Probability, NAPX7-TLA-10 v2
Question
The Rural Fire Service issued a statement that the chance of bushfires on a given day was extremely likely.
Which probability below best describes the chance of bushfires?
Worked Solution
Probability of "extremely likely" is close to 1
.
(probability cannot > 1)
∴ {{{correctAnswer}}}
U2FsdGVkX18JJkBWe+4lblf9k4U8eHmi5EyN+OgB9Un/GGVqEDbg/wpNCddfPY/qnJSYHbR0uoP6GItXCxbGVNOmJbPFPwxf4YDnhaFjW6eLJcy3JaFVaE9/epDBU9YL/bRxhB/yg5+9pTgXk7/qyekWODbLVlAiJRdlJ10tej+F0sRSKH7qluqiq/90EgmVq//p7ywtQpWvw1UuDbUk3idQ3p7Jit4lvbN8VBVvWyPB25kOSrrgIZInD2fCLhmK68e7Et9czahbCoQ7ykfUdJkt2rRHUsIWnzucND6VoDTGD2USNpGLQLnmA73jajbZ9FmhxlgHk/jg5Y0BUP1KyMcP0P5j5Oqzp70Gwyq0x4jM8M3IHXg0VeyoNnVOOl6NJVJihoWN6YlYmHYg2Fvz8yoGSBmLe0ryfvmSKnbSDZQ/RKhaV9RIbsUF3A7nq08tT9qs8n6QylSmBlAEwH4FoHePkvODNjAVIIuDlxc0mYa62SjXWtGwAuIoLgfW7eSnk2adb5MXqMrXV2deAyDvaLixwSkZI4wCaBV7BPu2lOCFf3w78S1MhpMsc8kdbTBKlM4EIAzxJYDx0OjbsEWpI0At96GvCgQ73YkZa4f3Q1dwLNy/cB2B6oLSOV/5lbz83FOAzZZ5aqzl1M3XHbmJhspVAwvk08QfYYQRc2wyfBB1eh8J5mzyPu4OrSmtyOHskKRQN6Rya5HJR4KsMRKb1u5LHEgY/9Iln+D8PewGVyGgag9kiU5Zlet7VL2lOiC0c1r7qQYf5cFlw/lbWD/v+dZWhr1czBm+PvvNhKr4ngTCk/9JWZbfzHj7VpCPBNg7kbceEhk4P96z3vEEhJaRzJm4LRIfa7nrzcbuq/nmjauBRDZbvMAXfCj+MIQdDS74JTa1FFXKgGIbkAvOeAi9RzbiNkGxy33jGuTvq9b5U1/TpqU1qqV9CuCKjuNtGf7SGxnnKfW8fCBUZu9My1hQ/OhxwtRTSN2s/lDE/oEK0fEa+7Zvzqd9rruAEAVxB6qr1cm0MTI78K+9LlR77yYDExFLAueY4K0VcPC60ebexGTpH0kd0COvXCwwC8gWXSMLj4M9iGGzbu5tCUuZ1KH0mQGmXe5dNo2G7GuiLlk5RxCJWEsuDBfraRHYkrK2ddH5bN3bmVCHP7DA8IBzRfdYzfyxCHOP5VAF3fLQxSj4QTaR1qIG1B8l2db606XyFCpWPX1kTRRMb4SKdro55PDRcZdXfCgvftxhCJ7gDMfXDtbb1VFfNjmFHsJORxlnlG9t7tixW4qYXV+MVqwyPVfHS4LfvJ/VG6VcaljjrVW77f8qs3xfkwarwcyQ8ArF8ARsDtjnlJxPh+a2UF7F62PwUEO0L7OT/fZUrLaV6IsGDX6CUz2u4aSg/yFNjfQQlERnE+3bjDnEzYPWq6pEzopkvQbKoXidqYnj9K9fG+eawLivePSdnvaYCj/IWdnldMRUmS69PW01yUA8224asqDaPCyCLod0qPMQ1AqYcyeCQ0BfCWI5DuFnZVn2Po+kVVkDHNvs8Tylriw+WdD6NAxAubBueGtg9CcjPMQnInDRdyW6HlJBPR3GzyyeGKkWKMjC+MHBwuJpEd2qbxtc4GAUySwJDZmUAOBB1WvOoPv8LTaCEyxdov3Kkh2P+0mFLPq3iBIvid4FxEiN1P9QooFB8KeYpkmfJ77bhuLlg0WEZja/b7ABwiGqETDaOGPo3LiTlJtqgC58bbQV9a9O1lRtW/yuDG2WSeP4XwgnYAQ5kPYoVgFxAoIOpMROlIB1NPvNSmuWO9O4+OSgy70XVsvNYthq/l2Nfk12FZsyAoOwwRPTXi71RCEOsuPHDezXFbqrYlavPv/fiqLpWCylM8fPBCx8PTAihKzydqTAQ8CX9kRwaFTjoHbex8QvJABMy5EHvRqLBcidzDXdGLv9RG2NGqL0LjEcgKsfK/YnihhFqcV453R60V+jjC995mjnZooGOiMtnO46fewK+VQRCeuBl1pP8JY0mXpW0OU6VyMadiG9Jv8QY5taGMImzJVgt686Ny8r2tTyq0CUGTzBfLTzNzs/L+PkjSeQQAmBI0AqfDNJBMnyatqB9HoU7y5RmNtB6y1E8Z0dmKtljFpcHPv3gwBa/y+Q7/8Ji5x2ILzv9UUZEssi0+FoSVgsvsjbN7uaqBu/nhkytstqHM6tRi1ns8+pPEfO31h84xpH17FHEiYvdm0dPvsAC2qccFQ2Y86lcwWnVInliZfwhys12Yjq5Dv7kAXUUK0OSGi6vL9ZArlnayZatlLhK+8XKh65pEGraF6G2NY4U+u/LegTAeKx8fjdi5TFPqbmoqoPrXcgtSdNiNwsQAuoFG5M+zK1mnD4wtC17NYeSQYGDX+xlW132JaCwiIQh2egAkoy5mOD1ePwYQPDbkxOtRE055Dzr4pzpx7Gh5Oj5bmZCwNkLoaL1WtbSHZOlVQOLV1AXrE13xVAGzR79QkD81Udynqk2V5JlKIhVR2QwEDxW3vSm7G88d5sTRCy9A2LSB4TzXFGZv8hDgeRkDmcsEwBpZfAgHUrW+eoqVHqlzpMO7v/NY4ZM3JRV/V2EQGW2+qifTj/joXFdOI3gQdlmiXVqJ1ijLhOkVHEWo8hCOdLUKFEKFh9eFdRZbteVqOJ6ClUlLCmjsVMrYDAagzVggf0va1K9awGPszCG9X2hJlqpc7eHNz66j6a3i+MGqydr50260KzdEHe7GKE0bTn62X3D3TsU+GS36GRwez8ALu66jnxJi5KA3v0bCqVWBtDXrI3dVSy1MvEvM4GNf9uCEQICkxROYkWSewAUT0XaL0anA1Gs/pSO96mYUDifKgGD2PyxTidorRLi2WPVATczMkZ3gpk0/xMGmjWeT6cuk3R7GRJPWS83FAgNTPcBHMviShkm08LrMtcqXvmYO9LyhylF3bcRQatuTY+KhCNrQiAs5k59d0r9CaZLeXTfFO7sbZU4uaHbCyrJ9u2d3pHxUq1B8HbivGUJJarWk+yxqrmyc6nULBn0gVfVjJomQzBExTnXPiAUhV06VkYMcurkro+cE3suvIWkiA/Qeqj2+AXcn60p3wAKEGSQMKplV+LYiEgJGm+Y28XlFmHacPe7mswApS913CmaygtaduPsDIVlCatEN6+XfgHAg/1ZQwf3lUWCFqrFaPS0iJ3e68KVEEJ1m5zDInt2PESgAiWetAx135XYem2XLx7JxNkY28khWzMChtpik9PtPcj7XkLSUS8HTj+NO20nWi8FETEqWhWhzNj9FEBdn//dZ+F2jkFIf8p3lV09dxLQStZj+45KRQrzbpU8wFmQa8ivbwCQD1OJXk59bJEpscNt8D6zmwbVzFwGTv7ebmTJp5uzjNDkgaMGO+Kh1rRNGpheYTZ5RLtlTw0rAsTcFmXQ8uj03A8Mg+a6uz18ihsaWsZurK0EI5j8xUuypHP/myQJ1l0U5akxwkdmjN88VobV8s1H9lJLbCTawwiDhj/dMLmApwgAUv5LXnpvQ6PFrR/WoG96WSDncHjOuaqlhHOzYAnj3NMW0GMVr5y6giIZqqiW9PHFMdNmlvKBJPilMhk7r4GFnChZf9+JZPDOjnq9eI9DfXK8L+dLLz5zBIatq35j5mQvQWG8E5neUzMvphaijDe6h8NAzRx/UfjibhvXmjljNJnN142XxTa54cO1+WKuavyU3AK3K4hPOBMhVmb2viu3uMh1QyWo07uCCrYQym+fSC9hDkJ4qduqhPWshlffZ9xFJjUqzmiSqCTatXjsHm5euYpN0cy8bb3nNy4WNPuGFbJY+psT4pJhMlZc/AxhV29FZho8wbEBFFOrxs46yPCDDwyMPPuCmsV7pmmf6HzIvFmof39CVpGHoqQZa0mG7B4w+ih/I2Wc5tEFmCueBqJfGeKR+XA7eG2+sArchVO6KT4Fyha2dNpAS5N9Aa8rAi5CGyscrOqC/hjnRdlvHuheHAPdb4PpEEv7qWjKVx/4bLc0//J8cb6yA72CI0206E0AP4dMgvoPWfwVzlFOQt7J9zSlpOZFQN1v4tuolHv4vPoJO5CIC7tdAtKHkQNVCXBYwEVzpo9TXNhROyHvvcEdlZM/+/iYvfDWLKEXHi41aFuBdMNbgb8qtf0RzSIhqxtrxJBBs+TOAMy2zIXdvdY37EoE4b+05AaA8pZS5fV2kaj6LwTnFqmYcl/bmDMIK8Hl0ubQ0gbYi0n0Us5Kp4a7u4eqMCU2dv+J/2F9y8c52na2dYLYsgWPs7VCPVZbvvSEeXB6kZ/tEH0yXjUuScQjN2lIz57zkYRE7UIdJroLnrbxZDfStBGEAQX1VwnfTuv/JwEhDN59hlpoQaiw8lrvv2GVqh54ZVNs2Sq7VtLVlF1Q29viJQYRxxI7tb9OE1DmUxuq7Zst/QdriQs/XsRDkPTam5yCz5ejfYP/mD77Y0HPB5/+INDmnwPlYPADG5HiTn5krsWDw19Gq8kKew3ehM+3xCWIPaYXremTo4afZZxKhwePUg0BjfDkto6AJvS0OkyjmytinWEzgleRZ7Pc3WKkccMxfqpJ1NfgLyVksaKVodzop2rttAXDk3xM90cQPl8fEU57lftGZuIDJt6lzyzeR6oiAsJOLQ6hJgFZk/BV4vN4ao4KqS95+OdqRnbVsMIFtUMs70U6RCpvNeeU4IeB3ZX7YX5B17GzIlsOP0PrcXib0P+E7QsdyEBaDUf9yUB4weDPou99BdWbJDEwvtsxTSlpaK40b2MH1ISoR7J8wItWmtO1wAm+uPDREu74AzXXx3LEmlpSSJyUyoeGvKRpYeqGOVIB7/YBvKyTBc+Hw/nMWZKsCuZJELBAM1+xy1Rczon0u8MZJUsA6meoO3l3bVoA8heYN9ppykJ0XpbvT+1tkOtRyPH6GXA4ZrYyMhC7k+oKCwYVxjWEQfpl4ExYo/YinAQXqd+q7YmrQMrzkeKEb1pzS3IJo+ektljYETQ2g74LLdFXn5s0QxPn3YhZMGRESNty7mqdJFMqOS4LvMkHZ3rcVnQvkIptbycvoiITDXDWKmEuCyS11bEjKzogm+Fne82NrS3si8mC+dqBoZdHgS6uFEMyYxZZR3VfokfORvYDqHpcjX7hiteJrHBtT1nDbB3r32/2tOocwLTgnWDnqGZlTkCZ8oAgm1fWm2f69QQ0goWOlDPByVACyNw/TvJvns8buZDJr+A0cARtk5v5ZqiZXEn3ClvI7YWC4ZJkaB/eQo6a+36r5FGdsqC3POaEOdZYDCLTs3ALS6hfaABs3GTiprrOL/zDy8GnhKy5KbGcyLTDl9INzWhB2wTu0oeY8Xy9kN+UigHgqR/KYZWJxTQXmXWvIfAxTbBhbf0jE5Hn7KJJP98em7+3JeQvRFAvQI3IGSeAoUtg+FsBo+RRIClONifwljQLoyJdvAeEBcAUijhrxw/v36+x10EvPBE9uYv7roDDVoWFXXyyAHCTvOTwPPSM2qPp/zlK/yrDyAAusPBNK0d3G0T8IH1UAoEiGNTFbNHyydVqrmFHp0FNRQOGRtq16OYBAHN1BI2m/ITvD6RqY7sFhllWCL1Ek3QgtMq1otQZc+Z0pqDmlErn6a4Jh3rN3LLayDluGKDK4Y7b9/COqw6ZY/MNfqDVuYZXtclvjRSarAWL+Zhd0v6La+5Px20+ffK0i2U8QcA+Q5P/TG+8J7jtemNW/coFPJuRQoVXNnc0U71Difflvx6w1uLf3XlOZ6dgQnvlfnhcfSVRGI0gSFeziCL90DQQ7jrKv/VPMVN16rHVVND9139c6CD90sRwt1tx6/9hRg0Pu10eejsxQhvpYGizTU+Aa6MWqB8F5S8Z3c2SqP+MZFWS0MsjPqYlWCbC/I931MVZAJIrKcmbcQEJ7AQk0SDnZU9slf3iPToYy19o2kA3dvHJqWciNN5I2UD9T2CVn3Iv88YtLInFy+MljYydNAaIemJBQHOTOc7gYoHQSXUOYSLSb3T9uEqnCskyJLisOCqrGRzHwf4N7c17ArZEWIy8tlC/k9QHV9vE71R87StZ7nrN9Txzb1CmVdlOgFFgNGDQoVnIO3HIwkSIPmwfQyyA6oMLZUwurCWpclmuI3vk8nrgLxZVHBtvAJ3CJJF7V5PtJFPTfQDaSFMr+1N+LXrLfXlmlEG0OTUjn3jDhPDFuWhUcJbr7NPPGv6vp69bLAhCY0UVNelN0h8Dyu94Wr+qFSCuO7nmxs6Hp10A1q0H6KIjSmaTzj/l5L5qt9FtbW0/BwMQuLG9BGhReTSMOZqRxnW7ZtTPTnKfydG/2Zx+jMmd7+4R94vxoTorvhHlr/L2oDJAis0VPFJzaoikWlOSoU5mScCqia1L6MHT1mIcNq94f+9nYKF8wRJaigPxwt0VYtUaY23Q2WK8zQOV0MBmLv7XF6GVsqkkNK+7FstJ3AcFnHzAjjw4QPPNiPLj6iZhgIk4Wmfx4AcFiRP8yIo8gM9iSo/PV4eFfiqSro6aCDXq4vGm1mDRdIrQSmnHu3KaJgcqPGmVk0sHpOKLuFktvgY+OUpEYaiOBVv257uKnJj3j9ZI1VGo+Z2sUIFXaCJGe+Dn/1eB39gc2O7YnpKzaXwPD0RnjSakaIR+2dzhwC9gtdx85N4CEKnIild4YhNmUEh7olKyQ8HDLrTT9CfB+rA+0yuxD8lN3pEKts6dIcJvN2Og3kc+SwptzVfA8G42c38Gf3nPJB1S3b/PGG7xeudUVDUv3tN4pukXZEUu1GEly75CpQWMZiGYnKzeYOjfdJCpPMbmQD8h5nQ+bh5dVDBcWnkvyMYfYK7VrVcuCvT9k2CBwlM1mW6fNixRSM5BOBXxGgXS2uMG8X7l6p9J/C8wNqAyraob3wSc5XItlDJO7uXKcw01Zesn3C98r0+4JabrYVh6i0GEqt39gd8B4woIMXLBYXDhGQpRWciqe+xbhnsVMloAhLbcU8pKJYIilv/vtGlFzsiYLqhmCbQyKd/HsDeo/ygGUaWQL8UcKaTO+KjmCeUQ29h5qv1iEirns+KvsZ9QvQcT1KpZKgxJt6oVeUqf/Nm3t1UWg9kWoQE9EaU9n/FFgZLhiaPPztFdinrw0KU59JGcShHbuF4jrSVMXt+lFJ4f3zBZ7TYwjM9XbkOPsmlAGLODHbaXqH68N//Uz4z3TtYNufEjUeXvUWAfpmt3L0SIY17fbgEGuriujqVAMt6T2vQ1nsH8iF94LYaUQRP2SdarDDnCtkrTQwVTAyvDnS15p/jlJAF9wyagRzqak8Xmpy4o3FwPijYzo7DUCyQ86/QqQ/GpKUXYWZRO7naCN5u7MViFeWNdd7lRse55tm6bVlAjSQB8s44ikuDgNL7dLJBgNHQNhWZCrIcF4oftnnxTdL1SAhbUDSalwBmbmWp33h9wEO4msawTUo+Xo7Ph8P/arg5/lgivhnvc5lMh8f6i51G9kNoRyth5a+ARdpE3l09RX2a3HpK7IEjBlrUeqXdk1oNLj0A/qTAcj3Y+Z5+mK63FOPmUc/HdjWIanXG35l4VWGmK001dlp1qhNlzxk1t1CDb+KT9AhqfS2FlKXkyWtkdJEuQeK0cECnRx0rpvxnlbjdFZfhSugNyyc4wUtvDtD5QMna+zxzCfEYiXOt2mEPpyluZXiM6IJLqpqvj33WrZzc/lCtCKu91EQBssBM0YWrlW6WSKa+/pc8BsSJlZaND/noxNBtqBZudOD+Ctybm+0S/UICE4fc9catRk+17MYE7gQg3YIwt+bXCt/6KqwsxLu9ysEqL5wEJqW/KvXhME/25WCHSZy0KgdwHcv/vYbEdxf+RbC0yHlV2KWaGd/UR5UFmUxHGcP+elkCPokyz4yQByzcLBdLlVDBbMyzWppYRyOV/ue+wJgJp+usZXhVXbo2MTr5QAyscNTueLoWR/qcuNPSs4zgxpBAaQ+DsKVFu3dYWmrlvvemvTNYh/7rn+a7t23Y4Xtd5hXXrpErBge3GrbHwnPb3RuxQE4r2rwGH5xJxUF/KavJiCT4vLHDwZc8sG3Ka7pmGFeZLOOOV4xoxCfnuEBlQfWZuQg4DuokMB5k+fBr6aNhZKDHmyi4pO4rVV17vz9/xeItRzoZwZmYweH53pLXENaMD/Sdf2E+xjdvpAeXovyqHgQKZzVVSqptncbvrCXKh86RrPpx44079KGdc0LQBpueigGRCProizHdM5FNOhRDEAc0g/MXS+QsXhAgKor60As6AjMWvAD+5RPJZHRhSxQvrSids8Rmn9rOM0bAdJOypvatSEm5EJhvDFRZ6iIH783WUKmtvlGHqDOruE9IRY2vGa3R5M4HfB6aeXlbkJQsUKslBQVHu4BfrgO99mWIu0AE1wbobB32dxKoCpfpl/siORtm/90KFcWBInajlbWYgGP8r+V0T3GkXziQ6d/Kn6c9o4tHxD5wy5l6Z1fBdlBo3CHZl7dLdN8JDHG+/n/XDJF24OHrNl/98KKCpscjS+DGGYyApKhk6b2dGwZrbStAP0WyNAQzKE6WwX9PjTy40miJxlS3hJHu8oPcT4MhqfqkZWva74Woh0RaCrO0pVhapPLs5hkpvul1VNLuQAmj/j/wjd37JqBdnZ5ZeQuZ6EUPpKPwMlpQW5arLu5BGaU2aPo2xxrLnP91ilG1OBI3QzI5FCEVNVc3dWo6+PuogVGDrtFUCY4AG6fMcxkmQstTX498jEfd7OTG3c8Ym5+1z4jj4q/LKwWFpdXbVAL/GxvKM8hZ6HkVMOKYTx21sIGPa36Ms3ZhDhkoGj5qSaor295S7WZ/CTJOQw6Oy3V5+0bo/hJ9HkAygTcK2ZdKGLgH/3vEZI2GoM/r+JuvUBTz4kjUMdcKZMN2+k0fDEo/eT2f1g9OK+/YjxUs5x+7ozFoYQY9k95S4zLgPt5l6TT1sSIu2H1F7yhVF079eHzP0hD5KvH8kf+Byy8kQdSjiT/kOj2SN5AvZmsDvvJTm/8T7hGBN2QSX+KOaQmKGU/YgHHwrP78rGb57m0tIcQgsuciPhjqKwFwBd+Uw6+DHq8ueW3W24YG4sI5I+4vA4RO1thnZxLIpxhqyWuy0QTifavcSZ4DnDTbEzVIW+GCpnl8b+RABZEY8saF+zL7aagmVocmCnlriM+svCzyp0FrScrot3F7VjLXZYAKRjjv2Ph6ibq08p/QdJEkFNwm0zohsk6ZoG0E1c9WFspPzTzB/MebdYInbmfUjYJvHGrVUWFQX6yfya8qDFBHjWx7ocYwONQ=
Variant 0
DifficultyLevel
552
Question
The Rural Fire Service issued a statement that the chance of bushfires on a given day was extremely likely.
Which probability below best describes the chance of bushfires?
Worked Solution
Probability of "extremely likely" is close to 1
.
(probability cannot > 1)
∴ 87
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers