Question
Data was gathered on the country of origin of cowboys competing in a rodeo in Australia.
The data showed that in one particular year:
- 152 of all the cowboys came from Canada.
- 101 of all cowboys came from the USA.
Select the correct statement about the cowboys competing in the rodeo in that year.
Worked Solution
Since 152>101
∴ {{{correctAnswer}}}
U2FsdGVkX1+jO5PaePfkZZzp2gJhoA2g8Hw4OeB9zIaBPFrg3llWDizO+uNrV4AhTjz042djgi9LM4NiUigmLvsT9nxz+6a+9t83v5HDoEXlk6lbZmceKUveW2CqSsZvEpl+FmHpg5hBOgHPIYaSrs9l3Fw3ekw8bElgnbA28V+/oT5+0DGWtXtaTA26b2P86YnAXx2iXG4YGRh01y5eiPXYgsXXaMXWlwUlwPVLcKMt4qHSGWZm+LCcnFqD8wlqFmvvbFyZkhq7NMEnQJ6r5JBWAm3DyWV7YtVdMCbIXTs6cuDfrFEd4gq/K1C6jcM+kOXLrNdojsjsln8sl2oxnMsx3yqbavMh/KzLR4ZzM7idqbFLAlpqLwVPhxN6L3r6mJeRfgqsZk4Is7LpwnzEwv3nKt4HXP+YiimDj7CcqLtGsYwPSGer02T+Bzv5pG/8pSQtau9NmNEut3z7ars3IIsGgS14n+yMoTvqBcYW86PAcumpGsV2yhvyU66Ff4jRpd0dQrmMt7wAhLh28MZpto6grUoVH8miiDbenxUOdPdy6fJ+jhBmLrANVYd1BaEpa2YnRgdT1l7/jFjP83RpDI3moBsoyaQQCizAHGtxi3aOXmSCr7d+B10h0Z/7MF5PT40ztTIatOpv07vwVEm99wJB5rLT3sA6+zs/fw0HaPtQwdD+g5KKhVCL15voYLWKOZECNL0aKJh7widQvDU9+sR9JuIup6g1IFxkvvkXM8KWY1Cs+1UKu6e7VSpR6B0pj/WXB47Y9xZgZxk8//JHEht16bd8PejKW1mmv9p49vEcba0Yfh3H2Ot8/5A9TMaMuagD2eFRttOMsAmneTcSZD5G1gEKYbPn9yVGKa0zXVEvJNdhwyztp5+4S92D6kzrZFzK/w9qfhGEyn30DrUiwJzpR5QJdWcsmcERXLpY/FXTJrdH2L0O+IOfi7YhTG8ygRqdogqKYJUFBwzOrmbIs67Nr3SA/zIfzAc6zZPCUOTUdW+wAqmCYkuOVneg8+gBqf7RAunyRnXSx9HK9gOfw5j53zRv/YlyelpWNgZ0KGg+MFeVYXSn3gsrCSgyB1WXv1hzovay24ZAi7QfLVpe+tP+KAyyJi+icGU/vTJHM15YVNt/qlzkSNQHD3+Fdro82HoL6b1r1FSwwj9HINwIzRGK0a68zLljNqtx0/RQFCt5ATxAq6BLw0hQz9AujZ0fGF++6Sbz65uwbh4jMcfU0KzIwicq9hqS24YoedZnylZWbfCPnHHzMHtVBJAiwdIS+dtytMKU68HokEwmmT+INgthW8C+2+4MekRaz9qeyrytjJivC+yRhzh72hKF79wbagGX44j5OxmZ2tEvTxM8QqyyCeuIoCoqfGrn4LVDN3i50HdXlrbQGEEoJ840O6iO1/DNnYQ4o97csNkwuobyOnn0OSz57QY4icxhrnDfxz5JOxZQ7zq7RQpfMwYJUKPca9VoqEu31ui7Xq0NTcjPWWhJ2ItBeYRyUefOnCPSheqr4mXW9z34IuFZA1NdTDGszhsGnCDITUHrH6CYLCHlZogIbEl5IytGQ/Ecgrybe5AqAcIO56JS59WyTZDO1X9YiUztoFEQMi30qvIpJttVG2iYjhxPE6x+DzhP6qtL+QnArugegkWxGpDVQ13l9TG1pG23QrB5+e3HDZypRiOC4rxWbWdlgqC8IEEg8D/ovLh0bxPpQBUeyQ5F9yhR8euqcqgyhIfyWyDa99eG55Aq+mjmGH8Tw6zAjD70cCkCDrXKNlrxKH72ZR3NvlqV2BLHtsKQME8xQOamcZDyaCorkIgKIQrtqUW43/A7KOkzEpQj+A/y9/KV16i1DRrSNLHWBckmGglAtgdJwLsdwPSBjcJumDANtId8LDqgnLDtUF8E2IA4OgryU3DBQzHuCk33W6T1XFIRdf6oNLzQzIY9i/CoH/uicyFB2cUAVeGHojEYUN5UJs8j8svn4/nmAUhwnsbeQoUnsiXsPAyTd73wmdCGbw8jFmPAAWJtzCBiHw5R5QSZoXGdpZnLA7m5HaOGPXZOknFdQmfyD0a6n1ZniHOeMN9kLozjQFjcWP/dWMCxPfOLdzTm1Ccd+ujol/h+7FrXvgMEdj/UturiV5BrJXlbkWjELlMgL2/5SbNqr7A7tUJoeq3myCHTEGuNFeGfNY1ioYcoLBdkGsYyiv1AknNEM+HHKBzwUDz2FZyLa6dZyW6WA3aCmlpGcucBq+FaE3513CLFXq1MAUWQv7GNabJt3dKqSDmmJ+uwYU1k7LligatdNceW7YmP5LaBIOhePSbPBI66NtEbwSN0wJjpiunDU9aYSWnPFZiaDDNqQDBCrpdHIIhIA0omHntil1dAMl0Cw4U0Y0gp5LvjYrIyk6uBN1gs/QCLVkVvmUP9cgxxMCuvqNn/vlaHkO73JOUkv6I+zWuHVddyriA6kvcwo9vEkTpTfpUaU2kM4WOWLVwnSfyRP6oJLtVi0Y8L5L5IMTL6P4vLmtLlfTw+NZMbxCKomOopZxX5DA4ZvszRX1U++/D6VtjzsNATwdbetVbJVr/VAQ38fSrKunUQmN3bTJr60fLxB8r3wQtyyMLaLsbox9rg5IX5HErRCgJIOzffvH/LKMCV5Pc4AWG/LPl/L481NQ6dIi7sLQ/EXcwj5PyuGZTN9mctI9ZVHbssKH8+KEmDL+5tu8USFYmXVqEmik4ylo/G1RLTZ9zPxchvd2uwVfRiAXi7dPcinNZw7VTC/QQ33iwGEVV4Qb1q7lFlOzh7mIY0Z3MkCbQFZMcls+R8fCV5d/cN+oLEW3c3daA0VTsfCF7W82/gQlhH2DsBF7DyLMB7tU7yFKDabHK3oSZPlPQUup1ZRRd2GQmzyrcVw+HyelZc3hvwsQEOOmLT2btgMMoAdxuW8t+gkQM0zebuPQ+By8mJCdP60C03CyTeIq0U6KWMKnr629HekFAGS4GPOlquQ3HPJbRtk8TedUMbKSqoTjymwfVyMcyqXBSO12RGzb2BY0pTYCmfiaghIodF4fJuBrnNXxm3yPqfAUYXay+uFJqB0LRMzRtDSOAtR1KKA/kbfuoQGCDmhkfXPKdlkdgRnWQdKOPm5cOAeN/SVDsz5F/jE5mWn4T2lcFbuUkIE0PQnSw2dP/hIvzlWCVyai6mD9hvFiqwgQi720SA1uDDWVsqmQb/EoBazgWI03SfCtWi6Wr9JKUIHrrd2tW+wQD5W490TL4LGViGCuJMkx8fUMJJDo6E5a6pCzwSxh72CuL73c0zBRiarRcr0dn9XbmfsKFmur/A9OsnT/yFs/uj54fRq/oTJx4hbFNbGTN15CiTTEN4PFkIHc5MyTE6hVT/aL1ex96VK4bpEFaCBNotnbxv3Nrq4ZiF1D6UjhdOkXNzGKw9vii73Bk8hnYMc/IrAa7jHrUsGegotXiakepP3l+p3MyxKlWs7yxbTJDc9OSiCPDuwOUIfNjoBzqOyfn/byL/Zu+M9EWzskv70Lf9PxrGBwZsNxARsA7gwmuW60zJLW4/BBe3WrZRbj1W8KJu5phkcJhDnvhxVykgsKCC/xCwNtH/oN0TteacnUp4hOtACnRyuEDFIwkjX0SIvwpUxgPE02ZIBrqqLQEZ3LcXGUQOw750nJy5tuPAzlN6nuD/Ev34dxq1fNYWk3BLie7dunX6/4KNAiOhM91+fTKm2+PpYADwE2nCy88/q3pZ9VaxVwdAMERy09pNadFrVJ4IieTSlCwwfuW4kZhlba8rJrSZY1JKyuFYVmSPjdM9jrrnTHKfzq5zfrlFNYLljO6DZKo65QPnjA5awUTbTrpi2XR3rmF92t2uRNeXTiTwV0VIbtcIR9puq8jZjr61pCDeGjFEXBw2PnCQ9cMlgNYx2X7q1RODcH0QCGTU1caCQ8k4i/X4pnxnVhKxpXOswYWtQ2wJgl8hvQfdzlqs9qSY1RGJ8PKgw214G6ZzuZ7UBieeyyIRqOuQ2LKY33UoWrkYbV8mN+kikRzAP7+HgomfO5qF2VYukXLEJFxiQiG3GIW9vttz4QkTcSl8yq1kCtCgSunfYXSPp1DG/l2VB87tGmZIjwpqYNqRa1CfalPU0hLfe3aCSz+qeC2MfV573oTV6gaDLT10ZXMd9rFluiDzsGDWd6chSkR6LVgL3n2VOMLj0OKRkO18QXyOq8/BEkptgNOvKVNJmZF08httkle1TqWM7WGBC0ouzm1Ek4mz7Xej/zi7AmYnPf0C1HLWN98QfosEvaR2EsIKnEKEDbqscuEuwEBdK7/KKgpzWjA+E921pjDrnO9ZBEj7mgGS/J5vhnWBl+0jYPtpWEEQ9gImWASHeBBhdjPEnd2ffG1oX0SvpVDDuuKHRlpEYqA9VqCeHhddhsaE7fQEQbVcEl7upWxiEkRATBw0okANIkQmGGSQj1NW+BeguEGNOoWeBMrc9rluf0ScKGCmlXgjuqwFv5vZhf/HEbLHvaI95HA7CZgWDXDe49fark7pS+V3zvhJp83yUbW/twk0ogHjy1qmJRta8Nqls3IDq04WlIFHffYP5DMly4l3ZzticcOPT0FQtsDOawxkTjMFWANDyA6rMTzH01qxltg46gqPZq0BWdNCPNTsOGmYSjD4xTi1A3ov3HkmGuDtF9ZG9jFjg0sT54XRQLdudHomMJ5KmBDrSO90zmIFDUt5dUHFkI4HSp9sssNMADZQO5rNM9BHAdGGzBhgdETKJ6ufiAVMTSJYlFGCZ3vD/pUUV6sn+12kHFQ/SgUlQhdff2UQ3/OiDVaRJYNRWatx1nSK3MrwFR2z8y1+Evfe/eqwhzWLhC78L2l+vuYZbzdxbcutpR/TeKuKs8F0TWmS18EWuKi03MVxCcnxkqExr6Fw2leP325f9c28lTu08ok9uhc7WqkJjrJnFS8UL+cu3KSCA5XkCimO4ZEemD+o/7xmtN/rCBt33yrbTyasgP79Ogqv38ejefz5Lcg3diJ6f61kICVjq4nWuCnBH+6C6YRjobEhmcZWJvoSUziReMrkPw/5qb0JmV7pKbkARoJN8d9YmquR2xqLXfMp1t6dsn15VkH4GX0H0VfxGyKmQgDvA0skXwAi7n3cUAxFjcFo5/QvErBBc1WHzOR7mdXI7yvficvblz6SX/e5rbKbWz1wucNQ28Lt9ZbjI+pqinEAGPQy1J0ur/EqEUYmuYjnHJtSdVoZ++mCOTNKHZXsGgmFcSXIOgL8+ZP9wR5mc8n4hGa2qSnciXfF1iAz8B/dyPrybCdUtTjXr3DuzZ2vAeWXBVIYES5H1LhbRYW+tyV+9sJN+dr/F3U8OlSKg21roydSCwDA2jsGQcD4irhcktskIelmfmRhQKBXFDKG9Jv7jPQXtYXWim+/ZaSfyaAzCxIXDlLGwA3Ia8vtwkuLIjoQHODSQS4mRx27T+UBNdaUT4/K6qzFHJQv45AK67KNfQOoeFE3ks53vHc/gTUJ4htIXc5FkImVmBROvzZMmGWYZGE4K3Eno8SgH5G1ULYGPtVlFSrOOmb6SdlP4G0a8xBsEK5bvIseBVX4PLuBRzCSztewrE9gxXmum39x+1hWpeGc1KOE411W2LXua2uiDSoDQuQgO/2RnXiXRGYxC/a9675L5hZsCWP3b0RTm20804QrPatW2499CySVOk6lWpjDcCNaSWLnlJ14Fcfebo3RJJZ04w8oH/rihI+IxTHORoTGN6wRsDH0z/rhlm55hQYsqrY4Ku9HcAMqiCzlgNS3hgM4nZyi0Dzxc3z+1dZcKbkffc89n6DLzfQ+ZLM5Q0H2qBeOZsZb0MBPdVMuk78TaT2mwlS+JTt+AkkHnz2n98jyvvm5apPlInWAMHcu0507hWJNU+VkA1Blr2RrX35Aa0syLw87yBpDjgGxt488UrgRXIQW9S8N7GdG3eeEyPSsSLtevuCl2c1RWDIgDeiJ/ZWmRrQ5HHAAphOHszNHVc+UkPqLE6xCHOYhed5kblSaiRffxEl0hwxxuVZzEY+SIONOm2bGffl4+0iZdcOlq4Ua9a412/JbDSytC4oZwBpIX7veFP8CJvcbcCPDrO/ErOTaEF0/zNvAqte0hVnmeoYjqwRn4C3VqMIzU6N8WR1zs39ILJot8RG7iBBBKSu9LAvT95JP4e5WsjpJYFgncuyaik208ir5q10uAxmRM2pHmTLVu+CBvdhcpU7NhqraOwgHS0a/bFh0CagmdTEiap5R0SGZcelk7A8raSv80sLjAKU2IvoWJe/H+hNK9rAQ/VP8AV+uh9Qd4wvtRlxKoW+uoLH6a5tRP/XZKL4BA1fb9sPZASlrYGuNSHtxIXb5i0GHDj8lAPkC09N1/2ot29jwrE0Cohs3hufwLPMrh3UXy3GRk2N4uz/kc0obwcoMs50Psj9cdOcMsrrJ1Z8ISorWyS1Hb/2w8tS/mnkVv4DSD3S4cBMXSWVmLqPlWxsxIvYm16JnswWn+047j8tkmmYhXhA1D621a63uIYIhVeOubPPhAtMG+g+ecJhYEFZaGzr4LRQOvx93PFG8e/sMAGcgLAX14GQVWLaIBj+7FnRvhSRpvzuJer6WvRkdkNxKlYLr31AWyXa9g9drjbUcUHuTGpdhT7dSWiSyudKjXjYKQB5M99ALpiwLwj3YpkuMcB6hDKyDfMNPM80qf10Rgfb/2BTYtU76DR6dJWrEkcTmlIzhyWZMtRTWxsN6kt53RHRsuxONlAFhTFWcOd3THebtV5xiWaCg7kpGcJaYMBpv75cHG2gA9q1zaoi0kzS8cP26HdA1P0x2IKI3A18TjAzqgml461qVRUQ4tS6z+Czg1XjGXdedEjUrXxzVKfPbrpuyKrdOpm0OHDiSs45nPfo+o+dCdi9UcID9w+3eooTDtYM+1WCnLk5uJaYQFcWpSwZ8VhpR0Dyds30kIBqfgLeXzXSFmHp66np/oO5yvKs08qTZ08qLztOMrqGvoxOC0zIAVA7+kbfBqRf599gFiJ4kCHx4nXFgVHVBZHIvmXG2Q/mtNUAkQb/SVhedEipsGklkwbNbrSVBTaLpUGlDCyvVohQpab2tWAvp2DrldiwbpX1j2a+6VpFuHgEpVpHpZ7oEzGsvOKRmFInsd58+iLS+maJOsi+pQ3j96b1dBVr42OkVbziL/e/KBG5YQqqU4GT9nxbVctLnrPMfvXBYQmA0xZeYgXbhpDfmjaBd/7O7m7MqeDMzYOHXtohQK3cBQt+GNw6FKF537YDLyHiwgBFIgLFX+UZY2eAHp43HEgfBvBbr4lwNlCAQaRpFSKd1lQK99l8tYcx+YShtSPgLI6LGMlgUMNQM72Cu7ecIIRzT+vVc25A+w3tjgmhZ95C7jeApUwYNRWrih9qGOdWtsBQRiVg1eY0k05G50BwkgVcnH/IeyFC1B+RibXtSu54aZNGi/f5bZBdUOqPZB4RzfNPbTlmcbxJynG+LWmg1GX6bE0cU0XkTMUOtZ6w4/7wsl+VnZd1+rXrGXhR9xqeREOGe1t/KiGYZdt1Do5xhhT4/MX+kOFkc23Yb7Z5OgKwmYvKFwSnzX4J7KXYBBne9z0IYCG/u978ER8YgdhxSDBysTGHiOc5qaBA2PoGsbB1V0eYjUosiTv+C09WrwpvVCjLx9cfcAVE0kaEYPY5tm9KfXviXSqBf0MYOn+2svGl0ogyF3miFhKpZ6HcZo/RIaEDFo2aJNK3m3tyWaqDcsq11C2Mo+10gazS8DT282LEfvENrWydaTAAO6TdeZXV4t3m7sAwXjtUW55tiJB2/Ikgr1+f4UgVr4bC/zu/2nwNdXHDvnyozZLcEdQRxjAMeHTvK5bpKEvXtLkVZAr93hEmqBhxbsv74TDsZd/5BcSURtUCtN+BmQrcBtkUBsVzO4bAqkU9tARrZQTHHpuUOFvJDdLEruuSqeUGy6zE2TdMX6p6gZ+36zFltzNmOhndFZzrNVbV3Jhst3IMwOX3ClgHYhTdqxXO+ihtB0XSSDjdhlzR+tBW2YgPS+F8/QaHocAZljfdhru4G6lz3EKlL2xhZ/IJ44f7GdpwifZ2VBrv8IpGUTrbucN8azevVksnt6cMaLUQqItu6oYGMhdEmTIY9rQLaNf4JvlE0Xa7fD8G4kIDNAcAZS1+/xRtNdoVCBo8wTMkGo8Aatgrr9sOyWd9Lq3wjGCxclk37wfd8uYBm0+HUNHsUUQ4SzwvQRrigjGBbQtllsbWINTfqQICFxd4I24Qej+qoUkxL/ln/nM+hpaynJtVfErefTtH3vEgVvDgpQcOD4qaOTILNjfjbrQrr0QmhUnBh+I1dsWZg54/MUNMyVBx+l3HBPCy7VrdZ85IIvGWesxiyZJ8B+TiWw27S4lrsbCJyiiH4LzD+yVfJtINi4d2LFLzPT+0D0BQaFTDqmW9VCbVmBV6OBuT/1CA06Qx8KpR4M2iHjj/xcXwo7AYyd60oz0C/ajhdbReRLr4o2mp0deH84tjYBe5MnIDGAWhGf9Nsy+I+UGJdXUVO6vJ7bfEVZyXu5LI3HQxqXY3jP5UAYvJqjYZTc9Uh5PsZb6A255kzttc/NmbAevwyJzqAkvwyh6sfdByjAuNOFlTvko1ThwlpPMajLh1fBOQtfr4pBS2s7BqDbGq/vGADTQcsfk2AJCwW8/gdUy2cSQDB3U6aYrcDOa8TZMEqZ/h/RbOgN+ddzj1ER1IbRYpRxI8QaAO5iDDz240mv5fLaRaCMbACWDiLsNi74QyLwhqg0CcvkBIgizKnpapm+fU5DotsGklb/5pWREYdTbxcLD65rGbw0HFCfDzLsAFSAX+EKf3Qj+X4W8qdSeGnnw1e3KSX6+yA+mghp8jzZdTym1cIXyCHA+8mhkGz5/1WvN9NYeWAJMb/qF/UY8xiygN0KjwPL03qJnyCtuQnfNkOOziFAMPkDm9uwA1WmELyquxMHs4dxVfD5HOLDwYAjCa1A0Hw8oSUx6s3g3tZtrm/NhrY+HkffgClV4om64jVFL0CMvxpWQ/X1ajT+NIfydBbdM84lGrACoOftLs/p3Phx+2PlMUONtneDUbd8M1fbKnY1MCTDAIfp0Uq+BowcqJRPoJY//Fdfnl7WNeIZOodydGmnYa6iS0VIqxZLOTSEMnX5xNq2vISxJNYxLM3CN0+86663/nfXRyvUjlajmDSgS8rEgHGucGDVIp9DrRxv/WFJ3tG5TKIc568jlC9F0zAlQpQFpzrN8Tsv0596x9ud8rHaqn/3wTVfvQ09k4vyTcQSbTkawKzR45tdqEk/CVUfosvOY3BlOOkx1kIjyyvyNDzWz4qEYhCRPWWDwYWQFC/MHV2jDfbgexhiwKy/th+lchdF3SvI/md1n9VAKE5kNlx+BEygmgrQKoG3KVuvVZHaoZsDHGb2IIRgpV/87Q4HBwX8lkhn1dcDHorfJGID1BgTpB8xTi4R7g+Lct2rSxfDrCCuO1I2avoIgYMN8RiRFj4JdFcY46jsDevT/dkDUZVI8CO0mOulS7UtBR5GFNTXkcsowpTU8sKNyit+FsUkAeaJwOlamFF7kenk66C8jzzeR7U+1TpC2Y9bAasWkuRWrRerGejsjZ9hUdZsn10ct4yHZD7zL30APChYtINS9tvR7XPf99AwAmf1EAOvNYMu5SYLuE0WT1OZL4ES+Xvif4pwbAJcGbm0kbWGqK7Enao8MDdh2dfF8rCLctknLkpQxHonlhcWKb1C0RQYiNw5dfDT/QaDy/Ja5ofmUzlBpS/VdhxpDafLvL7DbcL0RjPdvVXTZ+RxgkWysia40yn37NhX02vDhLRwgC/A8Zdo8YBOg0g81EE8uuTnzwCxoHMj/v6vj/OaK/Nubl3nbnNGJEgKOQ1Laj1Yl3nubh3mrltcIWdDQ==
Variant 0
DifficultyLevel
560
Question
Data was gathered on the country of origin of cowboys competing in a rodeo in Australia.
The data showed that in one particular year:
- 152 of all the cowboys came from Canada.
- 101 of all cowboys came from the USA.
Select the correct statement about the cowboys competing in the rodeo in that year.
Worked Solution
Since 152>101
∴ More cowboys came from Canada than from the USA.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | More cowboys came from Canada than from the USA. |
Answers
Is Correct? | Answer |
x | More cowboys came from the USA than from Canada. |
✓ | More cowboys came from Canada than from the USA. |
x | The number of cowboys from Canada and the USA was the same. |
x | It is not possible to tell whether more cowboys came from Canada than the USA. |