEbZ+9sjjAIARb54Ohc6m2lYt8rNtLt6pqdpDANFORwc3m00Ods4jKK0Y8nSDxa8kJpL2gkBO6qi1PqvkVHBDlWVKC/39xhJc/opg2c2B60kG3/LYzv748L9Xc4XQN4Cd1jOJGh4R2FRujv970YOZ8XXokRRvy1XnmZjYuR4tI5Cin0N+xrsCe/xjXHilAGhgVUEd1l+Djd0agLmuRcopthiR2+9ijTVgY4lvZ+/zIFTuJauqx6w2j3sTF2+2C+sJbiy8hua5MmOoW5hvOaKulGGCHbLcvOMD91XsXyjOxOPw/gjR8AaYn/bHzsmYIQHryH3L4jzwaBiIVML/oVZuYZXXNapTbnQnSE+jMbGKz+d3G4IhlQ2JLbvSrK2zIly7MNi2eNOLF7k8fGycMw3tMvVbumINTny0vJzMAKjcIBGlNn7Pqj68Kg/+RU/3njk3yVgM17XonS4HlpH5MpsTIaowzv7UPKB/r3psAt/n9/k+TfZoNQ7/ikvXCMaEya8efeibhQt325iINs7csTjlsH0QzJX/NsaDAhwrRDvz/PNwCbexoHd2XPT4PlTIyhD1R4trJ/kl70X+r32DDYrKVVfX1Ug9bKQjgKtMgWrXNJxsMd/eWA+pRtTupoE8LgueBWZkXfepQvAVG7SC8CSL0QgsCvz67sMvFUvNx2PPjP7ZPFYxLdObsEUfs4/1qiA53S3iBqX2VbiS6jOkqZy9Dp2hnq5GO/OeDNgiaMU9wEwfldRtv+TM0YcY3dCqZzVtoHx2WAnIxaLfFkcgQoAj5yCkFK9DK1Dzm0MbPXLH4oCT5dc51rdO0lSpdiGVTYrrE+1GA70phlNznPUkEAOqsbjsIDpkE8ZC8FdB4Qc6PaAZswXBfHYYaiet4StULf2VH/wWNT7j90kQHJI579FY92ZtHH78b80ESsAB/g3alYLyEJqp9BFbCggVr++B2kJ9Qh4bMpro3VFjgkxUFvUn1TGJMHQ1ta829W+betgBxpwuJs+1alpqGOccGeOaIDBCcvw8QF9hBATnyTi6lK6VJX57GW/wpCQPkw91EBG+x6bLj1Wvq3BsnhqEPfjlqQLcpYag/3cFbqO08H4iI8B0ghbSuGTIbhDc+lDbr45Op6aFthGDxAzsuVcxRjb/+d2shk/aq+XH6vR54sCMEeOw2MJRRYZrdbZWEKcEK406hXTbqdWdBxH0mESkfJARTOZAgo+eepBi4dvDjihdMLTdz9WXKiLg6vbH2ihVIMH8vqjZfoK3moFdJkObmfnGNlXj3cqZxsRyZxMLAb5fbaXqLNZTPzJjpMNI2DDAZ5Xq+FY1I0Nx0YaJG2gA8V9BiEqOpzvXAgcZ9wGqWKPtl3fcq09Pa65i3Ozk+0Q/+gtjPpSZ6zLjn8v/InDfETjylagRwWEeBAz2FkjQL0AaamEWiTS6vLOaIRCvsjvmhbHx15Ytz+b+czGLHy1sBvAFAn0HcXT6Q/HAiw5I0IOtMFPn1319OZEt1u2hN7yzWKmu59a+wxAYTRHc7DqhCkToy28oMQDEHVzDDBiqC5H4oeQJrp/QUJjiFd0XMu2wMJ/5N53WdmvgDQErDqz5QekXGH0JAZ4UVyJV/ASoY/wrix0MMe/5VzW02GgsF9ZOjdwtf5WgVCuThptwUddXShST9TKRG9N+JLmObFb0VG5qYi36SCTrzxK3+TtBmzp1dXYTw5e8bjR/byPaxEoJDCtwQFYQRYesvjrCU9eHjnxRYGMqtJ1vtu/hg3bNw5Lgte2YGgk0JOctgn0089q+hCaiIPehPf/Y2/Tba+sp8XUXSDdO6Ut5Oa3pAbmB2lHoN/AiXFoAyAwsKrG2e7K5kSICNIGidSNcrv3e7ijQZ9Nz+VTnbB0p+H9TxOBXiJL+ZP1Zh7F9TG9+3gTSpRs6dFbEfRupJzDgSROFCqC6ZoIz8V6BdkpXZ7YIsUkkEP2+S2SE0o7NrI2pWuXTMJSecHTPZ2jRHZRbmkJeQy5O+42XHTXs5BstN4H5lKGJ1Sp3g5uDrZzaME6gEgYViiykOXx4Pl0psSsvqPCnE6BGfq56BzS2W19W1TKPSq0bpct7JjGvzxcb1iUsPetoJ3l6KH7LnnaEHj/KgmkF2ZTtMgiYfhdISx5caiZjzGHyoghQ9N8bSph53cTOSKOsI8TlM4p9OemODtAID11P6o7a93J5Jf8A9GuS/0SY0Q14cNrKqT5J1dxVphuOPcBQJk/8GHfi396Y2NymxwlOfPHYE0kHxBAdMvD57/Nm35WBWCisijME5ZVN9zXi6GTLS2gm5riCUwHKdhjbqS8mJukrUVQhYCvoJU13qTnzO2LfZFa11vjIIT7Gb3Bd1QuzNPBAkPPUo053LMVLK7F2XEp0f+g2s+8ZdKjH5IQmYE2eqkgL5kiZ8zwtPfdqIXFAf1lA1C/IWCwwMNCKDPaacnB1CWAmEbXN1UY9sOrHZykEU8KZj9MrWrIcKqJCDUGOSqEAxfWQq+qQk0zUL+G2/ZdAYbl8zbghAlXwM6E/nBeGj51MleQvw6f7Z6PojmzrJr81dmid76XO1YbgWZhMqIycz6HTF3uqMzb1iKsexdUdCW+Jui5H9SIAh13b2RPIPaFBPK7kI1PZIwJYSEwAFCRmDH5VOTf8KcgV+YbBtsJyJnS+tFsu+8wHBMWr9Lu6k0CSNkFSSIPxi2O0tIlXZFF7KSZiH2JZRnbTn6WN96Ts0u/A985H0KwVqXJy8BlHlvm/NOE4zWHdoAWxVeYoGwYarLjcQoiLeuXCUTi/bHD4YLXCWexCVe63Q02T1dj9Q/cCEyFpCLNeOHX67+PtWsNlrIy1HxVeMig6qOL3cCWA3KEuAhbrU3tpeb9wutvYv0stVNtiRmcgSf4VTsEkUsAK9G5WXYu6UhfhliDPR1Yq5CBO1hJ/3Hz+UZuGN0utMqofiBQtjd4GqkFt8T48okweQi53PqtrvNwVoyIbNebJY3mq6UDuAuTiy12j8WmN1wfrwzC6wDmOKlbiW/fu1eKrXCiXy2EC5+SglcQ97k6hCl1TNe//DNhAkQIpeWwOQkdp7OlsmuHlFsix2cty/14SadjOA3tbvkfvt3qEOnVqDkjV6dQWjzTkUq1RNZ85A3lBUCzRIFhxfLG1BwuOzY+yvbM6kxvjHwAMM7dBLCFgTyakCAC0U8w4oJafqBiDY2E0faxW/24yajQYkY4EbCQBN++FQzesWe8dsZz1AdR8NvXkg59MWFZv/VTR3afyAqUNiy4Y3zVICTUo5GMaUTbHLB32FAcZNWmQRE+3wlEV1InuJchJSgZoBWtElQ2KHGPzltZiZ2OSZ3O9Wq77sJZlfn9sa4vB74FQp6+3xTk0yiEQBJ2szmynw3VOf4Ye+xN1YR5XOBHlLz/P1jpHwr0ZftHDDbkY1g2ZyyonK3hlZnVBsxDNK2YAor7mgzjGiXE+vZht5if0a7o4LV9jo5lGpVcgz/COvWnX3ymg1C2fYicVTamDTXos/eq+P28Dhaesa0HyDYOxIcFG+Ph1XVcS7eASJWDi00VFbA/NvlV6TFMgFc3Qaz39lOYeKXAHNlCTsBBOQHjYeGIJlW0stZExVejxVSCAUZcWG8eCRKKA/AbSXekW1g+xOeqL/A70+Z+qKUMfeSQ6Eg2vq2AzB4dPW/UhmSX5X/ZvgtazrjQkfLTtcT1o7RAhCRj2kKaARv1e1fQBROfwbxJ7IJtKCg/mcaevfrlDL6thgk5e0RuGvTmt47P8AaCWWMjfDRf+oQkCoH1YyJGJeyr73jhtVoDVDclxVWZj4t/qoBeZTg1Do5v70+R2vlMvMdAsX9ghW4Fs81lc9wvBeEO8F9UN1O/BoSJvvM4T6huQs3CJxeXk8UqSHQX94AqEC3lt9L7Nnlrg7VS+5GQlYdqwAVzIwQdUqKqQO4cWaGf9/59V6yvGU2NCU5YaVQfm7EU8OIfBas+RIVHKLNIfuUJLaeAQpXmdSLiAT0agAzjMwj9Vnxmwok16E9LxpSqUlWDr1S1z3U8wcmAdYH1l6JHFKv8pgJxNgwgcICDK5XUcWK25jWwAfdVkF0uZAj9ovlPeCf5EPbLdZdFLMzEU/BymaqdEE030ZP2EAwGoy9aoAQ40+l2LNUx4JO7jRkwTufS5LIK3jdsarqH/A3X7iBwWLNxugP0x45DMb7FcMBQ8+XYnJCgiMqMoHhTBpngxkTZrE5eU4Z9iKz/kbt8yUg==
Variant 0
DifficultyLevel
538
Question
Megan has 81 cup of sugar.
She needs 121 cups of sugar for a cake recipe she is using.
How much more sugar does Megan need for the recipe?
Worked Solution
|
|
Sugar needed |
= 121−81 |
|
= 183 cups |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 181 cups |
x | 141 cups |
✓ | 183 cups |
x | 185 cups |