20137
U2FsdGVkX189ILlDT+557k0hZVfAIMx23nz3cg3asNrkLKhf8Zq5VHJKcd3fl3N4SC8aaSn4gA4ROFJybe2gBoERXnDUL+EJM6Rp0x9H/QX+izeYK1VIkl57kocO67VLQ9PdLYLOwpkd9V6AjREOqY9tmNImiX0PJiFCgTlNSsYEGYRXeSVxu+sao3JCk8DDzdTVKyQfG0faA91YYpqSNBBLkLta2ewv6SvFqcOYcXOdfj+j61gOE8GVDhIBIJ9bT5u1KgQADQ3Rw3COYkeO/lj9QHNft9K1EVhuUY3l8Q71Eg7F0KwDwiHtq9Jwlsrkzf0kFevO1ySLXZHgKjXEVKjMvm2WYzzzpXmcQZlCxciopomucxXW53K8x8DwYFZc5Oa+NM6vP950lqAWiH5fOyt1fvzOheA74bsxzvZCB8j3PVM5GZ8cgEXPFi3AG9xTMExRW3vcMHIpHgRH8lVMrydXg8xORFycEQ3SdmJ/dtlljjF4LX3eJoc0vo2T1lWxAc9vCaEOfkbMB43QFhV4VvXQtA0D2jKGUg3vMtWxNMB7f5bvW9wbIhsCpZg8YGDiMPdUwdSKT1Oh5wCJEbx+8StvYmFyBIGgA0rqZtpjs9SZkc4LtxT+PjVuG8tNx9Hc7lq6Cv/S8KiWYnWcpnV5yYZLYGCb5dBX7ve5krKORy3JG1dj0ATYA7veWUPeVDgPwa6Ncpd+/l/1SXB1Uu4hwTWwdcFsHzEzvckDQgBNbye7v1giPOJcQGCIQP7tyXEWHAgDBLJxwyxsLAocC4WQdhm5K35n1kjsvZkOgtTUDliZBZUE0r1c+lg5rubTiY62nxCikXiI6UcCnhM8tDdzaVo0Go+I50QSrbjEueWU4CiwqXEA5gFqat/k8W/OPzp27wmTJq60SINErW9K2ew2gHskXn2LwMiekF+hQFBgjDD/GlPtz/0JKZRJxshFqZeo86uS4GVIKDEfQ7ABOqI3gkcoepqbELiPjIAXDm1BeRuXUa4JhRzxHcIIY5wqSsWDdat+fAm1bu20j+usyckxnbQAo2ZNIrICIy/N6kPaiTORC5aUvQ2lnwkeBCd3VkD7SsY9Do6FnCHKufS2Ga/NZ2D+sAy7OUiKA8YjreXw/vi3Zf/PV2e4NApfUW9OBh0SBlf7VV1AVCetU9J2eAH4/nMGtQDBuglewcv4d/pLbZEQLc0+UmZB5lLqT5ixG7LhtKqmkukWfJiG8UYFruikCJuEnRv+nkcu2X7AKJROj7SZU37P/1NXCFFlPnSer+lDzbVpXPS7c3uJVEuGdsWK3T1Rw0DgHAcrM6mrSpMPaZyu1JFqJNv95T+qNkXItSmPhiCGd1wEXvFxPCZoXZeax/PcTRGbr2Cz2vfRkDLMZ2OMs/J4IbsRmEuOuy86qhuBlyKI+79bwMgqpo9cFkmqrp9C88nkMExIh416AlETetAMfs3lWHg3Kx6knzm17jKekS50gqyF+4xy53w01XJgRT3oohdQtJEI4EUtgYYzwxmoXzu0IWu5h3gbWJbzmrRhrAsqe0qXPRwOfQlYEMC/XkwtfWmckSLB0CFGdHZ2fVlnpsE9McASJnhjMqk0sqYBQtj6zBgQs5CA0OaBsWUSeMVoXgByoCsW7K40CpsYx4bVCYw/aCTZHeO6EQvRbjKmdU2/cvTm2pNnsvkkPiI8LgbjMvnFVNqBRDvIypA0rzpZP/8psl0FhUQyAxZ/QoXVsC1RTj/WNJ40CiVHcv2OSq+pMuhhPTZVgDAeW4BXihkthWEkR4J6KkQUzdpU7yVGE/yXOCL8wwuulRdQlle4Y9YIuASXeq7dtFv1a+KXvXhysi+dqKrw9XET+2egXDtZF9SemKkQrjmNMqP/9KNtKtZCw3chKCxUKrPfzqZHL9dy0AQ4JCLnjwpcl3jnBqWi+ziqh3pzQdk0GYEpgYGKN0sbpsXqAtaS8Yeq4fDSLx8dpq0Cc6ARecgEdBmsVlXecnN7T0vnscz5GYxM+7PLDe1OXjf8kQbwH7m8qZOyMgA2FQ47h1b+kZ4Ky+oUV2PXjo+vkkPrjHUDRLKbrnwZeOmgo5C0x7G52/ebk90tgPbv+OW9Sh1mQLZcm09dKma3JCTVooo4qW9gSNi46Kn7PYVdvy5rgyMzEz9oUSdL20btetM4NQ/0Jsq8jzzT0AkAoWieV4A7SuoanIEkO3CuCo3HdE90Y3ZtRawao38VhBH0ZRWm+nWJYETL43VDUh2Zg+ARxzE7qwSQ5wXJyng/BSgeV393ijoTBPvMZwLpDHb513NkXzQmKcBcin75YtWlZM23g8KxH9gGJK3SYzN4dS1yZ314YCDC2WTj6ihpwHD3sKyvW0MFbQucJaRDOJsUACjNPjMThjbsfM0GWwV5jUlWm/p0cSegMK8gd9FhGQIOUxybKLxTwF4QexVa+mWmR8zl0AtASYD657CFVHmCky82jTXa3uu5MYTUf3lbifw8UK2lTF2OtKoaeHZm/84ugiBv6nx5IqD35N1ynqsSLFqnpM3VaCD9CTrTDCOAQoUcCrwS4q/VNUNDP9M0Tj1H2OQ/YlkIJUCIcvsY8qmGsXU0F1meqmWVYrm5BJEACpMbUjL2IjTAFuJmSavFFCY7DraTmm0VHPZkGsnLEWAoLN4pXz5VQBGzigoJ99dWeWSP2hXWXIZES4jDiDBWPehJy3MB0D4H/c8VyM5ikCEOvswiOY0mGdMMcR4loAqkLZtxwM1SwrWZmw4eqA8O0M8xOEd8OVLuTkShR+iubrh31/VOK8lltbYmuOQQbZSSMlM+95CeVa5mqz/91sJhqNSjK44FsEhjqHrP2d8oLNB8YhM9Mc7oJm1xK6dE3L/kFKhUUECFagcTEB2gzzB20ygxRQKpXvPoOmlOzxvtCJhGR6XraylHVwQMjykkvfdCPvdr8YFzZEpQro6UvF6llph1yCDgnw5BUjsMTX43IgUB6VX3glELLbdTiaR2r1bz+VxscOOJi2J0KYYjR6QSgL5LBUiNwO2C6/Y1KsNZDMdbct5rHYPP+w3C58ELnS4DSJoXVO1C7i9gVEzU6JtAll8ULwH46GACyjCq2ZUnqRPdn08NJ3RbDx2jCzZjxTuJfM7EbtTsVL3VI+Qt0n17qZ4yqgnXsaucTKioVCsFn6uIaHPfb8fCqQpqRA5fNbR76E6XpuYgAlKykgknIwBR2emzcvL9RdAiVIB3/fBDgzmRtvUHCff/imOv+CUijpIWXgAynkI0rwINdT6OpCWncpqh8c8Z+J9aNVJhmtgO18b85MoWzD9/EV9j4ygiMZheckpzvdjJlkAFxKJxbZ8PDmF3hu76XfPvgdn4K5JQarMjTdPoGUQJZZSw+Kp+0umS9acwMyOKn6Q7FfDPAKEeULVO6HIyKc7Mfgp859YUbLVIkwHRJt4YVWTbVroS7hqSN9JQIrRUgJYjjynDYX3fglRf45ZuwWWdKzCaBy3A+iMqfOBgq58cd9PP3cRIMiP1EoRlSVjgqzTyKTJmmOiDmLTqXEOwERgvciSZIZuh5PJlITPkl/lkKDZ3jduhYlSUocoH3DOfbVQeAOGBL6Rxdx+R3xaJh0ZytcyPwDzSPQZYQ7Nv06iKQRUrwS7Dp5BQqrDjxgZteAeXtO8Wbanu+SRFvSruVGHU+wUG/fgyr51idRWZI7akgB/dm6i3du7KrBrSh9kH6Y4sBjE3MSnDn/yywmNPpDikipzsNjezWMJJnWsenz5n6bZXm/IavAT42R3WCyDMwsSzC1uIdxztLKcC8JTWsYNRggn9UdlHbP9Zda1HMcS+w606kINeJSIreYEKG/MGqKkecIQw9Z4rbswQLPiWJ389kPlIueRx/5MXOXnrmiAyO3IKxiOit+tyAsiRTRiLuj2GyYWScF2bSagwyItsinU80ZvMe4ASDNBcbuVEn0/Z3S9rmp9oUg1viEIKPIIIiXCVTS2VzlhD0QHb7OwcfBTa7nmJm1Aku/vQdcga9TvPNoO++wOC5p5CXuPxiWv4xEXDQsg0pzceExMwA4VME2WtAHJO9F9CnLxfaikuDvE/9/Jez0W2NznOcMTDX8eWsBdA0+hSodDvXGWrT6Me+w6DVL93xO0akSeZh/L955tX4E2IAfg/6ljPpoovPeNwhp9JhGSGEJ/vWwqujRdZ7UW9aUATmnW7L6Dj1oRpFq27HnXQOwnWjNp+6uT5tDODtDCo/haYdEW0DrqEL8Q61iUQmMueUzjwsKLEmt24xM3uUGlh7NH3b2dt1+lbuuyAZ2GN2E7rIsGlVQWNeox//w5TxFR9ipd/UDSZ/WUy3eeBPv1SY7Cr3FUSPtCQfLm8VNR+KP5Or6R+69Aaq9tJqKYAVe6ZNpHEdvzNpMmutSSDBbEDAM0GlUCZTb4ar9slvEyEV1wrbTBLZ/queYyc+yd67oUiDZNUx3a1D+kZ5zzSckyCnbGfdmC1htyt3uZ46AATEpw+qvhUudhr9KoVF2/NNbumj7v8M4CFDgZNcJxWSe6V8AlSzIjCIEMRP8DMLyGT3y42mbiAdozVq6Vqbb9Xp4s1mkW2/zUzML8HussSWv6oFjoDhjPcxc+JSoF2rEYsOMB+vWliBtEf0M4nHxIyIDL24TJNbAX4rj3UKpWqIj7SyNRVBYpnhbluLOboGk/yPQrOgaK1WiIM4qcf1ViAgbetvzsiPWEyqYtOnqmrKpCR5k4kjeUXtVVBmm9EnJj6OfguhVn1ARbD9VeJLWacvBoVb+sG1nQchsgJGwNBbvysEzzSqx10rVRMhZ/1PRASkMVHTm2n8Ti2M/FH2zWD8uA+BvqZZ26+5rUm3oDfaaL/aMM9NrlWjQqpaiOI2Nnv4HL/6QkWh0V4JINrRjhLbxZHSod79klQy1VPdA6v/qRToNrs6G52L6xkj3PmSJ3aZqHKfI0TxYZ9uqHKQxbjQrw8CzpDomQLkNPf/NT8j3cbrbJNpPXyScRE7MqjBx56g8bOEJ+J1OZoYqo9dqgOSwzz/fBKK55lo+vv5ayFfbrNcW+MKPzYfQDwdtTi1hsgW/o3fEjzNzdwRQxwR+xef0EYCyCVSCvdXhXKPwwHrEbJ+7BSiM1pEqYUqcggCWLtZyQfisTYhp9tJxerjPczXSbnPE4d2SW2+kFImiwJCIV9qDjgiKV/tOw7LHQqBMypLL7TXVK8KUTtY8AN7tRlrgFsIXsY7uOJh4CTz/PFyvifDjjvAlFcJQgQnmcv9xP4uR3ey92/YNZhl2gWF2t4oQ774YSLv39EHvmoyBHf4i0l+ZvCmX/jMYUcX+aAgMcNTarsjRA04nxmMjMbYWFq/4+eEQXzqG3djEnDj6T3wbRloQdok/8M/byUDH03oFwSlpYJjgYBAXWpTOL6WdZA/q6L5LROT7hBZlF26DfBZRUoaPeTvH++0QbsUEyGnNcZzsUCf/F7FbAbysdMr3qRtV2+M6tjAq04nzz+zDeLX8owbzEhgQqlqYeT5tJJNiNnKbPDd6B9oNc/hhdbOJ1CGYMLmb3V02gMg/92MiZWbgNgt4zAQcK7AoQKKG3oajsp1WMGuNoF4KVswJjwsmCnhJLJW7QH3SJJk6XLu2/9KjTG6PiFHR4Cj5jMHoMMnQgQFZHt/xR4qD3tQGAxLBDeKOj34uTD2Iebvj4cljnctz6UitkoNApru6SvZ5qR2+ZpmqKyJY2uzpN1sWZ5yfKx4I7Fv8gMWw4zTWHg2ybCW4X/JNTMgs3KyGlM+W7bKrnDPYT2gSUCxd2N2cWGu3zB+JdobbEbRxUzumjDR9yAFrb6QKcNA2OJaolhz3w2dki7e2TitVaJDTwqxUL6Ne7j4IZ+t07QLYJwpJPpelUqhz87Y94T9x8ivdVVzE4VT+Fxd4JA0Fob+NmdICNCENZOpfRRfa9hHEL3RAM5w32G7q7kOzK4HWZR7oL59eMciKkqnsGhjNDKJc4aos+DpD5wLTG0YEGHpjdq+uvMqyFlrJYxUcCeeH0vu4CPMh8t5EzTek5XRfu3gO464v82RBWdTPjrNtLgUkkgK1vpyb0VJ3aC4DD5rgxaCBjdplx3rIJg3wJSDCPNM0i+viDesmvd3kugeTthMsr7hCPLWI14MFa0PgRB2MFjlKHQpF6NkJwtmfmDSeSZcjh6+PXvUMDvtYyO7dNYNFE3jR1mBXyHbDHdOXP8aCR06ODZIMaK6J5oBNBZNPfB+e3Cc4Aow7SsJ500+xt1w9pAXXaIPyzIzQ0WMXeDFZCRjFqIKNVpr/B7g4A/f5L0UhviUX2hweB/OZ23CU8D/1u05EvGV415AOm38RxXkN2/Kn9aaLxqw7RX0ZHjaI2njys8gLBpcNKApXCzzRAiJhjFMDmIR/v+0OBUVVrJadbYlg7pcYFNhEyDuASl3r8yI9QB5VBkZO3P1Lk6d2s1xA28bKf7LOdHGufPMDKX2pnPpx0QtfGR4YxoNwoGvPu01Oy08B4qd9A98JRb1Dn67A/ImrvojEgoVM6uqAOYC0JDd+8PXNaiVG3yWKVA7M1fMRNaRSgixm/ZcanYzZqRGft9/ZlaUk1UU5cRAy3Vum7gLbA6QXaFSe/Q1KV+TeRYa3HLOW7lBGtqGvgVl9YsrZKQQ13+PjV+3uXQWQWlaXTjGd8YmjSv9UWmdQbcpvSYVQEX7hlv1V5R2yeQhIEFBwsB3O/YN4dxoFMG21DTYk7EhGPbiK35FBG21RR+MtXIdjTiQzE11WedDmBvbOJJJVDMvW/NH1mwP46RtuNlXDq9ka1PT62KKxFZFY73SOFuoSeDmKrT0JS8+ZoVcDxePG/Foxr8v3Css/gi3Mx6OAEKlDWE4rUVUv/hNZF46pX61JVozyNod1Lt2xDobhQQs2IP224HhE2gvRIXbGIidD8jxrIRMmMW99s5sU7jwF3AWcQN9RBum+i7wPtEe4agI1sSSUBKs9H/CnBb9aMEJtGg67V4YPGVWTrvIJbNJu6Ix7seFwkNgYyxZjz59AtBwhMW5Or1EtSmMiHxRu9rdFMn7YrfZBQ575xFXyduzVLKxalGGjOSKQZMSer3T0baG4E9enxCMJwQ5XHxUlXB989nzNYc9O6e8JUFmv8sRYMpUdHmncqe4cbEFJvK12sFKB2e2pnN0KUpNnjqDwAeWd7gsJjlMpNmeFnxwaP4B4aJg8uriE73aHVtEirb1eIHUrF1pm42w+tUELMTUeg5tStlwoTZKaCDxHrmVDqa7o53OaNNSCcNKyvX1U0dALnaljrkSMUmTLHhk1T9RL05pbH6r3LYa7IrGwT8MYvgqSGsz3+BMcRHF3L68sU1ydJbgZmemqOeFBAO8Hz6qrDAOGQSwa/lVYa9l4RfzR26ooSrb2F+IzyMb07964V23L86VyQla40NxiaUgUgelbyDO7yL9QlxCN1StgEwLq1zVJu1FFGiEJIVI1/kXW9NG/d5v0BWZ8gFtir4omWwBYmXC0+5Os8osO6SQPQzhdi8zqrKDF8fbbspxB/wFuMQf5/C6efa7WO1Kh04gkgEFdsUq8Jw+1Of+khirGskfBUcXT4hdwGxXfHyiyEYV4Q4OGawkXVNb52H/Dq0RCbE9vEZbMZz7wLDzWetFvrGVLtdkRx/hUyxxKor6VBMSY9t/2LVS7INmzrBMdmP8DyIP1b0+Lu0jpJ2Rn8VrnlFNf+md/wOqikFVtvsky7VtjHIWpZ0QUiN6oLPTJ31US2sjsyemXdznUhpXhXg7V6W4PgMAoJRc9n9CK2IeI7npv1RncdEPhVMVO2ZPfzJy+OmN34XaalAEwmNCQsY2QBLvzA2xV9tO7Yr/VBeB4QxuDguRZETzWd24f8ekcDRy9fNL7S0lQZgmT3Y9FOY3fJYL59vOdLRc7Hk/4XW4W0Y45RQeOf/4cou6wnSyH+Xm1IFHqLHVwPE3DeSlLhxEh/UnlS4u1TXRWYHZU6xYRHLRvP4TLbUjwyLzYLSOadePgoMcoi2lM78avrKGGgRJ27/dyv5aaCy1vaSwKo/DJSP/Mr8b8xJxKUJbgb9PKGd9daNzTSBZR02dHEcx11BXLOuUXSrKNzPDSv9h9MdOwOQ1TVBL8oYgq8sIgY6dDlBSFHw1wA6XrI2MBbeu0Bx4MFt+ffxI/2xuFEWrx+tATaptk90BhoDO1L+d8Zfmjzq7Z14s7HzRjsU3U8ll3xumi11DZyw86/1+fl5LuSlCLXbB+vNfElD8Neie7OfYz8Sp6l8Qa6FvfFEaavFMwrkDdOsi6BoNh26GbsH1/c2VMU1YmTPKrLtTYgX3a3mb0BYkQAzuLVecYYpdmVFZvzLZ20TNjSajwNSVAReJ+IAl/4TX4jbO+RpXVLEJF5fUN8fXJDde8aVnxSoc+viO6tXYEkpATuO7Nd3tmESwI+8GTq91XmfkRVUhr+GlezS55oAMq8iBYKeXO5Ji3hfeo3q8gjQG6ifdIDV+7LewWWlaGeGmpO6q9U/lLAxILAQRV1TE0GCsv1Wyb/588lHuklpw/4iEAQkQ4psnd7mjGbh1jmXw4Bw6oHzAsMBggTjwzJBIKfA5MUzH3B2GXvupjcRsIlLnudx3sqYgzXiAQZ1IH2cdTTmV0RwhjZj1gnBRGAz828chRzw0T41K4n1Sm7UjznXxFLa94Evr2i1LR7zHpJwh7mmRR9deBTlUYEwyeySrJzpE96I5hOJUmqxhiwx+tk1rzSkBGWtoMaOyIeCXmVJNQ+0dZ0Mp/MitDtnRzILUydcpasv1CespE+f9j41sQRl2pJCtQH/u3DNXIiJtpSCiaGY7CHOsn/6CuL1YIYgyYduKK0qMTyoROVn8zOnhhvRMfeuOhKtz1TqrmbcJENl0jlH8iWNI6GuwaWhrubLSoPozOocjiJVCvNm1kaWxi4Nbif0uTTShsxloKPihSgDmhzvBgTM9EKQ4sXdFD1fjkC0T1XHWU7Hgm0MyvW2n7wjReKmRP36M3jKTYmWo06Ntn998OKtNuFcOuCfJwDyZdOY2XuYyiFSDgzK6BHQOePVnA4NrBW+wLcV2aZMVGou0q1Yt1DXPn6uWn1y9XVTGixNcT2Lm659kf21425hFoizcQmsAYUvCWl/YomDdrgmsK0fJ2gjlEz4VPHUi7n7/LQkMBNDK/Ith8LaYuD8oZuM61KT81LdEgjCcMmdmaldKJIU9KTJuCEffURVLb+WPRLJMAy8Vjb6+YBpd+sf/SE4NLXG2gCD7I1UwpOx0Uj2lk8OwNYVZT57vve4/ctvveOyPJVTEleEpa8fwPLLytNlqcY4DEnm+rNfg4KmpURLQiARrpS/ivoSBkV9aSS9jSEdZaeflH40JHFM51WVQ7bJ/Omf/Hml3nyCABRgBdzR8h1Tz0RxW1FYFQ/CT/qGXNh6Ej41/O3zj4c1H7DOS4FvLu9DMos6WLGuOZc50+xBTemrotl29RdNuJSJbd2+t2s47Wn/I7Wo7oYwRl/8Rea4YLxZH7+1nU9qMPQg6wzH/ESpRuVSoDHdXA==
Variant 0
DifficultyLevel
643
Question
Which of these is the closest to 1?
Worked Solution
Consider the difference of each option:
1−0.9=0.1
1−0.99=0.01
1.01−1=0.01
1.001−1=0.001 ✓
∴ 1.001 is the closest
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these is the closest to 1? |
workedSolution | Consider the difference of each option:
$1 - 0.9 = 0.1$
$1 - 0.99 = 0.01$
$1.01 - 1 = 0.01$
$1.001 - 1 = 0.001$ $\checkmark$
$\therefore$ {{{correctAnswer}}} is the closest |
correctAnswer | |
Answers
U2FsdGVkX19mvnTn0IegLjlN3oMFP8Fl5AIJZgjouAPrr9+mPkiOKqgOPS+4sQnOFGJf6aV/9iCOUFEqx2ZI0nWEaUX8LSdk+etHeKPbKq3O5TvlbYZ1KmKCAPnRSlzAf1UhoNCM91SFktSu8GFFYkCU9ys08NoPufy6YYgQyOo2LRTKvg1lHd1cuNLOCBbxUWLkrNW5WMyIdI3CCP90hF6EZOJUT8DJQKEZdidAI8ybD5+LTsmpoCR5lDksN2tMBciXxGMQWqKi5RSCZVntPmw4H5ihb9RIm3ROeTaBEN4No5yJBkW4CXVfhop8jKHewb8KrBt6kGD4riITfU4gfavYBUJnOFCLnW2LEE17AdPF21anPJMdeu0bezrCgsizaYWATgsCyN7ApdXrjpMMJ9mMx1DB+m5eSGn2mSEcIaxYU8xCcPsDnuvdgEX7HQyL7jF0SBb0aIeAth0PlFoBsqLoGRXbNyGG8TmAWRf+fEm2do3vt582M07lrs3z4gTmVhs+RMbICFx4NNEieWGm3+aL3a6kzT3fEHSzlCdGkMWQd3pL9BJNqoYtzzknp26VvOd3fZBaSp7OKIq/9EvQQKWG+l25fGW+/A+ksfFq7EsZU1EW4fc6PxU7WuVtQrJWj1KHOKG5iYi0ST8xPID1fha+HpBpgu9gTMrAKdr2PcGeiL7Vj1Uj8pKBbqNg90u6Hdax/raNKxoK58pP2916706qx2fRstnLYuedfvh5aE8euo8DY70Lef3ucx6D6MZ9p7SnbHsiL7lCPq2/VrAvhtUEVNxNcOKPD0NDdNt0l9CuudUPWNFbjcdY6S3YmkQKZwKVJ67LnbdyxtMDmJ/DUpWkSIAlQDo9+0rML+PVOLDsIcpIJ5BeoFUGcrwhgnn4d/cUqMBqaW+tdBVNO8eAXg8Qlnt65MFZ2UW190fuGPjcNPKB/M4Wd+q7lz/97xqNlkJH/BMahrQXia7KwWNYTPF5pGoKWGOT4OBqGv9dS1RrpZZU42aW8k8Oi4bFlV2GHdfYNdHOKptHDVfyBeWL/idi0QnD5GDtgoqaQruSCY3Zs0jpYHWk+nJpdYckR0vvb+7nZ855/pXER2W8bUtloBUoY/WlFtcF8a5eOcIQ0h5AAlOAfK8ot2hF+a0CYvh7nqQLaVuTjRXAMGqjuO0gspWJYiQ5Qn19nkrAu4Z18QmodpnIKJoNvW8L9PPR8nAOwqaUXUglfKgdkWMVGUP/Up1bJgllgyiHCuhvHTxhzR1/NenAaKJr3X+uOFz9Nf02nfkOEZAcIKZJtROaYJT+MW2V4O/WAVmKt11OBH2BFMpIxTz/e7ZFAxxHBjTosHyIy18Kb1rfmDEOxjInc7JEkH52ajerjlAq2YBTIKh67dg+0G6aLzMXivKxymFkb49x696Fd7IOPuow651/QpzOG+amvCyLOpa5LZ+poGFjwjREdcCge85zRPWV7T/U+XTqH9qsk5jqx2yZAQzqNUS1td68cuB/boxu5nQXEzjf6bGdO3uHcOpq6NwpKmN/FPdSMXVvHHR67o5bkGABkGv8N3ueVTtzjfJi7ZCwBfCU2/RV+aujraywBEW6s758N1lzqoqMdPRoyRguk7lhf4WdsDyEj3t83i1/2dOE4zlIqQ3EMcVVe8FP82aIELrC2x6fK6eVhYgwMfHJnnQ4ntaQGXYeMROyaw4j5KBcytpzGOcXDEMemyGGj5zNKhUgT6ECroOodesTj3927Cz2RLqtJoFqfGO2SRNzlPXD6QNWG3rCt8F634CciNsBqI8Epb6B0uipENnwOc1e8QLQOTBmlcYzzB88AlI25t05OF5H95T889BPqc9vDECyNHfSxV57z1PMPJNzR5KmlJPxHcdzXyMPkoEVamCglwyxT9B+zZWEPUwyCu3kO+loqiSa4u8rzAeZ9AMEI5W9Lqh8nXp9odlA8QhP1nLAZiwa5M/kBhaP+VsU/4YfTgdiInEjlFdPG5YfyA9gtGoBWAnyRK0LijnivS/XNVPXEL4XYX3LMat09om/yd0Z6Zsoea0ucfWEu7bb0MuXCpi61AKqE53KiVqmebEMwz7xWEd7MTiYd8g1gNgN22+1PdL4nhA4ifXZeK19WQFVVETlYk3XrAJv/OgHVjz5zpgIKcKDm06dw7zhdzMbtuO36mN0I63W1FwZ3T5f9veUGR5nFxsnp0arDLJOvAOxjnhXsgNYkx+CBDsK6OAneRRONBz4jUGIXYTBT+amtEXX/flr2PT39tN/r00NLhDUAZmNgjW3nPiU4XjtqKXJEOq9co7ybtuP7zZ7OPfzWSxhHcWVn548+/ogXa/AN6YNl3CaWcsQrM4IbMQK0UEbtvAnCPDgbMz8Rm8TrU5/y0Ube6oW3+RGcKXhG7Nt5rtwMmWRK80qXvApXSKMOBNs3bBqpT5nhfo2ZRZnxQcfOY9bvpGZ/kRLcd1zNMKLflG9By9JlqVEJQnCXW7gpq5hr0ViUjPjnftuNd3w7YnhTlelFZ1HJzbZA+dsxB1cMVoUxgwLZorgCcIpcvsJCAJP0mTSH4zXFWcgKXMvqIw0LGWFGKqIRKITXAvegP2mjeHOxHgXjbn+uG/tbCOGFGfVzPjYADuKjadn+jUQxW3rVHOYrw+F1DDd5O+FZzIcsEl6VX5bRhJrcTyUCnQbo9XN09egJvAnv7q+ZCmnBM9N8Nbg7He48RmwSLnq3sRrDDroak3Sy+WTf8vOgfyHaEfIyoA0wYOd8JuyvRwVzxkjaAHIUCUgm3elgZricPyupHOwJmtTcw5p990OyfI7kmA54zI1otIbtVhrHyQ0hmyEusEtGw1BEX/e9ajVcP6f5pw3piO5m7Ut32dPcnIiinUiCmgYUqz8V3QrRMeEt1pDicaZJYLIQdyldjxRtEOIatnJtTCs4DD3O5iWZScOQO4N09WVc6yy7ES+rfZH6EuSigaIGr+5GSgQj0SaommYNSVh/nidkxOcyRuOtTpAs5Tfs9aqFLKfCLUy8CHb659Bg/TPuLZJD6I6Ei+AC+Z0wOiGXaUJDOo9l4MRWJS3EqIDaZwNDXsIp40gEvCv8hPg0OrrceQzV38YO7GN9o7MpbsJ/g8Yv6vjPw6oR7U6Cv0hZqYlf884Z4mu+jM4mykKPNIZSQ+JWeviL313+1/Andp17rAmIAkCzfzTAeWEwFt8BNv2lUQ5oilrVuXvlL4I8oKF8J+q9JJBiFilfyRsN1uomrUrqcHmgJiAjl5nvdu9mNZzolFTwR7TP5IHSp/FhWWOQ8N3P3mtwFlSZyvl5ztA33Rp22XQArdc4ViyxQ8treiH98i1XJK5k1aU5XwM1ztrPDD/VrDeYJN3tsMbEDZWQQKhdPPaMkEK+1BzF9kOljPKrNiwNJew+sV5FG4NNgM/Y+6aWPmgdIioT9aK93Pqjq7/ltDqmIOQHARDHaokCSGaXulrhYCr1bYSg1SmJPHhSZGaD/EVoa/kzYYhY/N0+Xr1m7Yp+MzYxWAvXOduYNdz5R14aALCh2cejZRdFAZA7Xk5g9i5eiLilmBCxvHZCf53DmH+NNT9bz7kDHC7yUIipM/XrGIPWUEr2NHhg2Co4dctVI6G2NsRHoyYJ9K8teFq8976+3yScNboLj1fqYUTmqrH6B1C2Y5nTgzMrqvyGm5sTzExJlavHSPOC5R9Y3RQqeEpPnVb5osYb+ZP4vei4Zu+XGCrVendTnxDuzxViySqEi7tEyYNx/OosFc96alyVsp6TsG0oPSqFW99IiRIY7H9fkj4g0mTQEYqePddwGAknNpLMhFR+hF4AD04bnc5sPtxbiUaSCF9rlHa2fjyttaAbhvcp8KP7NTxBC+BGR5tg8uGmEA/gdZX0zGSEjGtLGz+5ciZl3ve1z9/oVkcpGNajYsbrB6GjW9AIKMaQhZw5wZF7P5t/0GLhOjj76SG7T/wPpAsElyiFhhijj9KOXbJ+l/PzpQ3B2XoOJFH+OtejmDoKsCAiVJEA2bVM6l1buMreMZ9gyQMqD1yEUGFpl8+pdspEZH7tHN5MuBVzyhX51z94fR5FY/GfqPLlLwL0y3Gmu7WH+Zo7W1uT7pGCg0AofcheYc0VDbQTRoSt/6LOex9RhkNz83JtXhKydI8wwFLXdpCKhKCDMdS0PwUo+BAITt+LsH+eGhBAqRIejtrOyro7ynWgmzIYe/y3nJf6qXIPtT2luI19hGGaPUCjRQIswn7zezOOg1BoQ6+myIHlH3RgtY8YN6eGm2POWNVCzr/Yj9tRAQ1xlHU9XhxFmdwmf5mB0V2F01egquohNYNV8FhtlxNUcTO/btWrXFZr4c7ijZyhRqt20tzN5eHsb4mgHkVp79bARvi0LmjP+wY2tsEMk8Lu86uR6MFufdc3PKo9+ITA4s44OLQCi21Ptj41WOznBCxQbfMV9q6y0PTje4/Nupb0TnjqJm7t3RjQC7HWDRFm9WS8ObIV1dJqVDAAjRYGRc4VLNm76d/0fLFzV1MD2sonP4V3ORWokgAPf1c1neHBlxh65DcwhN8Zzua+faMAnVHgmdPZzAl60dxDsxnb04VZ8Q+ra6hlWwY999I4MJyzHrXfCUXM/YVK2elQS65pm729urwBEN0Dz6bnidkSwGRWIi09oH/khLt+gCyRZLBRtszYBwy68MeffJfQf96CBJDtyqu7IQG0kASyZA5wGVUOMdHS+z8PdbT3wrLhEvsgAul7Q39qQJYX+3atyOppY8OD3bHnxvdlzfc6eCNBZrbo1PaNN1cVdF7TQEEsE+CfGQCUYEM7lcUUAxPBuwAgiZbJcSpqCjAiHysLjs0qKJHTFFzEb76+vK685WHaNi1D9wn6nJqXIxUue8vb0VNVFmUFgQPooaLaUYeW97xtWvWJ81dMWm0Z6fe4IqF7DJJHoJdb5FjeMqMmI2UzeJrTYKvMvNPPI5ijZKCYQsZTTG2q5AayQPWU83FPitTECL7npWBi7QcrY4JfPdiLuWW9SC9xS3O3QQigqJWmL02nJWdJx3nGfAT1IxzLSI806omOE4zL07b0ABC+AHleJ2mfSQ0S+O8A84cZscwoQpu1p132bXSOGmAs9fN7Bh4XR3YXJWzRemRkMez17TU2fx4NLYj2vssUskxMlONomTpR9s88hHd09UrDX3D6KsfMBItdSpOHi45Giag8NhYLi06HcWFSphGAQpm2bUh/TSyCRirwDwf6d5u3JoE4Ud5VCi6mtcFE3JSjxPFI+KvuX1XVbkdbmctxpP9iS2Dvf9MKRMsRmA/qMiFGAhJZ0XESQDfQ+DcoGlFdwNw/cyY3P/HCgyy1gDrwjlNCWSCu72KUT4kgDDweJKioNGYCwhZSWEvwGUWgnORLCFcVdfQTBqHGHpheEHKwLMEdKfOdbTucaZv/v/u0IauXF2caY5zZMzHnkwAJaJU80gNFLruXEyMvdVA1Ubg6QLGn0hYboBpQPKrNv9HzUdGWdJMKud/uO6J1/zdToidRwJx7BJZF5nrBhhjmIowJqarji4mLnZQSr4VbP7kTWvqTrS2TFgMLDqHYtODpg7I1DDDAU3YQnFqUkC4MkpmWXB2QI1ptQddUVIQhVzckPfvCW3fPJ9M6FKHsAJgV4FocK8wP65oO4Fs7r8PyvL/3oIAylRh+8lHBgStjHLW/JyY0a2aq+mSHEuzw5R3zglfzcZqJ1V2uHDHSqEu4RrbJP72GkAXiRjYcrBF3FN2b8V7dcQiUDyRHVp9OeWyXY+cpWRkzFxjvByhPRNeSAMsAmdMUhlAPOI8yIcqERtnzhSsPNeVhdrcv4HW4zIeHAcPvruFkr6G0MQP7QAaRTc6ZW6qGFxf5jOCrriiaGdVRfKPtutVUoFFzk3676zu07BBzmMA53oRxMdbcEhmitwve/tXPZvIcao2xyQ4cjK94MOTx0MV4FfbiOGPE6okbV2YlIzzmgr7RGLECcMOLdj0E7uzKve5vGu0k37FUN7i3yaRM86p98Sw2Fd3jtC9U2gRD3r0HGDYCCcX+OZXsciVINSJRVI7GQ47eUOwSxrH3PJ0frMstvLBsK9g5s3Raw9AlpsY7ScRnqpKKAJWgpAOkq6OGmd2baolTTec5JJfUB2NFIwLPWCR2mqS4LTazHOVjKvSmlFtHaiWGeJ2AYkoQYL116fOud2l/DynzqFzhZXzj0GY8lJ0Uu5BWke/rGGC2screfzZiv8HbLEw25Sc+c643obxO/GDewFbw57b8kXVByLSRZj183UBYJDvXZeZlEeLpgqq47B0jTrtlhnQhEgd1JmjFgDesBGlvzboqBI6U22TntiaqrS73jex17y8r37w3RglMhanuI9rWAUhERLeMM/pvbm5gcVWRdkyUBQm4nSIelFd5DTuntHoCr9jcK5uTwCsyNKrasztaxPlQE1um+Yf8GknEWMxWGx8k7H9tHKmfiuHDsDhqqZPTtJT0F0BV1iT+cgAboZy8ndMxJEnpETjpUyyXJwR2oqUMz8m4OctI/ir9/jacmvzttSEWDuWWxHhjk1egwVR5FwojQV7hFb6pA9EOlgIdJw+dy6T3SwhSKhkOVklrc86RDmuVGGfuhMQMV23wa+9nvRxAggl2JAxYxXcDDvQ8wirTu71KMqYDABQ/B4VF3JMxNIWTAMz+e0aTO4WFZ4m83VtoTOnyLY/sFWpbJkZ+lWDfWqiqGK6p6SeNgdmnt96VzW7C57gDvYJs6wNerf8a8m3RwhPsz8NA+SRtq7rOPi5/sApNw2WXNmmzWi7E0j22QKdAkca4WpTezC3RRWSL4twcEMrWHyTt4qdHBYTcWxcaT2IY8nBIZIznah/iqWJpoXr20T0m3/ok/m+pzvY7yLhAJR3NImaYYLbGSwMklRt+YtjDN3rI1dXpmgXFIh4gIaqFNr9sUFHUS0BqwtgBQCT2wXvXDWK45YVvyqvIoiV0dTeHw9oWVqrB1m3hL9QGgvc7eKkrxXgPolxzpEDovhoty9mRlDtvoEVTWlKLSQCSWyKZqVmnrH7IhdsG312I52xVMYTlNCYtxdYw0cPfDtZ+l9rIdI7szkQrSXQ/JhMIihN59KdqL2DbnYe0zrjRi8UaaHnPL209wTVJ6JgGVo1YvYRFVfosXeD2XBrnjpzoEotKjw8UaFCnNSvvxjv1RXV9cAaKDzZUWuWdPy8u2xea7iD0TT2RxbLewoDiFoCYe7D3OQslVJVuvJ2s3Wlp2yu0zWy24TZCAGAziKSv3ORGMbsU+u+8dhlhsLsQVtq/kOHNE//6DwVSuRmw+nxJ74st9Djd/9nQ+REoVM7ZqO5BIwuCYI8SvvhR8EgjsdaME06YJZU/wpBJVYGVyp8Ducs1qpmqUCumIUusQz/7Veon/xwlNd9D49hS7rrDIggVXwNfzlPG0Y3pH9IoobzEioNv3a3Gm4yynEJz6FP2CQXLIvA+TqmAw+zkNrgueq/fQafG7GxKb4+Hz4fBX/QtsAXTHP4Q6ztT1MyEyAE0Ut4Qc6YU6xQcyz6l3pkfpDE8o83bdCLW4jzZtFgfoKW00AMYWKNx3ss9njCK/s6ESGvS7b7Wm/99Zr6KYwzvC3F+8bb1afFkyFpuYR7IlQsaValj8S2TfysGEcfj01ArNMGSngYxPYipiY7JEHBLgYahaqXWO2/upHPjuDhX70w3UGsb/0b8Tj+uaF4JGLg1TBdHkA+be7MeAl1hJHv7zGXaE4a/cOJKmHFGilCAClhu9AgrMQEAPx+TzjtB+lXg5I2kBrSABiPaWQngshizpRY+SYdiXW3crAgTEkxC0kYPIrnAlyNpQNcDdSf8wnEqotGUSsEflthsStMu0cpIWdahyUulzE5GtAc9/4LVR7b+1FlX7wdPc05t2U5lYSaavBW0AzOICy5EVmLOOK7G6eEoQAF6ioegM6cD3FkNwVBBzfU4RU1DgDqIlGLG1+227rwndtdqNtG3D3LXmshXajtCjBacqyWG9AfePV3N11EKObkDhIgNMPgq/wo8XQNO4GUmj3zAbyRyoLBdq1zkJY0N3szgjb3iFyQ8EQNS6VfgIV2D+05Cd3DDsML1VgQ0SCOEgqreVDb66VWdKtsYY6DlV0kO1afDUw4kSmCv5IwyW5w/PFDyLdG6rSSYwB4wlTbYPmL33bQf1Ha873uYtLGbjQVB3u0v1i5byQLfbuIWZtczrYVhk8i0jVMW/5Epgy1iTJ6U/a+tm12jLwumSUidtO51bHzLmUwElI1wBgs1vVljVnt2HMqDRy7schnvSXEdrrMKRPseK0C2pPnvJpYO0ZEq8r7KtZ20m9GG1KZ0EJRYM9uG4qjhMfOqaxmyZbL5aiJ/C6eGGTg9z/M6E/KoOQVm72wcL6iAUipv5p3y3y9qYG1LEcWQpjxaLz9yWyBJE5FzVNyKMasz0RaVWtykMF1i4V2ECZJBTa7XoAwl6dp1r3Yqv+BjFKyzbXTv+fubIhhF8XdZbUYTbC6V3T1JhY+e2Ts7u0O/PW4Iga8YcYywSJZa16swJlSGiHUlVPJ/wrdoxE6VJ5KoR43B2nVk171K5oGaeBDxiOFCA0ZrGTLaSAp1jU154FeFRsxkPChRS2JI7hQD0knK5MXj/3i03UxPlogR9Arl/CaLjSuZAMExLuoBnktM7kquX+Db//2t9jssvXr4rGbBnlYuULK47ktCmBPip6ooWISyFv2u1VLrPL9RcCwklMgtLcUHkMXIUf4TSK90Du3Psx1S0co/s86i4ka3AIiK112q5EUUBAWxBdEpk/o4yzA6i5miSbDjogDrr2c/kZEHeFxO1RBHFkHBBbz7+Qxw+lA+RtvMII/5r2Y+wN38cLa9/oCBYmmjQHdXmKfW7lWuJlyACBa8BKqMORktZkopaO2J/vs0qJxYfu37MEl9klpTcGcMohcNghdPrgTXpN0eBUHahf6zsfsaz1lCoilG6rxXr7N7Sip2n/PMTpFfM8l/1oQPjcSkSMjHMPtZ+OnSi3FmuSh5pOhuTaV9ohfrg9OaHMW7U13ZNW3cGAxlmZ5hCYWHLMyOfXTKpM79VkC9K5Q3e1cjbYg1RjWPksbFpTxrEln6Jl0FZUFOnjSl5rnpt7/VyrLxTsnKI/uCifrMWNTrUMVAjpyrIeJLYfHmuq2hRGCIRjpUC2iQdQSW9KWoaYlYe4Nmf41+XoCxR7iGp+6Tqm3YPxehm7wZfVOQgBDGFxpEjJbOvJ8g+XS+icw6IgAStqt2/ibL2p7mXR7ha4k9xZj4qu3SSvzna1anLdS060Wrw8ZjwcoXeTn7nM1GB7apzx5Kd+j82w4n8RjfctTlAL6me1x2zrOGlCVpFJPixiEd4jrLoe1llIchSLGNFGPzlfg8TNYA/NizirH8dYRxCd/7Nm6FKCUbys9rkg5gN+KgOEqUEc5P2HTqV+SfioM9mqb61JZmhGKXdgBDcnI6jhC+fnPZeZUnSgJSBkiZMhqnIS1t0yKTtHQsnT8CVN/+RCxDl1uYspaJVUR1LNiLA==
Variant 1
DifficultyLevel
641
Question
Which of these is the closest to 1?
Worked Solution
Consider the difference of each option:
1−0.98=0.02 ✓
1−0.9=0.1
1.12−1=0.12
1.021−1=0.021
∴ 0.98 is the closest
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these is the closest to 1? |
workedSolution | Consider the difference of each option:
$1 - 0.98 = 0.02$ $\checkmark$
$1 - 0.9 = 0.1$
$1.12 - 1 = 0.12$
$1.021 - 1 = 0.021$
$\therefore$ {{{correctAnswer}}} is the closest |
correctAnswer | |
Answers
U2FsdGVkX19DQQgl2q1LD50FoNHuQvpI206d+KYoD6tNtjdN4fAKFnP9fox4RoIyz4eGrF9/yRDcRczwhmuYROL7fAgwr9eUpwhfg5LSfIjthbx/GSqs9PVKJSGYAe2n0jmmnlUGSrV1YzGVnvtbmEmAyUdKEwYJ9TPHtfd4MBP+nAG8hhZ2jFYiYim8ntKoVPydmw0p5VQJZPEp7vXuG6DVXYwVtX0UzfdOHYgukv5GBVtCfzt25adVwWegc6ckjI+ltz/pFbUmNmQQH064P47bl5gAvRc3YOH8vV8ZDiN+6zW91B+0yBGUuWDpzSusStJVI9xpMjJmXjt6R3HBrB8HS1UPrK2tA1a09aCAyjKUHtL7Yulfbx4+YCI7P/5mVHKqoZry1ozFmbXLz7DdlA0i0KPowVi9vXEuboQdDibc73b57f7pPwPa5pxEjHRl74PWPX8PxCHYPL32VqiRuWFs/DwP2yT9c62AACl6GWXnCTF6VQs/0vbG+Ia6TbOq+skh9jtxqccX1vsPmf5Q0jJZzS9jhfy8miIZRZA5yFBW+iMXiMTToId380UC5r8GPkYe0u1cG5ch2gwzq96i74mrQieAn7VaCur2UZZthVEySxIed3SX12X8ZRvQD3yNafgR79d3dRauCsmXGnANNL7B+nLyoHPtOOEed5TCHbmsupjOCk0csFzaeoYtqOFHqQJnAtnFhvjQWm1f0T7xXI3ZqahDEuJbhVV/P3Xj9I+g+hpUAEkFUAHWMlLjOiIkc64LGrcWL0Ch1h2fyOdJjiAJNT+SfH0vG684QXX1EPpiV/Fpa5UsCZUVvw1QqQcLnKSZZOM95+hPLtJa7REUixr9po/8zlEhJ6Yk0Om4an4xBDh5L0hFtIG+Ww/FatekHb6RY/fMQ3CEHzjluLvcDAAGSv+UI52fAubzsjDZb6HkVTjTlK7v0eBHeyXrvr/DbIZTc/54swkx+YerQiNRZwMVRKGglSR4eTSepJ/h7NfgREkbIQvsLVMGExp8Dj1P0xvzTyQjDyl9LfRRN/sO9I6fLb9eNo3UwCquO1hwuiWfZdbuIVGBe+eq+s3SkJVitvdJHNxSl6/0w96cg46moYAHPufSXqrWcI2UygYMkjG6mjGjOXSK2L0SuPvgmZDGOKcLjTT6NmAEJSO2fH50/FvMnW2KA/v+Nu4TYO8oKaRI8NJrLlJdnb6TL6hMrhLfTrEqZ/d2bKNwZiWTOKkHOB1cvuduYCp5TFgsxGJWKYgwN42VJKnAWd+TeIPD2ZKwiKxT4Kkbldq1xqFd4I8W/AMDRisUMayRzkVxIxIn1Amj2tbRsZEpWmedbpmrJI1rflsmvmRiUuXj5ji/ySW1TFKdsZm6T7qc+fR5qiQwZob3SYPQQ9Vac1cBWuljekx5LTk0us+isvtTMmpy3ypYLR8TySe2QKaitoMfKMUrDMFBsTQSTp5yfjHTo173p5jrVy58rqu3TeniU6t3BNwJ2GYvSVCnAPkThfxsfrs+sX2I8dgo6kardiWRyTmbp7FZyGBBsVbLEadh52QAfoYm/sRQAuzXoC4FvqD23onhDdRs8dwLKhhqmuCywoNV5Jtqig6Qhq/pgI7NwUfTkrttVNyoGpkRAQ9+PV4WQ1ai/AofTEojem2jYwL241kRWqQJdDxX3zIp2dIQtRfY8QMuGmTTaqUqpfVF9OB0VV/XCwniDjAVF9Yv36fDCiUqlM8jQg9bBVVk+gMoPRYEXBwIRoIDnXqB1WyUXF6iAcV4Uc0KCprWxjYHs3PnyM/rzEJX2u6xiVI9D5c8TO+Zej6YTzMNt9fkX2YEGzIOxcYriizvKMwXE7hFP54G41MudeUAtID3x3EsmFH5b0tW9ohCSeVS0DayK+Os2Ee6nC0aJBDoMdNAr3RU9RJuiv4rcsrYDwbu3bxujRExbYZJSGOsQJI2lKrZmVmVK/knz0Fi84bfQc/P/qUmu/AjsfzJI/2268wvIpxjnE4CBNvBsm94DqQON1TkuHZ+XT1Pqq1BOivgsKpA3OLG82KmUp5EeVAX2u3SEo7csX1wEXm1skky6Frmp/avZ8xSixqVPAot3X7YbQDC0lz2l34aYX/SejRhQw8Qt05SK5PIvQogQ+cCQCepuRXMNhHdIVQSfiQIuPuSpygH6kgidKForBFxcbGMdBCSavEU0EcRtC7BRwtQ64XLZX38WRSsw7+mwkPJJ41nM8OhQRlJlzH5/A4jb9MSCSVWJUshqLyhByIVeRSNu4vPrASCt9Akr/jYfAx87c8BD4zmUp0dSQMWsEQWkozaiOl9TeAou5OWj0umFicSa8X+TE0AAw0esdqYBjwmjKgsxyzn2fJUzBA2fRUDXMEr+KxGgRTBzKSL5c9om+4iEdhqYBhi+fW5QGYRe0aeAFbKYm/K5/OTxnMbT7+vv1A4ylxt1rVTgINA15520cBNgOdOFS3wT78J/FQDJ0mbOTHZiQkF30OGgFZSd1RE/j33cHToKimaMGt7JP4wFQEhi04suafwd7ves43V+cIPsHXD8p9JDfxYO4XBccmF5AYX2rxyi408iND0n4G6ipLZAxL8VmFN8tj3lTb7WtcJ3GKuRtMX2gdpQnnm72bC9bbK6mcquAwUHJLxf82HeH+0UQmI5H0xYVDINeGXpInzeHzTQ8lf49kliaixLWt0BKnc1MzjdAPW/0IWwclkjc3srbYpCKmhgpPdXe1IHpzqYmw6PJ3FiOooXRpJ9R0K0sC2cx9ljoUPJDnjzJj6cRUcXI6oulK6ixmYfEfkKFrb66LifVgJFt7zJyYhQBsJ1z09c8nGUo281mCjW1caen4Pd5h0Wx6EIgZCnalxvLnBHEB1BhHZvZZcBOMonrvy3bARvfu3lGi/LJ5Ws5NyTS4J9QUEz1pKnIAaQGFzW35pHctCFZosjYtF+Lw/wXz8Ln9Du0coOaIyul1UuodCU6FpDEUGuulmsJKb0toohZzS5bt9AWwlMdYeK8oxuS0nVZKAtve2E+33j7Tv7Dg2XV3MrJbKiQF8UwuVqeGN1zTT3QC6oF77O/Q9Uyk6QByE8TEGu3r/3vul5f9tDCB3RoOpNEKrE447of0U1Pd1xBioD6VkpwUNaK2VnBZsVJ3bd3TMIDZsmHm7lAoqaxLuxPCPA3SEK3q7OkH8U8d9UuvgZtnN8A2G9Ae4TbPe2gajJmyaf+jC03C5+rodmTmE0RbF73qQUeN3XkwYhRB3dOic87nu35D+ywUJsypqapMWSQU2H+aivaKCkaWl8uujVGK+N6d1bx+IGd3XqgzVqYnZT0s/SfMnt3RGVEswqaeJtHgKnMWvixxJsUUTwbrHZK0U8+E5jguP4AioIhz2PA2HTXng4DFgdAaL7QVMM+JkbMx4St6yRJ49sihNrR/U4MKBYGWtPf14nmMHUq6lQcqLLyoYkpktgTwQXus2Rtu0MPTTG+MqC2diAKkgvQKt7NL2sANya7lbHH1cX/O45/76TqQeNsoX6EFnaET7rlwBH8VaKAQ3bBPsaNvEYAQb7R62UiQ245/mQX53lZhEpGlqab+eUT7C6zNPS36HAtCwOAS8DlVWnDwBBROffXIZlsqIXOsjwHx8F/zWHIlJ1LvFiAZ9XSXn+qLz/XnUbAXsDDuPXDILrC8mwx1ia2LLHMHEKZ5iDkLucR3ncS9xu1CL957g6kh8V4uRbWyxseGdtMQKlGTFgV4kf3zjNJ1N0tIhuO3VwV2bR7gRP/oQ6yw7jIRi66Ff3UHDbx9x0+oI/MXCG3y5IXuzKu2IBOuygb5pz2kMdpvOGIRQgpJ4OFwKPMUXRHT1VLwo0wjstdxkHBdzdFUq2IBFwdU1HUBSVvgkMNhyO4QjRbGLFhUvAkhgwhLrbpjHPMgWT2cXG5DykYy1hVthCGP0s1xIBpp2IYDQYLNC9QpA4/NMjX9hQU9rZytNMgF53sQkGwi7TrE3Vj8N9PLNw6BUWCtQBrJCDNIDMZeykA6GVj4A2a4FMLiiIV6H7s7bNW0Z2500b8UAgc5Dd1bmTmdV702Xoqr0g7XK4RG9dkj3QwE37cqda+f8MrPt3KDViq8fuyd9PBnclk8OmMlhkLsaNGIHzYetJzCCBNZGhjBLtRPFZ+OBV5PsYuE3A4SPMn5byYWHhIXzFHPF7EHnzjpL5CWM7yIz1EAGj+AbofpKO7GfpFpJG/gij5oJCBjHZVszW6UC+cABiwrBB+kjL8joGVsM8SsgLfvTh/T1sC9lbhrwOzd9OBE4QlT90pdMAJVMsruYcEIyOf8dHBUiEpOaSmLAyJBHNT6sRPSRZK3Nwf8eWqR/ihdNQ2OCbFzU5xThkFfJKv30z2wVMjIbBsyN5kHIlTVbL4wYxqNVt4wQXDQEEdgrap02+6aHKDqJWnighLWdyq8luRU+fHlbnHYiurETUCj3mfSACweiT3Vzeg1QZfTcjvOQP6qeuCtNzcJMBwaSog8qhr0HZZkxZ714T5z2j428PvSJPeTBdYXCtvkO+uG67mwXJnzTY3Qup6MAHCH1I2cKzlJd8hnMkBB3GT/k9itVmrpXB8aUp7K3NISC3WdE6eJwc3Vnekwk0kvncTfLqrzEmM7s3my6UzzVp2/VA5JMeccyzyadpgVaLx2E9ED+pdn1P5J/CjcpB+fukdUljjjnRnmImeE9uHXoSf9hUEGqGglWKOD8U9qo/gc5OyQ3pF9PxQVol3H775VyEMG2Xxzn9HlpJ2v2Yhpi/MrmCcBclvKZL6M75L7sIT9BiMd/IkZsgBfuS/+GOZFsds8Ptd6RlxNEa2eYTLjYBrlBqreJ7aOJmPaisysmRZ5YMJxsEi2wnazk/wCQ9adtxTIWQRmmnQEdYhrvCiWgxsk/JCybvVMIC+SnBodTvDcE+5Cy5Qde4FoKfzpKcSLHm9FWo44stMyzplm9FE9Z58X7I0wSxq7Sp1vDIfQDBobOyHI53jG+3lmkyZgNNvcbREyQ02ZqKI0PXmmRJ52eDh7+OegPw0WHyVtMGJZGIg3IgoTTU7uj5ePCeE6b2/nWlJrGeIA5cPRcR9yBi01Xxp4s1CVWaciA6kLwLV15FFaNjJBnM6HsLvFosvREIWSmbM00WOywL1Smb5hX8/4e3jw9wI217ffs2pX3MELtdSh3uyJTr75mvtI+qR/0nCPHQn5g65rJwj1LBhB1BKLOw43HykSoPlMAiQ3Ntw24KhNjYjvpJE5K9pwyIWVM//6JqivEUmMzIoJ60bjC8oZlpCEuA/Lg9JOOYCYS8T15lyoSquxZch7/kK5TM+lycsRTuqGGzW7GmksTM6lRvYo7OiXZ6PPVCZVIzF09AYKADedWmLLWye3p6v1XUhBwLUraugophmLBJNwyIAhbJ1hp1jdLpa1Za4Xz5eNAGQNn049G6a9cEt4RSxrsxbYJBNgwINB62q/hD791YJIqpiasykDGgjDHzNFBNf0SbFjfPghW5TJ5Dgy5Yn53ZPTZZtIhM7ds4FuFdF0T3nSuHeHN10Bu/8oPDxzqisbUeO4bTTYLIH68UuzMuRhE99nB0xijQ9YekiaQVrkpwSkRNx8w5nZquvjCzCPS3nCv7TZgNwtYCyf/X6RanUL3yPq/3qLGltHWfQ5OTZvYu6ZN9fLuO2GkibPoKmEgHdshsc6rSxyb+qEsVrqplk4fKAsxfr5YK5xq500ijaTMhyeB0jLH3CHHNntbtKSICcmcyAXVl6Qd8i1YCKFn0wkiDYouxc0mGOkAN8YlBxVpT+d7M2L2lSSfK4EnZFU9mIBnUORktRD6ScqYEB8VcSgT2XNz09Vt8lVje51qsjwwoP/XafVr0yYN+2e1/cHA8mY5uJI+EOwROGZ90aLW4BMzFswKvao03FKHGhK0yQhGX1AsqOGCOn/HybE7F7A4VK7YLZHpMCzMYYvat7hXpbnqQDyORcSp/1Xu2dsK2oj8v69qMCEPtwl3tcD4KCimwCSMvQUt0MZezMLOitK7xjK1MlnskzzZLkcx3ry9SDh+RjTymwycIVgNdEbMY/wAhMdlHf8UfCiwpFmfeK9NZYEdrYC1+VIU18B+Lvdx0jvG9nNtbNq3DMBarB4O5mX+1WZa9/fQTuowx4b0BgpqHsJe9ZsPwUYnlEf8m9ZCOvdj2f/cilnUoejBvg0LUnS2tCFOEfMIJ6+uFAayApzzKnvveMayCt1cZEPsK7stDd8fctmVrmXfzGp+yuX/Kq+XOgzxurBBtrm5B3Q10ibiZue6c//aJ2NEnRGs1fnYpfp9GvpKEoHsqzyN3qVvK+lKB5IjZoPFtHGEFp6iMFJ7udoCRo4rhHtszbduboRAyceOHd69BFLijcK3Hd4kU7aK+UviqmTORk2+8c7KmvjIG2N524yt83MNSCI6eoApc7g6jjHLQc3aDv2/FPPL/ESAKCvo9JJfWS2ihPrH+2dhpuMVHfd5EdeOb6bzqqVawqq1DulmnAHlL0hSi2h7BGbcP5yOJmQFMDAzzqKDPKo0Fm2203pDUSxfuyHbmYmOxGTQM7zNRfpAJPLbXMGOXeHdYZIhfctnQUSIGYpmVd1T6/U6g2ltcGnAMmW29Fo7WwLiqREZJMP0q2BISthoaCoHST+fjoq8+52yF8SaW/t947alP+5N3Wz4cxwOX1Q+VldqHn19FH+VBmSGIztYxSmPg694t4innfNql/eChvdKR4CO5O/B3kOdwBOSmiGPFvoxEHuWuXKIlhBObr5AE1u8Kg3sFaaQ0SxKgE8HYHSRRPpC2GYrWfMgztp9wNto+5IceUm+VimHHZBtNwsBi8/bobcQnCDWwK4OXyMUTTrcV/X45TIHExL0KfPXsSQ57xFGItJpbifBXxc2/lgHFI6reA4LGccQ/AVrScCDKxrEtWb3eY9t+g3tOsI6i9yZDi795sBK9teudG/Uxuq5YzfK+H6EhrxCQ9IMhXjjkndRm6e3hVUx7alz3/f/dOsfgZfA7aqlt3gdK4XoOPQWqufQ7y69hl9O/9QAHk6HTclvFT3KPkJqVQdFCo8J35phAGiaW7UmA4b731gfQ2Sur8FU+fiNJvqmcMVmVxwAwFB9AZ/tXZo1dejRBKGCndfAP2x/y2+E1Ph/qFYZ58LbzGs1x7ho2mATkxC9+gfbLM/6gJqOA/mOa/tbf6sX8D6PX928Z5c6RPqGZn7sSuit8Xj70XKLLQUyh37HZQtXbNOUlZqT/QVVJYbdHwxVmSgt8Ki85iMsLicnGWDZE0MZyFVC9LM9tca4Z/OCoPw/DwBo3BQ6bxJG8btWv1AP9nCZ2v5Iw5a8bLt6y+bb0ZgPKPu3xqiAoEK4NKACiTC0NcGKKwz0Tpu8aaLs2vQmfsqFfWxlD5GMvtqJTfHN5WeRFT51pLeqT/tmH2PZj/VfJzMSFjdzks9A4HF7BTbWZQksGcKXrLvVgKRrGpQ6hsBeOR4uQhUyr3hbKoJHQQGBl48IW2mkatdwLQapMMMwNWhZ0Cg5PgJ/T2nfpiYEM2ID5mIKYN5lteMCEVwCLhcE8mVUd5WAjBpOc3sm8MNyM0F29CJidhALVnG8ugbEsYjcH177BM3xKvBTpW5v3XNiundmIXv/JMTpAMT0615Y3Z6PN/tnHVKexnmfdkNFD+UIY8fg5JayueWcufCRGnBU7iFfhqQsMyTtgE4E9hsFwu8tztBdN76eGPytVGIcvYBsesC6203ag6WFMez6ooA6sZCHcoRXoW0PMwfA3pQz/Px470qu49Kw7ruwX92TBB6YH5pqaXz+HSgBwHXX+kS63434BO1tL+bYNXhvvh5PEj6qN2k/I3kD5R2rHzzovvJpkjNhsMsIelutzT9DmUfr5aQhDULp4p9ZqVtj1liF/KzP45ihoMb2SUsGJgKeDaL7AJ3nkhRYNWKtCgyNLDgHFk2N1XyD4PrvVcCJH0QAT5JMBfMrzdkMqHDr7Xr5H0HVeX8SJkaklIHT+cz1ALxqhZeKAPMMBjlKGJ2ADmerdFXaRVIkU/oyYI4hoOIvoJeAIq/XtiH0/uMp95IHAlY7/hS7pK6xHBaNJ3ULg+YDItEuUyizj7ZTfpwwVOTq35l302w0QNhEkzKYU48kDTwhcmbWFrK3nkHTYB6FHMCftgMfU1TbXM7oh9NHQyyBxdU4fLorJjwFRsBcpYlnLoNgcdN49U1F4xmgBDPUCPcwInAlKlKQHxMo2Bhcl+OTB7MuFl8yyOU5sOEOJsJzQD8SG4mEXY4Fv99oK1xEjMf2FZPCrGExgaz8tfyNEuTrDODcaXsk7IUrjnCh72LNr5GYkyDCflKto0AIxT3Cf4Imf9Klu3wtT6DM40op5CFrL/bVYjDZFho0h9DhQLZNymUT1zCwiWuDrW4h7PH52V3IABC0qvBYBoUXAvLH9Lm19jD4Cq6iW8JZK36aeX4xkkTzDH5bZgRVGSbx4nlo5zNV1qAB+Wjt7/iCGKA9dHz4ngIl1f5wK4u54/pnP3GzRZmLSMGEhFBlA1GAy2woET2v9pN5e6XY88tGsN2faKFAJuo64irTP/qBK6sgMQ3i6O7cmkimUzqR91Lbm6ErKH0deJNa11DZVbDsdtIYY+1m8BvSK8yBxmNyjDeI6WQd6S9jvxebgaWers5kyvQdkyvixb6J79YaKhPITss8aZ2kL+wDAbOZGspyEsSyJR9bBXaKpJUxkf5qdDFfdCI+5iM4HvGhx02DiRgFgfshovqq92zv/rn5A6taSJrX18n3FNuH3VfGTvtjFzmyWsOIsijBmymGPk2lEHgtiZO2jbn4LzajtgWQVyS8FUGCoZnz3Kyh27RxCNf0y/HqBm8bm0p8rdEz9njqWRzWkzLuiW104er19zE7stKlmw7rD9wm4YTOntEZOf/8cRX1kHPnAmx7dkAjRsmzD1qsRkVhpA0keKfhXLoJfcNWlg/hEXyFMvNL9M2WXO3ozubWdjaJgMtiB+JUyPCoOfOep7+7TiBW2Dj6IT1KCkBluHP3fQBUudw2lcWZRMI6OdykAu6IVAKZ4FA/vJQJfeuui7JsCKIl/4yCn8IiPnEdp2aOdWuDiKMg/2/zQRWFEd6pfe9E7WVYBSI46yn/CoffqC+GveoD/NL5/iqJed5tvC9OjlQzpcZRWGuy/REXWVU7bBplSx7yBpPuGQtGdj737nQVauwUR9aVxdDE8T6X4+KDiteH+glXc74zhIQt+pMqDplJnwXA0+YEg8ZDNDb/2EEZD4lR0DkvW9xMNZkrwJ7Na6ZLk5mT26ESq3noAAkYKjOBTeeuxtFAjFVr3FR8sKFEmiyvjpUglrCb/QLnhYXrR8XdPDul63N2PjVM5QrmSTDx7V+ptESS8QGjEQOoUFAAG7x0O+dmdOrZ4nbmzGP6niReempnbgJQLE0DltgLFrzthErMqCzX8FhXRXpLxbfpuncrAQ13XbOMeRrs8qbmfyPEeeNfKBkfWh5c5n8hwodwczkoHYj7zEA2SmznfxjldvrNL56zW0lqkaJgMRon+iIFlqNaEBWqgovdPAvc0x0lJkszD+BMOfE4wwBrmRG3LvddL31/coMD3quL6Ybo+RZWZj5Zctx1P2/a3Yd99ssNXJE268NCv/v171TcTQUkxUULyENbfERw2j2ssN7bnhooSrqy3TawdMF30Lv85c9uDrknmEZPiU5sFWLFP0D7OvTJeBWCrpmw3iOb7fRHYtaXS3HEpPILJOdAAL/XjrE3mnzjPOYgEj+vtTbUPQuU8bm4DZLRtKyLbxlmdrPPLc8ofLUr3DSVhLBDUOgWHydTfPoptaHgDkcO
Variant 2
DifficultyLevel
645
Question
Which of these is the closest to 10?
Worked Solution
Consider the difference of each option:
10−9.9=0.1
10−9.97=0.03
10.008−10=0.008 ✓
10.05−10=0.05
∴ 10.008 is the closest
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these is the closest to 10? |
workedSolution | Consider the difference of each option:
$10 - 9.9 = 0.1$
$10 - 9.97 = 0.03$
$10.008 - 10 = 0.008$ $\checkmark$
$10.05 - 10 = 0.05$
$\therefore$ {{{correctAnswer}}} is the closest |
correctAnswer | |
Answers
U2FsdGVkX1/1hSo0O+iM3PK68WiiQPiy44AU2XHrErOqj2m3F1UWw29VJzRGQHiXHLZJfH3qHjKN++IlsqYIv/2vr+9BLtjsiXInQd5jolN7ZLpyRP1lnodGF7t7DaeEw+ONgAi+Rsd6NBXg+K5r16sEL0DhGGnuAT8sHiAYDZqDu32s8alO3on9guqSZGvEn9DSkYqbEelZn4qdcouxphdvVseeL2c+I63JsU31SJ0gFidgN2KLh9Lx6sqTKyDj4zrGe4GTd8/8v6d3vjL7Mvm81g3L9w4cDqy1gvnMVq93p//3mRfOL/EIcwmrs0ElwWk2kMDS1RjCxqUVN4yvuoa76PLI0hfpvWZTFlpKLmRo6e53/z7vKR7+UM9wKfI7So5NISQ9aXeitpK89jaR1XqLLS7aGAtRwZPpJVTW3sJKFZieC2jspO3nbhnUcqvTyUJKdVc+IBcq4oEndrIvEo/b7MYoO2CxombiAxh9ZlYTUkoJwIIOihvB4fsXd11IzQ0wXSRFu/1lcLuwfz2qhxss29r8Zfee3okZe91gWzVKHAztN+t3M1r768B7VyyyiTLjBRYuyS1iMf1fzvDbaG66ohFJy/0mM4jdmd9KidsHunGp/K8OwedqvJOUje0Qbw8ZL4r+TXZt/V7FcSm7I8Ko6gGgd2yriTX1+2T125BBfGvI0YEOiQxAhY02POHIjsKeoCzsoPLUKyhcE8F698TcxhSzcjM9Ijdj6kEZdtELmlMkwPLYdNAwQexgY6hMgkfd3bJvWZTW1zyU6wF3+lAyMoSNYeqm3dmtQc+P+S9dYRmcITMXeKagJRT6vBqDDPLjnL8wThTkfk5AxPjJPc7E5Ls1HdHo5Co4kMCiGhVv405JlzhdfCDXklChe9uNu7mPQlLR6lO6+ESEX6w0U57WG3Z/MnA0bkKiGQWRQzY8KjRc5hbGZcv/C5aiuqnD0yq5lSV6w2HBuQZgsIMek8iL0I7ug1yceFppqQMWL8TvCHa3Wv4QEx8wTKMVvZW4za++bu+nF3+Yri3hEZbUjRxb4xhwnnMRahGT0OnvYKZ4nce39lELn6Oh9I0cLmQ4PldoS9uvVC6V3AbBhJZM73bHbKobSWU8VXBo58aN2I5sz5xnMPqAEjzP0sAW6wph894WyiY+x2pux0ebr8SSxfm4iFoazBU478B5s40jeUkSa64K7uqAhqmuMNnVFa+iJ4XIE6sfioZsZWNvfu7a6mVP6IEl2gLUmkpY9TNSnZojy8+90uJFGzk7dLygUcr63oZ1nce8QmO1OK3cRSnZssAbftz3P59VuVN/A5Q13tH67h9EpFJ+ukgZU+1racSHevVDpFwY0sACXELy3mGwhCEZbUN4oZ+/lsU3HZJDfccJfvvfRsQiaTNuIRwZPm8R+AuNgPm2x4j3IkS+GhWfFVkYhDlZ1J9KIIli5EMoKENEhUBDPpJCHAQ2hDlV30xkaEwFTEPd6irSsvMdFgqnFqwm6sbwCsT6piPsLXpfkGUGiMjHA8GLLVOefeSsNTrsatPewsmPIOGPILQgZ9uJsVBiXw9M5cCV7MtCYmC9ZKdSz2jL0TrGid3fdAJ5ArgrGrtpmZnf98BcgVolKVdmHzqcNECoww2BoZdknudW+uFtMjaf+HbrcSVF9lUvZKhBpTpR56nEvVNuN43n3/Etmrn1WEV5D0Y54E5gfPcu4GTEeAD+1fDPcEQNKUY3IxtSEGde2liKDGzezJvXQpNGaT8r4gcita/s8Qca5VfC+GDZbj15gcwjghO6PWGxYc14gKLS04fLrWYrCcjdvUKddlsNvUM31lSHr2U/i+0V4gsoV7C3VyT55ZU/HLaGEHig7RjHB64BH5jtMVZgiDIBXyIqZw6mOhywYuYX2NPSLVfaC3tiTpBfO8JZGiJWXjrW1bDqmgr8qPzcyG1CICVLqYO8bk/B0fjFu8I/1GgDQ/o0BBYbyoP72VhpuoPH8vh0E/iZsmSS9w2+NuLdmdG+ACdpfJRhzW8+yQs8m7shVNLMP1586k+UTZps8t39BxC95S0qPz/EPUn4B8jclJrqrQtJ7thyE7hY1da1eOdkI85TQ5Iy165TsStsM414q07gHMvE+EKzBW4R5aBfl3jPYk1Cr55WNVRfFtwiG7Zx7ryxQGytURV1/aIX13AnpyZ8HmtY6fNuWmuchL0pDGkXNFHIvU8suqnfhcLUVVVJcaCm5NnLkoSdWHSC3s0CGpNQdGUkyO5swMcOAFdIpQ4r75wMeNASwpY71ERp4LmM7i243nLR4uiLGaYEAz5lZtgB0DfUkarZIfQFh0vvh1msiCpELEtRg88+/Lm9GNrnYAoU5GuTNEDVeXmikODWwkbjn8aGGSt1bygtCoU5A+LBmD/Y8rvbfWzs4nMfiW+FyLxExNRpQk11s1uerShoRH/o0ZpCAa3Gf7ByXDzQ7TYk9k7Ms/tyJqvRuC3lM9O3fcjOVrAAnvLmBSlWkExb5JHpW24x5SSXl5eycfeF5tSa3Y2VQI6y1JWQP//n19xd83ovScMNtxkwA9iHlyXcxLdsicAOZvfp4SRvlOpP8S4HX4kJl41h3W5ru18H5CKF69jApt5mbcJmSdtVcY8kSow/ywhIIvWY+Dxs+l39FzN0ogCC3Kmh57jmCuvI76ZrNTWnwyztTigtZTYgoRajdPGcauyNNhcA+FmF1/v+xTOgVHwvuHroiuH9pNabXNJy17FFG7I0cN4aTOeeyf3fFCeibX02QABzLEAolSIGZL10jfcQ4OgKcmcLD4MZrexE6u0z5jejLiXGirYq7OcHy234COZSTL/5TEUuqsoyEVJsrPCdvh4ALD5TZI+ZRlSJvgRlna9aprteBOXeunnZ5lYNNC2P/50TMYrGL4Hbmw7uNaFsXRiJ98UH8mcQ4sruWPbsJ5gPF3Q3u32b0rh441IHXsQvbcOvGxhyvKuNADXGCgQ+UU/YzGJYCD/TrILEdvM/kXxcRXacLUKsruaYrJaPi7fAIowwe7vRUCOy0uQqKwyQGoAJ4xzHEY/SbEhT1jgxl08ceADnbyWKZolnecnfJCJjqlJIQ+/DldmE0HHEA4hRG20zm4IwYATJQbbsQpQ065mQZ1qYK896mf0EMPoYrNXA3s+mMeT3St2Cs2cDaxSuOxa+JpLv6m7VN7Vnxcr32Zq+FgoKA4dxCD0DAm+nh56rXioLiFWlytXr6+V/5YdPlmCRpb6p8YL/8dZwPQXxkeLGVesiJu2fpkJiCeew+Y7jFErSl3qPziHQOBcjF/OT4nvjd/rQHvDy4OjmwWFvfqSNctf3qRB6k4LAj782W6CiYiAU40icv9alzgvLR4bO6XaNu7r9WlFOIJ81z27kE5EPjta9PFumekVBsA3sQplZkljspcOJ5V/1VJWbg/U9kKjRvu6qkKGkxxHBzz+NINKKlktQGXKPElx97MXbT3XF0Um+1WNItV49ed2OOIMxbLCL15LN8BDzD0xaKJfImdQd2eoDCJCZTDL5iLBf3LAH6L4uXJt0PTUKqZQ/EWPIHhIptx/YK9lDz3g1lbBuBsR2Oli2iszrNdhTSL8kMUATbEXkZzHCiGCFEPqIs6BU7+P5lmS3/emXH4TA7a3fLOsG3X0zFLYXUt/hiz8efxFqSlDHA3ScAIsrrZHoEzf0kTy6fuY7ufwfGUvmyj9pYEYH2Gy7wIXaWlHFq6YKKt7pTyAV9vw3jifE4lrON92a0148W+T5gkbLW8KDpm2DxsAW187Ad1hIxZq50kuKKQpMuESP6g1o+5l2dCBpx/fiZuXLIBelQSO5RQv0GRqkXOtBLhjgUFiX5GcXYR+9SzzW52EbhCLuCD5xcLPpW53yBFJZO46IXjvObgXA7fRQBHs1Z27Y33bnTMCJBb7aDb4Cmb4/OB6aLxE9va1SSMf9B2ZSyuSPy9zNel8HpF0PCxsa+JV5cC0m8fIjLz+CbjKEui0AEbVBnWvcYKEr9Qdd1Omf+kPMmpIylxDoIWCeK35VJfykeDJcf7mMrYMqkuF5MTmRwx8X3TVJ2dWxVFNbwaNR6y//cjyQZivzS5T8SniU6ls6hwOEo35MW4bIhBm5JZ6SPNV/WXqgBRIxqt0oyjAs+AIFEPFhIpy2nSvKj8MJE+vj97Niy5AVNV+hMmyWiUmMVWhZ889nSXrD0ZU0Vd5Q37DERZ9k3Vgz1l8Fjm6erUHcrOmNQfROWDz5i05PQDEq+ctLcDFBPQ02CJsyWO8ELMvF2/ForXRDQ2DKXoYTyHINgEwAbS6dUQrJbjXQ97T6opMXvWEzGHPxd+7YZQmSPaujdu4wBgOj3zQMOI+CdwCsHTSTfM+4XnjgW9FxjKrtr9r+UKz35YRmXIT1PZ++dsziHNkX3yvUkj0yB7gNgcZpgs6UYPDdKupxtIhzwpVwJHmzivJL1ifCPm1x8DcyEysUdiWnNHQ/fZIqfqvqnkMEkWG4uza6bjanMOQai0SOYm+7DtNA28qloiVKUYwCS0cLbvRKYcPaIx13gYsJ/8O5vUf5sMamtSZrPNRL9OawXHNXEOZeqMacCqarT9xKBLK1QAPLPnKG2bJ7Rkzc0LD9AOejwbsz7EFddfWNTZfF0z2aGTBUUm/klYg2W3K/6pf0awklFOBsf3LQ3HkJ2S/0zFpNC5v4vXD4ZK+4ngj9ZDttVRolQ0spS11WufBki2zf1OZzM0uG3bQWA3B+v1JstLYFFS5TyzlsHZHxf0MH17286rlfYDDL1Wi5/m6KYckRFwRwaDWF5zz5un+0U5sKmOhxVZDdy0J7789TngjFavdzNFkwTU73jhF1ddhO2FdxIjQc9vitWdqZ99VqS6o0AezmS6xSD5bWJAdUbczlNZ3TuWyeKB1WE1zOVMErrdtvGmxeOUfruKMPkU+lNWz/fOJ11Id3Ma+TIA5PMal5PUu6aCSlUuQQaHalI8U/7AfUxSDvdgDmuYSQIEsu1jBvTOi3gbq0cO10g7rc7GZIM8FiJJgyImm1yLLZk/W/DoCZkOasSOXhwdlZ2fobMqDVoIxVuZnRyqoahVhNL/288w/rAojVyaoktb+WU8wR/NmbGxZdLKLPGcHsMt33YYVkmu7k5TwUASrPu4VeIY8Mze4y657u/wJHeCYNriZK0VwZBJBw0Ow7x/Vd/Kf1SHdts8hI+A5+bBnkbivFzbXLAnXM8jC9aNuwwST8KlCj2oYcpt0IprMnbiuvTceGzSnDX9VVS7EGqlEdtT1TQTDg5xIm2IR+/YNpw4POAr6l/4c/7YbnvksOVo+WqSgqO4373mCfczjTnHA1LewgERRxKgUACQ/Q9hMKMushga9mv5YLYJeXNceKZo0sWKDA+PWX1mUSWORUfafE/DUPmCGRp5Uf0kVNuuLrsO33d7QFY+E2eA/YVeiwBXmTelyx2FO3WL4ypuVmcECq1sItFmjEfQgQqAx8kfRAxYq1ka7+bf5ZsNg0rZr5GLUUhja/+CtrYjrgzfiPRVT84Gr+wmGQWHmJ+frdSZQ419FHqGpgOIbFKo26aEUXb+emT/bTPd4khjoU7P+n6N4zh1UmyP//+JTTo5YU3FtoOYy9UPSDwf9gM+RQzA3RfTuUImC14ONofFsYEmLOYoOYzsvz4UUfEfWcyLyTQ68D4A+pZAQ4CYRLx6BhCnPWs2Rf3k4gEkTOp+RAojMU89Yf1q0V0/7zIBvuXrbqMJHqCgwKz0pFPpZ88pFBtV06wZQcJ4MrA47Nl883XO0ofSUEewxz42otCsfZPiRFUSFp4GJEIol/d2LPlzt6SYU3/bVFcKZ0iKCIrk29xIGoyMb9dZuzaOqDIQuvMzGxmcocVyNHAptyDE2OS8lICANAcRYBZ1RUmwA+x20xJTAn53CJhd+HIVtDAHJTnPFUuzFETKRhVYO0BvWKNp2f/7XxpB3sGPMQrzIOJGxHnuPbcA7MCxccGfMDcjpZ5Tr7URea+ODlUCdHG0kTWrFRxiJtI+QMov4tDxKXLp7Qc5fgnXZIWFLIj9/dm54h7G0NiqT+Eo7HhITN+EaDoO3s3OyxLKKq8gShXPsWR4dywnYteksu5CSjMD92bM/9PVTzJwBuNHn4oF5zEGOpDjHRk9hbkYok6lQIfmP6vCuE8I6MrSty3IbnWxiDPgW195jtVNJrtdFyrpsY8BXYhMFjm9jwXeF7EgAU3kz0pCSv4jULpUgHT8rCvjryfctBh+dy4tszDv1RWYl427tvzFhWQexfa5qL0MYmcCx5ckhOwZaUU/JgbAxi6+aE3Lpld1bHWLWkU0XYl74g4XSegW0NyHGswC4uH18RjF+gJ44Xf0KD8yvq5shSIYJrGFg/FVnSkczcE5gJVnugkFqJwMezKWzyiovqySe1cymw1pyMOY2DQqf47pff/yDBitgOuSAOzZYMzSstK+b+zaenKaOGnbPOt5mfY6XPVOzGpSw5p/cnNWl6CJHs9ShLtNkChBUf192PKiuZeUOk5x50hJeNJpDvGEbguRfVHyOwB7R57ONbbuNXSB64mL4rydjUlVxvfJiqRN9iqnxrg26/ReKxvubP2RqXY2gqVvSPA/K/zthrmiVr4XTXnF8Q5aP+I4PLIfMfIdTqbPjpLfdH+ELXU3VYhwW0jZ4EsaeKZAkK9+6o6T1wJYfh87WkPNKvryB7QAq/G02kdvsxgJegeJg6mP6UmY8/3Z0TFRMSR1HLqojt14ceNH4fNTYfQERsGE1Nbncs85hRIYJtB8SWmdnFPpPptPNmYos6OSVXC5n/e2zjjeqFsd99OIwAWVNyOtYMcZHccWgigspWfVbGv2QLwux6BFlRuSusXXA+23/hJ7bu6ZgCpNLcvx8nhaYZhJ8BREbgklrVP9jyrOVTqGRzK1pmaeYHCHKLzqVl2ws0Ke8CdOhgFbBGR5lCjdatVePt+sv9CL5mzvKXTFG+zOeFC0HdUqA/lpGS2g2bmWNeQI4WdoiCymBFRHdYpgEDGj5nAWyXcRgc4vHARWmMtDmY1I3/O+Ba7/l73jX1b/1b8FRLLwfKKinVW+rD0rC1k6LVwCpQADiSQaPnxPSZl0U0APrF8YtHNwObBKQZ1FtL1Va1k2KffQlnrcnfr2eXoWV3F3XLfCBke5VrXkarHMMxcONleSKg+3mATd7elhzr0aT9ozKTJ0uiFqpB+Fh7lDPxC932tOCwRGrJMhKApAN/wAf0Oh5xXUP2rlIegOTCzJanKA+5HQE+YdnpdhLHFJiuppj2L/I8MwXTJtex97dnw97Dgvs6CMrIhInT/tnEUVCD16B65JMwnHjtu19OIyOjG3dYyFBycmcAjbGsMGOLzxyZA1E/01Bz/XNhdsH40mWDWXeYh83c4sEygQzu1c4GM9f6QwmekvUVxWSt1XHMWOhXkrXVVbTY1l9a6DpIgSmfCtla1r9MOxL+hJvp3DStneEh6Y57QzSCTiFb0oX1yD250+SlwYxpyzjt5FQgcDI2RTDLD3gDsvKYsP7vNYGPmRc7/A7IpjPzcwWH0YLpgeyVykAccg9IVa/69IVk8RLJmzUcTtJBD5q6IrCCIRrMS9ziICdkqBm4qfuDQKLU5G1ctdSS/GGPH+WgscYRW9tKSfuJoObnyP9yZlgJP2QO+w+QvWAjN4RJmet0CORY4BG0ytKdl7cp5uUDvKZjJ9us1DPvvBPO0Xw2KKP98x1bnPfmDL9WxNRMmMppqvcDhonOajwRZXtoe9Q+0HaTV7peLmxv8EVPiGmsLNf22/vsyGMQHa+jxUkV45jNtxQJBDBcEQEKw2lMZsBQr1qzlkjDIfRCQ6y0Y5VHK/NSHToFGDFv7VIXl12/NBaGZMCp+MggyqHuwjaUXaJDpUbzrwril5SIDVIxVj6kQUryTO5DxcXLKXmoDJpbYBPjrXo7GSgnJub4sxIhiJKcxm7mrhfOb01F11yD3CuIHRT209OyFWSTEIiQXMYk2iWsMx6AmGFE4fDsvX+GcmrhdpbyEEeaQUr50F+V5jEWUNMfscVOUCErD4MsDmaz7GRLweJmK3XFTJxmOAh7uvHHVkjHsqDY2KmXDnmkglC7pKDmgQEz3A5CQz+kdOa8cM+6wpTkOVLY83vK9UUEPbZTfgZYhQ+yzpbdw/bt0kV2DSHNwz2oOLsF12d0HN1thduIr2cK1KpYMhilPt6D6ykxgd+U+vWM67+qnjXfaxpQNvrJXOJQDqLePVJqtZmnO2xi6wYmSDvKrJDmpwa7IniyeO76z5ZshIhnOLGgm9S41Ucd9otq9DeVigufD6Y+ZmgpKhwgp8e5639eQfkOIWper1Z8YwFLDGLXywTWkAYeXH9IdHD07J2Vk3UZo3RcxL6ofQ8nv5jt0fY78HzakVRgElTVo78P4gTCw8Dvy7Ymmvymx6Yoy7i8ShTwtIADpgULqauZaEOACSuyzdKXver0cMWWhhnsvzOuBDc/n95m1lIldFuzxY6b8FL0PjDndQbyX5eiPTS2vk/FzTjJQAeIT2ySVL3re8GfAe3IAIKw5elazrIDI1GNCE1rlDASBj1qhMlQsTm063HY5hhphLK0wAihPL+ThP7Ceo799xzUJm2j1kjQcF7xaRRIH9ifzCX4VqmkeJQ1a6mb0SSW3vydf9Dl/q0Rl9FAeUFzx2Bf9NkawvqPuv4ozP9UvW8ZkTL5Cydnco+lq71faJdlPrkRPn64t8R7vcIqslPjzG5ImXL4ea95hAbcnE6ap83abKAo4Rxz/99SLkea39TNeeka4xXBr/XKdPfQ5Ss+1tNB9iHngVJRVwrA4DEghSyFLLwp1B7/y8N7ER/bqiCuTzDNXFpIiQkpclZO2wIShvjJbCvdPe137YeqgFz+OHndZvnWDPJ8p0aWIiNphUU7pt4D0tbv/BIM1qCxBinx0rwfJlgVteNGVh7+WChDYcK8lMmU4Hxmsr9l1l+GzaEnuCeG73wxUSVgGb4Ec6rykKZtQ5a331AEKlIcS1uuO9CwiS7/D+AEAB+sg1ERXNK7bUCJrgh5S36G3BEPXyBPB1jq0YpiOByfxV+fV+AAfGkAES9vuRIRRjf4OnVPS00hMJlZaktK7vdDcydoDHI1Xk6qqFldg4ZjnGl1v0+HMil7+pI1tpE8Is/ehaHeKfKG/962uIX6tzBMsXscHPaPjzCODn3BGSTyH/7VXQrsZZwufURI60zYQnyobrvrrirbA5pfwDqKunrbE9w26ktvfyboy2B+3mJ/h6ytf4RsaY9jC6aDrINCXb2/XIW1zAT2r6i/cVond6kD9AF6/PGdXWyt0MWU44drlIwFEfQtRjRW0B42UCndNtL/J0mftSFxaX3bfXitfbaytkQeejAZDc7VfIR1k/y11z4ZkHmbCDwxyN3XUR/ij0TIKbA7NibM75cAVDGWumy3MoMCu2FtOmbVLObrqA1keOKpkGU734gb4ofwLfTZKHijIjgK6b/iJIZuM6qC3hClfN19OUz+KbCfBh+xBt9UPv3bfmB9JgLRYxIz6+VF7+kbCfdxRWoiE7z+k45664Z3FLSKOT33oM81Ny9o/dtwdEJibNOO+sFCm7n8h0WPHv3imGKvPMSGBfiueLT4WNLsiUcl0Lzj5sotX+jYKJBW8jO7m46NKe1DbHVQDrsoqsibrkltRtLUFFiV5cUP5I+ux3DvjBpuZDvo/eom1VbEH1eqYtxX88QHok3vl0CMsQlPitSSZjRsLGRgoPTev3R4Cqq228aT1ZjojCosvuI6icHwJP41fnGMNo7gKmYiyYrJ/tfSYIQ9ZFODBfsl/ILWaUL2BrvB4DB54PeWgum8buAmWQApcISlQZ5xbXJtPgFcDlq1518dRxHPqOPYOkRyHgpAFsOubrDrHkjerLjUNHc+uFxFbQ5RztYximkzvTbhWHzYafSmINQGWIvTkoKoCfMUual3csK442pQuFgKDFae7X8W4u6W7Ny17TfbCvnea2c/fg22aNdS5BQTvbvdQEHmEhp1UhClSQqAwg6CQNpKEN5ApupJPlslfrc2zJAlZFcYcb/4QT9XY8cQpvcQLeDBuzzwu0yW6ct/z3+vOeDv4m7U18OH8oFNvY2SKuYle5N8ftmPaKmYdDqwyVibsejmH3qWDOLe98oIIVIxgmP79lz0m0WaqQPcHqHgK4AqmsiTZiUYhcXr9ue97OXtNIepTsiOmyzle/yyMfA+7jfj1PqvFjj3g5ZFV9gZ/stab9Kv6/Pd0poxOQg89CEnsA9H/rgwV8T6TUMFayaI7bUIwhDuP6fDhGFf28XCQs6qSKw=
Variant 3
DifficultyLevel
643
Question
Which of these is the closest to 10?
Worked Solution
Consider the difference of each option:
10.00−9.98=0.02
10.000−9.998=0.002 ✓
10.2−10.0=0.2
10.02−10.00=0.02
∴ 9.998 is the closest
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these is the closest to 10? |
workedSolution | Consider the difference of each option:
$10.00 - 9.98 = 0.02$
$10.000 - 9.998 = 0.002$ $\checkmark$
$10.2 - 10.0 = 0.2$
$10.02 - 10.00 = 0.02$
$\therefore$ {{{correctAnswer}}} is the closest |
correctAnswer | |
Answers
U2FsdGVkX19iEdPSUs4LL1nLRKhRRqzV1TQTeLrzA0lTWjvGtMBge0VlYVaRVdX0A0ewrMR4EI+MjtOR+RncZYwgaPHutoZN7uWhxTm52NMfZlqa6PnuLbcPKoYykQB/n5G8UdwZINekmJNEbrjtI6uEml/vr8wuOrj/K200QbTDgfPFQH9DpLWP2IgzIHXXN7V/z780CCcOCubL0mFfeBR6Yb2leSmKvc6cTZ+YNuYQH0yOs6d5YadFFqYQkhmhz1F9iNPJ3h0IykmMVputjmjQ39PT6Uj+p64Lq4wPxSvfRrO5ZyRklrv1WxVPuveQFpkimtw6vSGIOgZwGqLORE9s0MUZLNfAz1sBPUbOgfr7VF+PJLWluLvDjdk9Eoc0LUDUeBmLtrzfmOT2lY4etRwb9Vo1/yyc9Q1yggDOCUn0UtzpOuyRGqDoClxVWaLm289UbxsR1bPmUPwDJP+cqSD7wWynZ1rtEbC6KMxuK7Olxeq5JlzNrZ3ysyMHKTbPAdSAwPVIlO/OcG2xzUmqLQqUPGxt3COYtnJo07FuBeIdoOWDG2ignjk1a4hOMrlBTRIp+doTguV4mYGY4GdGo3vkLfHKzp7UhKhXFeyGBBSBu1cV6HQKrZIxQPLjk8YLwGvGdIRrj8q4NczC8hZ+HA7t+qhpqUjePF/tOtuhV4Nl7Nc+yubMHGfHxTLieBIgmFobdj63H4YpSQUowuHy3MD6kpo1iUdoKHI+M/By2/WYQaGOWozmq5W8Tk8MIwPa4F4frrpGO3lNK6wHGIaExFxclxUsb5PtNp++ND6D2AUsBjVMHoT62zNOp+PLVM06id0brmxjxs+4REimK4ZQeDYRhDurdp8sHe9cMTIS1IHsw9CdqoWQPWdRrCT6ohvbAo62YLblsO74wUQTHFBQ5rwem5cs1hmx0fU2Rpkwp1TnLmMyvdJB+ww7oJOFZJ/mMPVv06zXeP6Ss93QoGPWe+rZCxX7/5lGQXClV8F8V+7QsDHlNtlNH+I7id5Ql3hau8yDEIQdCp63Vit6L9MqoizNs+LVN6Vh+ZvWhW6N4X4IibUYzdMdHpruTILG/FBt60q4eSfVhQ+XLpXiRT+hlhNFnr8JwaEXyG4/fSAT80G1oifcUqjbTKODr5/5OF8V6ZEQ78gs+6j4WczaLvXp4US4uR/4n4+N7D4ndXWbHQ7neSLM2ANxtmdfVp27VQ95emkuYTUvH7aky+uEej8pLGRk0V3hyMYdRMC3/v8YTVuo62RuEyym0XiBd4+ebmSUww85iG7AQKtp9Jrw52eYlQJd+4ff4nrEnVjcxL0+IXYsQglCEQTh39+5YJ4MKhwuYIM2sOExcttSctuqU+yQZ/epJJP+yxOLy7Ze8AVjeMcTl2LHzncn9QOKBTGbdzzEqYysMotMFHLC1zqTHJjtE8zcGuA2rNiEe7C8c5heuHhBP1sGLGsVWMRJJcjJi7AkjrFIs02iec6KsD6fDD8dZi95h3OAd5e8isGVkoK/JhN6u7tPFnBvd71O514Iao2ROZQoqmPLez9y77c0T++wgb40eV2xlj0F7g2xYnA36P3xDd+3z5lUU8+ZIgDGIfeCcawVdGcKZ2sU0b2M2TK2OaQnmmXGDuZLnMrnIgPhjaJeJGMl6DFyH4Ix0yXOrmdmm/IdoD8SZCVScdGpWX7N6vWmD4fthJyNhDVzwMe72vj7PKuFkAvbGUbi2VskjCoPwXUGOdW6r4SRfGyza/Br2AVdwF/cQsZAhFWGijeFmWOULv9gDQLT1GRIR8wfL7mFY7rR3ce/RU3H9WPGpwEpNTu3eMI+B4/JQS/cQIJYG/jKSEZ1f2w8hZD62+dDDPiqf0WWjWb3Od8aW2IrvJ97Go5e78AdEQm6eHyxgUmZkdhphpicYrROnvxQFgXgU+Eog5sLhVBpIwrJZ0hXmuCQFCU+wllrjP+xYVzVL3cv6qiedcNAd0Lhq7VVEbcRZVKE7wjB/2xqQPErgMmd9xTOQ537IUr9nwIQtQsswMqbbdiYGjZoMOB9RkKy0sKaukFxwtjOVbGw2OJebkX8gwgDLempUQ+RkVJTadMGB4Ei7nTYWiDk6+qRugrtjkFgpztBNKzXichtpssXqi3BtJ/AG8uSkZg50Ubs0Pqg9jgi1XBrMQe8rwYZpDxab8ewgRw+Rux6UEYyKdqfF3crdU/1D8dcWsksj4fCW2WWEkdi0H+MMLBvDvLjaHvaaeLxHJL6A3lFc0bziLJN61T5MPzh3D9GeP45e/IkiSfZ2kWKXegkUKLmLnl1BaVAJbJ0KMdYe75nyWP2oNXdgnSh7gC3Oyzkw2mkI5bjbfAqPE96QVm+YEaHO5bjOonnTb+4FtngL/43HZTdxemQs8fRhVzq7sS0CVYM5UxEGcpAb7EMIoJqK7Ns7M3DcB7pAwRjCpk7if1j6MY5B8OWp/E3VnIuXhqrtokG5mP384ZdXUzN8g1hbd6ZnJvuUuYW/67OLKBADbjNLAMge/B9iDz4oldMPjsbfRrqKtPzhWCHoTN3uKcNDNihhasgeSu9mXhDd47nMetIo/4U2mCzvU5fEmpMxN0EnTW33AOwfGMvQsmgSjbbTRmd9jPs7aFJO9mrL8gMYmIn3h4dH4RbncKAjJAh6ZONDtkZnXNVqBeV6c93pASB4dNk9veHfjh+QfYPyLVrc7VmsJhaElq9VE/NUFsRAQBF5oM8FpHxOkeXhIXFy/gT2i3OqunZ33YrG0HF/rjkle1x1PITBsU69rnys5c2SWnTOtJxCkdECJDNQc48h0rHHiVBiUjg1BdREwJxTAlPQvpJc92lLwyeGONrsdr3WRJNAh/wS7xXsH8RUA/Ty3fHqqDje/jBoDDZNrEP/2YT9E7je6HAG9uUy8RkW1hqubJffJ9OdDZmEO9aPC44WFXjW3FY+rtUER4Dv7YYjppNgq63VJO6OvKfYfs9lMrTGOGb1+u077wJW2QmfOMdV40oMa9zyqf9FncTaH2H84xchXOUvd3ln5OdlcIQjSXHCCYTnjDOL6Dp+xPpslFBxrenXhhL/kuQFslf+H6qxOxfapf6462D4HJCFbEE4z6ZHwTM5elSHUXTOtaajQngSgehVAF14eAkuD8/06aziehcCWG6RWpkSJzs7GKpZpF+5tHDgqwWGqjYbhN6+OJ6iHPjNvYJIlL3Pwx23vAduIRBAEJ4HfMmdLFIJYL2KPW40SNMkkLGMZQ87ltaqaOleKBegXXbKw8PRLqmOXgtyI6XLkiz0HX6c4FNNbXYUVcUCY53xqUi4Jkmn+uiqUbRmiotzibPKOFCYHA8/TXQGXe/A0fO5aDrdboaL5MMPPHKot7dSX6KBdJIx/Uc9e9EGHlBYtqVuCjak1CmFybOffMowsfQHglDvjOqjZYKDxAaj9Frc3tHBu/PVb4ki3O3FUkaR8F7WVpc3hnLVjyTTylJID9xkrdIkwP8T3Wd1eG6qY2opbIclzNZSdrPQHRHfI1qms+gP3ubKoaZXLr0lM5Pe2hbRKVSB8PazF9hIQun88RYzJryd0PxVb94qgNQRxeOgOqHAs4/U8PaRbVnOrxGsT4jqV7Ai/5afhSiUAkgdyxpEOfxfc2BDvfK7nmdCo8HlVdPDyMHxp8y1VH9q9BbvDb3z8zanBuqu3MPKyy6cksOzhdxwOE0uWTT+XFUJhDuEI+xsSGVq0QYxqPojvS3qDUCpfnMRA9ArEXdjq27EfYHRfEWR6NAOTv+Kwh1FYIsmROkN7ilqaRwAow7+pO/lyF1dPOsuEn1SAeEyAM3A0ZwViy5Fg2cA951xUUZDOdnqhkX7QQOK81P07j+2RR796E4WUOu1fyHLNMM6YKOl+cgMjcY16c3AWA/ozGgP9xUalA77FdXqTxnVvCnorGcv7bJ4UN3fAJ1KMfF31obmB7peuTVFrHUjC3pdUKV+zmsLeudBb+BUWLFyXFbHRj5+3tj1FaXspZIY2Q6X0DNp5Jm7EIedgaOX546hwbCfs+OOIVALqX1uanIDCXiyZenOKhOssqOiqfqvPkokImzYZXAV/dwbrYHDG9FB4ANrywyh6kQ7trwO/4cHbx1316MSeaQjq6DVf5BCbgE5ygAcRPNfgBPawgjBGZM2yk7wF937FOOzoXDABII+ItuJi07eMWLWyq7p7W301muv5z0dS9HscNYe2KEumIG9V6oQV8O/+gyOsJSNTtHKFH4lfnLBiYDzf2NWImiz3lTinxTku90zpwaS33AZP663tjVf61DD5KZah7WX3Eas0q1eo+RtAlODTXwqSwX5i7L8lUeU1LtQk4hNZG1uj847ojTiMgk9k7f16zqVRHQ+eWQh+fpcN2U23JHaNbcVFtTOqlQZr688FrXDUm4JslXqXuXBdtPz7sYIFyQQ8m4czC/H5iePaU7BSjDcVDOI27+N/Jw5DiGypo+SkbWizSEoeYa56XRRbziOOgmZk29VsbkdVTl98hxDOGhSP07+4MquCgC4X9BWfODuHf8lOCgxzumdK7gqO6CI/Qx/wJabXdpAcv7PxoVkgUwVhj1c8J2Ue3Aqzmg5qu2qLR8P1HjuKqjDwG5zFJ22SfA6n572OC+9daMA9t+rapg7KKi0bjUCdDD5FeqVroJXYd6Q72bNUx3XE49d9BISK8z/d7vEfqbZ2h6Hn7vSaCPL6zJfVGfYn+9qwZ/JuwQSSMx3pwSoqK+VvsXf9rKDq1PPj3N9uz0uq5WE340CSVtDDb6sOS8N4zE99Al+ZRlX3U6lYFzF/r+hfi3c1kvUvHFgMcimR3cxg8OSvNofgRfnJApHkJ973N5RwCvX8eGbZNDwZiCLA2DTv/ZXuR9PEpBBn/k9UQRmaAJUwrzQIvm68Jz7zIVVRwqXVPu1iDb7Rwb2XIAhj4eRGTsKCSkYlMlJxhRxXubBZIYEF5uIrON2ZBoXn0um4S9H7dLcvkCfivjEOUSLg4agW5NnSSKqAzXR8nqial63ZV1TAWuN/jZ/xdQ+JXwfnn3snSQLmHa9tlMsReOjBNnAVNX58T71hzq0aOqQzDgrt3Sv36UTpgNHC7znxxnSJamLvcIFvL2SWXsPurGGa1Z65iV+DG5zD1vNxH6ZOFOpMM+45k9fkSWPoOLUd83yOOOrlCnizEj+c/qzKCwFu3gWEc5aBo/cLrDMBjfkxesy8Sg/SoyYLIGyExhA6fAar/kWxylXIPnn0ee9ES08rjjKVELRTer9rlTsQa1a/HBry+764EOEVvQpJaWgUEoM/0DRo373sjfH9DBYLsY/kvm3IuMvrj1VmCnDlkH8gM11sIbWRUbWtAPr3416lWMkRFEin3rWTB1hwUCDSVHHGdcnmU6uwbV0WdjgBDFjdb9to+W2xNPILmngJIVSxSFEBgV2V9XHSWo8SBB1nMsypnz7r/i6nqI64ggEJ550lIOBxrO0Ng8mIG+CFGnvRE/5ywd/uyKOAsEc8FIXldzvxH6w4ucOFyFZb0Zsk+vkU/kGqcrVeBcV5rPGQkMkJOjrzz+QLzJAGJXAbgmS86AixmsRo4oToO4ZejfScXcvLJHS+jSi46jQuPCDbmgZOi+8K5ZWqayhxO+8X+Ca6aKrRGNomlRwRQE9klgGDQnlyIW4Z4DJ+oUj9zM4BTKEAN84QERhF/11WJYJtqCaXQPDk7H2kK5d/p5yBqcSUhg5mIaxgx40Jg+xPGJXtEQbkDyEfjHqcaPT7AjFnTZmDwQYPhfXxZc3LtV99/HcuhXSOi0bZCA4Ksh7F6ZRjHBG+L/xDF4i9lW2MSOAAh52Gx1wfCSlYrtmBHIYf/YlrzFxdTb2YXA6wkVSIVqOsVJ8RcHHbZKKYTpEwGUo/RnNfYK2qWXPzXBAFTx4rjsvKqyVUQkUH1QIgu5z0msEivrF1qMTC+uWZVUxMM2Hj4HkAzi/7jS+XXA5/oU/SGE/rgEJ9kSje7jknEm+iwK9k5TBVfOGRm36bzHm7r47gwTeME4+rsLhZnqFUtRvVfRMrq8snhkHDIuzppl4PvMklE0tNc+DtXBTP7OQm0cScJwf7/kzu/K1uXfpOpCsfu+wwk6GBzp3ZQYvqDCTTy7dOTwkTIReyl5uCS6H4/Y1AxK6vmz1ZXt9dIZczUmdr7870OtLJpwqR0YcMR0Dfc0jeBcNNxybbu0r65SiOy1UWLGkpPvtkvjzq2zeWFzU2KlxHZlJAzmuxpBI4b7slFhTL0ylPsitWX0s7+bszZGUvD3uZdY7xynjZJi5GrE7kPMVWWjVdnfM9+K+6LVFzfO/kSKHKIo5PryaSAxzkXJWU7PA+z8sKVc1tohmRWKxP/SFHwENzHrCYXe9Lyb8qIVPrrwbtOpe2jPzlThcNjsWhLa1tWmNht0SWy+gBdqsZDYrpuICrsABFw0WhoroRAkBk6HvwMNm1ag86YHhqtArVvgaUwZ+LqLY/8Ec1EC9+bZpv4w0dbNTIoXpdJVq22dxNARTcwOXNzioOLjTRQvOUsZkK0is5xeAxitz8kThKrK8aMhSyuDvoSDkEyeLRefnAhGoi3/So7TItAZaXIaoy7ag6fHC+pptAdKFSm4v6cRoZwiY5KvYDgQq2dJqggrWnn+eYNoTjTT/POvhTA/8TfuUr0UBeFRHHoAdkgIy1UpoS/bTEawGo2jsdagW3svdMaRU0nIWel8X+81nXs9MxV9t3G8+gRDkyyGXXfP8qnfp0eqS6JHV9IIiLM71o5fpCmYJeRvjX1c/fx5/4KQMJZIRI6r+uzPIsLLDkf826e3L94Lkq4qDmgztcmc6qdphRqnyf/frQYcGA3wxrK60iJlzB1fzu3rHEtOHRjzaFJAmddvDtbIO6Xihy7cwUdNC8XDUMcsYVju0CZSEGEEQlK4BLiUhL06PPV9mst6Ts8Pv9IQZUN15natbjYUdTKhg43OnCwKQJEpgcT7Bn6bh5wlnNzNTvmsaBrmqS3IwsuHHxRnH8VkjA3x1cfuGxEJ50gu3uE/CBUOX1r4795amVBO09Cp7g0gWQXLtNKkzdRQ9Yhy48B12tSHqDQ+je5LvuHXASoXqQohvp/FwG9udSKuoxWsPSRERF1d5RxW4ZRZBBftdjlZ7conmIy1T8oF+1WAoDofU7m0Akm/+bOJnBA7uaPPRuF1/coOoWZMthVzPrQeUKzerMrf3tahkAzneMavzb16zUuCOkxOSXCWp6ZUrzEvC3BeGM7yX9ZLl8ECaS0TBXDAkjS2glWY8dpx2ZQt4KM5p60qXsBxGXqkpJiifUNy+rJNAhWhJxeSp5HemvWs/27QzMee+IdN5Qii0GCOViQfF4slm2SL6fmpn2GCnEBKPhebcBys436MkzmlY9icSBKx2pj/FEYgDdTrVGEko1yMneh19AyMjzvZLPzjhabjpv/metwIW7fBx6xKyYeRgTfXEduYZYenS8yqNNAGHg58MH0BZbkResj2j7VApGsI851TG88pD7VSzkcmDVy1EsrmjNrOSFnQVYr9UxKsDjdUKKpT6HcPIt0JB0W2QgTpThuaQqr2flwqQKaZiFdhv/7ShpnxneDhdVQ5D6uCxi70I0hp9G0Z/cBXLFmT/I+CREDgEgbMOK3yWphBmgloERSBRnhOufGoXRJdHnSRtUAdExl7wWdzNVGqmibuNYld/Pil2mt0gGUTwBneB1HiaB8R/QEhk33nAxygVUvMowmxUxX4bMrKE/Nx2JXH+OdbasVRKR+QxhrJT2+Iw4PajML/sgFmZElE0atEFdPrmyaOAdtS3biJ+EpZo48+ep3pcT+RibM7U744AZRH0DgiDNVpB3J3snAhUMycN5wkicolgP6tTTanoItojBYlMIX2qF8yHJ6Qn8hdWn6qAJX2Dk0OJFe0LORt86lUh7JgnU0mQLIbKreihB0oTb0JcOwmQFGcWaEOgoicwWNhq2GWecG5JvgiBx5yGVll+VAOqfaqZACx+YzmOOLaJsIEyptBHpPSGpD26WUPxhiZvE4EkoiKkrTLgohfVsKAWvRhc2geyCqHdldrFZzIg6Piaty3WBQ0CjfmonNW9Goarr2NCW3XeeAfFx88+lJGlx1gVWrcRXbnYixUz4zWrzlhHytPmj4kF1vfHSLewAwecVKO1AupEhcVv59/rwHzL+X0tgXr06Q0HMFxczx7xwxD/MCmSyDhcXZFg8NC7WrxjmAlRs5yQNQYJOjhCyI8cdeG7MCH5BEny1NXiUK8HbXcldoqWMjHGh7wtsjVhwEj7wXRCNM/Ov9i7rCsLsYFofqzqad6HZuoo0Nl9dR4ZHaKL7lPtnjVC3zNPYxjGirm73NOmyNNS53v49qkXcCOSIUdVQ2uuopBX+OZlw6tJmPFt9haeiVdA+ifQoYPHSnuifIecPubYcPVCyA3KCkTS7ICMzT0dVjLKt/QQ8c7kYDhW9KASs5nuD7gPqNhx3j9J3IN4aHtrZoSeOa4zr5o5c26tcOBvT/8FdTp7rBbzNwiqjdG8nyVLvgKoLMCLoqpEqu48iQg7rQsWn1cs9G9+Rxra03/qh1Oqc4nTJ4d6SGWjIaW/gRYYNUZGPObPgsYowuvOmQ0UDqnZbMt9+cf9dCj0g0B4PkuRTqKK3gT5p6g+d56EP1aBiFHFKYJm2tGMshlX2YZRgekc1sfQXB0Zq+YpcjclJRIjcDM6RsnUDllkxhVk5+8fEf3Ef4sNsdYZKRKIt3bzWebjOw/Ta/K79AbObZEuMXxqcnzW6oOPayWiiBk9GgjrOH7Y/HT38CPkj1Dh6AERPo0PBcjf43/aLx203qGgwPZCoGh/zyf4fO4Npe6CYPQjHzwk2SvpOLqGIsGiNCGnAFhXOVXMlYs3zT3zFqisRP3kNQ2VCbG9ikC1QhL1p6rE7anZrNcnPXRHVifD7Kdf3v7Sdp9F2HCdL00plXhk+dCL2gpaYCRXylJS6jPSDwkuXb4y+Bk1PDlETQItRDo445oaUVQJsI4PyV7gR3BYP+WTtjARdJzmqaMoJx8rOOPHjqqODOfeoSBe7AdXzHd4/ACeEJAjhXsb0WWxNu/WPL7kZSOti60a6t8KYElsGxi+6Vay45yuU51uJFez7g4ea5FgSEU0OCO/mm2dSmOrWf4MGZ56+qBQtgfuLTaVW5r6ggbK7oefgKgoY1sY706ROBhBlD5wL5UQezeJdZOP+WO5Pb4vVLerxyBCvmSTeOlf0lsL+bUmoh63L0dh/lVVOnOjB6T84tYqvpj/UIpxmyh8QT/tqelagFVupG4lQPBbER+rLO1zhpRCm8ISOZa5UXR60JWyh+7O6OiCbNYNBoG6n/kQ3bthajSjaS8SAVhASiqCUPCQtmu7vmrDuH7xpwXNoFRwYkNy5gjOpJZif6OQ6rshDlbF/RknrIEBGGQeoHLluzn1cX6ERkiXKJpnvIc6jPW3ztXCu6g8tFejiYZ8c1evN8LWF01MxjGARBqsLWD88eETapLa/r7gcrjshbmIluBpgdWyAiaHk3RxC7JhQRGC6n86ahiursiV78k94f4+JrIYI31vn1Q6CiAonh1KaYrahrlu3AZYpmllPHxkI42bCgsHUh54hxm6mqXRCoTIbq/mUdguVRAlSbegHkMmfB4N9QaRJf0BDb3hKcbMVW1nKrLvbx7pBl3u1P3xMX8BApWMM24h5kKbPn6h20HQsYw2qaBnpJONFqUS4U9I0V6hOim1EzxSxXROni00sGChxIW/8rXE0nJTuOdbAmXHEJW6WEnUb47Pj//yV4/wk9EFr4H/MKAS4zOJw96BnB6ti9IXC013IZ1AGzTXrL0mQM3050rIF8wqqF/QdfHHds2nJfEI79c0tGGEBGBwnCzTXwwwh8UnG3CQz3JXeub6BWu9ZkOIPguUsCDAUUtOvI61HMFLsRxmT4TnkFSCADDdDIMqqHemCRRcLH/dyU6FQbO2WZXGegUXRqZLh65axtWhUFjIa7YZ0sqmffSEzEKsxlm7y0eIDal/5WkmhgqQXXEZvLvCUzf6gygYZxE/0/F93g5X827IDdueJn5E0UgEQX9vQOKJjSh774al//xBfj7tVfxHljyY/A68qJKjfJKmLqTw5A337qnmafqKU9Wff+WsaGVRIgktJG2R0EcsyCy+zm3c2YoKfjg47XS4AaTB6tq9ZA4gbvRblMaBDREfDUbJCMO6rWpyeBwu4eCrMhNlSJnIdIkj2oZVLD+Jj5pKipBweRWmO+SueO6tvllsKIVnVBkS5mVa5qTcihwFNID/iVfrLFnAyNpDC1qCiI7aotP/iwJ2ccHHU4YIZ5JJ3JTA1cHhinAfnVkc+nxnVI5fMK7lQ47HEBL08fqTVTm9qMx++NQDMLw+a3OKx/+0d/YndYTzmVrue32ope6hqt8ELeeBI25+Bm/90mnKHFY8Bvzgnn9i4o64DQeFiO+lCsrPsvj2jslkEw9bAsgR6EEkGkaftVFQI5PVHqDllIfhT1BEQ/RHx25+d9rbSG9hEEoKFuoZPa2icXWJOG8L17frbewnIW1G59F0wiF6abX2djTG0/YuIf7sDrIe51t8+9udSk+K29Ic08JEmjU7zLo9/L8m6KbH0mBbk3FxANSPUoGoo5gTsTn/P+iyDMKxsSkLUucfjylSgiQwehi+Eceg4EQCsJYU1p6FRezlGdRz/ro59bHKeiITmi0yj4=
Variant 4
DifficultyLevel
643
Question
Which of these is the closest to 100?
Worked Solution
Consider the difference of each option:
100.00−98.3=1.7
100.00−98.33=1.67
101.67−100.00=1.67
101.067−100.000=1.067 ✓
∴ 101.067 is the closest
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these is the closest to 100? |
workedSolution | Consider the difference of each option:
$100.00 - 98.3 = 1.7$
$100.00 - 98.33 = 1.67$
$101.67 - 100.00 = 1.67$
$101.067 - 100.000 = 1.067$ $\checkmark$
$\therefore$ {{{correctAnswer}}} is the closest |
correctAnswer | |
Answers
U2FsdGVkX1/mUJ2jMn+voQk0XOimwX2M4QabX79nil2nAtvl2TZOrPxqdd08d8tUZmhuI9rQw116uRI55FHjLGFRyQY3ok8qTj23zcscV3bkixZyYsXDvDqP9VimaxhfJraIb6ZwQVKSIToEYTHymaflsMQrtjCpY9wYijss+5TFhWOxgG392j7JS5p1X009Htl536gr6qTQuF87vQM6z19BRQIbk2pTfGHeLMa0xg7gtmzwbSGMadcSYVOR/EnhksMNSCwbfDVDvyl5H4banW9TaWqNzYpmdN/O6s2XjPPppFFqnBRwBPSNv3HT+2Irn5widGWOClqsUuaAdq5FCVP4sIYulp5Ahv3fLJXu4djBbdy9jY/zNS7tpKRZx/yq8S4vR4DVrdg4rDtIP7/7GdGnbPc0KALw0A4uuvKdWwoWJS/PcY8ntzvBhE/4pQvg9FB98Sfs+Fs98KYKWX/IFxugLMZxH6DFJA+oHFFFvD9DbWqNUTSsJKFXMCTeVP4r3n/urFgP6bRolgiYwtgcgYbLJtF3RDqxbEY9R3LqWlD6EIuS1RaSmVCAqAeeE9ezOhRu5P6hFJNaocvMV8tQRI9yms7HdNCUr6OixYd4+OYji0KfLUQBfDln6DDD+xgpos0PEEv/oWda7d0wNPzAdm/xfg2JcfmQ4s5Gx6SVuO5GXXBCV+2mhlg8BBrDzjBZzK9IBlH6Yph+rFX1661sFLm/dkEDY4WWb0xYq90Qc8WjWxVLZftkbiJ4QWdt6CEL9iX5qS3hMFZq+LzhKmljHFvTWLdlevglveeqC0kyuBT1A3CmX2jyfUpektz1/h9YmyY9IL5kKRwYqez3mvdLeybUooEWQ3JdCpcgRqfl1aHqJ0VWqHxugzu6e3un434B6yYXvz/dexELySBqcfnQdH/IVacIrQJV6pXWU4CW83EeltHt5nUc67T1OwKKZhz2GbjEqPbb2E595B44WQvYPdRMQ9up3OOyqTRfKb+oX78jwMHqjTYVwQb8f9im5VIvYfcYO/Ax5cTtl6D8Tj4fuFiAZk9ZoE0zN2sJYuC7Sagr1u1sUHClSoiOMf00Yb7IGLPYtt4QqkMrsCvmfrklPxSsQ0ARTzDYcHor4TWY4UDJtgHdTpLLT+0RcbqsLtIqQSuqwF4QdZxTnxmku116N6DjchnXKeXc3cRaj4Wh7g4EU1LZsHV395E97MUmR7zKNsX+X7bKqEdfqUcuRZiiJC0PL48zf28c/ipI/0NhmBwFKA/1ShyKNJ0AdtmJNQ26WdPv/Fk/8+44msYJVsVyBZ2ripRoFjoWLP79EcZpm5durqqKCmnwtj6MqIhYM3dJn4+yG2KeBL+fJuDQmvbSHyBWQzZt0llrmKjjloHirfQSdgB78RiZrfHzx+yJKcr6VQ5vgwo43lP/5WWCDYrVg/ihbZdmcvvRniPuaqJRwmaKCNRo3dRWZv4aCbbQBwrPptJVKBwEPKNIz1nFIg7mqRlGMCYjjZgr3GOSAdF0WR1vDIdSG1SYJKuLT11OR9KYkDJZUiyTRu1o3zFh5H3bTwb2/cYS0nMBWNaQMaT60qHeIxtVngyuXKvGyfKvSMjrPx2wFsRroEvcWXHUyH2oGzPbPd0z5fU3Zc51aA9UwYuyGvILqKz3Qb6S+U/W5zBRbMIOWZt6Yi6lMGQS66YfXDTkPwH2w/JVcVqbAZvLfoC714GX4JeRD4AQBVkv3c8EYO1L63d6tXloFjmoQp88K9ZAJ2dcwxc1VBcS6+Fn2YX3L7hgAvPIG0Lufg982khAKE6sevenjMY+qQEeZ/6q6HQPXILJW5Y+spBjG+EqnwmeJW9GQK24d4CE1LZBx4WKnG5lEbXL87jukbIC4fx+2qpC23Oq6LhL7AOAOMuhL8KLR9kENxeIs/FufPuCifXoy+nzdqwlwxyUkXfKM4dEwqZxWxawzlw+uGyHlErgtF+LL/yZ7kwbfp87Hsyr8kajhFBUrvyj6bccm+kyWomd0sJ4ylN3oaxoFPKeh1s/YxnY4Xk0A8MRBZhaeJmqiErpzy9C1YPMJ978Y10u/rQ31HB7nXDKsXkC92XD4lh96l3uYcpeTGG+apUFK2OKbZXFTSdGvsDSQpS/stDsQ3GYwyopWBP/LaTYlVEUYHI+xozwqmTYM/4O7yCI91fAR5CmRE9finr6yrgAuue4b4u4cvH/Nd2Pd2+k2KrONlMQKf2TaVtLW82DTrNxYYBTuwjhA57X1jeA97ibKAuSbX8hKKTEYZ4bn9Jbob7shm4AlNh2o6t5AUNkJHCY9O79fKr1JE6dRXp9pf06ZcYkU3T6uFzzzZCoagEjspgNRM291wJa12bTaO0+pg0pggt9BsdGnSa68x0DCOjK+e6sYRTtsBkLGryBtqnI7VXrLOcgGx6ijEO5DBrBrW4Z6frE3Gpr7H7WTlzmm01yC0U5qRnv0oDbfa9bi1tamGhelxja86EaimeqDimhHfPNpXf5EKCSMt5d8PfqT7nDmFGzf7gnsuRh43zKRYt6p0n2tZOmaa432JSUL5vwvOEb0Xneq4qxzSPxC617N0JU0kwT4YmxpsBGXNldgLnb+mvT9eaUu1DhE0Mzs7j2kV+QbwaN64VBT+ZG7hfvPFivMS9BnPkZl3IHS//rw5AUJzG9HpKYXtZexFwhnvjodByX1d2eYQzpz2sP3+g/cFEB4UTNxiaviA6D3Gxv59OCXzMGZdSwQ6DcMKqBmaWi0NrVxxxBD24d8ayaalXJau8HxFjeqtgKEw4rAqEwM3r+ZQJqYhjc+/DAITjfbVIFT/fuRWQF6DGrDwomGhKz3j1+9Qtoan5/O1CrE1jSWynJJMNAXehvkrWJcj6du+KDcHuf7nr05z9O9yA5+91Xr3MejNTzB+StuOGyxD4Mfso8K9VaDYDYxT29PEg3wn7L/J43Ww+tzMiNlR35oqOKvA/8xwaTvWS3PJq52anBYNONTDzxSnrs4dEA17ZGizIBDkGtpGs1voFaaK/l3f4DZwq4zk+iGF/b6fYxB8h7NUj3rKUms7vf7k29Aw5Hp7FefMmm7glMGe6NjDjBmqLG9QmeW4UZkk0gUD7kxJYENVg2kE2ojfYHycDU2c2QI+mjr3YACZ7xTOtRYdrTfsZf5fP+0gKa4PLFC2Rb0LjujH3xs+uQRnu2p5J+bKWojThAIFRYa1updTboKObOs68ENKNS2z5DaapHm+lv3W9ODFl/rbker5p1U87WyRKoKzYkrxpnx4T0e1RoktN/yfMZ5ngTgZOZ1r912cbf90bSZO6v5bqc/SrebhgyausONOk1gWUkw2mCzRFdIxRCWAqau+oQtNliGa7VRKrGFIhvvyjMnuAdWEi0JjU0MDdh9oovXfM5MPMKAtD+hVSTa3O+tLcn1hNrtprn18lSN0SZ9F49XjXhkmD48+DfDN1Esa2yhJZnZ3kgJ0EzCZe8s7XJBzo29M3Zz4jtkz6GfMy27qcwbd0VIOCODgODbNA9TTGBedb1/JVrNc03OaU7L8mFh5R7BgW2iRdVuu8LXp5Ub/c/KWoFg24I5cVuWhstmDdrv92feMy7VVGks1X3jtW6fWjOzO5Tw3OECHho6IxO7JpGHrDcO4N3DSX4JF6G/OA8QI57AL+JQcrAwqLMnjVmZLlYXw4Cv+vn8lo3mNbifLHhXjNRqpAEaY9sMjEHq7VLWlTpTUZNCqp/GigSmy4klwet2ympO++Vn3SJGFQ87rYRx+4/+0OQ5jrPaJ1T2cNpvkO7r6+3u4R3C/EtefHeGCGyXG/MmomP2/ue5o2RWAG0sf1+0yZ7GNdmsQBuNR1XlsJpBhxABrYHTO1QIE9qk4h2rRHdpIMdGRvMBkVus1IjoP+NiOOlduheK4QknQy+fOu57msgUlfNQPK+CMc9Wzo09Scg81qWupttqA3pnf7c7qsIdUb03S+CZeNHdzTq5oz0UwRuKhJv46vfosnTBzYiilLoOv+hAij4fA+9MqaK/dGjeYrSnAicOF7zKEDEuf+XoRPqf2kcm+AJV1F7ihfH0ZR+0X+u3/XrPl8rAnkCVCE2ggZd9s7YrSXFvWFkfUiulKQfyMwLj8hN5pbhcpEt7hNszXAPBRMgWOkyUOTBDm95yrcy9CEUfO1SM/YzUkI7Q4IE4p+LbbnomlyI0JYVaAQ+2tiNCPqjWsB+PqVsS697qZNlIQOxpGhwkIUxV6cssIK/coN3utKqoz4VynslP9oqpcum0dyCPidD5WTjtDHDNPUVYFTSF3YH9B3oH6EgQsLmXMv3ddo9OglTBAYOEvDy7ZgqeN86gNShiPWPBXU6FXNryKF07jwZDi89q3mk5JPaXopUCV6/P0UsoqL+/+vPiMnxcAcqT+OXCIJNxLYQ57pbn1nycpa6Is/jTXkg+FYNdoGTABWNrC+koypDL1Wkeh6T3q3CH968NJaT3GxcKJcfwwYR+VmWH9oNpzLpHpfqMCl52cLoCgZKDdctMVhfF4necKg6CGM1SDssP5l26wtu/8DfkhozPHu5Jkg0/7YsUol1QzX4X9EOIHRy1/wZwouyYiAhM236q3bmH7tPrz2v4yavAy/fo8ukmbu4IYq3wr7moDdm6D/IYkD1q+gMWJR75cIYjADhx/Z7+I+vCCNciAycmsxjfDkWK9UxQleOUyy2UjzLbQoxXhGl6QtrLmk2wpp8OH1fxm/BTnO0wmBdZcnaHQM0OAz1/QOuoKxgKfi77rnt0xPUn+1rhUIwBPJ8pdo/ejKYkY86JJZhKvmqZ1IzsO/sUxHi5jZK/MNq0S5PxSgqegP4x5Y52GU0axN+ICRfbO/sEoA1k1jjK2V3C63i+DlZiLL7ilVaHDaGhtlck7LaAdsVyoHz3qo/8fSoOZGBTsDmdFsax3QPCvdBEtlt+N1Fin4xQRcjnlCySm9ahMXczQl+zKEybwIDnDbrAX1oaG/G96/CpDNdn/bitExev4hMMPlft+BJvmXCA9tOgF5n8TezTpIRA3XsVKseziUes1CJaHxAaeKiIluVRDf0YPYRvQoasSydlaYwwYfzZ0HqZLuEEq8xNjWBi5b9czfx3XiIV3fQPyv7OyTNimehPQEETRVkHiIj7OWzxtBLQvepn4GKR03iyk/NH+Q1l1GUALYTMaz0ro3gBbIyKkMKMyD3qJPFABG0niVD7DWhahEY/Qh4KKdpk+r0BAqdoexqSRgvbm7iPIWgHi0UXYeGu4JKT/SPX9v4j8yFJHFNRRR81GfFEgiOB+NmD50DJB32sTbNwVwE9DukfbmT4fLoVrnbToaqocBORHIGmxNpZJ/L8Nt0tUjPr+9dzpsvMucJB9qYbRL6vr4SkOEHBc2VGAAmfJLH+ehC8eSqFD0CGOyLyTf8+B+BLOtTP2be13spClpEkdm6ce6h9/g7DzDB+2Gj2OkP72N3q57yDKmy9kT0dKk/MvM47ZNsovN7Ud5Dn0QRBsBqmN/kzwuajn/2j99J5mceOz3hY8wtS+6uPrgKMSkjqhYwOV4rOgRWBXfQ2uKkqwmHigpAmSXY7DN+1JXX+c8DeJ8uA8PzG7nRZS7jLmwU1rL7z+KtBiyXa7eNWYo/RzXUNnNZxXyprNkzpSIJgVrOPgm4Hrfqymfeh1O9wYxS6X/ElZX6N+gRaDlICkhMGunMM8kmZzH+R3ITFLol8uGVTmbM7gmK8pbGmQZ3E0K4w1zEvWGb6gUhRAUEMSCOnU+f8nMkf8XbEUyNmuq8Dl0Q0dVInWvFZizbloEnoNafDynLfWbJi1IYxwJXKINVcrrdGqnXpjCS33ydl0lS7IGlGr1wS+G+HcExrWeB4hkwO9HNoU7wY0gihmZxglOSD0bJEK4+NXB32QC1Oy/m884Wt9Rm+zHu2MhHwd5T4mIBGQjn11sOmXQ7Gj1BbevNQbWBROiSKZCUmI2342dBBephOzfQHfKLA5Ua2NZv0u1Ey6/ESe9tuFbbZlfUUNBJhDX+gtVQINYqSdibv57S5YrE9L6ze6DwIS+d1np75gTfSjyE4sE+Q4XPxklfCmIvPoqV15SEkUhx86NRKDYc6xm/c4TJtGtM6FuK6ZKVetM7H5qa+zCAGj/yDyrmEE7QstWXIKiiV8eZ5j4l/wqQ4oQUxNeWJDIoouLhZoSJJmOUOnnw6e+9zSerqYYu6t2MtqSOI2gScZvL6gkSFqgjfesGg0t6/uC5IipxCDuQqk1XkzzmQwmnp0z5P9qPYs1MHwF3pHVWbhLeaBsYw4NRYiax3oxQnd0lSUUpfgtpK7IDoL/2R0Jql++hHzY6kg1AnWauKYAO71bK65CqoNafDOW4waVnMbHnLF0IjRCE4LN03GizSY/lfYJUaZLe9AkWaahlR0ytYMjTYW78XPl54lFB+iS6NHJZ98cp1VtoN9YLZLPWMJ6KVwmd7yfJavcT41AuUdGvO3j1UW8SSRIY9FH6sEdd0uJtVrSrYPuemohmbLYyqb6PFSF8/PZOyeaJ9Iakfs/5IvWiroeclEC0ei8+XdOQwYjMXseDWe7YTYcmh1q8QQXvbKTxNzIjNnge7o9dzGgbWy8GS4sL3mAIqTZGT51n8iZeVwJW+qXdzi2iqP4txPftK2DVbe6CuGfrmfjvU414MEONfRZHE0szLejax4Ay3O+sf3BbTGHa7bs50zza8ynu+LVSvjQ27JI3TZ53ox7Rw80ppM1TwPeaxUbn+YgnGbNwj7OacgHDd+2AMXUxr3Z/M7CKx5x8dgoRWyHBhqT0G1H/3F+YgzyIUdVrOKmfuRRF/GcWkyTY8bLxAinsL1I7unOvZuhUXyVPAxJyCq99ulmPRnN5nKv36kyKOfOJ60O96NW1/QBscOIYbXIgeYci8IB44+SwKwC/lzQIoiuED2/419wXV3FUhh5rPa7zEFvjS8iQ0dM9AlXAYKws4OWf0LOG/Fj8mP95kdDLGF/1xJqVbjNaeIdJvzNLfsDMO9DVobdThPjJEVJtfiVF/uRplTYB4bxaHyPqZfLlLElvmgQx9zz1xC8QTQyvsut/2avcZzAPkOi547RauPIztDCYnFTegUWaRC8aqrtVKYvJLJA47OgxJ4DdZPzS4e/gC5OA8rNapUnpCTvmnua9cNmzaLNOJmnQswM/cGFIbG8uYDt04iFQ/JDeJ9WWgj8kq2m+ctLnASTc3tAc7bG3Fq+3TvWCphM7gUGv3vXIuDttwq/ndmHF9oW6SMhcvfwffQAgdaEWZKZZbmZMDix+4ooe2jUoWQbgh4VgXKPix9iV1BcgoPkXmLO1omJWpdkbLKmkVsB4W6o6SJa1peRL5fhmqvZYjD1jwneTknb0GjgrP+0m3wJbj/DInd9r0c3t7sesH2I4mReuCKdOHxopczeydJSlbR3n2J43zFSZfhUdctkKA0mB1UFXA4VJNQFhrYEnDw3+PM0IC00E6YXxjzLAIiBHhZXXh5cjt2wF4z84OOO7+NDdFqUuiQ0eOI8JnLN3CFzlj2IVgIB423RANilo6zpgDBylVO5EMpsycWZk6ZhelG2V34c76J2VVMxHLR7PzIjTBjzpaYl1gr5UgY4gwJb3Xe2EYqBP6StO4KP95rjSj5MYO24XLaaNZW2kSLLZNwy7FiCct0OluqLUWdRLnFlCnfORA4XthoesXOZ0UAZJWNaCE0bIJqiQkQwRPdXZc6snEacQdiFFQoRa6o+Wf4PvWtD4Sucv5dhzlBWd/TjEhmk07kBfKBvskLU+dvy54MUXLNU7JiuV/6yQXDDi8ZtFdWVuRtL4vYDUS4/FpSz19qwFiNa7q6xUbKxvQ9zqxPubaZhZZDUzp5bIXwUob3lOlOeWJsQNDHo+6pE8pCLvmpw3Isk+qDtk/+RKGGmK6COg6kv4otW1JjHBBcWLbH5iVrehSroUj5TtPTqpeLpBt6XgjU3RzEZYJ7q/4uDLJWui6uqHY3GHKaUbBjzTSXQ0MJMnGOT32b86usLhc+JG6N8Vp2OZadnzlNA7cQ8XxdMyFPg9P9UuQzOMOFuGFQK+wqeNdMZM3KHZ6QzJQPzPeZ1/SOkpGpT8tM4L+qoh38pIiBOHfA0tE8NMvMCNDaBXrF736eI6C3ygYbcDkGdK4kZIwtmzg0EOpA6/VXwYdf/3F3FX2o4O/09EORWLr4ZlN5LXokeVJkGVP0Jc78+iYpYmtLNFpkN+xyolX8JFEg1cCbWT/MPMH4myW7Y+NpkqFOCsizNN3md/XkrARbEXlbRAslA+lNlvFeW/OrI41PQaP9ML88HllbSZU7juT5mxjWbNTRD5pYw/JD/vyHzR72QqJfgh+RbdUMjUURhgURzFIFLyMQvNpGUULmpba+/LAKB1e2iEh7AXRO07eTFy8Y000m79y9x7GZhhEzL9dGDkpPjrQaVlVpJC6Q7X1hx4a4xuQRRPE+v1K9NaClNJpzaIILe9kSmbX2xl8LLvUgTfgQTDHKMCoowEBKZ7z/OG+MdGhqMuJ5XtQ4WuKlnUD2HtRzXWcrloW/l9p61yUNNRrSnLGReLHrTvfO+PoYa9Cs7q/b7/cO+ku9dDnj2IWMBdK2qiaAbpfAQ7hLUWpCBpjLi58OGiwn8kktkyOn8Q36h60hfE7MyXZf+PV/31JZWygOmOs2tCJO/Xi4Qh87Fydg7xWkwhyvvmiPorrSOV5cFzKR96BN6ojuuOVIfUqFhwKIHdX1X78LvxWKbRurE4p6dmqfyhc27NOsamb2KnADnGDQmCAA4XOXhhBI3g9hWJTm8k5i9nZEWas2hCcuVjT3+BjQFGuMqRqOOh+6J9URNF6EieKOLw9J+YcV56h9LHDPe1px+5s0w+9GdQOE6ubz2SyvO+yytMsVTgnsyBCdMWfcFNHvrNh2N3u4ht9FFY3wrAJHNvu6KvSb48qktHh3T6UHo9xlXkFzDRwPpjT3L84Smmf9aTx4ni4vd7/iNcOoc13XowZ8X2sIl0gBoTFlBKe/8nyOjjyF+i/vf2uf2EeX0NSw/Kh54z1BMlvUCFtcEYzOt/qwxFPE5IS2TwtUQvaqswwBn2uZfXHY+IawP/VJT+TuIbqsP7xtD0lYc4PHLnneDnww2N1ifDpzX5yhVadl/3P3Z02g882WHAsEwlN6Q/t9WY9MquTQp/evGst0WWFF+/dn7rICRC8jcOaVyCUHbYaoRE+IkRhG0oo10fqjt2enPIexmiyXVTsoWZXE0aJPSg9l3HAbrSsmW0eTNeoW+byR/gWRdOUnsQ/sfA9wiHbcG/5ViWcR3IJxguJ3prRVQ+gxq+o18LMGzq5h+RB5GVWcOlu+2fmB3xottDzIFQekukYt2u72StKG+Q0dR2WOll9bkKn4UozfE8C3M3vPJvmGH//y2nFRUIxXBZGZGCGymgJso/dzJduziMFvyylwXqLwbSvAHiYfZ6YbvnWDkvZi/hGLLS7sUougfqBS79o5PcqxpfgW73DiyHWS0sJOmT5FqjF/zJVNyMuiNkdGhhqwFD1F826PgHJwntCCod75pJBtG6MOYBjHz/j+Lg/gzkIzJOkMT9YjRrry5RXCMQWsDE7LzyGOumsei9Kj88KJWOjeWMSjYh0Af0f+UJPWreomK65TFXBISHiSjJiUQ7zasLY2jtcWa5tXjKKg1n1tLTsQx/PLrZkka1WHDkckGqx20Zqx3wRtla7vA+eebxTnGGbrvDEEObW7c0ygzKf5p91mjdW9uEVZ9NxrF5rA9jYwNAPWp5A+4SZCK9nrvsNLate5wvUsKadext8TJ4tyg0Xj0NZ89+KhB3PikaQE4luxBsWnvQgm0XQB901yfHCGjlEh/m98dsctKxdKYBjmt4tfIxUGKa+YGmFcgBLDfKmJT72wohse6iG66Ri0flh78GkN3fN/mLJLOy/oVXd4CfnNDTdi8A+AgZgDxCvNh6EHKo2mVROKKSuVBvZD0OuBxPdzVOCNJNv3cxXrxzVSIPL2bXMKHbcMGon47UlTN1R+K8wwC1C1UAu5Hgl6do3Q7UI5zr62tc0Yx1xbtEIDZUZwXhf4HqdBiqmtb8ACiYi6jeIEORwPxC8WvmK6nPZQB/8GZ5vfiK1LRjTt6W9uGnVe7P/HlSEKSSr+alz/m4bHRZv2tGii5l0sMZELB4hrMGy3iDGX31+ig4qIgiQoFmIdJf4UqvKmM5pOaM91+MKdj85kw4ifo63Edd5NE5mvA1su6iLmBeS/Qjn/C06EVVB+UYfS1BoucNzrW6/5tAGa+57nOACVFnCwZHBqQVKK0ghzaCWe+JlkLEvYiDPgbdteT/elKiiJacL5z4GIEGSsfauUfR4+qAn2iw7RNR2EhgemDfeeZ+zUdHLH0P/EVMzXS3w/XuqW/bKedZQ5Rzc0D4zsxsjL20
Variant 5
DifficultyLevel
641
Question
Which of these is the closest to 99?
Worked Solution
Consider the difference of each option:
99.0−98.9=0.1 ✓
99.00−98.09=0.91
99.91−99.00=0.91
100.001−99.00=1.001
∴ 98.9 is the closest
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these is the closest to 99? |
workedSolution | Consider the difference of each option:
$99.0 - 98.9 = 0.1$ $\checkmark$
$99.00 - 98.09 = 0.91$
$99.91 - 99.00 = 0.91$
$100.001 - 99.00 = 1.001$
$\therefore$ {{{correctAnswer}}} is the closest |
correctAnswer | |
Answers