Number, NAPX-G3-NC24
U2FsdGVkX1+0Bap+mYkPUT1oeshOxWtUmDgwr7QUhAACKWmtIMPA1a7xtFmKHYZBgiVTuof0cbzfiU64FK/o1XOKQQJtRNjxIuLK/F0uW2oR4Zn4pduV8FmHzVJDdEzsOO0xpouB8q9fyAKaN47ILzo4BYsUwIaOiaSFRWLLE12M04bveffD29t0a9AHAgqEDKtESJBZCUTZbEraJbZaDdu1+ZnoZlm4Vn1QXIphl8kIJGvdRukApTezhqtSxq+Hy/sS5CAPbxXxr/2eRQPqyWB1jmlF7IbIAZ6j+ri//YQqGeQeaUB8m63UbGv8rDkF2dQMZPSSI55XnyrtAXt5bKY5cUsSiu8jwYJ6ViH05TczH7V3eAHUkKY5aXzTw71YrWlh0egg9FahDVPeDDTR2Zi99MUGxVHglcL+qpCXGRBbom4YrIz199kuQAuoyFFJtwP7AzRLEw2/gQYrFQkto/1qWhOTR+M9nWs3YLJdjxEaysZ+UYabkl5iIwshZ/LpnyD6FH9yhLdekqa5kFRoAnlRl+RCKK7bQ4NI1mQb7oIO8ocjFUrrb0AfzoZK7oNThgsG+589ZDefiOkPTkhT9YzSQf1UtQUdG8pMwshzJZid8wqkmxzVOadol18c1GBs5oHj/I4iTWnw4IHxoxgCI/uEuJR5V5HpALMQcBLRHR7GG/rPoSUkzIWIwGDwqSEzTQPWEYzOPR6FEiyeqmki03k9S0c4c4rTTxxtCxallJvX9Ig18kM8a3+KfGNDzzuEAX7A0+w4E6uk3wwnYX40I+kHfsgDpwBcd070gYrz9EaYPWThrUrnlstbM/zuwLrhqQiagNBqeZPvLN0sEIlebcM8JlbTuaiUxEtK2e8Wk9QqCmCPTlDx0Qoj/CF7MwDaimJMVRAzDcL4EAsBqQjr8vRJeZ0Ch1qRpf70tCuN/pVNwL20NhFxpeZoKbpFajEZ2d3HgKo4S0osjS5SqxBYBUaBVVTR1BSGnvCc3IfgrMPRb76QtOInB2DLwl4kWZQ7ThPFvzTKaXvor7EYM7Be8wr/hwa8VeMMR+H9XAjmEcTfa5uwq5G6vqLU/V+3TiiwRTknLTYfBnhXnmh9J0x3T4JPcu7zoQJP7Jt8sgQZeHzo5HJMOGSr/KmEjU3YN+puZetHrFrSCGlCjy8L3G3yQXPYXKpQizSvXX3+VMfKvnOjudUFtGPuLZ2uJ1PqXiNdFC+sO4id7PAdnFN9f4x4bgj+PeaBVUhGexNQodc+pu0ijJ1HMEEr9BzvdvzIu4dMTSYWRoiL89q/vtqSSshCpNvyoADnj+ZVSR6u1HJtd0Ots8ztoNiRNhGC4oLqAm+upKQPB1xgCkesYKY/2ZKHSWbNL8hyW4YIPfrxDXCYJ51thvB3VhOlyPVjfhXAG3vjHbRjOxmOsSuS8TEbRl70MIhnrGX3af3LeRenLGMmySJmEuZhn/qxCeG2RjZILLvtWppvGPrDcN4SZ6f89Q9n1IOG1BkMDvIUnzXZxCZTHzBsL7H7ugC/3fpcphJf2/uT7QSVLuK8csTutamr8pXULoVf4RpC0G1zEGmeLOppY0P8TMQA4qJE9whUQdnkRdwT/2CqLItJ1RwIqmCaoEEpls+jljGQ8bOzHLU7nBF3HgE1oZLm1U9m8QAo3fFn8PG+uYIhISHmWAuynI1jWJtNTJGUgO1JsX2v5QzWuGYva5Ft+QHZqA/hjhd6V6qvgzTQX8DEO1ZVDI0Yklym8pha4IyxKvupKX7YYvQqYmeoWVbIIQx46dPpbF8n2nFEL/u57PqK6lRXE379HgIVvJ9DoWLRl7shhS7mKqdT62dHNZgMBc1/Dk3p5YMa0xzVqUo2d6ZfxF98ZyMQWSIADx8IhlvOOC5nPqmk7saUjdAGwHIQW98QwEcs1UXNTH/iUuGTTxXENExZji7vYBwfsBPzJflFxGUUU36QYsTN7Y5OpmtPmdYVjIhl3WoB9aZAonQ8sS6qevoc3IsjX43i4uBPrDHzkar/3IazG6vwLyNiNDtcrX7Puc2uJe8SWrcjSveYkx2E2F1pxJzlVH5jfl2NrcI+Inofl2kF6m8tCltAdKHTC+EHgH7OXV4YqMSIy8V+jsPkVOBZN3J8HbW3ud95VA0TIHtvatgQ+3fg8YzF+8iRgAQEZECzJimknwyQAaaMOjZyuXM/pabK5YL2Gdolr5Cxg1hJuI2ZodwQEd+1tGXZ9WsNHf9hDKfQUEdsUSYADazCps0/2UkjmtOPYRA9u1LDs+FOHcvBtXMZafjy8KeMoSqu6y4/n065UB59igt3NfUWtWBFtQVbQfQfq5HdvNk7Yas7KuFRtOdJ2NNpZUM8NjorH2TIFB2gecA9tMvIhH1nQilFmYX/82t2tB4mTtz+LtEI8T7McdIsYX5ieeF8fvr3jlz1vQxkJ9Dyqd4OLbS2PJ3nEEJPU7A8a1Dw1ubxvismFi/E592PtNL071jiengjGmuZAt6hRFmBK9ZpWer/erWJYfWZbjurBOKPUxwipL08/45gEvyMhU5/5kb2gna+aPH+GglxlL5XQx+F7M1rAPMgCUQOkrluAJ29ugXIoq165ogD5JrZfzW3ySiaxMOUJHsYUNSyeZ+8VByKpr82qpJX90vn8c9nADN1KMaTqcNtsBcHqUoPzsYhWaOQtAVhCiQ3YulhMLBuNXq1R3K3DQif3crMXMjhPQo6WKi4MeFtUO+TSnjuav/hlxVL3WxUPQZ+o9UXutCSegdhCzx2erLh0RgIpepa63/sjTVcUI+j5lP6B7cr1jJSbDLIUKw39tcCfp0Hqr8xI81k65+FgYOTg4mIJKzGLyQfGu8KRm0XslieZOssxjIF7HSGRfRLEI8wL2N+sdAGBW7R1GZbcfCfGa3oQzuXFlOREfiN1O7JRIdJsxdpZo1Q0KbB2XKL2U7ZRkBR2eJvClZu6K6DoflPzHvRNUqe3gPqhNuTEsWsYofrn7tXn5RzLBlgIsgokYh2oP3lJS5IfEd6nWW/TvaUi0sFc5KwxTu3Kamxxkba+GgG8ZjB1PdLTNS6PFaIfSy6f/6t8t9NxhcWrWqY2Osdcm4MfH9EBIxm1sYHGKejtBoxaxCWNellp+j6F6BMPZYhPWBzdvGI2GDR6O1tT1XM36frHyLE/0Q1yhFZqnOK8obA8vK/VA8qi0wjyYDJ57OTGaMdLMVQgXK1ZBhTO66yp8EOAhmlgJhdDb7NItsg6FvO59oo22NP44dNtUGFJi8bg+lbo7+EXFcftTXM12tfRp8zjp0qHUiOXeNLUTW+a3APxzgMxZpe4yBKC02qHg6iuejo6DnacImKlhFQ9QPdh8XGIxVoid+YsKSfef21a8FWL7aiOI48Dxxe0FSa+LkjR3wnvWQHr+QK9ziteZ986THdzuXhSDtqi8Nm5CUGHP5NwfGCz2TzTMu+PxCRMU5n2lsO/tcTbEns2Ut8/17vXBj5OQKvP4nf3toTkDRbOevmHQxIiFNyzn4dKjyo3wKpqkvvpe0X2VP/teQhQumWMbcfZS7Ex8tqdWVvLk545V8OUXPFZcYY/YC5MDtPmn+p+mXNSa2ghbDNK6pAwVlSImIinHjcZP6pitPGgrMGw2t5RYouTjZRWle1fIXCtVlTms9oMQ6GV9HL5fiTGoMT3L8fiKgRWdb1q7tEQ7cAa8R1xLIY+sVWui6Y8FS4JUa5o2UudtVm7osMjW8qf58oPqMNh64DNWV3zeZksYoBeChdNVv4co4Sp48b+ork49HwOYoDz6N05shXicxZ5AAZaKd31NGiS//47aBKAMFUcVIa+U0dSYYpp4ie5/JU2fydxb1vZ5pX2wiFp99bdHTeOSINp0NEohCPLcJbz9UFZMqcVYUNjZcITGX7iFk5tPkoFSGlIWKwdUZdRYrUVl0Cb4665jDyrfTZLsRhFh8VMZG4oCBmk7UqwMroUjindWxl/IkSG6CzanHU2RbVqi99graib/CxhLwbetLaA7io4ju+LPAWCLsyqmdVmLhaqqFqNKmAzrbEJ9ABsARs3zTvUqeFAPYQALRVIJWqkaw2FmbbO5+CAqTME7yjMHNWARsmTffFkYRJYroGXLOTjjA0sqhwrHxdN/yzz3yznJCXT7WWwO8V0xl41xA8fPTsAJnxxQYRErD3xoLcQAUkRF/dARzwTcNaeOvuw3/rWNMkNgl0UeW1uZrHSQ21VwnFkNrqdpgXk3v90T3NtW8lRQD3V32uPGIsyGV+J7pKNg3TMM9rwS8yIwT7VbsUcRlEk4PZ36SxndZ0pWCKy1NxZZax7SC8qxqnS/3fBMs1Rc1P6wV0Bt90w0nt9ZVvs6SikuS0dc3GVXSLjQH6+5xfSqqeoiXyoSdaKr5CmGt+NYiCESWRLvt8QJyFg+maY4EgWRx5g/lQ/uCYQANWNMXYUOJ8K3a8c6yTB2xAfzCimxuoBVE2kw/HsQwfHSpNs72kBILKkInKB5a3g6i9TVShsbVCr5+kWglf2fUAR/KkI0k8ZBC0ZdfyJlgus+ttIFdGv0FK3+VPAm+yWWdQ4rwilHfMsi+j0qZmNF7gE7KlC320HF0z8VbHehN+lDG7RurIhah/L1fGF5KWkf6ZMkTbVG8lGHgl20HXRdgjK8Zjir9dr8x2Qlb7vc4bwCCo1lTXvaozUspeRCREzp9GqdkVnA9olViZIppl3azalCfNg+1WeovIeKry4xGcR5ztgSVb5BkoGpyfWVl03KqcKIQ8fO3uNQvjMXssOqU6bhNt+HhL1bbeeLVubmg5lKvxjUsO8VpJJjIWYClEh7A40lJPsn06b5rLlSOVHfPXzUOH+YrmgpYh+xeyNjiEpyKiR7YFS6S51Qzm/gmAmeaGb3WJT4GhJBp6XPbDcDzy+WFd0biF4m9uoP3K1phfQ2GEJ1vuWH6GhKZcj0chSbklmXa4h9seKY/H+rwNllfyIaMw3qjMIIRMWAcYR81Np2aisZbdlRetw3tsvR2LbQG/tuHU0JvRxd3mdfhhw/GoEGx2HMIcIu4GH/nYW6vjSqj+b8wMTTfbmKDvDxCfaaHKLGEQ1Wrnv4OTQcc8PxwQOOzUAjedfOtycDNv63bKLE/2qH3GN5vY9Z3MHirg1wvw2H8+QxHS4i/Cx7NzOPo9D95Ftdt9f7Oa882vI2mZr2TqN4Gfz5kFGnkrzQiyRs8qIb4xYxxXA/YLTbXDWJkD5C8Hx0ipvu5ZLb7Y6cRX3hkaNI2W6tTTzIzyev5Lv8Qf4LrJHS/qVjLjRMk7qwlGRf8f0t9OJfLRxQBsZqq3+ASmlrqS8Fv0+UjdY92HdUaoJrfEZmXsmoSngNsx/vP6aJv54ne52bG+pGLw3mywKo8HcHEXr9FiaqN3twMGpbjK0lUZzf4wd+tGfS88QTxCHIhvFNGjXwP8aPtnHm9J5jqqsd8Y3s8CxonnzdygDnEHcq3rTotb+G/0JmdrWb8zBetnkvujSK3T/m/Ezi3cg/DrKA9amRxjjpiUyrB7lj20qsgX2SjaAoS0KEz9iQ5sdeyd8z0bX1259SvbrzVZ4reH2tK/RDzRQwGpjUE7T0IWYbcr5ajeYvtUh4JeqJ5pukwpZCWxQ9GSOoTijKZgv3I8QoVzehvx1Vl4mbwyXZkcxoW1LEYOWs4Z4NmgfBtXtPgGXG4TqIY/zYvV7nVij094/v5Kr1yb3COJsNFObKo2rvfh8z6BUeg653zABpsxd3n1aE9Ojdvari4g+NmEE1pImO0fqmETkUETUrjtm60FVIhiwtWSmtAEhlIzduMC6qdcoR41+K60wfmelu7NStkebZDbvRvqkjd9ATg8jCwfrzI+Jf/qm5w1A7x719uQCij8ck10HQQ6p1iriTPekDKjZvWHkxN6em77jn4dTTJ6GMWMUQRtLUcd54tFXo9Or7TcxTcT6X0FX9nyPs6HJT2Os7NLJ4E90Rh3UDGeh4f+POZyJ3PbAvK/dvdUvYT236hBRr8zcSPa88F2X709jUJghqjkmtAIa18ojU1pbYpMLiYHh4adaKi2pZfFhfxFllLgnfd5cHEsAze8Qn5fyB9Y85lcSD8/R6LlOSxLwUzszwJ7ryKnf89PZLtFP/hciHPR4LRaDGVk4hmBWhMKHp8ltAnccXzR/owU2HGmEaRE23VhjhaAjdNUy/KtNFSdpQLNUoypR/qBbB0HniLYLy2bK9VdMlTBsc6V1eBiOQTCd1UA9bGubD1CaXP5vsZQgNHV+e3daCTnTy3fYd4fpcL0lJfw5vZHX+f1xk6WeGOfe0UaK49HoCjzxzcrH9pgJ8KbtjgSEx5yjiKQnFz8QysYa84JgQdb55RxudRO7S/6t+oa2/rkp1ZnQTYqbb3bQDilJULebIEMPVHinISDlPMgRdPj4XiP+HBOD8Gr8wktvmA0lw+otXX0FzN0swc8j7uErzSFkHwjBlkl0nSbM6jpD5HKDcAeF3fztiJp+estBeawERPD1E/SYLR2YTabJ/VZM1suZL6MkKLfLCvU8c80BxC6gvR8Q9DSRGY3vMV13wrjGa2OvBPl9UPlR6FBe2jye2Ezmn/yiComcV6KbCJyxF7h6D0PFb3LqZJwFUPoO8EjtkbOmZs3bhC5fs6a80N0Ynsg1FzydMZLxIBSsnmrsQBNJ9vGUHI1THkBgrfjPRSypxe6A5EFpqvnAguHitVoINXgHImiCasKT+7vH9GSOAxHcuWRCsrvZWY5DMyWKOlugkQ8lLHj06YvdoNsyqFL1z8/V/eUNlT0ZG6AGe8zkEqUH6wZFtQVajn3lq7SNV7rieOSoAlByOfkiZyIarvR2wBfByrd8Iojp/We9eTlcdb3CQDpYf4P0jVF5aqrTQ5EaNDCuZbkY77u2NoLjG/9HFg14EygV1kZJGXABJSv/wn5/BLGBEz6XnECHxz7nYBRZfoCJ0KhWlV+UutBeTswfIHyThcyqiysPr4Ir47lnU+SkotuGhxzbMqsVzOH9YtcUb0XbN2o7btEWmZWUZERFSDHh5AKNcWF+E1W123aJ87wrmZ7XiVSQx1XNCmiRqAfv+xYTo71/wPNU+TgCLU3SaRp2jZohdDS1qUgGbkDgqKAx+ztfWUTkN4p6ec8EmIeYmEM46wDnv8fq8WvnksCUaIR8QycNoolqbgOYd+/CFswEsBkG/qKaACMSH+32GyQdFJZbx/klM6E+NeZTDkfSlFHy9Kb9D8I0/TPAAg33Aj4VHNspozNQrrRnUrsyYUTVKDBi7b14UUPv8z7oiBZz8HuUXVuMu59o3bLwuuYLSFA7edVlAod/TG1kqnTZMPeO6nnzfZtQ3jOD54h2yfWmfGnF3h1IXiIx2vYH45KgI3mTaXfZk19Qj8dHdkEvELpqR+su78jVeUUo425vKVng6DXEuFccjZJYwa80+AQ1lfOrmG1olHat6JxGjM8zyB2AcZnDWYAXQclWilnxRXGdCDiPslA2DVC0V+L/QbK3kW8fw34IsNefy95we8gLKid0JvjouWGkqVp9djAyztH+/eZDzfGfnuv59KHpasMgaGG4l2L4mVm47hzylmB+3r6s0PWGVgtRdQdR9TVJAPeSnS6rDKgPh3Ro/OjldsMTawOW3cLNAze6PXMcxKS94n0aPUG/rdLlPPefI05fNG0dw9cQoPb1yD/+5Nq5E/92hjkX4LsGC/f52At7Frv7zQ6pPsZnWQkgp8CS/zmPlLR1Kjb+z62fe+Oy5UHV2ttes8zCUnIELxHK+TmgSwWov3Smuk16RlOHOA5F8uGF8RVtd/d8VQqdXByYNHt7TqqW49fr3KqYdZg5uZb1vOLMZjNmLDfLmJX4DnxMmPUvbC2mbP3Gd0YtPB8SRb7w4QLxvg8dlpokPqzbN55vj4KqSObCZgLBptsFFjIKOsj1o8OuVA19JtT9Q1CHkTf9FyH0e0wrUXSHnFEAsxxO9eTUebc7+5o0EmHthIs7rgLWhkiGee7pmfEoCz70xGMmd5s7CngOFVz6/s+y4lzOgDKWqxMQ+YnD6AdfL02tWX2L8VaUF6vbXbc3/ebSFE04VPtwtdYgBeWb5Nhxp85TAvGPf/sNRTvPmixYgWASlXde00IZ3ofFF7A7P9dPvl21pdW2cVsMs+jPWUD3g9vlCqPlYh26hdQ+BiDk4+E6sxUpoqqREmIRsocmrHQLXbIZZqgKHIvidUC35/geOD3pkg6++stjCBXh7EESI1JT5+OXNa3Rsg2JYqnnm2dHMY6ZWA51fSLE/Ux0jz2dPcEVIXrAprp7p4vqdZ7jW/BPCLCWTcsJssl/2AgmwW8rWiwL375AKf2da3gqwnYrzJYXmiq4NYx3ANA99GxexRJR8x8lmaV1ex8Qqmt9wOza0F8TyP/YoRlyl0zWsMi6Z00o3AllLBED90XMFTFq7XAF5iwmAYQXyOBDB6sKFNFDQCxcSvn81N1HW5vD5J3rpdgYWGVXwq4Wb8Pa2VbJ7WqQsl32NeAb0vQR6fzQpmyuAIToM4VMFWW+snLg/oFfbXQiJykYyDYT5SH3K6UVeHUQFjw+agl7ssxfJuaB4WaRLYNiSpew8XarYq0zycLoraQPH3XnqRhVJKF3d/x19KEj/15bvsfdsyWZ9E94J1rzXPfjv36vf1E75+puPTv3thb3FCXjmzLjRctvcraDLpZRCZhnUW+eEUtq8/b1Yx2a7rhdQZXG4/6jd33K6zmozeAG3zId61fnuR1zX2qzO32cnELCtJwfyudvs8vAnPG/pKtcSqIoVcPLQ1LYgCDPiq2z2upWewdlrbP/+Tjq8cqb8COLO+blv5uXEtxX59zLJcMEVcYL6EOo1VEzVbeH1gtVPYLZNTzhsCoJmv/oHiaPEfg7YN2ObXllQkzyXYozlY4wN8mAOlFC/9H2/8WWHIy1dHVr+kd+Pnh1rSQQ/3p7J4HsrKIfF+Qcr1AKfP8SS1lQIkxRMZH0E3zY5/bO+rbBwKhvqttZqj2A6x5aX9syaeKkQhGyv0VMCTyqgDVGZ6vfhLoqhUzFJEIiG+atkBhhVsk2orpXUW/Q6KFjVdRExIoR6JJ7W5D4WdZWGNMFtad1++PwO2qtsMprmnwxAN0O3vQ76sGt32jbCI8bolkTjGcuILyLkDShgTB30prBu0WlB1IZhw737h9/lVuWRjiY+6Dv8HiG7YoL6DBWUj/b9wJNFNgrqYRuR170cReNVeF28yvWtLxubYIn+dFcZ4bTUtDof80F413FiE0Ox8PqVTSIz+tdVvJ1D7TI26vUC3z0IY+yG/819ETdFGlvFLyto6OU/a396a3ld63XXL7yCX6pQZCmyX64uTOUCPzFr1rkAGP6UyoKG1XTdfYJL4r9GEMRkPdo8X1jBbJcvnsNder2k2qkT/cRVSPImht8LsRK+5JkYqNEhhT1XDhU3+uIqsAj+ZRMr9K+zTnNbF6ULV1tlJkWUUD1dY3PS7ADJR7wjyBGYbTd9d1kjHR0P09ySJmqWOqBCwcMWzaDD7lhPW81C9lJelu8Z0bfmSngS1kj87S4Teh+ivRSsIJ8B4GVySbJYELIGplyAzhLZ/RL8hK45PVqQvrEio/tWdTMMsl05cQbkyGIOdYgIf8WPznHlxu/MLJlj6Wl7FhE+Q2+RII7ZLhpA4a6vIvkSsaUq7TV03bi6RclZca/lhpzjpBhfxm40uD7sQ5gXLmYsWLEbzX55kzoKBoqDvQgqgtiHlYLrzJkr/tcfpp9NdRz4mj46Qp4qo0xKMaKKZXpUWH3G1i8jAT1lUEXbrvzU7LU2eJmLp7I4vp9D4VKpQJgeUkypBDxIRLWbWy63Dv7xj7dvC1GG3v0gAERf9GQr3GxIZE2R7T/QIpf6Qr61W8h/DOLun6W+MAxDe/CjiaTfb4UL4blwuWZEPLflMda6sWAQfpfzRA8zLTJV0fCRqUHFFyE4zo4T3yUo0J+LZcl56caI+UnK9D7xTHORbxuYuPBspCqifCMLWQ5f8T7tY2aPq/hJIJbhXnnQqiUlQzu7yWmiSxkD0MHZrXjnQpWJPCgb/JMqef87oDDLIA/oR/qWselgFYdUBTR1h/w9ElXRvdhKzX6/uOH/CQ7Xew6dXPsL96vcVPOv2y7wNYUDLPwSV7lSPMzqpx4guxJwggav4XfJPb5dUnxokuWEUnd0mcvdeVvSjmjs6FnbazxOo9+FjHpMI5JN8noWissI2wr0qfuSvASjHjqvFOZxavaWzZ8sdTwzxsgQ/GKBG/cQQwuFWhdmHMvqBT2g5QiCv6CmnC0CazL/+iZDAiuy0m3cZfOF3ydOy1UAVE0x3+G7/p6OgHVLbj0vOA6yCvleXJamdUnwvu4b4WH2sHcRzg2GWVGQLDizEvpcWjEEaUqgmsM+hrA/ik0uiSreMiz1+qOPtZppsLNkTlOWql2J7UjiUf2aKleRlCwW8oVAzNqb7xvh+r6yJKEpi25jg/P1ZKs5fvDNW3aeyGYBNeyPdYDJIh/YZW+ZYS/XM7e93Nq5jabFasYnuU3L8LT/ly1XhrCtWklXLU8k/ES+Ql/zQ/bgvInolRKGNtim0YIBuXE2GFXJPU0HWN+BCYDlbwCtZov4cJMjKDyWvhC65T/EYGY6C5WA4LomVz4auo7y/nFRKkX6/VUWqsP3nNlzSMPKnXoOi0hg8C1OZ2+nN8S5JMko5OVOg3gUrG7xnLFB6KWfrorSNxogExu3BAZwqZkLwle9mudAOErIXGVLu0Wjoa12Y6h6pQz03P6ETArRM1WvUeE3WIrBYP5rsQfBKGfVjfZCv1JWrOQt7oxFTr0FAb++65ntdhiLcK9n3mOTA7N4WmBDhomqb8NQ0ZkovYbK4UiTrhgVKwq4k4kE2oiMw0hwz6biiPn7KoHnRSU4DM4Vxdzoea29SF7ncNGwjuR/OEQOg8CdqwlPK7CGViMj2MBxLUxXtaylmxmvX93CI3eFa4K5EWyXNsothbeJ/UskVLXkMV+3PzXjx83f0xZAFBUmZCVz163SZdjkVvvWdcuA+12+73wAb4KgM1N5Ff7+GXKDNO2vKhjFxpeZshYsAMK4ck2a3+mzODFV16AWWLnqDPTbZT36aS1497pqmEirL2cAaQpkXcTyb/ZoRJzdKPcS5jM0sABbt+almZpFDG4OhBrzQaGyA7I4wLNSXJdoFxm/u0FTey77QDl8cNxBTNUH4qRxYN62NQODdzVgYDmweBI50eHdflC6NEn6Wiza6VRhWTOzRfW91tJqnPj48emgzULC36mC3W1wVhZnM6kxHMN6qsZDN2c4fIyfaO7wZQUDeEA+IC65CEOUivZRWHAmbpjI3XtNu1BIRBP7FC2ytRUrdmJPqshL2d0+jCLcBzSWqpew81P7SqtdRmhDnKC9sZinibjp0LcseZMXQD7A5YWDXhggE9o+W/RquiVfqIz9TebG78GLQwZDkfSrdX1mYK3YShWLsRA5k5s7krTfmWajNl8C2mB/dAhOvauHw/I9q502COOT11atH7Z/6Kl+I8+atdBXKbxAr/g2jGwIEnaYGhs/6uIlaYYuPWfJJQ9AJeSYqIwg==
Variant 0
DifficultyLevel
633
Question
This shape is made with three regular hexagons and three rhombuses.
What fraction of the shape is shaded?
Worked Solution
The three shaded smaller rhombuses can be joined to form a regular hexagon.
Therefore there is the equivalent of 4 whole hexagons in the shape.
∴ Fraction shaded is 21.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This shape is made with three regular hexagons and three rhombuses.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-G3-NC24.svg 200 indent3 vpad
What fraction of the shape is shaded? |
workedSolution | The three shaded smaller rhombuses can be joined to form a regular hexagon.
Therefore there is the equivalent of 4 whole hexagons in the shape.
$\therefore$ Fraction shaded is {{{correctAnswer}}}. |
correctAnswer | |
Answers
U2FsdGVkX1+D7N9Gnmp7tKa+/pv2T47yTu/IbSe5l4VTA85Pt4kho5YFC7BOagz8gl/MJsIalIKbWOVSQnuSJlg+XIwZvr3I2TlugiECUyXugBBCl7ZVMKZJ7xVN43TgUwslbYN6ZrQhYz3JV8JkT5mUs1zHxbFfPUhGCRugZ1h73PuIINld48meQkjvv8rCAc9zu8BpOaelEiccWex8j8OPf91q2DMjmHfcFBNz1SA0hrRpPLuaycqnw5Otpd7aFCPD4wQQwajB395f5FjkC1AFtYQQ4irkekOrZzcSSyhxUjZYEdG9/OaLCyV0+5LF3e3dJA3fiSuaYtmlWWvJH1pM9DaV3nkhvnE/4sFNHb6Pg3AGsfCeNF+WaBfWaANIMVSTz77U9HRYIxjtestSfIZv7ulkg+sBTZEUHPudtSSx14rNSVh7WphkqQYTocHq4FFdDraTwsvvguulyTkS2DHmlRfTfd8S1vh2VscXK6NiyEqQf2NlwdylnMksTHODhGIf1Gv4FNLR4AR5Yd0jidM4YHovEfizFRavXstukXJ5s+OW01V65nJ9CY5M7ARfzqgRTunmfk+CVRyLUSXoum9wCRUxe3w0DCTwE0sSPasRzQ3vUN8VhKobvpxw4xMolCG2nYoShz3TZLk6AwwWp6SgOvCHc7Tqae/RoCeE2S9Fqu2jXmNOuWLLV96TeMjkEEa6b/QUqvdrrz84qqW+UFrNVfaXDtV6V9YHh1r+XSvPubBcfYJW00qAHJTXBAewXTj70y5xkMkUd29jZzYC/5zc3vb5bfzOKNLHcXfJBmnVST86NhbLumjIMbEkQWwINGhR89mHQvuNjANgBj6zcdOs1UPANhBsHRHKvzOcqU+JF7Ao89lcjeKYngD9qHV9jv3dQOBF2IittftQWQIrOGk/HhceM8GgSRzXTTbUbYKJ0Crc9prrwwEC4J3jzfa203A5D6hCrEfoFe7KIpDlVEGXYY5Z/WFqjtqefIUjLJTR70uvqiQYXIcQar66uYlGDCmrPMqVsqjVoGyPt6GsH163rjgdrB6F9ODx3HQ7OnmMr8XmuE09edgdp7lc8J06SPLSbAcvYtU5kCuHeYPwS7SsZ9cjhUUfFf5Q/33BelWZjqGG9RBxIS5NKUPjJS7ELTdoruX16Dt2ccSr6LAJ0E3LgQ0vYvDKCEtiTPoDUzPCiL9OwtCi6KbGh/GZFfuyg9+sqUvzPAsh7ThnNNPtMe0b6r84HuStxyjE3nf4l/9YdMu+BX6CAYKwLb1l4J1ZKoK09EiXTbzw3xKyeNYrT3E/I2YSfjAtE2VAqA+DhubdctssJaEksFGb05B/Tuqn3VpYseHAEjyAyQNrLgCK/c0yYNkZI2rXrWRQ6i0/A6RX7DcZWVUl0DWiTJofMwVNDbGZ8k8KM1i6WyDRl0WZnv8YO/7pcevyWqsfa1MJ75hkGsjXdPw+1HjyG0MsqM0zQS5WDnAno22vX4CqB/foVD12KCaYTqKM4DNB0l+PjE3t3XerzHyJ3rbiwNsUXJJX4yNWLZAk6q5mINVZMCjrrzEDLuon6b0BXmXmZyNIid4e2InReMsTchRSTEUEHfmM/v4nSy6iA3x6E3XGzSlRzqJdjG2WITLi0wZPS/yIL7+RTPv+nkJMrqz341gwLCoBjpwjUouBmTHrrdegsbM6rVWlgt9f10eIQrHuLM873zmttyySaEsVUWW5sZwJ2udcL/SBLIy/yxOYNeUnwZl3zA55l8WNDOTJisfq2RbNgR6ma++Id6Yp3E2mDBUDBUQWugS3YoE1lXFE5iY/B5PHTAxZgfdqd2MSt+BF7sBgfPPKLFktl1jDqI5ETHwoMnCWFkhihDbL2qAHxYHrvqnLtN6HfDA9vv7jaAHJbv9E7pL1QsHQxajL8IwU1YzAHVq+HCA2w0oUSmYx6p8ZEtVTfs4eO80uU7+U8GTJ+bzGs79JP1q7+IuJ7+b0THrQb8zymONeDVRGbf+fqn6gEF2igP1GqSNOWcKJgM9qKUrKYOmbH5nfCU2aDK8lDWdj/n+XiJDGubttPKVWRovtkgx12aIgEhcG1YP0E18Rh47Eu/umWrDFx4CyHm64/uYU9Gaq9455GcIkxg6DM9CjCGvIh+TSMbHA4zOtLCPKR7MW4gwNcQTkD9gr8izdEga2pocZ1+IAuOI+aBK5iBHi4ENpDmK0K1gTam5W+5ROZwC3TDmLhsFZ2MKEA5MQLWyvy5hd7Gv3AE6oWYdEOEC8+dW+CCAwExXKvv3ex1xB4Kt2kRCcieB1RtLr5UqeKHlgk5OqvmW5V5qzUi0pHA5IysBkjhfY/Rf/eoeK7VtRLsPAS5e3GXkEJCoAmWHGWLkzE57TccdQ1z336pQ8J0N84zsKi7cOTT+VMwo9q+/1EbqzrqCV0OnkHM4TkFwfOae0YsQA9qJXyxE9y6qGqfVgEGflkE9yZJZbFW26NN7U465ud0tDmErkWweqMnvZoYxrLYnqL1bBp3hR6wE9xR0OBnl1qBRAv8ZoQe/lNN4Bl9b8lTx3J2VqByTORygWvcqKT+LNfmfj40nLsoSnsNiTjDeg/hdTwlCJHpuSq8eNHHKbQDvwhCx/vDpAsbMstGjXv8iLejNxca9AktyGfrgC9V+jx7JTuUFZVNzTnio38SUGQgoNqHqyteJe4ROZyL6G4YeTizQhHSeG8lyWUC83d2VNVby9uwhdLj7XpVQ/dILmYttcWQNZmLA0j0yFZX2wHX7QOWa8Pr3zeXhxSJZpBPeXQMTZtEXbIEHp+YPayv5RH27odlNsN0xV9l0M1Y+ZIAu3j1ornVOs8ZV+O2r9Q/KUuZlgE3vp9wHO+R5e8z33GTSfoOEBGG/opz3Pp7XKan5o43vRKyjF3DnLgfpXvUEDumzkzSnC5JuIDpp4/bLoGG19akvczV+5JmuBkndX+aja1IkgDhsayQvzVqvdB7ls6wHTFcQJQHDnEOVkMIWfvmznkeyZ6w/sDnCtDgYbTh+XyfBzkQz/03a2XrW2oD7MGtWsih77NLJ1Ke1+Lh1pMu5RdFr6Ss+EQlLICLyWx+BKMlEOmT5JZDaV9WIQhYVDP6bBda/Mwy6BqqJzcRqHcGRdmcV55ftQRKKyY9iac0MPIaTadjckGpgwgnDdS0zlrqWTONcme3r8x8ujdmhmq8Ha3bFrIxc9gguyY5aMrDfmqn2kOBD3fkzOO5iVUOAj1SHFUoshFM2iP6xT6F2eDmMVLHsLvtlhFa/nphCuDJKIAiO2mzYtQ2Zo8K/RtRy1eoP2jK6pN2CwsmHKAYL/6aLTTu3+5aGb1RTXKWTSgS8DkHV/wnEaCfyJoI6lxJyf57eMHTj+vc5VOgsg1KO/3u0H5aoxShlQOnWaQbvm1ZeN3tTpaH00u3y4NPIJXtetq7YStcJ4j/XNuUt0nbJhZr9hexd0AWzKBzY5ee0X3EPZr6xe6ISdZv5C1CHHPXDul6rqfAazfeXOwL7nZ50QTuIXGshDpAjrx1JjzEVDUp3StsinkMb54Jl1SKo9hwvAXRnxmfendn4PdLx6Gz0addQ8hYxVPJjxiwjD3BIrbD4UdBnSiukUrjnGM1chxUsu47xBSe2HIlFYYCQbVs+2aj2+tcaQM6NwHqSnILO8BiTRafrUM4SROzLWSD1VjVtBbg4qgtdMZBh+KUGcCTzCGpzCeExXEb/SdleAVY5eL8sMYi224qs3aphxKSeJoRO+L0bq9XmDfjHPKVF5RSF8Wk/F9mCzvBBVaajyL20c+jtHyQUA/BSBi7oZ5INtkBsRcqajK6+W8F9TLbm+5AEZz8xNmysn2F3v+X/yCegWfXrnHS8U1SATOhxhQgJ6GSjZpGZbOEMbtc2+vpOrUw+5nAth/p2IUHH8W6+ANYh0Gy8BGxhrl5GbR1yaA4eWnKflfVemj/EHrPrsDZa0pGTx60P7c89KfTUbzC4UOQqXd0G6AAks8c5+ieV3aDmCLP9wR8S2Ahcp7RcZ6G9dHDcktjFNC5JE6SZEcEU5a+HchEWu3VMZUXU/3jrja8nDZeJkFPQ0fl81IEEWCR0ngYUvdd8rKS9oOxPwzBeqQ+pACjy3BZ7G1plR9eEMkrcxzDmEqAfio/K8Bbolv+LawAluAh58W4N9bEC9r4bpUfmT/215uX6i17LvOBvPcZZQ5vQrDx0yIINkOqKl89tGQNyASM8JV+iX0+qkV01eD+RqFFfHnBY44gr8TfG5EY2cn1jDRww0Azl8jeTn9DdEUBri4334LmkuUZb5RNgYJk77g90DfxJUhLWFG9m/B3XPSyAmY+wDdZPma5TntTRhXFVJtusq8r2H94DqmXau47qjJfnBYXh5zyS2MePNCQsP6u2cWKvdT5q4iCNCv34BOKAyVz9PFEfiddzkeFwlNHCNg0KpR8uvaSmIL1vC609oXls90lJBJDYEK6BoGm/1YFiu3y9DyA2x34Rk+V/0nJCBzkMxMAdOCDslcLxjrTwungM5zXHJh4haNn1I4oJT4jcgql9nmnyEVO+v+nanYRNW1mLmdEZPRTa0F+8RZZ8AonRs52rtwiXUXVB3oRSJO2K1yVkkN1+fsCJ+wiapy6zKHdaOPifuDXHec70S2FWPqBTSPH2jynftkr0op3EWfBtR8i0wCo2tZFndcNp8dNKlgSZypacmvjXeW9HJRV/HDAZhjmiVm+dgzYOVFjG3UyuH6aFTs2EkjVBUOn2kfPGdAlKg/fQiazrh5QGBc/ucxwgYhCD0Nr3WbyLl26Hp/MMSZ2vgaWC8JGmuz3lKkH3wB0CR0DuW+37xNESgNaEl72NSdjbET7smykxfUwfEiYWFdcLsifzV3V4wSYlAL00pJAY0gTyGLRWKJ6JV0MfS2r6Glhol0uCBBfmAschbxvYEAF0NMOyq5Golh8z1A7gBTvm5sNwe+6tvFb3VlO7ch6Nigy5J5C2clOHiQrhHbUZS99I9V5y6+IWSdPO171T2N05OXEfSbY58ec/qWsLM4h5VuOpIFo+51+4X4ZqCkwMdtmNz45pDyFqqtdev1dNiAzdENt/thSW0hdF2W2ncLs/7Uy4YaEgN1LTlVhmj57xlqVKUpEc8paNLw7WYruM/0AXUMuJOaW1wqM7BtPuALgWyxsm1Haa/ULgC3ENc3Dzc2x+rPJWnWOsM2QP/RSmCfiBcMwbxsHX37xai5mYlgvIUksYzjj2qXQnXWkLzT0rO4QMugdjhz5787MxhgRwYHHji9P6vi9T3JiGaHDrquFvcxdfVceCjinfFlHYOiq1BCwa9aIYQ9INOpzAJ+wR2Z9E1xWBLEdm/oVNzEkrFUR/MsTmVmwSEZFBR66DaoPFTIrWtO5h4IAODxDKuOwVA8Xpt5gR8yWBs1zkDwcQw7Ox4bZp3RaSiPqv0nAkocpzJh7sy+jN7uGRdsR8bp8ZZrUOzgbICjS6vM8tD3HFKN9qV651ZI6qQlo01JE2ohzIAHUMiSan+OaTUpQPeoTvOsE70V7EnsJ5jAkBAshatZNfcsm1WbCTigOhLBGqm5yMQ8I8Pc++HJy4oShHw+iJTpTuNJVXI91dxFus9waZjYaZIygK6quwr6coOTEyOHY/9vl6fTuUz6y5EYP3S4mBQRMZ2EGaUoX5Jfpz7gMzbjBegwwuTxqSmrpjbnNunjsttcENay1tHRnVsD+23SumX4A7As2PrcasRfKSEj0L4tJZGSp/bHSN2NB3RQ7w7jR+8fxGSyt5m42yZUOJiGRsddF5Jw6R8tpCPkCDaPODYrNDy5Tre5ZYMTF10zw3MZmTsEADAqfKlrqmJOiJ4DqJyXPL0FtCVCMehZXZmZugsUfL2R6lwOABLIXhop6gI4g2GhUSeF6n3zLGNl17Z6zkQ0ZQg6Jlh+sN9+YR9PE8Vi0qHI4IaApdK0gqC6tK8en7SlWLPW6WfMlLJCiQ3QNAb1Nf48wheRJC9RcBGaAUYxq7ym4gA1yvT7x4bqTjx3F2anVrGrK41jutkjvbw4OEs7jo4GyBpyqSmDaDfPIAWs07iExu/OH23dtYt212uFwsCRcqtBZy58gXt+ohHBBeWPOHAR5WTPu2prPoBuIXcxStxbhrG7a0if6hQnJhBpnHd8D5NbJ9Q1kR+nLtHjeOkFjAw/eAaf774XNQvuk3WpRXgrbYB1LFO3MdgWe+9+pONCb1mlhcG0x5rsk//3WCvTelpaqew+qUTURB9uAQVivUY+BRX+Z6hEQmxoBkFU4u3pR3Gg6UXZj2jjO+r821QQltKc1g5yP2PRruwKQp9nd7+WqIMlfoWhUh3ZR7Bh7VJx12Ke2tB5Xd7JaaEVyXvvKIPyjYc453VXkl5kQcGo/LIGnge4x5n+dgzR9VzhObLhfI6woeg3YUTkP10pldJYaKdCEX+rI5hf3eTFPUtEpuXFmkmCqU5h46vfu3WDCZBJcouxWab/69TVe5MRox7YUnOwd4QJSh1BZ6NQALMv1Nn4HBxRRc3HXqQY8GTGm8DaGQxPgGzwto3Dzh8P8CG7UZbBxL1StM25qSIO/kF0adFoCcRd0vuU6nc11A9wImYGMjH0WSo57A5jKMViJF3LXOvYKOidcYuzQ5MOy21lN+safjjQJolEhhhqg3Q6vCbmPVT3XgQd3KWSRCHWF0+1BizbPqAUgUTS1SfAcJhVGU3RVuzRUL2tlV8FBbngENAQAMQzlViE39s7pILUjoEsXIa8JtZ0DJnQh1s4/ve4Zw5UyVq30Wrhyi7hDR7yaLqOw2MngldOQxEU7JiDvy1LMMlfAOjisqZJmGRyiz6K+KjvAPNk0MGfPPvxUo7cdTNOeIUlmODCQrnZR0wenXjaBNlG/Riygsxs3KOXZLz2QW6M1PCqOSRlWKevIcEWtafT0OtTVbrN0zpsmVxebwTNf+iaXces4SAuLXi/vqsO3Ar+F1e+Lv8JmETkWmEYw1YCuYE0rK5Ck83EaUVo2fl9pCXcGPDFNMTNKVHEfNtJ+d4hKTagnXZ+xuiNZoadVSh5ZfmF0qVZQ29VdTdTQ8Kc5CPrhKTwbrlGEmF/hDdVSde0ZZhi9On3RntzQ/fCx9LN7QbW2NXbBX11BaRnVxE2C9tZ+IrsD4OQzB2cdasIqMeCve0hL8b1ZqTq+pjXbU7ZY7ZnvF83K7RoDAThs0WVCo7p2AZy1aoi934NOgrE1fCkowFSerMKwRgEjZ+9jCZ1dwZXVojuRk3BoSakxShurHJbiG2jTJRz11O1JTC3mKQl9EBvMml+JxXAVJlrTAgjp9BM6WbnyTFtLplXBJNlh8MvaQAWtxfU18SwQcEfVM2ae2fXD4rf8w4IQuOWDexYFfoC2oEaw7Za4J5mL4+d9cb/j6Ke/mbTHVFAr9DEh+urY0TDSZRuSw9MbiQEM+PXnXvb4N7da2chE8RjBkoL3she0RaBKDYzWOS8J5hidhmFjlCkJXCeU8KPAJkzTkB1So7LpsR6gH8vtN2UIKLmXei2L8qQt/qCExVviFcYprwYL09ZuXjCFQPm3iMDDhHjblgbIFs2qTrYnO4cwkbeAMsR1xO78vq1qLNJGhByAoQsXoYVpuKcH1I7MjhDDxwZ6skdHOvNqK7dAqtBXRy4wA6K1ctweG4bpNW+G1u26TwgRFbIyjqo92zRO5zpuGTj9LiwDY/Kjw5NdARTa3owhSs6ta8OGYn4jFEKbq282GWcYYlsSp+MUaveqlY43p6Xhp9tk1Sfu+iOgf0QrK20HGUiXQaAL0JnEeAPUYf+iXKAJNsEB0H+i+W2Va0T6dklEcL8RlI10yxl+uL/F6arleoWCiOtgqsEbmFoD4BNBGnqRiBSjuGo2HTg8W1IH55PoFTkhSQH7XLqnpNiDtjpMnNQQUAU9xwzLzcV8KT1gST46EQKlXJ+tKzhzcZ7y7Ukrf5F5nZvbQrdeVZaW1zinWjq2IjE6YjsEVzCw39SHqc3Yk50NAXPN4NnMWeShD54A4Sm2DyYJ4Qtgi7p31Z9rNdvRMTbsdxIikwZE5inRnhL6iGe+bs2Hvf2TKCutxhM4XR8ePpnKZJh7bu7zb2UHOBN8+YS6iPq2K7lcDeO2pbqbbD8o3QivJUJdrgtJ0hV2s5TyMfAu1NhMUngA4yyDissfwicAeedRcHroyRXMJxlUhRVqF3kOZXfNmDK5ZGvRNp3OUvTA70LZNAr31S/UFOcM/8irBBWPg+IBtA+OeXO/IW32VlcfgdRrqJncx4ArXI52V62cfnS1P0i64s6JHnnmks5Lg4Ok1csfoz1zNlfMMK+DmYoF6Yg4xHTKoEIHkfI2T8uK8316r/ODk4OiEI9MDOSLwST/5nUplH6sySAFbN+LIT/LgAQ5ouW6On12x1hZw5UFsSRh10BsGnveVzJQsLfutd2gMZzWPQojLGVLPT+tkvcVe/kBYR7ceZZiVh7JTv0JaBCcSb/e9XDuERPv2N6w5isOop6Klhgw+xQFNtI+SY/6XhCFRlLD2AA7Iez/NHO7agWm5gl16kYQSWUJ/OIdRUiL058p0oQylBzT0II8XoYr6Osmfdu2AXlw3E4NGWSKYr3Cu99m6VXis8AkbJCTbDZrFPdd1pSTvGgD/f/0FWKPSFjPEPNceq8nxbBPn663rfjwJJe3nIZ3osh1QcuYfVsiw/7+WTWQTrt39GuoAJOv1b3IpExJU/zr5eZWxl6TtJNBs/pmwplqwJX1UE+ZkbmRz3NptqCe2C9IbKxZjw+28WYwO+eCYDZpsaEPyXI3iI7iUnq4XdlfjI1h0zeZ5sCK7e4YS+Y2RwOZZ7vycO3FtQGWlPdcW5cQXPBakID1wjLZrXeS8rj3tvZnn+288/NYgbSR73nQWuzlRjGDcf6RNZZ6j5+3haJ9bonKevKFQo0PARZS6Etk+HTFxRzRjLgwWj2GnjLki/NtOr4adJ7THIT+5qnrWFN2IuizqFgh3ZKS7tveuZWuUJz846nXRkDRNyTBOp4m+h9RgtQDMbIFBR6qbWCMHhqVQ9enPe2iQaiZYpcToGZIVQ5SRsO5rYv/cxOLHWIn2LzSePCaaHvmJPOpafkkWJpcBFR6cTLnRjKEXQmfaqwqgm6fI4LWdvXKYPxMJqnT522tF0sH+pGEXdzPSdKWLys8OL0N0A6Dey5oEmbnBxXqj4pqc3Q6Irte18B05NDANImraPLECLt41Zwk6KhA9VGd0Z0Hj24FB/aDKrkN1o2NjnE4nnAmbQQpk+O+p46RNb1rLoTv8bCd98S2Hi9LsyZ/K6TTUzPkIPoQiQyEOVuBEdlMdefHluSf4+XyqAHx3tMMiVK3i05zvCH+EL9q/gW21FTe5mp4mbzPxVAMroyikxDkWSvRNYk+isQP74mMRY4KxJd9eJFf5koY469JhLVgM70D91uwUsZaZ6EySZFoq9X7/3eDZJ/BtLrex2MjqujuyoDMdfX3/HyN5hzcIBVc95TL0lBU+kVPErUTjAbO2tIhxbkvZiYD6nTJWRLFEHfzL/Syvw3YpsuKd3a98B/YQSE/p2BtgykouBe8sPgRKCvwXrPg5E89xwTRfO7tzqfRi3ubT1k0RAuB9FOjglqBaWd7oD59TIuC79JCirzCm1AZCPb7TV0iq5H1fXUSR3Fu8hoeVd/iw/9YAZGDsOrJjPfLsqELXAmj9OQX7PSlVzHtSqnLGpG7ObeyX5IRGeCTWDoXchnQzIkF1MmyGfob79g+kkpcpAU16B1V4mphBVqFFwSZFKS/4O7+ZgplXnD0OF/VB0BuvwIQFFIPNjiNs11Opt9SYuMPkkDaJWtqDfsBXPfYBD0X45dUgo4QqpLe6ghVg421NNmeMdcOLI4AWI5L8MKaxFV/t2v/wjd3QM1VcSzwOWYU22PfbDuhpAZlu7JwYI6LkoBe7SlHMcGPmrmPeI1R6iC4ioyaPN9LmNwB8PRT150D6J606knw+UZ0YzQte6yoIWpAPkdvsLIdgpN2Xyb0pdz5qZA5Wu/HGFkySSOUqd6RypG75ibCgauu6IxzkVWetXxyFmFWFSjWFu68syegklBG40d8dOfqHMNbuwdYGTZXbLDkiS7a8DJL27y/1pMfCCZdOktqT497B8YMJ9LjQAIx63SchWbD5lMmCc8gX41E/k6Fu6hYPF+0J2CmdeExRF+0a8RBpP2Ukhf9kQDXLd4U7UjLGLhk8k+KdbKVHIzvS9XsDYx+xi3LVKpmZ+b1F232AXWQN5pNhmWHGeW/Es6AXzUn3M/44bZ9F927r6FQut5Et+WzNPR2UwWRFsohnUfIRjz573r6ChuteeVM54GLoXHCW0HOHlGv2+Inry3nxPFRPG4Au/rLvDE/VnTC9pIA4jZa5BG/MOpSzo1p/qGpTQC4fnA4m81gtgWn4psB/c0eOCmzUc1avND85WT8t1orw3F8M9MsSn3F4etMkO4CubgIvAPDHZEeK6sFSqZKmiAAfFbQfo/4mL7dzDng7zVzR97D01zrgHSQVhowFtFwSi1RNV3R/vwuvzaWbbo6vLIPZjsPQ5zi9xZSYYPaogIpqPx6RAmncf+qNqI9M5Nv6z4v8UC7D5RvXWk4qnWDtDsgkY6hVIdWHHdopmKvIysYFK1M6xYTjHrJvwxjJCZjvexeM9wOrUOD0EApS+RCmv8Gneu8416mVQWmPwd+J6tkBS2seuf1mzFZHrDbvRRo+IJdVf43B5yTnYps05GuY9k4OYqtBjJjbu8JLJ1UVWz8y9/PpjdUHMViVqgtbbY1NtIFm0ijFpkWu/NIJD+nA9Z89QyEGs9FnJZJCOPxo+3Wd1zVJ1zjs3iNV8KdINNf88j9uBz962x30p5OS45IV4q63mDKSMtPe30zoM8kJAnEg/eAodPaxdmYehjQZD0FTgDKWnkvEq7UQ+miN8oWtl7hJEwGci2PNt6foCl4Jf4y1P3QBb/sgeTfgIcFvswN69u9I3+/2gYOjNn+zgd0A0mW5G9huBnV3KmUZws7L5hwQzEJMRr1pg9Y6HKeleLVT0YNHfOsq9eCxtknmNYdBitUs4nzOE+gHN4KmyAiAVOopE1gXPLy5MTZdAsy5+zh2RCdlp/a0qpYJBO0jUg+AFrxvLULZLzanmr3S3pBGqC//zExXKdrLska1Q9OCIL3Fts5SoHqWmgy0DfRJrB+KAcDgjsY2NbcEGb8Xpd0/2WfKcJxQJcqMSACKB7f74bE/9nECh55A64JFiyhZr/b/vnnLpebraBZD48WvtWJRkJ8ZFp6jt/VOmC5+uWSGZCA3VXeamrb1gdKjfBobGisYhn8pq0VP6eZiHyc0i3rszNbWlPKot6AR3zSuHhBImWGqjAZcEgaHDX40At2yduvGEykvuF9YfQGBGdiQCxCD/ue2n8Nb+aVRNDR5ZmA4gESdFS8hepdMVIZBaIYGjXQU3G3oMbfclf+r1wIOOoLrtJmA3ZCi5WZKcmUoQwXHWbrNVLM8XR9WZCtoKER9BRqW8Ccs51Ca1ZmoOXdxAioNYx7YhxLkA4/42CwE54HUBUa61+ypsh8MFvWamm1YxaMPm+Mw1R5Hbmg==
Variant 1
DifficultyLevel
631
Question
This shape is made with three regular hexagons and three rhombuses.
What fraction of the shape is unshaded?
Worked Solution
The three shaded smaller rhombuses can be joined to form a regular hexagon.
So there is the equivalent of 2 shaded and 2 unshaded hexagons.
∴ Fraction unshaded is 21.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This shape is made with three regular hexagons and three rhombuses.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-G3-NC24.svg 200 indent3 vpad
What fraction of the shape is unshaded? |
workedSolution | The three shaded smaller rhombuses can be joined to form a regular hexagon.
So there is the equivalent of 2 shaded and 2 unshaded hexagons.
$\therefore$ Fraction unshaded is {{{correctAnswer}}}. |
correctAnswer | |
Answers
U2FsdGVkX1+U9uRCrYXPK8AP5l+D8AeAqn+lb1Y4gcs7XvcizkQLIaQt6cOlJVLnMJEHqmYTFnfc50SRtfQU3MezWBqWXnj0kJq1Y/94JUkeKkgyMgpdrXbbytFHU1iVxk1h14CoByyzKCjLtEiZJqNTt2PWdV9jqEpW8llSRiMUthbaCi/qV+ZuilY1WVJl8tbqaIPix0TI9o0w1gziTUoTAFmTOjvkSAXdk3LaP08rACkfUjOUeQif084MHgEUdnvM/xCLXN6xgFs+H7mYuz9OPox0f4foDm12GQYfcsTZyXRxERl/BNqEOcUSMjV7cLKPuDx8ExGYg81Gei4/fNFEO7H4kAe74pEhcyjdurDWNFNSBO2b3276nIGArhPLpiFYw9scTiqrqDAbaFIgjcnzpOuNDl6bgis5VgVk6TKpdoOAJvD4dqTtxYRwIGLd8DY2sZQHusi78uyFPq96dnjAplTUmCNVsA42t+YHis2fvPa/z6L5067mhKe3w+yXNdkKrPgg7DLCRUs7UeB+GOxxGwDDGnhyC8jL+VmZi39Dg2KY8CKZGMu5YBu8LJAOfNYQUdiLfx/5NZCaMfrUFJnd2l/swdznJW+sb1e077jKfesr7BZ2ToR8QJeJNeBE4hpcVjevQzAVxSB2ktmweZfrKZy2tskb4Gk3QvHX4pQFGn2SGcORdzs3oXeqQAqF7+W0yPSLq914bpyjSi0scAfUCVOCEEX+vHqCV//CzJ3aYajK/BGUSSjDt3YtcnzvmJEbxfdLhIji+OQruiwPiBQKKXjd3C++iiO4qO2U4RAXE539B10/K9++E76BDMnBTzalcDgBcnPDOHeHrs+62l6d3/MgaPRujS1iUFPQEzXtkjMG+yyN4Q/RVTdDfUICohMupOW1EZvcgPD/VM/sm/weDqeGwFjiw4d7IgNg+GyipIgdZW9HwGT1Rr4gtFAthJylU0+hT3fVn0nrvvR08WkylwVF7ElhVTPbeyoKKX7I5c3uoWhnj1V2ketzA4ApeGcx59pg/IDLlIU01CABg6X9FRRpeIDJ9CMMhLk8+BpzdbRhRKBGZpoR9U+RicTklwP+zdzv5acjL48NJXUPm+YeZNpMSJg6Lb+1Ii9P2Qdpb7UoOhSGxUIbFcMAWl3l332XM5H+SwCDHU2DJEC5Cv+EQy2Wutf4Za3MGA51stJ5xXHBBjae6n6YWDWAs1VYnz807Ou3i4SX+6YB20z0fFwtRpqgMv3SdB0btxP+tJ046D45G8XARrnBwwx4MC44LIfmaTwYGw7KeA59h9OrHYBQaUlDDqaJF6+LqefEnybLuzE7k/0a8PTCNB5thAMPMDH3NuVFtNWePYewy3H+02zBtXsSM4Hmxh2/hxOcRnQ178dBvy7u5a7Z3cCo9lxCHn53qIcaivLDJm8mYH/3k9SxzVZeC8y8YbAy9coLHGUXAdxzl4gWv4bQjRiq8J7TRSSp2myo6IO6/zJBrGYj8iiTBBdToYebcAIXlhFHkLCS3V1+WbnyQJwgIRWOoScY6/CAsg8hcP/elMVdB7KUC0aYKyL0/2l/6xE8wFhZipEbrvcj/dqVHLRQShtdhpE8lfyYCR7XWEiQOfEV4hM3UcmX0PqvnRDuJWAovJ8BjCQFQ420hzsrktIN+lZKGdx8two2BVTzltJWte+L1EM3sx9pQ3j3V/hFhGJ+INvhfYKTl8ECfzIZobOevRsKf/j5D6kGAtOdShCuwE4JROXAHx1rZEM8qDyHetgBsIoLbDZqd1L9P8gDLNVFgLPJFXdB8RB5Fac/ZQi7hSmYhzMkivOVM7p2bC5heVPE4J7Wac24HpNjY7GzR8PocKQ1mdgyxOjjB0+bduNFH2uzhgrkb8eYN/qESSEwIUf3t1+ybP/YgSnfaMIc/RPIRmwCqzzIwf2PyXCUJZ9krxeJaiR5YBvLRDpYBHDIl4RYH1fdhXRS+NrNzpKwNLBf5QWxNe/Jbu3cOkqJCBRQ592w5nU9fk+BWaD4seYxEaEYAOyymlXsSNPY+h8OBnIpOIdJHNZwIasmwmxocZUSFBWnp3xd2VWi0RCqLY+yTkjTwzbk6okwfVVNla/jIHU9ZUJ+cSE8vsr/RE1RnF2Dj+9whf5ZWGnML4ke/8QnSkyLGFdOs8WtVqGMEVnLqnxC3Ysmt2mTIPqUHJH4d17aCKoTYdgAKttyKJtaq0ZASM3Nq+F1XNJ+vAI2iEQXACGF8ddlA0whoC5uzavklxxl2cgmYfn06UZYAbdNUx2Sk1djMotJyJXOXIXpGsqD6qAzGSU20S0uai+SMouVzK3Cw3ydhU5w7Fb0dzSiN+MGmOYoInmxciel1yVtI5+FwRDEj7ayFrUDLI22OcMRuTKAGsFL2QAYbAfDxBmltWUNtUG8hWFb1TuB0NhZ4Nj6WcOXvd78ouf550MMIT+r8GStwI7iUPIxqv4JqTmrXQq6I/HhhPhUXgLEwQjRlmvW9C2/QomX4HSEg/zpZa8Nf+p1b9b8lh0/uFZXoRvIXyL601fq748JPVJ6re8kwzuns66CIYH7p0hI95SM6TJsIOP+Faj1ILpsKB88YDgR7Hx/q25JM4n7cFLgJHq+kedjh3mb5T/hbASn3kYpfmnHTVCJ3dXKe/Vj2gWyTwLKaDPE0ShxZkKFAOEKRmbMsfy2yV+Z6JrOEr80iUGWJ6rZUCsEYVZ7gS5HVdTp6uJuLIMFnDM5SUhTODe/OmPAOIeu9qk12pC3r3RDIWJ/Ny5Uzl1RViQOp4rA4mPnr9685rcVBPt4YZ+FugB0EafNrOjtHxrNcYlHaTFOlyeQ6B2pBwvpFhYAR806CW8x/yJEemY7MsDH7whf6omrgzaSg3d+0ff5M7/519guy+Ejt5u2owuwMmaZ+gz/0pLi9Ho4nJfSzY3b9YO02IguA36vU2zWBUD+sUkw4XioEp4ImXLfEw3nYxxX9XeGTP3DWuRviWbRMdkyTP1ICB1QpVBD13r2h5IilH3I762FJIwnQsKMew05J/TJvMDo2bxxRgGbU1dCM4gA0wn+kgbNK0Mou/W7dm65Q1OIMJ6HOE3WvgsI7PeSTnlpCR0QvgNwhF+nM1tsA4udmL+64RZg1GfPRGI4oSs4Zooc6yqEcxzd26Jy6YncHDVujbmanLlnGhMW2jNfBGpDyMajaxI2OQpfhw9Jp/eABRxteiHibBrl6R7hGRJ4sq4UULo6NEmsFExOWKBN/U3keh6B2owO7wx4VZk7nh2EqQGirSk+xTFgM8tAqNhGrxn9lXqLTTr58v2AvAGE4ZhFswYcNqm4v2i11Z4+CebnNAIiKYZN6+BVLH63BekEq+lcJ1DbbVMkACiTnbL9Iv/1AY5VyalEB+xD3vXTxQOnG3zMw9CsfZziV4oBeFdpSXxI7VaKBTQL5imtgpnRfA7sq82blXPdxz/k199u3fSRScKRf56zV/uA7LcUSaPqxQmAb5kh/ELrXEjh0m4s/ncLaFzID7pHjY4XZOPkH3GQnj0Z50EIsymsDTp1KV1yZhL2hIyGevwpz1j7525QiaUQ9TF/3CetcJPMs2N/yAc+5HHnulFWf814O2J3+ZxpNi8E6z3vr3X20LOLQlxxKCsjDWEGRl7hdp0ZsTZbJ8DutFDSohue0rkN18lu5YIJMO4v0549eR4d4lEcdw693u0/AzG+Im1zWWXux7JrlO8WBolF/ycEZsV7+IAu3WTkrEsyyEJQHJ9mq0X7ieqFMOzavmYuKG74YuoBoN9IKiIYvATET1GKM7ZOXPDBNq0Fn2Gx7oVm6t87BG3n70WZcGU1dm/6IhDJW44+9GSROxtVNB5eNsmUdq7K2rBP/7o2XucMCmEPVHKgbN4sBUqmTquoIY4PcYCQuazgt+Bd2GR2MWCp4Ad7rZk+iDuZ/qRJIQA3N20hRuOLN6bWY0Z2n4GIb7lrLVBFV/wlmTx9QFZYz/NKMJq8hxmW7DrQ1WKo44Iw4PFJG6n5etmJNmFmbgn2k7WD1kk4aCEvp2ybiQL1J+hB12Fo5nPJ7HcyXSI8f3sl+bHvi6RHsnhPQ00LQeHbS99vsc2k7l2Zu98p0//TuOkdgs8jbSMsATvFIZlMXE9TbQK+RvyUS+PGN6YqJBaY9RvRUa1/eXsqzHyqBr5lRv2x70xFf2kSd5f3kioUz5gJwkLxMQsSzZGK0uQkARJ2QYdfgYgQ6NR9IhpC0ZqiVZToi2n1i2kHgZbfipoweZx1rnaG0nICKukiFQWgKV1DjDqHokPOG8cUjKrGbk0g4ttZiFoDTHRgT5e8xbzSDvmHNypOdDDuyYWo09EPV8K/8bm1NHukA3J4KGWFdMo+7c4aRao8KiTWNbva527hvckYLf6INZmtr9L0d6Qmb7EGwDz46+Hf/RXaGIWK8gd7lgSCmef9cvZ0zMiRKTNyNlU0lwkXMqsjV128zByYzRb+ivMez+9tP0cvaRuZd3L0UZtqJJqbGAy0VjS6QrMMnHx0Hb9gDitQKxit+lM7yKA2NJvoKv4IyG7grWlNIDr3YO1xqnc5GsaSXZwhv2n8HnKeROURt4li0RdE41psxl4Z0O97wgjrV1rUAagzPFBfY6HWh0LKw4Wh3PsQChm4uXR0QCt7UVByXJiGnzW/mTl9z/rnGVTReBokwXSgN965phAgvWk/dudAJmWGA8hkkw0KWUdY7Tn3BZ+q9CLH63sJmUsmBrPpISSGeIus1b95acbvYB+tS4Lj9PMG5eVawtBv+nt18jT2ELvel3po7Qb9p8h/L/06qQUVzmCHP2vChhnR6hRz2v3Vk9nbpCRjzihwgm+lvw/zfmfz/jPKSIbMPRUK5URWmZ5xZb0i5dpQTkLqm2tnbyGkYVTVmsM2V/WDxOrCc9sl0Dy8lkwVVGqmo+CVCiWgnHaJI6LmzYjVhFfRY1s+27j59v98HOHF+8L346qr4WOOxjm0bZAWI4SbRAXThSMEWzRqh9KlvIWwH1f1JHn5s0nHpZ+Af8NRTbIzlgmN+kNUcS2GH+7hSH1wBUbxzqSa0S8LQ2VvwX1jMVI7UWGOJt8fxh8atkzXkwfivPuTaIrP0ljWA3nkXgfs6ZMXBKu8ovRW9PDwNPlaWInwBBe/bmHvet+k3W5wVLna0fNy7p2HIZd/rAQCo+5sBJS3ZSrOl8FDZA6aMpbRNQ2Kvv1ZckMiUzrhYHWgLYT3OC0lJ/8i7gCHlsgt8Vuh0R0Ld5hWAkB5i4TdASnhjZmDg/eEqqXI0p9i/ZclpvniObVzR8gHzsjztHjoehN/GsEcwCfcgWh0dxejmyHtRsMmSdU7UrSfFpA/HKK+0f13p0vtcsj3HWQ/dehRP55OCayfnPrRcHkRdJuxUlqCuDDoYnzZLmyGn3kP12wU+ZeWrS1NmrKQcSwVqkwRoYz/NquoKZ2+1A5M7gpNKXO764b7vEjBZETFuj/yrS7IVc1pTFrcrdSZVo43WUUv2t1mP7+SqtYBORbGT73ZxLUiNUt/yZsizPewpVQATU+IOfbf7qAnway+jDFA9UuIAqyGmgQLJsTzt9csQNMGLBJUzyUykiyVp3W6PSS5fWNcKWmQJHC63Lol3TcDdz2JwD2qw5Wk4aVIVrvAiEbiSV7Q1zCgu5EDbfC5OOR4tFaKS9DsaulhMulC1gg32zteDYxkYST2ihoZojkNSL3506AT11irPM7J92EvW4Pm4M5ofkmgAKvipKp/tkkQlCjL4Tr/CBzvQ6evtdNZfT9bGpNnwXRkSiqXGJ+3RvSGufeBZ6L3SJOfti1pboTFz5PLUCjKGKxvbd+LeuKM85mTtJRra5dqjzmZMdQIvF8sZiT8aXKxcdEylqHE276dQhexpvpC2KzqUZddPM1LGFCcrLCoKBUOlD67WpRIm91BVivVUirzXHdeS02U8BWSvK60Adaea0zJKhADyDE4X+Q/NnduzdZWowUPwACKQvELyHksZEcsgUoPOdPMXRDCwrB0+kIqg0ZL2p5PvNo1RFUMjUa/vitL8ruexFxPMU/t3sQTMbpfzdH2vlhAhqFa0RIg0eZxzadBvZAUXo0M/O4sQBS5rLX19DppUbxi3WCnEAgOe1a/RPM+tkaNihQqGXMPrUhrHXfScznf7bDEiaPh4qsZsLpnvZpZCQEE9qNvCVEUciVYzVTpqhYqXyltM7iQQ/FdxjXdswi4KUB00nhzOQaq+LD3SPw7M8FplZjqVUnDii8k2e2yDjhwi9iZEQraFXkPyPXo1qB1qubc8FedPvMpBWlV5yfsxwSTj5wcRPck26wRoZSF0DV7jPFxCcb6TxicZ6v2c+C17HqTyzqvJvc4tmTe6rnv9ylKNOVRlRIx+imaGnaqCC1+1i7fTvCZ3q67Dr2LIssa5MZ3bNUuTazb4ENXIn3Dat5RuM/Q/NCMOItPN9f9wae0ncSXXjTFUeSmIlZF+OS1H1qT1luMeqcEefpMNheBWRtyzlrgkyG7E5/NQiEElAu8nti6AOcAFqpqPWxwdXxlX3/6YswLiPbgPL1lSQS5cdKiaqpJHazPV34uMaFQKgML2IwYNz3K6YM5/z9va0IZXjFH7/L7l7RuHAp6qL6ertEJ2iQuuO8zFPJYCuHsCAhkgucBtJykELHQUWxl1TeXfYwr10cKKlvqF50ezinWrE/GrkCXeNCuClzkMQWOxlCvSmrunNCl5Z2x68HXWK5bph++DmAEGHozIZEdSyxJ3wYBQ1Ygono2D8Paf1HSLDhUvRVVgtqHaXK84Q+N1Uob++BZQhba95WS4bbJb6dcFae+ncn0PCVmBnHvH5GAR+Mu776W/uuSISRxYyKUZlzw928pXcOC7PVjH8AjuWmpH+79z9ZWEDOUmG1WeeR02vHI73Wnez79lPHljvLmJKMFODz6kN4X14J0khnDrpyYgY1MyQ4bvnpl5KbyySMpDOWIGU+uyCQiinIdU10u0uFcg4NoviWccgTeZIMzOOxxteiy5BcTRhwW3+1iSmngNykuhAsL8qTrxRjDXvKSnGmNnKoVvvFkRzT39kj41NUzlMCke+XMKRWDNVCxb7GR/IAkNDayzavOw93kx1GLd43DpElmnRoZa7Nythc2ler15Eek2YKjSSO/u1PClKb2Vx6qlxt6ZDJbnWZYCie/6/Yim+4ykKnelNOqqbwasg1tay2RoIbBQzKrYARPCKS5EGOBbq672BSM6jEHwf2GMs8OsnkA+0RsmFbcmuPyJJw7pkQSbnPGHJVVQhweii8UmmQVbIW15Qp/HtJWlDkTn/80ccAmDAKNv2bNr0V1orPDlUOTXmuL4VQPz5vgVjEG1EhZLKTQPTOBk43SLhhXNOzx/QwKW1wnDw+q5XO2N8NyWCDq/R4g7Esay6X8dghJ8e/BPYsWV/jlsFR6aEpc9tx3lANdRbxj/B5f3H0bT3AsJBTrU48cw7xS5pTiqiMrCEoj0tYEWX+dboP67Grb9PW5A4MZkekGGDP7bby8B3HfKWNI65AHpmpNXF0+WWizmqKQByO+b884InyQu4YmKq2xYr+2HSpzLdxZdEK/YNQ0oK8/kEWRqjqfEwHhwTkRvdExFp9VW/LFbFwzghw85/T7r9PU33C1iaRA7y93wuMBju1wbGDO7KY6URfJRgFibF9Gx5d9WKEp7Ep10RUhFA3fn/1xlCh5JmY/m1tGk8w8X4goCWTPzVXpAXWJJ6Rwyv2xOVtP9jXlqGydkN8aGnbIGXbvgrLdntkXzghiWp+MHxKl9d6sixMdF6ZFwvcexaTrV5o+xbLpmEU0+4iErOxRh7cSzUxgJ1O8thaeB56TPAFZRtrvgzmCTH7N3pcEGaPpCdXjFXT6pQAEfq2OF/BymOamz0CsKaL4lBAiq6aagWaPMLxZ9yFblMKcsvSk8BGAI+fxoQ43z8WJbLG4yYIvjOq/SxYN9oKklikuUZb/NxbBh8kiKKt/wzuvs+fkiKG89rfUqbDSmE+ImZOTZiOF6udwO/AcIwFGqWuIFaKJn9E5cQbPBgd8wH3TXZ36H0/HBJPhDe5XfB77484ExYyBZq07Z+W05GULbaaEwjeY41xEnOb7g3ClJPtbM1EeFdpTOJ0aRoi/kj/eQ89i90cqEEyZlbm7QYESklLLpeputwl81T+/EQQiHudDYcsZu2KDT5w1svmChNTS8seCIB1O+ryfarKEvADBpiSmRm7WT6FYnVUw8nFi6kiS7bL+LH5TTL2QYAyjPkLKb3mO2MTXv49tg/bCzxzLdg/kkxMd1dAo2uEzWq+L+OgonmoUejnTD0l/BSpIkCn6TXIhZy0M1NljvO6ofrWIqSLCwloPm3b+3emUx2aWNbrl4vFYVUVmyL+sJxovNf0+ji6l7GCRkQCZz48HAZL2IjUeJ843unSUNBIebDXYCsFCgTrA4qSoANf+yMKvzV1C3zJ3qA1mfEweMBXZgwzPALKVmFDiTdt0nrKWEDGUIJXHHyLx+UJiGVGkYAyrXIdeGBjT0fa2Y6XXP9qD0s78ZzfbfEKxfavrx7lkjB2yprALcTzylwJn3puDP1Z7BRaxBadTVEVVmGYjb3SQfNeFIsHMgRqtUr8Epcga+CI7kJXx5ag0OcSu0bjb/Q/ZqqG2GaPRkyt6Ab+MQZtU4T073aiH+NOdY2ns7tAEkYAvRvPPIZsVUJC+YW7wR7zehWjZC1fzQyYuMbPshlozNT7QJKRAsX/seNcK1f4arkjsOsRA0tURUWOd8WLuAeqSWt9SSCBneJ0cM7JNL2vSAw+6PPlrcLcMa34jcDlRU+qJNxjHjYh6IJub5p57jQ6RfmNl4chwoMwkFn++1JLm7I3/K8i7DxUq15IRAcxx3z9EtczLjiwOH+cAumJyFS+Xs8ei1FlZG8n4F/fuIij9llTxgcfXNs9fmdw4rou+9xFPRo3/dFrAhorUwQAGYx/cjDk+JRkIVAYqyjsL9tKN4fqggNXR1LnT/w3DlFhuPHoiY3jI6DONNFOUCEkksYsCQAqhELEWRhVSUOTZee8AYEjPqlfDeFU6/lbOlvA6dxrLKkDuKfAW6j591TJa4YQxoNZrAitUv0jCTxcyHvBJIt2YhheN2bf3t+fXdpzDGqOz/7PK5JEMcy6saU9FKZV6qi83kmazQvoy7becruK5zcv55rE/FGOf9hy3NrryvlpxFkU0UhcICK6LnXVua0SliGXwa1lSFwAl1QITvG49vItdU8L5o14j5xG7Q0ub7dhPs7thU32znN4aotKzSytb1arTaebJEFrei1JZmck2ehfwApyBxtToFWLkZZawGDRjA9MEGlKLt5j3bTAF1dz0ElMUx8Vv2P/VVRchTgCaknXsyH8l7H9GrAiXgUvE0piXY4KJyWJI3XzjDV2Oyc4ULbfINBKGNP5q9j7S5WhmS9U7fy0mgdGseKtDveOjbWp/WRppzsZ4isZ/20uQ9dY769BTp1yXp8vrzaozk347B4FrX2fEz8M7LBNxyJCSMijgKUxEsVX/0zc5XysfH0XDeoXBtrRRSNCcLvwIpANjg235qUM9ofejRNOsDzeGpQ9ZVCPEC9t75Eh3eS5A/+bf8chDVHFgKB1T/GrlVzAaDxw8g014pFHM/hkVM+a7QZBXTEDX/iLxIYkhHwh53w13KzU0turfUz28k24sHwPUgsTH8N4B5UClmxhHdUlplRXJ4DSYHMXY3hRs0KWywey/a0tP6c8dUEq80x65vO+8+LN2xm62xt1qvTMzBddRH2pj5Y60TBBODDT1bOC1ry6VfoUdyj5I293tdYzRFs6lJXdQmw09wlYHrNxFxXivsWvi7Dhx+TKOgSS0lJ11miT/zZbTUio8tlWWiuJWgyOZNPGKMRMUaJiaQe7Q2jKWPtdH2vPxLV9XkiXMr5CaZB5vYRUUFvGtoH3xOI6UmUjKfuM1wgCFccrnH/9r/LAcgOBDT/RrjFnXIgtA3VwNUkXB4iM95GbqdDaxt8ulc9+t2WNkT+FWI9x4hqsMOmY65DlHNhOpDpboY7qytyzy6VlxIHXi9vMTvJc0Pp+nY0WQiUIzjlNSNyW4bXU2G8y+80sHs4bSdXKjMeoJkjj2on/GQA0jl903t+YRFVM0Z+ZWkPMpj1y/LohXDK+OTt1JraGX8H2dm8HprAyXNIIHJKf6FyQ3dteVZCRi8ayt+1lbtalVft1F3yDp36tvuwPJmwV6s0bFdNEZPrgpbxsF9QwmJRGUGcJpf+e/j0r8Oi05+D6WwT21oEHGJHwfYP0fKorpzzR5nT4accJpC/jCkFTt28QL7N+ZGBVFm+oRPIsfj+PbPcQSw7LOcpYMBkUMU4VNsZf3kMzdXC2x96QHOx+0HxTrwmOvbMugzJVv/hAKa2LIascBoRu8wtGyXqcYqtbihQALoaTtNw8cwyGuDXastcr3Beb4dRBvT8Fbbq4qbUYHczOGOER4NLtmNrn9QRUMaNHMBrfNLNv3Y4Xq42qH9m8th4fvVR8jZmb49k7DbQsvVgececgVbfFaaFDKMmxi78Wso397ybg++uL1bh6JOgI1FSuiMyAKO+FMe2/04pGkyhrfD2R5QMO+1c/AkzF85m4A4tN5y2rGwuXTfJ3t5eYft9i9/XHgurHa94KDmdQUw4Awg/SVLgIBFK5BpSJ7RF99KGyRTEsNRVbb3A4OAWCOXFgz4ywvk1BG8543AwtIxEbp4tSVBtDpTt22CLIJXQKr7URWFwBIH21E4aW+EV+9c+HOTN7wmDZlXyHIc/nUEK3AxmlWqNroIIBRQDVbT+PC4Sic8HpPAifIQVy+fn7UmoU0OpJsslffMY89r3HIXLC4uadNdBwpBzCxlEkxOSf9v/3muq8eCwkgjee5NsZFEww6EyNQiCtiZQzY4+onGH98ozu0n1cRceqF7H/sgze7PGExbbcVNAdwQBhq5hva5PfIVAFqSLW8oUrrO/m/9ypsIxsFxwaGKrK2LKJnwdVZTOOsOQIJenRKaa7NI4qBscir7tF2rbqTJWrgB4CbMbxawDIuxziUkhb2W3yeopWUiZecBtnv1ua9uz2PertBeK2x3c4/NOOgdNwVqz9XP1oEqnB8Sh01DsAKFfGqqb30oqadjGFVzxLIehstptqmqVQuz6EbVetiQOFtOzmLl53IXm0EoJwx5oqlX4nv06EGvHpGNp5IB7eA0DvFc2wDeJCS4ZFNdxPRHSCwRtQ9npuFsBGHpeW3PKYNlnBXGZJZVoZMl3ZdgF73tzoIB4F4Ev5pT/qHt5cZedytOPHaemlWBzZXt6ihFyM9SERAeROD2kkasHeELUhvcwI9D+ql9tsLKEeNrUVsPxPFjdPJDUzdi9Dfyi9geYw/tr2cSbrd/yJIFqywZXwRc3Di16SiMe7pMW7KpUo/oftMxFrvzVyW6qa/v1FcXEcd5G/Y1fyIZU5OwsqZ9IwP4rBDhITIR3MZfoEGUIjGwtgx3IatFZHlTbP/qu/MJliDRAtU8ztd4xtSQ5FhTUHUMzACwTGbJHRNbzSykP73v1W/p+hHKknk4AAuVPoE6NpbGvfueBnDBUkfrsaBCVlMLcoKRtCtMRw+HnMBMe26xA74winxGtekqk40+Hp1Gvkc5QPyqHroFJq+vJNY3U6jiRzU5ahY7ywWWmLV2AzJZej/v98rciIBedgN8Q+BsTV1EOPkmcHKtTqlbrHCiLisBSkGfHn5lmYOLhwGlF02emjtjEvSANiQYonfxI+VVjsA/ElkniOqr0Tfbt4qbrW9vfqD1i3UsnHVmJ4ZG4Tjv3/sem4GZVITV0z+UphBhwEBPvBun0IADUk80qrpI847Hp6YUoMbCrShpPM=
Variant 2
DifficultyLevel
634
Question
This shape is made with three regular hexagons and three rhombuses.
What fraction of the shape is unshaded?
Worked Solution
The three hexagons can be divided into 9 rhombuses.
So there is the equivalent of 12 rhombuses in the whole shape.
Therefore there is the equivalent of 5 shaded rhombuses and 7 unshaded rhombuses.
∴ Fraction unshaded is 127.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This shape is made with three regular hexagons and three rhombuses.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Number_NAPX-G3-NC24_v2.svg 200 indent3 vpad
What fraction of the shape is unshaded? |
workedSolution | The three hexagons can be divided into 9 rhombuses.
So there is the equivalent of 12 rhombuses in the whole shape.
Therefore there is the equivalent of 5 shaded rhombuses and 7 unshaded rhombuses.
$\therefore$ Fraction unshaded is {{{correctAnswer}}}.
|
correctAnswer | |
Answers
U2FsdGVkX1/5NfTTp/yqyFw2aVRsE2+MjDvynb9RGgjc96ZKxSK3ZW4TkmY+fv8TNd4ULByd3s8d7qbXvAOXBd/bRJ5GfiqyO9PmFi4AUIajZOpydgUigIStYBNYrtgItDsKtNTrPiarGDnN5dd9qPYeJPhAAgGl1868X2vVS0U4mz7vtQnYDfYlsC8Y1X31UqTXuE37U+1jMj02xQySj08tvVCWkjBo6WgHDZgat6sndcZ2XKUnHH3dGKK3/YbU+lxeMsPPGwXi4yt0NtwMdbx7QNgKGa/WZRigwr0CmsSV6YvE8fwPgiTOZDn4udM4fjaagHq9XUX2NNFfEs+XTbhrRdkCW2MVQ0CItixLN49KQOGdrPbcNvMjrWNzUQbZMQSVqWvcBDCaC9LUonmphR27Z5412trl18pmW0lrlyByCKlFznWJZw64R8Ue+mIkg2sON54J/HRvOI9pVBp7PC2Vv5V+K3orDGtx9483VOu28+wYui0rgEtjeCiTQAB/ptc9X9wXlJRP/DwRR+6+aAP38F2eBtpMWvQifJF+MZWMn5t/luBRi6hanV92ytSj07Buk7ADRfj3NitUFlNJNf6SAc+dnw/mYH/kgxMcxsufar4FGsYxz+CPdg1wVeHCT/JzCfNMFOwtAwmIqhX6PhjXWnhtJcDCHiKeoa9Cfrd2yNEnrYZHjtGu0ZeuYAmBQDMSNFG0ohadUjBfCllif53HT18axI8uXBsznzsyQBAKluPBdmvu+hCMgTQraq9Y71uv4hNv1tETYmiB02OffpaiB6ExG5d2sfu2xhj5W1sy8xLGkPbUm0W8tHYUOJ5TjqTUtj/p11jfoBMQrerlpQDxpWNzfekvjSgwa6yJQnSENQMzCfeco823Vzxqs7+gOJNIQznkrypwonU/uaR2hBgi60KlOzFvmCQJvd+YoTSK5vxQjiWxy4ZI4YLcOWpmIIDtfsR3hjDDYrvQjaHwB0RJj7EQhlZZ6PlswuxvUTR9ozQYS9InbCMsLuFUWiwO4bZZtJXuAuYz2iL68Cf2PM+aaW+UiLU4kUPwMXZ5h+mPjeIPAisbYA8r5HFh5tahgDcp/PxDPiEXIbwYb+vSA25zSaVbsm11L/FwAg6/Gkb4V2OIWWSG1P6KY0mi5zyil0vMVXwUT68tQOwZ/EoHnTSOWScdZiyVQtln9cV2X7/thqRyHzyCkpYJK5EwHDGj3/tQ4rhQbhJBE1iYHpr42hvqPnrRl52fFW6CiaB6ouRQ2gVPBnFRWaLEbKSZWouJzgAVCFejXpFqQCnNEBELg7a7D1UqrzPK2hPpjJS93TjKQnjASDDcPO3XOnyj/hwtbSdlxLAv87yfUTsqTiX/1iJKByLwRf24RBiElPzeO5dBJeJGCtz9EOB43SBYyv7fp1rSmX3cw9kCGNo9BvMJbB9FzG0nPWE29Kt5Z7+b42XbQ/zjOtTILHTTNnpEx/jNupeqxxhhmCraYjta4kKmcPmwpaXRr2ALy14BequULNyOZet7fCyFTpZcgAldi3VSwMOFfVEkGXn4gD4ainYraIgbGHfr+2aY/7t++CuaVyh+KPmmNvNPWUNCAg5xK5YMJ+PmvS8Fb9PJ2E1SXdjx9FT7OTAdqjqz9kgKoG76FxeDYayAyorVvgmPL/iekpectZOeiK2NVTDVBpHu7Tjy9J89fltA9AsEH5TxkupSIvV+fAiHew2MEBV8KiEJpmtotM7a6z67rZ+/fzn9gZuuaVyH+xP5rK4bK85C6aP41CcQpIgAzSShK6yE6KCV48Q1ec1/p2TtDdisEl4sxGAEYIwQLq22IhJyCoVgZc08WaO4aHU69+2BWWnYFp7mECaQpL2HvOVqu8QELsVbaAghdxnQQmu4pP2y8wz2RHmjfveb5AgoNoyLsuimPsmHYPne/j1NKx/8hvClEuy4Yg2pH5/a+ciMfFfdnsHEQGCGnH0WY4XhPBrvbZ48nMUiKJYDnCAuFfDwVEdx4aqY+AyeZaNiwpNv5ib/6wdgjF2J2S9e7ZMfTmKqOCV1D/YSzdIrLoV6SRnSddv4Rq+4Ud9u04mqcrC93yKhxYKucuWDqvyFI4rk6WNErhSpKglQwWehyx66HJhlI84OBnfpT7wkti3U5PBOc4BkF09R9rXv2pYFOWrf3d93sxyWnHdT/c9ChxdocDtl7Do9khxn5D/rzgGSPk4c2DgVrBQ/iurv+UHakr9f0bSRf/oMTP3AvA+bJRX5fLBNU59uYBzZCI0gK532f0lPo2GE/mGDSXTOoXKi/bGRVNFVRRRwoNh+tD4ehf0njshUYx7ix8SxOU2T5lFKtCAsmqDI7VJWuXXQGmLt5apk5+tfZAj3xMSEF0/vNNQfyqDyaSFAOCo/K2RMaYjsBW+5w1byLHbXHCBO+B2CoK11Pj5ryih7UNw4nIeLcFyozjCcB6//geZ88oU2jwZ3yP0s6cZtUQZLRkJfhJcVdyJNct3AbfpvYuUKyCCGbQU+csllO7KG0kCHtTnZK7aKwMtpRr0QmmXYASUUrUhUfU9zYXeipOWsIdGWIqyRtgfR/wGHwiCsgagfyxoqe0YYDlgDmj+G7KoNAqK6uJitUC2oadwN855BZMfNN4ivMTZTBdlOqJY3dYjNGi0KXUWillcOmqo9qhGbX1AsJd6ALDDxTkO8P1m7TRtnAWp8Oxj1IUDuFtA+KwczrLxoL724/05ubjXxa4d921eAYRR4i6qUOhv8f5tt4NG0xPO/YeRbULl7ReDk5kxbOyhpAcLDpsMmRKRuibe1Rf+ydj0gq7r3qGlK17iVOFCjJNbANO0+Nqje77e/KLyzFIVzMPjZ98CvLrlysoa+kxJmUayIpIPjzkT7zDb+ZOwwevRB6IM+aiTm8wfi0qX4UlGEVV94aSmFw6GkgoqTgGNwcIKHMgnHEQJpGYLgiNJd51VTtiRjeUYfSQDSOyeoWSVE/4Sy4Q9wUe2mhZJMaulwPODZWgTrgIv7agc40tkOCX2HblokrtbKol6FO9OvdwcpYneuENy18QyIbVG/Ag9dnljWrrT8M7MnvIC1l9NouS1R5DUy6DwgifpRt8BG28xzWH13bKIcR/od4fCA52FreEruODPgddH9W3TPAVTuQYN7+eAds47oJO/p54rN1MoXzmjBkjVQLLi9M6HKTM4nqjxhX64MQ7bCnG7VodiREujbQcRG1s6ylJsU+xAk58E6iQAV1hPjcbtXICKrTzGo4thNCcXtFFAfYsjSN9BT4jDA8wrwcNmiofiiiP5xi0JqECzNAGJ23DXEvFBAD5AGXnvdZR3Wvso8+aDDjbrwNMtYFdMReS3CS4TQmMXYOSjvH5iIiM0Qpvbh0BmRBpLMPcwl0QldqGC9fZ/m7FUMVFque5nJ5aXxHPaAogWjGOj88csd0wGzjbG5lbHVcDXEFLawWbiuZ/JvmYn9Z+XeQ/giiUITUeh2mniNJ5i30h+YhJ3Jwyv+tCdlTbhIreHAlN0GTKyS4bdKNcHTUT6e81jJQt7b94Mofr+vr2Do+XlEN4hMvPszqwWWuwO3LaVROQqBNp5p8yYNn2G3DoQ/tdN61EdXEm3NqR0LvP5aPmd5gzFC67IiLSfbRHuZz5EIpmFZ97COhwCpLBtBVkHfT4QjYezdr5dr99vpJ3ScUBPF4Lx8zKny1B4/u45hkOumF82DUFfwUknU3rMb6lWNxIgIP7U1xEBdpH5eXetDCDDwU+RX+MFDkcVl07223yh+0P6JJN4CZTzMgqTAmSN8DGuQV/Wt0uEt/o9/rHz5qCTXFS72XV7I8Xk7uNubWVHVYmWx48Tz9QfgJG2shYoHcY+vXWpF804tvd1R0CeAyJ7Z08/1p7Sx4bc7Mu+ECq43JjqxZ3+YKugLzmkgNLpcwA5Pz4xFz1bDIJxKalncm16PWafFUhZSJ4tu2vYgZqi9Gnj/N3LLp9s7F2vOFteo3exK2rvhIWsdZc9ZY9o1hJiDHeLSCy15RZhvokiv7/M/fkeRUH3AqP4Ssn/z9r6JE7zVZzoC4J9NpR5Z1XM8PpewKLmSFsML7HHQyXSSVA7rVu5OPcF0DN0BX+wL92jZDiCNvJkamK4BNmLD92Plb8SzDnqD3NO5X/HFENin2kO0c9bYhViPh3ZEAnnXd1bNmnZweJ3O/U2HkeFDS/YknVZAOYOs15nsojRv6XHZqZxaOllhhhHKFN0cM1bGIuezKHKF8xZhhUGvj9/wDATW/F1R4cdEEVhPHnza7It6dzTA8+LdxgBJOHiqrlhBrUs4W9nKqu7KAv+zEKUiegeyp1HdmGDV8E9cN8QvZedgsW3NdLjAYqARNo5YzRbWorTwdLjZwIZMUMHjkLU5upnRgUgqifBOd8cLOEFq3yrq5hSR2GFdrN6Bmfqpd7n6+v7jEQsbR6pr9BWilqdSFagYJGua3yi0YzSNqslTwky5r4ksjSTp9KGhp/TN8leA7psy+yfm7+TIKcXMJrlPraxCBro8q8quY6yJBeaXSz5SBbbN2jf/RWjzSXJgjNrqokBVSiHht3XlkDrFzJUm8sr+EWB76EDl0OE91Q8os/MPJ1cFrhO8QdKpu3IASV7ibDMS3YLIhVidsHC/SeE3NdR1F2iDgqEQG0+rwiwtZrlF8KZ8L5miVJR041qkCHz9POqhP+cU0xgL7kD7+mUVsRd+E9EgcF2bU2mh107sD1+3nV40EQO+tm/9N3jpv4Opq6D8mogLVs/M8kqRiBT7R8UGq79xGQwg9MlDx3oSuEYENoeRtjc7eY3SwKNciIzbIYy8frcwqqCFAmHBbrFqd6epsUVrSuPcOF+90r+2ZWOQXlHAXj9xEoXyyWfaQd807M+40DLB73VNYvRCj4gS00K+WFD+HDEPuN3Eb1/J0KMkR5+UM+2jHfMvoKj5wMGtp9dWnMZtiZO8irPrZ+T3snaYlvXe6wAP0CsO1TYHaQdXvUhEBo3pfeQBKqD4m8HZaCnNW5ZOivNzFK/GSvgLExdkD6sWRj1ajDtg3Zb2vrrLh+Re3TXwUXihHk7eZaUKLmv3tLofzDdq/C0hHYtYqtfRb0WiI+8bM0W1f739/GEVklE2pCy+2U9tysGnA7QUYCyD22X4UUEL++C5J3krqOL8EoktxLJOhgqKVQHbnEu9aal1UZX63VxAlugKbhQv+ALgqphMEQnTIr2iojdNAfawUiFv6lZhjB1NeqTOJ4nDjpznZ080hsEOVTwOfDf3HJII03IoCN+Q0OOc8yeCsR83aHT5A0qg9PeewwFUOZWGxK3B1A14keveuXDwvcN6FEOQS9Up3InL1N1O/rpqhuZTieYafWzw50wYfHdxCX1263oBOMuCE6C0m+xmaqqi69mvG09YaM291rOnPaSb7yeY+eyRjmli6mL7H5rpDxb9ZwVHPCBELCqXM+G/4XNQ8rBLBzgamEXqUx03RSh3bhzZrDoa3h2ZpK+a9HcTjlMViy2NXBd2BGXkm1DOHbex3b+nlHaetQPbJYWhVAxvbX0QLj3UeZ+NvCty0js92nJIsjCY0/su0xOIkANajWu+r6tf2vL0vHfUhMyckKZYH5HVeeOuaokazvdQFdfqJJL79Nf5s5YqYc8c5U3TwudfzANJ/VNHX+T1ognG6yj0PIZ8Tm3gURjgSiPNbx3u6O3B3mw0OKtFxA/3hus6XQcM8CRoeLVdMBeVJuSQE6IwMSIs8U9PLyQgl7tYRBOkEQwv5kZ0YTE9W9Iqa7bC5m/J92Fnup7qJSRw/5Kvz4CZbBMyIEEeP20uWXE+fSJoVOCI6ryE8U7mrG+zPj70dcqOXKBj5JB2gJUrnlw41O9oaH0sPpXSjEPdsQBFdVZ7/+sPKEvqbCL8ZgWSAJ/kQmV3vaCmSaWfbB3p78vDr8gjrIlF2MovzNdM2qdj+Pp7foGJoLBJ22kOrkd0Dk/mOwr5fwFZfiGHA4onFk6RlWdTxQBGom2QlmtALZoHkpjp1H3Al7H3bftcVefK47FPc+ZDgC9BRMiSuYBzmOmVFGnX5q0F5gHO7EebWnMpf/iEiVSrpTXaO0SnWoxK4gDHehyG4fflzV95KlLfTh0gq0G6oHcTdXjBdWBBF7wg+Nst620hY9OYOBrJrofEFLFdxUH/0gsufqUo3WZtwHrnskluo40sYq8txPl6iyKjGOdfF7Iw7zAz/ghCpv1pWazYgRNkqlzbASHTpqmNK8qtORwif9G0CZNHglxGMXU2faUDedhuslBTBiJ8Vzi05CHjDFb7FUJ45Iz0PLy2W4S6v6G0e9cIsw9G6BhQI3dTd38IOJpgRmh01eATVIkd00R/vPUqeF5Uwuboa88fhCINfhB6QvddRfVuvFZU7n1rd5QEJF9O9yN0ZXRCwuzkRgIXNiFwx/hb7GM/pSpk9FGL5BQh92+5sQOlhKDIaeEJhz4TBmLbkEflQhMWEeh5ye9sBVgPVTQK7Q2Uy1dh2EfRPNTy3CjeCushg/PIgixl4Wz/4aF7NcddlFiZ0tfUAjaXHltBc2t1bU5+0+CgbHIiB39ihZkG+OiKBvykLSVMShfL4+02W4yP9+FbzoszYNW7V0u/GJ7MaKz5bljI1qDKQa45r8brUGdso8LZizR158a3yueBAYCH3WzBUVLTp7rCBa8zI9PKmT07RGrGdDGy5nMu4b7QJFZhGeVOwd6UCXzQMTadnsOqMyexc8X77BCRkYAFAOe0amxQ2Z3yz9zaOEe2beG3A4CBrAGxZ4iyfpuBQEnLLPQ6kqABADe2P+h3ltDFqAzRBJLeyub0xWB920pkZ8hdvfDzkghJR2YcXcCNWsvDxl7KrmqjaM+3ICSOvfd5SEsu/sUg2K6XKmm8QHBjrLUPX6oEv5CSQV+xrgrZp3vykEDAuiK0TTJ4bfedpAlqyMjMBkJQRqXo7Yc3NK/EsEOm3J0PCicAJelJBEKWKqXWTRpxCLpu4xMQdxIV+VdW8kn0MOmMQLmxOMEikh2iN1uuMdENFSH4SqQAqmZRIFuYZLgzyAtj8/9AWYvlqtbldThWT4YBdElH2QLgM2TGneyWADDnM+Eq1SIQhYGd7WtzsokacxIKBXNeuLCjX/ACAsDUdp0ojREMWp2Dcy6vRtuve+ydRVmy6RG3VvghhCHH5bsqxHPZAYqf3rEeHMWTloxcEJm9pozrLPtutsL/Vp2DqWUiPYVOtjaHX9GYf5O/0AYeOcKlLE8QeRb+q0mzyzuu44AOkKg9r5Jb7l2ABeXGLaRAEIM2visiqCMxjaM+z9DVAs454WxuJhyjLtKjhBNmyEhoA6+uGKMZP8kSVcz4+OSnG/zmttsJTTPlafuTh8puVU8+4PuNgqdSEjXkYQVx67mS4jpgrIWf35fTZdE0RVKJtuUpevZ5PCrxZKMOsGsU2nLe6UzuaAH0rAdfWw4MB5MTUZapDbFwuadAjFQXgq9bLTOOEVY/826v51uCPiCLDD3+ikt5wgLGIPuOZ11MtRK7cnzjWbXBF8XnlH3cGLfFnfPjvh3Y5pcBBFWjDaCKDJnrJFjmLZ7Y0Fd1hwCNRe/yywxNdMRe7WETCnF0udhuN5oOughSDsNdCj56zT4gZq/f+h/exIonWy6AAh4nkNe15iS71G6jruyUPvE/TJlCZ5uow7iYJPNYt49xidkKFzF99G7DQG3tyCKtUe384gFoQp44w1GxbQ9dpbCMdh9Bz1NIkaNDbBL+Ov/ZZhi9Dau+TZWt2Ynd/KnOT4wZeW1GUczW/ssEaV1q2rDSF2yjmcEgyq65bMQzqDjrYIqDy4ylsjL71fdk+2zMrRmIP5mv2AX8zOnPBj41Oy1MxwEsNHk3vjAX14yRkhnxUyEx6HaqT3CPvFBeIalJtUYiiIBEmaC0ONbd+M+KbtCQ1dtOpvt2m7wL0iJbhYANBR+eYsCUBIMglj/MoxY1Y9vhy7TeKu9RsrUrAxqferHk5auT1PBy/x3tppiGC5+JPwAC7nJWxnMM9Fxg/ReeYOI07W4E3+Fuef/jJcgf3A6jhQ+pHljE0AgTllfM31cFBKTTNV9QPsnftSROcVN9kaD94ZTrTzRE4Xlzorpg/zA2Pps2nF80x3yoR0eAP4HsP0tyTiQBgjSSnwleDmgB7mzr5HnmochRzJv/oTgh4yAs63v9yBJEVYhDReeNllhUA8z7jsx6cIOzYPTdVWILwZ1h7ol9bRmXB1K9d5+wLr8xmEKkCarqXF9aCsXRnW9Q8NFrh1KShbOiHmLAntFlcBdBHp44+UF2CiJKOjmTvYeepI/+3DCCj1SHt5wKf8NmeV1Vz2bdSViCLw0SV3lreoz/CSd2OZBFREpFgULN41YnvXpTF8VP2BWU3ti96BTuREO95LV7AvHDlahfjk+89DnuxuZ5OgQaortu4dmKZvKNtCQgOryK30C0wZq40iJcWQBuApVZm5+46qXNMk5BenlyG4tRVZNU2MUFvRUIEW+yaViKmcVTRHvMzbtC1vLHsSarADu49iWZo8+Rlb7EvQBZzixr6RM2dbT82/zQbf3vVA0WjGg/fY1yS+MGQdAgLiLkXjUkAQrCBorIsFec0OZmiTH1Aao48SMTLHcoqjh2DhXgyvi0dCop03E89X/Yeanx9A5Q/fFYFmCZ3D+HuxJ5fGGcxhQrxP9X01NbwJByczD0xFsc24RfLbxHGYxmZ2rKjbGBzCmaieKTvWEmshc1ouyyWZiwoGscFzMDuw4/pUBQ7L4onXkBM3w0nRqsKxZ/jacicdiMasFaJKTAuGRFGcbBUKhdvT6wM2t9QOZM7AqG9rp0E5irj9GbXr+nrp5iWYwtIk9dy0oW21/i4RGp6Zb5aAuZtegglcp563PM84vWtJzE8ZrEyMVNk21ZESjM1tYIItafokDGbnrW9qrNQw8itLjD8XthvKNolfViSHj2EcuhtRvA0oK0dmRVuDLAD82+SwhotmnH+1UiJSdoFTgeYSHixKu1IDfkOSxOfpCW7cecaC5cj4nf7ZwvWipUWTfkzyqHoBx3WcCCyYmrMXQKqpyWe4+o817b2VDjQCciicLg117J8SDMkpD8pI0zkXqki2w5+Vpsr0pZvRUF4Zx6zQsr9nnHukPuVfJcVPrKwOdHcmufdbBiITQD1vfAurp0e6LhF0uMWlbNdnlktiHxUxvKVbTbNEQzFwBUHWCouPYRHlBq8E0aml3TlbVUjJCiJGaWToXB7NLdeQr0it2A+wyprSbHKZSG0o7fpvLW+UrpnrHfe3qPwrdVRRJqLuA0w8mfrOz5viBfhDvhq0vK0jNpmD6s9XVg2kuo7e+0XM1XO+p7G3jYsAQ2oZGcFeOlj6cFOVrM/n4uyTR4hmGRHliUrjmstqmA7Weq31IJZBI4j/sWGdcDzBRBmQZWSOf/oCLOB/j28LbkPARfyHImCsPK5Z85NGvIozojNFS98X+eXqAo90Kuv5Frc0TOz0HPR5UAqf2M8rT5iy02EciFmaBu1jvk7Gpn2bDtN2lyLJYUskpla8/UU5XTohkrVhXvWfPU0hNcYYbEMK0qZGiP/9Hnhr32vWxnJZed19GI1vYf8vX4HczoBmXE7WBTv9eVt+wU8elHynxZ2QEF7Qxui9H8BXF4MDbPjNDQdo714DbaLYH5/rg7UhyfR5VbHTiVqg+nCA9paGpNgoCTh3GVB89AhF+ifKPIGiSKtU/tYeobKU57x9w++OtJuPMqepr18V+YJruWitGngxe8/MU1cuZwokJ4nw+hQXyDQtgcYm7pJH1EY7Q236AFRIqOfL8B3DuX49PC0J3VoQ/JKDKQyo7JL2CcZvi4XZKc/ilaArgPFzdJYr8vLG2EO0cKHQz/NJBxnryIZ05s5tE5J7bqE1o0hkjnxLbBSr4ydbwxjZu69UIPV1M309JaU/aD3cEa5lr0oPyrZvodgXRfxXns+BjDTywzuD7SOlfh9uMP5MN+u3RLqudAOENi7LEInBJjaugyUPRy94Zd9leuqX+GLP3SFXAw0IoTIswREj14aBOx56GJnRjyV9lPBg80JVDQwsD0o3isUWV4nFkbkvbbsDmiGJCLhpoBZ/QvfxkvJQJS7md8Id+sRai6M9cSiHiNEPXixqOkB1weQL1eAgg6Tfj0qgEUmH0ZkvKGjLYSetW9F/2oTIAY64WrusvUIS+ihu8QyqW2SMtSUj2boAuwrJ5KBLpoP6KvHy2a8/LAbwuxztBdDBL8g2QSfxZ2SHQf1xcp2waeyZpudGR8NFCu2fx99yg1YWLHzdTP/4yHdfcpxgy+WpQNmzskACcyTVBQNUgYweEZ423NxiADZEPzBqPm1cVPzwpn17CYWWxEKGyMl+mGgmkwNWJ2X8K2IgGzH+cm5cJyqmiiqwlMMJdKk4qt3u5RLgAw4by/7tzmLganPjToSWyajh0scJImNcKyGJ/DNU2qPU9ZValg+U8bIa5Mogvl5QBpTAqlDJ7OAqYZMTvvrHtfPIF4yb12WwevlvtcEMoWEu8UTmTIJCbIutoIQwT2ZIhasizXXiEumsD1RHSgBdRGyQtgdRC/0tDmYbZiXBrLpXwI6lML4KMZkz9AvAZKsq+6Pw0/PdfmiogBfAEQLXAlK1LkD21xKz5uwtCWjfG1U5a1XQDO0FtKc9Q1mhq3Cn4tiJH/QnoeBeO3dPHJCHv9q+7aM3JvZgUfc2ryCsm82sjEZU0cBG7dYG/F7/rLy4UQ1Sw0JbWiiaQPkOi2gYoW8/4g6oDjpRl47YUlgc9tupKPn5OSEtwKISr7tOFOdmON+Cc8JRTLWJp28NgdivcYrD0QlJE82/R/u9+p3hEmMcVElMFx9TUk9ZvNG+Tdhk1XVTdyeny881FLVYVpfaIjZhKxFA2HIE8kqXT0XuyV4RnrY/aGfsHSLYHkkt4y3CK9kHWvsjLYVtpE7BVpKcxh2yMNOt/wD1lABav5U2oyvTldarNabLYShp55bqKaGc8NHUKGQsz24mFumtJvX2QACnI1dWut6qS9lQFyxnFwKfqoVNzVCzaryro4ocAbOkj9/9cEDnJeDYi0qZfY3Pwys2aYmxYqQ2GZO6OMI8HhDzPqRmc+FqouZKyU4E25xnLGFMA2aJ2dfYp2lswSTq9r8upHweVPNeIYYiIod1dKTMiMs318vaBi+kIInnI/URU8qqpK0yF+UgET4sQfBGcxWDDadMM7aPG1qFfoTr2KIBtm/XPPgkfvMe07Hh21iHI6rIHvpnlbxMCDq0Y8Ya9QvfT5TaPMTcgC2udMjRV9aM/ry9DBTn3tNn6H+WaRowirEMI0fYdJNRUL7ZSINql1QewPURJkyYuVAUWETlkdj7oWFrf6KIc3/CeoOJnRMcWssxlDo/ReCZcSI7NSF6OKcj2Y8NWFVY/mxSWn813zfCQUEFJ6qRbUcabX7BmeXKej8RBFAV2P6t/UUtsExBQ1hd85e8WhDRsdHgyDapxQSLNO/+3r0SBOq9nG4hQX+BhD6UQ1WE6Jw0K8/r2vqkqEoHF/LyOz1VOPijihThiejuEaUdDWLfaOG77jkaJUPSXuFKHk93Co00Jg1Cid0Y92fZMbuknDjl2CBiJgRfg726baJhvwqxCoMxsv36qHZ1eNdOA6vCWN55LDOlK3fLFM5mwlbj61S6ciIIjjHolIoDDYmDuMFqExL0dVXP+Rlmrf0y28NqvTihqyeSfsHTzQLfB2wl3+CU6AieofWVbsdTdo5l7HFxCn3B1ZO2K9DBVeetlYEHcfJyZedHeIsyP8PJlCUxbxNZc=
Variant 3
DifficultyLevel
623
Question
This shape is made with three regular hexagons and three rhombuses.
What fraction of the shape is shaded?
Worked Solution
The three hexagons can be divided into 9 rhombuses.
So there is the equivalent of 12 rhombuses in the whole shape.
Therefore there is the equivalent of 5 shaded rhombuses and 7 unshaded rhombuses.
∴ Fraction shaded is 125.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This shape is made with three regular hexagons and three rhombuses.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Number_NAPX-G3-NC24_v2.svg 200 indent3 vpad
What fraction of the shape is shaded? |
workedSolution | The three hexagons can be divided into 9 rhombuses.
So there is the equivalent of 12 rhombuses in the whole shape.
Therefore there is the equivalent of 5 shaded rhombuses and 7 unshaded rhombuses.
$\therefore$ Fraction shaded is {{{correctAnswer}}}.
|
correctAnswer | |
Answers
U2FsdGVkX1+LihzEvlsRrOGItEzHHVHbOBwsT7H2D8D4zZ1Gne+Uzt1K721btfdU90HWjOL4SMh+sadk0cCsLl8H3ITAUf8uVEXJTLBfInIvlm9h017WpkrOs4WLaF0YAo8iWJYoxm4fRwWNHEpuMIZzXSBBQykHLa+/vxCShKhLswTC8LWMF2S70o1xTR36icYS/+vF2rlzBb2nKCXYLwDqJqDqNRNzPGrWh73xCrjwNM8k4Ogwdgb4GQG2ZuF7yDVSav/6zdaohqM1DbwT9EZcQi4EWdSY3aFjilmiui+g+3AunqZ7SblNxuOdTtt9hyybriFc7yDaYAh1folmify2JNTpAskfa4/+DYZSm6sv0PZVem58/eNpNCgS9JUK5WNQVir0jFZ+CF8mbhqMfDw39IpzMD+8U2b9vxrvxwekyRMxjQOn7A04Bqo4i6r6BZDEOiZxshfumukDf2h7Nnd6uiiNkxEOmnmwnrMId3/OSD/LShUAZlnUrCD6Z8HjO+l113Z9WzMh/QiN0n3+sdK18wEab/XcLaSIa7alJx2OkSncwKVjEKKsHUjfkLAwPk0YQ8uefsj4Vz5ncvopfxFPYlwQ5Gclo+eR/q7hYHUOKc4pt7r0JsFN124oEVW9w0RC7IVugmKfZJrsYPbrAQsMR5lAGsKf9AwuuNbYqhNK6YMvPP7C1GCOFDst2/3K4YLiRiKqDWCZvTSMkff+KlCkCVMiFecEetTwCe4qWJYWsg1yT7WgFT98vr/hybA5iUq9odHMi4EDngq+P+MvBhIvXHBVVK3CD1zpiUsHCFxjN4QX7Cf6ic7U6L0ZWwVwhIBwcT/SXoNrSXlProPKVRzzEJ/wF1c/EWGw7gX/ADnr7fj676meVguMaK0tgz7Ug8Rr6jAexY6ozdRJzc/36NQbvWqsnZAGy98ZWU4DIiY7i3x7TMQqZxoYHCUNbmL5nfodUQ7/hjqCVtiF+Yr0krjrEsMjfKDPmhEQNM+BbVo6mshjKPJrhkN2vgCglCjJQzvvQdeI6T6cXFW+Qpgh6KlzvqDqY7RnSU2xL7/Q/LeM3ZcPQr6vWp1Av5kfYPePIoIeN3dgVxN3/tgEoIXShVOISPsToJCWv5TWEehAqJhIoiD851ZzRaAnD2k1wKQfoDRIGodLPrdC1rYaRdaqGvpwWDkDdKhT8rG8kOenm+1dhrwpyV1CUv7Lsf3+6tREkgb8dvLJ1UFnTK7pehHUZtMdtqiSIB8FqCQgPIoLDQtlyH/FCt0mnzbzwLYznHoW+WkwIye5avuR4xN6uZtCwij03p3xtlZrBJEF/w1DosdP0vZS9ywvQowTKP4+W/AzvtLwv7a6v86R54g7PK/+t7g6eurYXa13a6fPJ9e9R7U+crz14SKv+MRyfgI1CnTuioDlCj74JnZX8zti/Wnkneovki+xjf+Mm7YOofV2VZ8BrMgjVfvYafvuhNF8v4b8Dhx0V+nJ2nK06lqKF67BekW1VSU9I/aEySh6yQaHTRvZkUIWqoc0YqgCc0u0auPoGYr2y4xiQ/XtIcv4PyP3V7ZRqtz81sNO/C0FS55lBuqQN+D31Knry8KBtHPmhoF+s3c8frUG1VZgHV/rSnT8AqT3iBquLiTUnAJLWWHn517zepeqttX+sPxOtuNO/tjklof1TNpjdFsDFetwLGE07lfuXsNYeRQ5xfLEcDjpEaLuth+276/oWz6ChuaPmMZennLIlaWZh9YZZbJedDR9xmTIFM16UbemVn7Qzwkt5R+tcZT9t3SAwUVfjWiVX++hcmTNlIvUSFC0hMOOqF3j6Ke+qlQDWxJAIKvPguYnX9Xvvf+L3MdlgDPKWAgjhFNTvFJr9J3NF8tIF6G070hd7hGIDDmRvlGefjoiUdeGwUIXEDPwqD6vumD1pscopY8H/QGjOWtzI2ja2jK29KtlsNwXjFdTu2jgNIMbHwUYXOWWsDatpBKbZUCBaGiB+0o0QK32Bt3GxKmUYT8+zpaBN1K3tzq/Y0caZvfHYtmf6JnzN8YMkSfUkgkR14gZZD96QqE7lMzjLKA9V2f5OxVRNR4yCKCzsrsrORS/zPjPeTqJbfW5rZr1+AzdfTswi1mU/yekcmLQSmjQzIQlLFx7Hvgd2DAmbx4XddaLjLSY4DBsg9OvIgPPV2SS9GrJ2wWFgYy8TIYOpkbCoB/W546W2nyAImOORdeg4T+iEtiLWwA5Hznb2zFzNNsp/1A4N46ZkhZXh650+Ja4cYGh2NaE02lqkaYE1LJJNa6i9dVFygAfw052HOue3W2r1WRv8iKGXV7zMCMtAEU3/jvDcJ6XxVxVg99jYGi104LqnK0OgSkA05kOf5OLHypAo8F/feykVjwZzHTZaPMMUKTJZBcOygwsAZ+st5yD5Grb6Fr59JuBCel50C+UasSt3vIXpzGRpzn9l9rkddtscFHud2RzIyNMB4/PLr4yfghBAIGNNqdL7B5iPn9ZPcMUoOqPBBnb7DfsEaDZrs3KIPn9x3WHdN7UqvoxO2LZtTRRfcaxpQkNARHqybQisR8d4aFmj/h5gMqFw66WG1w45PSbiSFk7aoJSPAeLCgPwwPx0ioDxVib3y3LdPYEUtSfEYOe0YJ/QqFmDiywivRtCkkzF2o0lgmUvlgGAQIks23kjuU+dkOHYtQz91lMH/BEDyGjIyyYI/FopMD3vxJSIbZ7ElOfMmLFz/EwuCV9bKXSiz1EpZo/XVpecnUgQLTrUdPcuVigpeKKUz/s/Jtw3kyPhXjz4EgpHRESULJPDjQ9Q/UYco4eRy+2UWqMRCs+C8oh9b+irVwsf6570aprG/rthhUnd4rcrtTujZh1xUIu+kPcMOSFqIVZQnvjy0uvLrgqKIyq32s/4JediV8DEK29T2QrvO1SBB7qU8UpKOY0K9TxkXEfn0Yom0Zx6Rp5rig1+PQ8EeAgCav40YksuQrUC0YfwQzP8cIBbkT/A9nwjJDttDJ2Eod6nCmE5VzZFCFW/LIcAxde3SoiLlEFLNHhsS7DK32pXZvE7JXYPbqx4jWMny31UGA6HpaKUv449GA7hBI+TER7rcxs7lPi0PzZYfYguaJBgNzpiLlJTgmaZYibJBU2IqjXfdGp6Gc/e2EmOt7ykZ0RaWMxSzHTkc6zSunBRQq+56UeGdDlZuDtOQhsAaRWdbLUI2eVYqSe7AEy8ms8vdI14DmJgRUnT+YI50Yj2y8wG9Jxx3J688UkNg7YkOblb2aPZ7MKiWsDuq3U5wOL+0zb8CtqXHVyjYIHuCJ9DSpMSKgqjvemj+jIZTBg32wtiYQNyutQkRlcRtuDSFd1xJYDL917C08xDqjYQv9oXZcSfZ6BSpRx34yG4hB3IyNwDR1ImY5Bq1NRFAEPc0X8EF8+L7RZ/9A1X6H1Y1qSmQ1xAmpO8ddOk0t/Zj0zSo1Jokm9ZvqCdgUM2LtvsEnwVMBsCKxEKmbaVJUx10BLxskw5B76OfrKUUzL19DKbETXgC3SQ5dCxf0mts1HWk0c0+TH8RE9/cUK6WEeh4P3RnBMMlmo3Pzzj6JftfJisQm3lSF4aoMSLpquBoEpl5Jdzsp9rEEGf+wI3t53O1FIIn8ZdqR/OvcVZ6ZGJU/dgneGTSoNy4yQDLJBBcv9mxUPAl37dcGQQSZFinChBHotSfrkCaFlXdWtBZetsGaflLlNYwhNu2IORkP6VrbgzMofkVokALw0MjA//jsGTwNkMtt+OiY+jwot1kEhkJUe6TDHprt4jR/Y6tTF2PX+bJrtsUcRMkslzj81sRnWvtywRqx6grbqlEAp2B6AivNQvpuGKbA+2Zt98M2Rxun+XMRfYngAGVNxND4n97QUAxVoCkmMh/cpa91AlaT3rOXIuYCsMRLCQKmuP76sh/YNv8TeqCKfOQ+bqt6Q2bPgomqRhYaxCe7JHPLhWFtdBegTp3PbCH/+YPp75b8k8VETP6l0Ewf0xlfqiNmB9aZQ8EMTHXpk+OoonBQKHgqGxuvKOpN87oihETHfpHsaAyoz8S6vuYLkBkFVys80LOmqDLla9bmKup3fNcibEo6Hbie2ovABbRqVT5YyEEqOQmLcYFFX6pxWVyObbeShUc70jRRsUa5whAZSr2IWb/g01JSbqGvD//NNK6COVZuRYKlvRgtOim0aHRwvc0ykbQzl3KF3FlpTTiYxr2O/T1bO8oqdjQM5Y62oJM668F1nOvqtWr3FcqQOUMbH05Eayt97S+3SFz5IARW/LiD+EBpOk7n4HnOfexthPtfEmXNGPMT9S9SlQsldKgYcQmYv0/aXWo5DyJHIhPhgFg1RyvVJM7eKrwKcHnc8vidiiG0kLgY72P1NXVjUL2m1uSNGkZnTgY8qf0Tp4vLfaFeOyiYs3szBmtTLgZV9H7118wcM/qw/9EWOGdwQqS3NZApJV7xT1h+g/Gvv/hmlTFa3IXshrFgm2XFdLo6T/WL/a8z6BD/G23d/9E9wNGhDxad5nl/5KucqqicmDKkJ3DC6DGFTqt/khh+JGD2eDprFcK3EPo4cLa65zQ6YJeR47f1Cw1JvgSmdRjAbwMAnxabByf8MkSaxKioNalQfMmlMLYaEJ03C+4ihldQNrrv5NxHfsSQL8GesCKG7US8IOzmm9NFbKAAclNWA1dSBfPsBzpUSzp5femfRH7+1KirVKru3+cMbxU0ogOL719K9pnIQQgKN2uUiDXjCooy1k3NrRP+vzNC+adud2NTn0VFDmI7IMpNeBGtfAheCxT2BSRKhaK+Ygc7da26AmVdFrlUTxMTv1mPHCri1VBySyo+px/ZPDMRKZi8togj2XpwzDpDkLi9dsm/7Ju3j8cpRMXWMzAhY9Qc7Ff1SKnpP47u913ngZncCxCuXLlLPR8JHYZ3B2nkz5jqtnhq7XCiBcbdW48I8LU6ijePbGWOkvka4L57IjWFu0O+n0/VHwnLRzVybXf3GzgydqcGO3ZCFg1Gr701o71yt8HDCFpFHOYwUCsC7zjZ+i9S7v5hWOxbKB/zHCsAk73ecGxuO/RNBoQ380BvqOgjbsr5jwisypJ4IUdENBKlKSFQuTQzi7M/PxHuJvgs+Ynv+qRxOeQr/Tm91GInfMPSOnAyfTMqmMr5qgwYotnZ/qlxevaXwu8vzHy9NQtt9FCN40EXlDcystqwx2V76UO/SsiCc9KjmE2kOi6P0DFi/qj5CpWSo6hZ/WPJsKd+8FRCTy1DwLjvDDiv/dVqMsmTvepknAvLzESjqntD768xEI86HZHCkG/5DvwdeH/3ajy7h64GnLgNKsFYbQwjh85XAZvFxH4c/BYvZg2J+VOwgpxUvsh1L73fSzaXQ0l5pgshS+kIoiCjQvwrS4T/btZTZPqmLT/igfcvAHP1jwmQv2PaiHqw07Wy/+yRb0KiCgiSaocz/9Wq87BJdI8cL5cTSxxNA+WtqnYA13dSjv1whXE6O+BpT5UKzHzxP6xuLWno0LanLc7xPH+c0Z6WMUSVxFFn2RFI0WBdAhR4RH7Xd9dLLbMNERkrVekxEZd91s2OrsMj6VqzZiwGn6fkUY/E/IK0VgPQmTo8kyuOc1xs6XmqK6OOONWslbtwM0qCtYYN9X7qO+v44zY0AWSMx6dIQK/mIkio6sLCOBoIqRynq2ZN/rAdiRbbMlpm06toNuaSq1XetV2qUvKuShYRiZI7KWLWi8bPCdaCpXUqU2C/uZj0042JieGSIaAszUl5E3ps+MtF2uaGGLvovyirl4evs9krJhoDSvwmZbmg3gZ0+hPKylwiD/NnwYiLVX+tGqDjAJTbCZ5jusJ37MfdrfWGC1hdWhXzu/rO9eR/uh6ddXiKgtVK0cKOoAdhUeIgbycEc2DYBxsL8KvhKiwR1EbvtQwN9rILLA1gFJpKVp+Z9ysOH7kpraOpPW/dIBGDV5R3hBv5aAbauerPeRgVi2ZXHrZ5uXmlDIHqFrq/E+679JSgH7ZRwZAP8hgRYrAfaoIFGs7wG1bCf2ttvGkdUVh6SuucyHjyCqifvzlv0O8/INThVO3457/hyuYVTSV0TWbc6Jm6HKtBK+aBaWk+T2j/5r1wfseJUBDcSEia18/3IvFW7kYsDONewxTFDtMum7vKQeyYo2Qn5ZqJHBIA3YOenN3ln0DdDBquQ6YuJQArMBj0WeKR2bMomNrh4WRg5t+IMZ8Vp2R84kVi0IKjdpA8OYSQhu03I8dtysL8XCLdW0uSMPsS7f4Zum50l7OpWih5lt7UeIIKGSBgVypDZw1Iv8QGAr01kInjAJx5ui7638jU8EOgMjetnWNJkaNvqRzVSb5E6451IQDNNkOGUWipX5G56iuyIx6Y4ngti5IHkZUXM7xm0WE73P82JUsj7TUk5uPmcrGCgiiwwM2F2fCaFYuvflpHPNgFP/AUpgoXTIgVlAEdKIkWlkMz+23kEHR2M7gk/X7glcYnyB6aAzhgUk99qdw3tTKDo2It0BBHZQQ9vHib7OUSyTQbsU23JE9r7jkcd4z1ZVF8b+ad2zmxNFhHlLNDYMT5TiWD+9VCh/qODeCN3SthNa+I0QKUw/qhRM+huroFMir8UYNVzkdiY3DG2wXJlzytqA+F4uvB4UKnguIKRxggy0VhDXz24JWIFVQS3NrxDZ++47OJ54XZ68v3fiTVFiswg+jIOGhCx4trvc31rVAYalTRuu13NMnJYPtSoGgOgFXegaILEmBhg6a/yDKi6zf7JoRTf3uvSnZNIyNJ8PNa3I67nI1cmb1g6oheFj6mUhqGvbbqwaBr5k677duukNA+IwdKBfT+DtOUXZb5NVnqCsrWgmNiokVGlirGHQs6ZHMBjeaQM+1mxu5DkYO1L6zXXy4TxtKF8/EywqKwZeX4P0UtNtFeLYJc6SJNY6M2U6gPtYNl06fA1cYQMxkyY/B0GdIhvao2FTlOjBuRUhk2mzfs50znS3elgbkL5UeZGPSIL+es4Ab+1HEj71dS7RtDP9wDEKtE5EteyHY7mZIlzZU00QM/Tu/gmaC5U12MAEW/V3A+Gt2dfPOeSlBrHMeVSMQDpqOn8ChQPrVJcqiX5/V7nQduSjYsM4MbRGeL1moTWmr7k7FQsG4KwRGrmlX3rfOJYzav0ldNDDPEO7EbD+MTxleJ2QrqydaNdD36NUYWOITMAuKBT1I5pP/EwnY/XJ0oZuMjOR3fm9lDX7t8UAEnv4fYATGi5SLj2ZoQezD9wnNMP/HlaUP7M2RIWXKp10eijZkqbFk5BkMM5J1bglpgn7D7YMBb9tjxj06hR42z4WXqr3PERYgoaLzCRVPL0deQd63anQx+qmLlDmQewkr4jquH8w83EiFyEhkpaXpOhTjOpKjoyliGljtDcH/jhkYIlW6URGURQHhPWB/1Zt4N8MvemiatrMTUXm7RTFLA1qmYn4Bgf3O5G7zUzY/o6XEEeIqYeRhT31DXCPcU4rgoiLOiVwGcD2Vwuio0LLsfb1nepAV98bj5bcE3aDwFNyv7IMYVfNc/bQMTVV615xnAdgdrtLSfqjQyBESwnA56QBM0grX86HqvYR/575JGT5qveOrfJGYHqSz4//CLUOkuoY4TYZgJs0fvGXwUscyOiyHUt1SFKamgM6mKyVzX70+qnLUF/QLPN++ImdKF0j+Da4gAflmziZmI7RlI356L5/jyIJ3RTE5FM0PqOOBtoYXxa+g1d+CfpwTA4C0HQPc2VJyK2kv07ekm6utAPj+5+GDBo3J7VJ0X0iDcar9lXHQYAsEtF/qiC+MoPM9OOTu1HOKJI81Yb2WlOe+bRNwsIwS0SB/pRusIwfXiP01EJznNAzj4suvAT63oms5+eF78aPSEclELFfj66LlElkhZdowRmaTWO+KcqN2fwH08vZASr9UNunDjeFBYBN7paLwlvGckt5PLQLQmdRyJ2d+iz0s5uVzAOnIlN0UoeDbys59YzTRfxwzS90vFCi8U/jD+i3BENfxiQm4i07gwOR5k1/33lG1ahnGQGjElqzdTYPES9WYsZZySd4SHrkaXULh48amlKTf8iCLsfuEEoKaE65XsCUO2aG/2RCjxqHW5UU1TlXycPnXMY7gxhLRXQi541nxg+SMfvtd4goO1YLJL3/5hT2DC51Ab8iB5b2lCyUaVk1W00MLDJLhwSTHVu8jCcN7ZQw4JIaAZ835g2XjYaoZTKHjayqGSSKA1alMdGmLoj0EsHfyf+ItqTFysZt05uD2vjIQ0FiiFUiSWh1H3At+x1fcQb3D/2sHElR5L+3j62e5OZVB+Md71B3cFRIBbDYMQaWO0sTkAzOdX6A+gwa1lOVOP1e7oqpxr4lOyydlOI9mcAuDsIUFne35uA8SUvjFUSHAzWBeyA7s3ACowlGr8ec3bnzaHShu59IW1ls1QxlVT26oO0KhMmUX8TpFqWfxGCdmye+eLryfuETA2ZMycwkPOsVDpwiEOH6Tnif8hPEVq2JGSDXAyz6t7hOVThacnUuak8FY3iygTDMoOPy3KvIbhajbGac7yRgkxryUEjNU0Wx+I15+o2XYYb7DnhPXSYP2VrHlG02XfkbfydUY+9M7HaxI2VQDD81uzNX6z7EAtiKK0JJ9TMkDKeA2L5r6TuYzVLw+XVkZM6hyg+to5lFZM9D3fKuOy2PdIRIcYizvQ5FG+b+qgovUTi6CMA3XyZmiXyy1hkbP/ATydXC3Fxh6VuNusvliMxyhvjrAbVzZQQS+Vo1Ma042LFJEejqkqw6TO7xS3es8GdakR8zEK/Fc5ZRyECKUwTjRK05kmrIPenF5SkMt7AFfUqa5aveJOOhJxewyJQaQVn2ypGyZilOYNAHXItmQUSPvWESYx8pj1S53w7XgfzsLpAnyaFHxmWJrx8rhvNmahaL+ZF7lWJe21WfCzfgsfCESVY55ds9SQZS5x3yejYmaK8ipsvBoneCOj1k5aBPe2NAz+7VGBnyu8+pa6M07zIMpANtwGf8AOSf4ojkDI1872Qxe/B3dmvCJWrMVy2JAlWFyQUWw+sUrhxfQ1jTz11h09AMPvRozEeC2ybtFscKe1bZlxxuXMi8dNXX6A+XmUD3OlpLZsKUthabpsCBzeNKms6AJJPN4DsWm+VKRxs9T2NHgXAJ0HS7AE0GCPcWdxpItXwC/ogvWqRhcpMw/H+p/H4KTZvqjbVQdBOxgA9fIyR/RNbmM43TzmjTZnYMOjyHCoAOyWqbbhGTdhE7gwT2a8G8n3mFUuklU9PtWxhu0dFbw0e5TbOLRiKKz8sUmBLbhSJmEKBB3bdCEhTxmeg+uMGbzpAbICE3dcTH08JgcyLnKV6uxq2VnqTkkv0Sq/VtksIfGwuy6BpVsrk7P53b/orre0I9Kp77VonWp3LGxxh2xUo9EFyITKXZA49t+yhFTOQK7HbaQ5zCiisvGhNVfk2Vvtng3ydhYqZZeTb7EzDjvxMnXMo14nMvk3H7qzZ0A5k3Sc/DpJCqbI9YYrpbtTtZuzkL9DgIaxys9fNrV08Wzu4QejKjNU672AKuaNm0pvDgIIQ7QAlaQQlnaSMyc4uPXEiUTDax1bCH0qLZQKH6IxQiUU4nvCt8aOqNK2BZqdIiLbmv9UiVUX+KVzwJTXpZ09b3G746RR6+XkGaGo/5Nl09KmvJzeNFoOEG9GvSiszWZw4G4M5cZbuh3EAoOaCm1VJ1J46Czm8+xTDz8STG/jt+wtu/1927JzPYwjXYIjgrnV3FeMia2gOsMu5/epSHiB27Qr2PgTINnfIjS1pQ5IoP5/nQXx+DYpYuncEjeOy8UWyo+c5tp6YmXltrlcYJRUXxKhNfWIpOWYTN1oSdD7uLDPkad6ZUR5S7M3QZ7qeVsjCFzMdAFZ8XVwTcnEX6bKCjzMa2o6OG41cMCwQV+PCdVuins1YwwtRlw3gtKOHG8iCk3TlDbZhidnJjHNLGDiZEUhKPIAnojCyf0roMw0XkSCPklxjAXujJjU9xgYBtMve76wOUu4s22lrkW76KpkUEhxsh/QF4yf80ekLuqZsYTCkX+3sL3rGo7MaQVTUZQ8dj6ygwQdg+ltdlxtTcTFvwjZpXmUKpyD4hDmmNzXJOM8m4sk5kCpWWB8wqSmSQf4GgiJRbNm6yKhzkQdEsjrNWLYfsSRhXsTz5li0W+CizRejbhyx+AxrG38LfojX6yhGv61Nc9LPPzbxHTXnGYe3T5DVTBXg3AwLWLG6gW0JwN1A/ggJfUfd6gsbyUWw6wC8F8fOJSR1bGTaawogkWCpWZbCZZKpD79sljtXF9XJk6kcaNbi2u35OR+l04sqaTCDdufbZGI7f3aj6G4sBWSsedQyTjIEHq2kEd8T/ER+E7kQqpO98IhTGxSrN1bkxeWAghROvCa5sTrgMdtThFiX4W5RgelSEvN5bmgSjD1FDsdVQYu/4xExJzAJGIVZvY2Joj8xs6si5T3SzsCRvqSWYpEudoxgpkYJLJm4xB2FQ6RvNzfVQjtTZyYfwIOh+Uj5iZ+5Z51g9vGRtal0Ds8FbIT0ITSe1GBIxPzgiLt8DMGjQMnxN01vDFZuYvQMVb/cv3ipRZcUU3YfOjpLB/BFHSmvC1sreEheEdTmJhF3053xj8zRMXgixi8uJ5VdgOSGoMn9uH4eFTD21DHdPZVcuU+xt5iz1nMkyuwRe6shlLSIvb/9ZZLi3NbnM82C8QBycQByQ1fmY/L6Pmcf5M1Z6KgMxcDCU+WbBK0SPHHfquyM7IG85gyvR83POvlAhZqRPAhCqoNo9w6PH2K44cmBw8zDh+yAF1LsXdXXZH04mwg7OjZWEKc2C8H12RphWHRh46JO4ipxv5xzqmX63XCUf+S1nDtsvwaiicJNOLv0ahaIQLgy28aQU81NvSm+sS+Sbf8N4+Q2de88Dsk+0YBJd99jD5+VEb2+EWOL2yywkFjRZSuS6emwk6wDWq22q0ejikUJCnDuxK0I6iyS+AYXuA7sWOYUaUUfKsneThJe/SHZ0YR5/mK5SIVjGImAk/ReAcjnnaKI0HpcEJPb6CEApojAqOG4X4Xl9ZzhgqY3a67h8T6rJ2FLMl+ZTz7L7gHW8pRKJB4asiVhqKF6T6ByVw7jSCOofQCYBGC5eOP6ewJqVwiZOw3CysV67kIozk90TNPt9YrW5KrS1K0aEZ+MC1khhmzh4Zqd9UMCdyPqyr7lFL2r/+4cq5Py6npnHVMDukutPqe3UPVWJmzRqjuN36LRay/LYo+bMUTpm6iijsqtefCLagTqaVcQvRQLjCQWnoNX8q/5WC9wkdow9t8q6VGloV3Lvy25ntm5pXD3FU54xNASX2gjjgsJDnYvjAEc18jClV36LY6Stb6ZAKZ0MsunffiP6JvCxADAguaPCwCs/Ei3XVskZDBrmgg5TXFJpJVFDGfz+TjDGtZRtIbiv43Lyu4yM1B7Zp94nohFaAKDK9r2+Y/VpRdR6+acw0gfHSZ6NW0E5tzTJ2eydPLXNSPo7rAC+VLfuyFi6ijvTFWeDhd0xmgp5p/96AyBDVKKrCCQ268SRc6l2JeYiKSClFltpV4T04K6dFwebE10cMJAoKsx1HPl4sO3ryy18Wcmx0IyF+DiZK+sYIk76sP+BDhoBNis4lBOl0Yn5U5EvuPahG+Zfa6fiaAdfuGwvlIMZk2N+vYzhROlPeKhW5lccA2H3NNGBGwrQlanIFY340V2ua61bty+CtwWhD1rjXNq/6i7Uuuz6bcQk4YlytFf9q5rISi+oRyBCIIg0JhZNlI07GQaVP6V4oIb9BQKVd2mnq94ijql
Variant 4
DifficultyLevel
640
Question
This shape is made with nine regular hexagons and nine rhombuses.
What fraction of the shape is unshaded?
Worked Solution
Three rhombuses can be joined to form one regular hexagon.
There are 9 rhombuses and 9 hexagons.
So there is the equivalent of 12 hexagons in total.
The equivalent of 5 hexagons are shaded and 7 are unshaded
∴ Fraction unshaded is 127.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This shape is made with nine regular hexagons and nine rhombuses.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Number_NAPX-G3-NC24_v4_5.svg 240 indent3 vpad
What fraction of the shape is unshaded? |
workedSolution | Three rhombuses can be joined to form one regular hexagon.
There are 9 rhombuses and 9 hexagons.
So there is the equivalent of 12 hexagons in total.
The equivalent of 5 hexagons are shaded and 7 are unshaded
$\therefore$ Fraction unshaded is {{{correctAnswer}}}. |
correctAnswer | |
Answers
U2FsdGVkX198LEKuPy8ScffVxnc/GhhlR+JcgoZLh0dfTpgc6JgMPeUM+G6jCISmmMHWoXM5lGlO1ZDO585ABAFVhYUl7KndtWQrOyt6dhCuncASe/TQY1N/MSPvVSda29nNd3/XZ03vwNysGXBnr4yovKrBISDEEfuiMR5dbWn9dbUIK9tBp/yYMAXV6P7LVl9czTO6myAHtTpEHX2QbBSPP4mAvBeDbHvqE4m/M7SeISc3Zb+bY/a7C00nwgw2BCG9iBRwrJOKGwGFVJlIvNnrk0nSARFVlXZHRZ+RuLMBHQ1M8jr3iyQFzw+MJsta4k94RcAsUWxVthb2HjfPCLTbDu+n/WnBjd2zgRtBm/9K+baAu5a2rMTU5Wg/Wc5kX7kCibgtQ5v2H1UwxR1e/fuvtSW+YdoUGTsIh5iEyrH/zWI4Ca7S/5KPqdVUWX+X7Xc394mqopzXYFasi9gRKWNPfm8dkGnsEPCqn8CQ+FjX3ZB8uNb7CEscQ3igqBPWLPtQ6FMv+FN4UOQxw4PBlWCauuIxSP2ht6jU8KqAW1qVUx6IbrOKFqvHhUwrJ3aWg6MoApmwMvorhYo0ZIewJ34K+tRWrTrioLHBBUf2h24SktQC3q2b/6XmHj8N8HX7aNFpVhpCtxait/kzgD6fO14Gvna/bc8K8llyxR/3OnrbxvCaSxUKFhsZGomZ9tJHQWdbhLHEjtmr4vAC9QNqcGRqzhuJnrcbng22wlpyguIu2GbRPgByaTEWyBzLazbnbeszdCRr9Lx9RbPYmRdYK/K5VZAfR5suNw+G+DwbKRw3R7d2YejKbg/SFH4mDn+PelWwA8riK1eCqf2Uze0h3E5T9Bs/byqKJIHlls+b9EspfBkAifEHIM2i6BiTxehi9QO6POOmqc9yg0nmpBiKMtF8tPV+7L1g1wpDuG0OWZndI/DKjHPU7IMjGK3jmJ/aF7d3OO0AwOtm25GDS/AFbGi98i8z76aBq66smTiB8ihEEseIHOLkLbAqRlrvLSgV7E7SYzzAHOqxykIECjOdRYIE4zENBtZi/gqTPDZhh6jw4BKANfgmGM/PRZgNWn/+eKaUvLW0PdVYD7DNzp6el7GIbFgt/hjjFJkLkgOJcI/6Pbg5u57zf/g0THMPsrKdoNnM3bgi8/e3MUBYOS6GJkEvEOER+KsdSCMRm4i5LosiskRHl0IIiSq3dzYM2kOR6yQiCnz9F7SU2p2pPX6Ukr527GBuA5sgL4Nk6WI4CwTsuhgIapgQOaHIXFBpDppHnlfwgaBVgnlhnLCge3VsOveTJlbx83+eXWPcmnXDT2Kp95KXeBOifAcuqz1KIhwSPESdlDgcDcZJyDoXR4Y01E7qy9FYkFgHx94eqKPBINa3pjZXwB8pA/BbnWXqO8eQPug2fEY7t5N4wU9vbf2ylv6vD+HvFmElhxs/+6/jOoOvXJ+Z+du4bGV45/mt0rfNmQ9tso1fOs5FF5SrfQN6hy6FbYSns/MRTG23c6+oKugsdXP5nQFZpDBa/dC3xTUX44717OtJzvhAc9b+xPUqPH8Vg8LhiONqsJts05gbtBCesvYTEVpAwUa+r7Bl6yzvSJJ9ofUPWEWj0t9OtEAs6o9IYn+b8S6hXNQ3hixU89sVeQa+9w15ufSYR/m17UaO+tTYHJK2WZvxuVxZcyJ3l/XN6xiUTT5zZOh2wBMPC2Jra7isvQNKcuNtLBESRbEJKHQ9QQ0ZZBzix20rx5uQuer1JZaLOVXOxwHhy+vA3a/I8sYqR0GMvklWJ/QVVR5SP+8J4WRpaZum+fk/QKctjUCUbGCAML62i5tt43y7byXqVTFX/cO3+bgmTKhTJ5FYjNOCF7hDdW715qI2O18UH0n989IVFkBDLo8NI0OKSc1lMTYzaNSRK9ifNwLqy8gO8Hu+IapSgYWFN5IqJ/flrY/hDk/7Cu1RrPk/j2d330/BJhEtJw8zBGhF+1EpPc6UZE0WXi+dgXCHTJkMUjMpvvgVDrPXqpRIKP2KiWRJ6gKqIqIQNGy4wIq5ST9qiPqg5TVhDQn09vpW1/GMHtSYCVR3+m/c9Rg9HDOhZnYyKSZATOvNiyF9rt7Px3xBfFK+/pcfHJg5RT4UrY/eLZ2m8ufAoIRkbDwBK9Pspfuovy3dcqUkVMtDTR8v39PHyIJNTCrSMcgTCh4pQKjwXIxaYobOlZWnGtUdofaG9vaC5u7J0TYkgkngNJ11yXbBFnU9Q3lK2ngrO0jqebhllD9NUhFuiymeccASKvqD2iy9vNsfXalTIB1x+YegRK3Q3zuG6kDe2aBf+RhnH5Jde1LMrNEP5NYzbm6PZHrnN4KN+RnKUecS78EfpXeGs4/oGcbsdgrFYSoy4aaqKU/uhsLMFg3bWKDnBrtOZ0CxEYxGrUDLICdF5AjWfZG+F9j4iXY37ta+5EjNMMunPPUlvJEwcnROcHJei9c1c2ncgcaXFKdau+3AEWGNuNgmidyhurnhgxiRg3P+btf73onSbE2ABZvjgnPOt5AKT6TPdcRN/I8+VIoRI25Kx0FLfp9Re9cCT2oBt7rZh7biqL4B0onzWTkD/tvEr6x2ye83EielVrpLWCja2g0t38JJ0wal7C3lGdeAoCM+rLRt8xiCf+pzgIKOMerWeMwUewwwjz9lxMe2r/TqZZcfSWFEQiHKnCHz7Le6iCdPsJcDCOB+s0QtMX0KWGzCEwLyLRKWxd5rvfo4U4Bx1n3/BzNjbEHLPe+lziyOCEZ7/z1/9ScRhMsO2bZQBg3LzGPDiu4YgHl1Ky0osRKAJMFQrQbC2G3zIzeKzvF32yVks+FBru9YrUZ9IuIq/JSbfDO9gCGWLAq3JKMSQroM7qN3/IjKbL/lyPX1nHEGja2ARd7qy19GX5b171ahHrxQO9ju/8+F50yihCOocZiO/yFIXYtggmGwa2wXEIzNG8pf1I1wNIZSjIRrO1fuK/GuwuST2MpbQXihvt22J8hlaQG6W8Op5oIUIvcioOUxZyFLc+A93u1ZAcPuVW1ytq2zJDoNtJ+R+gtSTcOBsXtFheNCGqA9n0MfXY0IqZKE8/ovuiWtvziU5PTqXnfcl349PLKyfb+s10yv38C/ub8t54kbmRhWMR9Ix4nQ5gVjpSlggd9QuUl5JrU1+QstN+hMsz8s/OvTVy8TBpAvXK0MlbrBLWn+tJCoFoI/NrL2+/ALuRBmCm8d+AbRcOKyBND2otv30qCoVJiSCG/RnNLP2++GWs1EmUioL9/X6AQaf+V/AgjV6kZi/hJUDnrmU9gDm5PKdwWYJ/KG12DhYhec8ug9pHC4BOZOLmvoJIJDgqXnrG5pSeOxHVwlmyBVUzIYnjlS7LDpzEBqRKFLoBF4F8aC/PzbCJOGl5aitpTlohS8hFaQuVIG4rdoHtgRKyQ7kMWyK01Mj/SH0tiB0/ZpZ3nq7MqtuCTyYq3ne4Pgq4DSKh9DeUkWvv7OP4SMrEhVS6bHA19ArL17PdqD0HN2lST5EaQ96RHacNTIfdVzyYJJvwiEP3deYNMw+hlGT6rAsBWBN24uvkbHQEzdlEK23CA3NSa7uzPj2QyxKvp0rXb5BMil+bV91KMgiISvU5D69oP4dSDi9Wl+rMmhVHnM12U6dWO/2muHkgPm2T4bqZ2yqRfKa/iSiwRgxViNNLUDkeI0YFHIRkRnj/Tam/Rtguyhbfpmcv0aScc9fGQx3YNcX5cHHqxLQ8JeKwNows0CixjajAdKFkC3mC6XtfsHtXX0RZKiG/1VlysS8jJNJCN6zBLi9x34Ca5r1CdiooHqCvN5ECuFPs65nN2RM8uKTquCBjiiLgv1zqcNcmNwWUG6rmRa431J4P8OpQoZr6gyoTrbAKh1XtwR5RTAu0866k5EDlwJStMob/M9wb53e6NKmhQf2k6COA9qLREXdshkIVIUK8Fq4xVxBfw6US3APsVg5t+qvcD9pcdlLhKDP5GTlyVPpVkVYsqleoIWH1gItw1ZCtbpw8HY4m9CfL2Ef8Rg+IdNsQk1mx3GSp/Ieaq8wMNghbTkm4nrW6ZXonagtUx35McgIjF752nOsy8KudoLlLzsVgQ+kL0ae144meOPRtH16UrG8XSU+OX0htyDr87eM2IFjSyk3Dp/kFI8j9WUET+NMAha132/LnBzghCsowA69593Ps04B3lIXWiNSOJ3Yz5SOW+3FrkSW38io9Yrg/DvI+w9ofxnV2vWcRHoIdkOuHMjhoGZ3BfB45b8j9GTFy0Hl4o4i9p2LcLUL2MvjK7H5V3MeKk4AosR8UvfXmbJCllyEf81yY/a7UvyYba/hjmB20JV9ilh7J7pRYK8+CVOSIOImavrqkQPST0Kj+u42wmVcB6WjFr654wK+JrQX3LTDPennUgU+W+Qr+sASxLVbFVWfKzJ0ZM5uFLDrtgf6UjomroSewQazkblmU1QD15cdmUjc4OT1tIvPjqF3hQgxbA5Wy0J7ACbvpj1vj5bOdGoN0Y89eIrUhKhIM+u2ONqwx5wpt9Pj85A2Hwxn7LOmp4ImMQKznA8KvCebqaJl4fB+EtH5Ub6lvIV+3epUKOfbWtjHkULaM53MaBaGeozQzrxbxZUlv5dqSg/e0Cp4ue7e3BAPJ1WbDY2Hr7oP2jvzGcjjZp9ihOtyGCfygXtWDf/DHFSBOHtX+72id9ZkkFDz7grfKTgi6Vhpv4JDFNG24d7I9jkzLYHWdqk2euD/nFUEJAFVQ1o+LguE0SVghCcX3W30JyYKSr1x/lPbksiiYVuZIoe1qSxMbq6ApjRC9GtW/Gmh1ZS9XRH5sWDMrBVErqq/fFZ/cJc9NirIxAVNqr529PnqoD3gDRp+ffS8YqkJLLnbSOqdPyrnTkQdsZnBHyCZVZvWztwOl0u7HLBIGdhPuxgGr+BSuWv0zpE0gZXi8D40e9L1KqNYpSMZVdvFZ9CoyULBH+vq/4rbhV+3Jn3aS6xeFS7ViXnV8KuNrB784tSYq09SJzkOybRqkofTEVeD2mm0pUvvGXu9AUejglTOHem2a3dQqKoWEHumZRbCDxnMnt4Nxfgy5x90U9e4f6Tt9opPvzcK/vjxRAEyzgSAP6YQGJndq4LI68nDzOcSe7Z/5GKm7qGWxXx6ulyIc/vPTv4uRjHUnrjrN5sZW6evnIQggalbxprfrBhTP8Ha+4UqKyK3k7EHTh6gTU7DvoThFUTN6CIEc0nwE6c4oB1883Exy+kuIT8Wyy1gsjAqyOJnWU2GJpD+jJtU/tV8dEGaDJc61JrQu+2V4q549U0lX2hT5f6X23k1vKC+S0yu7WSaxkGfwcHnGrhVFIER+C59pJtf3kDbmVSZYibldAnWus/P/1MCGTUNYZ6aibQHuK8ZqSG61LmKegqk7qmgNVLzYdbtp/si1Ovb1+J4GJU8o6zdHrX25eHuqC3CSDjy87WyqUr53T33sXbyXCFb9cSPJSUuErOEWpcxPNOVgWhXrFLS4/e3YzZyrsc3FEuNM0+dGV3aiL+8ZXwhzmB6nINjGbYtAd3a6mK994a2yMtfDcxFBbO2TNAC9dwHhdTFofdtU5UVKu2n0qL72JdD2T3PVH9V8rwBjTeaC/hrRrNDsrnzrjrR2hSvHOnaEwe8oyrNG86Wq5sYdfYwRFON+qgVyTc/8a/avmZXwjxlfKsQD/nZrO+Ue0doN+lsBgMvjhSfQvhJ5G4+QZG1B47xjPTrTdOl7kI/7hkosWMdH1D6ojkPSgEDhMFrls9DDwkqd4gyehnQqWpMR5C8E1qAyw/kX7rsZGB0zpxjkUYuYOeVeD9O5b1WzJa8tAxeRvEyp9YFYBLa2r/6+dbwSbnY8LDA62m7y/Pr6YY9fG4HV252S8Q67o8WNHFcGVPn8qYuvwmVKCmhmaOjrFJHSQtV3HaSs3lQVX2Po3wiZTXT/AE821bMYy3inCX8/ISN5lrSqSkfzFxYSLT+UpgcDsM+Q+luyaBy5Qd3s1sGUxOf1rYIK9NcCkqFhARHbP+QBrTlRKrF0d3oK0B28hG8tVqblYEfQVPz9xabMzTwWCdfTk6l06wzlJCBZFwMrbBKVxiflYU9/Et3nc8EtmGmFHr0mp7OeGW0W8zGn/YRycsufzlsOI3YTj7xBSHohqXmLvQpjPUFtzp0VuYcBcqkk6C408rkdkXzZNQzsKDAPAaLLvzmxOlANBPXLxHnnH93rww6eJx2jA8/kfYUQADuJ9tXON/FmF1oPusCsz5HkGLd7kG1AxtD0dXX7nKZxEBTJuI1JH8f2SRG4WH8pLSvd73me+Escm85vcXuY0SEv2F/aSoaTRpRCszzHZAUkkIzgOo0he8kgTnFeBzRXRuZ9utbNcBLOxo22yNe+C4ttYG8VQPPOm9PeNyAlduO4JNzHQaikJmu1WqpAVcNhwh6yhVXSnVjug4S0lM2fT0IiMbAiTvBNC0cWvxEq93BXadbnUNHEGah9NEBDufcc15ILU8CELMEytvxZXDU3d3LtmVECe1jfKRfdO5wHACSAmQrp0h1K/hzMi1KiI8CcdYO3Ljg/6piaT7IO3vfyXgxgYFwfElKKjOtstcyN0VoQAakWWo3qCSsixaHbkl/dLjPHWHKPkJqnpezm8snn6xIkNT5a99isvYwuNUH5Y/9ADwGz+GoPi3eOAGa1Q8HLMoY8GoIUiOUIaBbgxQj/GoRYB74UVGvwfXCOiBrv+iR9LpebdGOOz7/bdDC/A+xCe/Lyu2PjeK+yYZeO+n56TXspWEPY++jGnDTV3TJ/ZuUFW3gQru3C3HnqTqwbZ5tdZWm2/JvUUy+zcUFMLzVSmEKKed+acOZmNnF8bbACMSU2j7wo1gE4kXXkPmfSBq8RPJVQZsC53imok6bMgJusz+Q8E759W+rFyygwBFn8ctTIWwnF54RK9RAg0M9vbsh4qfUyoZP79Menyi/kbHqIGDVxpcn10VSbhD3CHVLl7cutCCKtSoGLM/sU/uzye1BDtxYTHENhEnQ7uPtFyWpxomYnsYSQ8oJ+cmYXNAuFT3bpiI0eO0dk3LY05lfHClmc7OoY/u78XQR+az+lQ6hmJxeCJavStL2TQDgXBNFUwc6Nj3RIXU1XvFS1kBq76Weo1kZFenovlkN8MIHO2WZLGqJSEuvcS9eNyzG7FHBI9BfV6e2D2eg3rAN3deselPtEDWqJsYcrOViXnNd1xe8uV9eyw+xQO/sHMPIesdjDU3jFRibxMT2M7TrDV0/1dVyNT/mA7gHZ3xbKRmGaOzZzEVxyop5Jbtrb0SH50Pla1amrh53gyZeOiNuR3jGLNvhr1suBsOm0AqAqaUDFWrbhL4nTI6+TmaCHjgBI1eXzVFXonSwzSxIDUILd0qcuTN4SMDjOHjPbgoy7jt6syFGTm+vIUHkp6JdM89/l6UQ63MEVdsAhS8bO63wOADGqoKlzwDDSM8Yb+8ob7C0IKr2MQXLsfTsFoCMCpGIpbhgs7XZ1HSCoTvuuWNhHjK+68xaRkxxF0ag8D0B3Fxy6NyK1npv3oqyAzact7TB64anCyJub+OxPCErBi9/O91yd4oC+ajsMdLHV6BBRZHDzK/bzAcDOk8U3hy1okHzvhQEwTxBLERJmW9EZ+3uYs3mcl6kzUmKWivKCz7xQgWk43Rwe1DnM0tKb65+1gsSh7kggZYfVv/TXnEt4ijVKkv4qCrK/u6M2Rg/UpVTRtqQPV22D/Zqfy41jeJ8KO4nE3vrrJ1pdJUo4VP+el4WZtl6H04NMakf2tTZW7X69IpSCPVQOpe+QNBzwi+OtXuXvPzw3G/9Ha8rWBh1Hk994QbKDr8KyjK967lFJUZ7sZ+53ZRQ7Bvs83X/AkvtLJEt02BI0VIniyad+567fYnAf694WzdVJ77Qe5xxHpJjxIeUTRahgQZMWwJiYl/i+fNhrBLAdAUY0UzUUZv2tl0exhfTMDkJv0aeWhHFh80Wvq2r+d2tb9ovzUVx6mw6sY/wss5xyuB2M6gGksclyu5kftfC3jyuox6eOE6WqWoya6gcc8VRXjZlRZVtNupZLo3aTV2H2yZia0XDJg0tUDcue4ZmtK+DIQeMjK6u86BlytCFfuCNt9RV0UHDoRZdrABR9irL1BsZZ6YQB+pNUbUO2Ck5t7Ee6Jwo+hDZpYmiHr6tUw3MKtYsOaTS71HuRL0LWwLgC7y2oHLMlKy/v7Aoz1IpSDMg3AkoPA0IiNHGLNlI+AOsPBliK9JX1XZ0jYhXoospw1iUa2rhilUbBMYA6RojdIkE6iM+QLYcLwTGEkxEEufywAFEZxk1Jf33YTVvV/LAYf3KuDGtBZVB9adk61OWylBZmRxwnAWfrk7sG+fvkm6kyZ5wuXUDy8s1nWyeNCyMWRmoQc9pWVB0Qc/5xehC4dEi5K4BRf0zku1jMnn9s8ADiZk/DZQjstaii+BEHFmPz6L7jkE0f/mLvFFZw2zMd0RpFCtY1wL4TeEehOliTHXGbz/uDs1TdpQSJVJsNfnuUMXa8njA47ZoceTAeMvjs8pYZIoPcjnDkRdyTr9wg4fNsYu9Ut9KRjSib1CT7+HtYgNmVN0fzjhYz+gEp6d48s7SAczQwTn3B8uinv75g1sGnPqXbTfC9uaKboaC/CABVnLGxASf/PfBBlhmzq29jwK0OOvWMSiFunbYdk/2Hzmbjuxn9LA8yxQgQYNPYy//XyrbRB1anUJ/f0nh0SogthkaN58U2NGKV4MzhGu5Z6dCgejISaT0tVwNYxVhv4G2ENOdynopmfhED2srU5WlliGoendgNKozcQRrcjYgmWNCNojyhIM+PZJVrGL4cyeK+sqBQj7Wu5S/TO/QxFY2/y3+tLuW+6DG+rnX9oqNXSANXq69sqRWBhi9ucqF1g2WfWFrvYoeyKM3dDHpWKPWSNovHJ2J690AoxVxwhEyOH9QUxg9I1sf0jawhZaTHk/8vDXx2wolJKb/oP7DxUpHo75tjtx8ZdsZ9pXD+LNcaBTNkYwyt/ZdmmJ+4Q3n1DE0tHw40JPjw4CbK7bEMyeYnvjLEMUE/JZMFIurRBv84An1GWxHgWbO1l1KXGOr2o6lSN5I3qJ1Hsj2HA2JRUVlt1hWmjS0wf1zO5EnGKL+Tmh5NgoYyVZUXZljtMW9Le85PFrlI0CZONvMHGOpu0u6lXJ19P6/xyy2tmez9YGs14gkjRobXfcrJ/A4UBjnwD4kNL38barc0w/xJkMP6iPMH2nCmtutv7D2GNBvHD0w3krmYyC5eNeG4wIutpWNgckFIAX3pIORj2aBxHVToogo/L/My55vTD7AakTIutNpzenS7t9k5fzJVaWpoyqqKMqgp5M+V22ARiAWtdfFUKM11qQ3+xLDI89tIpSYhtxoV+A49QMoAC1muadmYDj55FXwg8y6RpmRrHWUq+oSU33QaAdTBtJ+6OYwKK6bcbnKYoO1ffkvahOy3vltJCW3EYOMAjJK8A0JCkMIblEq/DTQMGmGfwdlB2acsNi7InsotS/DOGElfrkZCCGmd9qLj8Wumv8nzTHnDnNCWdBlk5uTuaKyGnyapwv5PkF21aBqIfSiXPt56CM9u4tp3igiYBGA6GPsL5sFUY/hXM62pZgNJ//nOqNDOgFa/6z+0KWK/bmjBpLJBSlEq/sOTjZruNqCtCzDTzfIcghxLaPlZAjcE/YroiyUgXnuprRC9N9RsrP2g+wSfYZ1bZcV3TXlRTYK1YwSjwOZx2Logmc9C1reXuxRm6RztqgGEktcD4CxgAm86zpuXfYZkvX1jKcHfbQfE+lGp9dzW9agCo8qwsedbzYDcp0//XRTJ7jHrHFxbQCAZ7Fb6WRgEFQ+IVMQz02xnN3PLAhKMCthLtl02uDfOqEZwoQmPfePi8/3kzm0v+4b6NkmRhbYOcYncfLaa9vBYC7VHA/RCmTR5KAtxhy25gPLahWX63yy0mVNJ5gWAD3ZZZn1fMCrTEKcHVFtFX0v4OaNDd4xplJ4rp2zZiV4LpZQE8eBADIQegrO/rxQ11O8PqTntED1Vkq22G2PhmA6jJ8ssTTFatU0LUSM60piCPL29T0RghXSHr4lXAYM4C/ssTVO8W4Aa3tHFRO895sRiv2DuoaHJoFcxiUw6voc+QEiWn8dTxRKE2slbclLQAV9rgepo6gSGqGHnarwKff+/0Ruq4Mq7ZNhP4/7yPgFo4edV8FfmMQwIbxafhhgN55KOSuYKfcmjxPtnS7+9ysAwW15HA/R6AUBdsawXnfipnl92/z/fo2iJ16bPmtdT+iwKov4cPjE2QRBIyxXGi1+gdoIV0QLOS3IGWCRhPXN4o8VAey3IeK5rpZsGsrTfPCweJc2SMlJEtWcvFX4tHtVvinz/xzhRyQK7sh+B+WAXp0LSllf5XrQ9mbpWzLxoprIcGh7V7WJhESqZzkJsrgOqVzU06oh0FL2T958UU43pFpnBjOCusPGQ28aZMAL2TF3pDuFlPDAYU2N10KqwO22/MsvY8ZDq5BvyHIwzvnJcveW7mxbB6Z+/9PBF7rCcbvMvkEC3LVrNWr5MJK8t0+SoZnfGyrZR9l0sxTxZ86/x6ditYlNBvUam3d9Jn0GgyLWhy6fcN8lgMvXOkHC8HMgMF6ATsJ75cjovDfzEKafgvQLDMTjXHhWjX+1dUbrfFbH3ydTBM1nhRu2n/WSS9ZRc50PRewRLdGUJ+eftLk+4tnHmOdEU0LxGeEbJlXYA2iiDvuTsy6WHW3FAuEMnZcjcPNyBrD0ww6xsbh+Vf58Ga5rmsy/hXaKsb7Aqc9Zg9jSRxspwSKPFEy2M/+fE1ZtGuTelZ2J0hHPt+aH66v9R889YvW0LIOuoMV9yzciCu25Gw3GUyWPTc0s+RqA4+892bL7/1H7fYWJR/ibEXWB6q3NLenEeQhh0brV5P42J0GkGs+lNIzjz5ThBEL/fkZHI5AJ/jtVVGoJyDRCs64KTTCoz3bTZfVSGJ58mKf/XugWWulSo43qCF/ShHVHn3BphwzXVKhP5sn9MHLKDE+u3gjPnNr89EPFuhtLw1anAo3vxRW1s91jU1xeIb1L3lSMdvb9mo9oBHMPxcFCGoxZQ7BF5g39MdjQSpejJmUXK0ThhvvG8vNp8HRsgdnDEjkXdarNW1Cnpi7N99rgifZkBlEMki0v5fic1VRhjfhgbMtTOP8r8rPANJ0gSxiJWv51rBqfRykl+UMle7V3Bg9SOnjBnf5lqZYUomGDQ1LcQOhlL+pc1xUYXBjUScWDEUgWs/Qfgt7yc+oEPrG+786HA9mCuXsJ/hytST/gg1jDJAOLQouVgkKvclK4USu2aPtW7evipViihHhCwOsu5wykLwu01HZ3+uaYYXzTwMFI66uG1t/sppXJZ+i/D6b/BFsZtc0D60npk1SpIXpf6QO7TubCN63aVfCwAc44fjwgkNdkD51wSlIodu35u7aeZ7o+Jkhs+6z8lv9u3rVuv1+PC6AGQDNAz/lDl7cbjAcj8iodlm2QtsLoSm69YsvVJT8TInmIlo4STWSdbQZPC8W54Bd/Hwv9AZ7rGZJU/yzH3oxDBJq0I7kc9/vwbF/0vuk0U0gJcDwzD7ykVR7AbA1OFmmmLpj23+ZP2+wRzg4F/UXfa6cPqnOA52py0YwkBGUVWkR12gna9Br6WyxWvQwPqhQG1+Ydoab9momfPCz5ENL4wpvqKkRSVcfBls0F4uGeEvF4lkGexTBszPGw8hvjTi0Rnh+xmRq3F6VKmUkR2fAX9F3PumslcB2yFtqilkj4PKLlCR+w3o7TKKwZMsXo14nc7y/qfEX1biN4w==
Variant 5
DifficultyLevel
640
Question
This shape is made with nine regular hexagons and nine rhombuses.
What fraction of the shape is unshaded?
Worked Solution
Three rhombuses can be joined to form one regular hexagon.
There are 9 rhombuses and 9 hexagons.
So there is the equivalent of 12 hexagons in total.
The equivalent of 5 hexagons are shaded and 7 are unshaded
∴ Fraction shaded is 125.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This shape is made with nine regular hexagons and nine rhombuses.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Number_NAPX-G3-NC24_v4_5.svg 240 indent3 vpad
What fraction of the shape is unshaded? |
workedSolution | Three rhombuses can be joined to form one regular hexagon.
There are 9 rhombuses and 9 hexagons.
So there is the equivalent of 12 hexagons in total.
The equivalent of 5 hexagons are shaded and 7 are unshaded
$\therefore$ Fraction shaded is {{{correctAnswer}}}. |
correctAnswer | |
Answers