Algebra, NAPX-F4-NC19 SA
U2FsdGVkX1/yzlq6K76tCzYxvfPOR7jn06aL65EP5LuzGHaFPZm+ouUI4rA2hVGwKHhObJ4DIpFVEtzFSS1grF9uHfOVZHHVTAaAP/CWu8f1gKUSUzR8i5SkW93UIRKMFz6t3ESRsrbZ57Ak93Ht+F295Wi+SD/VMk2clgyXdtjjQIM9rdq93eW0Pp0+TkmeBqaOG65FnK51dmR3yFrTStEsWsEOUm3h25S7IEPqzjYioSbCDvr7K0+n+ETtqfEYnE1TOrEKljmQfcj9FtJ2QWocFaLhnR7iTWEXmvmRt1rmW+/qNyrBF/0Zd6Y1By8urVB6tKWXvm9VdsWFjD4wDofE7x7QOU8V9hk3z9FGSQ7KchYISrmZqygbwJ0Hy+XrL/FzOdcJdRPs5hl10iemPtCEnxMIPO5Gjrrc3ayn5N+7aZxwAM5jgVu43VgLGkuUpCB6y47SG0wSghgsSN19hzp70eUx9B69IT5oz4hpDIvfDwIlir68D0QbgCBTiEm91IpOKAdtk7bYqdYIPYgyyGruOpqelwwgV8OACsi/ka5SDfe8gYYSELzRcU+kCBdswZYtzpMss4gGUEI8Dubnt3nqm0DgBYxqoiS/lPjP5CdpXMXndYNp0BrZ4B8bcGWn0OfeW0aTLmfD08MKCix3XhBgJN1U8PvRJe4bYfE0somfJbA1u8peivFrHZsNM90thUj/BWDPxeZRJ1DV8dx26HYcWQMcDxALi9yOhg7Jv9rfCicOvn1trEhd+FsEDgbkwIcq1Czs8PCVrhDYFcJkb1uqvrTwkpFlSI0WEIR6o4KR3UP+JCDanBpge8sjoZnGpAqTCwDeEaU5zVn9f/11L2tvyufI5zf8yWf7c7Fx9xhkf4o8qziFYTk72y6HAXzif7xWQoh08xSL5C+Qkr+B2d1xcEFFsl5jF1XJJzPrEfr6ROzlWYI16PkLoHBH2UCWDUGfZR6Mw0DtDuptlBmzbPrr9NN3q8104wNP6v+RlwZSxnr/spBk0SpRCpZh5o1a1jZtheOUhNU6hxB8YK6Izm3xRgxRc40ijq0NZq/lTytPii9THjA5pyoo/liYXTtedz4vvndLTp0PORtJc+6jwYbbgVTHA2Bel+DhdxGO0hY3R5X/s3Xa16OZwKKfmR3rMIGHkkX4sJ/97zFhArMMGwawdE5fXO978Esom3DZpu36cj3EwD9FD8K9YUIeXjzyL5TiqbYfx0kafX1R3BidGg9Me+4nZZN+nIWgbW1QKh/uJ/y2UsbhUHTe4fdY1v0Mej0StVVyvA4TCdrNFpEILOjA+6JLgkwahByZcZX0f5OZskofKkJYUbLmkoVrWSxXdfWZ46v/vyCq7MhV5M38hIDswY6w4JwFhychh3RjLq8cRg3IaJLQ3QL60WX9N+EPZHqnETRKTJfCo42BZKWhpfA8YvpgNFX5ozOxW0c0c6cHjhqkzjluMPpKo3Oh952Um+SMU/kbnPssNhpYjUiFglGUrRryh6080A7WN9ZqrrKqQbNgoDi4IiyzMmWSgNJfbbrB43uQVOwjx83CfDRpY86hsJM79iFDIhfq/GmjVjan2+J+yhsQSQr0sZAt3w5F89m9y4cDF3z+V+bZmx9RIlsx8ugBpD9HUqim1k6FLfJYENLSqIq1gSlXwv7EqoR0dOsn0MxMKlbEJl4D4NhI+J+NtC2OE1GGJomV8uX7B2hnaUgjIKawyJIkQhQz1ODo3+FBknCnLiTB/iTUlttk4f5WwRDfWZ8dkgHlHyYeW9W0k4nIwg1r6Iim95RsQlir+qNyL4fR+Q3coL8+o3XsQnlCBGxHwvvmlPZTR+4/dTGSDZtZDI+zoPueoUmdzEcvWnyLgxtcU0CRHC63GIhXoHjxpxkbLL4Snk/6THOMPgxsfdjAS4FYObwwAerm172tW/C0u1qrydJPxOjN9EaN2iKALDiJPyJdxABvqo6S0IT+nIJkq4Byo+94K8Xrsjoj4wRktK5RKKGqh5RdrpTUYq9Blv/3TT76b/mpVGydCT47XSHIa2uerkiImvFVW4zqqkyoxkMi/c/MWOlrsvufOzKokLvdsNe4VXBZqbvplr9Oz0oW8OOjmx45fcMmLBPjzl2R4RXqLxMiHGR5zSw11Gc7YASFfaQmDAnMlcVaCTP9HFMPhU05ABK5RWkTumSAxVzLW0Uy9EyDeeARdBrcvwW+ILWaiNFsJ8k99ovJqDHYzdsr+z0LMg4QjEisG2ut/Dl4vgI9hpGJhrZ2NWQ9g6gzHykgr7tt4k6KfNxHsjI5Fm1Tv5m9YMkilau15+o2zDzvi8KWlrcLacXiigvKB4jCCfsxLwuXI3mSbtLuq1I4Q7N16MxAnQ2yAdn0X7L/eqOIZd4pl5SI3FeKS2FGYdv45OyzrOLEAfyXg2k4XlP0WX2KQ1wnyYbHK9M5Aep5CN1BxWCgojgfM+GOfh0xRXM0cj9j+F8tgPa7rx/dsaAcrnZ9lFwQfE5AOMzOvYf9ZXcL1ztNHs1p0BdR3mDXxyQC4mhR1JK1MTwlNvxB50FPZgdYyi4MPv/h1ium26LVN6tgquKW5VItu/uFhvK9F0+8qa8Zgz3dE7tgELXRK3pKpDJM8qOyyVyNhBYjNlNms6Xg2oIiGy3ze2Q4awOzj7jQHtPBaZPx5FfgkvUA2PaZ+OKKF93xoDenINzayCYR4c5P7lM8MYEdEHEgNb1kL+9V2GnmKObtoWoK7nNIqP2rrlovurQqLgfyXbfaoQEJmzWtpTIjkAmYXqaE3yTdToSRm/7wtZjLq9vAItNzyCp4WXHoda2urilBoHxk81HgDGAvwuCF6LX+k39OG9/ZSttvyO5BehmOqF4jVLKP3cBbF+SG1qCCtvo+B949QjPC76WkOHH2qjnWlLdwchN1exVUtjeQ+jqpzyyvPJU26jRWH8+WmTFsF2b5dwBIYHOl7P5PmEPyI/GDH8qbv6BKBXk4gWZevBrWKzU2WWY7kXUUQkcfEMF9dzVXdc1FjKkFZAloL87LuH/vIQ9VpMfda5PNONOSh3i4wcvnbrQxzDUQMhxBzmDV6G5LWJGSDM5v+xr1I+s2vaQ0n9xSh0sTfnHdkNTj7JI2KpFQXHAV+kjF8oZHwdTx+NgP9l37PLCWVlfg1VfnARwKNkfRfVmLagLYqE66OKQy1O9Ett38OpBYjdFphisSkutwj6TLDiWZNq1B6SMgzvAzUOg4L7GtchiHZ5+WCd3Q+ggfSygSbl+/DXDRr9vTCl4leMyJOGsUlrqajjMvEOqnYNhlaAYIjH+58e43VFbfVLXq2fJXXWv5dz00Y6RKTNI5IUgDmNzxTxR7QoweHj7arc4XtQAW2aM8mcuDBdGStxDI0jkYzGFqfSdPZrx33JN0zakThkiM3JFKm5Wuy7whcYQ3X0Ntx6grsd9Y4cc1RIfEqwQzRAk02p14DXQ9YAIkd5BZdUPIKUUujDJg9HA43ZjQHR5gbyxVEIcItmojGBa4DiMrbvHa42KQqsMxz5lJrp4SMIk6CadtWn8LadkcKQxwMznu5sZnRdhHjNefsefrVgXuEVq8nhq+cBNn/DuVOpiCi1kfF7ZllMYb+SZqjuWD/s5Z72ovHztgdob/hLTt5ubgEMANyO1nSdoLDf5iv9cNE6W1an/o30yUJOMe1O6TsfKEsiZSeHtuzyw6H5IIWIJgff/clAxgJu0ZuNacauI9XJtPiRuDet52KpefIn9TLL13lYBxPhgtRLTThiokvT2RFiLmaZbEgKmLuyJv8sWsfikxz4bs1B0Q2eLE/4nUmm0KxEmJL9zL+0lCInGB7qCVe/e4nUluz0Dk6Hrn/nUpYlcvlxZO/N+WiX2ZhbkGsBwkSiTKXzCCAY7LBe96BaWeDeGKDJmvmnKVd9YscLDSVOTbf4gaCuT9T5n8l/xSmaI2McsIeUzDGeR/NoYz5d8phKP+6JzobqNEk8jd1OxxqwCEHkBEhWHTZex+/nNPj2MMQHJ0MNUw1PAZicnvMH+41yuV7pZ20J6V9TmSTwWxqqpkShGHnEyEiXPFrk8kWTWwp6LxqbiRe1j0lbRU5fdACZLIj92CLIkg4U/ugYe65vjNQktpze8H1pOHQLsYMm2OM0RxCsX77YEG/S9TlOHQPwHQ/4zVbpbjP+tDT9ySdvlY6r4+l4Ue4fBcyPKQsSSYlK+qMgjCIq08dsVwHT54M+qaDI3bPfE+CXBYnUE5Jy4TbrkczI2ifI47xTdTGiUGYUN1cMtNbOJQXcUP1rxvmWId5WCm5gNgIiNEEq9zs5KH3RXl7G5omgT0IML67kGkUOj7VvlIkAJQpZSu3P/xdL76Rv6nkSJdcM6SZN97UMcmLoWVcP61TJ2umbShlcCAxlzrZNY/WvawcxLVDyOgfMCS4ytv3Pn6G6iWdY6fNtvq8atboQsTAKhN7Ls1ewYlaeiFZbNAy2z1MpfFkJoMZKD2em3VAzS3j2VJOHEP4GReuGQhtcTbiVrGz36Mt9WxD30EzaLgMI3kqsFzgyK+NkXSUmz7uMDesa66wr0WKfo2Hl6CNUWDfYXkpXcGHWirJEypY1nqzhbuKg1u1mTG8jcWh1NYVeQJH/KJX2z4HNTaI7T1B5yWK8J5CRByugukriFls4UFRt72jDnv4X0r4N7XOxW3iLw1cQaRxhKpXEz+lQ740fiZDxy9/VXQY54weHBvd5PbjwrTM8jbWNyOeoSLmWnY54HjodR7TXD/QcfItQh2DjKCMovFQwVWEMU3CM1mUfvcFk8MY2CCcRRX802AqBBK8MrpjDXbOwa/ABo40et20w/PSTfQyKr5EOd33EsBOapuj327HtpIjvrxQzUrTLCS5QCP/gSw4uy1C8uN6tjPDJ7VSd3k2/QtNrhj3o/zNgO7lwLlCeHc/IXuT+dKLK5l4lnz81rH8yKQsxwXzboH+7szMF04C3rYcnMwrngB0SsahHGK/ykxJxZTEIWQQrpofU8BTf5ufUnCHJY7gnBDku8NCN4u/PyPeSnP4anwXGFRF8TYHb68Me7lsj90mfvFVJtlrmrAbWV3rlGFWyNMKFFM7j/s3UxLG03nR6SASFPrjGw8YBGfZ/8MKnAa2P4zWsRx9+yXph+lzBhCJsLUM8s3ttUbPWOEIdryNaROI80AP7/8jS5JlsgvTZW/E2xdG29JuOz1puFtE3uuXdsfy9z/LHDWFw3O6T399qGHhumhv0uwt6aQSscPbGkDUBbbJgwUniMPmfwoy/D89ePBOEggwUL2QVPFle7WUKWraxtXgsbCtllqpzsmkuEIRRJY/At27saudWYRIj+1hfc3dOygVIkNvjN+WWP2hcBYj1b33DC7BglZOvonGADs07bMhoKCCMO2/2hX8ivaN51VcdzNUTnORI789omwR4sqPCAma4CPbjBxtoofH9i05pyFvgnz0ePDUEK6U+acmdljFSRRJpDejqyBU/d4qFZ+AdwSrdNRzaOlDpQUybwNL8uAv0hzZI/3g/TCPGMoWwMuXI7ocky1yWtVU+mppHsfQc5aFnnbz4a2ovHXO9knWa30NVk099IC6OYaT39+ioK318WNatST30wzKghNIwtrqzks8KJf/092Xj/0Fym69qnztCNED1hZKdSt7bKKJER8cwsqulDIRWVlOsdSrBAlrDzup2xQF0+2ZlPQGGLxpU/T49u+QNYCDtFXkuU1Pjl+sX+2T08MgFvEXZQO/uTZFPtUlhemB91YsoZlgiRB608i2p2es1LKjrZ5KeqMFeUQbIsqwWyQu1PGmNocRIshaoIv5yCAo9c7RJ1Z+aPUd+bwnnhH/5/wU0QVvrONv8lHmu85/4ECiWmwrSVhIUOLueK9YBDNVytsq0MBt8E7vCqFUke9qfr7UJgdGHTegNIKWgdv61xpy/as/FjnAwXqihytiTvmZzbWT2WzyjCj3I7QqNlXZIahvCgLn7A3wHI01g6rxhgbx7bjgmicd2wa0BVICzGqZbwqWC6D5W1lBN8czU8vWCP/2JIkHDkQ1RqgwuZLay3v2gdn2nceMYUHqLRfDoKJ4/bvx1vHucjpDPh0DyUMy8Geb4T3LhCdq9WrbCTMqxffU8/FTvUniujsyRb1qFUTr/jdzCRDfTdo6cpBrJaoZqUfWyPpc+TIVDaREHe1a9F/3eqZR0p9f5W2xM59FTvKnzOpjIObdnm8JM57nEkHDT6XcW89/JovQHGs6fe12fKnjYl/lRh7OklJDHSXffl4BTntbsskngD8c85yDKPeB2WXQ6j7YEt/IDCXJux6eN/sXWuPjIS2iNefMwMkRAv7EM/SE0gR8ncvyJWLrjrLCB1crmu1Ume6uheMBMCgdKu+Q2lM8G/94s3Hjil9U1Xjm/smM50aLY0pn77ew/4kolyG9LI8Sq0LQkK37Lb/QmkIvTFU486qdJQilfs3Zm8OEfFKZATbuVCHrq0tIIWB2zcUhD/WhWKk2RAO3sWYrNqNEAFifFOt14ouu5hRqbnJaoQ6V27rQFn30pd5jDXlOxHxDtkTS3ItEQ8HRq2aju9F/aT5o+Z2xOTu4IudpScXOFgZUZ9Mpq7ugnoIfHJi754Oj7Dk5DLfpvcUVlxas2wLXmI5gYBl9MfCGq4SVyxpzi+uoMp02sXlNNrPAjf9intschNTKUhX3Li7d1RHaTK6xqCIEl8oZ0ens2bFDyvBCYUpj+BmHdRtbzUdVFCqzPmDbCCw+JWPRMGFopWyNfgqs25MVKggSiSV8DIaSTnhqp67Du+TtGVMRcPRqUwZCOuSXGge79b3aVRbkmQX9hMnHL/S582qaG29MvdmL2FhQeSAFL++qQWYIqV3yhb7VoJosHHcX3QfBeAoj5Ivr30htoloKovf6UXHhjGKZH7kRjol3cnFf8ntZOFeIFP4yv9ycU7Jz7aJA5bZLeS8oz0fxciKXPMp66rmD/+WWg1XJIrk2HsAR4pqTgUR+R7ZTiqW/NShLPKF0PFTi3boJGWEPY4wCJ4zHb1Hc2xStbz9Wj/lqFl5Hd8ygM4SkYkdi2es70h+o4V6/55/0YrUfggZId+beunIszHxLV6A2MCoLNyXygrlVILyEh0qflyw1/c/AjeZMMd7S5S5/uG0QCfXPBBr3dd8QFkgAk35zPAJx8MJzuiCzTcdKqV2Z8GYJhJZP1/sN0mu4I4h+RLck9YWbKvGKRRybOCSrTpkqnmCdmt8dgL+RDQpwAcrA8r+2ljOMXSVyE88p/dOYhk3Z7H+VoFwxiurgcph1nr2RGybcA5VnZVwN6UlZuJdtLRBCJylhVivlIk9wzKCeJZJ33zX4a1NZ8kcHyv4iQWVfsbY730t0arD1jG69fAS3F1rDGswN91KYt7KD6iTAGx1AX2S9xCNcuCATnBHoRgDgbkrarAxzoVkXLuNITkiadnLcQty60TFhxp0jP65Kxl0IbRyL9mawvCrBcgkfzSEL+qe5xDK8LQ5uVQMmbKoKcm/s8XMOTv3NDeHOM17GGjnxIyhF+T/e36/zgYM19imZ9VD93fSRPgzlrqGOXyGnl4pjcoowm1+pEnpB+W7E4rsEPPiJWD26CJ8KtkYNqBLpegIM462BKhlUpqsXoYVZZpBbX1cwN4RdhQqN4wbUf/RihiYCFDa8crt6jH37K2IWw86/6ETJPLW8Mh3eHaJTKRj0CLFwPRN2PgjIVYvtiZoIJhnyVGypnDPwMdNEEEnyRmSPqHDutkBn4GHXJjjqownWxcsJfsDdxsL8qKRdveAFNZ+5U+cPVHPtZpKiQfCob3tOAn1nriAqRTTf9+u8qOxQlcXAHWN9ZERY15GVnXnZsu1X8d5c2yGikjeaHlgq9Tqs5AriLlVfTzQ6I3pcuSclv+5TUU4tcI3+5DW+pWQv9EDzpIYXRA8qRKrXFrDFJwTd0wlITbeiCNeVeWh9m8tLOmn3EPx5lbAlWel8PsTct75cV9LF0EkobhxYNaNk9GBTec87mOfgAkWd+CuQGfJ28VpZl7pB7jhSLwoJ4ucWvHvIXes+KXMzde6I86moGv9QxBbNnB1nbA7BRP69l5Usa2pkOq6023mNOVNyW1Kx3mdirsrHWl9ahib1NJKsVLr7dKMRIAPELAFP/44Nr1mg98DclYXkHQgEIs3YeyANSG0tEwR1Kwj9gzydEClrj4N5D9+OeHGad0Fmc8cxuLSRrgGB+XjBIDzDU1v0ui8z4uaTQfdu8pTQobeTCb8TD2iHy66cVPAlz1McVkaMvigvOSrfZc83hj8KWrZbcutm6QStt5enJZmh0DS8u3lEt42ZlO6Ep8+jfBeAc4ONiyyh4WipZtXiA5SSV10sJDlwucyG+Rtin7ie5zrnANBQ4OmXWlK7EuSImzxGRy1nxg08seHbtXEaPhQz9tThwIaECCwQEoDgRD3hI+FHGfci+eWUQVOJy0b4yofD7MP/5Lzj+8Q4A+M+PPgp2U0o7IzvlQeucy/I34OnCwbtcxJ6dKoRov0UnQa4NgxqXCPbj+LvsPHFuOL85xiRrBkoP42qXKxFtqm/SI/9N6DWqaidHvzbbNEisOPpo2MUL3AsYUyiM3mshqJmwdTKvLLzCtrFPGVcjpUnvD6sSvkEkUUEBl6Zj/xGEkmYY0nuQgpQQ2LER8zCzvDjJFycu2Nd0xjWQuzJ/A/zYegrQ==
Variant 0
DifficultyLevel
694
Question
8x>x2
What is the largest whole number x can be that makes this expression correct?
Worked Solution
|
|
8x |
= x2 |
x |
= 8 |
∴ Largest x = 7
Question Type
Answer Box
Variables
Variable name | Variable value |
question | $8 \large x > \large x^2$
What is the largest whole number $\large x$ can be that makes this expression correct? |
workedSolution | sm_nogap Equating the expression
>| | |
| ------------: | ---------- |
| 8$\large x$ | \= $\large x$$^2$ |
| $\large x$ | \= 8 |
$\therefore$ Largest $\ \large x$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 7 | |
U2FsdGVkX1/allcETKaHdTC9JAfzdUM7xJeEvTQ7eA2mmCDrnePBHY3J7h8d5Q7qtFQZtiR9+i1bTsE2e3G9EIDR2Fyz9n8QZajQVviS8YKKqdaf3+xVHskZP5aSBw2IAPx1lxBk/FagCQlLqlVE8GzUwwQZY8A2sHuuCuh5Q9HH2tFkX0SO23Tfl5RDKzJlX6AUBcsqYuwpJz2cjKwesywe1xq9Z0Xm8FmxdCtCKa4/o7+dOztkD79M0iktgkacf/EvNWIB3R/hKT7FJYgTSIFFCLbTHXHHy0g0z3kv0INace+XIR21MAsJM0nWPzhC1st56AvXcoP8oE3jIse+qFgoH5Gd4O/t/fh1U8/HWavp08rtWNa6OZkklIssL8je7SCtqfUiuV0A04Nh/yvcj9VcD+VeBqVTEJ6+cNSGJY40NLXR5c18Anv2bDyzBVTr8F2c4klWUWrrtnfu7kWrf8AQAiZrD78gwkb8tUw5YeoGoruM4J9vEBtbbqjdFV7qVADTL3kKgIwSzKUNjXSXknYgtbSqZXBvGQmlToj2xmJSLkBvYFw6+XRRQ9VQX5ZQReEe6gTZx7N6qD0mXPKiyrowwksRhliwoaUQGCTSI0yDD07zsx9DrHVdHG4A+me4gN9MUQWxMYjj+V6AAHVC/ukHUT8CasTC5h+CDeIPFoViXWRFH5DpUQmInqVNZhIkwkqZHyHHqXmt1GW1jhWJjk9Oh1YuBMwOrZbIznWdh2ZWiAthAbG5VW+QLB2CisFBd3aYJ2WObj1x0Zn3Tmbc7Y13VB+/BlKdcKRHlc7kE4QCrRryf43gcZflav00ZLUqc8mNBfVbhYpQdDRAz65mp473ahQnHWk9/6qdn1pWy10hfIgbwjMyY9R4MlQ/UmAUXy259/wwrWaSkjS5W9g/i6xfXa70fc8z3ud70eg/dcHDQXhoxeZVk1Bf1Vd9CofMw2cSV15FMfddK8TU6AZUkj0icOc6xacl1WZl5Sc080ETLvCNShPsNYXD9FgpUBXJaB0h39YFHMiEhy3nPJvC8OcExboy47l5oFpzSUViWCDYlhaloS8nSqPc0ZEHuW6iOmqtyUCtghhjIvwB5WDi+yeosHyAbzcNojTRwJuCPHemldidUo4SeTSeSwsjvelKlUYm3giFxCbtm7XwFCrEs3IEM5s8iaM+F+zpgKZSnZwXK2u7e16SFTW2F0TXOwxf6pMnvFNi44uoUYLjxs703VWbcKNbw36fi+j0NXL6Lvd/N+aOahlZQDe3Az6/D6Bg1+KfXx3KRbqotol7SFgrMkR25sM1eFf9uUwvk0cG3A++UBbGJqlmxxj3Pajj0PtVdIgq/ncZ+aJH8P2+g8fpcbHmQTKROShHLwERzmauQ3x6oRNshnG6Z4Tgc9kyz/BFb5oBDLb9CJMw1d7TkbSemlC9EZvOcKq7lCbtim37T7KbWLdoE/9Wivr0Yxejw4Q0BbH0TO+PY+kFlylmnEywTHTkjlaMHlbyp9KQL4iECxYyaWH47K3dF7/sNdOTbJBc2VMUlBHvrdxnSaXVe54vl10wfvdoyN5Ae/HiYjiThFYhmEziwnz6s7J/AyovXMfno4UbAhutsRidUoApSG4Zq6SNIrc9TzrVpGuNrLGrrBV1JMjjBB05wwMlF3OiScHjLS3jcITfAurL4w0XfKXbvV55/G25hg5I9QiR4kB1Or+Bopiv3Mtpt9EJN112aogYf8CY8jGJlFIz2K98U/Y3OjdLxlNwdJEgx6XtpOpNTSOc6pxOp8lBYaWVKbEFk3r9ksrVMHwlMp5zbv5p7SxmN+yA9IG55v+SHGtHWCatUIMZRWbRrfZjGRwV4gy4LzEMYn8TpZPli0FJdruMAy/ZJOHqhyc8gXnceHipjEdM2LZMr5zAvpsk0dBf/KP1L6JCR+3AiHZGvvUVC5CJcN+r7kmtFWoofzZAsMhZrO4EKyPDjMPycsr9c5Pg6sDrJQuGxI2/PhvWlWhrziPIvxOcBFg1KV1Fs28sxPB518OEwUZGtMtdloPI30mSFfNj61/7kYVmXgQk7u5L0NDLBD/J1Xb1bYYHulww0r+TiMhLMbaQnx51gPJ7r22B+TZUto3zq8Eoj42b6eZuLwl8c8BfrOvcS2vtR//LlcSopldwi/aUPekBfz1iYvPupH5gYuKfe+gPsCfCFnoCrWiFoCf6pTDs/Ayb5UGudYqY6lh/quZ4AgGORNPw6o4GGPBJFc0vZuqXtTGhO8pJk2vrAKWsLN+SpikZBEv5jj8haEvohJiqauZ8CheuZ7kNqWbiiXkwkh/oo3BxHhwOg8Yl8sg/KLW1PXOxSRs2Rnojo3ZxLiYvtgvbSP8dppBX85LC4sBG8kvT8EXDLLd7xTgAc84zPZZbXNri7vRg2RcWNyE90B62/+/SYO0f9bElsP0jHAQYTeVYo8ZyK2pTAFHQ/i9elxAw/r1P9M0ZVt285Vh8AVQQhpbWFEysyYSOSUTTtSvsNRg4wcUUC3p1TaqVy/L41ThnYDiFCgbS3Qo2P1PEm4rh66Nq0DNaGiOvvM3l94suf7Z/4QkoPLBwPNAIZV4tb4T83l2DB+YZvqYLXkLb4K491CVtDuCVAUFuYMCQT3QDDuJ6JWgv/Ft7E9O7VE4xT6Wh8I8UmnNzeuetglw9N6qSKjsH1sXHmTi1cA/94C8YbMj3XCAq8/pEmBgo1GXO4LICL0o7cUdZ2JhfyUcjCqbdzvmIVRLy+UmVDrqs5CFlrvVEUQGw405or5qy2ZGNv8FhjHGdgPAePrwCjOkkMhHInF/N+vgQv/Y3RqwvCJVMwSbUQyB95Oe3Hl9++nRSpSpBya3///tbGgSGObeMNU4hNNhwCxt+JyQzWnCEzQPut2jUHkTnempWZhANxi/rOjUv44HOcw+DkLQM3wCpntjMqtGtR3xBiHQkSqFlKsyDGW59CVI1YrWnditls9REV5j6I8/lRyLxmvT0enYZuKwVHWze8bsUAnZl+nNaJfdtw2NVwmzqQ6hsO60ph0EVNCj/MvVgk0AD74rtlUg/O9e8/zgMj2gtv2Aupz04jY6Rg5Ivnylk6xXA1HjDa3yeHMQNPLgtcD96QBvK/4rBTHoE/ad8JGf47LxR6AvgKmamv53viJSOLpmTbWHAIHwI4L0Gy5nJTNMp3VsOyaJYtRqdbaVZkXOjcilFlnajwdPOKt+Kh0onxxqjjKLhqW79FoL/N5Rq9l91M/Bm3bvfLEiVwAN/Whf8x726L4j83vfom6mQdfhiEQA+sYHgWIIKnh301cSHNGIO4j0N6WlGMHAid3mNwBXUqcHvdJpmfXcKrj9CpK6VJzgT+X6UIh9AqgGbJGQJxiSNUgeQqgsQt6nqZToBuYtx04etkaPXEobA/VHQdZrdVv70PWrAFKEJFKNc/XppfmU79uv01gFVoAXCKf5xiMG2tD5JPBvHY13oSwpWKeG8SLKxdT7T19P1zxKw12vFFgci2RHUCjbD7pmylfmcsTjfE1WtVRJpF7HOHp4rA0MKqery4njHyS/sVq66mjCVLFoxt/j6ecx9BOpsFwwnJC8NIbWh9UdTxMuY92rs8XKkfbedS4I9LR1NMK8ma2b7tB6CHU/Y7rrBC/p153KHkMNHaXrafEBpfIStzcMo1YtO1iUZY/tgWO0HH/g6IvhQ9pYi0l5MIBNwSVHauBJWbcs4T5NE7UoHv6DgVljcg1sUBQhOR2tciWDaLypbn+NTYgKAKo0ToKTr3CmROz5kPGBSPZvFJNxlVcWaWE1VdqoyjmQphH4b4xLIsxYJBFNhVZGuMCpPaiOZewcypxvyoxUq+gBBA/DOtiB4Ij6w2zBmmDCfM8EmiIRBbQGCDh6fbV+GISrfzQJAVwiGMQRMIJOLI5tAddW0yJ4FOLMRBOwbVK7LtiNgakMngZ1NRfA/gWXp5BlE1rfH4B29uU+1qHyhLKpMn7llfxP4k5FymNFdnYu2uEOgISs7xawad9mMHSsgK65eZ90s/rYt5/HtYnJ+KugNLOdPa5vCtYcA1a7cImgCCiaUa0Q6rkfkxgiLmMeRK+ytQSSZ93MM66cK7DpazzaabUowNLEedN7VNR75xOyUdC9bX1EUfEYX8UDVLAVjkjIYUZcGIUZjr+/hD7uA2ZnpznLPV9HjGXBcvZPWBTPDX8kd+7N80+OxDDDgdrvul1NRYjTpnAvB6sDbiD4dQP8K+OwuYcvRNRjy31Be4XrPn50hzk6a4iv6ss7gd9dOlIdoqF+gc2ZdSFzE3mUgzkLmz2J5R+l1Hs2vadO7JgfU98w4o7xy5uPHEllWutYW6ni8O84dZRp90M4gKPaWn6Yxa2+q6aw33uIk5g+MMHZYu1yFke60xNLRc08vnXa4vtoMFGyKRy1k32GNs7EduxOF+VaWijUsBxp26CUkEpSWT7DKFKk1DrousyK5esHtSEV5wbii3IVPwMAgU1ZKYQXrURDWmrXn6cjH3HxtcBIVuaxt1LVm0kY8SBAHa+UktW/T9oAB1XaQiz+ckymL+lFgN+azfqqBGyoYX6rFhud1P2qrjf/JW75ut7Og65oc6ECZrwxr2Yi6QXN6Urvquh6/GzRMrXlxnkfl7+a63xmAEq6FAlXl2OLPEeu+8bC0Sf41Syw/4azsp/5aqkY6Qesjlq2GUgjryxjfX1WARZwusSE2cX3bGfvkc1MqIGZnbA2EwdNYJsiJDpl7L1c4gJI0c//LpY5D49AKuCZExlIe0j2w+9H74Uc1rbaHVh7S54lC2NS5fVLsWMv6NVdfAGj576pmtf2lJr2IOZmU11nDl+5bF0uvqxe2Y8uaKb4Tf8Kw7WX6eDgJIgQh1ZPR+ICHKy0BsGkIRFqRdqb5FMu0EubD6edeV0tJwdcBKLTXSdYGBQu3SBTScTv5FhFY6YuLX2JMqrHUNidFVu9XHQckiXjcW9QE+TLYMWWGSm3a8Pr6zisKJxPYYYxeNhNeN+UIIdbm24DD4OBoOzTbXGVZBbiFsSE++XZsKb9Vc8DF3XIiKQLGAyvFN9WSVY8xsFaDnobRv3IoRe3LIA/6RBUTQgAKT8FQzVu6jMCD7QULSRMTDZUVFXNl4BTqg+Bs1JyMyGalz5DoKV/mruth8YIxQ8RsQ12N3tk3uEZ+TbhqFS5R5JUclZgfO6Vr5bGIaPqV9OgBAhrxoSACGYPH2roomUqdtZRAAd0UO3oYO8CvNCLUgqlwGUheDpHd4pKQtG2T5M2/BxNjkAvRKN6jgbZkFzloYy1HtH6eAO26bq6Fw+m0bKbHfPvuGJA/L/8rx5KGTR8ny8yUw35yj84gKFQYQVsdsy71XBuDV36zl9zTl/yLzGuZEP4r7+ZSJF/8B3313Mh9bLnTdt/REPh+rsnATflFt30pprb1rUfKQZHjIa6ukM+PI+ia0/ES6v/uncWRmwbwaqD07DH9KZ6BzF97FbIII/sp094+pQ6rk08DjDQN/pYiQNeAXmJBVAaiiWWQntaFsw35mO3O+veinUkLXNopjeE/OMw2mZEAAvLlHhB33zUIRqm9eGXjc+EtStE41aUgTgmJkSIv/Fa2NmBO8Sprf5A160ySTu0EjTIvYOrYXIcYnHgpsg0Yck0+JTJFCmGcmUNu0sf+oK0dUmmnx2r3KlSOJkbkigy7LOeV/0bLlVvNmaMBfqpiS1RmlnPB83PevkBYBtuHTV+2/iryOORYhyvuC8rbI3968cb9bO4aQf3RrpGdN1NyYdWGRRXG1qK6TgrgB+lfvffW1LEVXghk7dJYkpiH4oFSB7QiD3NGEdDRVp0H39G4YumVBnb8vdKHFV707TuvQCoQfVoIXQGs3up2iAFmH7cg6GPExVygX7yqCghoq5b01tFS/hN4DTKP90ID0PW3ou7R6yXt+MBdaLrlo93f3utM7mxr+YDXY8ECwceIjJSbtCKH37+twcNRcOaAPBtvUtwVP/N9he2l/N2hWBHXnjo1VmlqhcoE0WoIcM0lF0VLLiQWKroKxZ07vYQhdW6Up+JzK6PGxrIl4M2DQg+AocKJHuz4ZT4xetshlYt/Cv+Scgl6/VvooQRJA4seQUDHhJvFDPozBiyXfXcG6Yc37+eTuHGJc+vUNxlDnSRioNanDrk7Zcjz8YZhlc/V08pj9w4fU/DfvoYcPXLLQRTAfpzLXk9KlJgX4WL+H3Q2DGx7JWLIfZmID0/CLshmDonJO0GsdIxrmS/WFHA1p7FomIdj/P1+YterEo1Io+Nj9fpHijOkhC5gIWhVKYHxAnfsdEZENSYfNcKqzp8m/NYbvNyEJbI+HVtRwkbLGbvG7WSDPMAeDEUg3TB5+hglALuRqTDaLrILMzRbx+LG05CAaHhbTMv/6iYZy0FRqOqjQf1wAHbHfjfspA2pQsZlZFRvRx5HFLjJg8SgM8/nPL1pvExu6S0qVp2DoymppAKWllVSuXa9btQSsPrDkvrVhKQ8suighvVYJ5UK6bopzir295JK8DqdCftePev2747CkwynMvftenV9wmWLYuC4/2jTszyi+4Mm1vgHN5j/3g9CAS/LiSuJpNojdFw43EB+qn5dm+8Ow5Fr0jLVayPsiQlHYBIXXOQ2uc7JkjIbUKzhiWAksSnjDXmJAm7LMdJFEeKex1tRQj8/eu//rLExNlIcsTAsFtYl2wr25jSt8LKg+xS+/5ApTBwbTP5YJrKjGBAwgtFG45uMUMFmw9d3l73oNCEIlaLPgEpkjPAPiAnTxKjTiDwEIuLdyjsrFtxHeSOdRRYopFsp9MLTT1rRWU1wXHFHhpZIRX29SewRBvBeZI5Fmxl5BOKuG+xVAtt2KvQW5Arow9gpXeZJeijuRUCwrQZPk958wbIBGzu/zxmPU6Bezph9B1O4iLvBCTLOg0BCj2V19bop83gEK4wdOrime3pglLJxmZVifFKHDoHMpZ4gxXaP6gICLDlKRtGHqPMmvLafjlSxxKYyMGUxpeAdl7bOxM+hKPqSjtylRkIWbsgRfKkHxTaxwCr2kJbO6AiyU20UNP7yrDDG1b3Apqul8cAgTV5dDJPORpg/S2nL6p+Cb+WkdzVGck7MP5nwI8ugp0gppbhJPwCGUblVAdIrwpwIL9IKHmgVsZ1BbU/egK1u4tritzEhVFIFVBbLqtPpUuQExFq/TE5A9KaEIuXV0UkeFjweWGT/deZEKyjVplfbVbbAh56dVCRn9AdTaNUrwTF4xZ9gzhCFx07fvNMhg5VHUe2XT9+31YWNo30Ba4pmivMM9ZzeVn2YLRZvIaqdxvyq4YuATM4uKoOi7lnr6fSaYlaR2+g0aRlNGSbZoyfdSnIlBi/EpJW0Izykkz+bKJRPXlY2TEH672mq8mHT2D8OTzqjSB9g5LghunF8V2CLDp8mxa1+6BU/r4/7aSVHSLq0EpNEi50Mc+Vmp7gJMapJ0cmonf1ioxiN+YdJXXVVvIRnznh5PljomN69loRvd1XNXeu72vq/KqbRvJY/w3DGcTyOICVw5tnbnlJLpG7xyylHSjsgUkWYapNVSZGjkkd8zcEO/Wyhwr9OIdcFUTKu7ueATPr6n1StxxPoFbJPkKbkRkyMAl5FCBwiT+OpZ8M6V+lyv+X+RdLX4WmT383HqaLwlH2bGfpg4+Z7JRFVA9dIN6t8mxo9/4xSq77p3qe+5J0p88gC3ruMvIfHCk7C6kS7io8ZFRWuvwByOHjyKLzZwOrrgrjpLq+OvyJexzdwpP9HxuluDbvi2bZKv92VbYq3nli4OtflFC59Nvvh0ikrEpuawqOrJQiFEfew7kCXB85iIqaPkhZXKIjuKQ9CXq/VNyYL/kQ7EIRSFcuxeQMLv+ustvKiF81RyiBdE1WQbCbUS1gjXHRdJ+sVgwnsifaVM1C532nZfXmg3uB8QDj/XDmEbHsdNG6NaBnCZkJIjS01rF73+DRpFzmECQlvFWo7KpKpO+Zh/9mhnVQ+bvjs2EaZ8PGGfDFyN7F4KLgolu3kxl5aqzyHZ599tkP7RljVF3Wtkls4woaZTptgyX2GpqY+XARb0HTZj/rQ0ZxMnQ0UHXS0ZyY2k8ZB9HFlI6pIYC4O+J0/kwHQEulOGRZVoOepPaWPjiSLEYyuYnWVVQ2SBNKK9BgOKRiYvko2b2vlkKEwLhyNuOL9Z/ZzWs6QWThlO9zjaq/8BmuVJB9v69TdQX3WZ+L2opSfyeb9B1O7OuEoZbmVKXWC5UqzIV6MDt+Sb8oL6aQ1r2iiMfTfKvGa/JfTOAskZ+vIXktljJ31iJj2hYkP182e2ONFLrfDDH4ue2QWetMjszo8HYvp4gSSmOGkvqF6lcdu+H3q6kabNo0KKAXzaNNj1sM0xkjE+alDzlyaN/unXD6Ai8oDPIci/khaIgkhxguJLuJYnNpZ3kskPeaLwBHjYIjdN9ijWUdiZfIIhokukmrknmwpgMzvi71f6V1ojVMxHIUZZ2eVcap/kPajDeXDZwZ12D2KpFIXcVM4qBhzxuTs08UXsgTcpPyltLSttlrzoBx4B1wKC5XVQhuFZB0/c/AW5WwUraB7Qra8fJWOjbOML65BQTI8zgwPyo7GB2w6zD/172ZVP0vDWoiwI/RSLni6qziBRcj7eozVb2MtYRQ9kOdFX6zAFUDIOBuOVyGa/qxQqLQCmpFe6lSbKQ==
Variant 1
DifficultyLevel
686
Question
3x>x2
What is the largest whole number x can be that makes this expression correct?
Worked Solution
|
|
3x |
= x2 |
x |
= 3 |
∴ Largest x = 2
Question Type
Answer Box
Variables
Variable name | Variable value |
question | $3 \large x > \large x^2$
What is the largest whole number $\large x$ can be that makes this expression correct? |
workedSolution | sm_nogap Equating the expression
>| | |
| ------------: | ---------- |
| 3$\large x$ | \= $\large x$$^2$|
| $\large x$ | \= 3 |
$\therefore$ Largest $\ \large x$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2 | |
U2FsdGVkX1+6uSp0N1Ww8u63FrEe13OXqq7dBMI9pynYSIaFBzYplwzPEGGKE6DPnHUMhOQ+0sTj/ylkJ8xoTL+k5vS/oXs1elIpEoUKsy0VBetgf2W4627w6l+sS+L61c+HZIbQhFRHHHwrSDLSCAQj7/xZB/xEhSH27pyun99mZNIevKbs2euOehAkUH3sPfxwd//ed2ytPz3wFoTPGVwVimJ8HVfNhpDLIEo1RDoq/2QwD+0DnvtZOPptiqV4iUl+MI6AW49SUgsJAJOV/47MCd2Q/xMIGpQEe0ApZOt4T0PHU02Rf9pQMqZLqzPn6RvPmsg5+q9ZKFLHIo2BOwGKVCZ1OLW1CDDpF1+fczcTJ1jdmBqnyzIbD6vcAqlqJSMYLGcjQeEWixJYu+tn6kP8l40KaHWKytAVMvdF/V5NxTPS6N5Ac0BsbaV+DZXtwmQMQx/3U+LT5LJZMyT6t1Y3G1kpmZfKhf2/H9991NNjYQR0H5P3cM2v4GLutdaPOPesySymO96hhj5NdvUItvL3N29uM25s+AfZLMKz8NqiDk4WLxmRpwktC3wpU1wbUyB1oV7lAajd6gP79yWXZK7txF9gt6lh45fIAlF8ynC7rQeM/o0fOaDHKnbLC0Dyoi8V2oVXxO+yOUcVJOFftSIXDF+Q8OCFnGKK4MOOUF5lE9kJ7AgILdyowT2i7Pf7XywZ05my2L8rN5rSYnyTNwC9TAFtaJZpzUYER77K/5rxpYvQA1KyEtAMUucTopqdaEnNowrG0vA9LwH1QOclf/GG9eU8oZHE5GE8NCEEH2i+6WKYDrZwiYfvshlVJLT+P74iAwQn/YanCSA+Vfn+MLhC/R7XRQoWwuUtqhEGQvIiRuUhGuxA7FdgqDhMgizg9rt/FKt1+WplcZM4naom8n962F1xzT+MDeM6TUxUtDn2qGZJ/snmieY1+s6DxIDMHFGehilhJnkYOEnVetp82fRP13miS+0gJ9WMzSqaXO1TAKY1HMMWWGtrslJySzbhX3XRzCLV3vFcuAEkjdoMhj/oozzEsvo4xG/OUMdHMSTlfzuTIeixcuo83PVNjuwU/pojUabc6/jGeegaT2MJCnm7oToa+MURCOXfM2IJG34nNYcPWuP4ggh4UDMBaekfmjfe4+uRLa/TrYItBt3PNoiLAq+oKNg2fceB+W752fHr9Xqp6t4ulFmnGYQbcZFOkxYTQqXDspF111Ll9kbXSQDR6qGdm0IAAwP7TDbuvvpYMhbECFFNal0xZTNP9JkfuDGCOQYNXvhwzKvS3Se5HMug2tHrYX0R9IUOQ5ar/SF+c+QtJz6MaAMVJhRBjYidXPxIiF6pUAzPZp/+LRV+hOn9eYQ4R+DH/vheDNMIWwswOgHusPEcLETTeJv1Ir2GQwhb7KkqoKvufzFvrQPhPDx7KX1BPel1stl5jXFQXCZkXLT15Z9fIVlKgC31i0oQM8nyi8hbcGo97zf8qt92axyhbp8DRLd3IIMS0QlP1nj5mPjz1c+HikgoYBMETbRmvzn8xHohEyZdgAlmvrRCv8EP44TG07lK98wjceEvM9nzl0gPW8ceOqG0zhXCMMweCiSrUCf6eIPUjy/iKhafJDxJ0E7jBQAXSPCkO8eDOGHGPV06LdOMOvNd4SXU8UnGD3Jubv29vqy+9mvD0SHUb1bMeDclm2PrEWTLizlRiGPzvHEIZn1Q3pfBhOUsUMFaKgmVIRKzAKc0GgFi1+dxYe8qU6PoPqm4ZfxEepnINSWvI7nWonNaMQl6I71t6c3I46arDnML9d97qYIe3crksMliSfi7RSDpDyDIJoV4DAV7XN9sEbSYPfw/PdZLpF4jBSmPR0Zt/m7UZolVp7WOCRQSdPFVZLbS4cH73IBcTeepSZ+Am8hHALMj/5iNf4S2A9N5PoM5a08ZscxdCrNfxzZfkd+J3suJhURHbXfwVukxDw5qyKCfHTKxCRNSouq35bwaJGxe96RSBIs4wqyt9e+TTAdZD8KQfpMDdfQ1J1tDLsZKsvcUUQwkW3VS30lBuuGLtaF0Od2LW3MOtn8QWlzjZxcWLEpXWWXCYif1WwreG2bUm79qvT/rAVjvMh6emDcAqFU8LF3Yh05fCyUkyF54BcPJ1XSLvYWS1QHvVoiEh8hiBZyZL1ipDQPXhR6jK9+QSoipLC653ymBQSUw30XZXT7ibQHRt+LvFqkzBmDJeqUPcTaPVzW1t+NVal6+K7lXE+Ih5oQeCuJbopPJ6mfRzUTg3BI/aspus7ybzDOuQflU1rdn4rhDUQWhA91jseP9HmC0UzfEdUhUFKpvh1G8En3Sf4/a9wdXbzNMyhbSPe8ilZKxuh+1vByocEFuGPXE+u40gF0KNSwVnv5uboOLM0o5xkA0LTBTwiVvv/g6sdNEsPhagvzRetc4v61IAbU4Eew546UrFc9TXXr8ylKreZF2RR73iF4/XKpNMFrI4gq1W7g+ZGrJ3NI6s1GoDbxIuSsARAZtUV/bwfSGCg03Y6XB8WC2mOHVY6mMKK6hvBJJ6VJrRKzRBiXtRf5a0KxSaaueyxBsKN1g4rheFW/AsiaJ710hHVoubJlwf2mNadpZsamLTTzxIOm82gLA0f3viw+zB0i0WKvQ4YNHereZ8WfcMExWtI4i34NWTI2Y3ELjkBKrpIMRd1xENYC+9rUrIKekEHISsFmTmoHB24LMBcKD85c8i6YF9HIxUTvIcDv7VxBX1QP+XydI7UKQ+pIUfPIwPPDpL2avF+jfvyAgAuLB6YaHUEkJDa076aIEvq9D9kT3DlipDaT/P+WNJQracYIpBYyEAARSUFFKvJGNr8fitKWL2TFeUM0zDigjfcasz5V8oAqRD+Yp9swHd/zbj1JaSy3nT4N0TfQpw0wmvTlN7YE6Or4qHRDlicIQVoEyf8xhNwfUK2kE+Eh9d4sdRXqDpyvuQtj4xSF+YlgS12Yq4SK4u8ZfNGVfV8ZeSeIJzOj3Xhox5kZeZ99hEUwwPJMnAK451tkV/wtOKHxf7gfYeCiWxFH0oDoDWpsKvd8/DNhVH5gk+nfFbroFIxAF9kbe/tKH5QHJpBvszPcG5uMLxB+4FX++IWQoD2JUBUD1t0UgbJrLw3JbuS0DSC7hHNoZh343vsXJXYfBQQQqbxgb63skEXHmokWpnaZY3FNtMAFi5qEXYBCCYWJFR6R9QQE50+RLFNoQDVvY+dlchnkP19lrSjkxEk0AlNkL1vuPvya+lut8b4pmtmCvYuJKP/fEXpuqN2pBu7cgaNgIaDuwXy4LXcQVwRJjjOcL7prmKBU4OFgHyoZMzdX9Vr7wxl1rYDH8xr1gt9T0CaVs57hFidbCHLWGRIrysNBIUM8qBJbtFnj5oaBaT9Sy92zisMHiqqXwfCwkuIvm7doNFR7PTRh23Cuav7GATZadK/xDpg/Nw40H9Ods3VhsOaFGg38bLvXg97xr+A7Qp0z7/0WIr2WAupU5GPQG6V9WFUnQg/FyXFjO69QyZ61NKOKG2awegjBO1FXdWYsjDVTByQFs5M5oRJsuovfZrYCFJ7YLWPGC+6MV9KBwnfv5ML6D4w7NYT4YQ7JSxi1or8L2yVOFh66fvyBVAC1w4HvpxqMryBUqAYi0uvBkIoaLC2CMdrf7ADkfHQ692JVZMPXvznqAxZUp587qFQEBuZAzZroZaoPnEGCeBBIwyJi/HnXV+OSU7/lFB1S1WMMYGwDuMpzkM5atKpv6nHlxkrm1YERGlDyuSosQxbrVpQ50VR92GXTASkVaNr5urGjx36JcfGA4Rm1G97U5uPrgDgWfVCfJbu5hUAkvx6CHO50lboJdcC/y9FfxM+eaEOD7JwR7K7bAU9/pwSpzF1Q7i/KM8+vGJ19YQDbvog5SbQ5QAra089nttxXt1mRTKcJ7frIRbnSZGgsLl71iT0VSqKfahDNik7CBHgm3TWO1e7IeXCwpgmYowWBo+fkLLIQMK4I16Il74SOUNfI0vB9WeKq/mb5Qx1ZAKp8+OrlkloXy81f+K5o+y6DsYz4AJJ0Xq+1uFiLeUnPZ+FfNRkOqnaKmS9MwecUC1Luvj9/0WUGuc1Z8AxY8Q0AP9VJtWwf4mTOJeJaF+9H6uvBphac45p3uNG0zpRSZ7YwTFZwBfoLaDgHeg9ISggrq4s3fXQ/RsJcnYJ+iyjGlBUKOVnxO65iJKUDuotggDmGONsZqQLaQEFUWT05bp4+5BpRQUYEwctEvWHS1c2xmyqlPG5Eu93WOj0rZ4nge4kGb7KhHrewZecHSCuVQx9J6ZMmSEQXjbstSUrS6Ut+fW0BwE0NHZCTGWFot+d7KtWrR6YxsymPmHXjlSDvqk0wUKTBoWLP2/aW6dEkG+cNSKGQzeJ9YYYNcRa6ygJIWQ6PKsClSrkpe/3EFJEkLPnCrvvm47EQkuaRT2bDzkqMAmyJ4RJgtDcPx7XonVS9wZ6Q095ea/8T2ryCOep8jPWW/i0bPe9jqRD/hMJJWwVtNYJtQp9Wa1X0L0EID1HFoBDCcik4y/Q9S5jhs3qR9m+1CjrgxMJoPLo/dfr0/OlQQxDzYkdVHNHBJlE6uuqgxfoYywwyPbz+pTUBFLiC7h4fsccSzcbDXTB3KybH8ZGxJX2ZHPldzligsU+GWAS7c37HrNY5+/s7Ap79UcPWLYFX8u3rwXxflxZdxlc4TpqRzOcJY42i6WEJwsZGsoW++xoe7Fc7ZFU/o5FTMETu0PXpbgk24l+DAftk8G5OuasQfHLQapkAsKZVnwRs2M9u8BVuDiF2hLy/KSYaRy//Cu15NSUSQt1m0dg4zwO5yMh1zdmK4aqtep87zhxmy58Ycio2CA43TJbTN2UMzZ0/xFdUzNgXos9m1/gOMfcbsec1/UCHcWHGGYPxk3Ydqo+FV8OyAhWw4xpbHloGG4d2x5UxYIICLYQTpaX1NpaMAer0s6NHF6WP2QWUcp+Yq+Ya4FqtrelHAcGZaa8A1OVkdBSFsOYhb1B41XzXhZbnIYZLflzmOaFxja9sGqxqJ9WAOvCXXtmj0SZCn27Ips0yhI+64ZTqzgLHWeBqvObcDDWgmpXtDOtV9nNUNFnuAu/gb2zliXJlRev7wmF6QfG7PjRKZXV5V+90I442i/+t0Tj/r/00/gEEOkhzXixS7R80WRIC14HawRrbokmkrlek5Qsp2Xay3w5vsW0hk/J8uAQM8J2ib7NYrBpc2bErfEYuPcQ91zFZFdcnQouq4PDHA34dVTRu7DqSYnN3lJiopWm+ATdNEyCL9kMAjSRyWeSx6CgoUkqx41FsydoTkPQAcc3TW0Zn8tJjrAbWlgojk2ls+qYMIfvIkgNzJij0cyYpsBgM+lS5N3nkxK8bnUGYkmmLbyzrzXJ2Y0IebIoXMLbXYgiFYY2HrEwLgQ4DezOW9K16iFpYtAEXHr2PgG1Y9ZF1vzjn2tDeEAKaOgMv5iq0GvcHEV51vEaAATsyPlvK7bWb+b67C7iiTuX64toxZ7KCe9N7noRTNSIMCEA0YI2Lmj0WwUQHli/UEReqW5vuV6SUWyLiBNC9mTZ4dxdD3mL3kAGIEDGkZBVr6B3g2XMtDSIh7hUIxPNwN5OqVg1gMQ4nJ3z7rSz4s7LIriQOm9Lo2/g5P9Fxb/zpuY3K4Q+85qufU2ioU7Znokj6nBvOhGVV73+2zhifwYIjuWncstI6Q6MVuOjYSgL8ZS9hOJ2Yt/1VIjtv2lzgZZZbGmAX/YftSc4R6pVW0CKUE7Gxzpf6OHXY30hAgAWIts/pKkznepy+JJbIoRhHQ/NhGracOa/6q6rWpkUpOh9GBjtr9dp0YojRZHGkX3ukeLxvXln1wIvZr7+VlDNSBTbQna84HQrh5sOoUOvjfOV2Ybo/MFB6Qrlf5EgnfDrWOTzfdObGKUgBGw7DyaMZj5sTjE2gN1ckzG9wkqp+pgHfyVeWQ7hEgewl1o3dmCN+c4vpyj2p1GocQbLTBDmmV5bmsYQtrF5I4NBcJEUV6WNp9QfhtfG8viFqanITJvNA40mLNk76MsKAnef64cCn0gWOi9q/s3TcSnj0TurUi6FJWaZOr/OnKARlPNbmVdsHetGXZIAuixK551UqRX6mNGlgWzVi5vBczRqXmZrhbTxME6vqNOy1tR6w4uVvN9aRizVKjnpsfQAR3rxccJpnrpG8/8w20xKvXzMYLeJUwjBzyKYUHErc/0Q44aGBFp0V1YKYl2hOnQM3GOkpg/0d5npWcdtJtdoXy2VytGhDbu4cDOdj2O+nx/Tr0Qi049/BER3mzjgdFD2sZAuP8tOQ8agZfhLFczO+2QHEgAELsxDbjdUUxKzXjOK9EinE/B+P+vGf1dqaQMvR9yd5VIG9qWp4K/1lGEoCj4VVsUf3wh6U1pMcZdJAxSqIdBbJ082drfssrqVgBrVOuwyFmo+TTKRJUgd2EYgoYC61qI/B9Ybh1aWt7xXqEtwmiKjJkPcwpXc+D5/v2yZJF3zvQzV/n6kFuHmm68ZSgKV5858lYa+KIjiY6kCE0V+T/boeeIPH4hcJTTS3Uvyy7xUdL7N9OSsiZk/uPHkP8ReRShHLbG33Zf0WkTMLfM/MD0cgaRHqRv8VgowS/n9RULAjyJqsDwu+xmCWf4V2WYXK/GzAfPTa6AYCjScisPSh2tsbUfua+mxc78dbPbxYmuRUU5MpKnLfDLsIiTGVLApOKQHz4UdsSCrtfioMRk5lJ6yhgs6J2S+Jrkj5q1ZL7fUDWxgZM4UCiMlDs11jZ3+iqqDCr9qrb8T4zS98JS/e+iJoI0P5iZjbBI7RAV3uvxH6Lh70qNME27y8eMYkYgIUGNffiraWrvgB/8Yftm1tMZxoNFcUbs7AFtvKkiZvss41wUxOq731oE6E7G8pxZ5u4I/iLgOjnjLF60I7Nz/zOcWctngs+G+zO5OGWP72+rXePTImWpfLCLmv7Y7QpxrofSVtX/bXS2HB1JBbI6PNnmg/z3fthTPuekQTubKDvR+Rt0R+ReqUrdFU3TdPiG+M87NMkn++DhvjWu1Lf5z/k8jM3SMFM/UOdKCaLGYdycsV4Ep3I1pC9qJ8d9wOv1UdKeLeLU0if1xEgFRs+c4UfI0rOP0cWUQD2ODdd5w299qCBtZQi8mD2e/inJDxgkSoOIGud6CA3OTwnu01QLa8LHjGbROYUEGotIpKip5d/Sx+PkBFj2LfKJ7fWZxRFKf7gEU7tCf61ySuZQFJi5YvO+6yFpYRwdgGe7GWbSVzjech7xgnLZaXrmf02lnc0cbxAnAm+p1WcxzkW014k8fOmqOM/laelV0sC+uRxoqNYD10jlycXtdo+xaKvfsIfWOYLr5u3SLMxOPURht9CZ89eZ2W6FKjNkiCWtDF77La3eq5rp4fm+kcNXiIyvW7AW8/moziGn9W+AA0mNh7hFG2AkrpSxEwSSENfUNvG+Lt8S2fa0HwVcn3bKznXrzmF4L11CAf6O3LEeVkigShVk29gHvTkJykCHAtjjnYK7B2YTVL6/bkSBkDc8emzPtsGzKmq8yvCe5wsSmGsUXJdrB2eyBYURJaojQACVkMT57p6T3LbOpGKZTkP+I0/ojc58mZk+lIsjme8VdFJOcE6B9t1Iia+i0yaR7O5dNQ0ZQl+E6ctXHFPkRlOLoytkwNv2fcZRl2ZwqPL5yOmfRp/oMNXZSn77NYpJ4PscuMX52QuAH/IoZG8I7iK5wvfs/7Tof/WUn8VRYlVB6lBANGoJ5bAG6kOLwLAhgq5byS2o9yUn8rBQehHAnEHcSLm8dLMzLm+1XcYq9dfL0VrDKkGjE1gHO/b4Ca6t4Nfs9CZ0FO8s6+2cZse7zqYEbti+5ZoSsaF4lhwxvIJvqLabUHBpBhNF/X0MqhmXq3yxCirtCupRIk6Pq32Z0SwIRyE+zInSxmTvQ0H/kBq55HsAv9/enfGeZS+RpG7ubzXHxP4U6CASMa9pQR5DFbHfB7+eCaluDwG/BCa69Ium2TGfSKzwo3dUcL1gT3Nrk7acctblDssYdFv4vFSQAFSCr5alhsNlPzfG92kK211si/UfPSYJNee5us42QF5BgBJ+iZvysWzg1Ac2JwQ3lftilfNJRB6/HabSN7KLvVIjDh10OfOEdYMFYhJCEgYXVGZsm1isyV5LQ2EmoVS8I9lqABaQpY4jzChOkOGMiqQ8jjHG5O4cf72onN7Bci3gPKAt4PLTSeMTHXpnLqLzPxcZwqjZvSVpNEW/M+BzLPYYs6od3ZC+lwVsGy060L8qjnXlsIALK0aZSsweBxyfW/WeJHp4tcQp43YX++qUQI/EX5qXMgPBPkhYcmGFV+E/qe/plcP1OT8bX9zr+zgvlUgVlKNn8cZhQWcbAaw4pPxFAST86TkUJA86iq/wkaOsMY3v1NDOE4E9qx7CI11plH09Imzy6OpCPP8Y3dA1wn1WimARfB5ig9zPt7N2vUgOtscvX1hWPuijWpD7fAHtUR23sIZlMPHJcsCqN85XN8nDoKnML9ak1j2vM1nzIji6BqxL893rUNfotV7SVFtwbTzAHPzGMSZhPniGGMDWO4f7h7CGSoda6obxjSZ1rnmVQxDlkxwO/xyAE+NS8y8sDDRIDlaNpx2iFHs/OUuEe/oPBnXm0EwNFxjNBQ9ig==
Variant 2
DifficultyLevel
693
Question
7x>x2
What is the largest whole number x can be that makes this expression correct?
Worked Solution
|
|
7x |
= x2 |
x |
= 7 |
∴ Largest x = 6
Question Type
Answer Box
Variables
Variable name | Variable value |
question | $7 \large x > \large x^2$
What is the largest whole number $\large x$ can be that makes this expression correct? |
workedSolution | sm_nogap Equating the expression
>| | |
| ------------: | ---------- |
| 7$\large x$ | \= $\large x$$^2$|
| $\large x$ | \= 7 |
$\therefore$ Largest $\ \large x$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX19ciGXyxf8GQFRezgM/hTvKzo1cX4juM2XEpPdB5w5EbOoY+mPKuVaxJC6BDIGlprhsD1W98IuAkGVBA/EQTEL6EFAWzjYIy5p9Bw2n2qOHWs+mjl3ZY2ZPkZ7y2NWtf2xJVUN4IRDvLErKLKixkDKjAC/vvmnHmGgxKJR4rWUN4MD2g36qyo57I4BnWfD5JI6GBYnL49zdUcBo8AMxg/qu+dAuldUANvckLJo4BHWakYQomxqPfq/ttzgCSzF7+BcY6+g+8n1dOE5PH9YCXcmWgKkNTfw+7xlehio4s+sWQRkIzLelepGfFPqjzc00TRPAsbTP1sppHmAe89AeChiZ1It+Nf6VwF8YKkdgO+0CDbmWbjNfLLK+3FhZusUxESdbLgbtropMrYalRQJsv7gyJBqZ9b90jgBPofrqLocxKUjH4bLshzkpGfJXPsRZbLRKSVn/gH9/KTMg3Dqogi8GdvXgJBYXuG8jJHIOKzaKw+zxtXlaQ1QgdkgeBJdiUR/ykjQmQJvJfOFlECDJ0j63+hPoxLVHVk/mYo8S3ZH7f+LoZf7Qd5fLGsma2JL3FzrwYnIbNoWQx9mjlaCb+LGQfx0QnrDSozdmLMwjN0uwP6tSaK2riWKrdZkbVEznEe26G1GbKxRuLQlVfAE84bR3E2pUCPNkS9mz4JYHZTe89OYF452zrv3YnPVM8C47/+Ro4koYmm1wI/eqsw/PuT5PznWuNpuzZ6exz+sIngepBDzu86UtZp1ghLl4ke7YIFFDZwt39JedwioyIliikB279abuMcXskp2OBHjO7Ud6+8SbmvD4c0PdJl3zh2Bm5nBD2KnKSQNzN0xKmcVtC4fv1pNWcoD3RRox0UBFD8MTOWVn/cBcENMzyGheASIs6Y+3ROofOOJ1nvcA0jhxYWx5Cb6MVuiA72y8lhUa72D8EDuun3wp6D5q72vg4CZhkdrfsWPenKvmoMhXdAlrYU7pcXZcnprQhaLsh4GyHLWnCqusb0iDEb7PDKUEhQ+aMDlb+zykHJzOJ2bbEF+MT78Jbbqjxb5ty1CrEEfu5oqRSLohcMVxqdJTdjXoU5VHLFNAoUFB5jX5XDh2AVQrIGqYFF9wN2Pt0bVE2RgqxSNDeXmDXpbsF7VnGoJv35yGikEFe4wRMJJJIQmoFgYgOmaioxbDQfIxAKBsWCEou197c75wyq92wntKLijgScSXvKETdIMKZETEDepq/S3JwYxe99M4cTQ985fVOGIivR6oWT5ArIKxsgnli+EhNzXivuuhVGPxgmVS4IKpdSM4br8ELXNHLR6K4r39g77ldu/UxgXIhLEIExtfb8w2CDf/CGPQFbzGNZP9F2uMFRgH4VyYizgJss/+0nc3CJc+pbx44b8h5aJbB3z+i/sn1odGcO5dfwnL4lMoj9vRXAJg3D+TMMLmowkdfArlnay2W6suxmOUDG2Q+MQRRo+VF7D+MT7XZZ7InC9ciblNrhZKce/CCcZyQuq4/A2QyNqlMKPtyVRpjTvM98wzsMY2QYzHPnENXyV0iXJHDOCZx6/nxxY8GrBw0mJ8Za4MZ7vug2ZMot7vCgtKFUYQQSQFOosuTIP1enT9I3xKrRmleyMyBbdzodpyQlZWy6q7uivkKUQ6GECIstvNFQw+1MCOx6Mqx4o7QIC4AkTbidkiNk7S20oDiCwaR99U+gwm4D6kdNX8kw9K/2RKrA7xs/OJj8OKPjYP19SRBBXq+kp2dBK9tdUemCfuxFwObk/B0XFZQ+Lct3tI7FByYJbLve52euwlIlxXbT8U8V93RHwIcV2l+yeRY85D0zYvSH1NT28XCf5Zcpxm7jRiSxaa0FcvkrwQ972joJ1/IL6JGtxofDxFdGvwKN52Tv2h8EWwe6Z58yjtE7NblSrzjWK372fn2OdMrmh25szqRXammIyQ6ghM5UVi0qB2rueGmZVRTCTMr3e89C/6FgjDyWyab4d+QY48k9/HN3J4VJlDODVScq0N3VYcmb6uMhem100dPejWMmtOxIEJ1xB32SOQCygoj9W4LwWZvy68/llAeS9QmHH6FATGM1b4UYBCONzZUv8CsmpPKTASlR1LDX0mBsG2dNncG8lAxOOgCJgmrQ/TlxYZfQtJnVJN1TKVHlCchkcuFW23Ps6r4HQ+0eDrxXohUmQBPp5Ver7Yth8QIIMZ53hRldqwBejT3vnJmwr7ebI6t2R4yC4kw1SwBffHqQEY8QS9nNECyzY8of5zkS0DEIArOcM/cfTOW9vZN8LqmwA4OfHJsVrOZ0Iea17Ekfk9V/fYzQDzUU+36guVXNhsVne6hWklnd92OYhv+7P6o/H7bcrotNj0brOQ4/bPRWPMg5mqjyPrg7uk7GFNU96aCinhBW8WpMBkfaPq+2EuIkHCMzAWFQGx2pXis9nloCMUbyfl0zUF0Q/j8KRZVzDk6hhgBuCBkXjviXhrgMV2JOhg7JYduuHJadg12PyQZqtj6xKFNsOVm/74KDlqjf8H7i7PT3Z8BcypmExYlYSMiuW21QwuwKA+UkxN79eAWH5FBTY5JMS/5wwhddsPfj8p8CCAW0JkEGu39kpdfl5+o/kcpco8gzReFg+P4J5d1oobVw3rDbI1yJQEJjYSr2i26Pwql4FM2qAjg5mDd9RtAMB1/Y7Dd5Heyk5X0caRUvXNG01uj3En2A7ABsqsYg/jbYdfeRkomzjvx0ogm41vS1pafP+VstloZB/XBvta7pVVAOiWKr0NryM5j8jo5fxaf4xsU5rqjWzEVGtHox7QDxONV64JjooD70zZlldyv7a2n0tjuZ1W+tn9UzNu4jqsoE4GUGEhKDMb1QmE9dwHAcbxwB/PLoQp0ikuNkv9wqfVMw6tyIurd9F2YBqg+BSFXg1XGyFL9I0vbiQt7vSF8bMzeZuU0H6y/Vi7uLyx3lkxbxKIDs4IwIQO7UUtTD4iniN6it9r0lgjHYyjoiTzjmbfoQu5tUfk1D6bzJqJg33BgcfWoV7Y9J/L47TikOsGGJ+lFu6PSbehbfb7J8m10JCimZQwzsY9EH+iU+mlMwEFo+vGmL47/QrDF6M3CyxJG6/oe/WOvcc4SpmFBnLVSSAD7Xg45Ltknj7DFDeyuoSJiu5xiSIkO46NWkNB2Efxa5d1by9La/voLMleJ5HZ/LQ3p649n74JLiGohJl+oGWhyIoe10pSuviob9kHjW5Yvwo3HgFZe6dO6+bOB65UMLlKHp5EvidyTdvxwAM37PsSROHUJDgnwr/eIzfxD0ljrPIFnLvdJgWrA02BERq9JZw2nZ4AZnTsTFj53Gx9kCTYgkihJgZLlDbY/mb8kSKwpsM6Gc/z9Q2L7p9+DxtPrFoEjYbxotL0J/yKYlhitc1jp7Whyz97A0yzQa08lui+exbdM2outPrbk19h5jNhTxCoS1BounRWk0vCYgnZfOrIwRkhsKHFhSJjUbzqRKAemPb0r6XTS5o+CT1377TQ2SnlKBVeCrLEzZj2IeAdeBs/VjS/SgqFkqJYT+IyBHQ9K52fL+WKZuCvGImxiq5Q52oa4vmkcHwBRzN+YNrP2nKhjkbJlP0y/Ac+862PPD5ANpAvBCXpVg1hsjfc/4fk3Mw5hwh7ix/26xpNFxAOF1jiEV5dBxpfF9Rc/g4N5/eIRY4XSiydkMB+NFDl+ck0XNh8N66FJ/yM3QpuNqvVY/0SyI7o2NfltosBeNnkUAd6zyTJ8xYwUnkZoTaJ+EjuCUPowssNgSFc4jo3GZgTZcnvR6LNa1SdOItIp9d3Qiozy5seMp91MHWLeD1pv66Klcxcjm6RIv2Fu3lQ7pzQMCcgGt81jNagaGAJ9xYiNCLMfet78g8qPV3H7QEhOqY0H8xwYwwsDT2dedOTjLug+IekL0Bw3R/vyekFRVXUYMdJ1EW7nHFshD99KorBZC/B4KeuxyBp/O6WUQufgjc0NBsoNqMLTsuhuqGYqlRegEACfWK9JBbC4XXDXX/EVj4zcEjKtuiG/hxTZcPI3idP1QB7cjBMecxD36jkBb22WaQcg+2YWDsFeEncQgm7g2LJJDuM/J6sd6kGF+R5qTnJcWchLkpdNHiV4nS/gxFQ2ACCxhiq/gzKzK79ZgaEHuRVtetiukG/XsITLA1ayWeuiOw0RgfP9c1tjbcIAiQ3OeSxG5IsvtbjOv/6cgm5ZB9QKh6ysAEFjsTWblHZ+TFM2qGOe1UGSDiuEbo8pqESplTGQHTh0v+8/iY2UFKH+rJvfUFLH+M+vZcQmnDGzCwS2San90fSsrzZPD3GfloOKF+wbPhPIm2SnteSC7a2RC0/3Td+IdjhG3ugvVIlO0OQGtxZqtJ5f5PTOhs5VtmX4WLtm58RU+Oa6pA4/7CYHkV7HvJ1OCFdjIScFXdggnNuNzTFPvN6XnKab0BIXUUoESbmuxT0bXLMGt12Dx3A6Z2IhsarYzkDFlQI42x/dVn50nMglpgminUJpwtOrnFMH2AWj2QqzBCmKunT4YhzWCqqCYihtQmF2pDpe4Qb5yJz3rhzcCnUYAmk94olZW/JVhvP4IFHO3ZznAFK08xOuoPlO1Q6CyYwKEigAyzR//m7b0Nb9JACfr0CtsHKkgrYRc3nCdNF+t1XWMSwkjCmWxTc5ENJugT1M1dfln69TWpe2gXDycaMMDRNKR16mecwE4rUpeL79jIPXMxbMhpv10IeH2/IdB/y9bTxdo/Ve2aaogrJZZD+3Pxghih/56LRFYms6oALEXO9Hivad7/ihR/H81hjq891+SZXtnlxLi+hyX0ng8d69m8NWDHEklfiIqX9sleo0GasnmlTMtS4bTadI0Ppsa8wnwbBtvX8nAmmJIJY5slEKBA+FJ5oXC3GD38uhaVdB54Nd8SGjdn9Mow/HDBqaY9kUl5dGZJaRHXUUe+Q4LMDVahYGBG8GXvc4bE1G6j+Hcyx/JC5uIUDPCqOkol5MIHviZnjjZz4C9IUDSNY6lXeRyZmE4KzB2uFYJLNB7lvb1urEPApeedE1fGaITIzV3/dLzWZN/Fg9Ulsq4AueUyasgYvcA7Ndb18jCXWUa480rISdzYsfd5B6Q++LJxJPLeJ7qVArgADFo8y9j6gKSpgvBNXcYPhkEaMe96DPqN85X/W7J5tMm0I3c/rQTEdiY9oSPprDFz+IL4fGy50IEh8viwCRa1EUUiVobfp/x0puKhGdXrzZSoUyO1nKqQcixfsG1TKaj9kbhiTzD1CSVRlqGsN+5CZ9E88ggqxcPuAQD1AngWJUOOftEq3AeCy7P3Bs/DwCp7BxHz0iylo5MPWxfM1uXXi85CAKdTYr02jGWsN80RCYggHsSfZD8+OWMl/Vh5AdrLFoA2RCiqI8UVqn/OUqnxVgjxTeXc74QZHCiu/Yff9iKyQYGt/YKHtWrTDh2YclNocN4LWV206h4ArYDuDnmHuvDxgD26fq03diEWblFS5L1GBjHIAWDCVdvk2zqKVmN5cEIXDVaJLp2sV0dzztdAwuRzLuL7BWnr0V78egKG6lIRhdToSfF4V8wAtifTfQNO1pgMQgZRP3UfBnvnnGz68zNkpVeK3lf7rf8JqkQ2SDsiE6W8mn8Fo/k6pvXkxx11iijmk2ziQgL5a6u1Sz8E3984c9HUUu/OKsOowW4nwZi6Y++2vaTDJMDjbG9YrOctEAuNvJBUZIIUIqh7hRBKa/fNXqWgjIrstLaR4feSJoImlX97AVLv4VXh3aFreQOnGXqgw72faRPEdAh/1rxIYQcJwmzAjBQ9LlAlDNwvhe7xPXgkFniFZkkYQICZ1SGM42t3tH/T4I4f4LVDftlNorxJUrTlffBibT8zHPHDjcIWoYkPMADfQG/ujI2wm3iJizUbzOERomGF7n7ggVO8IzTKp3z/Y/Hmt5y9x+JCtzrmCl2eZAUZoYPxESvcdln7Gqg8xhNuzmOjZIB/P5VJbKR7E5eMJZEh6WQBcmLAgNnDftkMk4k+dmPUUB1iyU34paH0ni9/Zd2BulWOBJ9LrGgEomLWkoEoDk0CdiQpYGlgMZO+fHG4VEI2bYdF1EUy8Vjf0puySi5VTe8o16B6tufOdKZRCvejpEBaCa4NkmvXn1C28ATPXLJAKXvwh5JEadHqiqPjz3LdJq7IlMAAStLw4SpVUiQc9psCrM3sbRhey9hyPmpO5kz5njGrXQZQYxvuJFvKAFPKBzHxyJtzfzvMuZf4+ndlB/J2+23XFIluyJelCNFc7Rh7IRJpCE+V6usYlQy+WkfJYW2N5e396kdEc1kkEpc6LYq4WvpNdJDIB3zO6s44HCbSK6pDe6X9h5SDpGXceh0TUpZ9DoIpz+8jXUZGXRa9647gXriw2qwFaEEb7qdXy4mjMwmy99F4ZzSxBd3YGQFHjWh+ACAbpaD/UZMU7mO60COpXYPCwMrsxQ1GhLYCF2SyxU4/rgfeydbUvJMUkRghRJNekYYXy5wCKU2uq7onaSK34DaS+7dS9ZQAEO80naGZfmU4I5Bx4FgMGgUACsLNYCh9M4Rczn4JsLaBRqOieoq1ZZuKNQT+yI48AM9JPX7iVPcpUt+BA6P0cZoSN7gqg5xwVDG5ewNxJKoQHYlJv7ZPzmOtmgTIvpgXEvF3Km6lgXmkcwym7Cj4FWVPGpACCK1FE8rFla/OclEoIqv/ye0iPLwVnSzgmvSEA85lzHulQmzegzkroP0c1gO+lPkYS7HXiPGbucvC0JRwWa5gGALCjglmcfAavpEfQuhtKfxt4a45+IAsAiXK1Xf69/Ix9vKa0ISjIIlKlvAaBBhvFfzGD0ElSvlZlYefPgN+h56pw93wA0MuCtsOYehHEACOmG6tZA+U6el56dcdIpJySjv0XnFWDkii2M8NXMNG+8M8Egvnpq7NPbVTBwbD+ccrAzwUq568/6WyKGo34Ipohm6B7pQ3N+31obN03Z5Hc9a2kvDjzlthuqe3JZKFbrA0qze4TjYaSCjQcBpWuExchkxft6hSIOGA42vIbhAntwR0aZSFA9jtiB2UGAg1vlE4wVPbWo0/Xjka4E0xLMRaaWVWmALxRsvaG2LC8BuXiuw2JzuCEW7cza/I56g7mXeQaV6kmGxnN6TyoWnSXymPoyFB1P1XUavv2iGsGn57O4vZpPcDPqycoiCEmghhL13dxjrr+1oJWJMoMEojN5tCEefQL8MnK2dsX7h5Q+w+tzjv+s+M2cHSaZjec7406IL++eGkABPMs9J90ot2z/UzUIhcv+j5r32qNiwtnMuj+vKvudtyfvFdtw3q3iAMP3OyjhZhkI+RT35AZCdWnyh4dhu9TRVez7VBJvRRZTR1WUIgBS/SKNUvRXsGoAcY6PTZd6iFPvHNSujbgcxTdKLXqIKcRIBm/TQCZO9AdkgTn9MwyHsk+JrZX4eSAUXVsZ6SqVVMizmwv3gSWnfpkDGrVVBcCftnYc/ZgXgfVbP7fq6HHyA5RI8Xvsv7Btj4Z57777qgL1CDoa5pW96a8CFv7zJq6cFCvvWvr0aN7L7G0GdlHBkW1EK4/ms09gGDWe3mltgH7CJSaY2fcTvhU8tCuiVwH4QD10/pX//cpMs4urRZFgHD5hprJfnV4J6TgkVPTJLVD7daMQTmrjk6R5XlHfrMBX3FxFmsQXQsFNzT1CQwdfuwll6noglsXwfxrEtldoXRUDa0TS3+1u8VG4n3+ereoB1GzQ86Lg+/KOnlV1m+cpdDy5vfvT8LBJiWP9NmBTR/RQZhKWHYQF8badpESi0iaXnCbVTrAUGVcfOr7Nj0Pgp/7sb9iyYi+7Y8j90+wp3PrIyGx3Rkvd6fKg39xgPRqhv4AhP5ykQwreEVxWgwp8wC9zJfTmjHk7pEVtsJzG2ud8eWS/mkon3S28dSizQBrg4dTZYGjOn9zM+qoeWQ5rPp9uJcVmUlJqQ5eGTCC8XNyrFNHisZ6HdwT9RHh6U3h6Cjumsx1kmjNlmpsivGKKq+3NuCg7puenG9PnTg5fGtNAsxRR/YDjlugbmB/PGM/bzg6rjHDA90BmeDApj/lseILYHQ5P5oBIrtZgwO/RYcFu1akfLu4LQOAe+DO0auD6IqE6FOyeNbHNd1uZ7/Jg+qmGJ4YQ8e3SFdLj50n2E8yI97wd/kBJF8k9BY/KUH0o+HhLS4CRsPdJsPURyOtGd5FzbXIkSVETIkzwJ/TCG50N8NDPjuzY8Cg8SdyRiK1e1lssXdNs+dLo8eWT7ItefiIc1NbJM3kPK/1LBcyPwF9LNtk27/HLFLY7Q+WDC+yW9ZgxM+YAlTVta4JFivHvKNnonOPHPbzY0HYNOsfFuhT5l4ukQyIcVhmbiyBHhgTnRdqzw1+r7Hbn+4ISW+oIK7psuS9AJ+gpZsT9Ji5UvI7dqOte1AN38Dccqq6b7albrSN/kxqOy/3bs4YKtqeAZgEGBsF3YIk/OjEi1F9Tl6fcvPulyNyHTD0yZ12a1Zth+NfkcwRvG/u220DttCK7HCVdKCKlSqwDq5jUSsKjY7IovKP08f+NKHk1CIF7IxCFAo4BQzSIYBjNm68temwsa5UWp1kOiQn3OzAMhvc63+zSBAsG8vKkjM813SG9kXTHQS90UqmD3Scpd/lUjk32DcQ1Of2osl36PE+IE3xrueCd2rxPwlf3JuydFpNobOgEgsyxjYk5RIbF0Bl3BFz8VzXD7AVCXPO0jBBZ+7MVFo3Arp3ImBSPzldNJP6ZHET54/BI1dgwuG+YdDp7H9DCChN5+X9hkrlf48OTGenzKsEZ4+grGtC7mZLFsv1++hU1CsXA9P2pfxi3hkyNbYuqlWNMIVVA5IiqhBVgl26nN06+zZjRr38EY/bpb/dUb1ZzL6D6C0YSWrCnAbLgAthlz+6Pz/pA+QqUng0EUHl+3u0Trj34e4YxeENhvRE6NKmbPEsjMkoAhl3aHY5nC7fNzKxhFcL9WGArmT7XMBLUDoiU7QCDMPcFTOHd0kd609J+WiXQZQoBznvSDEYNX1VaHNlZ8tTRuyyNpjFA4cQAhRPjXffpOe4wFZ7djGLEtjr+rWfqbFbctUkt0sW0tTE6/EOlJa8WfmUiFHCeeEaQ+BGsPphCVe60NAPJmfWYHSSrqFMJ1n9V098PlHQLBUD7TF0MwyukoaHj2XjLUNAcrphjLGFsKQuk+5Xcj/v9OPfM5ZPoe5SXpPhMBi1kY/X6zdVyb3x1GuhZsu4mCbBc22INIJ866J84HQIyOPbZonvPb9n3q8swUlrCe5fcH6lSKdd5NTGb0Ngug3tEfEwB1uOiC4H43w0N5Kad+LY0x5dWooyc2r3aJVJcrrEX3KaftbeLLAvmAvk6k2T90pejysNhfLKaB+HL71TvkVM+g+ysa/1eT0d2eCPcETYfjgYXGuPeqU6McB8RHNxuNQiP3bT1LcuCTTuqZM6ZftB1WYjB9/MoK073X/HRP8g6ooZ0UlX41ZoLvMp/I3rF9Oz9fLvo7nYtdXF9VW/2AbxoeErU0MLYVBO+qoSTd8YSchcAQ4ig4IV7OHjwo7Y9ULcjHad/bgXzHStZBmX+NbQkrstcxlzWBP6OpoVHDkpbO1ojbRRSL0oOK7dsb+FYn9DS64LetsB6njYgwKYK+LOiE40VM5p1afhlPYVNFkGpoZr2ydGJaVLTT93F7WbCSPOv+Qc+vrw30BvvHRnD6fZqLsw7xxRBV5BxwksfFZiaOgwK+feLMKqjWut
Variant 3
DifficultyLevel
697
Question
4x > 2x2
What is the largest whole number x can be that makes this expression correct?
Worked Solution
|
|
4x |
= 2x2 |
2x |
= 4 |
x |
= 2 |
∴ Largest x = 1
Question Type
Answer Box
Variables
Variable name | Variable value |
question | $4 \large x$ > $2\large x^2$
What is the largest whole number $\large x$ can be that makes this expression correct? |
workedSolution | sm_nogap Equating the expression
>| | |
| ------------: | ---------- |
| 4$\large x$ | \= $2\large x$$^2$|
| $2\large x$ | \= 4 |
| $\large x$ | \= 2 |
$\therefore$ Largest $\ \large x$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 1 | |
U2FsdGVkX1+JAVOcm+60i+XQkl0dCQr6a25dVRAC7uH8FR5BAoG3E2oMnIBld5w3yr4+w3hIadRNyWxpBfvkNn7Se489IURAZakbmu4kh8+TS/qgD5XeDGRVeFZXJo1S7ZHOotynPvzEGS+Dj1u0FUJD+ftP9mYCHlIF9aF4w0TxsxTbw/pWJ1S1UYFKH7RcTXCXOATj3eA1aWYxwMRCAgXwa9U55r5Is6A9sx6a3zG2H/yH0ChrhQ5xtSuLvAhnC3kfijNlPbZ8sTVDL1Udq2wTgYKzM6hl1ayJr4WS6L4c1y7bHkc9ZXrL0OkS30vJMjcfvhKeRu07JKOUH8Deo3gk5tFnLQZ3nP8tAe9MtqDKolbiyydMXaWAa78+QioOLtqc0pTswMxG5f4zMYc3BSxSG8r5X9SakwmW7EBJvNfKVhaiR4gtWKNWkB00yjYNKBoZVgJVltORDn0ccXdXlDtiozFh+0iJK3/8uekm6UMfjcz9MKIgC4AvLRyt7S8t1bvlzBZYYfYwsgkNp8iNny78+GvoXznAjhnRMeyyiwEX0QzlW9nBZtNdKCOZ6/gkPAiv+cHuHeqgjhf5oBmM2O9XIA0rwlJPmqeW8d0GcO7XzJ1j0+hFp3z4pMbxy1JmUnw9kLgiHZBxKWmXlniTtPa5RO53h2SbB2ctZMRFcaR7tBuLLYvtUcPY618UrlyYq8K7QZpFIyeupsDLXxLPB6UY3e6D/gPXSbeYMd+dRejYY0II1zNZcTITby9MIFGTsZqwL0Ep78XuyUP3Voz0DMHMosAfCscglmyKjzjmFIYjKcPB8MJgWwXsDaF6b+/RM4AjyfZRXeLcz95N1tn91ApsZFL9PMTpDexDJntplSLMs6B8zRJGD13vjaprQwa2eh2ItgJ+egOSkX662MJGufDKDxB65C8cukK7OMwp/22FOtzjjtJMTjdszsu2v7oj5xsnV6VspopAuyPaEe8CoOoY26Jn4JjqmLsPf4JY76a3UOr5C4cr0rX4dkOGzbL90J+oVJH9+EktRpAKO1Rca110/xQ0aj/9KNdmO8OtAGiaNo2X2G1Z0YcWz33oXmQIbQH3+DwI4AEnjKjlKjRENK+2tQp11Oq9SJ+MAQDMn8cUMZIt6YX1A4RXBH2KBkIagQuqnbfejOQZrWmynHUTDTJcbZxbbiA38ieWfocePVjuB04KmUbmHD4eyOigGUgBiXvVg9Sp93neIIhMt17Y/K4JCntEAC/WubiSF9sML4PbCla1X5Phf+MRHFfntByouGSiXg5IaLNTi/GLURyp16CreS7ub/nLUQkUNYxxn2H26NhIZUGpd42DYHzCOIYrcffWaoXxBKU19DwK6c67m4Jrw9vb5v34RFluY0KDOSLsCTBdHmH8xRcBXkOpA2GW2wukea8D5nXRSsAPEZSRbo9V83VOn00qk1w4lpqeiJy18Lo+mRUxytETtv+/xjHa5mtoVuhKmHeqi0eRjPbWDithiEnoC7GX5iLRa2wefLTRsDny/CMRRT9D1XhEaq+Rng9bhxgUzSrinqPasASimhtGWyoyw8cpfra0uyZx14oYgPGRJixTcPoa2qfU5PmiIB2H7UJBBnXq0CiImXlvm0cW5kkNx6FlYa28e/69vV7Jq+zQLsPSQN5eX+AFi8HNRptatE38AWg9gzaJb+eBqvfDRlD6GprD1EP4OlhGVAJ8ZqlXOT2K/gjW8BDzO9xnaxD4Zz5vo+izoe4pd8SKTz2uwIpvA1s298qGCJuutoOykeDzJ7eDM3gPhnEzzAcSPdhY86HW2ZKcoFiRv4X0DQB/yB6J/i6mOWc1U2P9UWSKXBiFOE5j5g+gLgKVIv2Ui9dwGuTCkVUqL2NcQuuf41F8gumV5evOKMrEo1TW4KSQ2sGbm582qpmKkOaFGzwJud6nOABs+wxA+eICtxAr7agPFQgFtqiPGZU2RfrIidxCaX+ExwKywmImkoim158IkOLTMJ4IAoqoY+d792NYROr6A2+sHN5XQsmcZSxINlH+RLllDYDLnjG8LMpgygj6bCpNprt7fFShA8nQ+Sw9OiRE6/V3DgpMU0TelO6lzx4vCF0m6jNClkhiKchQF4MkLGwgsGRn9URUUQbV1ff87O2F5u4fn1uAa8mFNsBo0Bs9Vux1V9eCJDqALn1hwi13WxvuYnSHhRMH07N/1AWUx0pDfrGHCuMKeWJJ6oXBRFyLwBr1U8GskPZ87GgNk4Pfukz5iPDVKrESQwZyczR9SJ17NPZHlH+hqRjo7LMRpWML3eTYIM+irpTX43F0Ctnlyd/Ri00w8oGdrjFTUOb49nQZfl5cDgmnYJ1Jr8t9oGTOp+QcNl2ZBWtE8hckhb6F2EVJwxPbyCEiAUkUAOeBLWHKmeYGWeUHyDfIASkCAkH/nRBDxQGM1xfihrwyf5HVec4FUNMh1bLS+8ARcJH8Dz0yVemUkVN0LCIh6RF4nTS2pa7FxLUMRZFeTzSNofNc1zUyvYMC/qpAUMNw2QYEeTLJ6XGBsvnPCajjQ2V2M1ZO3zfNeTC3C33QETk3hYpEhR95/UevJ3JT78K2W1o1H1htrlblg5oRqLiQJP++uGZFbt8aI0RwRYVy272x1ezU9Z1j9kXYqg02k3kziKFNKiiqhxG8pUeC6I5YrmrpzwaJbxHP0ecYmFUN8iqJAfMJ6BIkd9gNrKVfR5wGaWVTLxbzr/EtX11s07TnYOZEjw0ylGv+Zb2jKmf3B/7uQGQ2TMysb2k9w6YqeI0Ko96JuMEWm7ViROrp/nsLmtiMJTU1dVGe9m7aJMklOhGFqpyJ5RAMQv0NeHB6IRDGZqxpbDa4EHz+QNtj0dGU6m5kRFSia0tVKodzKPguBG736Alb3lvl3XVpEVmJsUZzEkZiz3ZLc4b/m4mE66jfnQ2SzQnVXcR9sQPlwZLAlZ/Rbhe63YPYVDNusGot24t81Asqrs1OmPhPXSqQf0cfFZxPsPDmUCxRmlt1PY/odv78I70e0IXiblKn8EfYyaPC0h7PbQkAD8Ouhf7c40ob1qnRUut2j+KbXv4gTFjk4RStR9v4n/1io24n+6fTmRxsr0md0UqCZkvDToI8HvuuTv//seCAaWQb18XKhuMZ5eM6f3rLgB77mkOABgqnZGwPYg1laaI0w30gBxjX+2JJd/Ecqk09OoCwQ9s1gQiBg2bQJ7wZly8IhoETSxjEqymRasbnWg8Q8300NmwH/nL5Q6Mcbw86xwyxPQY+1X4KWxk/lNTTJsO08pXLJqsqTEoYKBvRxeBcz6t5MUCvW5SBdsD+DLsL99qUybr7qYlGkrRVxQrVWLa/Fb9gDhxR2nhTJjawBzFawkQ1+ngEeN0ZQbHCTviH79EqQ1+9yiv1C/UtaeZJ3/jhhDU3m0Mdszmc7VOVlA8yZEl1fZNFofmEABB2U8DVrQjliWyjXIqR24lYKsmFy+0ZT5uuqS0N6rkLRgV94jFFgZ5EXVK9dyz3n9p1BwTDWl0BhskhDY9eeFlyWj6O0j+6zxvbLsE++zKnjKCxYH/38H9giyPGQ23USaETxN2PoQAlw6wY0kfqHzi4Su2xJMXDRMp+bcX9dAWIRVTZeWr53rW9ijEfsc7Qr1pXG5GTsfzlVK1NNPCh5o57d7Phg9SDUu9kqK974FFQ/gDilqtIvMO+a5uEMuhda3YtITWcsFPELmD85gJTge9GEsLbrnFhBpPKyTyOzrEiiALdr2IIORsWHL4ke1wD9wlsHj7cdXZEWpCDswRZsJTQTdPc3kJCsiI7uRKQQU5kPMh4dHI2E634E05WnrNfg/a8MMs/PhBjaIBo+hEcSMDC6Gd2LB01TrfvgAy5O5yHwF6gIjeHDLvF7w7J4PrwS8C57XXoG0Jt31H4sfMWkOJZxf3gJDmqG2jL45mo6Uoi1VAPhRgfbnd/GLs6YQsbFuuJ14xtn2Ltcy/B7oWRLToCNJCH8UvPlhyzBxxrsK9SbwbMcadU0kxotF63sH2gTGw941tUj1hx7MXssaaPrk7wNl/iFFzOWlE2OusmUhIphK/bUKZyjEinzfdO86nN2M6mUjk7nWtgfU0GS2VPCGlAlKPathkgtNYYkGw2ksPlPKWqgFO3ujeI00OROgZHXqV5AK9S2G2dM/fyD40aws3TBOySK8W0rx5CEI2RUkGyd5S6OuToSJ3mCFCkQ8w5XJXMzviHl0MW0Ib+mgXWJMTiI+RNLOWn4JZ+ClfSk0lXzeoWZZJkNKMJrriex+pgW7SX07U+ggBya5RnDGlC24zGB7hPc7Zt4ArdxQxmZIZrmXo0/3rbqAQpSIt6rlYAA4vlbsKqPTh1Rd3dzosMncpFNOlA3+61fpKzjfg9w92uGvTSw/qshzMTmht5YQVKEO2G3q1ddgRFi7sUBTORftUQjnJUzwCx8Mad8nGfiZmkn8KzIdz3wbPqko19x7NX6eUMi4RpAfxFTKvXaSkqpc4erdS1P2uApIUZiHIKd3duYz0FYEnyZnZG8lYR63oYg+p3vVHXJ4QklTSeXPTHrRcEdJdQntCsAKRBSWwtinipWe7I2VI8jNdMwyglXIdzPjlzfKcXLrF2NYry2DL3zXF88zfAsAHpbLXDukm6xGNF0JWO24fgsEMovoultbNrJn4wgNy/amhNKSkjCElkL6WtYx/74liiy2PsCGL9T1+V8Nh5A/f/WeD+TI4vCH/NXTwW9jVw+0/b/4ZlTwXn5IRUKsXDn6/C3wT7+YemxhBrlehlR8rs2Dibcq/znkbuQp9RpCAeU7vTDGve3w9EyHKhTX4cDMIfS+uLfM7gkez9E9F9G9iXKLystUdDM7qxrRUJ7B9i+WdFw3TSm/sHCNchVolsjDHfEeExCZ6ZOOGdiGMTYLXdoAWmG0yvAYc5tiaM2XDVFoaI5f1KnCXjuHffUdCYWLC1iqkQaHJHw95VYlpuvwm005Zu25cNMNDzZ4gkJpbkMmORSgnlHn4AFNX1QA/suZWo+1sCK3gvel7NUWfiGZaTYhdEZ9VlB++MT4ev5CrYIuXjbDknveMfExcebWN2T+f0BLNzVEDvq6oWpF0hTmA8cx3B3//0xdDrMVDcwHIpMg18HrStR5eoCme50KILbDffng4MxjbpJxDQWb3tooZFaDqSEo9G0HIaKzrnEg4RFF62+Db7cygD7pOzomxj35+sD8BeaviHHxTAegaUG23K7fqOHEki7MFTcR3fvcUJWWbzSNnYirol+SUmY1JjKpQc55FEE8EWLnuFDxd51jdvIdj3aVZNm8CKFYBkKLtiW7u5bQIFtOJnSPsl7wsalUs4dYRCunddfGF5JdkTpi6Q45qOR9/u4pm9Rz8RAVMrRSYayyb465NYuXGhR8+8u0HEGFhz60UZU/qkOwwY2ma0JnpMhHRxQ/6K+71nKrbXvTC8BuUdivXrC9WpSCPLuZ/cbdBiW0GW0XnzBAhVF89A/BwutoojH6vZqj3FM9f5a1b7GQxcCKr94uAExrifJnsFHj7Tg3yZtaiYZpub/3TBc5nsgV+O4C0VWoatWre+5N0z/2czzmTRpuiYFkf1MXazb249Sv0SEphQrHk9hceJwCcN883aGsnO0yErW1BnCZ2DojcdCt8QrnlIQvev43yaUbMTa6AWYESVZogcZDG0czBSSTKfoiGSHePS5TM+gpGTWZvEjqIiRDxru1jb8yCccUFIRMvUbbh8qbsD9txBkcBofwpUPbdQvfHbS37mAOvIoQ5f4Ooxoy3MTEYLFdA8FS1uqD3fPPisdK2mXkeukSx2cGpDdVGEcVPX1ttq8evm27zo0eQ6lufoF+/Pq/wtGiHvADGEAQFYJRAGV27NXBMf++1ZU0Wrl2JRt9/iIH8yb+jLQ1xqkN2nlMNnutazZmaYawlJfTSAcc+PR1IzE7GXz2fJOkHLtF1VvaxxHDN7QHin510hqVf/TnwlAK8/F9pThtkpVcpn0VT8TnYZNh402wJX8D6KGIl5FSjLbtAfyRYg1blKM2zsLm0NT+OnRwCCz78zwBAli7uLFFqsksPBOU7DkKfjH0tEvsQXBBQL0hoSZWmKc7sz62ON4sFZsNJlpPYyVrIxlj24nkeXWrRH+t03pmCfohwee3NRPWd66Y6F55VH9GQKhoR/xbGBf6bokLC5x3JzLy/+lwcF/wlOoOmds1ot0ussl1H8Jn6selB2XbyXTdYBSu7xyKmFu1JjZObRoyrBslZ2mD7IIcQEqKH5nZMFFmQNVciyKDNIT8Y3XS4lTaOrvpNnvN06GyP1MIKVyl0mb0hVgV7VGKnAmLVgpR0JfFsboy/LV+/8pPBurhyukwhgwSilw+nrHhUXV5mJIGE0aYBSHpEdWtnl6SnOQXjw9Q+Ed53NzKIU3wkqFN+yKwbmVrBbO1USm8ODVqqcJcXzgsFKC8MgoWoB0V01gEXRVTgTo4zvAI3MJ1cRFZVpUV7FqXFmd8u3t372qKPQfIqs6behT+V820/i/vv7H9Pwe2eXr6qc1R6rLM9ZcvUGUDsFVISicuTMp5Pvuzq2g73Tjj34uUpKjIlF8hkV5UMdgw9ROFvhNMQuYD/lx7rffXgmeOPfIxbkuh8pRssJfwiAhYpby5tQDXEhi0UKeVLub47aYOXrbK14foIYxzRfFRCtt3OudBEc1Kr6cLNSZo9Wpq2WblkYdcHgdw5+QoEFDYvPlrZoWN0dkGbFy0xEhmMNj5rCqF7IwRKUwn/4FKSulwu8Tz0nE60y3Mp6yIJkonwZbvgX41n1CM1Rej0ZSycuCNIneMNeXWELcdYKr9W0fp1301h+hPZOPsuxxTHuCLt0mLFGM0A/EQBpo4eHvlqL4xoFNwdw502tG9d2biU6ne5LU81p+voNU1qXVKy4QaKdqDcRHr/gn43azSRSmsxj5WkzkEQBplJrdl2tywjn3pxyBOig5dIfmA5DYqZIKupYztOofsqLQWURicdzajDmY2QbCGU0EckG6etJyBgkxsh1Xxr17Nkm4PAJkU9070vPCgMurJAOnOJgp1gwckDglDGjO8+l/KD9u31/Kh0kpbbNw96f38jBKljASFFkiImnb85iSwd3+U4qeLFExUhCwi816dmglSnfOaOqqkeeiFv1tbGTdyNFZhCwy8RT5+znI6dQm0hZ+BkOsywuJ6weUqlywnQpP2+zZY5RTgQQ5AqlJ/l4Rn/HZ0ZKCX4kYuierTFJZA8u0VPMV0r4hLX8kdHdHJ9KowHJ6LW5VZxoDg6RGo/aiQ5cltkkbEZw5ARfqMh9pURRNaLJjClI/xgKQFsz31QM2MMTmCvsdscvy4QlcPoJuOqHMjOr+ka55t1g0jkw5yUFPhqr1/9uVAUAiq1BSpoYTdcaofYkX6JmRfV6iKZ9zMBWyK97QP3MHmq8FpKQS36OGt2eTcWSg6FY32E9WW/e+OH1kaQpHaJ5euFm7p13ehZH8eCsk7rJkYhIHlOgxY5atFs9NhKS415OmcGBCKTxYTdQJJ9dZxmGsXKLW9hQPVFiuUdEpd94tQD3bEOLMb/Ah5ma3t87g2Bcc0uP0I+tzjPceD7VTsohB4IUwYJxPGMA0Yr3VIx3S+NV3EC9cFAyAXkuglKXkLisxCDAtZ7+lbL5gn4qJDkOmwn4MAurDS4w7CSMKKfReP8bxfQksb/TOWxDz/0B8VBmjFZI3FAE8rbwcnz76YossqmyQy7iyBF7/cFpMg5kkHl6Xp6RmVxFk335uUKQyeWby0qekI2lukKu8PPqmdBUbLlJIjmpQsBPTTOv+3nw+5mhm2dN9DpqqO7616+HeHXTg1XxdteYuPO01WzgZ4kgaYAVkXECOdJnKBmMoed2K8UAReTJkLTN5sZ/RX2juR7Da54dRM93In+J91B91RUn/eaKuKCvVIi570jZQZs9Qq4DvN0s1GazNCoz6m2kmJf1umRnjK/3P/ZsDeUI8u06/1dOSV0B4A+uTLREYRXIjYr/A1J8hqI8FV0PQwdVtDLVS+bivuwltPOFZURQC50+t9ds9T/utpHftsDfPNLjoXLioH5hdkiWQl+WnrpkHrb5D+NxdsP+O4o/Y1Jj22KqFAnZ66uk4YfJFQNu8EQ/lilPqaXRHRLKiWhCCedcpk2IxK2tWxx7T3oFyQpdWRT/0u5uj2fCH+9Na4LMAu+6fESk294VcZueGAHfX+TRjQJhlM71NhXb+IW7jMqPCAdzDywlpUQ48MMzPaUDyS/HUxrhDholQFsJT7YTnjTEUpm29cVZzgt5ggAIcO8wGgDqshDWjRm5cK8RVKkrEyDfKLzhTiALtamqUEwfd+2wF8GFVWm0DuKVOnkh6oif+L1fFlFUneg3TM4GulHVRsJ7QuBrDnSi/7XYrYYQ08HfSWm/BrYkVl0jMyORXiN0JJNXmdq62iVs5N2Gp1UqpzC8MlPY4P9sceBNU7s7dUB+LjuNVmEZ4b62je6IYSWfK3h4nL+hiF55CobkWAMHGEIUy5d9lFMKftQFNmYGlkbvidFBD3Ix/pstiLck40HgNmBwmz01jpxtj9YqrrsZsiUKNuhMaoRBHYKne7IhKHrAbbmPgkoW7vVcastPhClQ9wKy6lTE0Q1rSD4zLGn7/+Caofc2mBP6rdMmDYVhWY4fAXmE+Yj3gWHJ60t1pvDVM6FcI6trE28725U2/UYFcRuSZjTqGNm/teekZU47H+lKXcQLA7GSpJrUG/SbTTDJdijZXB/s9tImr41q3030KBt5enJjBvFW8CCmGnRgs+Foc2fBJnYUYxnS1amSwcTTkvKR56MgJDJTqHIm0fv6ZeXd6DHYG9Hd348INXryfJE8KuWNlY82jlphsu0djhp83JceNu/nRayM2/LGQyMXvJnjNdie3/XzgPTnYGqguxR+l+RzZ+9/bDUTUXmPn8H0RF0C5xBLvg2eKy7Rqqw+WbnH2+tgC/fFRlfTdW5PEQWDX5upLzOa+KVAuYEvhZyhN1qxQuAbjOzTlIyIzsldoy4uUqjJ2yA2WuwxeUNe/sbxwMKiHp63rymm5qbWcjfGOF1p9ECaWe3hQ1WENxDDXus694aIcVzfKZPnUPcnG4InuU39h3ZNINM58JG8qrRibzNi1SexK5IfxNIlZwmLPKHQ1MBVrLEvIlAk/HOESimy7rfRp8F35isJWbh9ewA9DV8DBMFPmH971U5w+7ZJNsdSTvpKTivL1mW93DFjDnOBNh72TK1lycaR2UPy6HZ1ahpknLrNtLdTYeZ18IFOMHLe8uUzcB6qkUlqFiONvGvlCQI0oh30OaNfk8qkgSV/o2EzhlU4uKWbyyInxh9gc4jw+QSbj8c7ypGl6Dgbq/XJaTZ1GI5KVZyRh/spfya5rcHHsr2quJ7lX66hpAZt8dJHwK9r9Bdq9FWadIfk5BU2JKL0pcjpKPuF7BM4VCnGk5hloTgFI+iaRGmAfZ8Mbgv5pp1jut+qw5F/VUohNJydPz37c9ELJg1EbJfqqK63lqKIPQ+Kw3egVQm6/0iIroqMKtHOkMW8Ula+Mr4AiGiwp4uLqmcM3N7+TEgyiGIndvvmlA/sXvBYm5zykyU4m/Y75kU/5EMIez87ARHuHcTo3AK/wekj6sHyKTMxJjwLfhAaJNnn+qzVEfzgov7BluhkiM0D6dgXaUenltQQyvFzFr8wWpTqy6X3t4WqGZXFUEAp/eStfocInZcFb0QY7PYGTq6mWvvWsScoRckG2hblti+DQ8l2
Variant 4
DifficultyLevel
698
Question
15x > 5x2
What is the largest whole number x can be that makes this expression correct?
Worked Solution
Equating the expression
|
|
15x |
= 5x2 |
5x |
= 15 |
x |
= 3 |
∴ Largest x = 2
Question Type
Answer Box
Variables
Variable name | Variable value |
question | $15 \large x$ > $5\large x^2$
What is the largest whole number $\large x$ can be that makes this expression correct? |
workedSolution | Equating the expression
>| | |
| ------------: | ---------- |
| 15$\large x$ | \= $5\large x$$^2$|
| $5\large x$ | \= 15 |
| $\large x$ | \= 3 |
$\therefore$ Largest $\ \large x$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2 | |
U2FsdGVkX1/443swe4X+vlNQp5seP3dVTtYDlRBET4hofKlW1jj+/JuxJmUwZE0P5i9/jC6C5XQx+dVuWbx2Q2K2Sa93Sblqvx7lDjIAmV++2Yww3kHPNHaPKFlMe5RQGtaQBV+xlLtwbQZtz04Z1dOi7Fk7sYocCIewmzYtcsrA8Z6ArTXYNEwduuue5MvRhzlEJ0CpDsOeTBaQrPIxgWnMps9rJg9du0inNHJgInMVIKC+IjsFTL1bd0dmk7QLK0Yr+2RZAX9VriWzkGZat6GHFpqClRxrYly6zsZm7E3uWGSPuhHtw7b7CnpB9rmuhLWFaKAeEC1xym/slX9rF7VvQ9yBba/z4RoWz2XxzGj3f2n3F1mQyV3AcM0Sjz7tuZvF5FMTJaUNwYFZt2iZ9RhBRw0cc/+P3b1O3owsu8LNnp32f2VDDhJ3QOcDk4SLEnIcEuDtAtYXP0H94TvCLGJ1KbRpv4NbE0woNc7mMeaN5AsPoWzqUyttZ8GogE24VfapD7nk90POo/vobaTZoIUe1GJX3ISbNVYzl3wZruobNR3NKFd4MDPKAQKbio+ktdAMH7kRd4BfY1NZADVqkzShQntYVYWPDDWIfXimcoZ5/HJPVQP9Z5Ysh6nJpJCojCOpO+RTJrXv0mzsIF/f4w5zyczdeGa991JwnRc337BkSjofk7XgLSOkzCVlC3ehtNOGvbiIxoLMZKa5FeHhxHKXfF1NGh7aSYC0/P+QCNojsowkeT6IyHEOmr5EQIxphOtsY/pqrunScntGtqru4NxWlbRSKGZV3aMrivw/ymY8vgTmaz7AMbqQ6yFH9t250DmAj0PAaqpNU2z6NNjmAWdXjjSMWQ9y6MAks5+vx2qVCbngLdtilx+AbxJdmTfs2ds5tMUfFLec7CiDmDatL3mgairRyYaicTF+x6Vknl0LzF4q65m73Ph830CsP8sJR2dxzok+zkDrVXv0K6/vlGL+VuL+nfPnUU1yMRXi4SaB5H3Ae49w4cZhhyd5FsZV6NtOIF01OdQD3xQN+ZNteurraPq/BW3R3/WvtdLHUQhnyFertW9cVYcxStNbrxkMPSleQWQ87pRLpA0sT4PBcZqOsB/hc+VeeZ0luofhVnZlYHlj30wiT8dYXpj/V5B/SHkWqj1BHFiM7IAglCk56pJFvcbsevKcug5Wlx4uWcv/GYg/vEtz9kg+BlqTWkh57H7a8rS2rxO2hlP/BYJy/8CddT4+6b5c8iKPAfYjkAxeZjkQ2lYv9YLXIXJPSGrrRcLOQthoeGTiucwgxDbFcR1w3/whT2ugy4pima1ZrYcElE0CK5HK5rRL4brFZIl06M+hF5SpxmzMQhWJNUJ4i2ngrcYxuSpmfigMuL3YVdGfbMqjO6aqVEa6CYtb+XCHdHnEKN++rIpK4Bc8ZjAXcjb5ngm2eBg0i9C0EkisWm01KTDyMYEY1OcjL6B3mfBBh3lTr4DZVWpIUYjQrPfSSZNpgDKpZOqOUl0HUS2WSFC9XDGwsAG4AJwunUzd4wIAVIULUiD7j4FQa2hBJW9UQdu8seYN6AbOMNXgjdVb2hmS65MUR/B/Eb288/vbycwLF4hA85VA8mdNKWWPAmGAv2OPJqI9lPuJGIGs8kqYiynQIlvQTL1pcw/EZW/rbF7IlvHQhgoSdzq0WfYRBq4M1EiGTmNrORILt3Q/XSqvEbToTkhUmlpzCBOk3fP/AXkg5BC43xuIciaLn4FadAes7FP9Q68k7v2gOg+/0c6ftQsU5bnDeTaTO+BowE/GU8DmjxjQQRYgyRnaGe4d2nXJiR/h9p8r+arnoI67lsF1Jjb+IXd5xIWHzwAPNINZxGjYfAhmUr8dkD0SYwGM2qS2DcJxuPH9QNlGsh1kLdNgJDJstJykI9ZdWcf1j6t198P+3l/OsD6oFxqoCY3p46eluo3db48JbxokekO6eLMyWinjVYgyN7G2abRyj7aeGk7bnvqnZIGhiQDYQV8RvflayHnNoC0yFWFfvsBjATTnEcir2KtwnGC+BS8T4sZPh1qMwBBeWjwIVmjKuI+XG4uT0T0Q9rJKVMZuCOSBf0ni7mKb9enUcbiCIA7PeOYargDuEnrFVYx1OcAlwjNrmn+b+3gQ9GG3PP9KibU/0DAf5dyNzfXMVNmQuzdI6+yhBCvsPlR1mIoZN832vXoMyFM8OmPLUGnb++/qICIX9NeQJm9vAmwqUW0RK0Zg5L8YXJjb3YcK2l6aAt9MUyj22sBn6GZEzyakfT2pY5xgjwVZxAv6i2YskSiARLWK5gj34JB68CqB1yXqWvlUXoH6+SsKuKQ4XeMKKMOmMN5oNOmawPW50GPnC934ywGr0wvOWKn9agYnESM4Rtlm0yIcnK6WlXnqK4R+3BBdpoe78t5PZ+OUzCTNe4X7tyBRFyWUQoVr7PMnNdeOGJLIDB6KfVvbFsiCjGlr2QjzNH0T0RXLfzb91hd11Uxes1w5i/kLuLuwpQssVJ3nrMdNktBh6HNKCmEVV3StWJLcM/Z7Zyftmndx+qiNOAcmMozo2tz2SKW5ueDZkfQYAnnkICJGpJRYNRmkWrqkvohDIy094Zkt/xrWitj0j9Ju7xDdRg7pUO2DN3uyd8WNwJiD7fGoE4G4GHQqMoM0j7zLornXB3/b//1Z/ty7X5+wzE3xkyWOxFhkCbtW8m5esMg25Gxt97j+ShcsgdiAzO+ARCfgYBAxYFa9WOkEBV+YDMmAPCOim2C0QleFtdSWZYcruyhHnxAjo3FYemk4cOQDPNozOXtANWVgXZWiWw5/lCXrVXbO/F0anXOAUP0gw9G9HhmLXDKL3NDkkdZBQMsBxS7l6ntPosZQrSDepO2PRNZHn5l+WIFHz6ewqLlFJd2HzvbO9LXpEvERFTIMfY5pCCQrru568ldnfVdw0N2C0VrlmAFXWMWbbl1+oWLYd/PCykFB4DI1TC1NALf2lJYtcZgLDA/1RiGlCrtH78UKy41fKygb8NtBa+QSXiUe0rOgXoBpjM0EfEZgP55IHKxjku0suDMQWM4lu4spIdiI3uhsmZXDlV2GSHkGHU0qQkzBMKcm7qRR1THEYRl+EZbritgnzxLd9azLvpt5LhiD+tICWcSVLfcywvour8N2xukEZhnaDnyvgaOP8fgjSvH7EJJXzmrmElw4HrOC58Q5c7zh+Qc/6E+CXChYxvnjKDxLR/q6lWxKo4kL70ZaD5AiYImcDp0mSCi0tZPfGSNCwOmXFUHBObqLr8nKLKT9iFFAczo6dshLg59P37x3e+E+a86Hzo+VygoDsnB0YgeNdRwFw+62aMbpDekfk9P+7rvwxpB3OCwV7vBexgKwbO5wWneqmoPNqY11IpAuGBeiFRzgYUuUXoESC0Xrl0gQHrXbjb8geZPJiTn5YFwgCj6qnMB0kKlmz7mmtiZB+/xCERIJohwsDZmTUby8qk8hqmfDmYHr+WlRi/UoWm5UVTnpw/AqbndpClLgPfaStYxsFX8ESaA/FSEsyx7+w1O5J7DYLMNpXA2Pj1fRQg3S52k3Hluayu1yJAdOQpS5d2XMQpCBs2Emlc3t73D4+jHoXsRmJSMriIp5Rna2UzFNt57YUFMfVzCP8j/zT3oJ0rmy38fCDOSgsbtyN11Hp09utZZvSEOS0ZyuIr8HTd6XKrv7bFcYzLDOwRJjgCtQ2SZN1gsbrU3StJPQ1UtVOTizZ6+bQ0s8NL4Q6PE3vN0RcKbnL4ixg9tbK7FGSiZ7IIUozywm9i0r7VgcbAL6HPA9pyX9MoMxlK5/BfCJ26HZpFutV+G70g0lmddMxyUYkTacmhUYQDXdI9EcMGrHCEzHfRIqPF/f6MMSdiyE9uGk1otMk9oHayoKZ2KtlXsNunJ4fc0YGQYu+5ShOmZQ+5SbuaTQkajjaUsWi3m+KIGKWJVbeBJ606fgcgr6xD6l2S0Sf4piHNkBUUdUQOonCKwTSlLo5j62Kwra41EXJd00YKmGubgfvRjdk/almF3bieYSnmgEyBZj1lZsmIx4w64Hr8xLVNL2X0SRmlB9oQQ5jwXOKBGIiEIF7O0i7Vx/gWKO8dVuxYZoYMKtZoYqN3Ld7lk2qxMMvK/W9gpl5H5M8GN73/EU4ObDbXUZZ4kPjnLGjUnJNhgdaEAJHlhZk7fcnZIAgU2mtrnK4nHi5UMwsPXzme2iuAeLzhFejOe2t8NhYzx+Ja+P0GM2jeVE9l04sFgI/jpYw8HLOHCyOIunsFiaBA8VauC1twT4dr1AnIMsoG7RR21WQavVH5loB/9sshZsMSTIHGnhGkmokxpF1nJFQ5k9Mq89CAjg7v+x1ETjOFErbTHSYyBFs9eumFl4w77Iwf9LUKvK+BiSvueOXq+NWzp1EQJlvG4rA3DborL9tsz4gdxv4jZ24M2DUP5++EeOFVjvCdONlP3kmPhEFzcPQKyXdIn/6ITldHVWliaduJrooTPkWXsoQPwKhOA0XdxGqV2pC0eMcpZf/dPkO/qEYvDzLB5GBthF6+WKkFAFViTHvTI0H9OWE4ixpEnR2avSWbGuXuKJR4mYiOiS+YTTOFYVQaaoKnPtWpJa/XtSulvC1AiKZiGJpFqjeuBYnkJhcQPFmW34vl4bYXoP+/ldlTT9i0sGkR+7SSQMwZHQBAjg7hQUjJw8spbB6Z/3aFNLYUQ0HjPzQVm9smFBvKMTsXzuj1/QeOpxTX72g94L3eM/Fk1AlClL1IrhznV0HS8LYo7MXDTpVRadg3Mn6QcuaqgqbZQkfg8+4KewiCDB+gOwgV13d7gAGcwCZpndTF4SDlxUsYQw4J9/CvA6I3PfujsKwfinptDcFlq3xscWyoqsXrPPrXV0hOATOkFhnlzJWyohgO4ncz1I0+zwvqcx5FbIDOMA0W5WEVLwLz0MdMExg6pF+2QyL5GcPWG6Na9S3yNmelin0qKKNZAHFLE6wqoFFkSYrorrM3aISGXA6FwhkU7bX9xuW+5MDQ1tI6ebYswoULRCStghKfJOZ21L9EMKJ2npiGqzOXbNEJC3SRsuVzBOBdWqITf2LF8ZQC6bLy56jbUUVPQzzVCSt+U8eIFk4i8V+Ww4T23M3/uRAYJmTqdzwuSHo8hhIN8+m6mSGwPWs0q1QiMRFFShaiPyjz9bdHHGgVd7ddB2ZKf4rmhCQ676Tfm04m0gC5gQkzUu5ocg2GnlWxi3+jpWHU9xpAx3XRJEhDGecoaqUensZ0Q/rrarDx54MQdKnuYqe9+8vV9c58Knpx+0nIIC4LkCB38As1nNqvfGvq039YjGLxHsEgXfS5qFsVimIusA37s5RNU01Fp2tg+9Fu9SE97F6VSAzWz3/9G1Cfhtj0BgIdeYtqg7/7VG8QRDYOlcEF3np4s8qNQ7VBzFNodTlEqJljtprhe5+rSfpDGRDNr5VfHilZg3LfJEfcw4PW5h5ftAqM+8T+zlMYVUs/uE1H8GDyRxSrM2Ec4ToiR6zLHD8+yjn+QI+B3QYinnT88W7OvtNP/JTMLlLKUdbY+5C5QifVaBgiKQ3j2JkCNy106gWsqFt1A5b3i2SfWWD4LOZm5evKcI6gAOsbtV7owHyqGbUJa0C69Fss3sTmY2HTWrfiMMuh5UOsRQ1pYPfcWM/cIRkxa6iMKcHs7QLGrbLFPQPZHSdlRqrse4KPzdbYoiGGG2CpLPZifpPiZltEazpZk348qT8eMFFNIWoJSzbhmxLL8p6w4KPlUroS2DN/E4IFlOALFgn50AcFQDPsHtseDdFVoUuUJhanLjW0CD4KqzQJn6nsZrzN6X2A8taD68uUZ+Y78gH5xHLO214u8ccr8D6GC+a07C/PUCtIe1wCiV0kYEyzw6cDPPij409u9L12A0EzPxyeJ7nYczrK7yEDprQuZhn6RjF3XHQXFuXtPfB9/RpkX2KD/6R72kgRuFdBqo4LKXhpiEub6wCk3FTMnXI8tU0VCWLUTYWXbrFn0Ar9t4jOu6OZKs/zRI6WWZtAxKUn9uSNcJvq+gA80slR2fNJetGVT/OQYc/kshUtQPVRLlQS7urAmPPzbzqtTrQW55pkC6hFNVh2/AbGSZfn+9A+lhksJcx5LAASznqEIbzigZbw+TDp7dHrCjr7aEhVosZkZxdRRWA2hGH74F2ixVQv+cV1vFMao9hSKSYdRwl7wjBjcVmah5CFh3yhsrtZ74lAU/kMXfQuwi26VusEmYrUnG2OMKY9YzhI2oaZyhbRSB9U4MxNNRyB8nLiZB8NGwm2kxlel9jCGyVSSY0A+6GsE/WrdkxaQ4cEH30GYf4DSvGQMPe2BsRHweC+unaS6epfQtluHmfzJyDhN5n6VcfEFxrgYCSAT8pMVtAJcDbBFECXDt4wCcZUefLYHLy8cDrg3fJT/3KAXAvxOHKb6wzxgvbkLVMwn0cDbp0lHAUaopWuOYjfrLMP32FotTCpn5J6gKk+ftBb8Nrk3i4vk2SKguUutNiFJt++sGXBifT8TXqcZSW84XG5TyNoQ5HIlWyYdxA0e66qBHgeDeJ3hjemqOCA5ZKTkoCF6u9c/vChiGHilo6zWQ54mUuKq/sNJZvxXZchZZ/Dtah2tFb+hPKZ/uvtsB+Y7phTd4FGHsMpXNnqD8ydhza9GCLA61jKVOtjLPDdKglG2+hwduWqfK7NMH9P8M7UGM5fOkV5b6n7pv8P7VnBIUqIM7OjapZbhHhKt11a9+ML/MifEBehTuln83pDE0IqS2K1UXJCMCyzuAn0bUU0LlRPfCyQYHPMGPVBiU6lIPP43OiFIrCvdb7nhppXXf59WirKtwlLmGF04CZ+gyhWSznwZY29QDw050n/COttilbITcukPv3UFuzJIsqe33D6ws+plz3CbM21U37c2M0NI/b1CaFYDStYRaeCO15fP1GH0ejjLK5PnpNKkDuRLIVUTQZlVcKtiwb6SdZfH17GIKlomIiMP0CU1JC1P1vLHvd3MNlGVLA0qU3KJ2GMEiZhhF+I6DPSXt5KSx6CCQ29bQwUDbY9WfIGcXPAbmWZlZHDtV0LLs4AMb6RgysQr2/yJUc7F/uDLYDGDIidZ6NMBD8Q3ilHOW8vGNOvgkFJWQL1A3ILogYTDwBsTPFAKjnSn+iE0tnChYFbORTfieNgSR6qy6LjIez+YNAbOK/uPQYkudaDVjWi3Awm9M94jTbz+ADi+uLAKYH2G0XPEvCUSjOKTs2C9QgWrDzc5b3EQUHVdTbqvTKbX7U4xTMIOl8fCxm0xTT7LsAaSn8RfzPg/QKrQ+xEfiDN/El3QK8AcpKGk8DKFDdbAhD5Shz09CuSQZtw+rPxDMD4kAeBdakudLG1thuxI/FnEgKP32+/2hIJBll78iRYzDStsgqqdkX3952eRyIiYxnD8WImGQtMK7TPEDca/94FEMtIGDK6l4ikHHw9zVnSE7bSzaMIOTm4hdeoBE8Y8doZcehu6242ekjOmItvnnCqhl4VB5ALkC4oowrsNR4srbizXwFrvtN7mcYfL5YmTtRiYRIZa7VMWvuyg1f2ihcnNDlHXhzrc4BxbP3jCjPrRCN0LxljJqinOpvjVbDfv3Kwji7DpTgM/9w8UvEOxn4AyFzxThEzwMq++kKiI0Z4XjNOBCBfG9TmpxXeQ24legGyJSgKxLLDpacLF101X14imcLaB2650mcT4HqANXYvmjpwlN5QgIkQLxBNL6/o+L+rNatrQBw6Afgaa21kc0pnPlgnjdmgB46OW+ZM3BA4QpCEMBBosRO9Lh8V6HighMHzwbF3GI5ggxRp5rzSY1BtpIRpMbrl3rdHpMpNQ32cqHPZP6uVuuqjjSJr9Q2C2lAo+tpVkbXUI8M7xzEaPocIIkloy23SnXMCAr5qjX9hdbZj5+vLp0l3ApCDRW+hnI56JwSG45ZIFz5NlhwRpeWQdpFhMMoRE/cCOyBz03S5lVjbqtB9lP/BPYNK5gSkg14y64cg93Eh0XaIkE1mZ+3M7FGYkRVtI4S+idTzt/8yRKga1b9Iu0WHnqjj3NlMGETqT9S4trRYCCrC+tvecg6T0HlqyKwmj/gBOGJJxu84v4QL6NuipQ5zYCB/pZPoShDQAunIbUKLqSmBNMxJpDW1PpKlzPD9w8LOrOUKnljhKId+WFPI7b7pgDFitPpxn2phA9+hB74w0IcZrvg2T8ciwX5cB66FzXkyr23JGuK90ZzqKAX5FeKfSws45OPOZswC817r1VbC31cY3cybqKGgDrLzyQVMv5fk/Z2zHIoYuKzga7Hh32WLubeO0vg2mIaVbSeVifu5i0GLYSQ28nsqslEbg23XCXX7bABTDAKAK/8pR3xwFvBqAJ/SheqDkZv+1f9WiKCIEqbPtM7Niua+/oibRTOUZtuTwmJPvquSwJMDIXJ/wu9KgiP3l1ynVO/zqEsRYxad0PcLWcVZeIwU7pIvgkDuvEsRncXvJxYQCcBVsOw2i3KxZg7FWRBjxzBXCzorddy5GdtblSypSJrNmGYBkd0ajRZslbhNHkqIWIksnCu4mVckkAguZfUcEgCIzly1gvGM+0n6Ft5TzBNeChTD/ouLdq+cX3NYtuJlkIftvFzXRkHmkPyFn4o52dTcx+spzt7ZrEj+lDPT38cGuXh8H7j5c8FFtqkPLEqy+HUbgpjgnV5zpyekf8wP7xttZywEzBZfe+7A+cDDD0Jvji/DZg1iuksZtB2st0XKcRoMWFiLcGDT9driC8kRnRTvjC6lcWU8vfjPDsyQt1mglnQm5ZpqUurefQDZRg7QOgI75s1ykWB+VJmLZOXgDAzesULyQ1hS8uEpDGTQmvDqj5QG3vJUsLlBumiQqaA2e5OaBXDt4PG3KGe7c3Z+W72cw/HS7FmwCrFLB48VuXh0+Rpw5y2veSjVEw/ArGIk9oyF0050APsY69z/oUrLtUunPP9jaCN1cOlwWgEyVHvUZBeJOBSj+64Lh0MXqscXmYrO+fz0F6EJbnEH2mcOH8m4R3yC8k1jjBfsDBus4deXq1PUHpJC4TOmiizq8qXbdc6i7ZYSvEFbJl6ZjGzDIAGzadNQ8JuNOz66j5ZHKQu4/+aIPHz+EGuTJ82TMGVfDVFIaq+lrjHvEOvY7Im7Ua0eE7TdGwVS2vYZzmYx3h7+MlYDM8kOaU1Y4j9mTNW5xU9M9V9j7gCBqg761FHqCRGM9boLudPRnyC60STuO59RRKB9ivEwgYvp96YclkiLlQh5jwLr1kkPH4yIXybDEAsD+89y8flEUa8AkSCCwjhqUU5uMaGgBvm8jrwXyrzxh1MSZUNU9IrnZpA/MsUFvcUbq510AwFi83lQkhCn0DX306mqx8Z/zr6kyCY59RmVFRnu45AXZxGLICPRZ3ndQZMXrOWDEHPQRycdNgFyGQCfjOlFcu2WVsk3ZPmThGu/acgzJUEFqgzSRJkESQBDxCtbhsrGwVSl4SleMQMcOsniTCUZ5dWbxVolpfsPfnQE/Dq4aE+izREb6uL3izZYywqZfslF2u67+IYUFSKLiz9gRWsRj4kHwvwppXLy1I8DJlCUfhzuzOB8Z8yocMY0sveV7/lBlVGnMIHLk/2geTmwT8Lt508MkOzk09N87ZOplNRpehEHEAGWH7GdDLUITdK2uFHueA6TGefGSrRkl62X/pNpnuAfOoA8Ujdlh3VYLbTyhgRIUOe3/WKWbDvLlQoe69+xvWNfREeuWeloppArRDzTzo1PJwWENOruGaKSUH8GiFz+Ywv4rKRUUDlt631GGBL3zo3Dc=
Variant 5
DifficultyLevel
704
Question
35x > 7x2
What is the largest whole number x can be that makes this expression correct?
Worked Solution
|
|
35x |
= 7x2 |
7x |
= 35 |
x |
= 5 |
∴ Largest x = 4
Question Type
Answer Box
Variables
Variable name | Variable value |
question | $35 \large x$ > $7\large x^2$
What is the largest whole number $\large x$ can be that makes this expression correct? |
workedSolution | sm_nogap Equating the expression
>| | |
| ------------: | ---------- |
| 35$\large x$ | \= $7\large x$$^2$|
| $7\large x$ | \= 35 |
| $\large x$ | \= 5 |
$\therefore$ Largest $\ \large x$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 4 | |