20332
U2FsdGVkX19sNctdACaDZp76hUoC693a0R7+YATF1hkVaIzmHtuBE6h8bhG88DQFc8RxOMdsTwAKufJRjKDj/NEc203IyI5vNosNj30qIUMNeDglRmPn7sfkUMpRvDU/+egCDKZJrpH/YDZbnB4OzPV/MzAv8SurJg6uImjNYcjYc8UOOnUKOenUgf3PEq9TvwpcrKp0KpKxpdCnEd00gdwCuCmi5AXSsmGnZLWpPr6pr2iEsyGRM1f1MEb4rVp1JsykaImSTfuXYU5OSaNKXPFcPrzu7/ZlxuyKZ+DRu2+zyVu9kpyahnVwAh2NmaSbr5SEs3Hh6dpGWjz6beAfuO57g43XAR5i5DtsYFRRbc8Ysh8ZcBSyB5NAlq7iCs+JyB4bzZa6pJk/9eDGfjjy6umstXnKRS6lhY730HssJ1FBYOaQ+P3bzIosGxqv4DutOGQkEg4f6uHw85mFfP/qHZtI2KFbm4h78nxYT+YU7Y8717W1f+1qwg+JkrXCwM8rD2k2o4+zaPP5fMwRyN7ZUkdY5cNh4v2k+kMNlQ9j7ZQb6J8yBOGZ60h6PE/OgXdQub74nISNRR6IhRQ1Rxz/WmE2NBSQRSFLChoyMmbG+R1fJCKi/HQYpm6Jrcnl/dsMfav1TyrVX3yW9KHIdO6CPeO7kmcwtsqfySpY4OduRIW9g9mvet7CueGC3F5drqlj1sc96gwHfE154j11uBniq3JR22ceiJWEwDyAaRHt0nY5fHqT5zU6VF+dOf/YTdFJNpdwHnd/nuvxKga3+mWYNUWQcQWXGqiD43IWUFSUhXtNiecoMPrNaAAqbXUwpafxavsYbow567z5ThWO1IrPPml8vH9+KTEB3mZ4hJbHouJqUddsdLJ7w9u2+PKOFKdMlL4ZYZpctkg9LWHYRvxZrxBXr2mcMTmfdvaPDLQdWofyrGl4wtUDDMOAJ9S+ZaG3TW9/WYorXdwxlgkoOnLXXfE3u4Ko6U0ocZo7cAHbCvGEqs+6K0nAIcPKhqJRIFzK0Xz4BNfM6ggVyCitZX8zFC4mOe1ZZps1QZg4uvEGwSDdkrRk3E/H6UF0sxgFYHwsXxQiZyYlSRZH9lQwmaEkWvpjBQPKpF5zLa0+ydO7mhSYTFL8hdlNB3V7js/TwC90vHPetGKRnHsr5/aQ0cmBscX4s/qZPLQ4ZX8vEOQks4L47fSZzNdjS+UCJhLLDu4toLHuuiMhF0dCpqZIGcjy9HfboVN/NCw/MtiaNes1GPPdeh22MC4oH60WHW2UaToq6qywFsIdbTR13Fi8ny4XXUZ1ZPmJkbwq1x6RGVs19j6T4i4aLyPVDyDxqs8nDcvTvmx4adIz3+5LRCXdINnC+PS6/WA/bC9VHouAjAbhF3xihGItxphv3AG010KfkXQTdilph4extm1mtlMsenbpRIWgECid6gaIsg0fa9HzgeSE1BULTHE2r8Pq3ixS1nF5HIjgkJfuhUqJwr+1qIitPhsNqsjGtm4K69b4FJ2o5XoMgezVNBivpXbCWbvAAF1CvBahIWVkIff8DlHx9KVbQdAKT4eHojH+NdPdnksg8bYA6RLq4Z6cRKTtB7wzwf6v4PZV1yi2s1570Lo5+Pp2e3SVKeyiqJm6T7gtaSHaFTCUCRiETUz5tzdjLe66f7PgMAkD02W2ZRSxMHyyBBIWBjmi2Qvf/6qif9l0y1sEkMtOpC8Bdfnu0dINn5KuNiUFHJtpVE174XgtlhVa86GtslZ0ALKc08uLsvnRTAczjLj30ZZLTODcIZEJ0amBUnWkmqiIPwDFV+7GIUYIMmnRXp7BKajN1zUlW0QloNCX9AMZIPgrV8kEOuKfBITOu/jaegeCJp6YdUg3ThC8Fii3nMaedmO6udai8JVkqG5GwW53Huhey0H0xwdJsZJg5LsBBwqzo6lpwhRjXTjFa3bS5i96pLHoI+SmyJto/4XkX77m8DcVbbVM3psuljbfRpg6s5BdnNk+CtwXNRYVeN7az+GZMQMTOFyk74ktFAJ/D4dxiRQfkFmCjSjzrBhGeBaZYkkJkEpPpdqGxu0eqZr0p72hgE1M8vtHhIlH2IxY1FHzgVUabsQM+xICWctjHR8A/Zt6LigGKkYqzUATjecco3HE5Az5meWcWhMLvKzjnTEDx1U2qrfps8p9YsdxTIEnowuM4+IDv4rKEOZpdP2CEXSbdVCOpGG2OuFAGGnSr7OYyikjsOdIZJm+wN20ao0IHMxGqJHw2ORxrkFd1JpaH0gR0kPoTotTZgZUkIDkNQAltmZzUG1gsh0llG6LkkLym5NUx/gmU0b/5myEc+Y6Nskyod8O2KPt64Isw92Bvrh37dtkUnNMmRIvPZqYlJD0DQt0H+3MncjUCLHoR6rFu5X0KgUwH9/Z5gk+jFP0qAYcM8iqeQd82XK7FvYcHC9exRnLw0P71JA8feCY4O/MDXt8HYEeydq0+Z9Lqlvdiz+2NqsDaI2xQrm+NakOAqwRCtxd6sn7KRcLwG51cpgDOehPctL6z3xHUae/LyYwl1lxwhI81TQvw8sLnGu7IGmDAW/jAvCjTjvGyj9AkmbodhwR+S7N6YHyC4nYpJPVAEuceq6yhLqgvOm2lY8TJA0IwohKKGfEq8YVm5ic8bztCdzooooSvquAjj5DSpGtgaZGriFwuLdsCII4Xi9VUzJg4sr5er1uhWzgVPTYt3L+T8l1lao5QRhVd9fwNqfnplGT2FNHX5Hr5d2TS+tq86XR2d77rdlw6h/KamiamsYY7haZn0Qs77lIiQbQRV4I2oft98gOHir4yPexoBWu0WABee9dIfcC9G+8eGQYmePpV4uEdYKfQATL9vBtQa5lipZkQkFs5Ok0j1A9r7O1JJXxIrB7MNxalOGPV93w5VI95FzclSVdj6gdc5SiswvdBlw40OABp5FBa4XjLseIfSVPe4SM4KDTsRwNu2o4jiPdGYu119wF+U0X1QBxxqTpEq6BSdnDExGUkWjPP2SVkJvLROiTWpCAlMii3iegdziKaqebu1P0XBCdEf2L6BjRT4fSP2XpqavXXiMfajFtqj+HeUjNSWNySHhhYCpAFbxfLysIfENENL6auZKRjhl539oq3rfuC4YdU4iRrTl9bwaC//8uj7dKObNKQ3/yXAaL641+7Mbq0lpe+bqhVUKK7GuGZYKVqCqeuUJB6RWX6dyRR4FcvvsNdRVB+EZhNpmCzZXgEokYVfCkj1KGfgu5xH9LQiBTmkrxOWc5no3L4qYrCbwwAg0gWn+SbCPR2yumIkWhCcdFYXyNp+uoYuwo4m7xmdXwSvDfNX+myameGf5hSWUdhzgU5jRnO39vk+mmVY28vTvwykhtY8iiGb9regQqsj6Yh5CD2A9OyItYnJIVUhpMifps3li1vN53pp10G9E5cSdPJSrzl3qy29RWVxHjzzshlhh6tmY15lsXZ18+8rGp1i/S01UksBRCDRwph76781EddX33vVjEPvGBalNJduEYdAI7+x72gFXundQ+nSyl8rl3G0cugIPjGSfc1RitSE/qPVNSXyqlwEiynBlvS7FIMb40S6ARK0rEqx+qY08JWk2AYYfeRDKhzvW2+Xw9bKi/PoYY+Vcb9ZqKlwujGuXbbKyzhB7saMeo8r4aERgCGqJEuA7EqXdsVrO09qQpJIYzBcY43qN/d/26CUaWqc6k58+QY6YlZ9vEe6HAN/eotZOcNc5BchmTGtAaDJyhrZrGXWSF9DBjHlFKDWjjqRp6v8RDdXrNR077sXU7dwF34kPzUI16yBrAAOMVl6TX1H/lIi6VAztyBpgOj8Se+A3m6LW53XEERmlrv6xZ+G+5r7Ht/1rBRk25RD0eaxUAOoiNBJ0BKlj02pj6AbTzjm6H0ph8Z6c1SdFU5xaiGeWvgiZTkoSifojGG9IcSUkD2vBpSxldTz5+q5xb0VNGioDQH1tFtnnheDTswDAbFbBAUNGlJndmbi0isHeadyjZuRKunNYUzlm5WiXbVTjSOI2RNzW7vhXKOF9S1XyGAq9NdyN8s2z3Ve4caSY/GZqKSA7+kuNt9c5HIBkadbyxNRrWJoLzO+cjdb/V7kuDNnki4rDQXstbg36vrAZMlccPjovIL6aFHm8HBWSK9CUWUul28Jqna01eY9zzYXp/f2CeCOQGnMDA3JHC7P1LyaVKmbFKp0PCUU82y80YKlpTfka8GtzujbAu1v6yf93xTQXO+GhZ6WSvqZMukLIYV5XcltoFh2w2axzPrig6SJJK8v4qvCy9dtuM/LcWcHCPPZy4555aGibBNDoxYAIOC9vsuQ7RgLgYBkxKEd1TPPjCFq4vCScaThBnXhMt4WWwYdyF14DQ6cB7Tb5EtZX579y+QyyLQB/bpUH1FX5gED/tLDZEY89R9bZcrkGqzbHm7ta3nWqvp8kzXBftawPxMiV8GoYOov1Nwe7AmYaUbwrV+fQuf3rQUKLziROk4nq0dt6ccgl8T6X9mYbCpNq3ye4iv/+Igs5Lo+Iaiw64LJFEuNrgPLr/hiypTphdm5i0dD3NYDZpBGOZfDafhdKnOWD4sPHUQk/LSMmzg7WrfjcHVsj1tQQgcfS5TPsHBiHZOojN2toSsHl1ae/dhPR3I/mfJJSQkdn7C4lYWeaUxVnPIaNxUMcFEu6/S9OFJ9FWqht+UBDOqKCgbnSS2zOryt+QnXdh7NmQ1BdOt/L/DJpZlV95LDGmldkHkA0mQd1YlLgf6FAf9WqIovXqmauAXRrJgSoozwc8blZwuyG2v1cfBWxKNsYjc5rFfJ23pTWlwZCed8kIPAb46IQMPeKuM24mBSM6cu4746ejN5EETCIZvllsDqR/rYpfPUnFQTZHurVq+wBkgOxwYb1PXnCk8qo/MTDyqH2X1UgO5IPcxlzXmd9MxdcuxDo0gmt66ZYGr5iO/Wr2CGLzpfko8aDB1pdMoVtOSSkvtPN/1ZzlY7ZoOUiI1Nggj8o4iHc3fsGUUSuo4dLkUZ+L5Hhht1+V5iLMdEEpYFNfBF+Zt4uiIa76OAOymrbK/xeYAawwFYrvE4c9vF+VN3Z5oMkQdqyT5wFarLDnqaLMSK0aUwcIeayQk3S3i0wA51xU3oOJR+NTFAFa/eKH6p64WyV/q1Hw5BdujvXmEreQj+qYwG/EV0xgqi/+UKA/LSf7xnIfBMKI47b90GR0PUlpdP4PxH09ksryJECZYS/JPMMqJNdreTrBHPg0VQdExBQUyy4noyo7td6KhwrGgr6GEG+XBhRb4LHG0a5L27PVQyYQt6QzxM4zLJAPoBVe6CpHU6h9vsyjHUGwzYSsjdPxeYdxt8QTW/6qLxCfqUyjmmdJn5ynVd1sypfR8N+MzVutt6FjR78nPA54u95AC6P7yy8bVqYoXmRC0j4+sxKSBegfJCv8dVaNmCqRADvYgrSGJY33YtQh2aHqp2e6gL2k5R+KQ9eVXske6WFIhnh27o90eBBid3DFB4A1mXH1LIY9LWG6s0DmtIuPkhZC1aSxeTZDWreb8nArzVpz0qKRSls3XC14geeFyvqHb9eB7rBC6tdkXN1/88vbWP/DBHT23Gs8vvCVb+WYz3XR8Sw8F/yaP7lBw2q4Jh/JgkBBu0phD8c1NXJlP0skxQhpeKf44UJxNTP5EY8u9PNth8l08e2jx/Q3evt3jSr0rDH84Svis8hWPVqUHk+rYwihZbVSH6WmRDVusTrGbsfgVeEyyPmW0uQ8nwS8UPGrNNED5/k2rO7jsI3tsewDUSp7oVkU8VOomfFluTZz7sJfIaSLMnvs0+Vs27tl3QBJtnnw3oEfvGMeB65/klEpjTjbcrp/zGeTopoG2anPFzIhSY5Svf4Dpc5/ifMwHDqx45mXu/Bty6NwoeqStjZrKAFx+kSvvTmvVMj4k/1Edc+zNxRo7xtdL84UyxdgirKr6oYPv2h8TrQnlq93f2qT+FmTY3SgppBDFU/xWLRFwseT0OAcqdQ3of1Y3r0b9NbDf6199Ol2J5jRD9W/4Z6WCgXodat0r7XcRpi0rXtieawmY2a5+aOG2voaKQ58Naf894Amk/QOq16tpPUR7Yhaywhj1DFP8drZFTKTrwc/5dlhJMeVajGYlej3RqOM06q1AB31V4Oz5lStSB0o5HH8PhTP0cHY4favqRBW3uly4/OQ5vThpASZPy6rxKW6wswUma0xQw+mpax21vYQjVWtUwnm4WVDqIwYRkIejzyoswh19V/hZJSAnGSRaIpgXRmRs90i5aLCPudmN3l6GgQjJ/HgN751heXDUfzmDYWrgEofAGURhI+PYCXzfCjRb6orc+muq+GNtX4asF2RYwKUse1DQZTBZUvLCLFHMfRjdS6hXmd0Q6dwuP/kkHJWUJLTsyUxDsykj/l8BkQb3vmwtq/3Gv9RWvQE4IYXwCdp0AIpNJWiDUfvWKb8DJiPc4wUvUiyA1ST4bm8W1hl988tyzuSfKy61Nm/e2t2ccNT0xU7KgJ6gmv25l58tynryc/l1LymT7cY4b3EY2/r5NEgL/KotTngxr4Kx1E1lDZTEFHiPBWqzlYsbuxgxnEfpL/YZV3LMGV0+KgIqj8/hyXoQ3iFjOk2DpV0HA5rN+EiWk+8uHqKEhX/9j0nGPVziZpITrNiIgKlVLxTp2gJOcYnA9CAnXcSmq1SJ8OmWVYKM3Z7dNNpnUz1XPhYVnaG8OgB80+ZmvzLXNpC5knqRrq7Nxrp/GDUKLgfKFyUsPpt+rSBKvvuR8WxXiLI5+XyVbppvJ0vVan1vEWvD5KNPwUbNzAB7J7fb2Xhq3iHjB71LUOKRbjNy81tCFNwK6wfvjX7UL5fmaL4veaG3AU95fJP8dw2N2wIINciu00sZ33cK7HX7b27wS/t6n4XIqHOcYXr7FSmrJaC9xrvvS2LDgX5iWKJSPVv/T/9qVIcMkeTvCNptWDH5vCCmuwUYpKdLCrHvgQzhiRVQsz8UR7qxNrnEm+C+ygTnNtPBsSPk0kX2U4Bsxjp1UbWAhzWcF43OZmVGZtXFkGuw+ADWNfryE2+VXWREu+tFurAjha88MfEZNNyxvHFcWi976PmSQ7TQmeiYFf8VVD57WqVWJetxQNGuPTom/25xYj8O/zs+j6BJkGEe5BXOjqzMaasQRokiIKi8ms76CMq+diuyKRAsQUijL8cSKykB2w30VXFFnQh9DbdffAZEECQnt74vi6R7S5aMICbqmm+q8c0cP32NokThkt4YR6iKecYHcPWiIs6T4ph2F5xHj0kA9hhvTT6FCegDvtsc/L36lLB15mY029zo6woZ8KzcCmZoSgZ2Xicx55V4zOm+8BmOB11kAHrIIq/+J4d4poNsYlq4w1GzcKFOQomuyogQ8nbegSxCGBxcQ+LoOO8y2UF2nlz2mJkcPrXgKGgNUQjedI7Pk2Ue47M4LavzLIxqPwEXoyJEw9KduQd+jCOnhshpN2i0OCzYC3HSGHjEcaxQrSFymqmrleBUkauoO7l7hHaTJ25HpHpXDd+4njOByddmd3yGqoRr+0cok52gCCc7reeyS3ztfIvFMEQXOraORgoCSEkaL+MMpAk3u9GVGCFMvpYWsM2jsCVMIDKaOzJqe8ZHNqRz+QCoq64YPnUFo3Nam0XogWV+f0/u7V8bm+MZR9sJQPyuM5O7/dZjrMelq2G4CWbbqJyJ/6ezWgvn1cxZak7Dm27IQmfVDDhltv0ykwQUM5P4toxgaSoHPK2sSNPut6px72lXsUevP9eTTHoXnqP69wCXBpP70yU1keb4vZ9OKSHRWp+9dXygxoQtoQidyNjq2Yh3H92VXg9BSZCtVlAl+X2yBsdB6a1Mkn3J9TuidAI8iSuR3HUOFYqchW6+tA2B/k3rpps5DZPzOh3I6RAyRbnAARE0/Sq2iK9juaNtfdqfL9X+eUjeKcXz40JA4nKpCdmThrYgHhqU1shavE+JMj/K0y4il9oJTcZqq9exg9iow3WaaUGTwWAk1XkR4qJFLsrRsYO1cSOQXNaXnoOFTeqbJSsm2Gb9TYNHFQkxVn35drKsGHcFhvqJpyD6Z2WLUJew3agX/IOGyV5cH032aPuzalZSGPZmy3sKbdNbwKQDBE6IsGgK7ojzZSqo2FHuj1QFoPA/dhRYbR4ZoSC1Lbft8bJLYzpA8wVdgMbjFsO3B1R8iRtXpK8EzCcOR9ztOEUn9idSGLlCe70vh7/7sz+1egVtZNI+L61b6UNPLFMVVgKOOeEbGQTMqQS+2XS2TxVRqCiE4MCVMDgHAIPq1h3IwqoBGOGdD7pK0u/VXYaimB6u1+oznt1wiBSB0P2PTxyPS225tQSlxTQ86kW0CLQEf35KdHtJQf6dXN9Vh6++6GCWGl7ebuD2x/3XJXNnyr5btx8YxJffEmwfCTH1gTiJrUyyc4RTsofZi26SkCtS4EinMKouAjLRX2IB1AgWxYFZY7YcL5dOun1SmOa8wTGZhtrXUob/+6E7JLG9HX/mJwrx7m9EZ7mog4ij2nS/CaIiB8cG+neEgEBK0G0sIAlr+c4psXnRKcYI2JYOcZ1U6DvZXjG7oH6F/6AAkvYr57vZWgMJgf5WObXdexEufymNWMwZ76K1i5uaq0dD7EfooP2LwNiNsqvie42MsKAhWnnhWT50pBDZh8jJGV9KPWBgQYzAHTsLEX9y10mGQWwWWqW605kNVzEWfHAp5xMhp/aOFGK1MmSUsPKi089mbCM7+TLctCbi41tRQ+dyV4lqSrnoraZrhpDpbfSdO6IddMQp5KzTcpmJ4AqEe7aMvLQyl7ON+iTpaw5DjBm9Q96BZKUsa/Af+t2uxU1U1xhY4B6qUn/5e3UF61RvzRxCOIiG1etfUfzHZ7YdqOUDLBGiHjE8zcVdGc/URgfhvT82u9w2gADMaAmxm0zT5dFwajJHiLbzzioFTmrgcDDGK9YRWfBNVPNbty5bS1/gapNmnzROM1n4EpTKYl40TupZwAkXpTMTxIMUUIQ5inXssY=
Variant 0
DifficultyLevel
659
Question
The cost of hiring a stand-up paddle board for d days is
Hire cost = 25 + 12.5d
If Mick has $250 to spend, what is the maximum number of days he can hire the board for?
Worked Solution
|
|
25+12.5d |
= 250 |
12.5d |
= 250 − 25 |
∴d |
= 12.5225 |
|
= 18 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The cost of hiring a stand-up paddle board for $\large d$ days is
> Hire cost = 25 + 12.5$\large d$
If Mick has \$250 to spend, what is the maximum number of days he can hire the board for? |
workedSolution |
| | |
| ----------------------: | ------------------------ |
| $25 + 12.5\large d$ | \= 250 |
| $12.5\large d$ | \= 250 $-$ 25 |
| $\therefore \large d$ | \= $\dfrac{225}{12.5}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+5dtfqGbN2FlEBt0+uUSN4Rj5ghs7xvEKiVCS29ojv1m64m+Q/qzkOGiFpjniAoyG2M8GiWiEPs4BhjXcoI2AgPZffSr+dR9yZwQf9WZ/Y9xHjwLfOO0JzR/9fQBRYQvWfP5fHLMvbrINR152MT8NxXm4mPr9n09Bj6EsF9EIf2dTl/bs7rL9YtlnTVjT8r6MziHLlDO2bNsbUsoY7bcXaDku9Lk4fqsgu2QRcN3OwGKdq/pFGRMRosd9r5rK7oP8LRI3VD6eixYPc1rSgZX+d/HVFqNeyFgDX3e8CXwRnIzgLSBAFJdL39/JQqkV0VENz5KOzknDvl8a5R2Opq6KpQnuYf7IJDMzhg8SHmgwJDmkf7R0XqvtHV+MihKpVkUw45mZxZFvFJBp2PgudXwqrC5CQlVXGPwOIA3XaGFHFe8ay66FwEnJMSOalMiag66XFq8KudB73lQ/bDSJmV1XG2f5aGtTcjleDbeQ2gcfVU6s0tULLW+3RfknRgZzbvUXs6wyw3C86Db4t4YcVAQf8WkKsf04qh8nbjl8Ix/1k43JDYH4HsBEQTl8ViAMtGnR36/XekOUDSp2qfeLdU7H9uSa//CK9e98zCqZ/ZFGJVw4asjc6rwh++cj8nrZLLBuo8hNtgHsJeN+dDyTSqtlTCOMoQvYQEfxUsZduJXUNDmh58EQQa4aeuNCK6u3jTkGeHWSNuieZMYHWtlzWqkRakG1T9AP9eybwPIcLYfJDZ1mRhW3KX1ahlEZ6+7zdouqdQ1KCJVZPd7ro6cS54Y6b+d2eJncvErzrl4ZEqcY+TlsSAYapoOubRy6wcxHPOaz4tUuNHN2y/omFvb67Plf0zqpaPU6Esr0R+bgE3dRD7BVDH8HZMy+eG/EKur1NP5eEEG58BbkeRC7DXA4tKHyZguLw0kBf8rfPtQwucPN4+RspiyPTu6NqNs2D2eZkrodTtFubVddYRSzgwksLA7gvDo2qYPCPw/+I/uN6YbPmFU/HlZEeiuoCBKtxSxWW25DlB8+VHqGxxrTXShM0sUb275k2Akg+eti5kv/ZMuOnhkOc3duKc8bxZdCIqDpsVRMR3c0lc+0ZbZnWcoVtWGbmbW5NtI/L+WDUDruAWJ9WwNuMAf0CRiWMYrmWET3nbgkoAsfFkKSnfQQ9ukzIqO+JQr4LdcRrRkqgK95RUR7EkOnSXRqPgBhESckqjrhH0RoQI0w4LH3zaa8qCZHuI0a+5M6piYyfJsfqgqc4WNGMv/izocuu2uo6UkdgwGb3UPYvyogrGcDhv3LVdjWJjVO0PyU/xgPJBup6+LBRn3rIo4CPrAbjf688TY08LmCt7olJQ3H7bytpmH+1XSYcg9Z2nOpgP/gD2SgmjFQ9R2zTkwwnnWuqKcNVgfX2E4YOJl8+s4PwbaOZFwCLPkgspVAOgsu2A0C4Zz+jbVxlfENxrKdlrDqBRpXAh6PWWjIq1ngdws1kfAbM2Cjr47FKD0apQut7LfIhKZsfsCwJ9r0RTfhKNXsynEEMn8ewrpxVrFdqipyB6R21mlL9d1qK2g18BwUvqHvQUIvNNbs6G5Cu8wLRWU5nbix73ur0wc+zM6/3n9a/KUQzUYWQMrDSxG8NzhbO2eEmt3daE1UAUH87Nau4Bd/olnE6iww8a4RrHp4W9P9qGiHPkqbFltgk/NHza9w9W5oVufvWX0NKeImGk9nHtETrUONlaz7TNsULLUnN7A+3fWNB2Ng9uJcwvTHyaZbFuz49idyvk/0RpwT1Bk/VqnNGKndmpCq4+wUM75XNnSygv4kJ3ZyKaVNryEPrd+Dv18gdBQKdosOYl6F2k6g/Q8eapBVyXs2JJSgq7UTzu8oAchQYNy2jGJgz9WNshPLsEPoPFBYzfeDIOZ+34tzsaUgGv4ZPLgUxsa2B5Ii2xTuTPp+fMI9FgYLaFcNOvQQ2KCJx6vPxiaQVcELff8biz1Xz/2hmU5MUcix9sUDKrzP5sRCnfOCCOxJetszOPq3MWLub4KbSkbomYsqMtflnKFMKnVuxDB9N+suh0sbX2Hg8KquLHMoWwWW0DPQGR8Vh+5ijJz9zoigNDVdAGhkMtudbRad/sAJgN72VVu1BuSjI95gl4jvK0r5Jta1MNfNYdyLiKigV8M8qu7U3TYliiM9XJUcVkXX3YD+skKo+LAAcOX7hOlaaeFhDv60Oooxw/B94pNjfUsK65BmBIdBQiTVsJB3u094zNrNi4hWJ40Ry+eMKELFFl1IrxxVyIFgSVO7hwEk3C0zuXTiKgD7OeNBQYujvlIJeiYHAYc+1xvCMgmdzbGEWqS0cJEqC/UkLVW3nkE8MEEyt4NIKsNbA/O41r1CdSNBr9qsWUlBnAeUYMMZkxXmLqsvgqagcpBpY+xvp8w/J1Ob2wqyfhMyMXOpBQBp/5VQb+tLQa8bLNIHOovGd6Oec44RLhqhiu4Y/jY13ymMdkARDtrKl/fut/x1BCFvam8EJsTXMzkbd3C5CCy+ukzOXxr07WPFHfksgTZ9vBhTyxj48Pk83dRkhLM7akFHG6hAVHjxhkJ2+mhB0595sK3msxMJ+MjMxygwvQDcySde5DrlgVGNXyDlT5UDAsQixORXEFtKbRCYa8nj5wCn28gvlxrmbT99Ud1DzD36Uc881urPd0pwlPwQvPiLolcL0BlYhkWvjgQPD9C+VjosgwX+dyPoeCqDucopQC/tHChQVqxRtjVQbv4OnlCwVAeb/EKUykRvRM9fAR2afEfNDCj8eGLUy4EV55NfklxnyoO8hBcBNM/0b8YNZNuq9vAy2BnRsH680SwMMzxqbAYL+q6K8tFn5dG7gqs9qWt2DUDRduMJbfyRIPSr9UWrtFScGrBQw5JTEe14Qu2Blb97+H7WMzCHsgV/ljz5YY+hfk9fzMIAFELnhxrvPYT0F4Mvwb9R5c39+H0kDfKOhPzejVK5FJ8MgjdbDrSuzRFEhu5A2FolN44+KpSys6fBp2F5Nr3ZRjbQHkggAV9gPyOOj+9eUPUQEr3IVAEkUDOSg57hWke0iPLbq3/Fb0QuLqwo1xmC5Ss1P5ST863mtvK3M6h7mKh3e/PDNP6sKUKE34GK0R46g80YRLL2fuEVD/E3fUP8TWloK+cLKbpwj+zyN7PxFe1vp8kdd0AUPUwdd6wdL8BfNAkJiXZOm98dYGKxUVg0q7pZ2pggUtxgJngGvgPkul3qksOcgGInTgcdvgwW+js4N8ramr1/9gCyHOdKIw6tD73FpTWXDhOdo06t0s9lKpc6UO37bWdOyFbGdGyi6WrZUyuBbJK2jUqTWk4JLaxfp3JPoWwJr6k345Id03iMMs3oHO9Or/7UX19IRAAoXkQqerYdPMKeIJiXvYFjt6E/myDxUGXMg/mwoB5J0vhDkfCIN2wfjJn8fs3V2+l5JcEEewjLbgyAe7DPASAbdqb8IyNfVInxNhqZg0X9HdaJUt0LGIVMjKgU3LeOp7QZ+2+ku4ZaPzkB62Xab2yGSqiw6hvenebvMqBtF82zw3+p4i0QqGhVG5TKXZpvRbrZkIrOm9pK8u4G9+5JxoQzUjePFaUWp8MDbSoNzUBhUC2c7zaXhe4/83d1MPWRCrRn1uRshc1aZfPVp9jzvHY70O2jrM5FwPGv+WWeXUhYwAf4/7DZ6MW6kTfeTiK8Z2BNmezmBXxtIoc0Bf7vgydpqorxlEGSnJmuxhp68Ga0U6QOtDwSyONZVjPWB4SafxNSxbfzJwh7Wxww34Dcz6mHYT9/BGx5UCvpNSDLhYpCRQFm6paEsRRuhVRGnn1yPaj18lzSB5SDl9SWkwvgqzeFWP7ik1g+aavFDvHUvSLgVX9ftPJJgOZFxEy2gRvkfdRoKv3w9c1ZR/Wsas9yxQXXMG9PR9A60WgwyWI2sljtIYW+fMyva2eWpytHJguqTK/QFWBF5YD5EGDoZ7wE2VMEht2/U+syknBtPnSLUoAemYpRvwYkCszQfD+vVG5h3VGYU+2wec5BIgRI8yI0bI8yEh9s/HPN8FvOnTuQtZRoPl89+ArtQv91S2j41dr1oeur6Rl7kWJLbWEHa9t6+aisvVY/m45LppamP5aOlwtennV6vSphpX0O+CX5kAkh5zY4lkFbeBm2cgn0NFxUag6gzN5ydlOmdCS1GWaOPp/8Bu21sKfM3B/Gyc3TYVGYBNtcBS42KbI0JqJE6CYjQTPVIChWnMPYUURSh3RiCUk6wAi6HxKDyy1am7MU5+dXegOtTky6s2esHODA1kng0krQXL0Y+e3xW62TwZcVeSyIBAuzmxmS+CXchlpBOe55VwguVr+XPv4S8StWk2ut0LJOyijcrrYqZvqGizjRwcmfbfsuo55sAGJk1xkOQjt813kAKrwMzFOir8n/ox2LJLzB+vh8HtJn0QSNDGBsAxLHMXg3yiK4OyQ0UTmt842Uge432gXrGtAwCPRMNb/l/2v4Aw9RDZYBa/8ezaJ8GQphIQxF0cgXfxG3IktCzGfaxQ+EVhARWRAxL4oX2fPIZBhXvCRttwDeY0l0K8O0DQdedqCSx2cdPWj9cokKCbWnYsTEVbB6p9bvDIv79ppN7ze3DABoJTH/siXXohKMDipa3Hyiq3oWgW5PxHYxeuOjtZOiu/DVubhj5q2GyAwj7QlQYIZGf6bkBVf7rq601QGUOl5ShVWEEmtCC+X57s6PulKYAjuCCo0VxhxXDtrc4rRwn1V8k8msXwUCDk9ug1VOkVEbuI927mu4d+k7n2SFFA92Lpsyu1OF2B/glNmugh3Wngd5ud6l+R9+kRc9q0oyf38b2bsh1oGSS0aD5x/vXTbeVs1OPmXx+cldC5ebja7RiSHW7iYyhd+YhoYlS0KCQUZeFxOO8O6yZKqIarXHuvXp9mVzAMJrodeUOZYy6q6SpD3E9Ti4wn9/PD7aYDru6nHeVvG/mQYI6PttcgU1c0BmWo2A0kKo+fakMjrEDL0Vs78/gOlGHdcJof3RqbAsCAwappiuEdgw8G6M3XUcwX2uU+w6VEB5LIPfkHjQGW0vbV8YwcAr4bN9cNVtXTR+Q8aYnV6ThAZyPRf0ETJLOTCyG0jGD/AeQ8NV6byZxXdzaTmLdfW4VFGjoqZMcHLFW0cZ4sx2nDGrt/6vcI/OmjaMK/vGYN0GU3O1CgJGGzq3o59Fpc9J6fd9Y3uPigB6f4saWdK3Ud5ugnmnqIEAjbSdHWorJ8vPDj8tlaJk/FCV3N8GAFxT9pRZUu8FlRhkBuRj8iuOtKjZLYaS5PG/GBTVde0PeqBY/QjFGNyUEUBzD8OecnYZEhdex2PqtalyuPDdlqu+hv52jsvffpJy2rIFquOHlUQm2IEA1sGRX8eSqT+Jt5IQOJUt0DTM77ezvGwqhwVUGGmroXESsKJUn6BB8fD/U5Sf6QegJpdBSWO/OMoOKh0N5SUBvuFhpm1WyDUhUBE6FV5b2uu+45k1iZRGvhCmybEKQxg1/b6c1I+wwhD3OBsRUOPptCE6antyJ9e+TBY+t2Z36fVIx1mqx8ZwnzJFVuvpABC+sRlhML6xKuYTlwA7wfu7wLoAwF6MsgH73sQVbcjaI2cEiBoU/dAdjxUIZE/u53JtKqH3YoeJ4PAfehuMKVXiDM0A8Ziw0Wt+jBOvv8oQQeEWtxImWVpIxvcA6Z0aP87B6IVJ+1P9wOEUrDJjNRcIOd9gQbWzIFtg85EkVZhgqLmAGfJUgRQQK0C74ypk4GzUl4L3e+4MDiTNKOQ46ZiUgf4fY/FDzLVw8Ji5Wpz6XQtUTSXBAF0ocBsWJxbn71DzVqsZvuWN/0QQhMjruaKKoKlB4PmmNGNwuvBRJx4I/sgnLIGY90xXCFuaEpebsDM5jkb/5+IZ42I9npMyAKKj7u+7i7AB8lCcjuCjNIdnqdD7vRSapEAc8LkPTQcVRNe99RM50YYSOrI7D5DRvsYURZlqicbT746hL9euKl968NItBCdWbsAwJzzTLU6exdM1LSMipoi5f6V/bx+vRDI3zZ4fddUaIyYLSBOnM0h6v8zykQ+vf8IyVshu7rE160IUI6xvMOqxkUSHKAErX6OJgUhwj3ozsCNLrufyf3L4JUDg4Tfdw9RUG1yXHp+Tk6CLvl2T9jDqBMMkpc4WlmkMTzOCLx9kbHjQlOWXQ8f3EpeUzuCYTh+aP/WUF9dIhhbvjG8G90zIC6t+GlDTAvk85Niwlb2NWR9zmQYfkhNhGF+jkjv679Wm+urKwjdb8AiwGQP0S3pcjGUgA6X3QxbgtM9/n2Oargl6gyZb9eTrh5NDCA8C0czfgyw1Mx+yPre3+6bO6ftixaT2cGEhCcKhSgyvQWuS2XxGNZ+5IdqEb56wTqBhhXK8VMoHItbdOVSbBMTg0gaUa2BCSBZTnAkjS0EuOk417RWlLYvVyKWcfxZtL/miiLMqC35KWZ8VAxY9CYxQt4FKqnfLVJaBAoHpWR4uY2r/6sPpLH2RExgKLOinxKOS1vlIRqJcfekzCOvsvo/woug9FOlVp+nC5bQj4KHW82TC8fYzeJMQpjT9UmwkWRbAQnN/9HPl/qhYbazxOm2AsYAF2hz+sGys5PPgA1VyqPnYY1lPqBpr7+KYY6Zf8+UN1/tUj6+//FZQcAgAfy911I1vgjtZ+i1mcIAm392+31OSQyYtFPca32sJ/3Mnz7D7pBIsT8uZxjvWicORQnmGaz/FY16pYEe8C+ZaHMtjMyAQnv9rgdfxMDy1SYqcZXWk8doUnXpGzk0+7FccrejfcKO05O09B2wtNklYq76vduEuDRqtSdqpXerkQrej1CmK3ugqxYH1SItJ9cI/tsQJ8gfOGMIOBgvLJUhsRUwA7qTribNrjWRkOz3/PUN6vOA7gOq/0IAnQtCow5P2cJbwM0VhDhT7yUaaGqI/Gejr1ixOjCO78lbGKi5gY+bUv5KBazx7TCrZCYT6JhBYbZbDX94Hij6DBDsSLIUV6aWLeM7fWTUTMV+d9OSQ5SkGd0JrHnAYEDPnXIZV7VF0dmmv51xTtFmYoqqeA1a7q0tH1xpHpbGq12QmQQPKHYRA9xUxVusAo6G49GLfpA6BvC772OMWekbFrmc8QI42+7r3o3iX71I+bIWM+1W9uOTQkgqyJwlFQcvLRxypsNN6QKTo8+ycMwEBpMbfV68OCukR/ofpOKFTf4nYkzkARhreXI1mrrlmlov0Xp1HQ8RuI0L/mu2NzXa3gDzoqslnazoits1GOqpIgD+2RwfPL9DeB7xYwVuhK+f6sui+dwjD9uFPoSkqTLUC7DFIElL6ru9Zpo/LRfUR89RAt8lFb28J9TCRVPZ+9hgiGwqM/1Y8Z3ehUj5i/WPJhPiazZQEMKhRpJvNnx+sULs5IeS3mjrIhgQ/4V4rdlRWw6XDLrLb/5U/BZsH7Xv9DFdmJqV3ABeAoek1j6qSWXj1xOFRwsGPLQghriVp5kBgnYlb4lw5owQ5R+Xus9qRdP4fSN78mll4hd1N4Za+UBHmjM4ayXoWwIN9/XtbBLxPHyCRp+j79kM32ONLfqRZmzEJlSD6HYNuDlre7gDWplGxi5Gmw2B9Jo6kSpp5E5TKgpZZEufdr3xcQJ2DdTgTtfsL9zuOD0LlvlNOU2Q9q2PvHQu7E0+cj0y7YjzEA+lNJ6gafKd4NfmumB+ldr5RFJBfKyU9xAmE7uy7J+COEH8ePS1AMMuBVd2j8juxfxqEkBWh6KEr2eaingguh7dNIEJYBXpeXhbh69WO00VkT1ee0uLgN6LLX49VubR60EFkrp7ECsFRTXxzx/gVw8qfeYYova4XKGFQDlmD9oUwyn41pkGpqvAGx0eIqnPoq7GLYTe5dl1CAjJYESqOtBXofEDzqfqOX1xxdUcFQ1anL2Nq4d90iLV9rf8RDmzkbp+9Fvt+9vD1o0bUhnWKd6xca04L9fHIOEWIVQdETlAuG8468zBI8VIkOu665Ke/KJoYs9taXxlWkyPzbwJ+6wcZiYnlWCziN4cebsfr08iR1Pg2McPu81mxMicgn0aSW6tSk5OKxEC0SlizkYTKJlAyQFsoWLPQVOBAnGq+nlPE24+AYjNNYdUeQa6pM4saYFs3dfLfWZEcRp9ryU0ASv7FpgTLXZpntIVpVKP8F6gLYuRbFOXQtSWjQqg8I0K6O9V1nn96HXVB0YmcxCWs9AWprHWxrnENAi2CgFjaUwfS9d5LI0lJHbey9lDf+ZoX3gcoNkgvUtmEVlphGxLwyBLIIP132zl1Di0OJ7LFwxq24A0OWtCTwFiUxoROVnTdr73gCN44T4tmUciS+IkeRanLME00kr3CIGp1lEa24JRGuXrNEIDYI8fbFOp3NVwGCB0wwO4Il8eXGzONxBVggyapCeVs5FH+SeetsdpcI2vrq/pn2Rq1Q9AkNVcmNY+X9BZ/jrMy9lGJyVzjpVfJ+aQEmkJ4OJKeYUM/HpIe4ayXqKdUNov7wr+Sk+DGdUj+rOUtPpAMQV/i0CpFcpXI3JwK8EtiDYxerReHF6/XJaXydemPJsOrpAQ/K0h8Ssn5aQlfkdzK4oq1nPUX9+tBirX5ibC2IGLXJItMDfevxZ0d1adW18vOGUe3++WItonT62Jhh9ZdWyhUX1rF5KlyFbpXE58zwPSwM11KdAstWIR1g8c8ewB0NZYepGmf5jE4qx4WFuG/Dws3RAaHkS7tOUpBc4M3s24//Ld64dL2d8kwuFhp5cDbQBKg7SMJKa21eOKet+c8O0KxrmtJmdeeP4hp4GEJA0BedM7yMojINezIjLchSsDkHXVsTdOPlooarB05T4OrGip1ZxbFeLbFAnAI0iqz7C0ckkpzV2GWEwMUoOTqmgs4i1ZSTJYnL/pjg92zb1fiy2zMlJhYbNQzUC4Hb0z1LCoWWOyXSTDx5FhwMxXJCtuTxRgMYztDTvrng378SdxBt7ElIBDgBIWvnjKIdne+ZzZNpAbTfM8TECNekEYdnuC4Zwi0jsKW493LCIZ/De3XMYHCcJ91hoAFR+G7LhvIkPdOnjYzwyq07UpUhqJzoNn/o3ZkjwF1gwbhIqMnugA/SNpexdzwpWq7mFrs8TzU/o4pODE2+lslHGZew3nIomVGPtI6Huz8LtkY=
Variant 1
DifficultyLevel
667
Question
The cost of hiring an electric bicycle for h hours is
Hire cost = 40 + 30.25h
If Boris has $282 to spend, what is the maximum number of hours he can hire the electric bicycle for?
Worked Solution
|
|
40+30.25h |
= 282 |
30.25h |
= 282 − 40 |
∴h |
= 30.25242 |
|
= 8 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The cost of hiring an electric bicycle for $\large h$ hours is
> Hire cost = 40 + 30.25$\large h$
If Boris has \$282 to spend, what is the maximum number of hours he can hire the electric bicycle for? |
workedSolution |
| | |
| ----------------------: | ------------------------ |
| $40 + 30.25\large h$ | \= 282 |
| $30.25\large h$ | \= 282 $-$ 40 |
| $\therefore \large h$ | \= $\dfrac{242}{30.25}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+pvPhv7CrrFaumkf82tU+LCOYJ33pJvgfhyIYjSpWyD82/s1kO0aFKChENbQineo7e74UcnOX8k+8SlNG2FBrluGTtgsiM3JDwKIQWhd/xhaUnwtcfX5Rjeb4YfGFnw22Gurd2PdkCRSvDrTW3Nnom+4L3LTnlRrK6N+MWTz4Nbx/pOp+fJPs0MfZdWiwvZwyTFeGj/qSeeYAmLm7CJCZySZfYUReSQMT3158H2Zuk5nWfW5l6MocU9Nwpj/JbjRzpViVmFKUyfMqwPJZy5f3Msn6H7CumZOgU4t1GscfsdHiw9GvIc2ACalMshVM6Smswk5Kqf0INlmR7mWLn/z0ZfyZ+PAX7rB5OcG52bTve6EUFmsp85GWLqUHCCUlvaN9YQexBTc3YjKLHnLFy2ayJtoHUDQvL1bK/gPa21mVLuihyb34nujB5shEPKe5bNbYKAuLCeaN/mGaEoUwbmNQ4J2s/Kucknmozp4JEvnQdGNHj2bReh6tK5bdSiJUOVamFw5viaxW32y/xXg+QTUIL8M77cDJkO1pZGMqSvSXShAJROV5TsnLJ2BMp5MNPoaX4tPOGJo09Vxn+OJYU3zrWpcj27D0+tcXfv4bmWRA15cO1nUNtmanCso/Klkpj0lTxnVp+u6apkRBptUhEMUPrSYkndq353B7FAPicxRo2bUCXEj1p2OXTWddoEebcB2TObcFFR/ylsUh6kzy0CHBz4PwBS8HVh17bpbPw5s2WksHtTi/nh/xou0m9vR80JIfWBrRd2a/1GnCAvQlfGjNZxket+q30XUzVDo0Kd+gF+Jpk8l+hfTzeAa+StAGgAJh9i3596/z8mOV8SMdPZa/Q2/dtYZWMwjOTYv2vxF1nKlyQa4qv2pS1ae3Fdj0Du5Ms8pWo2qXW8JdufnNuWger173RkvHDeinwAqcIeALvQYkW8eHki65IAwj5ai16k+4w84MLu0vNdiTuTmZI1NZr+6421uxShCqb/H0iax5Bpw5ENUW01mjDNGNlkLyjQ2aXKqJ4ojTaD7ZVPOY5Ad6hF2EkfQUsLBXavg/Hk3s1xCZITPBCKpxLshPtqRGByO6+M+2bgmvA1iDQc0WgxlgihUggb+JLQ3h3VbDQ98T4x72tlefDP24HSO2JzUjPPuhUuYMxJ75ZNEKMMNysGj3tw4hMY3RJjNYDrOd48CR9iA5FCnf0atpzfQnanMrGmSNtA85Ywm4xl1I2akvpJ3wDvyx+ucOJMI8twts7qkk038zht7NhkKn6lkMMWcb3m5GkjRWbG1L7lM4aYpyVDuxBM//WiT/dF1FsIsRVQLSW1r3KerqH08eKpOm4KnFP5I/WFFLwJ+6iqBo7PZTk88xr6K/e9Oy/Jg82B7Uc+q2lhOgfgdnoky7vTxp+uBWttYH7LFOQ/vZSLG9QY2KVi/Y9p/eBCHOG1ufKh+Eh8SvAjYzKlzPY79WaBvq2PBdGnJPQ9jw/LD+gAYcnX4eL+AP3wMZYurZzWzdgaRMgGzJqMSnA3KASXQWD7LQXHSMW0TOMQlHh+LAJ+mSSz3oIE7NvuAn0l301RfqseB/Ag2Ax1WeZenqV5lO5DetlTW02i6UymVl74HI3x4DehXKTN4GhtvTRyjSA1qohcPmTSqW9wpeIh4k5ldltEXquJfTQPteHPNmw/g3MD8M678wLBPLzoiyf/oKR3jWetDOR/I32d9oCeCfiz/YVVGDqtm6ymM0lVJD2mEL5o1KKw3KUsJ7xgBj1wvJ0NYIC836Lbbr6N3TRoqoKZTGfeZ+9iI9sZXmPiT34BsxuCcVZKqAf13lIvNLq4UT+eglbECUV9KyP1ARJB1wsJ2gbtz7qGrYSAgYVq/hJiq2Y1TWOVv9FhugpTIDBuSFcZaiTAEpbFetvYAcs6J5xNIgdQCdKAPzaA8DDzOiTAgpaTxBKvcxREkMX2oB53qyw1DMy8KD9Zj5u0GcdXkBx01zCOGiVVed3ivvy8H/xYNMJEKwLP6fwSTKC4wv5w0Uml2tdwx5IDeOYNEXm6IDwUU1UG9uI350sLbrDIBlH24SMxJPQq0RDw9VzWpE27KJ82hu1Z85KBGNCJT3S3ycaK3rfz+LE4xoM3btp+4C7SBZnnBiFc+2MnHm1LfbwR8wQTQt0uWB2vk01wu4+jQSZ9cpyNxTkQG5WGxWVXvTZJXjx+vp9fC6Qey0KnlUIII6htlxfUW2iXxyFgrl+uSXo0PjgCh/bELyRcO8n6RCUMjDhAbkTW0pwa+2Bf07j5T35xrQ6OH1m1/Cj58ZfbxdV/dL7BnWH0aLiIyNn+cyboNBZbP3SzJfNOyi5TEUeqV+51wEV9jU5YA9qBAwPkFdTEeYZCYMkndaK14J36ssdkEPThtpUaIG0HK3eyOsxz0kBqEE7ZZYNIHueGKft4EgaozO0kw/IzkrngyUcD/d6i0i2NrvFI0lRUvOVUBrjOplC51tTBB7SW+kaEtZ9qo0TtdcQdm3oedeKsXfJMYLh/Bh6kWGGUhGLBk7WBxFU/hZgDfzDzqbdK0g5bf+3lXpCh/W7iqZ39d0Ai2oxnV3IV7xUda2c0iwx93A5JeotgHMJbFJS3R+Lyi1eLTlT3QEKoCdFqNazIpSTDmBpRJGMW3fiyPGMEU/Y0quqYM3iBpn9NuF415ifcEpZlL9lyXJRBB3PfKJBL04qRDjLuy9SmEp94oafP1dgMBaOxhT9Fq3xgQ509x7EmHJuaGiVCcawv+vR5fQ5q02G+GCU/ZDFhApwZFY8S3w7sHLnNG2FApIEN4yqvvQVuVeu+0V9BvOfy3n+XLuBJIvMO/WcqiLjLDX5Flr9AG4Nhgn0jeBsEq0leI9SXbHMgqQAAy80ZoVIb/PFsUJBMcCFZfgSNclyNv3LuGGRMnrIoQdziS/aC0TemdxCNSf8e8klRIUTL0WI53wjBWB0MmKD7hk+kC29KSaW5q0tM2NtlryMyQbw8kbcYGLZDAJDgleqn/V7B1RacoRW/yQsr7eyv2P70zxYLSQ5GrIhhG2mEpd064OTqZkRx5x2KGWaYfz5qVRmLOifBF222vPWP/cw6/vv+wsYIeS6wUPRKPQEIsYRvyKxpJQ4MIH8nE5j58m+MWiLxzF1mwaB2PDv/7zuJ9NPheVxKlXQ7Dm2QyQz3L7GTWIiM2b6hAAQUW//bB8NAHDBcNnw0UI/j1rGGvvF0ONctQHt9Wd9oElNhVqsW8+6clVI1ENnXva+bdb8a++UsCZSGlBBM7lt5OQ/3UwQt2R3TEScUkFe1sE/5FAzRh0Fm2B1SZjLHXPVIRp98uBtCYGaM2n/oaHnKnU4IHFHVImR5D8n5L/Trkn3PaAjZeAS5JoiRwZwFHfedFO+q6H0qKjOOmKtz2GC7nmg0o2K6/LVqyEUdbNqbIysZ83D62cHu31mKHPkvs0iNU4BqDIM6QxeyRy0Q7uF1Zti7AJJvkZsf6zBwrPacHwIl0TR+gJsnQ9WjyZjQsx8ABjEMGMATjJGew6GEDRZsdKoTVsDP5shUlGpJ1VYN8HrLUy5QMLZMVxcCrRuQY3C2QbhHrS9DPZ16wlS/zu1XVrTIrUaDGuJQV7lrmTUAToVk+NkEMnHSSyt5Y+YIgLbmh8sNTfsUHsSo2808FVrf8vTuwVvb2qLgsijmjW4dKMKMQm0anmItYjEWs5cup89lV+afUq3L34skL/FieIoXLGvO1IkEVvrZy0Cusv4wTtXVfdHS3XNlSm1ALexSsRSclvlPjgZ+PIgSaYljyrNu/8LbSakumgNpR1W37J8sdr3FGa6EnvwP7VcLXUJN3RlxTwcQyr6MLxm2sAldmqWFnpFoWuXiGxLLo0pOo/M4L8/cElX8pCwoLemlMIESR4fgUGAMzgbIVFco0fEg5fcPJtxin5kKZqeH8jNXzFRJuI6yr1jKj9ZY9hI0+qsLUEVpbbpHAnQJqOPyZHy9Dfc6p4zfuqLV+7FaYuHo6pqe+rJms0fGSjCq8OdPfLO/TcvEtoKzpTq38gAiEMkOThwGNx37llPZ1XnkDa/DObDs7Du2oL87wx7DYYNp/hWm0fKpvQ0pkQGXoti9ZFU3HqaReYnqnAjAtPiPolGM4k78cvJ7dbzWftLwJVA82qssn6JYDXGsb/UN4tzsUG0bElvX5GdMJ+ApMkLuHvNGDTjy8Ij2v2jRTbgD1Z4ZiAiqOppN4+rcFESsGtAcJALhYrS/flqGKyRojbGw9DTVgTYCK907MGX56qJi57xpR0JMRReT5gLKS/s5++uVcDrzhNsidvS3fgdJx1xaKDrN7nXpBOBotmoW5bcHJk3SOwk2iUbAuPBMtwTwCGRN/AH7TbycEvrA+dVhQpD+Qqojiv4HuEAurvgs5t5FxF2hab2dKQ1GsEe5KubYmRhKJxTQXPFXYELq4z38uukU6ABs5SpGWrYDb//9czFqu9C1lIppnuwofv74Il2IDBuaZJOMsC8DJGwjeaXUw6jnmT8sDZceeebiO9GbIQZs1ELdwh338aTqEB3CkK7qEHgeHpbVVEkkbHVE/6seaTLw7ZInMKkZa/lJI0Bx9vkJa6Qb9GlgP97AIv38zx2rQkqFDZmM697YqIyL+1vl9sDylyDQ+mVbYSR/iPXZtZFPDeyI8ONOs1+xZNZ0migJ8MSep8ZKiG6miMhURg2EZWfKqUwQCJlk8nc6Pt8JgQTyFmVVQvFCvVRQBsylHj67EAXOuMIMekK4lg0oj1uoWx5nQYEpM9/Btttkh0ocY4kVC1Y6bw+HC1FF3I4iNxGXtRvRXGt4nydOxTfr5Ony6pOwTWFk4xOUfKWJH2KiZS8K2e6buZi9WiGpOAFnETPbfgo40e18p5ijXNtWx22J+bucxcf8fns0M1ItBtHsrC7bShky5d9fUwhcKbh3iswRq4mQwdugGSmE5tD9tmVg596SOQYX+HlpgaZS69eE+x0qspAmSsLz2WVQSovAiF7AWY4uYbIRqaJWcNvhT6uTaPdm+RU/tngzvyUURLwabfV2u96HBcuuGcbQaMrw0VRqwo28OjcE2vz+p6KSJ/Bt0onPICjdvJxA2Mvd1+jwpNBCTkmRjztdGwKQUyAzNi/SEA3Uz+9UsyTkFyLp2j0FCG+QL4p6+nKaHCv3fOyU52oyh9b21IbVp7giyrrZwtTTz83IeElia7wL+fUGsRoTHEFEcDXZYQvWVa6eAA+iINns65zGRMZa+pq33OZ3WSQWbgRWRB1XNweD0Reo3BdT4YDMk2NyOZTFR5P2Q/BdyfiOsGlIoWBn+wA9DkJFPm9yU5WvDOWnbiSpX0vSFtzLxZHHiOsGsoEHnAotMfMh5Rl4/p792jck+3IApOuO8lUfFGljIXoFSveJSk2xxzDhqVHjiAC8xFUiV67TBzvkZFA3mUqDPThl2YwFwD4F53J+fYS5tYhaWGCXgb5ycbPc6QwgoPAZzPAdJKmTqb/J9yYqFaJCxYOGPtfwzY8LexLUrTcQ9Pn6Mk5Nn9dp5xThhzzrTpyenrMJxv6s5y6D0AxpTON25wnPMgkFbfwTNWdN8fGJrRZi+WSUKguhCpemzNq2wiDg8RBrzcH7wqF+ASiy3d03340ZPQZzxKah2FAiDK+339WD88z5vKQ5sqHgF4JBM4fppUE1bxbXHRGdGRyMJC7DBmW1u63fKUKnyl3JbX/sA6RaJCx9fKq7AqWg+BgIygCVAsVB6EDtC9NE1y38u5rhnuOGKcGg4sU1qSvbXJRtmb/mTL1EUWA1dFrc7GQa0P/1TsHPF9I9lbdJhagodr5QqatDgp7bSI6n7ssuGidNqKCiJ1YW4xjJCdCA9NBHt8qNObMtXPgJH16Enm8lfoLhd8ieHFHIgzTnZJZrRikJtaVD2JNhLyty485Dmf9CzrRkcPB2fRqySvsnx55E2qyqa16olcprcpA33DJPdcXkE8vduASc8IWHNUbu/UGX7UWCd8jVehCCmr5uT4HOXobHXMvLripQeCcszvHh0o4Wv13mXepkPM652oHTH7rAADgj2LYxZcgbgrcNJGEt/LedwzsAkpA1xaNIB9c4ARqMByukA0z4BvhPHNVluGvysh/o7xosNCUL9t58SaLpyHOXKoMw3mBurStZeMvxv3ZRzWWLgAFlEvIFMJnQszFgzsI7uiRwnxenXeKSxzy2dNVIN4vc0f1CbhAT3ZbwKPDnKnZkUr1RnsxL+o4HUOdAaW53kbb/+0T5RZxKo5cWXd+++y11ByM8WCboIS22rAYwWt8B92aYXSfj8P5CRDUc19KEkjVYWOVYp0u+Uml/q4tcrknxsvEw3f7gZdKoYkACmcjZ5o7nDdF88kO4ztSLz+zyU8x1FC15vEc3m+CPhQdt5s7C61tWVlOWmn4cx+YnLavvcZOiCTqsSg/OXkgW2C80//R6WGjdZeSLawqkuu5bx/VU8lhGlDgZGPGwfe7YoxuweGrDomvj1dM6fWDpTAXiit3xukmUBLA89y7BRhkIFnLrklJ4/Y4OS+siL4hyavBE9SxJJ44WT3p8NpM1YaDZaxHFgqRbHG5U+Qr7D9Vu69twkDEGvbEodltK8YwPb5fr5kwXm4lulhjjTW89ks+bpL/MN1cAe42VYUM20DmjM+plThdAt42loXcDY0rliGb9siDs6B2hxgiRZZWTxlopm6UKgnQPm8CZwSVH6wgakIWoc76R3zasGcgpQhGkxn7o+Pu1RL1mxkxHXIuWZX46bpqAQpbipK1xVQBgnFqaWBl/HVkXk7gVgQ7x5PE4EVwKbqgN/JiVmnlaFlrjsgpKZazLCNeZnJtUKlNb0lU9E4b7nyxUOLHzgtHzJ+buv2OZcJWrr03O5oTUx6W5QXqPTTpGTKurljSObSkng5rLGpmSm/EcgTher7Yd4/ZjCp5B+G6SVfusVDpOQ6v2oth/SDx1QR34Qw2/s39bj2zBz5t2VGgIjFf3Lo9f3nrP/6aFKWKUVuG79UCdPJpXFN0lKJfNi5zRnNbVe3mWHRcQEWRz57KgSRUgAASaAgQ4UJxeud1C3F00rr7332SKOUyDAHINX3rJyGgIbkxHCvHCzvktm5lkN0FY7z28659cDdeiaK3GwZ2aP1WwpDlHbkFn3IRXgoG6SzDp0AKKWEExOnRne14bj9b4QTXdzarazWFtb9hFkW6Uh4jLmuck/F/nT6YgYgckk9wqnY42WFdlzt71oaw3HUHviQnbS/WYfHtBDz7bjKytT+ZNuLAuGBtLn8C4w6kI0DeCx86o3hcnvVKH347mqLDwfqhhY7jmtW7pZoccK0owyp6T/U5s/IsVGXQTuPltsf/LfygOpFmN8XzMvl2mSfGK2OCAsNWCOaT+qA5OIUE0IgIU5KuTwCrS9ZgRNMRk6U01WiDLZ8P2Qy3qoNr0tmcHmBL8EVBOsJSgukoDKT38sewUyWNPBeV0dpXn9WsiVYeymhA0C+063A9vjJdztYcRlp7LOd6gZ+gqHcL1k5sx5Ri3G2S8ov7zXJyu9Pa7rBoXjXf/rLulutE2owAhmjm2KT2xXVSujhXWed694GDEoIPZTe2+5S92fBDv8yQvWKLYS9IOaCDye43Mg0++SWRw067Bkx2zDrahH2NEqLUr2so2q3sYVBPqBzvxRqCyRXf2eHeQZBw5qF7+VV93Knz+uxkc4pNm5NnFrpCx6gk19luLP52mYEUW4QAt131FiuPDUskbGHxi5aQ942urYmXcAL8IuNfpMZetb5QNEbjAkN3F8VLQsNTMOyWBo4QevWHcTJRWkAj4rJFEYt+psdG2E4jBKUQBectxUYLBVPrHJ8Cy3VYe9rf3CPmFWs7GxjgkNjfWGo5LZuFVY0eYyCelRLRX3LKN6/KeWn38czlcZYWmIAoYBkUPbjaWqzn+CizMwE5lwvgQ9LFjwFoik7vCoQrFtcvpXG/B1CgE/yDGpbgk9rPATlpq07OA2aWkStR7yp5n1wzKScvRqIQDQ+3513PWKxdjzGN4dxA2FydR1zkHmMFM5D9QSfz0uvKywLXFXYvubvJNK1yokHuZmf81VurFUmcViru4paDZ/neq9F15aO8lA01j+h871ZTo8zTzOkSljYvv8XxI/vmkGLTiIBQYqTVXa8Vfxd9d0KW2YnH70SFw3ymEFvd4ZoAEphc6wBaSuD/b7Xt0c+mrpt23URXidXCy7/XlBOGClLP85HI8v9PzNiMU97iJXiZ7KJhBrv84tOpJwF+1LnJfaATGr/SGKWgYIHG0q9oeDjLEsHMCOGbwgs8eqHECRcatUuS92rYE2aswMcD4HW+57GF52Y/KgLIPIQQ9NmLi4lRLjeLNLCB/KpC7qGi8xt+NzvsABF5pspLFOhsREvotWXGRMaaXqPZrzDkBYWeurjZJouDdqNwIl6eCuj5whNg8aD6HKDV4nK/NEamfQsXa1hHSOBau4kHRm6SECfz1zohNhziIoll0LS7bHoBijmR+ON+cH5ROdIQoG0kwX1Ob5MIeU4pdnx6d9oqzHqLWMX06Y/vI7fbUF7edUr4SUcaRwB8Xd0G7I0GF6WLsM233qzp5OaPAyVQj95+gzwpQwe4E57L/kv5OQUsq/z+SfNHFXAfkf/yHGH7qXifybengDlRAqB16X56eQ0pO5rAS85JkPMlLho3vT4BHcwmPtx1eLSZ4cLhaDV/miG+khJ0w8wFjNVj3L323GnkQGpQ5qXmSsOa1LfuCGn1JvzqQBN3LqESKE+FHrsVaTn+IMDQ3YxqK2DXMI0pKQeibia1LjTIgfyoKcYQeO61h/h31g==
Variant 2
DifficultyLevel
654
Question
The cost of hiring a box trailer for d days is
Hire cost = 100 + 48d
If Jace has $340 to spend, what is the maximum number of days he can hire the box trailer for?
Worked Solution
|
|
100+48d |
= 340 |
48d |
= 340 − 100 |
∴d |
= 48240 |
|
= 5 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The cost of hiring a box trailer for $\large d$ days is
> Hire cost = 100 + 48$\large d$
If Jace has \$340 to spend, what is the maximum number of days he can hire the box trailer for? |
workedSolution |
| | |
| ----------------------: | ------------------------ |
| $100 + 48\large d$ | \= 340 |
| $48\large d$ | \= 340 $-$ 100 |
| $\therefore \large d$ | \= $\dfrac{240}{48}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18TngoO2XmaBgaRd7TxRyi1WTkdsL7oabMQtlOOOyIu65bEVyNa7MhFPvlmgn6+ci7tZqadqz4Y4+78Mle7OxoNL8hxOi5xRDkvI3hLxJ0lPTj8zssxnt55slKfl2zsRguCK7s22h3BuXInGnOaIu8/BhCEV7lDMffgukh+dzM50xaHLR8+8vmblaLDKXhERUEL0tCCwqdfhzSIwxSRJICpb8YEnRgX5XJ6fQWOX6+UeHhbjDvkHIh98KUy6ivjdxPtjuUNbJXLDFP1VILcLgPR/f5ItLa4N+5tsjleEioMzvMFEuFpki19/DqbUE92+QboPljaDhpSK3ndC1AD/pEDwf8ykJZfL66vzBp2SDNmQaMB6rglUmGJkzdZrnXo9DiGkM4IMnsZq2XyFY/onb2gqguuUnvj27nVzBGRtE3VQSjBP75Sj7mDU4GNuXFSbevKs+7dlFk9u7IpNJG7gNx8Ec2jLGH7MHRnQXKd1PGe0KDXfbVJXTsHKBSweB/YhJdGPoelOIPsux/t+6/jgMc3R7cQQckjVRtWpUxGfcRhpqgxnmOfztQIw6bI53T9pf/VrZAy0M1eABXKdh/IBu5qfnWdvN3VKTYzgbtN4AlaoOVAg/T10Pkjom2iYA7z3DxnrapxKF4xOmV97ZRUBXSlem+cpE8KqZGRqVtYie0gfc3NGCjx348OYcEBfTKKgLGUPMCDXgLF36wVoIfsNBRZU3N6awksjPPBBQ8Izh6gcFb8wzL7mm0Ix3qU7X5lzxQY6tybsl8JxN7ztDf15Wj9YNKk+nKHvwn8H9VrIAcUYTsg+nyBfvSa6XEAlDp37YBwQ/pYZSW5slKiyr63yp2QOSTv5wEgBBr7pnLQMpHjf4ZRzBwwUXrEOxuSt5m6JUOb3gsaTtbHgW20FVs42phs9RBkrYEd6c6oTYRQewiGz9adTsHiDHWSaneLvjicfNiRbKQ4NXF7lwkJaq/76Zxke1vTQ62EeHP+T4JcC/+/U8NmmxRQVivcSgVi+h8p7fj1pGS7gLQ/wFikQQljoHZr+TNt+vCQufUG5S+d91aMOnfj6NAMxDdGksjcqqIv9fBHPaqrW8gbBcYjqKgaMh9X/oAmoWxb5bFIPPtmN8oWt91YyuCT2N0XOqiWH/uQUm4KDUPUXvoBFwzmafrUD3WOBwR1R23AJrcnRIq6r1vjKuCp+kjzekazZAvK1YXrR9z+Z8w4oBgyMKNaMmpN0NKv23Taf4DlQsYWTesOVTlGv1/n5uiEtmh8En5qWgJq9NxFRddH14hxlVQinDD07ymJfwA5w8PgWATn9xea4ckvJtY9z7tFw6ygMINQDzCuYNKeI3Nq+SUPg1bkjbsOwTIS5VtD7PO2GzsA3gfE6sDl1fi4cOqnEo8jifwzp39mrUVOZ9p6KUf8pTHOMba67XBz0g1G8B8YE3sRHyXQQnD9FeyoYvvyuD8AJhWMEJ3koCs4WXRoCbwtQcCIws3kfDVyt4pMvw8NNeVDBCzhk0zkE9mxsclKVz0v6+a3HdaZjBjMN40rFlJKfHDlRjDc7Wl7FRd6f8lB57uWVhPqLjLnX3j+d0Q27q6PlJYPJWEJUw7ExqDXIm1xsSFME5MK5CpiQ3gbxLAEfiRbvSUKzAfMYijsjpK7CN+PRKJqglK2+y3cfIxAwm9eQ0lRRAB+SIHTIwda89ThWTjHAT3ZfQ5ok/CpBWddtB5vhL9MbDQ4xKIYtFcgQYdQg5J8FbM+0zirXZd2JzAfghdTgFawaIhvXYt+bqGn9uDlXlHFk5irShp0AfsoSK5mewygs2rkOlPJVa7QSF2kyc3jNKSqQHnGKcza2kPhKgMC+/gPYFy3XfNZoIWjLv7yN4EBudcKMVyCjkZatugeeZoD+zq0ztJXs+OkOAPu9r/6vxQh+3sc0vzAzlnmh1vJNuIgNEfpjYvIoQGBGRiCwaisLqswJjzgELxqMU0QPlpsuQG8BdpR1v9qjkc+zaTLAVi85OVeCHpOy2eA/hjVUgWuVE8labuAHZS5EBMnohoY/NQ7RbEr6CzNBLgm6miCwSZRtCR27xJPLloDd7L3diMw5C2Y+qvgFnr1K6jYOc8U5OAb+UX2nIweNn3tWmoQHHU1g+pCc+PU0ipd34+lX979bTMQA1xuBKhytQW991W4K9KFdd5MzKyYUo4Lr9EidnNYOq0wB5vUpZuXDQHOJPXxYTgt3AOcSKbmA6Ykso7ErOi+BCNkkk5+JlCqWiqOvcLD2ZLIhVjLcI/IWUF3ATA0QsLztpOt57QP9InuPI5+f0sOHRNaYCD42JDZxQtH1suzWkYvA2Db/Y6H3udt+x6URShaYrJUfBrwp5+SR9xC/ARwejwiE3wctSM9aeuG45W2DMNSyYd0of9jHdrL4SlEsN8tKUoHxw8n6R2268pNAoLkKhAJSvmie56A5hB5M24P9ed5Y7Jr37WV8ICdmLFdbADjOI8YUw1ybDv2VLbPU5FqJm28UyJHjwdQfSH9+CJwYnEKq4ZpiQUHknKKxYkSN22/d8bV5OnsntMwY+ZjD1tl5cSqyAffy3pFTz6CpwMx/XsecI2xj2ADOxhLuNOlEkkLZEPESft8ZVVv39MyoK/2b1zSmTIx9+vwD0uimDhAw/mSueuT/yNA7/SPEja3A2eCGwVKDxp3n2hqyKemp8h1FDRjkS2F5wygaEUTNjOwGBFlzNVaHbXEwXj9xW4Nm5IvGsTUBvvMOiydD15sX58yAHVfurAZinWQT8W4MzxDJrf07NIYwU2mhrQNlZfgv9auXjhohPKMW47kK4lzBSjJ6L+6h0oB7x26Yy06TzAFxMJWb2tvjwxtTgxju7j60SdY9uok78I2o1ScJ23DhZC5mhpKxiTpL9L5xgGdujOObLEAuPdVqqivaftfBCE79NFtUo64pXajdiLdYpCahuozci++UPaDoqmb3VGRVOvKxK70QlZns1lNsg5H1wFbR2AVfMoB7eJOqrzexm/MLvXGbk6Sb1gpqO5ITUeDEdQ0jxoQ8sPRX9b07l6wsC5g1su4rqMneABXqxhG0piElG/ypF9RcgFa2WHl72ItDiZEm3eMAW0lTEmlvo83HlOovTTz17Mk8BwA7QSKM6jKRW9ed1WOIWozJAhCLk6Ku+ioJT5IX7UkxD8dxyGa6khbu5YmnLdtJtaN3euHyNkIsipU7PHK/Mjc2zyYv5IKLyUjXDi2Qd3BLe539nkWrcP7StsNeLYN3AcFmEAsABiMHOrYNW5y7R/i+wYM2Q6KMiCc30Eug9Co+5l87lJXHAOGus9z2BMeIHX9gm/B65spaTb112xw7+rHkcNxW8A1tmxRAIJoAgDuRcsPHXWEILEm2RWLz/icOt6Dkkh0SJeBkWLy4WQLi6qPYADII5lHJgc1qafPNekC9jpF1PnDgt3GG0UGoL4XAQCb1VkAV1gec1ykQluA7gMzwy1qyqBzhft7vSOAdk/uZInf0LIQnMYicqUjzTPe2eSeGnt07IPLByhc45COgcxlTIa3RJOc+uXE8vM7wPMzstTvnR/1iZIGm2I0NCaknPmn3cYP2DgHxkg6hJ+WFglN98HvklRgmh77HRoT68k8FsDpczvmSogI0pCIheKtvTxf65Jsr0YuTkO8B7nM4bD4I02F4RBwG1vTO2EB18hmMi9yav6YYH8WYBSUURf9WhmtzMAQ+fqdI35igROIObG/riHtF47svHa24IV+JsTG0ArBY4rJdpye1fH7f6rS6Ex/0mZIgeJHrHfpDoyKidnbdAEcHFXacb6CplmIZRttsTuSBP9DLvVWLrglaUzZ2DwQo1fS9EbTVcOUcTcrMxP2eOFfFb2L5wqzpFJCKxDg1nxE7HfTFNFXLjRaTGIqH6ERJMyxiCiSQ6UJ5JgTyA8xN/E/mdsAyfX+kfpEO+p/dvLkmJh6RygUs/IN9CJsKHG5GVKoN1Sy/dRcMB+9gYSIIgEUcE31jscd5KBm8bVZOMY21ErmdmWBe/VKFWRyoNvkObbRw2fjajXgeMg8QIRXulSulNCsuJfaEZ3T/o5MwBuqz08lLCQeFEHDUHFwb0VgCaC7ZhtP95n+Uwiq3T3NWQ4enjo5xnxDc2+7i8QITwlqSSnKzQt3yv2sO+0JbSWKfDMo8SgDTtW5q18lWFvMXnIi9ISHStBsTQI5be0Hke3w85yiH4V66ZUg2zQAqMBiEiGv/kjLGqjkHUF37ZccbSjyORGK3ldZ9e3l/iAvynKjwA7c7emh8ha1ZExI6qOHgnKcMtyBA4l2rFncpkcOH962QpEoB0kcwa/XzuJDDCiaMXuf7oTP323WKEPWcK7nscTomv69bEFbyn2qDe2Zby+TVXj/pzcczTjw341fnOzivKEsIqr6fl+Q7paA6Xucflx4+QlabVmiBazUtEniYkIqGAfkv+6eD7qfjEgFnO7D9FyLA595pQ5yJtQyInfX1MyzLyxly6xe30x8EukmBV5ABnHvaPcZ+SF+Lm4SNjRhU0e+xlyriToJbDszp8tjP2TpRap4rsKrvk6o8sflJIk1HroVwertPrXVA5rWF6SVrGlST2IvBdML4fXyDxMpUqorrj/hjPz3uMNNqY8kcp3Q418jtTzU7V53SKzCyudTzye/3DSai/zJExsANJI/IKPJHcCL9kxoutb+jm5PFkhNKYupj5TxEb7wx0kB706gsNS9gYdfiaQZTQnpBh5cjXfTw8RGpRyec6ap9PBFQOC3Fl+ZeZi1r6Pt4UtdcaHpdO0XStOKnhbrp/ptvPUp+RQXVlyDrNeBxfwYd9LnFTVqOE0RM2/Mcv1meC17B3sxW+CKv94yQSnBqNXEG7uSUPNKbLTwMh7hOcv30Xm+fwpMf4DGwMhvRASlXnm1OeYyXL9P+NQaC8iIwQPoAaOCrV4Gg+0AngiokohymmS3yZ9aIWfxWPY4kEkQJtMXpOar9fZE3ZFlRnDyreOtIzGeS18URO9SbUYxVsSa/bE0Wv+d0aEKPyFL/g9sRjocUcUXpEA83OKjXphlxWh0PSNbdd2csrqEfyjzS5lakxm/h9XF/6Pe1iysoYLYBiVCKocQS8caqzQKPBvpxUGhnxlVOsuEY3Ev55UMa/F4xjGmk/odIghwmoQci+Ci12FzEk1ReFS+pcDt3UCCWda09A1siMvXjYGepkdyszq3Ekbec19+IJlztn4RJllsWaNjgHfdWrtR5K0anCvRrqHy9gHLreb1LX+TPCvsQma9KuGVPoohqLfY+DYpvZpvdj3z9bqIsBJKPj10GWUy0I55zDWFtZimpfoRvP+A4Yi+/whyy3eG2aDvfGcuLfwGAGhgPEhEIFqIlAHyD1S0cq+0f+4MA4pIuONL7Yqqz4MPd/rBDHHLd+gjgwrf8QzVZQPX481gCSq6i9EM0XtKLeXwIog3zzGXgzFYSK30taiMUltNqBmkh1dpPM9jQ0MTvJYerHPLC66JQQlPmHyHkIEwl7y6IGM2DIqfHX9YRROfaU2LBjSn0Un6yJLWSeXeZHqd+KOwOy7APDIgRm4HXTPIrCypa/WYlp4AUu3ixgOr4Hl6/y7CUT6DKsEaVZ+qXv7eFNcPhWwRXLseP8LFwcwjorSNTrGVKFxDKk60r8c44VXz3f4H5QvbPCuRkwrJJJU2z8zZfVQEiXv7vE0yfYt8wkuInkyyil4XzW0PN9Y03ntA0DEnmptVLBDju245vyXDoJ9N/NPveazgFqn7ju1hbVqrMMVEceZYIMnh05JgzUYjTzAtKjGAPnvRUApzEiOW1fnosj/sUhc2sOPxbcFs6MyX1taZmOruZVtWtzl+yc81iFQ95n0kh/jsViOv8skrjt235DYNHF0WM+6882quB5K6DO6TZ1JtuWBqQVU6PBMUUhESzJkqBtQbRdPvMg5/pgA+hpmDFDqy3ph3ukiQ98Wa1EqQP1CsnniREoFlpdGk9ZOpP3gcNLJsboGl4AmSBV+JURnrnRpxLwMLCDiNhxcFMKmaQI4Sdi3SuvMJymZLuAyAI9zcnGEtJhgOmMc7LyscI/Zee0ZKTmjJEoUJr6zhWdlvxqYDl6HtDC57+nR4JrS1mknWfLvrUmhGentiSIp4ObDcUD/tBO0Oz+FFtbdGawf6qvPifAC0eEKIy8MrnVFGWIodrqIJVzLs2jmQynwun6plaXZ4cYOjvUELPfEu1dCsmngJ8IgJrTrw04lquOxqivb8kzOcJmc9UaqEEXnUs5dJ4cgqocnYoPagZ2iqHLqxBVP8VZSKdR/RUwjKutBbNQXuRG2jQKCW96kSWhGfoDzr5a+4y2XhHyePGshC5TMezuv9f/FYFoNGceNXs7l96TXRX2ZM4iI2xCCTXmBVR149ppXPbM/BmXbbIOrvtkwF3toEgwxkCK6lg1fPoat2yekcK4r4rwJLZrIIMABZZ+Q9PNGB7A8TpI/oq+iNyBbISoV93LpO57wfYSNeQPZhIlRwtIRW3buyFhVVKcFvZ5jyNpXHODaHgw2THxpQh7tmfHwb3TfzuP7LWzYOVhFpYyytgnMqKvtkLP+8ejA/Nqc16EyEDnDOySJTQpJ4ftbptEg+N287aQTfDHI7YajTev26cvgpuOOb6LiShP0ZN6MqfXWZIEtcx1jTdMHVaBVh/LVtfVuYC+ro/4svJYBykUuZNerm7iSr9dvTC+fq8U8TS8aD5IolypGNS5bpjPPCoy13QPt2BqnXrYGvjcQ3NAVF6py7sOo8owe6Ql5xGW3bdoeM2sjSVcxQ7mkrXAjad/C2rMuNbzbm9HmXspzblFWwqKmLHYxOjUcd5/nSRK2K8tRFkGhZkMFbWNVM5C5SnOe2s4PyhYxGgSQGyRml3EJOMm/tTPgc4/YNpEtAa+mOa4SKkYJCZjbL/le87Rq4GvBCvQmFJpE1/zoLBz5T77ZyuqmVikMiQUj182weUYCvMzt7e43QKR5zIiY8X8UXPJdFctlwTtaGmsoXg1Eqyr9AuHIHT9V3GFrjbtW6x7KQtKDq2uTy3HKuq39X+g6qMh5jvcflJQFoI4vIWIOf46lx9HZ7qWS4HfqdTDKBphhqOKCSdsS3QS9mDVhqc6CxEgix4wtFQdAZnrQASdv26FEgKkw+Bn3/o8RiWLHBK091fLsxQwTXCS69svgk8PsEyTpnhHYOJKaBTdiHAkKlkwBzMro2GDJIiBsO/5OLQ0CMrvZ07HsO0IkaaBPey46HBn3ZHmVGcTXdNM4U5tYVdllC+pp0Txi8sX4yRoI/U4mkbzqPUVtIKPY//56l+h7sOH5j/VlfiBrmVHO2PGeT6IB9HaZY0lDy25yBpcrqAdNAtYpIPb+6YVkWF8yx6FyJsxvF0dviLLMvy2UQdVDecOU2s9evGu2IaxJ+9v1Cfy0MUF1FWKp9WrzytSbj9OOEPXCpn9WLIGHvjGGLloF9rSxK6woDrFaR6Bhp2qCvzig8SawrZORI0RWGkilHKbkk+9VYlT6faDwchPtA5ZSnj9AwFWNqbzfzE2yHtJg8+em6WIDc+OgIEDh5ec0K0d3xOS2GN5a8tW9d+QE3p1acMF7MP72wZuYNhL7bzLPObZ0KUjMeVY0c8Lveyb+gPNF/pm5sbjJW3TLUY5wEU+q6kV7AEf6N96E0lLm/myFSS8nqUjNnGiYYiVdearBzsTtAlc+ftElOHQZxPUeQdQSdhmoVMwaBSbvo9gECRFZ2n5RnEH74sPTph9eyMja0VHA7AlUJjnJjxEkq4hZbKtRlv8seiT/p8s9HyqHx06A8r6Mb0mRZc7n8sY2R/2Ta45QbxveJdhOQfO/tk0deKQ8AtcPm+CrS2D9gUfjykQM6nqHI47gzxiGRh3SHJv5rmmRdvu1700O5R/L5Dz9I/zgCctcXk4FoW7QN1lyW2aKBvJX3sKgZa+l0F2hfCIOkES9TuknPAnb34B3D2VVrTLnEn6C8+OjqWg0KOlS02hwZ9KEQfsq9pBOnqdvu+KtN++Z+uxQoiyRn5SCV+gZ0piPBh13WmloTTeotTJ8KVqRSbExvQFPK1ysoX6RSoFY/aql1e5vYGDGbgUJIzbD0uXvJcUkyIDTeYzD0Wsna3rQW29hh4cS1Bz9evhGIcPvMGFPC4kDjp6BWS/VM/cxq0D+ZWU3AayXYSUfremT8xiNfP2ns4oVdQS0FROu3v05uGdLT+blSxlI2eWOapEwWuX5/TgfevjhT5O52w9Ehb8Oh0uqxZZ9ijs/9tGasOPQeGAM1QbK7NJqxGwtDZhvWMxGRDWqI11CsgSfJq9WESjxPeTzVhCKoScp/F3LEmgHzN9BclB9UZzRxEJmnuccNvZYuLL5xoUBJTXrfIfaKQmSRjf3c/30duAesHqlQIJeykr0IT0gPpxX1BAsN7gEcc6+CKdxrs9JP8hb6QJ+7o75n+LUpZcpajgYREyFbSzaacZUQ2VQIhotrrGrDkocTAigUeoFJJsk4xWNj/7Uk5gfLQx5CbYl70WXWD6DDSvkZ0bPgcINOo0yctZRcSgXgPeACAu7JY1EQhi59zSFdpxKE4+oLnVK0dVolT3gGoVM97thXphcCYk7SI3aHTHsuc87GfScJzQoaLQpS4zZTHHEjti5aPsNnA9ix6Nx+pMwg0g50d4p3J+TPKpSlUJ7Aoo2JuG93Z4Qv7i5MEfF6QCDU8KZ92Wz1S9vgiP96fHlEWiRzSWqAPaLO5w9lmh44P+P/Znfp0FonkuMEkWKdW/mS2//YQNS/hkiBNMbxB8VuBalS74ZMKjGn/JUvVPQb0IJvSyBJ1B18ubAcRPC67kxVcfgWw6SZIetcugchlA001bJFY/RIvwfaZzUobBP7oMuJcJgELpjbIE3kbiy/oIoXaK2d1TW2DI0Ugh1dnjPVTXvqntZB0J66HxWoO/Gp/M5ogR6H98B6bijE5YZ6JezpIS/gwYqPeNbkPzYi3/xusWqhrjOj
Variant 3
DifficultyLevel
662
Question
The cost of hiring a steam cleaner for h hours is
Hire cost = 60 + 15.8h
If Bronnie has $139 to spend, what is the maximum number of hours she can hire the steam cleaner for?
Worked Solution
|
|
60+15.8h |
= 139 |
15.8h |
= 139 − 60 |
∴h |
= 15.879 |
|
= 5 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The cost of hiring a steam cleaner for $\large h$ hours is
> Hire cost = 60 + 15.8$\large h$
If Bronnie has \$139 to spend, what is the maximum number of hours she can hire the steam cleaner for? |
workedSolution |
| | |
| ----------------------: | ------------------------ |
| $60 + 15.8\large h$ | \= 139 |
| $15.8\large h$ | \= 139 $-$ 60 |
| $\therefore \large h$ | \= $\dfrac{79}{15.8}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/yPdFogA9zkdiPHL9CdcqiuvSz7+29mmyAagKN/MrX+1GmOHh9Zs647nOqNcckLBs/KzvmCN7QqFi7UAOxmOyf11FxCwpxEVbH1togyKNJFR14TBGGfppSU/hqB7wxGemwJ0nqkVvtAo4rVC1lmWIvmN54eYk51HbAWl9wK7bNUlkImBeDP4RerEryzGRNzAS9bFIEHwiOjfMwP2pCTnswRvJEfTexK2byusb/ggAvndUpjzAu2Q7Fd9MBocBez5eueO9xzibmxjcJoh+ApgNWK2CJBobyzZ50HkA/behDVY6abk6PHZhsDyqzGVQRhq6luwAd4LtDZAEZ+AnzHK6zFZRaG6YY+cz3MgS1xeQvRPLHFlt+LZhaQ+fQ6tqVomghScRjyl5gW0ouUI4sbubN0GzWMP1bR0X5k8V8CO2xGW95v33FE0c+pdQ4pi1ca1r6PKurUNbgCVcqbh8O7dBerw5+9NrgRl48+XuydAf6a/twCCloDVM7Vu/MRHUfAywS74a7YRrD6HgyO383AChWNjuIl2LWISrpp/fwkSRKrHQhqmTgNQVflXXNsCaG4bCk6RRD+HTbmYycgammlbTXyoBsWVQY5IlSjXC4zr1VdvlLCL/PTGQuYqcvc8QihFIOBzgHpnmSccugygXlwYKWiAHxFUGa2Mb4FYPH4QNIs3ak9KB5Qqldu5Kz7MOWHbuavv5eom0Qk5mLySmYRLSmC2/2LbGl23upH7p0KMjqxVoaG24yPlbDbnBzurF0Q/HPHKCk2rmVmWgRnPF1rLP9f4e5Wfsi7o8l/YPyQRiuWzmgJLxFL4Wiftke6p0HQkd9wPmCu7BlUyEH2+woh1KoIWkmJJOv1I1vXlgRuhTyhWCAZQgzf1MxzDRz2SPHsXX4vXw9YylR+Zq9KGVTRZG17QeOaOyNdBHSmFQhc1h0Svnl6TiiVrDqeP1HxX/CR0Zp0AfMoEVbPafWf/UVjSvRBPWDojigROPksCrfLasqVueRjMJL9NbvGO68GRk9WKl0xwWXbQizI7jXMfZ4M19ALcOOnul1ZcDIVh1GLBk6Za/97jxVbzes88SaCVFdprsZxfMysAE44F9ljUSRHtjtZ/z6xhLhTmYZVUOkDlhmttF+VFQJGm5723INhVVSTmjwe53cdGjAxiX1LuosgMLxGhgLftziqtqdwINXNHiQAQW+VQtBA3+3cQuDL/TUnyXis+5qwX95qMGw8bLmjOCQ6oD+4ED7w6f/3YAOFLVv5kaQdwWh4INQrHuv5TbHAaf/xx84VRFdrQBx3K3g4L9jWmrxjdpIr1mpSLtgfHm/X62MCkaEoafp259DLue5UdbqeMUkD9tB/Q7Wqb8i7JkuAkLwX1HlqYabtddQmHl0XWesjbvffLDtQwRwhWtGt+hyoM6YUfRQlOvIniKMv69GN6TBC0zd8uLCTgScoix4UFAGRGAeMeGLJnhhou02GcJOln5ZQtbl0GaD8HBH2tvX7+5ZMXGi6MNLLwpPllGT/Ng0qyj5qc+I5/BaKzc2vKYBOsyioyIk6XOz25ephLtGCtIw+kAdLvEHFJMVNNNJPhx1KTNY1IxyTU5PMqt1GS/wRKf1QuChn4pxvTXplJ/GycUd7lJuRb6cHEXqys0pJZaROUFdXPbvx7dy1dkAtItrOtGi7Gnh2QBOiLgT1t1WnNxA1fw9/kYHQYA0/r7UPxC9tVXr/FA6C0ttkQdgduFAsBFnue8yQ+IVsohfWk/Ti3YDmS6qI3dg+PUbXTp0u2yBHl6dtYDH0zyKazt//A7UVd6fuTYH0N8+3+JkR9NvWcJQHqBw194y/KNKSIB1d9RmkXi9zL6DZTXts9xjfDofaxYaccecd4JO7ktQmX4XG3Dulj+Nf1OmFxWxZT9gdZYCcY9sggD6oyMHxlGfB3ocGpz/wIRZdoLT8J9O4vmvAgfipJ2Q+SCYSA3rnQSTC6yo3W37fe4tyHK3Vzn8MjOmEPMFUkFQI1G5hZFxqesdgFqG+VztyWVrgCrUPluc0V1xj6LYusRjH86q9onbh6ZjF0LA8hyoiDZgXWpMRy/dXO/wHwaQqeegUEBrIDkJcpCalAEzFsJC4oxv4o8lAt6Kg958JbhL2WV1hBz6nFqUmo2m2lksSPIMsh0hN3jphPJb9akhTZGoxgLdYaFiNP5K3hT4g9ZYv5lxqWwnC8+QUkPq2OwB3Vfb3xC6ElBV9yz1srMr+Y6SY6Hip76JxMz5RpSb1zDlD/+83AeUddPYk0ktHN1HJZ8FQw6jFsB20bqPPGXgk06ul/CKXJvlAaPNcE9zP+c+H7iYCFHXVD/PGP3gRPSQG4oBMxZJmkaExapPCHC0gQxWbxfabIJoJTOqPCCN/JcLy/6MIIVgaaIPrib9I/FfJLpknPdgj4cu1FJXxzNG9uDXNIVcy2Rawi9+nUluo/6+hPQCdoRCdOmjbLfEAWLp3yhSYujo/ARtWIFUA4tmbJrXFkWy7BLgIOPBfZVHe3db5/sXbTYJ6ccxKNaRWPvh+5hTPDeVN2olKx/s+tXyJwktkzT7iax+VUpEspcujvcxFREOXpKLJvEnct86/vaVHA3Z+tshYGaYneQF8nikKS0Vs3aBsOKFP9OoByJJROL8tzSagQzgxJ+Ckk69zXVQhlhkYq8S1UwQ7gVXubhDalLSt8rpsWuPmo+qrp9Lv8wTVEXS5zpETGvxhU5YhgUZNDydz9zYQEac69rvNxD1QKAOmFrW4LuoXwLgKOD14rcuBT4CbF/nU60NFc00jeqDpg07Kh+zqDPd4tNsYkn/oxbBfcmFbOr/SNJPQJ3zGBzCFbDvWczroFZH5wx3hiex7Sk4SxQq7/2jD3VQwpV7bDP4rsBqgbQcy+ccaoXSlU34wI/4qwysml1Niq1GGNAvI18uB4esUDy3luCLVkZdInbSV68uqN7ZxbMUlfOwMcy+lBwiHeehK4vaqcCmXnhJ1SA7gekyFW4phQVembaA6ZRLoDU5VwjrZOoCb55OMOJuT/q3k0nC/AxpIalKkK+qfaaBAHkk0CwTTV7vQKKS0rP3ecSHBjMiVo82LUZVD5iFaY9sQCwsPSeTxnO8cCMUNnSWVV4CAKJgZYUIEMUDzQ9vG2AkCbFySb4NqvgqywuJRYZh6wLaJYkBuxEbaCEBUU6bB0Oyyw5Ghqo9enD4sCHgAutTwLF5BwlHmYoYjpkDKPidsaNkPx4eAAotrUTC2IE/Uw1w8IImpiHIikk2CT3LPCZPK8uhbBvFX2GVnLl0h3ZHnC/llZG+8i09iKdMdVCGB/vV3A72/QPIXOzgS3+dVKmL8NcK2dF5mGsSC83ShbD5aDn45acMrI4i4wVROaFJLF5VBXJcFnAifLamU8Us3Bz9BIiPVWfJuyCrGiOQ4Hd2wC3a5SKdTL8JmYOxRVcfSMFIYKimS7XRgXyAfjGsr/lBUMHt6NNclvUuFaWox0imkMLE0XNukqwYzrTog7bCDAFlAekYeOUMkFdhhrOZbP4a51foRH+Argc+cGlDU4HNZd0I9rGwQ5NCICJz0dT0yozhNTeqaJ3GWuyab74JSY8KqoWKG3iZyOx1TlektHTxUE0Yj0/DkPDJGWCDJZfg0DgYonq5nYcZ4egKWHjaB2pXlAJTIlDucCp4OAOuZNlwIY/jH9wThiXjJvWdDyZ4p472IRHLgXwSzK2TooILJ1MXpM975Ye3G456CooZORXrFNq74V2zMoFvM+z9NYN5de20zo91U27Rj8svDDhSsNQpGA9+qLsu/h1r7uD3PEhbA7mq3VVlaVvJJKKvZy5rl+7VI3AXURGgGHPJd2Vt/m2MEfaPePjDnboXYn4j4o8GMqXwALMF1y0yElaG7rQ+xliwV2LjHzWP5J/usZFpwGtrHGUaYx/KebhbXkuUNrWGJMrcK8yNBxnxI7U2Gr2IFyS2YZaZqpDM3RHMvw2D/0FbMd1yQZhGlG8DIDAd+sAGjmDdtmoYJ+EQumQEiqvwkbLpFgNCej/HNcv4nyCghYaEvbjRywgxCb/hTMNB86dYsjcXIjxAQrRSOVyAl9VOFpV73lIN14BYHI+CsqbIo8rVLOLnjPOT0tAf/x3FBS4CGiKldpab9+yIZ+KgDEJZFhdeXZ8SxTmuk6epuPuswxxktvqTrz9ochQpwBw4v5UKyFnRzwBy1hX8ti+cjYyWZII6BkrtoS3gXdS1zz0gH094spo745wXq4LQQNWbwV7/VnaWdfAk/1iSALw0IZo3im4qwmFZJbhoPM2pjRBovRVH+c6IvgGs52L2vYGYF55thIzJ9Tb6LdHYqZN7wb5I2yzHVcoUlWAOJc5XuHVJV9ETpIpxWfGHf82OB+2Td5x5MwSzD6XnISphu+Cp7no08Ov0HTvAGDhqgvkCkG5AlASyivq3Yf1Yb7tBBfSDUTiF5lNosGiRS5WKqjV+YtA0YO672EwluDyv1Hig9SG0VIRA5js1m1uHwiiRLoNBmu8U3qc98C3XutruyVmSVKUEoyoqIqYmVnQxgMrqtr2h86W6UUtdiqF/Ey45oT91p6JJoazl3TuJ657aNQvZbVkcc/sCHA57OlRkUtVOtBI/amQJ9XXakcd5edXojeZfF61eX0scQLKPqtHSc9r/ypfbqZnc2pMjKJqf9JP0r3C0hkzjZMoDtvNX0Kle2+DshIAI3SKFmvYBaB+W9mAlPIM/ijCTk7v77cMCDDm66v5go0GjFBwJJsbhdZY6zN1xONdtJSpVn69ZAstwqFWKZNJ2jungVxFvCd1inzloGRpgBqIVbwN2r3qMgrRUDkjNVJyTcJs5l1yYf5Q7xBzQKM3ZRd3152y1RWf90uJtmmt1svh2px7moRCsBAzYggrM66kJEdHMlFpU5bSHu3Tiddje/bkJQtGsnMbcWD32IhyTEAZOOI714zBWwG4ApWxYV/JR3kLi3Kj2+GIgNph8G+d03Lib/iHd2zLZOj4oT19nTc1Q7qh3hSBwiO4UrKoA8Dmz1rFZdGyNw3q8yMd3bd41xn2oHMUshvHLrwr+54+CMPXYjjG1hsU6MgUpltIuk9fnPcMpJZrLyUtwIDxlZjXQM1jyo61VjCQjkmal2VFCp8bo7TkqNjHNh+X2xgFM0dP5NSjpMCyiNpCTzC5FGT7sBSxkYp0PtFd87oG1VlI6fIvPLv4z9zItDF35Z8y/+3aZXeg3OWafnEECmL/5q0uyQ7W48roQABIR9iEBjLWvKDGQfKM7R1lcT/66o2OEcdtSQ7SPejJKWg+Llk1GcCp0t/Svupxpkh5RwzeX+DYn2Qwyw1ZmG7LKB5G6XY0RtoEsa5wwfxQEbqt8DsCTKuLckvh4rDdqFQrGDTMo5UrpDHGsJ+OdEbqDpVXPVBQxY3AKlO7ROzqhzQ6pONKfZj+YcN45OSBmxhmjm9Hv6fomeoszlZ5/9IXQvtFrR3J75nwCywGPXD+kSCy7ThqtQMURlLzRvSeQ0HMUlTD3Ym8P+lT3MWea5uFzxLIfuOZfKuWsYrf7FQiAtfDKS01M5Wqr4gHcjtko5gRZDToL9IsKY/rLERxmT+jYAgDwmg9CsuP9ZVkYuixugm3x40kXKfW4LqSBQYdAZceU2t9MrqFjDrYpnktj/xlVS7iDvmrL5jXOsxl37wNbvqZ+2zHBN6hSqFQm6UhjxwAb4HZudD/uL6ce2x4MyZF2iKabf6DMDtpM93lEfpM7uz5nmlDH+a8NMA2Kf5ueZloWWCZPvc4Hc5qearAPjHeQh1QBP9drSrXA/HQqaWH9jhe1yNbicQr3J98uJLzMnE/hqCfb0Q1pxeb5PHUP1mn0VtSm2yBOSNaz/Eam/vaCC+T2TUp10vTfxf7wLQEt8gJG2EcGV7fEaF5D6syLnyDduvK7DtUem+aIidlqtipkR9FLc+SrRsYlWXld6Y1taP/vAGFIVJHcoShVnIun+SVFPB06r/RSenpPioscYRQOBAnnYSOp/o7eJnwazX2D82QSEd3qEWDRV79RTtF0FQ2WbMqS6PLmAd6JVJAJPKe9t3uKR6W+bivATCC3RTN4/+Dsp/SKgT1md/pSa/aJwfZU6cX9j9Sd8FVFeNp/Valktxi/hDoWmJzHoHErHkQb/XEYZHkOS9ofoN+oPKci/51TPxUb+cmlYciuRwcsuwwZur/M0wMWIL2D39fu1GzUaschrEx37XDM03OJWbG63S6OYiZHnk22SnfKUcT7/f3VD25HbIhe6eN884eozgMuA/hLxHl3dhkSwmlCAG1Ku49daTcOqCsIWNbOPGk36lVUv9+jlXSqkIGTij9nik4YBve/OjjUAlwFoVwBqv+lmB9FUBPDXatLmQMKb71s4gdbe8r3e4oX5SirHWgsKSv3zo0nF6SZ910CGSLAjhLrSuJyDRdVEGquBcm82NtVkZ8iO5YoC5pNydN9MqIor14IwrJm2xQXJaNC8/+79wWwOuGM/2zJhPy0166gEJDViRGUr1xF1tXiDZtNPVwF3B7Hb4bysrMPPSAvbAUR+aDgKl5YZ+w72a26ij/MYpdlbFAVERoe1/dh9T97a9Ao/H8hR+gJB3fx5nUq73eNr48p+kwQX0QR+MteW2lT76LvU6+DcjdCYTXG70uRvIlPagwAioUNmEVbnIK/qsO6Od4ioe+KWqhrTo0lhRTXdCiDLI48TgyMSZtsgJu5ZLxDzYlwBh++TqszeHdBORkAYw6FBqE4g3AuaVt4UthpZMn5Gta6dPh0N3fz+IiWEp7sRXjeaATTk05D42mpyjTGZUg6TfEhnQ/cAjoV4kWC3mPfbpc1xP1PZoiXwMqzUQP5UwcBAptBdA0xkLoHi/ApWAERp+6jiwsAFaygIAm1ZacljiQsG29jSgtKYW2v5z7KwU6opzkrr4GFWPO8xi1GMHM2udgJTpVjIzQ6eM/JwKlruKtyyysxZ/gcSZtQGMyhxeuAAIPbW3aEyRVPcZ8UM6Lavr7rfvG1W8jbgK7F+YyroKUj7qeyOyPK1z5UXk1IgfjKsr4kuM4NZVKj8Ty/rInyxqIL6nKqB+HQOvinbFtYa1SQ5TYa0eUxnDucuyF9o4qSfj1EolaU2TwyeFN1nbwj4n7+Yao8M/jwakSmP8VXC+y/2+Om+ChMCG4qkW5dBRpkOq2mn46mkDv2BPPKK6nMecPmKwrYs0Tz9Pzq+Bg5qJhdeS4Dvr3AZGK48mPSrUa/rzsohAk/wFr35sfWEn5Juo850DSYuoaU3BNqIcdfoBmAff9OS7EshzgNL1W2vAZK7UQR5jZzMN+rWi7zvv6kRKcuB2fOsbAON5J9L+AK2boIuwx6CShCi6jjMqr6iENka03gFpt01C4poxCd7lYycxM4wC/Lg6g4H9HO6vcf6uYa9vYqPF3BZzWGDhuQc5iWJaGGXgdkf0WJVttG9PlJz6E8U1d/42LVvmmX9u/ItVGJNhCtMHsW0t+2csx+9cLdlGPTXT6HjxTrhLuk5nrSRyDlUq9WwYA4U4lj1HpAExQefWw3/Y6mLnIVYA9PANihRQ7Pghe4bLQaWN6p+BAJOWIJ4maKkjsrfHJE1FDyd70m7pgJW8J/L2A+gQtlnJW2D0Jk2zh/dC5sRPriWtMKOCjio+hLL26MnuF4gQxyK0lbkvHrBQJiTExIpdWyl2cxe3zixa1xIIJMhOfXcJtz/XSN5cifD2/J2/9fVlk1R7hxun4SFeLrk+0fIeFlU1cR+/XnArGQSkJXza5FHH3LW+C7vmFSjtszcsE4tIXNCaxDGujo1ktFSOaK/iEXYQIsYlgieR2NxufTFDnrdLg46tz+ZR40PyE8KDfrgemVGY3/i3VJ85Y1pl9n+GXSx+2ai9Dnu552+vEwqsZ49vySG1i+iuRKTCtUVD7jWiSb1XxDq4O7vn1ZBT5c6qpVCuiq/ef2PjrIZFPQcmkW7CMlPKdNW4iq2HqZTgK76Ske/7Vxk85E/ZP0takEiYt0NlHDd6DSMeZZUcrYvFrZEHgm10Qgc8AMcKTLvFOVG3BgkN9h3YRaXBCB/RfTBGe9iKOKvnOKtFRk6mX1ZEGi+gXA2uNECOoR2GUsMabYsQ2xJdKJPczmOZpIfUKCmTpvT9pieE1PlhJu26cWo151tVBTyjOqTZBDddOha87PsrQbsC/B+QuKmlTnosBX9FtrrqKvTpFSwyc6RPJklrw46I1RjXxMp0PsVRoKOMQMOWmJCvSF2kAw+W7bTHnC3SnSCYBO7HI3cmYkjw6v+oTRSezHvH11D56vIxYtEJWYFNycbrHpiENqzzJjoZDLj/vqUBAaftrJrVfUEsuda2tcqm/cHGC33m8aSOq0Ga5OroOtwtzIkjgRTdb/PSqyMR+6ktQQSCs7QQpkHEeDBo1sLdOae89tsXV9L3wdgAtfela1C1i4eI85vczeNLmiaohLivN8LEurd+5XpiatoQSCIY0K9vKJju1QGL8mpBQMRHiHYA6Tj++XaR6M4y6s/9DIUdsLjS7KVShRWbkBtwC5A/A6dVnZNkbzlwnirrVbqNIFl0nZcD7hNp8mCbswT0rFvr9vBbqfa1iz4VHZmlSKpHLroRHRuxRY21FL0W6iRJGBwS7Kb/dmOpIvCBnoDT9nUPchyXmYfN0NyeMz8zWCE9vn3xyAZXR9YuAXzhlnbGEMq0AI807o+eeBuT5reHXPmMDIpBoytz4xiC4+OWB3vjqKDmt62IFiUKN8K2QB3la+K/ugBomcY7MWBDA7kjZcGZDk4rdeW0RIzGYrdRIDcNp0el8LMAq++BT1LT5BuOq+UYL2NtuCx6U39h2s7Mkv9ab7BoS1tKGIjKdUPjYcJaYVbfQPQCPZYnauvn7BZ5CqM6Z1CvvKAoAIRc7NbiBAGO79CHHUptHLbG6buG1o+oGsS8hb3YxVx5PC3+yqNex4VDbtIXJT7QNsCbA=
Variant 4
DifficultyLevel
650
Question
The cost of hiring a truck for d days is
Hire cost = 100 + 320d
If Ferris has $3940 to spend, what is the maximum number of days he can hire the truck for?
Worked Solution
|
|
100+320d |
= 3940 |
320d |
= 3940 − 100 |
∴d |
= 3203840 |
|
= 12 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The cost of hiring a truck for $\large d$ days is
> Hire cost = 100 + 320$\large d$
If Ferris has \$3940 to spend, what is the maximum number of days he can hire the truck for? |
workedSolution |
| | |
| ----------------------: | ------------------------ |
| $100 + 320\large d$ | \= 3940 |
| $320\large d$ | \= 3940 $-$ 100 |
| $\therefore \large d$ | \= $\dfrac{3840}{320}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19mKh5Dl6d9KstshE+n2yIpH0xJtsqRO5DCP9DiGB7o/qJ5eiFJ9g97qavI7BT0MrgtiuwLUi7S3Xxl9FqK7jAKiBpJ4ottJ0QD1visk9+fP8JbLH96cLgqqr3KRsMFvDHDQVa3EOOcBfGQC2l6zKcY6irBGavB8PZt23ldg1aIMyip8ejZzKdVZM77jEtgi5YSVDky18N9gD1g8Tq3kFa5dU0Z+z4fjedXYyOeDT8HGpy9YB1+K/KHEiWQPVkumTDkz9NOOt3vTqQQFJBtMf2JX1u/xfi+pdIeNcfmxGfmeSPj34OT29clL1ns8x3vQZ5XoQ6iaYkwpbGO0Z49zu+OFRwXkU6J36WhmeQgE8W/8Q/vk6MWs+s8VMJ4+QkF4o+PXIqqwJ6cmie/decpAMPo5LGILXJgNnBTsvogeF5QCN+UpU6iVZAO0S9kjr7y8m5oyHSY1fEmWVOh7O+N7IbSPfS00289/K8JWlPqQIN9AthdoXmWLCTyBIQeRqbGKiXjeIRFZ26/Yu7H0hvSSmJPu8NM293T6vF0gbtJeesU19JUFKJ2yVE8gBhMklHiSyoPNxG5JZlFrYQ/HfZQfbYm3Delo+FUCIC5iiCkXQKRL79c/5CRDJpbHEQS0lmlepf7CBKu/kS1FZiqBjAuHP8PPYpMWP/feHRWfQm6okL9ngxd/vbgJ6+dkNPUqzcTIaGm5YO7hjCjqg+l6MTLTyDj6z8JmDXPvtK1frl7ru4KzLD1wUfAJGW/LdRCXHKWnUhOXemdKIO10L8FwM9ee44F6GD+6qniF3Bsh64MrCqw20+GTEHmuTiwx55OL5fKPC/LxBL+Qbx0reBUeDEMx7bG301y1ibiz8u/tVrZRhwqabM9AUzRkGFdzRthmjHxMJP4ejxzpqK2EEdRq5mz/HmQzZrQhMA6AOko+TBf8CERxowSVyQbFZUyceWvO6zVLURXZF03D53mfiRE+dYbF3wzwciYGve3V6FoZXKGgsxgN4SLXeyqC6eMg1fKOhRWcfeBOZevwliB9TbchDuAVgU1sSY0hNdRwwD8fGh+em3Rzk13L1s52ecq7OCt6gpyP9vfdQBDr5Dk0P/nalrApQ18G/uFCbg0/dHPwm4eyy6WdCkQLfVdqsOdWeVbU4zWQKS33pcsITm2KWJx2ev5RSkjtdeJu38D3S9ZhaZn4zG79PQsWaYSYUtlIZ+yo78KLRLKcKVOK7khGa0UJGgcFn+pLo4xN/DFhXpyZCubNB38bB59baGZtN5AOFnJToKO/Rdo7VSSWfJuMEWI+UupFK/5wzPNnD3Vph4eZTlK7gm6UPErZQbUr7BdOr67ceOrxdXKJbQCiaZ4G6qPg61bEbQAIyUjTPcdaF9pXcDX4sQYVYbrYNmEJYGNe9Lp1CHdDlc+4nFUysWI8Z8I73xUkSEEfG2LGpuiskQdF+VNCBVAxsAogdPpwV/mKcogAgFHJEAHFV21FoDAZMRhSt3zfMZtJ1dHkKbTGDUnbXkK+pc4tQbOQcyBYDUXPoSCM9rSSVU2wFIEiwu2bC1/sE+qp53aHPRFJt7uVIV36niINDiguiZz+K/dwhbcDwvfeKpBcFe4Z63QdPSxofMO8UVqQud8l6lGE8ITQzajRpNJRsdfa23NOCTi4d0YT6MuB2uPahi/7wcaQ0ZGFYciJVPOKTDRUslhAe9iwsqwUsD/rpuI9xB754hI46qpQdZFL2OB1fpMB/4vcunV3FSnAIT+2esbcJm5AEaSH0Gm/cxHVn5RxhRjMPwpBZkATqRsqfLdaeRtK9dFqc9Y8fcEPEGSB3alDE81lMBDdIweDhqrBb+e8qeCRBI8X78nzB1LnNAbIpFJG3McBIZsI9I/t2jZ5zam72xn94m2Oysd1zK020gS2YxTHlP2eRVGBq0OzdvQxvDXq7yskWewa37gMaCRzS4ORn4mkeSRdwE8M36i5492+TVciIn1tnPxFY/h5loJPadrT3vG3Y2T+JsBxVxnnOUKSBVjUsP1IGyX/V8BECS5Sgdu0SYBrfatAlnsjLFddEKAK7Q1n9JHhIywaBRHkTbiX6beh5XXUjigAmtJNZGvGUKjQLww7VBnrRpaY6TIoOQvJp17xSv/og4D58WqhSOpWHaiuuBp1xkUQJ6Aj/mgEAMaYy6V3PCvQj8rDr9RzvH9+5wn4lvoGp+1KJwyP5EYNx18+Se2ytZrFqEomC7lldHgw8x+EawjND1S9wiKXu8vnJZbZIAzx68TNfwhmNaKl4caLfAtYl4iKInvGTIeDznNWmYAglbvhmczwxdPYjaJlpr1qn7P7Wsam+zQpB8NZU4Q/qhHawkyQcXX01a8heWogEVX3oh/0x8rH4S4dXUKlTPzB8Xsy0rUSTIGIaSVkatUipEhP3UAOpA7DAm6PzesBQJws534iXy0yubXjb/Lqbw2QTQ8bnHFj2ano329ZUr/I/PxtGokhG3LOLyYUEGRFmv+3ACfSD7oW2XaAdi24GfnM6o7bYvs3OyizkEkjwUBJbtiZ8LxYfEIkNEsJGTj6INqs74iwUk3ZiJrgM/fK+wqB7rwTlTzwiKagYpi9NM9D/rLzYl9LLIkplMRN3KtPoGY7G1OajeMBdxf9cX0YQTjSXVq5Py+iqIQAyBnisvtZ+bXkphJlMv1W2gbWPJaBMGc/3k/IBI09nCi7hgk6IxEwbB0R8gvQIOxU10hhu6m3o4yueUazf03XmUhSyu3WedgtgxlidzdMdzPnOGJtoXEtZydQjC1G57Hlr9g2RlfowMcP1WQUUL6KLLWdVAB6aI8hmCmR3d2f8ImYi424+U4TMo1vIgLdPMu/y4JAeL35Hn9oiYcTZMgwev9DqU0D/ZXUdcLcVUltYhupP4GzoEif1PDjNEpbID/tQV4UGge7i6KXHuxRvXpAKPwA//gOzBpQ4uiCUL4DhbFxb+/ThULHke0YqgCAzDNL+0DcPeyECR2DSNDlaN/ym/kjaa8Y8Sv3OKLtzS/1vChTHHHBrllrlClTSwvqrlMeLzXtzX+KQ2gFcKz4yUECTFrQOFTCk5lSkf+2ixaRKL/G9IB1UOjhycYmm4gXD9ZPFgoMzshMlxtQdTeV68Q13elLk3TstCLXVluhaQA+yXqZqbaQs2KEKrGSLNA+idhuO7oe8Tcl+Q4AxnMbFQBVJqQGqg19SlKk5dRXEvaXcmsDo7nRqJZNQxkApSDBFbYExXzbWrNHiQI8s+Ascrn8S6GEj3AXvZMoyAt26pS6szzvqEtnpfAKKdjSf8rqc/CUxRAl2lydZn1sG5izSr4y+Pfpy29agojMefAc07NXHaUKD1zEmY1rHWCNUBvQRygXvclnLU9B4mqELYBDCxYI0myagQdSdlsqNdW8sjxYv+a8yYmvkJtm6jldI5J+XIPl7jy9l8WqKBefknnKjJ+yb6Tm+NPp7Le5DAPmqKr/JNVhFYKNEgADImWhL1sZMncWZRSvyurpJpg7seARjY4k8E0o/OrH/EJsa0dyb9qbJMFTpF9tw9SVWiM9JbHRnPup6Zf/JnAAdGGGV1H9pGBe79yr4deB6yHBM6Xw5Bk8c0xt02VkpdFhftAXRMYvGo5kFvkvSStG0bEhn921FokJ7vqI47di1UO9THKvlcIEo458K6SWfPEqF5EVnpr/1dp1VXi2K94ZFIPjaUDghnUrNFwmxomD94NryYz9zcMsZPEjUwP/v2QRYuk6piSxDZ90toVhzEJwUmF7w5YRp1/AKbM9cV6MixQ9EfQQFhgJoVlESbVS7sptuZQGPuu9IrHjuuj8Pr81u6j/z0WikQTEytUhcJv0RUaED/jg9tNoQl4ku6Kmq89RCuQ5mHqUM39ld1NyYCpk5Tc5Nr8IAOJrFQ8GKgvwF4Fu74J2wCMczeFjO1qcAmW8yzZlZEx/1v5cYWGjKCT/EJXbcKzYJ9DwnECGEvIJZL7kGmylqa447IWeNibyMGD+bwKSy9WGidz/dX8Z9WPvb93Hk3Z1iDGnoHeJFjXJfSdRZC2yMKjdj0umY26FKd1e5pIu+DKS0uefyMYblU6AMmOXY8cFYso9Mvxs6Z6KYJzxtBB/pzC8+lu3o+ou7oVjtdBc9t/QMZAXj68Z8xkzN+30G8UxXe3+4oCw7hCz7Kg2TfC/YSoyMFVk/pN5izYRpOTq2LIc0C45AdaaEJyxAJP3ZBvu9UXZ6NbgfNteiSZqbCCokUb/c9rex+2p7WIjM81pBQ6drMoalntT05IhUiqx8/YF0QcfFRKIkDJtL8uUEb44N9XTzPJVHyc3wrcIJxAGqRiT9iON91LxFS2B0FDRguzK6VuRtmsdFDrrzQLuf+q3ymP8JLAcRDLAc7TFra0x+XNbE7CbL5GKXgDsQuybXhf2LDHJhFE9x5SRiRucRut5VqTNtbKP+x81cXN/OMHt3Qf5EveOUwFhzd4QexgB5jau0jF0afAI65J9kZu7J1u3hK5XMn7ffq9bMdEFsiGGBhxhDikXY6yybngslJjpKnx/+iy+JENx4iNfW7KRYO6jgUU0flcD5XfWGShxbaXn468esDpM8wbaLmQBlzcSGxCrSpYzMs79MLqzh/EAi6Q3oWungiu/03PE3W3zOjGA1NiaX8J86N5Pxb4PBi8HDS/Pk8yif3gCdGboTddRN4vysh+iFzUF63uUYfodMlTB4aSHCj6CrDHW9KHBnKA8ZN2AeBqIm/qiCs4k/xewiW749hHAmHXAnRF1fpCz047Sdec5ExqFKzk2+ZGiOj7YNgjqJNpyLqjDayWswUNQOFxzWShoFrjnp5jLhon+sd/BqJY0fxQNMrzeWy1T9pavYdeYtsYC45vKjMJwQ76aGWbztG0/BH8kJCUWkalGjDwmomSRxEG30iVmGhvsPBKdwT8gr/VAMCEQHf1zd+tfX88nKAS+H5bEHrjTuQ3+Q5+mZk4AY7myHHvHEUjg/bfFXEKWs1q00D4o/ud03w0IGaOX4zxHlOmcDaZO8spBLwG23G8AIWtBfTUeaGTOdUQCwi5lGPhgno9LhoIFhiV4L0ZWaAi611+E1UfxEAIGohHQv5ifpO1xYN8nBBRKnz7f+krQBLUPvJuvfah8DX8WdX0SeJk1BsKvMhemjJAyxLNEIqOxTKqPiAYScVjU24zKgVknxwhSvyY0+eSpYyMjJjInQAA6egMvEinjiL15nh4KLJ7iJf1E9MZSODZzNP6axcIAhwZvHj6tzgOy2XPvg5okkTNulbFeaG7eCVi4BAJQNeMqpi6BEnQ0X0FDN35p6NIFr65jv60OG5wOsQhpL+3FQUVWwtBmBke6bsKfQ0dr9Bj6VeoIUkp4M4MsR1R+tr6nJ6pn0MBpHDtRIfsS122e3o8kYnG7XRhvHX6ofdEy9uTF25k9MSWvxq0vGp1zTJ4LZqnQHdlCrMzjkxDyIWx4r3I5nTpcsdKUsfj4Z6UR4nPxM5piO/hs4Abwvw0uC9ww44gzzKlWYLF83acYv4g6Ya+g6QVyou8U6CUYsrjGdm9K2JoRZfl4WKnaO+WLDVHEHr5IyAwXubbQrixvEAgep5/7Pxn6VmmtgD3CrLQWmdkKggZdWE+Hfl7HPaLjk+RUBORb0ZC8EBlYx2YohvzYj3ZZGo795S3vEIbfkJ5udaAfvbl4eMGIYb0pUOWlxD126zGuhmbx85WD6IARxMDlkS6vEfi0TNeKrbrtgVl1DEz6xn7uUhRFKndCXHmakv/jFB0oUJDZ9P5dqv3hRkYNs/V22ZAHl7REe4LpM9RRavutWajH8IYeSlsvrqS3vUedwFohTb1//cORfvmsNyJxtc4Mud1nB6QqIzosgCY+2q8FAAbziRt931cLA5JBeuFi9XXkntUdCCum4H9g6Gw6CSiqoetbStfLPaPg94CszFnPv3sg1ARh7loH2kjGL1jDhgElEqW0djDpXzscMiRvX1/u/07QSyENHxLUMOqST1pxSRbWSJydXL0Rel7+XEkcinzz8Zc4ThY+Hf3GOZW4OQcJzSZAOQxKnIZpsrQb1ogYOD4Y1JP5HH/msGl1b1RzK2OVYhJWHDXj+5mdhvc6T9kze9U+3ab83EJZlyngY1kWjki62R2QH2+YBVf5LDUCXU23oSi2yJGQUP7RWRT4mTdkHqFUChTpogXWBOlA1CHFDDO4UGm9BUX4S1TjYnsQ9SU2W2/fxlJhafiHHn+zbeD/bZCdC2Hp1+g3va2Jhbckk+COO2+5wFcQoZdVO3LZ5OxKa/g3AOmlnri/ySSW2CJIOeXwxsTZLFER5LV3P0M1zQ8TETY6Qt5aIsQLyH4esVFwhPemhcZ5LIg4U8e3Emyve9M0EnETfHzGsqw7DAKz+XUsZsJs5N4k+72Mr8fy36g1Hn1bh0wbPI5HOGp4qp0SOEhhCVsBkbjCsJKlgpltwQjsS9hoe6SPACcvwlSk847u6lVDiZkC7USpu2i6sZRPP4cbFVF/5T/QIvWbsgz71VrncDwWxEOeVZhn+Pxan9M/vO/fbR7vaHDY0vz6dOwHUPym0u+apBWJObhRkOS9Lv0uSoLf+6tgCJnLdzrjEJWmVhYHI43zQpbfpsUfv0bzqGYjbCvePKaKJF8yxnUp3okRmjf4JKj91pDnfo6ft4blGfTjfY6Rp7Olup/0Wl/xLgv3Aw9DhUkMTzXveJfPcgy85p/9Kzh5k6wUFtRDUTCLRp29dMs31EU5Yfv3CvDM5yLncWSr0BjS9Jf76IVUDPxHn74FTRFu8hvtjArneNCBL+GLdBaRtR52g5NarfyKpAsneFVmjZgFuj8Q+dJJzw7RAM+8/asKrnZK7Zw2iiXpqqtPFBkcfSPgnBz1Mh373w4qYxTxROoeHGQVahvcQz63seHTsTMf1wu0FFNfuQsMcb5Q8/8LBdUCRqrp2e1eJtT4dRqEjsnMBjZQqH+JUqywv69q5x9Py6GYWan/eZLpEFYrF2daJD9Y2PQS8zS6kF+hjwjc1EhIXTnSyqUEKbsnWEdmRRRfTD2bkbI6l8di544ODW3qURBKLBk45HeII+fdujtWa3EWZ6ieK4LaNWBe/SDvxx6Cb+pT6qS0ETFAaqimlhPpJX+SkHvfWJ3lTaennTLDXxMw5cEBHE/nWjxC9i7OtpXZPFsfVcugm4mjqskarTiy2szPyrRwy668/ToWCd3bHwb7vXnpSAN86j644SaSZnOK3m3Ns8pWIKsYlOCNVE05yQcTzSA0V/ignOB2qDqQYbcMHCGP4AfOIZY/U+c5rGXexcZ6n6v8RM7e5zdQrZE+zT6iJhnxIp1rfLfOwUDIDzMWjlLYKJtmwevzxIK4hsXFUI2gbTmJoBk+RuiA7oZNCaW/HunvUqjfIBGw1VkKK26ns/y8fbdQQHUPweD6txUSVwhcriEBJr+tESzhlVUIfx4FGKKPVXHF1yDTbV0GyhVQVzWp5GRT7YPhgWrXBtYdS0CghxOymHm3rDnFAgwVfUw5xLEBZItnBaw73hkJisSLHoduZ66GSnX2jzgetYuvaee2xJHsf5zbHYekQ6euVOy3RYyrr+p4lXjVf2WMTO7XDElmi0vNDBLSLW05/V4o1+BrFC+isqbAWuhCCfjaVlQFxSuDH3Gct2rDrgeFV/LjZh6lDj8ulaXAjvksfaHoO3cZhguxtIn1uvFmZe8NCQO0FdbVkTnol2+qqx2aB7q+uqEmWEC4OAFn97Df4pupT++XIA4tc8QgSq4lXjxEJcMnmCY9FGoPKpWez4EBhizrawVVknBHx6+VqWT3BmUb4/LQoU2WGefh4rzsO8B+Gf0LYXNbwSTpty8WXW5MzPBR11u891hs2/qMb3iy/vNYL4BsJ8M/+4u597lUy2vOBwUWWfls1DAyUqtnW68iBb9IMtRoJ56KlUFZx1ncBFkFXNAlYsaEx6EZ68IvI155qVkZpniG7HV/zABpPYUoBM4DgxZwx9kaeMGeoXloJ9JHW7JzDER8iNJnGqwe41bBT71fBENQFvxhImPD5bV0OgYQakMnNztYQ8qyXFk/RR1L/V+9DC41Gu1Yj0sRkTITECGmpzZ/9Du3/LGfowz5UVmwfzLUUvyf/yCvClNiwhIlmlqunXG+MjVPRkO7e3DfrAz8RdkUqwDNZoxCKr4wUS6PH6K7IUnKFyaQGLU2KGCVvOHNqacVqzMs1raYuhlVEudGQR3QUla74XX9n9F9mk9t/jYJNPVfKRx4qZkUMKH6vnUnM1vB0fXQsPKIJR49bjeRGFcBTiZaVnaWLEV4L8KFz7fFquY6yPPzGk1YwBBsjQg19zNpdYJ2G245lS/bB+ftpsnHrmbnrF+FS0Y63nN+hI6cOWNeLbe58HQTcimqxfmVDbI4aDrdtkDdJBJlNvLEPVUuPV7bM6/wMtXxlip0onGq+fvXyX83VLZrEegWTBpqOdZ90ptTAY0ooJnOroO5C+dCRKNXkQiEB0bHaUtIfh+Zx79uvzQH0LlQC2U+SUQdEC5O6eoRZVSoiCfxuwZMSC+k6o5bHD2pcj9/h/IgkoiubsWg0n5L+gQ1wIH4mGSzwOvawQ/XsCarRnFioXlGfWxlst7rDJQfIc53N7DRQfsXuCr8rZRCbMc8cj1fa01mOR7TNWCxjCpP+zB4YxTHZlcbCKnhqTDU6AcsIES5PWQJeL3QNDgApl6BFHPVe60JYanSvH37whj87jFnLfGtLXGjv98D05EsLsrjzJqy+uhnSBoCznxigm2TcVX2p40yjnkBly5BGW5EDxha6zojHer71WmboDsG5jv0t8g4y4vmjKQrupGMW2spVI6CK1nz5rPrSALdN7nKNyFn60bVnfteNCyo4H8VwZjU75e2yhScy/AH2r/b2L8IXf2eKUbDBfb1+2aZtwVIsjf56pB5gYYCidCjdYMqbIW20cfmitP6yhUbU0hwsWP3AgnTO+wPdg+1Gu8N8MK3WIY+DLSVCBKJVI+XQn0moEDKl1mY4ic+A==
Variant 5
DifficultyLevel
650
Question
The cost of hiring a wedding venue for h hours is
Hire cost = 700 + 120d
If Romeo has $2140 to spend, what is the maximum number of hours he can hire the wedding venue for?
Worked Solution
|
|
700+120h |
= 2140 |
120h |
= 2140 − 700 |
∴h |
= 1201440 |
|
= 12 hours |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The cost of hiring a wedding venue for $\large h$ hours is
> Hire cost = 700 + 120$\large d$
If Romeo has \$2140 to spend, what is the maximum number of hours he can hire the wedding venue for? |
workedSolution |
| | |
| ----------------------: | ------------------------ |
| $700 + 120\large h$ | \= 2140 |
| $120\large h$ | \= 2140 $-$ 700 |
| $\therefore \large h$ | \= $\dfrac{1440}{120}$ |
| | \= {{{correctAnswer}}} hours |
|
correctAnswer | |
Answers