Number, NAPX-G3-NC30
Question
Five people had sticks of different lengths.
Each person measured an 18 metre distance by counting how many stick lengths it took.
The results were put into the table below.
Person |
Stick lengths |
John |
14 |
Caroline |
18 |
Paul |
36 |
Simon |
42 |
Ken |
45 |
Which person had a stick that was 40 centimetres long?
Worked Solution
Let s = number of stick lengths
|
|
s × 40 cm |
= 18 m |
40s |
= 1800 cm |
s |
= 401800 |
|
= 45 |
∴ {{{correctAnswer}}}'s stick is 40 cm.
U2FsdGVkX19zjkVVCnwbQs5kFF8Ee+tfWlsn2Vwdg+xl9I3BXsZ9SZ67EJ27yBXpOvLrgW83stBQCDHDZXSG4UHje/nRszUtfA9VvtrUfMksdU2mQSGKbYgK76zIHSqLSoHhMfOU344T6j20WgaDuqsL9UBS4gDAp4t27dHQUAAdhE3EUbjtHnComDtxJ7WvfOJ1mSovwGAuzJbSAiWeA9HVAY11B/uabLhTlIiZBTa0pkhjHwbq5sat5ijuT83rivJ9UZwXzoZ6b353b98YiPABiaiM/KNNckDWCD5CqbcBnyAe2F3YqitbCsKZmKiEoDkPqyMN4f706JRY6klx/XPQO2Bba/0lG19Jh7+BPSjCPM/z2UUFO2EVbs+Zuuay4OqFuN1+Zc/HuR8C0r8DmkRopjF/BuXH4cWkXJdLsbAkLj4WyZLQc6zx05Lq3Ztd0D7nsIU3Elf5b0dhAHL3e2vE9ZcoX/Fcq5wIYZl/j2sivynSEhWN4+VqPoZgf/KNXhvnljhd6v3sqx1mpEIMl+7QHN5PFoFkLi4tjcBT4bypzCjb6lHJ1StJ3V9/5fYNS7vshAorORxjt7OY3hI8t2c1Rve4eOroTjmEbxlo9xrqa5iTcizyksVe6/9BqVfm55jXGAZkkgFhqA1p3vbPJyPhcTberqsQCJQCjYN9R3fDiWO8FGJDwAo6fMu4Ogq2r/pmhh2Ym88AwWOwmInUpccD+uK3nlLXGdCA4t0M/PUiqZJMAeW63TRNwNJMolLchn2WtnLA94V9AFVrrBbNAeP9q2PuE4apb09pC2eNUp+KeN2lr5BCQW+V2zvM3LCwv6XhO5fuf6zj0me34dxrss9a+FRmjqu/uT99sDyGHdkBLxtOxEzO3uyQVR10TtRcelWep4/WJUB9fnewSlSRkShkIHZppv8oZkZ87rMT9l6sEwWdwysp2MG0LbcZfNZ21c2VdIjGjNI0kl/gvrEN7vdPVT8VhKfElDqJ2Yq/2dTtVR4doHGkrjY00jDBrJdJjbHXtN/p1D2wm4d+9G4M7u52XTwbcS3V+AMuUit+uUAcoJNZztPuIPLj1cxp1iP5DpEJdu6ezY+d4pisM2lNnU4S/XHshcocAae9mMT+noZM3ohC0BSIUaBYylPWiswcWrk2QVT+6u/qp2NQFCGuGj8Pfy4icWKIibE37GJ322qfOlDlxmdE7U7E4wxCIxlSQsXU7twLurHR0B3OlPo4Ok9M105hhggoMk5tVi3jEbJdH/0wt8ER9GhkaCjx/MhmPRW3QL0qASSu8tjU00HF3BGfoSZglxtlsaf+bsujgM7QNFhrCctNAhekbTFIlSZ+hWrrKLjJ/PmI8XE8Sug1FtbJr3TQeaGAgG/YnbfOa4o8S3Hf6lCZYsDsFLoh9fU7CLIwa4bSbrxzHstf0fGx4Vvyi8OltBcCYDwyiZNyPqnKTh3iYgqdfipaPc53TAuMVJuBs5rPHWF732D/pFqOuKEDufbxQnMe5aQFqIuYHa1s7kSD4LIq+r+gjwYrvlEEvsTJgMadJG/B9DdCwsxrf3225GMj4UCV5f/n0Chp7J8kODxBfJpx0CyRR9aNaEMAMUUL5bFwNpF9rnwZjTzoExr844RgTT9WF09TF3gPhczQykI1AXv+XTsGnkIrEWlAcylj5HVmotx5BaFpjtSPGVodRaIsKXHZ3ngL4tp8NYAMTu53jwnZf8MgmI71DsuCT7p0pR4DAnq3e5W5Dg2kfflR0cjXeHXe5RRV6l9Bw0AP6CPxCh5a7A3g8LX7MQal2tkKq5TAL22q95BacXm0QnKOUXh0zGzjWQg7JCiCPIDfxDjaZtVgEIBxEWtwP5ggXYB8lx351VR76ISHzhk2jC/a9jS+qiXISQn2VrAsnOvuMvxk5l6NbbhLEL2boqhCvNVi8c5exYGwNjp4t5NDnQNUJga/7a2R3g4mEJA1+GP/nv9DO7WfPAXYD/ALJcZyZ2nKOIgwPS1YYKQxLHw/uTUYC794Fkq5ozP1jEwLxZLGikHwjMu0/ke2MoMwp8esuPYTOkEzg2xgEsAPrh6tQgL0m+T82jtd3DDJd85y9ToGggKpKtjxmfJ7UElqeWhWYBwtmTrKCT68EcX/Lhd6hSJHnTRmt/nyXLxPkOgRaTvs23OdNyC9/J4hOCM45xnH0Mv1v8VTTG59lWtp2NiBt35/6fUDdSm90n6wuiX7dOohzGlL3wcnCxROhnu1E4ovtLOxtE6Rcr2IAGyD8DI4Lojh5Iau2P4rox6sAZG1qRVgtyS+f03Cm19jtD1A8U13W9vQhbGgvWHVK6cJS3xTCOGECYmArIRxrHsOB4HD+IkdYq8vIQxxHZWpS9B07u2KDm6Qh8mwhnv26XWugcyNf6dTTUdNcXHkCsmzYNGPEhGq1qxbByCPjWsZdDQeOaq6OWgi5/zYYY5BHVa0urtAz0EbjHDbwRTyW1uGfGJ6PPg/vniJIvZZUOHmuQcoX7F3kLJjUzLoFqEXbadBrk1QCtRC8G6JwTW+EgxzaXuBnREtIFVD5/RtavTcU3b/wFJ+tVTUt7LflSbbLanHGKOw3iZZvbT9TYfPCEFqTnQ8WJP4LBtDtXXcFV/xPGdhpF8q4MdcTBq6tR7/UlaKi0YIFfQskGAeFw1biulf+YSjC4o8VU0zbu5Qp58DlBnVxVIgchifpG1yMT1n0LdtvYLchc1EgMtXpcv8J3wSb/3AgoUh78Xjt/EA8C5x0xpbgWfuBLenL/05Fb3HzTPmOMQaat83PEji0tal7SBdjRDQII9yLwGdslxeReV33L2OEUwxAfl4SQodJHPr8XBzS2rV76C4fiO7Zh/gdwJf3y0DU4926Eo8wqIFi35DDnxomhb45yHGh1zhbmqgT8jLXkU4jv6HK1Bukh7xOeusuid9SLugEGwjenGhui6MmKOEjg3zT3nNqWnwdV11SMWMTQ9nJ6v8Bb5fjsR3K1pTdkYFoUvkmLu09oA+/x5eO/VOBL30QdgijM5L6geDneswepF+ctYaX/jmFcxEBo4jkwHClRzTtsVbeGKJzp+kMygRdr0kinEOKXmUOvrAOOiemG0keDq0UT5W9NPoBSjSvVKwchXRc9BVVzNfOqy7uohXQU1uAtjaqi/lWykV3AN5NA6m3S9wXQAjHt8Deizc+kjdaJ6rrADdwZMIn3tfIu1iqz7UQDuXWnOX2WUX5ZzY+R0FrjL+MMFG8Q17084Ls2NaW+kEsbekPixg64Ym8IRoOmbPUgAWoEEc8Gux+gxv1NCPUj8FU0yZd2FnkPJ7uO4yeUZb3dKXLGKk6/82ukoBHxBO3B8zNs0yPgzIr13nduezGfz9cEYd3lBeS1D4J77+C9sW0jhzNt5bveojWuU/PaFU1csTIQg6GydpqZaKNh+kpO5hMliqyxOEPDxun2eMp+LjEjQVw3/bOv49TzLI0kn9WY2ae89dHeXEjBOvYdKmJ2FNeaqMThSpCRgbejXqHNY2T3avjny3VqVP7qoMKqNZ0jnAgkPzxKMDLanT0/h+BuQFQO+4NHJzsoVsIo6lGaeOTosTMXSWSaGzKt+Kqk6XOuNucnGZcdGb0TIBvKnYcthF0FkubivQYNjA/PJy5plLBugn48w1pDYTzXbRVgMTibWXFlWd7Ycpm/ceCXfCgEt3Z+tvTKZapavW8hRMspX6ABc89Tiln8Jc3TIbZyF7TVh3RUwqAWRipjBNYVd2Tf3yqQrTPBI+YLajuPxMnHDHtNB7xr0ZCSjXZqxuFzG1UVtOVWJS4eVBhs13tq5aHVewFjmQa3ReDJg57mHBX9YYOmfVsqpVxmiik2j19UR3lpIF3pCLQC4QVtDer5wKzsqNjYi9S4xhi0Cc+01rdOLQGb8bQhn5KjWPVbMjnkywGcgH8vS2F0uWHHVdUqIkD++FmggPNQVdaG1a+9fU+k1Fl651jd36nD+pOjkishkjG3t5dk4rzV86WAqFido6yJthWpHrp4+ch6aHeFnTz5+olt78/AJZB+vp7lLyV84jpz1i4uKhz6wG2jJUcRdQsdO7JFtHcEGS8NW2Duj2tG5hsV+53PWf0Io7p1bt7DFMlrmk3GM5FO2lUTZBERjU9ywtXEAht5oWV0QKEMZMyz6iJOfNJGKYmoMnPF7oPBN4RkxCiiFGMfbye/ggbmOorriihLGpP//DKSIl65PGUfTY9l4nP6eXLG1BDB2dPVWffUuz1BQBpUsoxvL+k4KSsaV1KYt35O8UxDFW9dhUC5ZlaljTpn699q30Wo8GQo8YoAsp4W5DVj0vIaqRVsX+mDdUBtiMw3GaogzAPkzWeMv0ZB64Y2P/vRF0TWprdgTQAvB7wNlknPEQ8zykuRJ9Bv/VSSDFm5ZKUq36/M3tbjN87XesGmQv29/j5Jkru4Yqn9hdlNQcoLzIyZ/CsF+xkv5uWwf7Bvxz8jNN8EyWlQNSWiy1gc4uHHnpCZUtDhJXUcGIZX08O1uGbr56r9+u41Lpyh3z+Pu5fRV59XHTfM1UKxxwEkegwDovoDy7Xrlmx2ZUfKOWDgMTIdRL7orTSPiuL3wURQyotS7kLu1qY0uHldp30F2kWh07Us8VxgSa0fvd9rVnw7e7dJP/NoKslEX1RlwYJlcAcTxcOHujNFk/Wyb8cRKB1e1Oq/+P+fwh2+OB0tkVoc9P0L7VkHqz0qLd03O+EUZ4xACJHU4pYEoftDuDGOBbvg9uaqA7LOkpTP9gvnMGOCS57lAqPoNTMpvmlNYXe++Ok9xJVUtvU+FE92WprHq8ZROF9v11bP2NKSC6NfnJg1HUapeyS6A3WEvo0XTJEO8RJq77BhX69d0s2VY8jEFEm3LkBobQ6yjJltRsz0MISfOONlH4kRRUjrAHMwW99gVBspe4pgOF+PA/EnnmouWdOX9XfpvFRH3mh7mQWdLT0Sf7wQ69MpHa32G6eod8SbkCrlpHvURJDQ56TDzupDgBhb/geKCohKRIgSv4rstZFdMtXp3zqVBlCIHFw4sIA8JpNLL2BpYrwUn+5FRyygt/kcflkvOMmPUuztOqVUvSCnppyx28G5rcjSqKa/m6ukjS1QOdR+84Di9VZOE1c+j4uEhachsIBbMZN9XOMJZZLyDVbHsxYSGd4kXlicHnjFbvC/FnmLpA17TyD3kJNpcnsvg1uvLsn867IZJ3psu4LsR9/gOijlSA0P14u6iRAa6jie891D11K/BJaVqN2HGAIpBtBcNcpnNYdEhmpBGK1SohR3mZM31pqoXCB+73f9xAk2T67Oe44JXG+oT4HuSjRwICNMi+s2x/KSIzfCSKRgNb/5fafxN0jaFArbbgoK9mmQg6jMmvi3VFXcsJkUmITdAMwR6DguYl3JuP03WGsIWcx4ymvc1US3IRW40URuxpNimSZI39Q4mz2wq0vDYsDNJi1ssGB1zQAWrllnoXOIXomYA1FsqsxTrvNQ/spFD/dsVWHcliiIRB4STWFbD5EjuryZIpJgckvjTT/nOfHOX+0OCpURioKV+i33N70XRUIEW24sth2PKDQ19SvWNbkWK1SzUMUbRcQ+sRKTL2iVEZJOUnd/z4ML410+euc8PK94Aiq9FpvLf7GMXOZdYMtMdsvEvNuHN3LQD7hQkKfqQAe25k46GssFlz1NPzs2Ew0ramc0J8o2cVXJzedHKD4K8qYPXLNuj5WnxucusseUL44K03hZpWqvnle6ilzBkdXemo83S+Zqm6Dl4Yb4iWJMN/Yvep7SSrMtS2BQLB2nog7o0gg/NAppxKo6X9s9zkpoYRWu1zroF7XR5bqZy7jVRo18FOHm991wd0DMFGGeZyPmjo9sNKBH3DfQPDeGFRp4PFxaj7rcN3hyMc72ZXZTgoTZ+3A85kd7yX+/iqWy/U1n+ilJ1qWu7FJABuYTrfPajHMMbS8YB40u+kORM09MV6JFcSxUMYMt/4xCdbS48BrBxjqOmK1eY8OPCUxSFnpPE4eMhID7nomHaIR9T6gWMYmZ088GYRZGpNeICmJh0gWta/T5208nQxglio96J7l5KuvoODKUGdjvq32Xw1f/1k4zRI5B2syDEd7T/ekvD/QOz2NuZOb4jOG6MKMWlgAZP4AyLQlDAkaSsLac32r3yy6bk9rNKpDV3lcyF7p0OmNp9KjA61X6WcVkce3BmdEnumoTWNrchcRVhk0fo6718e/UTH7+vYQuWAs3PP/LvbYyfJkTs0AEG9lOwPaE0p6HCoCWIYMMx1zmIkaxgGFMV8T+/w5S4EOrPEUxrwKhuK79EW4BNm/MBgGc5OTmwbFmrxnrUcpx+/O55KBLaNtxvFX6AatliQFnOLVlsgUoCUOnKICLlBQPrDgp4W0Z6RyPVJ1makDptf6geP+zsTeEpJR2oFShvWPQJJ1rul0cDfzUFiWWmiGOMNZtpt37S6r9K4dD3ZWw8EmdW80sKCR7udsKVqXUVQubTGYCTrKFMpmbHlTuOikBCYWlvbcrIqQ2Sz/kQJY+Cqnanw229YKjwuK5ZeUIIg7Ln3wC8JRisa8l3A5B2wrT5CGspV6STCkvGOr4+A8eaXj6EPd4bZ0Jdib9JDjPnBIoVbaEVRP+8LtBo5V4aE/aO0NF+5kfL5+K8Sbqf/YduxGEJDF/lOZw5HjZ8rGndT5GOiPd5g+DQYqwVnOfdWlVub8AKn5O5T77vdnKkx+/CQhSFTZn6pOtWuvVRUuerurj5VB35WxrOBLRYhZ/p/uTX7iycI8QQ1P39WKr6EIlYJoH8/ElL6zx9/4OVzGeNWAnNB3I/QPXA5ezdMPXywmRrFHpkmLp5jDkeEhtF1kk/BgRTRL3xHRk+YyqJSdP+IWIEdSYzOAbs32/F/oFhSr+RVWLyCCCLJpAMhgr7IrOD1wp9Ybr/1mtulJO+hHBBlafG9EtzJoxlxKymJgALkWvHD2+TYt9S4fuv3gffQ7XGKUJJQiCGz6UWLV6fqVXd1gR0l8WDT7NxEnagBtfpuWa+zhZncz6Gwgm+TZCv84lk+nNVs4XtnULOBW+BEP5tS7rWexUeVZ4JmLQ4kgpb4eQzA0epJMWSeudZwFtGjVBPWfqcofV9xo2qUN4LZahEXuEIclUpXHVOdsW99FdL43sD2KMnrWcpoZ0OlPqGXPIF3zCUhtKNHOtqF4KJOLNoUN5uQZSneOWkIW2hlm2+6hLRcgBisRac50pF1Ii/at5mZPqpns4vrETBjLqVqNYb5SNvXmyr0HX3WSxe7xQXH1uOhjxMgeaHReuLKyJWBOcsxXs3X9oziyiJpV+7Z7NQVDHW7JETtTYoNFbgXgQ9abEatfPgEvPtsndxVwxEdQmSr132SZCz9my5c4+kEblDpMpORgN2f0hpx0sEtFGJPyVMRiGQ2x21Cv3sem1xDrY9MNDMs589VTkAFdvLg/t+UKKvvvV5LRKqCSGMG9zH46tGg/miGSzSSfL3IYkVjfwkxXh7wt3GYkfvhxbho/2rTq1Jq03qFtoer1qmVaJCmr8mr8cAT69U4ekt2p4ynEFwBXFM9qELQSLCPtwGzzSDSkcV0UIWEP937q0XdK9pZIc1i0d7fuuD0IQ6gmpB+4/c0mckwf3iR4EhuNoGxHXpxHXLQm/LRhsOytIL+Wl1GinfHxCD1HI2VBUnOFDuyRkn1W74ZC9wkbTujcD4EGgKEniiTg4xdyGFTwIE1Hd9y38CPTfU2il7t0160bU1yzpcUKzjAHf27ku3FxcxcFTqBWGriQORcvBTWLqU9wjkasNYc8ZW02ZwRr08lJDY2ymBeX5YLBfpu8G3qAxPsiwakRxPbd9kit6+O1AKzc45UIqSe44HvTgy2mrkOoiPOsSMeob+UmdAGSUK1qTHBj3wSnHNd/DN1d3Fdp0fsUmPIWML5U6bGbvQzOTt8lhA8wNq2b/7sADF5V8y6kuogsU62UvsX2p30WVJ2dMsCH9UMXxsIKfYyydU6DpqVP2PkdJPv3Jhh1K/wFk5eo8NGdszOK/9QYPou9KNs6AVwedJiOAhxe2NmzGsO3wjRI1PHDnS1JvkOcXXm2xEEWQ52v+pa5h5cMVJSJ3j9oSZ/KZPiOacUobniBxaUp+2Do9qOSn+9Np/+KNhs+AF31VRf7xPqb+tl6b5CK2dmSriP/DQ86cKRH8E292Kh1drrahTX3P8k/Ui1a5ZAUGLn6DQ7CNeFFGUSkiQuuznNk5+vpNvDcILsxW3Nw4T/uwM4308WHtDQ2CQ9SX5q+oeWOHhnpoTTP+wxsQRB1g6XFJMV6K4J4UG/AUdsZuYP7Xq2zlWzC2PG3tBkDs/++TtBK9B8EBaCsH4EctIWbJSTeXPdVTQV/uVPrAg5JNp83j7ISuW8w833dCHHgFXCH+rMVqAsa0QUi8b0O68/WodGA/Z8O7onrsCZyJMbkjt3RUAyFkqWbJZrbfwnLUNj8uftgYPUA9xmJzeTgF1kLUVlm2+6nEqtNeiQMMPAiRC9ihNl7rca69NNiWaXSVk8GRtK6pUmof9RYHpX90uMzHh66KFNqAj92fJ+aWYgusDKK6jQhoUlNoV6+GvJDVg59SwU4COwpkINk7o5lFlmPyrXFcpaAMcWUbQyI9HDyBX73uOE7mam1PDhq/2apkgB0q/Bxu5BbXdUYodUsoAukSolLvqqPBkwz3qTPGaGABOlv8ZGL1CvoNkdV1eI9zShYJL6UOjzVx7w6/DtJAYgsTBAtHuX1W08DSUAsE4huxI9F/auCdyv+MqDuJ7o3zVT8xwPdrZuT4GE85io2Fl4nSCl6UggmsbIaKtTIMSRPMla6/vjKB/BkjbMoml4c6qwyhq9irCSLuQsOv+6jIaLHBtXlK/koe/I+q0lcJsi/T48U799/kPU6K7Jm4qL24vrK6vsG6UGrdQYrXf6sXOFxKJLWkbNdnBzrHXa7tTXBM3hGa0ptJl64U0azI8h9b2jQpvHlUR6Ezmh82FwqyhGZcwaJUuXrfp2ltSH1ZGpDoyiIuLuJWoNzmCUuqbLpJMTBIOoqTqxer2Wpgzz7EV38uzOfXYn2ZR8Gw==
Variant 0
DifficultyLevel
599
Question
Five people had sticks of different lengths.
Each person measured an 18 metre distance by counting how many stick lengths it took.
The results were put into the table below.
Person |
Stick lengths |
John |
14 |
Caroline |
18 |
Paul |
36 |
Simon |
42 |
Ken |
45 |
Which person had a stick that was 40 centimetres long?
Worked Solution
Let s = number of stick lengths
|
|
s × 40 cm |
= 18 m |
40s |
= 1800 cm |
s |
= 401800 |
|
= 45 |
∴ Ken's stick is 40 cm.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers