Probability, NAPX-p168831v02
Question
In a standard deck of 52 playing cards, Ian draws one without looking.
Which card is most likely to be drawn?
Worked Solution
Check each option:
P(King) = 524 = 131
P(Number 4 or 5) = 528 = 132
P(Black suit) = 5226 = 21
P(Diamond) = 5213 = 41
∴ {{{correctAnswer}}} is most likely.
U2FsdGVkX1+JUqgPWYLJr1kyq5LxY5Ax/h3sETAUi3WZcWG6ncjB5fi2x8PC+uOY2Y5VGn30roR/syqypovsnnwcc+vulDgHxwu19ONu+uuAHRkGSZt1TijyBAGc48vC4qBCUv8GjlYfdDGRIW+YU/AYXYzDwjic9qLanj0FKpD7WCuCQQSStbxaoZBpNLgmYlpjLgC1ch9QBjUqnvrzz5uh8n7VTZxmDGkYzbe1KwTC8Sthu7ziK+sCL0Xx+5twnLxJefdMgOaaOdrxdO8YWRy2DCW+8J7H/onL6ee9rkZOI0Nn0WjTKgo7spzTdHsHEt6xR3rripcDZnmyc6gPInwnh4TGKzs7GaDZw1akk8pLTVndYTzD2bmna7wnKNRc2Yndeqolgs/T+8QdXyFJwP9SLoaARIsdZNRIRmwGHB+jWDrmMWzk6rv+GfQ5y++Z4sa34Ho+oZ2GCDxSsjPUb/09rOEwzd4s96jNR+QSK0hLOPb+SRvYlYkbMxJxRClOmKSnhP6b2tvfqHDXQ0L3UwV/ozf3eqotgCjUWgn+30DZWYK+HNtsRqCIxOcnJY+PCxaCoRLluYphhbQU3TRf9UXFLhN+cO6RtpHRXBtzqHxocO6Lh6sk2iNFAj1Qn4qZQWekihwGT9ympN10pz8jR3+pZnrzpxnuZHxFuHlAu0Yz8UtRc6YbnnqO8Tc1hHwgI6QQrf0h+iWTryA+oTp2YFzlfTdh6x4Dq5Qr6krCFAzp1nMyCWYvBr/0Y1NcJk5aUe5YLFNJnnjPJbNQRJltBUIDsRt+5ObmzZvuWvcJ+V6TmiGYAh7nLsyJpfoKQAxL+XGI/Ff+brvSmo2qt0lHOrJWGgVgG8OMtCizT38Xu761zoSwTpPkrARMcmWTCqlTvEhMIO0QQqndwzz+Q1f7ndN37kA5Nr73p9syjSLMM9EAmzncULGZADXAn57pKv3OX1tdidITtKg4n6VUX6Gc5JzV66RVfmTAyNR9HH28iVMyZCQLWvUF1ti6hHXCBbSgw4AlpgIfUSpIpHW4bSoKM5cVi3l7PeWUIX9GIvzQUUeGy/WYzM8IWTDOIV2Qg2BuB6nJPNgiJ8c320gP1lxy2wHC0bPLyr8m3DjFxUgQkF0c2cViLqfUgbNx58Ti5w2rttJAS9RPFuhcH87d3icnvxje86V+oUu8BbVXfqBXzr+BUL+Zfdio67SglUmfZm6vyGCdQJkclkmhn8Q1hq4lrSJpkw8MK+OOG65vyUleH80bZZEKqyzatZyLAr1Csd0h5twVG3iaNxZWJ0rCoC0FtgXvXeyQ71IZtMX34gSLRGes2gHMoVcUKDTa+/J76sYH+WQnLtso51u0xagsP3O8ujpUMT7JG5SixFy28mNzpBYDG7pakJo/ORHKWyPH63WaIrVSEq7RtdbqPVDZP2yq3bWzUQ6qE8q78n8nV38G4bh+tFZOQnpAsvhE467D2jhAyJ5b6pSNhsY48brwfTelySPob9G9/YUd5ljofxBRh7pKfRTa/+m8mv+A2etwocDKWzw9HZNYltas9O76tAC6rcRmiLvCyJ7JeUEGaivQLzNidpM8Tn/2Px6ubw36XELS664p0IwFEZDfsygGkqFiu7iHZtVjfEMaZ232x1y6vHRhNqB6gUlILGxRQnis4o2RXHG3qr8e/w29D0QdLJUgkNwB1Rj4wcl6C5MkSAPVm2PT61abv0I9Jo69568Ml14jhmTRugoTB5lOjuUQho/1/JqJFFq1fpm1SvXRi5K7INGnxV35KkQRMMGb4VxZVTKOgFvJlhlcZFUP53uen0AOZi1qCZXUer8zbjb80MfZlC9/JqJP0RphknsRIs+dcsp6/k9J32bLHCLDBxswejp0R1KorlJ4ooOzimBb9GjSzmLLQUgxrLibyB9W8hfo0QEocW/fl+DYulBPXTEo+e6yjMcT+hgBeZsOraC4tg1WqLnWs/Kkwf9bhkIBhqDMoXJza8zwoHHdoRq24N9+j7B3fJILz6+BDwh4wGg1Baj7mqMf4ZxkzY+OQ1h0eZYRRmbUP/pRnWeCu5I+VBKevwlQ2TykZmKRoHyBcUTbU90JNVmoTJkjYgbmqDhA6hmJr+ekUZGksOKDcboWFqsLxv0OqNzIXYJSt35qbB/YBPgrsGJPc88WJmQYChyeVTLbaBgAGinUgnr6ZcMj2EN4t1s4RMnmiMRf5niyAXQ9VFQxtoCjJuR2elcYXQroEEeKLjlLOak5nP8+hbdJQ6eb/mlB573HejvL4T88RynH9nJnqed4QB1TEng6i7IhK0WE/ENfcN/w4BdgIaYCoWN42JvfMa/vQewP5Da2rOBaxc6Es9J6pMh18Hqg4EUxIlvt6HAb1+siIKFdsqmZaGwfEQhF2KhyX4BV3SvC31JX/jRCPqfABT2Sfqj2h3/CZgNtxgEGCP7ug4Jo93fiiGFRct2x+MgTSb1xlaCEq61dUJqXrAw2aZ4rSvpuWNweJIdqa4tKkA68NgVQ18xUsE4TY3RSYrkuXeUqMe4hx2JZMGAUtFnK/Jew7Iya6nk9yeMo0rSneA/zAUPWOotV663OsUL0wFwc9MvpOVGPUBM8gKT1XzqbusyQWFG+w8g1+bWhpmrSYHp3lCD3yoj5kkiCQDqJwMXHGM50ybbA0amO8AJnIAjebywQtS2Rbxvgt8arZmYGeVrSE5r4vDQlnC0KaqZYxN1BpM/unGWdJERp6Ea+mW7vMnDC3UQQKGIIMMTE08Msb0T1AbQbGjKUcPC4q/KLpm07MvKFGx0H6ZKqU0/rwy5ufgQgCfYTx663ssj0wDey6MyALlZ0OKiFbjlFO/kG5t1CF+TLC11H6LgOAWkW/yMeV3pyTYCJbMHxwLHE9hl+VZDJu6qyR0nL6VQ8baJ9bVNgTyiTs0LeAwla24SRCuQpanxoWHyEHHnimoGzcit9GYe1wDrFecYqIsRoO6G/i3ZgAie7/3ycPlUBAqoEappAddA5E/nFzHM0vjhaShhMk3UlqlYBt31l5v2oiw6NZJtczvVY2ilMzBVGRHdyTck5Bc+74ccpcAh6YuQ5BjZ/6TV+loBmfP6Sr/tkFYbgNNwIGI/tW2iue4Onzl9VohFqfdEWflYXqU75x3GXLtebxAptaNATJTCc7oLS2pUPrLafgz4khJv+tj3FyBgxqQA6alGzXBJoxdU7pl7ZDvdw1DC7kZQDfbEX7EZINw68cGHOMuOJL3NH1jEJRw2Z2OV4oB+Mmk2/llAzN150Xn0H05BoGdvDbXO8Mc5smokvxaH1/Cgp1uUP1V5sRDikeRd+lxBGX/bgsDXzD3WRHOS8shBgsbzL5CiYPhsAjhb2+qJtbzqSp04ZRVtOPYgxNF74rWIH0lIcQidmQg9R26wK6B9MXTz7KeY/WBQIIG+6bQMzz2O6DweH36FraOxupeQtvkNo6DD9rRH51H/ZZ3zOFQGTUyegQo+8tunHh/8KI6FLjUnCevAA3i5XTQsx39L3W+JOWDKrwRrWPyTnWgyBOgXbN39vUsHvX0G0ZHY8KF1vpYR8aQ/vvtW+yyx9m7ix9KuF/bWTxDVSnZa+qLtcO8zTBA482kB/R8d5DZxlv7cl50aVdQC7b/YoNj5/Dm9YgISdMENyCXsAqP1uncf7h4YCikq6cFmJ015RNzNFXhlthS2VNTOQiMj94+lqAHdP4aPVFdsGVDA6hn1iz6LTQfmnKCVq/CjZmcYNlZu40BMjGzN+zeYxlr3PyINkEyrxWWs4t53Uqx5LgopLA7G1fPIX8uhzVv4JZaydlISKILjHdPOWX68S/xKJrXFP5M9g5QnXQ8hRVsMSUyVJCJkkGUZXbtKSpQ0Z5bvYdeN2CcUvm+hQPoNj+ze+oLcwNuTSzyb/kNKRXUaIA4sNnHMnlDEukrEFfDLoAV4bGAcV8ZAaVQPnuA23khB9P6B51FI+VVF/q3n1K9U/qBrkDwoOjBKBcQtHaTWt8SUNeg6tp05CMky5yZZysS79kdG7G7x4IqCJscUe5E2vcyIlfbitHLT8vLGjj+AoaW9x7YsklwXNT6k1afTT8ZVFqiac1iaagMhRQz3TuY/yDKb5Fk/FPq0idcstG2HANjRHH6mIujEzkF2PvinZUlPTh76g6kjgNgGXD/bnWjOP73LE7T+7h3Lgn1xOUEZJ+BaxVk5pcyrOt0z5rA5hl8Gi9Zkl+ZQl1G1NxpGtrlrKzc1eqxMjPPCg7oqS/MmkWnKYrPV3n/wkCWwB2xzDb/8S9b60/C+zk/pJAFlwJMa7qe3etZDwWZhZHTA+6waYzlKGxZkhC4tDMZeAf+3emdi4Kj35ZisWnYdPW3Yt7Mjs6KiG8vqGct4CyJH6DRd1yUfnB3C0PGuVDZABEFECZ+PqRB4mI/FpzIgUO+wyZvpQ7TB3x4b3Es7iF1gHfY/eu8aHmLtGfLSsDwN3eGaWHcb2R619ONnOfIWhKZU0nmMBgSkbzaJ7Qmh9rsS1bQGEmr81udMcbmiGCLavB+yQHHD/SvZzTY+bMlN/hs+2yt1mXcKQb0331b7ktT+zmUNhsY1q/KhUGxE9c6Gk3i8J0TFITBdHtjGw2klQXIQlaAd8HBxit/MPxzAN+l7z5pTl922uO9wIe3xZICzGVCB6wokkqKDkW+Tjnh3kwSIBqCukDybZcTH5waFbwLu0rpvC+0aYYPnqtuF0JZIEUXrcHTlvaMb4puFyzb+D5pKSJTjw1IX1iSW6M0KNU3Qu6NnYInaodRHeW6BgQdlbGcZQZ18bMMsz5xWpnzVV2NE9quX+uhinpgmBJKIdLze9Vi2twmJumUV1qwZjdMli+8Zkv0S+/mnoM50B5+/qzTpFsIZjgZ1PlpH2hIRehR/iX9zkel04wtDeFaS9fd6jI/AO9ChCGuGV5J+XgKM61oTFu08TmBqfWGOvj8vy9xqa0Cs14cISwr9JjUUlSlJIcULGTybSCKPn/nSCqxVi8TVLeWzypIgggrpaJbbdQfUQDlKmu7bqLATlL0ai/LKWhLCDQEgKE6gNkHK1+MP6JLWTrsoPfGVbjev5mQpyOBywD2A042+0H0/UYn4F/O0jQhxfEpGy/7aAHJmqZT2YlDtJaLi9TVn1ObIBz9n0CfitIJSRpX0FcWHgBZ1s/S+d7jI4ZFh1cKZSdWtvhXV6vH2cVgoOPt1nQmmTo28m5Smt5wJn/JCDrhKulq5AmsPVR/GGTfVwIBLQI1Wjp3Q8ymU34NC77wHo6OXvdmUD4udOYxaUHHZf/z80gezemzs59yvqrxC6t/jdPiDZ4j8oBlroKiAg0b+bf1t5ofSDMORPYx4xbkXpWcCh/AEbATl737FY/UZCiujVSfLR8WflDc1Wvuoc4T4HFgR1ArI3pj/bl67O74IFxL1oZFZ8+1zhC+INyzP7k2+rgiWkHIC7n7gZ/BUBfI/sPSLKMFtzCfgy+/DPHHW2hpcfaoob2aVM0ZzzthcgXV9VeqtSAQYqtkzo40MYgzQPiSnLnhmcRwkZymzuKwImKbId5T0VdW8N3pSbyOM3NyoIAgrj7UNb/OzVPf78anFr64Ewlj6hW18949g9BdqdO2tdmrIMJ47mRh+neBPAArpMdcXSMpqXUwN8ZFGFYImWxv6JoikVTvGGLWCP+U7TWN1IC5xedI0gwPbaeVD0z3S0KCKleu0/2T9WuW5S0sG6GMAuvas7nw/Otu0C+nL4OtmGK+I6XgFS5Z5/zFuhDbz2oCuoK29+1FcG5sQWzZxTIarSHnEj0wqm18QwVC0KRTPV/MQzTajeswtgB5HmtKm4EhUnJl+zTtHO/R7lHApbZsYokD9LtvWRrZF5MaSGuSo/9lMltaC6BUGf9qJGmDW1Nw+1ldcgCC4b64DsI7Jx/co20Jc+7+eURE3KTAy66viAuO6OHM1+he+Q5yUO04x50OQt3YH6cKCMYwAx2H4Mj4Kz2PEo3yJpeBKgiPsmqdhbUhUaY++ySB/Z/X4Owz5hhsACgxXd66XSOmk/BWRoZB8y/03kMYBzqsjfmfMUx8oOEQKG3qUQ7o+uD7FU2tv6QOD8hKlzAZfeExE2QMSByRvirbU6cu0AHO2yeFfD1SnKsmURHv5nrXlMveJkqF0gpc/fiJEu7BuIvZJVcmRGBb3HwnmQ+LW726WBQtvJmfw059Rb+vIGGaDIaqCeuc8G95mL2IcIy5zALNUKEpIx4zbtc6q2DdAg1nPkCGXlAeaImTv8L3Wrs+gpotRKhvjHvZrC5VBWIGxpS4oBVkwDkPb8lfF9lWtkLymsGWQlVlXJ9MZqWEc7YvpynSg8SBdlIIvTUvVp138PviVlAM+F8t5+9YO+atwpNmYudFcT1EIXu82WFGxSvFIuHlyyKtEkdhMZEY4eOTrtE1Lff5DvqWCjKPhxOmSbMMolOycBxubBNF3PRB1/PgcrsBIwjMg7xIgdhyMQDaieTTVTEDiZghyH/LbawFHIsm1S8Qzw4esu+07s/yaBhNGw0Deb/hl2x7K0HUFOSJtumWvmAMireEl/2/VI/jTXBUUyOY/V2H2z905EUOmFMqttgASWm2PAj/35jGh+BmRngBorWbaNLdPdhhsJ02x5SyWP3hMVD535REdKFWIZJVINkqHiDH60VHN97x2KP9XqCDiu8QZNYPv383jPiJkfnbdTA173snX1Ld0ewj0Nkmt14fT18TdyBcqD2tH9NVzTFk/yp3Zq734x8AxTbgOJvaGypVJIs6DRjqFRiwjAXE3Su04xY38DwtGa0bEEBavmqK2zqONWR9D4v98uTx82NAWqcKguYBWeWpKUWjLf0cLdI5vMCQ0SoVMgzo/YfEPwAk6KHUuWoeiuNUml0Jq8dvyXxaLYt6bZetWOluzq9+DUjgwPUwsgWYWRCUOhMnMxyuNq0VM0gpAveA+ObV1bRDX0EkNda/9cJiKhIH4XHZ6sFrMH2zymeVFH3OLAULxWKTuhYm/oEdHdpTX+yVoqKemkfGGFnZBqzg0oYFl/gNujU9rpDYYTaJKGOIFLaJtSYOwMgXOtIU3eqLvCbUsFXd5FyKRjNJp5pJmbrxlK8aC17WeBO9qc5QGDgmZcqFsKXTdFPu6GTOZXVza2fGNq3Wo58CueCrMbnOFv9JDYaKpWvsq/los3ChXXvH4ZDZbbh3ZUxbFACjmHfbZwmUpSruDgfxQWGww7KjlIF0HbEnJaEuipkJwK5D7x1pGPqKmPAFRtycPZL5ueMtEuQgpnxWnjGDhaoLNKdIlWTjV2uI0i8XEOIBgmZnz0awJP/t87qr0RYJd2JqIJ0i56XpAqWvwqcHhs5ryEdYuF9XgnQFgdgHC0FE4q8v5hFvABlpjCM5a1lpVCkhdRfohuw5jtQL74RExKMa2e1sCE9ImM5UMhOxhsNSwS1bxO9KZDLpA+KMVSTAPR5zWXnQhlsVLHouptz0yZ1zqC5K7kz3Q2XxstBHokV3AbJJS/hTXnz5jxdY0EteGrA4Ecl9JCnRw2yc2K3lRoLueOmyqPo65uw3NfIdX/aEEWouHaOBvy1aNDV1W6bbT/i6VeUlehRrW2qsloYRymlzmgJkxHNzZz7BVSHnR48R5/BhSPrY9cnL13olEY8rRs/xR6DG1wucwspRPo9JTuPGch2jzNhFjbP3HHQctlI+wDrogBtXAHQdXxetIh+jEzWR4ikdWyZpqlSrOUQdurTUeNT6BWqHbAFArqCzxJinZw9koXIDteV3lL7ID8iAHFu1m2ksM/pWYPTS4YQWUegNiHNTmfDjbBFdneqQcHH+P8NmP/VtrZcklrpMWO6FhmBEnWEpFOd3YVUelItm+It2kDZhIToxbm3JXvtjqKUpr/7Cap/JFdfbBZEVQMY4rwhgsNoFbh9QG5Wk2eEwb7HGX0V2J6GPrgW1NRePVjtcdWfZPoJ96UQG5ZoA+T5FpetQGvQAXfQOIrYLlnIED5QTf8SBumtz7rRE64zKmQJWxgMnR3uB521QBahFMNC0f/Q62ndVGZ8w/26pwE2AlbI8+foZ4Jfi5EzCrlhS0lDGXz/rSJ88j0PWxTDafO3l9MhS49vf/m8FpJUnPC57eyWGyULjQMJNV1zZQVPRm+mMV9154tttWuDIWC5Tq6XieaizUnIY2WceKjRSknVsW2IAGO9KWlqsu3WSzx0F7RU6RG+BAlthMWFOOMpgsTx16Jilo+qUIhoTB0EgRuTp8X4wdvpJCuAeswKBRz5TpTMErNUx5mcukYnf8KzXKkvVF3HOA8f/1okbhlgPIogCjOehC3ur16CKA6YhocVS1dLGEPLSAoKGIzrUxRTrMeWYsI8RdSQMBNg+G+rO+9PWWKkGhb/Q5hxoFNWaA9jGDFcEwpoOP3axddnGvInk4sXTskCaPAxeZrD3opwq+6qK262YO0qM+W2Z4GkCo5mPb3r1RgNqf3NXFUMf/9lfamiFAmVqbA4cqQU1lX4IDsqV6hw4T6HEi970gk8qnJbOpJ6nJKOZvWEmzLYuHUmnY8iu1TtP9DIlP53rBnX7hD6hamz4gLY9Id3Z0/9b1/GBPmdKR+le/qJ+QVFr+XOLAI71bjsAYpEZxjzGfjqxtzH2UXVUaQ4mrUQKpMtvKeT2F84AWmepF022hlZ3GhkH298Z321ohgxxDZkY5C3NjF5Yxar7WQA+asKgl1DG7RIG4xxJVV+rBjU8NULW/xlBhbzns0asUJGd63NihF4zbpQ4OSYWYZ7hPghxKsnjsW6kmyW6fy66ztxfizrK6QIM2coAtC5UHH1N+cVAllbVLJpljoIV51xljY9W9BJSuI9WgnJLrUYVO2/Q2g8Pu+3Hm7Qqs4JR8CrkQlAXPsrmWJ3gVLR68dyexq23eRgcy1y8szlvNx6rmii0XfxEAH7CkryDMkqeIFvfWPfCewJtKXcwY/bdUsn4y317Db0uUa9y0Qbb401x4hSog5j8Wdn4PhHjT8ui3OqUUbKojOciwbJ+g5Bh3ucWE10aAmJvDfV/zS+99FjTtw+kGaWfTZhyfao+k39MKIwGdZ41D7N5K6RnXQyzp9sD5/EtxQolStmsLaf2c0zjYtJdTeHXLx5LJJCnZwZfWL+f8tequ3/5nLkm7zq86GMsDu6/sV/CRjaS44wXu8sSMhYrKRgc36PncUuRILp0uFHij4+1fLfD7q+QwhF6yCs7hRaU+PoTkR0Ya5YfAvkNQ0s6Up7M08mU66eeto685e1s8vvpKzgpvPoBtJK7yMBZ+wq6ihdUa/ymuYRK/nHgFmoP0xGBDHyPt8j9vyzS+Gs2A7rjbiKbVV9IWDVpzaxsgifwTFQlaTeXU62r+FWK7B7amdvUVWP/pemUycTZb20t9fdia83iITFz24bsEqEmDC/iouXMiuu01fRkhrSlbFnFpMds/pPzu9Q1Y27cTDrACfBRWv6LTpcLBUTkCkeBL0DnrxSKb9HqGODTMeYu0xQnbE3/FJnj/IbKZOWPcLaZ8ehDXl4yNPGntV+DmbzECDWmXlR8qw70q9uCixC5y0wLZXFAX1DPN4Pd6Avw9JNbtxU+5g27DMlqXshlCJUKh+iDDKBn5DKYgyOV+UWjzKh+mp6sNAMW8NSD6eyIdWTwmxkuCPma+/vqZNBJLJnCrwckrtcPESn3ZfHfd3fdIMmYwfaLCewM8sXTTpPThHADSGnXj71LY4qfVmqW0Iv2KJcvAFFr/ifolp4ydJ/GhDSOr5YgvqXRZN2KIfNvMfzpcjFuYI1PelBmn/4JrsnXd9AyomCe4IaVpgQEnMDxUy2lJ9hcgEs6wTo/dTlWULDs8UgPJWjuLVg3NCd2H1TZP/wNpUI1p/aVwFwDHPPsVDFlhOUpjExPwzJfrfbt1W6j6KqkGu16+d/Etsm6dksq4ITu0Wsta/I/wtkFEG11pgbVkUrB+7PlszF7azKG88jO6NtEOFcJXwuOHYUVvo7VoFuzGoYG2z+gs1gjFiOXmITIG17PJsyA1J5iZPBa/mPJugvh76d7hrJqqGbJr7k1jsrE6aq0LSsfimW9wb82xrFWoSvP1h5yJO/W8H9w3JeLs+ZeTqqNOP6PkNmIjy1A43HIemxikSpoH548GN4ryP6laefojH9/MCzmdzs0BBRigzccmJ30udrrhJa1+jNL+VjnJe1W7a6n8NzrrkSasojYXaL/QOS/YpBYk5gzFyTjeX/4FjmXkMsm75kD+HrPKptzPMy0L5fSVSDWLBc7UFMRDnTUTrqSGgdHkBATPI+svAuoG0I8cYh3mzr9+ubgjoHyL3K39sWKo5b5GVpNx8Rv8IkSubV+ejqNvOnH+LrhIH08LGsO2xXawB7wgKFistioLNmfuMk8szPNpPdoqRQ5Pqn8wP07ORyanjeKF+3ffGwZlWPxCZ9xTH4zf+hcPeMEfl6DInLMOp9MQPmHf8xl5QE/AsKDBtBpMt+OuZKIfxBa+srgTauzv168phgr2WXVMvzdWcecA3tTi5e8hbV9U40DVnQMIq6t2xiQC/bHDk6kkKzZb16lRiLRlUN0/gTVfZle/3cGpHpDPv5FtB6Y3c3RAYF70HVknjrUWw8Ui+Ne6jd4MQ4hk+IrVeUHue321M3ZHrDt+FIDlxAg1Z+bN5mJgwb2y8gXwShSiXEuCsogILKod1f9d01BYTlSXAWHJ27KEzSj6IZWU9tKOp+uo1i4E8ZPpsTM1hRmOXx7dafIVfJDgmsfg6NUicKaCG0xIS9O8vz8konCULAp5vtc+SAVbTQkaBofc0hJdj7WPvBKE6c92kzyol2WmSJXWBAHbNB8Tr2J+MRxgSuqYZTDr+8zAXcDE3GkAxGF2Bvq/Av/2AG6/yXHhhd1PWz6KZIC+HfwpFU683mxAuBqd/3c5DlZ4WPusaIqIJhcQnAsmbqQupUOojYebFrbpPqOxKcBPsFFwrC4+y6/xpgil1Gd79WhTldtPEGjXsFMccH+sE65uXKqnHl5uXXE3NgejCAY5Ai9rPZ+ye5FAri465GOP5Q/OWVAy8yfX29P4ArLENHbk58VjLQV/NES1y0t3Ug1twkIPnLo3HF6xnAJLlTVbY6gCnhw4Z7emMNtS4nPmDHdS+neAs8xnk/KFG1AamdgW3xkGyt3PJEERHeAmXk//jNVBEilkqRkALFlzkkot0HSmAGkJ6Zh1K4OnXMPWXPkdI12WCv0L2bohp5No71mXbmdNPBdwDOEuiExpa8t0TH957E5POUhSlNodoALysUPjW3ZmqSjiqBiYTHI+IGo65kC5cbE4bodtmPK0nzIyjmJsYOuminKp/geteW1xbOjNftEIwAkIh/KuOeKRj+y+msSrsR31tz785+tHM93l59nVsRCpzRQbGld6GCykVuGJmhYVtXnAb38BJjd/JpLmbgLDqVL0eCOzwL+HnjKq+OE9zhzyu8fLSbd2k4ssGhd0rALaizS0Gy/x8CV9PoYM1wVNSIpGHwHLuel1O39EoRUxZ0+J3ossFX3/z4SqLD0ZS+duVrfxFfwTpBoKb7iaNJDmLR04iMNDuKZ6cf4hpP975ds5JyAhplUcM00r7H+ALXD9LaOepyU3b7MTJexCAzu8ugy0Df29KZTchCv0qiizWf/ZmMV9oS1qdcz5RtUgjS60bxWhJhJ7Uqxw/hDZMw7gSNj/hWG592GVUnllU2Cp6xoVaIGmlF6SkQc0vfBqXVr2k5WgAdZfh28n0wzUU4KwUX/XDYgWRIpBNS+LYd0AYq3OsyOGB4K6U9TCEfoAu+hTeaOb1geIQCZTewmoFRERmpEEtQGW4DYYhKxCcTNXAhxIzGzZ/A8d5IzAJJjT/GlhDIJueg8htVUKfB9fWigZ3KBRhVsFbpWQ1fLe3iivTmLGRQNZQ4FJ3C2yThja0zt27FNhYj/52Jv99otFj9qaAJj7iOTLswddXMmA/hJWR15B6bZKVAwo3YfzXAs2SwHXUBOK89aFZPeLyveYOtetvF+yW1XLvDJ1FZuY8lmau5BWZAJDhVmdeIA6bbA1UxzsKaN6GEjlYeNHCyeCSDeoQN9tJ7IhdrQjF1qZK/oYArsx8V3SfXXj8pERF/racBYLnawCUkKPnV1Mmr3Y3r3UigdLlymWHsKXErzXfkyGeMEb9O3JKvdj6+MwccltXapl5WAFjja9j57gIpg5B8KVmkBQPQ9UQOWT1cpJGrgkTbDz3AgkJcDfoigLXi4z6hdYpE17frDDON/7UDYZft9PiiypIN3uFT5pYiVh7k3sYEPcxBxuzGU484IMHy0OINYge9a3IHOkMLRGxZxnh0u0cAuKXZn4XlUxZvPDrYBXflc/SY2MZa90lhknBg64sdvPsjlVgMOZ4VxpFNXevLu+VdzSWLVo6dSKaQXTtkUZObykIp8xMogx8NWmiAMxVygo+EQYMK5G3R3jADnF1oYv5T2L3VNkBMPOstk4Akt4UfHgTeZq6kwGJYLOUJGfM2FPUp/QbBrbs3A0LUvRGqw51Z5RIGW3r+gntT/aQ4BYvloaiJ4VTPLcBwMgNTAP1/7qNF1YuuGhyR1I0i0l+pAL5hh0dOkgEuumHrgoa8Ksoc8pjjLCQD0mOF60XC76GPVDJ5GHxjvEM7y+ci1F6jLIqDFeA7QMTZafIZ1NLC1SrLkHoG5R5+859/cjtcEtZmcLL3R+In93wKrP1SqG+sa3zYOg3sl721W+Z8nc5rByw8q2vPecRAqHkjGx9LtCB3p8pv9B5W3f1yGSKScLJMj8yjffxhWnnkVzLAuJoTOVxxR0HJ+wyh15KEpesd7SUS6PGt1z4DgP6mcZ6urwguIKG2iCJPeS2abYgfVsT5VsB6RRfC47d9kANdiMmhXfKtQXDH9c4bGsS7Vx9QmGXB3K2Y+n7lwkijK6UKdLf/FPjDZb5Veh30XFnabzUxaqp3nLYzTCvVBMLsuN4zSZZG6ec1VARjt5OVXZt8vTS3Bsog5Ippyz4n3kPeP/0hymCh4Isn+n7ZUTV3tUxt3Jzi9TpGF67haa18H8uaZLkDaXiiY41nrT7aU7DsmbZoz2Oj7a7p/x70Q5A3ckG05nBq2G7jVbUB04B8AMwT0F3UYsvyV5S3tnd7ik0Wqe8Gcgu2fiZNxpLbDcB7DK/qhwNklF8JgKAErqLbcGnFwXYCFUL71NTQticfbx+o3Ufln7yopld+yC8+JQzrBCUE4gUAWpneJFir6otOu89Zu3fRDhZY9Vmn0k5fKlrW8iu2kKH2b0Gd+EyT3Y8oJHOVFoGeLvKXaRFNZIXKxwY2Guq1IDItrn3UQITghb7f7+U/9/MPaRkX1p4GckBtkbw8UbRSlVbF5NpBZt6dXVScLoD59ZLbuOCtGivEdnMEsJBw65pGXfQiYLZnOOdq5Kbtz2L8oQAWy5BRmhBXacmbLZgbMOU9ZFweR2G0ZB564I3IeOhVXbxmQzUl/s52WO6WrzGck2QS/rYXX6X4EmLB9dtoVm8AzRgciDruAwT20arDBUox3pQMYwu5EN4FGhyMDYrVFGmtj0okQxupfSl6h5mNL1EC1cFYHBnM9Pzx+46WAo5E8OLnF2qLPa2aeSdtqxMrYYsv4JI3l6wRt3D6MKJDxIWrs1lzNa2BItL8MyOrZ0IxFYW+2fZBDGIi+AdzxPZhQ5nI68TtqxZ98qXZvihk9k9Bp/DXXnstsM7WIlxstH8xOEpB+bnLvHT5fN6VlaPSlJMUcZpz0WELpQMuDSJJLj2yfiBi6ERjBsVsfa8VZx9AHpC1r2HnvUBj7IBmKbeBmM880+tZkggNmlcf+sKRby1+ied9ljqij17CwHHOCmyvRIk84Ie0Qt2UOrIFWYPn1rjpTAifRg9iAtT7T31zdKu2VawUbvxEEysL4oIUVJFJK4ob3+kF3TtS0zc4704XCYkd/RrW8aPD71f8qsMFGRNG9clFbz5X9w86SwqcpmTZwH3NYFY9FVa7eHC1V5DIUNAwHbk8bXWb7+ErFwpNko+2gZivx51va6glVtdVl/kTUjfFfigGAbMR5LGNRJ3F+IJp/rOeWJzd1CozIrCFh0MQqobP5CWQiC8hZkKX4IF5Ns2/JUZf9k0can5JQC8jNXCTmWr0+0JThbwc1GFRRVkx5x1QBCGNRxgqb0y5d0KgP2VhlqIRmZzKn4PmI6Xn386tpT/5uc3soNevCAoltMHJpdI4wytWsZ92wEB1NWqAFFzZZEg1wW/PTdGeBCJQoSHjXlElprlKGYtyDwQWgDnLyluBLlbzy2HS17EScd/rqfZcnM9aePtXBSijGlZ0BMDAWPaG/T1Kay0Bdb7PIYBeJKrf2P7c/XqW4Q0EmAdSj8q7V8PfFUdml8ggtQ6qvXzZYFN4diMdyJ5DehIp9DfuqaS6z5REvMfQawGeNh34NdgGW9OYa7W9HwLBaJCF5XivKenuz2gW4ZS/vBERbvaalC9phrx7ezHkF4+BfbwRY6xPSsK8PkddqxSglC+89iVb/Aa3wckfqm93yjc+9GaKdvaU1njPOMNGjGebxGJRMqzmx49RQm0Hv3dyVKjSDJCHb+4ElMNTADphsV1/E65P9WA63WpNHWJpchw6NsSd7tmUeFoSuLi/xbA45M/bcNvpNSNd9D5cbhKt4+SLXcSNGQO+joXARQ4y6roy6WVpDz1cTIw9fAga8DJ5/9WyeeDhcMpxY/ubVjC0IFX4DE1qwmVIoAynpkey1UU77YXOUGgu9+lJHuB/cUbRTGXh8SU1eebL0ECUXi5MJ9u2myTX4aOJJPR3SLGxyNBrEorbj2rND9lqcmpdckHESXb3awpcHBjBuYqyR1KKfoHxgT0Jon7N/zWsMbi3MmmjThp9ZKSBboXxdacfumMGHQJgwbaIElV6mtfCwqpOf7GoUCUhxXS1RAZcMFRWjVUppIZ4SO25FPAamXDWRwRor2riCTABmadWGl2BDPbbYSvoDZjojOTPmDLnAs2TZf77CblO75b0m9FTctzBG3SYsO3SouJPaFGfHJW1hEYtiy8Epj1PmN+u8GA4F1ixa2w15nfT8ngH19naA+ZTesykoeP3cNi6OuwEFuXxmmA+LjlLPOE04U2Rvyx/ap3lVssdkkwogfgcHtOfTy9/X4f2TuO1OhdvXkWobTiWETvOkQRg/g3hSXHp8Vh6RnYDfgOM3jBbnqLG+UXn/8emCCWTUFsc1VteRO8GiE3IzAnIvIjTgyXuibirH+XcgQcxH+9tcFgoqq7LMdFE2vDfYWhHaGCWeYdN3FWkuf4rED/YouLxVzQtUaLAMNiaOK1NcxpRErtuNRZqweFglT8EH4VzCRpG2MBgz+BBNuE3zZuFxRU0mmerbfZSFyt/jQQZRI4gk5uuuxC4tI2KmFetc+Pg2BZcPp6FXJZIRfpW5K43Xu3gIpl5g5WnvUqh6s0KDPKcDHWXfdHBycsZbHXIagr5L1jQUl7jSDW81GsVk7smH9CfArhKuIy6Pfepoj1q+8OBKTCRBbDap213TQ6yiLVnzyR+eVFA6G67cbtl9dXa4PYbbnmGSVrzT0ks7do3jVQpVS0U7y2rmziZ5AphPUIUkOGYUVHSxcFI4/AhTHXMltNdg9rWoxKliFbjG1X79IeaLkT6H9Bml6NK0iismEYYTWYjEpOUNhPfkWuJ0HyhJUPhcGOw7qv82Zj81/5jolsBVDVDotQjEf0We2D4znbyBqo6hPBzpsSeJFCXkCW42CS8gNpEtFKjIiogMuO20+mpD36bM7wla9apGzdsT3J76DBxZk4Xl3Cok7ygub8iX3sHFyvOfhFR/1Mm58mbkII83BMGQK4OHGoU7hv0/XU+H/E8LmbB3b1imS32rjxzIDkLGnla5iK1cP0yWSTuQ56Lh0k00Tcjnnhm+iRtd026M0dd7VU0JMooh9Pws3VrUcNmClA5I8hAhxUZqDjHfGO42ByS2JERd9hHfXzFz7Ovm6AmAktWrNYCURKzgVEAdMQsDoecxbJBgBhdCcl5b1D2yhrMYIEN7zsM33f/y1JqJNHRaS38WDs0mT6BBQxFkZrHkQEA4k0WBtKfldFrOelq5z38UoQFcbCIcPGW/Gu/VTcKqVU8hlY/6TZfeO6orX56p7wJkYb06h/JPbZw0D3nM7wlK2yjZUc7zwVJLEE0fZL/m2tRA80xZownBIrru0nQ/JMJ7R17OjvyS2xBOMEXOsoGJE+JLS+Y9wt1ISRa4pARGUsH2N1y8qL6QyhN0V0pYgps8J+HNbgjN2V5aixeQf9DhdHt8TJZ7xzLgXHWusnNkWtl1ybKfq9ZHproymIWeAIgSWM6qJEeXZIdhNfhrcJNDAOVaiDuq3/arsBv5HFdCEyG+gKo4UYWMvMC8aCfFa6P3rAnMc+gRAIv6DGVMTtNJH3ED9qcopKxlVr45JT1k/WJlz2kBkfMJt0GZmHxCGOG7YhAPUHKwqDVPUN0TyWFM/mtve0JHT9oR2L3TVq70g/5j0ur1iAhxp1+Bzsxwsvk+DIhSnMKSvkFsjzi+pcmY/Q+DMc+aVXMf72d3/Eb34037Et8ELPWFmehOpVhLymyQlm6mj7N/1kzt7XG4muv40UHKYtSep7EMJkLfaRsdwg4iO87RuComE3Xxx/YQLHEgwpXed3GzU7+2PQTSMHf3DDzIcy1SqqjvUyxAY0R2kzP8UNEV8Yn5szLn5HJS1gwi0hiP0GmgZnQ7cYhepOCg7zLIY3t/IcnMjUS2mdWMmpQVSd3HsvCdlyGZBeowINZqEp+qmCzxQMFu7v4ytDcrN82U12sOB1yvE75ZvsOCrh03kD+NUXbOpl4eqREoiy+jKVCgwedS9hYv6wdaHdypqH7PstMXNbZLmUVzfePziAWTrflaXxl46LXhNH6oudPCOVYOWqfc3xi6bKVF1CAgPcROB5ecS2tTUTLJzq02pNCU17cgUYkZvaItGdK0W6Eonofk1SIQzjmKSdVq/KjRpUwfppHjpISq12958Xl6uJ+VT2A/qrBVL7dJk/eoxku6ywqc2YwZpFs7wsRyrF5g1Bg1e34uobDAiLtuZR4PwKPsMg2ptRuTbTq/72kjM3R+308hqYsdEveiYKkL/tLiLXItE1Q8Ocmb2r4MPCNX2F9uO++MJuZdMKFGsHSxtfR+xpN3xqby1pBuOMkoN88FcjBbcaEKXOWaVX92LZ2zMP8csvHxHpSxsK7Y1hsJDiR41PkDASK5pg79xKIZ2Bmk3SmVMteIZZdGlCuhCCSu+cZrNTEOmE7x3/XpxDfDcllR9/6yKH6zqhBt6P0OYomki9hFVwfhcCLVfBm2FU6cPRPQJOdB6GuK+9Xbq+OoAZtdaUjHQW+m44DmGc3vWd7H76jBF/99FrFlI6aJjSspWOWFEVDYIte0rXJVQa1qBAyikd7AjCXvFzhrAC6YzN2pYataxslnGxJI0qp+pL+IEfMAh65tNRtQPMq/ZE60Dg1N1mzWRe+DrGmnDhB1X4ZjeZOqAfzl0FCsDln0LTPRCsFOLaOgPVTTGdZoOj1k4X4r8I/ZDAM3vidP5z+m+dY36af9qGrJ4Zu9llu5bLyV0IrknalswiaHGh7kNqP999eb1tW5SYW2QvOrUbOn1QvgBY/HySNUocWyoL6jrA7fk1eLTLeqjTru7MOGmkis8VxJaXj4dY9jkxFHBpAFWkaas6BYzlZo3xOco/Bn9VyhwGARn9tnTbHnSkFyJLewk/SdmzUaRoHJAPD5MmZvzF1U3RTnussR9ZGn2B6Qm3VmjbgxmLyCXrUgJsC/X4Ly6OPSoxIuyc5MQNfZ08TrLTKXJ1BMOoE9QWla8i88sm6bP4atEzSe1pLWgkUWejTAYp8J55ZCxCY7fcMAO/W7E2I2xBaeisGLcf4tpA945M2sBw9yjzHS05eZCiMy+/okgQdeZAmIYGY+qzoXPuXa7RaWomr2bIrQSwD33QZ5woNFGWISnmtNXtpZqK4nMHz8eLa+Aia/Wh+KKJK7IulmIQ0UcBsCyGk4pVWWVAMlA99Lf1yTPAJGb1L47fg4GLH0PeExz3hrtkM+F/x2fCidL67UmTA7tHLxtw6eBUv/kX0q241HESlFYAHNeB2MpCBaEWzb4c3w/sl7lZbP2Z8O8p7G2Nuxl+ot1p8UM5NcnJeHyA5+sA1RoUeI95+X2Sm3qMKm3rBMtnZREJ7FRq/EAIS10iwG1GRVartNXG3rAuKS5huC8zFP/rPdy7z8Q9jjsC1hJ7w62JSnJ2QTuXL9OCQeTeM/UOxb0F2Wr0QD6jtU+zej7PLyqVHvcWCR6Mtz+cNyHTR9feYnpvkYHI0U2NJlOiFY2AtozG6aaTUZU9fyt1I/eU81xWgQVmGUwUFMg52QQTUFQN228mn+ggEoN1tyd4CEfqPU86nuwm7CZzU5GnYsh5p9tBGOEa9TgwzFnarnZH3tLr42tXEnQNOZWszszE9c9qHSeV13Rufg3KWENoZBLG4iCtfaxYWs6VdIJrIeINKDW/A8JCJ5sM5lo/DA/IPXZMEdvHXm/05OW1yAXq1AW3JMaWBMF1ayluCCtGYMDZHPJSsN5aaTM+Jtq/3NapmO1BDKlbQuBX1j7STbEtIjxXZnd0/1R/MXKJ/fWgL3wWV7dznX8DR0f+Oak0S9je2hycHAedNLyu++qDSilDjddRmq+qTFI5l04iduNNupZ8/tYyeXSCEkndXqPvpGmJLY99W6wv4EoHWrvIfbysUdDe0pdaByVoE4+pUqMwTSwx08pD7XZic9N1HpuroK+w0vl+HTEIu8qo4TZ/WZAXTrjnpm49dpVt6D/WOnoURrp0ZK5ITZGMOW92uVs5N3X1iul1bhwCLtnnczC5N0VtCtxX0MtXdsy/0fdlBuYyJ41/aF6OxMNFPG9BcEGmXDd7F1m1WxR1++Q09hdcWoAG7GvKx3dri+tSCkEaGbU9RRBnbBDTm7E3OXRblJa7ti27JHN1ZiJ2h+5Ps3e57OOYjr4Z0B3XViyUkcGnGl9fDoHamW3qAj1Tzrj2QVaykkvJoe4/sc4lGlraX9VY9khHZ5okXP1K5byxisXRBzC6lNsxbVeVGyLizu1KVzH6JQmXKAICvrdBWejIsGgAOqhtoJm2/2HvQRjcZHpsLZR+Em5K/oPywL0wy9WchHrvWAAaSojT2UN0WzSxSt5POH2TgwUv4Tb0cDvokMxfrgSpZ0KlLNIfZIjjiWPuryJDU1Kendozh1k2cxfnCEsmuDGAide0LQ2z+fgRu4/rhTjm7gVbj02ZlxyQ6iYmR43Uf3bybdGCTSFBFc+OJgKbRv8mlbz/GTH7xkLk038DX4oLyaK+Dzp1VVRh/npBiRA5rRnS0NnvJF9CC2/JqgIR1XC//m73PmJMZERlq+eEwBpQV3pFfYqC0ymswFKJgfjpFqJEaa3eduEx2QGeh6cq4gV2yQQ+Lfq9Ova+rW+GO6Ee9zv8TD1owMysT1JIV4EuoX2gXPKJcy9bgGCUSQOEeAK+XiVcMjcjm0rAJg1aeIv5lexxypDlQ9t76HWtGSUWJ6W1mH9Z1KtWB9cxrOG/+d1c8JrO01aij/USCwwywGAyaadZCj4UTsfoJ79s1gDmoaVFym7qhz36nLIiZZ5Kb8xKSxzueB9xt5v7Pn0qRwZ5hkgNWWBTnJlDwFaxwldZTejsa+/kAw4prb0ZXRaTFt6+2VAECy5CxyUCVfutBVm1+RIcgvVOofqSgDUVVWUCJ8bxTbG6qF4ltsDTk/Pw0baQrKHqsby6VDx3f54PRft5+i4Ect05iUlg7HlobzK8dPkCmGAUk777ttPVNProyqA194/fcCvUdjBK
Variant 0
DifficultyLevel
556
Question
In a standard deck of 52 playing cards, Ian draws one without looking.
Which card is most likely to be drawn?
Worked Solution
Check each option:
P(King) = 524 = 131
P(Number 4 or 5) = 528 = 132
P(Black suit) = 5226 = 21
P(Diamond) = 5213 = 41
∴ A black suit is most likely.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers