20109
Question
{{image}}
ABC is a straight line.
What is the size of α°?
Worked Solution
180° in a straight line.
|
|
α° + {{2}} + {{3}} |
= 180 |
∴α° |
= 180 − {{4}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX18mtqAsuybS2TXKiMHF67+fVc6fW0YxPrkZDeoHVkXg3qYf7MJ+XbV2Ueh2dEFb9HddBg0IZl+GENPPtHeTk8g4vQaINaBkoRbCtIIXX6vh6njOp2lHOKsygEozoooGzuFFMpusgK3rqn0CYO/VN35HNdTl/h0hy8uPURRGk9pansklOMp4yguICkPV2TPBuM4ZMkBe3JB5w3gT2A4FIdGJ4HXU2K5fveL6K89hHX/BMv5gbLZe5heTPkPSSwkHh0eNqBK+P6xsxCzUBhVMBaXxNWaKmGAwjt4becOo6uJXkeLkgizBG3vPPkGYHSETku/wab/vQlw99qkBuS9LWEDj3n7ZhdOldAomieA4OLHxZvGZQDWKheiR2jYxe5XGn52jhf1DvK7ESQLP2794QPqCt0ds+KsPsJSuWpwHsDuz7zWnaSsvDbThJFwUV4LKiSYv8Vyr8lRKR2p0VpIVitTLyFVD2CtARZt8hPAIxMcoPfb3X4g61/kBgvkICqGtsq7KWvaSNDrymwyPuU/Ra6P1/J5qeVP9mZfrJaQ3YBzCKNLD5egWj2yfRrxIQrZpHuK1bYUTw8HNvGOacqv4dEfOtjb+rm2XYbCOMflHhUQDR6WgnmHEoR/ci6ymdROicni+7iamWJVfV/u1ZncrwlRYo/6AiOmmoSY2Igkt6hN+6Jm3fdiaFaJGZxL/7SEzyX9lFOlaijeYMjLHs37+xxAa+um1GqWMK5vJ8I6axUILkDZPEqgCj4TaNH4cE78mln9D4O4mXMIDFdmLXCUX90wzishwt8JUYrZApp6LWv8LO6Gm5K3EwkTNEwkXj/xT9O1e4KEUIm5XAyhwmIofqke6bGhqqlTsE9+ZSOBbwlErK1ov4+B8S23P4Td48lJkYXJ/O+CJRRaq5FsxV4INhsT7xWyNffbUbIfz8xVzvsyIz8gjJnrjLsvNqFLH311a1ib6fdYap6AyzibwFg+JyG6ddeUaMoM3n/PXrlafz96HNwmOA1o+12AByGq1CFR+B2IMJGTugpkRys3C9XgPJMO2mDKuO2dmxwJjB/r6jkxMkzICvvapfLscO/FCrS7FDCWVsUZfxq1jMRVRl5rLOiE25xmG7OjNAyUxJkM6oI3EOziGWBBsuSYhHGxK8jUd9r3yAniY/InF5AvN2O03BO7Lg6vfS7zQHeGtwHnfbQk1YOvKfDvK+06ScPi2mYvdVFffPztSDWvEGL+qwi5Ay5pfnMTWSk33HsqPPVTyDtQTW5IPijhX3Z5BWCWSeximDWm/T2G0DEuRTSoTmVpCmhxmHssg/zUF7JYn39sFU+2c+I87liefySJm5T4wT8bo8Van2R0yM8z1a5GgeK5kt8Br/e+PM+8h7PV7LTVGG66I3OgikzIiavgeKcKYKVuQzMIn59kK1P1HV7sDhGCREmMqqSaGlwm4CEiX/06v1pNCY76HibiQ4HaRo1woK944OhTsHQi5A3e5apPTkS3I8DCM3OkLaRTddLuQ7dfUZptj8qmwuvLzLY7M97pVduPQM/MLKI9d3GmM7yuuKc+YWDHBCeztLNg7DCCcYr4ov34LWA7Xe++DFfz3AxOU5hs0GxCTO9H5nQafGpc4ZE+CkxOQDd6wveOlE3kSM/LhMLZMShEX7zSaj49qKvVbDkCGmHYtDzEZI/OAWf3+D47uT3gpV9wUl0ryxTNpCPcmvSwqjQ46ELcPzMzdvrP7qIz0ULDkCdL+m3apduKnJX1r+7DkEHxkPsx/6aYp3izlsmq/cgKNrnvxiVMOWxMiAYBOyIvhWfmkvdWAvdxtlNntYGwJI30fUH1Kmg+v1cMiCXh/7wkfJ+WHYXqt/BgRB4kzwOemucKXCqr/Eisq4+Y3A+r9OLrpgmeCLGB1NglJW6gLFujWW7d37oA1kZy8LGcO8q+LfJEbb6cQCDkVTTfT7vaO080O0FRASdRjAvw56mwuWLnbvTKYoCznzxP11NIp/rpga6sHaAum+YIDb9d2lU6dlKVms2X4r1SYo/mraDOk1SqKpdE5XD9ZeR3PIxpV6oKaNyrFh/LoneNsyicnOa0m5XgOU8POKuNDpDCGthVEcVFG1cLXU4tVarFPs1drn11AY096V+6vmwTA78lO65/4unn4KcHm+sUIC0/6bd4AJiFe//w3+UFO2gvWhIYi+qPLJ5Ze71aZpIt5dzX6nzDYGZMZuFLpq4nKE22DmSvEqjweVdujpXEmlXWi5oUJuwJj3vaYTPSz4iiqeQC0cX14O+oozwf3V7zk1KBTs9FXtNevR7BG/z8Ives7yIvCgFpjJQi/CtyXAf51ujanB4xnSxbg3apFexqzH0Ym7pcDoAbTx6QZzgDxeR68KAHSRyMBnkzyKg00Z4dhk74AsG+fWVn5hcOX0zf2hQ0Uich1ip5tsMLp1ecgQjWCPEv65KObv8A5X51vF8mkaQqMVzCgcKrBMeDE7t70/5U7t1A+RGNaZC9RUJSaGkQszY4GgEyWnQlpi9+LuAt4/7zkFEgPyjW1fvoJKaMBbCUD8YfrKxLyUJtK634XMMql+4nVM40uWlJxKg5hskXdhNix9b1mF7TueYQUbO1aY0KQiFs0NJ/OXW6RPNsgEJt1kbH4ivmluYOa7PqCOUziiSpfSu5/SvLJm19wK/zIY4Pbpz8oosyYF/o/drJTR8rqIS1SrBGAR3BfA/E9YojbgEPx4C+O5BSkv4o8sxrzi6sNCtAxUag2aZbQSHxyUfO7KsDp8ck6acEPbIAZr7XIZaeNdOqmQN0OLcHS/Eh4hEryYHl5AANuOj7OB9ggT066kkfu5GT23yg96aJO7rND98ZWfrITvEKxrIOEYXJ7ZqMIWEzm6lgEGrKcg41+W0eIzbF3fUNqjo21Slzav4ucQorjDh3NQfDtwDJv64scqmsD7qP8kzdanywQ58zYtrnbbq+XoMQOQay7LSWWjNjk33/DUwZkoxhYJNupONy2MWOsa7dsSqLU8FlcwO4zH+wkl9Erm0PEN1ZCtAECuV2jfciJ3EFZeIVRB1ru598XUx/jT6tzxDCXjR61+t/ZFX5E69wv7i/G/S5KWq9VpCr9hwxdVvYHztZe7HLmfeo0iouI6+o8WQ8vEZc/kmw1F3lbcxX5UyR9rHDvyydjtKRlJUgZHWCssTw4N16t1Lqp3Cukjwph4+RqWkeXCW5tZ4v0hu86kZJ7RRnskaPgshZmEdEbCTAxrE7T4T0oQcy8zsWUbJvbP65uJZymQEySH/X907v7tKC026CXBTigqlYrrknozRK1tbeJLXA/rHai51Znxo9N11F4LuTe8HDKqmYugBlV0S//rwJH7hFT1cKlygxCQiLJPaRuBWYqhNOxNZfElihG3jJodMJ2x+yxv6CiJsFUtxKHA4nyv3EZHcWjBZJr/hhdkkfZAZqEB922Y7yRSEVhPrp0YrBYuNHxS1But8rkpJNwLiF+YNRNXI+RCOhGOk+DWyDsNTZ59AR3z+6tEiTKKSlqHpVvrcCRdebaOj8SEtZ9PqGZLg04/Qaw3W6X7ptIe0zWOs3fC7g3FHIsFs9xbZqdgqTmIwyO13odzEaEBAR/koPNA6L/eAx1sCa3lcob+Sk6wGN/MVSLoIqHVYNkUiELINLBhf+COHXs5MJgrqBPDvauXZL1U2XDGQESHCUI5mmjrctpRRn9H6bbKPX6csRW5eN4epJOnpWImMV+NSFX8osNxaT58A86Pof78uACvbed5RaYeC6WlMmja7cL6vqVOmFdo2tmUPYaDYvhG6X0lwUCAng9PeOqG9GkXZQGcbcoZ4y4BA3QPesKRAeVE47QCHQRe5Re6DLJlpAIyW2wsTEqRp1lmhF98C+gDMYm+/X69l+Gx5WRj5XBX8rOxkUc1Rk2AUe2tblVwLMt7G8Yn0fezKi24pgIH/VapwZImrENdl7SVTcDAU5A3Nv5C0P5OHs4syA2Du0Q8Wy/ioeZs6aFZYGtu1ef9Nu0L6W95mqkgzr1uwBfw18ZmBrk4LJl8tsPl1qgQgU+xh2ecY2boMrD7/l8UcDipARTRTWpgJwVj6irSiV5wIY+ttyK1eOBY6uNERA3Ee/bRxiWJNvZ6xDivNt/BmjI4G2lBQg5P6uie3FrDkpaNDcvPanchEi1a720WW52f5GGM4pMULqIiifw8kovhmM/fGP3Oq2HNKH2MTS38sDPKEvAPXUENCRutC5FUZoQCIl4wgPUp50D9ssw++y9Vou0XYKhpUPXuMRjCR7Wjj6fM5a2JOG4uFp3BJVr1gN71pIukdhrWYu94o/m+gt7uCs7ZhsjzPBas7cFr5c6vZrn8aehuRaDbprPfkHX+ntEbL3+AopDpF37bsglbiS718JCbPDk2wc64RBDeY4TUli7ZxRK1V0c7KvDFCZ21FjBMnGjwEdBBHt6mpVOURu2+Pwp0AOg8CEmUSxx7BBw0IOWG4BEGO056z1P9mCgG2NHYwMC8zgDt5Qy7vAccEz3TWM9KQIp014xoQfmB1s9ZeVpsIAZn899WaU6DyYchJFca7MLBPOumLgxMgenhNJSwd0m7HcOOYo74vQPJR12pywEH4tiYReDrtv3AN3AhI3onXeQRWzGE6jwEFKigAyv91A+u6NYo/81AtbHg3ofNHa13U8OZlclTaLJp98nrhcLqajcGUb7UY7ZPQdqFxtjq3C6nbgDcqe0ooGidQ1/9ChGMWMpHvAMKbm6DB1h+UweV88Lr/azbhcmUUNv+0oTTBgDhqOuyj8fhJA0tN2ShW7N6IGiYdOmpBSJ800WRLukecjcs1S6ravgTs/s3zjLvx3pspiKSl3LXWXbD1YZ46tMJLADStHrjHh3mBMOPwholPQRDN9IKsESk0q7EfHrm5pLftFdvQLeCHLoJXA6c5zjkSiFImIHpF377Te34KPmhoHTqXofevz1o2WyPv+ldiwoWCSaVu2/FrCIk56LaYrW8xwne0nspRkpqdLK6G58ABozddzqc3fJhno9EpSt/qodzLu/V4hzwlxkt/2npXW3i/5Lq8PouMyzXVnYypLX9bPQVaTJr2OlWbO1ohkDJpj8ax1OFQdInm70VyHLMtmBC03n5TRKEey1P1OnFSX9M0SgmEsvpb59UbYhRhAX/5FVOvzioT1JHuAT/TtmpQfbqIWsoNc43CfD01PwYoyPiO1SUwHRko7kzTswab04edKAo4kEqQBdc6pZzdfHdCnVMQSU2gx5ZU8C8kMc/B4YMUKWhHh33BavFzKdZu1enFvaYxE/M5D/G4btk36Jx5zo6hKhMloPGsLDEEU8aD8IvBP/aWST+KHGge5cR8gAss2EHWp9RmFaXL0UmEy1ykLvTV3TTgipCMztbMT14QMxV4ltM2f9KN1gq7PTJors4CGLkPe4kEwJg/UjjoJh4BCOcuht30i0mIfK8cxsfkWNR9SKaEVL9J6DyDGNXLK658N/fSLfQq2X3q5dQt42vpJs5bIIPkx6cBrMxaavmh8UPh8ehX3EkMbMRszDZQ95POhVTrFH7QmXmjD4a36Yha8veKuphLHYd9rrVGNvhGJAx2PlhhMJxSNYdsoU0pdDb3DkldH6tks9GvjtOjdPu7QTVNhUP2KIcjKi5XIpag5KQPI+CmC2J9Cpupy9PNSGCmvVqXuLnl6L3auVHvkhMbzMOgHRMJd2FajVluB1cgFzscu9HASvznhfx/MuQcUr+0KsQzRFovUVwAVGiX6KsYn0wrUyg14obRYufxIc5ojUX0rnuWBUbk6k6KlZfK0FQwRqrV3s0TW2QjxrqoDRI+21Vd0UlxTLMuGy3jhVcDdb9dNAC60YBx4wg/JvQTcEcXzmUmU1lGRozqxvrXuHeZhoMUvBU7jkIMrmUPgRorvyWbAYqqXQ9ZbXgxQeoGClhSCsO63vMQTIcf3DHnBMYK0MhY3/6dOiwBI8sRXxmjhMyKFvQ73MPqtCvrWA93fSDmUMlggCqcSGFgh40JybgGSJei8iPL9zztm6APIXIlJwac0L1FufeKMHeqILQw6VdVTmBL53rTgRjH1otwpGOI7Lx0XzU4k1KoWUlQn5Xm+dlT5B3MhTDGDr5xEAwpAaUKoFc17eynsJ4hmtEg4aXn7qWFZkWOko53rNeRA0i9+3qtobSgDNhr5cCH2/dEOcIF9zkqezhvsU1F5QOTSUTQQMbjSOR8jHl0s+Gh5vLJ9R5jsiWHcwuoS04EOgLWKoSee2EjZHzxgUGHn3toY54kqx5EoxMpg0yvHNrFYTpPaIROensKyt1gcqDFkW0bBjyCtth8HYHeCnNEscttoh3/zlCMFEmrJIH2nkO0tmBnN1nI3cZ0WtpFXRZUgrkduKzBD8LbOa0zYNktAivUzhYBuMCgwiupzoXsKaWDoTO0EtxWw/PtMpYWRRfbByk7LC1M8P3rCUTnseOwIsdYPfCy3SjHAxiOXI4HghFLQ3pyd8GXPzYLfd+EXNGDP8c2WBeVroNMI9+2B1ktfL6GdLnIP9C81IGgiEY+agzyvD780HLUBPQr9pUePDGn9lfQikDeHq3e9xlO6gRnuWKi4/T3GjS+9WGrqwuBBoVBVxTH8hL5dnbesJWKCfYMeCca/CaE58R+jMaw7jV0kR1H6cUzWZWv1InjALok1EjnmwJlaI1I1lO2g2T3G6ly4Me3QSmUAs1k/fJRfO2IvWVBtYzjbkCg2uOqjCFmGpuWaHxTcBU9PrzpxKJSxuWVjy/nPtpyp3qsF1AI12VRVXlHphkSL6NanvnRNWZb+J6rh8deaZJ99S0V1ZqAPYg2k6kJQTqcBbe+uNHL8KX+qvvwuieMp+sF8ZCpxelVG3NMwRhZSKjMQlaGZC2YtMgom/FjeIhw6nKYaCURwdm6GzfnRcSdq4MkYNMgHQF5nvgSi/bj1n9qwCe2a2WkKO9YWU5PNmOigIl4RFRuY3+GhWPQsZ2x+CZR9rgTlP1wczdQvt8/4HnpSBtuUOYAVHOA3sXrhUlnDjXfsxw4qsX/oU3NamgJQACDxpLmgwdIHzY0fZ2/0jJxqwuk+DlvzoqnMbE4oog45dCz/qY3yAIpmgsJSD5OLO2giiHk9IZX0yuVkZwbFzDQwQwsPydVd2pNUl9aCBWWu2Zvb1eMNBkLIErRuSc/dKtde8e7uYOUUzZ0vwXBwty5B1F5m0FD4nE7v53lQfFyoU68iceu0pMdeFbQ1VrLADErM73Rh72Qh/v1ipZp5cqW0t2wtqp59eB44RqkwZ8yHJTbdKZX0DpTAv1dwLt4CjnAOFd7pWFEZfdKgRzgNdQSDxFKFZ54Fsb6SVwa/YlN8eBVQDN/xVhzbzZDwYaAdeATVYmdrspB7xPONkKh/MJBxttUb7hMAUc7XbBUbFUYu85XIsZaAgAvmzaG0nIdkjeiwTpgnOEGpDgDJz4FG3VRAo9KjzLk4k2QzELTRJIZH7Y0pmrksuXZEHVUos7mnAT9xEamsBEa3v48XRG5XdeiBFzyKaHMA/57NffMrTZVvR6X7aWJDmFWuXb1N7PTZO3DV5/052Sj2DhITndlTGnB4yDCVh7O0DsdQcZDL3Li3kf+wSIcEYmvE+B0lWOE0eg21CNkZ5s5C94BBKrTK/QBzl/XN8KC86WjLOt83U0LtOPpc6x2MLG1xgm7QMgndtmHFGYvTWJUDqaxLZ8A1QQ7o2vjpqbH4Ydx+4o96aAoEmXR89BSY2hcyFd50h5AIyNa2TfGY0NjbOUPESnutIzt6JzWXRrpkExgzPKxOw8XtnQvVWgeQZZ0o1EB0SxOmwEVWfOMWCGSYFejzlZKKUDJ012+jXYJpH8WOKm6qUFgdAEd643aL6rplt2uK7EivV5peXJzV8P5gHq5YFKOllne5GSCKOGBG74+goYY+E75Xc7cJ4K115anfvHVHuDsXPNMyg3unHdlkYn8IK/G0c9m6qskb9HBB4AaCrYBkI9pmicxR6P4VwDFQiB5tg/hBPlIybUC14ea49+fiA4lG7IdRcKRHquVr6vD5hCbjgp8XhoOFTZ8dJKFE4YhcuI4tieIlkhwCP+0Z+k+Hn0zpMQc6sgh8vtKS0dkvsr/oSr7g7WIdBxvhW918WL1x+7H6+YALFkRUb/gzbFL1sCmcyCllX3qi+YWX+X6v/Xeg2mtyqZ+I8hi2aCkhAUBnxbF7ZwwI5zpADioKj4OI313u0LTsYpMUptzYwl5oV5+ikWY34WwgmDLXKwc1adNcEw2Ke5sfHPbadOhlIR972ylynKmeM3uwXQ3T+6Lnx2oBQD+09K3+4SXQF0Dmpzz7U1+5LVStS/6HzuwlmagcxXa1M9kx1N73IOg8tgaV8E6R5V1ZepQ6XUpaXv1k4PFHev4rm1ry0ojcan9SUFEtsr3LRaElslQa57GvhsalxOejQbz9lSo8pILjzYEOtZc4BZ/WAnHHNUtgs9rzVyRvo+sUWT2s8xoLNmlCoJ0mSqXH+6m9AWCk3SerRsdyGWGmG72Z03ei55vo/KQ6QCAbtjKZTbpXxTY6uufYAfnVf8n4VfQVAaJi+3U+HPUZ2TDILrUz/0Xzt6zaOg1oVY/Z1Bv2u0PljWmighpO3e7EwgFQ/02RNMq3eiV8cxndjUGUXmEOv8Zom8QlG4CwTMRzqL9D8nEh3uQ3xr3t8z0igeLR5EkC0Y15H7/dyhy4ynQZHWvoJGqUjEVrmKgfWkvYePKoiFZMpnCHV9bRwgQR/V2kO2f+0iyUG6XlZzdTdFRmFA4uvSqqDMReEf/c3xID/o2jHnTu6FtCyKmpThNTb9uFdiupaPhnSGBCTHqhdWbHWf/adJETrUgCcSxrPODJWGuRInmLMuPBd7JjGdBbKKiaGgVH1PmBQssDiCqU4Bc8yIgPEctCn+jxrDacw60GMq5HpFTsWxCRVtOAalDgUnLg1PHIVgSZxXnVe0ZRRGgyU8HETLFVzDIxDYAn6FwkS3kt45xvbCbrFRJWsZJ77iVlS8hxTC6EMi4JcmcTkbHYUsK/JEyqs47Y68MLl1teuSBR0KZ9EtBukG2dICzN4Z3Ixhg0Nw9KapB3Ij7a6xqSsKDWz2ixDw5B+QrrM1e/emaZfLqd3hkbucF/S+6ZaSA3Mg4XLJfUiidsvYHQaFYycmHAweT6U0eXjOmJuqkvuVAqCeGO7RMtuCMFHGitGAKeivPelEB4/ujfce8ave224ntbP07jejbPuqQZoH3VDhTGkPRe/RYpzyj3mnn8WV7xK/nddCU5m3WPrF6edUTr8aSMt4/v0UjBl9ZhXOGXqIWeGCyjan7vyq3uT16brf7ECrJgJ5nm50pERrldCxZesQccwjJw+eT4vUJ0dzUtxQ37VC+MCIlONqffbNLPU7htrGZmXgV/j9wSlzI8jJCxtqn/rUZa4IbhmJKa+9uSK4fvWZj7302L3III+RdcQ8nBTklF3WiePJIsa5cOzkFhyHQS0PvM7x5Q0NvJrMcU+dr6QirvRztHN89BZMyWrfkxcqtN1ORolbUiv4N1gZB1oV01YJNUHgSIV3mU3jHltsOeY25K5Wnh08pXeHeZdicyV1ZVwTm2nk45ArdyIDBC9uRG1KHepVTOP7IBT98O1Lyw2bHPiCyR9x42lB4KJdOWFJDEVFeT0W8H8YS4ZMTYWR3zl1PXcchiF+vXyUpSSGLVCZ5uUY8NeHxUI4+JsvO1VROCme9ZHt8lcIsdYxOdbcchrh6HofocxtaMg/INvKaNRiB6L1us8g1ZK3i5cKZO7eSLsbZ4RKsL/VWxCalDbbccAUG1vEDIFek7/fB7Uvx1h
Variant 0
DifficultyLevel
552
Question
ABC is a straight line.
What is the size of α°?
Worked Solution
180° in a straight line.
|
|
α° + 52 + 80 |
= 180 |
∴α° |
= 180 − 132 |
|
= 48° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
image |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q26var1.svg 140 indent3 vpad |
2 | |
3 | |
4 | |
correctAnswer | |
Answers
U2FsdGVkX18mndzf3JSJ0XHIMmT3kXIV3NSpzrvr0T84zOdZQlgQOV9s1tgfLSmNOlY08uq1qyi33ODDwky9lmNsD+J0YSVFaQN5p0wKzA8DU7tfPm73AUqRsFW/GCv+vCCrQY5JeNmZ8Ul0WrBHwKOfp3iy96Q5UrFmAfgpu1isyg6CHWDmaosXc2Or5Bq0AGIh8apTHJFehwYNlmz87tbcb5CiCnL9AM588BhH0+Eav4Au3Er2ywvTqSjYa140FPotl6Hx6GZ2Q9QH57stK0Unfnidt8awOijpSdq+CCu+YCleMbcg6fzVFYUaGj5Gfsqmbv0c/RDJQ0sCgmxl/YPgeWzwj8t17tqQV24BLCueYaid8ur1BSWNwjqcbLEsvodMfL7cbZJiYEQZLYnhBeTlH1ujRNYeBF6VXhn4T6pH12dTsU47InfHrOnHHuR4I+GU1nYq+1R+GEFAIeTvOSaaW1pWImfd8aS/h7Xa3U1Nz+EbX0Qt1COqSQzAIezEMb/pYiUFkd+MFqhq2cK7lx1WqWO9ervhHvaDP5V0ISawfmjWHgnG9hoVGdPQd39ULjb3RAZG4wARtDzylxBmcQUiVS/BlnqQAnOpPYNLzy8TFZY0KBnNlakU+hnI4A/YvhL84J4x0JQpni9ybUkBFIRH242tUBTjkxnVd07gneu+xh0lwvY1w5oV+TgVa+5mNEkdhAH9TkzBoZpcwFIE4i7etfg8MQMSGCm8CXOxQBM8hjQ+8EoC2vvz+3MJA51kb9Op/Rd+J0ZFxNqFVj/7ZL+I3+kJ+hjfF1C81YJMrZZZkOdodRhDvNkEmXy7HV2CCFIWbd7Hf4Kr6d4amBLw+Dc/vEF94ThAt8qUrkyqk/uhih/d4XWl192Yej4O0UYXrCN3sFpTzg0ctLdO/1dOvqeHw0Kay2nGXkqAZqzJ68LE3Mx1VCWSb3Gf35+/avhuXTzHzm/GIrgyavrPaHGjDNqloWZ2cN54yCc/pfv4YvEjwij5SPAHNFRWNTk3qRagBPADKKXuNDCzHWN4VLmXpM63F0LgP0pP/2mVc/VpGhfOM7NRKiaqRMyHzyB3H7gPRpFne8sUrILYhMvaFXST0HsyeZ5WhgcENx2OpPXxqQXapETL4kuFEf3XFVaymqeY0rJb2BcqocSl24FJCiRXlwNKuwVyhb3/a592yI93uxoMFaTGwryn81FyQRBibnbfjMwNuURolhk7Nwr5r84UEPMvaTxTBg1r25EGg/dZmQOx3fiIDi3diFX2FIzn8+9x0Pj0srmnKxzKq7k1ZIYXNN8xgadaQswY9V7+ES1z8sbfu/mrzfAv/WPULzwXUuP/jEwvuXNhtvYhE1t3p+YTGQrKTmNcd2EjQXxmu50Gjdg0iIRea4vi/x88ji/coccd20xpLbfMrZ5DN9ufWsoUDILxVa8PRbmlMqu+pRn3z6+ZFA9pTcj/nuMPgZ6ZJzabbaP6yoxcFfPMyQykMn7m6ltWrZVCrzc2EEZ389+pCtAZCLQeGY0xIE+kc1xalIBDGiQovot4LzqHMyXSPYljekTtoamyn4X8lLb/M1kaDxFMTntjEptvtbaNiJNrKX/MTSKQFbLJDhXvGvpe5bKZbTTWPQAl82DqdN4Kq6ZMu2ekuxIhmwuRuz8sGEpwgm6WOBTN+MJscJiSDgLBQsmKHum9xYR/EAGGrrFKIfQQlOc3R8HycZxaezZlvYCUiKKGBeaFMKjx4sHeu1IwKbMW3wTtei2jgzKdzPFc4Hr4X4OSdyrLacfQhoMj4L0ifgGdg/pVA7acE9/JJr5Sppr0Y1i/eMZNc0DlwmJpozv7q3BpmBxrLUSrqav2ljRhFdSkpeM9rCrd2e1JNBN/sDRlBwA2H6sfcwq1uD2tQk5FeqGMgu1912BOO5IWNrVDrJGRysf4bK537QiJtRhU/8AOFACMIhL7sIxxbjjbRDhVxuVOfyGe6wyZisXQ4ZWEDlFPUNGAvjKspYRCvCZv1Apt+DY7JpJDjGrYNEcVr1I4BFLLRS4bFuWSH1F/nNweEKuk6uSGZCytGJSbq0xxzphtE2j8lX9BN2mt/20+cLyNRk+UsVebtxnXUYduyGV/BYvOUqfbXNgM8HKceiy2ujCN1oJNiff8PdfLzFxc52LHjYKCSf7pMDO0KTnWfjTOad0fZclmPkyoMPyTIBcgzwzIkac9r20XNlaKf9LoDmz14U4zXoaJDw/VjxWF702GjaIaarMY9xSqb6DWTVAVwqL74GdOgpsILlKQRW5TRAVzDG9uSEE7q5zC4BhVOuoL1vmlUPpKMWs53JCQUi3dddTfp+fKPyVdE5+3Hyz9O6qHZxhhMkmomusTM8xnRn6ryJgAe1Ym9XaUpOYn6HE0nY0e9INidQX7U/beXH4bJttXvoB6+4a5fvgBKgfWrFU7kaklH1z6BJ1Guw7J3DQRBZwHIwJlcVvSOLbgeeJ5TpoAsMJiQlm4owIUYVZZ5xbPAdAgxpuZlzP1Wj2lY26bfwi9thJ5m7DW4zqOVkmAzf/+wIKh2jrkkig3lDsxarXaQftW5qZm1U58MEIa+peAubB7vkZg+6cir/vtKeKSO6p5q9Q6OvQLZX4yBNeThEMP5QXHC7YuzIsfN56t1IU/LvCQCfOVRfwLKPH8p4G4MDUoBC1Dyl6bX5R8sRbbAoVxZrXcVVsnat5hBwOupkzFimBqq9eExqvmwUohvEtgQL0ytoxX6eQPyRnUUczIp7cCsSpRj1U2eBtVjYzxc5CRN5+we2zqDNBCxU2P9doJ2NjxzuEYq8e7NJJUlXV7s5VicQ9wJs40AOdxJg+X5YxKPfHxlB72hlNevEse6gL34vQJIYR2roWZLZ5tswuBBDv8p0DB95sJyVGkMmPuDi+PFFFUgHAyRuCePWZJwfNgKj6FD/o/vSMPfqXK+cfMuqO64sFEbS5SDT8B/JTElmNHttxaIf+fHYGJmhAyl+Tr2sCwjPxgeOBZHn6ghd+03M0LTzz4UIIgckPwlbMBFGKKiZgiK9D2fV4DojL0eqV6tojWIbAV/R1CQ995H7a0bNFLQtMM95fpFM5a+rKv3tg7ddvHLpo3eTn8r4UvErw4ej8PY64oTTEyuhNJYW7PuSS0T7jDQZ3eYbBzeY4irclyEbp/7hAbrUNtyhq1XLqjzp6yYSHWajIoox7QgsPgEXEqskL6RTQuHZGQb2OSFPfM+53FGuSq/SklrVmkATWKviujGs5KIh7fcKZY6HeFCflHgiOrmnWkI8K1FYHrr763JdZnrW87R4KfEc+6jo4wkvdo+NLJWlrvxxbGoivvXGx6A/18EG2TxLrXI8mK3ApFChCmYTSEfzdsIFRZcFLBqr+XgxkxX5meoGXf5D3Z8fA43h4FuhHODepjDh2JSlCz+s0JwSKMoBQxsV7Ur7K5g/ObmCskkwZ7LEVw8GMg+DcKIros/DmHG/Bj0aOaXKDkaerqxET7fypJA+v4ntuYeSbypqLSoEKJMAv0Dh6oyjnvy4KrP3bCsqjiKJ/taaKZGDTSr3h9UP/x9sJYhJKFjh/Or7l+DO9ba3VgrJmkscPY+LWUKNqGNiRmvS6ITFFinY4TQRI6AtUWbpBSe6HZa+MgDYDV3/wXgzQxXeHHQ4QNbUBS3zOKdq8z/xp7xqpYso3PTyAPbOlkIAhuRP1UvNzgbsA0Doww2p7WiBtbpNko6TEpRbV3C05Rh3rZ3Rz1yuEs8D7Cupxvu6Mxs2oNFdgZ4VwD1HeXJ4dZShg08mgRSRNdb1tRqYhby3fV2kh0aWcJVgL6KeERtXylCmmNdZe28JZQkxMUZIIm1H0rvg1bMAQypvQ9nbpsHrj1olodvUu+nUAkyozwkwc3ezDT2My8ajBjwO+bFsY5kIqb9THAxmxuweLw1cEnVDIldz7eOQsRZWO6biOLvA6mio4RyRmyY/UffsuFlmccgTu/drV3RU782m1yMd8QIei+So1hsvKvalHi8WmrGWQtkoFRRtnAwsEuteO5pSs8uqTjX/ly/LH8SBwVUTbANxcUp8pdyRf2lwOMwdei5+QLa/sBG2hKK/sNc6CmEev0xGzrZQJ0YsvGmV/dKoINE6bkqMAElPW04iFqJn8Dk67juv/RGElh2+EqlCGNj4SkfIV/E7Mn6wOuyQZUgxYzFeFlVs5WB6OLVXScNSU8wM9N3gAEB0durUY5pImyJ3nkaJ6WwydS/53Jf92Kd7r3sjVra1U87re35yG+JbD2yZR9RKArMfHwzA1Q9GlKOnMlCY7tROb8wpKCjoRiw/ry6vRyjtYnRG/uQfUhQTAxrSXi9FUdNvdzY+Pw/2v7M7YQC+WXiXwlomnfqu7bSqBGMBBxJvB5ruQkAivN411zkPkp8L2FgVF92NWvGgjsoHnZntrWS2he9ni/Uqq5bIenAwaRSIYfaH+D0DHWb/spbMee1fH+v2su6/yPUtZjiL0KbrUmh6ZaqyRyQc75QLNLkuVIwNQEEMvrsog33L1jMM7oxBnODUcGJ9LYy33+i6uvIn0/WBoo3ebMx25e8UHsWooqIOWr0ZtupaKul1dZrIOjbACUCn2gJ1Ioldtb7GK+RGgaXwrjzzE/x2lWah8ZWbUtxVNcz6gmkNkr7PDLVf7Nx37rAsIbCkv94UkbIQaUVmC63irWpVWBrCBiaSZIhRdyAT6vGfmPi/zhPAdfy21Isfr8iEvQDwP/wCKXy61+19tbBZH0nWtRRv/l1Lrp3OTrQceF+glQgLVGkBoYL7rxyzfdbVZ8A1ZgKv+T+6Bn5myoGdXiWAjeJxXu5n+JFdhANvPJWg0GL8wATRXgofDZU4nHykZskjWmndgzCLFrhzRybMxetjETXT9WafwLJ8xzlSzT6bnBjjGqm8rvKS37P0ALXWbpzOB+Oih/7QTrrzg3AyElsZmym8o8+5nN/YGy91Z0IuetBiC0TwFc4Oc9mV/kWww8y1TtHQgRGqOeyTMLqTPGfY3QnszPxXNEUhdAuuBdt6j/JScwr+OoNLVVxVXkxQ+KiuTVLcYLtZdig0X/hcrdN3aT55jxawVjPLvafggMu+mhpGkFuy3xaYh1j1eYOwO1hTI3S/0V3MWFY6clZZYQUmyMf5Uuoi1/vHm0VbKssYRaihgHkD0ZTVwileH2v5KrVpL9wG9SikcYEYSPaFkkzRxC5li7tSU5471aX/MrxDtxrGRnlYxAOClG2lPoEpSq+qMx0IMbeqxttt2oXzYHfG0kttpB4lSMk+vWuOSEpZC7FyjsTi/vT8wFggzCa3sYKRf8tYtJiDHIZbDM8cOhA2L9s0YBf//2egWKUqY/nnDJLa2WOGqeYTodkTeGOfDanGLYFlu2a3nyFq4zBPyGMSZjcP0XW7u3NH8Bq62xW6FD4YPaLHLpPHNEFQyshu37cN2hhyR5kdkYIsFo0zYLk+AqeS+LXBkF7dd2L7ic3RndrpuAVfqvjALYTyrhD07fBGwRh29BuqURIyeyHFzim6x7uC/5R4U8lJ14MvMTAELi5UAjGREbxdJSNFt+12ILD5mL9Krv+tKFgUFh7MJl/w5c6aNhpJE4E/w+Xy8VW3qv4WkcQ6vVjoEf0QDJw5xyFb5NjMbdYa5SOAcZ+6vzjDK6N7feYRiv2K+/wG+cmKoCZ9+A0ZsHr1mqHJD91LmStLEEYlRN3x9HTZKoY49mJyTp09ehMFveyWWu/mDdtCNG6U+iaaAB8dDe3cPHIHtjOx7K8gR08K1tgHMzSqSJUNEWDjzq+hyGPU7JYpXDJbHNkKV6xwo9tw9iLHCBF1Fefik3pl18LJlev5l5FoSMFP6eYHuTJYUC0gpEJU8zBkKHmXlxFG79Q79noEBqlSIKadvGkpPHv372jp/z2n22MZheJjTJBDf6ky8PxkS1LseySkpkWYfFWlMMP/xTqxgwk6Jq9YX5ncNvyaGlb4dqhG8+Yd852d91G8rtI7rFG2zi8WABJRdnV1gaEgYDd3egBXZn/3W0yv1SQcZqBfWilo9yMmBVccY58zKWwSbIoaBgxBZ9IJylJNWPVjmVLLlQtDDtemGuuad4KnfpY/PZqydXXtymp/EVwOn2YhkSCsB8Rp5eODNQ9lGRIPHcT9kosu96547RdTvS+r4T85YHQT5DERAgT6bCAK/sg409QrQe0B8W/Cu99wJ7da1YBdA5c5BSVOTnvl+Ifw2n8VbUE7t/VJaVr5cNrRAmrIKvpJCUpjXiaxZQTcMlB9zvu1z8y90PPPa7kqnqUn2fvKswubcpIENeeRagjPMKy7EMEnkcjTb1LjbF2mlr68K+Jquwg3zYerOYCRziUbk46PvLlHxkwQdBdh39V9poroIpkVdiOwFvQ8J+J12n6E+P6W+cUfMZ44dqJuBuC+aozq/jZT/mSZ+bAaJBOWaWCqQ8ay4Rp1o32iMPRxCL9vZJkH3cqpkcB0rYbQVnI1sOLp+F0+sOibax0pU0ZJD5PDABcwS8wc5qrgliJVp3s+O5noPhyqH73mbqwuW/7nHJo1Bb0vB7Z6uKaPxbPWOzc5fbHZQYZeLtY6qPxXjT4epvV9dE4MkwHHaPeDSij+uJ8txdreoghnOfx5GDvyz4xAv1RWyXEAdML6bowPIDVR7gaYrl+Kuyjgip5gqUXabCEB+9qyEgSTcdvFxwD6jqY4fo609okk+ePy9u5UchHVnH05NnIx0BNEr8aVQQRzcoP8tijX1GxAqCEhyV5JWz7CzDaFp20MBq8d2/92y7nCKZ98vPgNPXd1B8yr/z+YY6SLL1tKGZl2+ZDdht/FsOo4LDlT8/0o5Fd5sD/gSJuX+Ih4X8Nqjt2sfx9f0kaVerKWcJu8YuP0Mdl8WzOtnksATi6eRlh2ZOC4r6a2j+ief0TYpbVaNqEbnBTiYH9DKqqfwBnG9pcSc3TTvz/0yspGBhnr60ooZFiiFEq8DxvZfQCCztsNGp/Jp1cPt8dVt4a8RoozCiiuMhtUzfODrb253WdGEyV7+QA4PTbFjg+lcfEoMbwRv6L4b7S3LA0r+bCZzoW5ne9iZ5FY/SFux4SMLAqsz5NiYX6fBNTH268+jZOEo9Q3GY2xYxS9zatXSMRVVLkoPqs/jSmydp4xUelp+bmaxMC4CWV7wg8AHr/b1Tkc/s7p7kWlbWAii9h6v1tWcUMqB4zgBNQ4Tt6zcQKlYrxQ/tM5mswzVeVZvp0OEciQ/IXxc3fOSh4pTDDW/26WYUa42+h6j+fCMOHpom/aqzm1wA3mPbWPI6ey7a0PiHLImABOPTFJC0xy89btubvkhJIJjpP0vEZyq9jGefNXM1be7+dP7qCYmfm+7KfSQ3YerbPk5Hm3UMtOlRZw60dZazwu6SSC6BvDY9/doLdGeXn47gZlWWBkLPZ7jzJHhWcmxyS7Q9W6vyQCWVPs/tOo5WkwKfswwYrNn0EdIjQMvWWFZZItFf0nXDklyW3LvUiF3E1iLsuFh2d6+QGSAcFoElzxblFShvdJLCnQbv8h029FzD1czIZPqdSZnRBTBXKzaQMFx0YZvTszoPF+gF8fGhF9TXqjTPJ/i23sXndMIsM08NzjAtXK12qyuEk+fa7qDygWodZ5qf0sjcBgY9re/ycJ7V772kxTliKsEwD3u9H/fRsb6vS696Yc0/PI2FbY3r4+qCsCXLRYqPR2nt2u0jV1lAdSnszVo+h52Pc7TJTGv2bL1CmNu06EHkJmUToU9DzcT9SGOH35gGq3KIj5Go85uUHZFE7zaUzpcy+q/uBJHuKTQ5XxWDDb4MX8WKPRj4goS73Tr8aIzf1fY8yuCMC85nPJNaPX3iGJmEqa928KxUIkMOmAJ3RipZdQLGvKR6TzCKBnP/gYAA6u+kCAQCpLs11/z4zSmLHEfWGKUGMuG78lECekKPpOV3DrLWQK1nxjDxsV4eQvod1nseCbOGg2JNkt2QyO6r6Tht38gLQ62IbmSA4t/3/AsNixsoa4BbQjhxv5kjXntc4WNVnWYEqmaxo/E7lore1XGZAyL7nTGAXfDkP+t3KtE0SLaddXh42eAoJcueunju5cEPQZrvLp1scnD9O+NRscsYMaoxYX5IZiEv6aLVYGPAebwlpeAywMl2FqcJMlHnWZYtw4hGB82yLB6k4kPsRRPnrqMSRkM5g+cAr2zRIPobpl/fluO3IqbVt84vT0t47+d55F0FSUgrU0YEZce6lCC+jiUWLxeLXSGtqZrMeu9aEbnsOpZPzGf48D0L1nj5dGQbbJ5T2udH8OwiEGavzFqwlTC22jG1IWHBm4r56lhFR4rkJZi5J+GqAhhpbyFix11mjryVspaZGLEJfz6fhlV7YTNwgYIAJz9stimW1qUSm76r2/cbakTNAOlGUp/diHp43DsHft20H7De3eKSc/HtFUivfC02jgtnbVttz2RAuIjukUisxzKU9lNfWxDJM+hTwft/4qMuZY1R0D/h2jmOR5Js2+IY5IprjrY6CxmbEOPSddvCso8G126w/RMPAxUtrI+/Dd3os/aJ+7Y16/mB8vS3kgki+KxCTbEsK8aiJc+f4xTXNOCm/d0EAgci/OlT8LbvsYqPnUo69S2j6giIfMgL0CKiA/KAnBOClkFxgIkiL0ccOPynnd8lQ+pJA8eyO+BuvlZ2fg0mHHVvtxcBKpkx2oAl0djH7glDhheZiOnwEA/G/RCWNyhNF/rx4v1JCRSAIFGNA8ZeNuF5P2w8G6ubwOAjUkz3Y9i3dWrfw7RhoLooupYTMiff4ZXSFswgG1W0guqc0fDtIHyIZY2M8DeYSS3FS+pvldriX4F9CFzZUbRJCZaz9grkkHAsBClwiRMAUCnwh/oiRVcRvq4skwPaW5Zt7acglCKWzUPM0Hfl9lWsdRDml+3HWtGaNc4RxYLWhjGuTCEPWMIVMYwsxF23wE/D0nqdMZSP0egGR2Eg+nqgNcayPPLAwC+B9a+iEJVv60qeDpU/Rq5usQd0gDf4UJrpBChaoPso914TnkSAewK8j+Wr7tkPy6QWRZbITLHlKEDqKcaqnNgvaDDLap36Vko51CSaNDIq/chfaacx7OhuwNi6oj8RBHTg4YS9IKF6AtH2vfDc8VqaaSqNycVSYz7vlKPKUlZsu9vhvcAOUDWnbDa3pPQ6fsRSW+vly1EErZlGJxvf8NrXOPBHtIsWa7FjiKXuITVl8RAaOe5mgQMWXqYKhCTvHcuroJs1AuM1ofRDB9G9EBGjYUse503arWdyqIgzg1qwVxghe6hM2KC1rfmnWqt8QTk9JQSDu5Ih2NCMOqf+F72LDnj0nmTUjqBs/SKpsSZ8GR2frZXjCV5bNLOg1zhIEGmZlfI2LnKCtAjDH+fwV7xLH0Ud97lk6AYfZSJC4MOC2+9wdl2AOBps4rBNkc2uVHzb3v2Yv0EuNQoUyliPYUAS7VuF5XRNB5E/3aaMbfNc+47EaLSIY1p8TarOvBCYw/QWdArZoyQLySQfbtMLDJScTZMaUL0rA75mfkyRuiZc5QJUU5jFpShzldUzFcZnoHkGCGBOfm/Q6oQTihpnooy8cw5dCTvSTmnx1xMn+OEiOnv35y1pHg4Ym3PdMpaHZEVHqsuUqtjPowE0meNsWpiALc207zJvbIUhHuXFSxkUrWQ2FlSCkO20CsDB/fBk5woTpWLUh+oQmzWSSW6s7CuEg65zGfHUSxAOIfyH32LSwgGSuksijhm8KfrALZ+Rpswl4wGo4jlbARNGU7zveoKbkTAlmaGwHgysUHg6I0xJqZTI/oBjCUv3z3UvoYmThBZID4NUJbGhuMiuMYVSVJDh3Req6PPCq2OGZxbXnpFewBimWAfb+ozYvEeRW6VoWFwK6W+uOdKA69+k0N8s6Wp1AL1SgD+FQX+tOYy5SiqP5KdWgNiGRIJxw6nXamknA+KGB7sxZPk7ADpRT1v3ZpPhvboi3Om2iiyruqh5xoE21QYPKeq9VCKbrV1M1Sfrw87H2z2YoDiPTilzV/mvUf9nZcB58IWBK8GGDw==
Variant 1
DifficultyLevel
556
Question
ABC is a straight line.
What is the size of α°?
Worked Solution
180° in a straight line.
|
|
α° + 46 + 23 |
= 180 |
∴α° |
= 180 − 69 |
|
= 111° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q26var2.svg 226 indent3 vpad |
2 | |
3 | |
4 | |
correctAnswer | |
Answers
U2FsdGVkX18w2+gAEA/NDJWtB+Iao7EbzKC7dTyasTuNfF2wvWQmAWlQ3iUwtCXvehAI8PE23iWJE0j+uaAYvwB4HmVGUQr8+bVUuXGtMMGR8ix5jJNr3QT+aNRmbYPrkN1qy6NEDh8ajGjmA3EmOKTS1excX3pvct+94kdaKGweWTDwd9HzrYXaS71gcQ9gfvRZRaLyK00nXjpfT90tUYV5lMnXU9W5tRZWVBoxnSMI/LT5IkCJCnh4KAttJw4XysI5sRrYFxdIpjpUwze8WGjxaPjbP45sPAreYDlMm6lyRBFD4yJFisgJu+asHbjf+0uGyOBdNe1Q1a6aE6WeB1s4wFk9Xxfjg9mQWLxYhHbzc8qXjTXnA0Ko1ugYqyUv3g5mYtJnwdRfA80lkkBWT3vNVg4d7SrudBvf959lMERon7wbp9rWid8HvF/JeYR4ECT/GbOQmUtCZPAxJ3L0wPFo3ur7/VdYT6/O9OIhYVrAln2ZRST17VgTBAltuqLsy3u/ELf/SjxPUno9kXy+Bf0SEVDOLghKEQ+XvPU1N41BIKeanB9Ws/fWcHE9al6ryAD6Mw2vFE7ML00YbQ4wzTUAW1JB/NFfz0y/O4DB19BEgTGseVukpLSvkJ8/JjdgffBkbgXWc6ePHqXCbAIYOeUFa4JVixSxSZQMtRebU1zLdOPl23ZgsQShnmh7s1x56XqNxRtiNqmoQaA7qNDAygR5V+9nby8dQ9x3UFFnx8aXGwEZdu1hiipSYHYkK83Io0lqlyIB968NFLTULvkQGUeJakUOXj27CQjvbU6nuHegRBPyZfvZ/ttZH02vyrSeHdW2HrMCIK20nKu3PBafefV21yYVUPlHrMwu/QA+Nw7vFSdSAN1JMC9TkUP0O8jSvMOqZZvZscIjZxGIIMC39fuYv4DuC9kZWV/MhHx4Xw7cY2QQJTTqwd8YxdEMEoWIXonZnu1u7RXpBtiyK7kZgLmMGIzSX23CflmoKaAPzNG0xJOwPHwGBybD7uOOw0ixvX02HYzAhFcl6GeFFjtcivWDCmy4+JzzZzM/UFuIyVa0dPDwJvyN3IMScH5wVtBYS25ddZuRPfYTiBLINGsozJZepp27456fsCFsogMb2N0cFDqCcM87zVq3gLCiPSh9lNCTtPqZf4RgPrzKHmrEcu45dbdmpj7fdkke6bU/I84dUVUbVyw47Kmow9w64PPz+6jiWiqbzOvvXgqjwB9I45i5s3BB93gJaO+iZhLligVa59ESkpeVi2ZJNc87BQHFWL4dWYcahIJd23fZCZ9zBbLzeXTKOt+q9f4jbdCHtBPmkooCs02kFATBQD9T/i6YnhB7CJsTKeUBWbzJDfGVWsREGRClqUFe8Vc8vYxqk8fRhoJromN8DlcYW9Ih2EY9FhVSfLfhNtoK4IAyVb9nvxtKgPJferK9UUO7JXZtYmKssYlqurYgBMbWrN9WE86+v/EchWATNx8h3DPBC3fR1lfAKCxOQIlFj7vYnw9u1iINdYfhsmhgXURtXnWBjCe+RTLX3BpLIkjNdFlajwytcDv9agxwbmj6yCgHH7H6QbVjk7Fv6hTJboIcy4rGP8+Ikw4qZ/UcrLW2xIeo4CHdUKwV3gAyu4g/H4w49qAnf2K5kipbJUMy1PSjf0ukJQzSQ25bTT9S0fBv85fZtEz+vt35ILVjKCNngYWcnActbKa2Vj/tZhq3JWRGfL7rW4PIiPwu1iJoZQdZdeVqb8QgZ3ocpIl992WATTmf1ZPUgcaeFXQORpeEkJw5B1iWhY6jcJ5S2FD1P7v7r37UTPdbcDJpv4shTiHOsObZx3usYGYsSRAaflOLKbO5aLUR3l2KbfzKdO9TYkro064nWqVP6HBU6xqnTcKLKCkXt7DXCUa0cgqjEk8zHWsvOQWTc8AAyNlXxAQ2eexUokHwJrQVqHsX2n9XvKKIY7/RLpNKIoJWI0W+yodm02IjPX5d11R1//vTA0LCtcgIKwaqYVkx24JvcWm7UuKUqNcJ5ssLmoqBdHe29sLMn6pSVyJ/n4gL4CTsDkN6XErYr7XursRV6zQjf6kHVbckflIbTL2lfWay/xGjCm5XNKH2PjBBR7/woqmEZl1wJk1I4TeKmH2w0jHsPwI0e/Sf6V4LspKbE9afq8LOO/7w0SiUWKnSXCLWVhSQ/JaeWvOfPeMk6cXA4ActN6kkDnvgtOq/USfE1VigYwIti3TJAWio6K4tVA9ESPOY95RPRG1bbiXR7fAXmx1KieViAyFRBjCM+9PLfpjzv5XP0eqolP4SVb0fpsR/aCS1V1CinH5o0jqV2uO6cNf30HR0e9wosAgqpdfv1yG69gZiMDapNLm8VqXsKscF+lxppgX10RrTSoCBMc+hCRxdNrUiXAVhP5gkJI1/WoXebBHzZdD8REcHT2o/Vao7c4vcjvps3ijZ+bDhCZv1S5zrwvH38W+VTd5ciiBG8+ZdQhYAhfkJQq7fEEwcG2cwVQyH7NiG+7SHj+xCS9SShXOMpXOv+G+cGxvqRuxOndknsiAzmoTKuRqpleuHxdp7UxHczZIWicauecYqmejVjo32tNb7aRm6Z12H60ZGspbJ5RQuO0ZMmHd70tNvDK45S5IY2aNdtk97GKt9RaNzCAala+cyR8QXS0jPGwW9dA7HikdgfUt7bTCkq78w58UBaeJE28rbUtQREJpShR1cHP/W3x+v3u1Ix/YASU7ZlJlq4u/4izhZAuK1C04tx+vZAgIhOpNl0Ks+f72QVA3rQ/5c0/qb8TYXfYxtV/EPjp5FlAr+GCGVX1TsIudKanfTpFSAP/hpu+nBW9ucC6U01SSFdrLbpBRILhKEPn4RAw7Wvg5rW19fnoRj47Jih+2Yemps+KRfs8Dko9fkwzP527VaTFqICuFMH8qMKheUNatMZxoT0A7uS+HByrgFh0Se/zws/frdBWmocJDf+C6PSM5i7K7DFLzzVM3N9rOJHk0mkKTxJxOKPDbkBxMdhPm687Q71gxk/gTln/aPHqTzMfgqRA9l8KIpBO+1D/f8lKFJe7vJlDFCw9QzgHS+Q6x6NgZmo575PYApG59PwF4SgelgAeWTtleTxUP9ia5+vBPEIERWv6WaQ82Xze8Q41NnnVNXyMMGYDJhOI9CBUPGQiNbl4PD5Aaqt10kaxFGDiol0iZ/pplldGCFqGh1PpEfynopfb/1lLAZnl+8EhCRUHWvP8conW0zgn6+5rz2+ztV6Ea5JSCo2fKHHGLmsYlPQPLYvzj7UtnY4kwwzpcWmoimOvRHewOa2iIAjE2HhO+h+Lb0oUdX7a5wun+Oc1It4i9z7ChQCVj9+V8PoaO89+RXfoHLrvJVuhaoq7nuwk386EfvXpJckx1ELB2JZheaMe0Upq9n/5IuJ5Pwy3gv7GPvDtzBGZVwV0Mc6ZI0kYBRXGARm0vJcWJT1ammonertif4/QTML6hdbIKdUehMc8P71uCpMESAAuVygnoDuiPQyedgR5ulT6RH0g4LOaNHwtyKMGL91fDO5yFjKrdcL/az2GC0v9hvVPV8Fm+JP5ooo/ByYfZtgH12s2P5qL+uzvQFo+/x5Asa117j7YuMwTip4jPtGPYpdPkWGHv7ChJjYsp0yDPfm8/CVeWB1E6OqmSn7B6dEzspnRCKxb9zJq+W+Ow9A3WTyTOt40Xz8m8GBs5Il+Sd8Zh006FYqXb9rdkjCbUEmKDCKm3/m2GwjNf8y3DMe1y3hu90P0AFwJNNOi6fP9QtAkQPDFwT2rHCKojWP4u3s4yj7P6BPXuBT2t0zFrLPybCvZDbkwwAfHt2MGZ7aOF9DXEpQx/AH9EpXvZyKccU4CghBWhVbfRzmA8YzMBBj8R2hL6/7UkLhsK6qbfIR6moVC3qCG7k0T6OtD0pilZdvg7E7eGAC6fX5DwOHQSSRuIcXRaKloxcsAcCTXwY/yimjxGtpWSIZuL8eUr2BsG8bXrs+ufDA+HSc2rff8ro25kWoztEvWkGQBKCZFDFwkU82J3MgVW1M1jt+pUokVZJ+1VVEsKjdUGmglaSuB1GF87DekkRHGcBcRuN5EyPZuMbM1xm/esLAHCJUo8F3k3PCJc4NwpLLKkBYuOrh0/yp80nHSZ85FUqJWNDu78PyX63fCGgTALyC2ns5o3iypO8oSKMK/WJpKkZSpJOpI6O5a0r6JJtLTvOQxzV/064dq0nw+9+BaHXQVJ0an9q6cJzic7/rjLGd9Cq4QOl/mFkQtoYjL3XBUnquKB+fLDRma+29psE+VkhNLL6tbSl2JmDDCUh1mA7HBJKMR2mLRQUMyuj45hOGDxLanW4lQCmyUqqI1vcG/at5XiJ4MPrExxPjYoCZCLFRlxi9lOirLcvqWE2QCoVJr7sZdgzNxZjO1oVCYDmsm//B9vl5Rdw+LZKvZFEDtnQF448divzeNGxgPjg3XKmx7X52DIeCJbMHwXqXoTuGILUcEqypYEdRVGQewM6Hwvn2KNjJORABcB2aeGOXCQLK2SEF5ssI8/zjlF2szlXtuVOdBIwzaSVPVdAjBA9PbnEzSPdADIbNQBIGt2SzCRDB3FcPxB+siYEwROPb47iyQxhGybDuvgka3pa6W9kKFzYB28/cC1TOKvXKMVGWn893G98Xil8uAGrwQoEIHD1ONEeDdD0e5JrjqoEp7z0YATmOCMXmomo/FJKInw1fOjdYsvapFFYx7rM0jBN2szdT9iMtReasQmCbZ68UlGR/NCGbaTNqh1a5Ubij+CROLeOW/nrFgYmr6pfKTV2mYMQDPRvbqLozKSJugkByMAxIS6CTnt+r3Pe44SQBg9R4F7s6i8q5L+aOq800A7KzHzLx2uReEkYV1Y5Nha0am52n5KyWAUb7UAEblD5u0h1zv4NpkznSbK0z49AsNA6zAo367z2at10tmna3eamn8/zDh44Ga55/2V//x4BWqmrdJI+9jab0uRWBKRxKzJnT055hL6OZd35Z1lEzxYSIoor+RDAPPzXrn2wNpg9yLSBceh8/hlyjrlKHMYt/GARB9UxwnDWv6fwFjDF/qHlSdzFowItEOlLVF1bp7GB4PzUkPZAInPsOsP4DKSMonTI5zP5S5p43O4XRX8Jou+CHLqlWElkdd9H+L1lz4D891saHUnQB0mrAfQk+VyFf65wmg6udCASQu1vLkMftUFVLmFZyb484I1jMVkh5UAQHHA1+yhaf676o6yQnX0fGWY2XZb1i14zZYR31jBs2+czu74aWpGuykTFQCY5yLXA2PtjmRsIgZK8e6p6xVb3deSZ1B3n2f4sk09LzHgvYUNO8ZtT4n88ngNcnf92E1mWQcyFzPbHsURqPlFkuoJkYl4NK/zk54fqobzA0Mtccpl4b87K8QdQ8yUkydMh5O1MRPYP0iEsgW7XkuJ9N85XgQAnat1IFiRq3frQXuit4DvusjKT74OvsTRJOs9wn7ifwpZudJDv0VSi3pAiJL12r9eIOCrpacpcDNy33VYQgn22K0XOxGgLZiZ0tN2oxS836r+tTAy6nj33gwbJcLPREuvLZbwmKHfiXcLTc7lIU6MXXW5biDip00rIdZc8vpupVA4ZIbfHqeoqaoNTi4dVZrvEuE4tvgmIHoK2JmTmWIyARvF3pr4pp+y5JjG1fut8WrWFJoMS9YvtPtvicS8TBlMf/QwPwwOWEzTQuTFXTiBd/j/u1co0beOLur29qnzU5LdW8t85fjvAOfhbbS3t2CijDtLX4B+0qgvSPe3iFvr7mhnaJZEQHFeTbeFK/yJaEbMhEnpx+qvqB0V0IkFRQtwkigWvEFN4zch4RkO1rPrgtzU/gaS7c0vKWD2gwq6VN2L8Urr+J2E6kBhv95P2SO4h95Q1sxeMGSdc18ECznp1fv7Mi9RxGLzPeh3tBdB+fLDh0JnIl6E1mRfrR6UqwqR+bt3IlGzNa6XUv2W4qKPQoOY5SbnfpT0sjJLOjge1EDMj8bs2mQ36pTa32dtHbuCCPmEUpA/RvkcPHW6K9q13FF9mSnccPbIiP18F0+c/79rurRpxfkVnLDJwHFwhNhIWZQQqXzcXM2+VXFEpOtii/CFI4aT8Q0AloS+0U4czz55a2v3pTaRo90gOi8QgRw2zcdLm14btiQsc3N0c036XmCv7y4rRCNQwaTj4/cokXzofSGA3J+sJkHmIhmt3mSIajYylDRE7ukZIiRCI2UUnwWesGSLJrinPWVXCof0E7HFvuXnqjklnZqySniEaE4SoyWl3eji6Abedm3A7cOFbKclgqBrF4HFQMHbM9tQwLEQ/NdBFTCxK/xQ4I4kUgjRwVEd98xmkmV3dlLyyfTL5OjPD23OmUfs9PqK7NgqD7+u9t5N9RqCoV2fo3cnvLRw0XxgyCQLZNmTCsBpRi58bBb67VgqqK8ZUFz/+7hmelaltjiYUPHmZSBUFSIyPt7KgQb1nbXLABBOuIC2FFyORnzpp5J4mxlG96fNYpb5Zmmc2kmttF/QVNuJvVv3Eem9Rgwp2i5SEa8SKaxjt47IA1fWodEPMstMD/lVNNQl6TUNcgeifqgaZpCE1OZYiVWPFpQmYjAJ4ciak6IBRuWJ5cpMptR+fAvxdy0VkAaS5qANyO7vTzRP+/LCWgFvpPlnO11B3P20a2KBSwT2+BQKdpGmvMKAjFl7nHNuzDppwuE2CrepXzeOuYZSuAs7zEOHrqP5pt2yIa8ctdiaPmUu0E6dHJD3CXSAEannYozECJwdyCYwtyBKwYpUBqIuzRLyAC1VE1EIBCitLMlH/+q6uuUfy8tL9tz27uKAqQqupN2WE9eDl9DHTLNUhdlIDWdYPuOVoWQvr2Nn9TXhhLaOB0McQlxk5NcRAPnv/gu826fTTd62P6mPof1/5QTzfeq0xVGmWX4OkqpBQMKGzmat6DyIApq0JxwoJG2LTryZcleVsZ5IkJnrtRAkebCVDv9UXijRN0GKLFOFj2qTNtzwPfbzNmcDBtzg4G1dQuCsEPFQI2OU1x/umNCrWiXtQQEsVD3zOiVUUr5Wa2UfkLHTJirfL21eOKUpqX5lUKEDrs1RDexnS4uFyk7NcI8wXrX2VKrbDKUR0rzlsbdVjo6J4EWX+8tSHCQeP1wUIYTmxdMlI8Fq6iCnpbLBfrRw8n9cS0KCFbqxvM0+jzrNwafSuSvNQW68uwxkyqBd5HfrzB02KzemYz4LgtyL6/B/tW9odsCyHtUlTWkNzta0iuseacyZFHywupA0Av5O0RLpvTDT3vJ5Jp9Gky5UyB6sEq/lv/wyBdz/Zn6GR0kT3KMCSoWmDtedjVdJpMj6x7YjBYUCAr8c9nsHGbP4IDAZ3DmFD0rg4NgXqcFG8APqxPqNBJb9GjO5MPNfY0opHsx8jQMNZLXK5Eo8LHw1cZHNlvLZ4DZCR42uINYS5+uehZ3aCK1PniMJwcKdfF+r44cXYyWlt7hk09+PuQpGXlFucDSTh8EKu/zFYoZsFaL02eRgFVS+pK5HyjAPY1SBK6epnFxpCU5hSPn0UG7znMbjv5xQ50CJBep7w1tYxbRk7r8K/0VjcfsbUIWYCLExD899Q4Pk3nI8pELKGiU9ikVMEuByWjX5BE0nqs2gEqGD7diFWp+bPYpbKa/SqTmSyU3ouT265k+3lgkcOMo7odoiyUQjqMhahSVEWf4kqvn4U1LAVzMFAfSCe2JlvcoXS6s0MiZ/DHu2q9UhZt/5AvSoclNa4dKoog2HKHZKGJ6Lf1FNbn7Y+nIyzReGvXzJFijU/b09L03yIldzJBy9nlTazr5YVfdo152BchvrgD3FeWiXQWoMrBw0vMLVH5juZ/RhttwJcb1ue4N4Zt5o3dTme17NuZR/3gZYT1xEfszQ4WevvpZPWF1pFWoFLCwGmGg03hQb223wllnIVKY0qVlqCNTIaeBjifs5GNHF5OfRHibkrjRhDdKgiOnFLLkNTvihFYsThRbtvQlZrPjt4CROypd6XLDpN0krad4Fthd4LLEilVQh58x1DamoHXYb9tHN9Qqxt41hN/dgQ5u0y3KQ89tkTJcm9FuphAhM45YU0mR/5W3koLgfXlE3uyEAG2RxswColez54SSEVcqmd8XckpVA67z5SwaFHs1YDLvHl9+dxAv3gHoKhjhPZ7pmxBGHMvF6fOzafScOVwV2FyhvYHt8MJEkcFADS86pN1ge9YRpCANN9+mu11/r6AwvBJSdbvQb19+gQ1G8t7ujTbykz+CrOl273+qB9Ek789aeSsp1vHHcio50sNzJSXSEPbpYhL7QgjvuXKJkrqci0VH2VT+j58M/HEEuFmW6yOoz95RxGoqwm8I3J702BNIcNQe2sUtsIsZf3JPU7yENfH7USz7buToV7MCrQ4zCG0TBhIXWQYUBFkkuim5d6BaJWpnFlvaIIZABU4Lh4csZQpXVqMDwmU3yxOLPVjLvIyv/TgyXEPu2JDNUTaoZCTXnouDDf3ykpVqxvwj4dT43WNGDLEhq3YStSla2VSxoPLxiTE6ZFMhflu8VXAsdYU+KZWqx0Ea51fjWBf2B2jUOJ0fJviS6CBypleDz0b0b+gMvgd5dwikmy7elsWRcTc0u3S4aTaZ8bcivKD1OMexXAFWagsnHP9r7WZKMBMR+3z2SmV6vJ0orsutAWAQ5+DUkx9awddn1e1K30bpn565Lkwkf0Sl3KHEaoFw9oXco2JRTQSI4zGsTpoH/A36oxhh5t3VHN5hPs0TkBhXtTcGQX3c9G4U6ZdkX4+Kp/Z+Yl2RsJwQpXYV3GM2vRwzWU5BFgoigDxK29h18S+ZI2NEo/vwD4Y/CcCZ5X9x6wIj+wzeJMaNHX7w756zfBX+IXOlgTQhxVTzo3oIwnkYj9XKoVQsDo8x/ECMFdA2E5h03VtpOO7f2zrc990f4Phc2urJueE+i/LEJ+l1i48NSnXkWX4G72fNImGcNQyQXgdl+hczmEX9GZ/2yDPSl/FkjdFMnw9bdPi1JLrM/48PtY1r4LDB5WDsLuDvM2J257ko6Vr7wj++duzP3/LBJ7acmm52W74SvGC0SiWmPruhwej5yIoiWw/e1ENQ1WCTW2AHFKfYEDphE34RJXwtYm9eI5fw/mXgMR+03+BxVYOAD9+lS1qNJxV3fNVVVoXgP5ojfi1O4x+daP9bn9oRSzWwqtCZa9w6geQ/ysgVUccMFfir8y/k87+cRM++oghd2nl1YjL7ks8kE9BHd41rsPr/RU2bHC4S6wlKHr68AfKKkcQR/cNZB7gxIXTh3ppbDS+GaxQcEoivSvtCl8ImlT1LkLfYvpRoaAUP1LjauHZr/PR99bX4j+mQfnQFvNaxXRoKRnCDH5sWbdVXtZ2VLPEJ1087tBB3vLJBK1pI70NadFB/sNiG+kKdP56aeq82m2FlagPq2BuDR34BMHkGBxZuR33jScM1j+arVJPH6rN+W1nlwZC57VjPiHW7bqZM8iVBukLAwBhDTnWqbgpLDDcFQtMlLO4AbGLyhNU8lm5T7L1u3p3Lly/hK8YKEQfer535oWRUHJj5MK2ilail5w4HMzlwyjCf4eV4LkW8fwy5jPkOh3pjxViyaoDGXnxY/PG9e3BLx+Qw9Kx8xWoU7DC7ISB0hBemzoL3jne0UQiN8CTjlCOXD9XzFFsoKTD7v4j6JcUWkrvlpllYp7sZF+/jl4H6vtRSYSAdIv4yu/56MFD6J+Js5HfAuRq4PM2jcsI6tN6xBVfZvbuXj1d/ZCDjXTfT1IgIccwL/SSeTMaSpS7kUHqI0WQszdUQdIZnvu+J5UIagB4mXGqr4VQIeP3y0Q/BaLlwt/S/OsjuBVFLKv0O1mRZJlNfAjro7ATp2a6z/MklTng0LKymB/EEh0HsPWAOKxTtokAzC2rwRz7DyS9VOkrkwDzqGklNEl7gFd0ub3SHTG+RDl6trb/kEJGQnz/IJZW0Xh+IgyElZWnzwTJ3E=
Variant 2
DifficultyLevel
557
Question
ABC is a straight line.
What is the size of α°?
Worked Solution
180° in a straight line.
|
|
α° + 18 + 49 |
= 180 |
∴α° |
= 180 − 67 |
|
= 113° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q26var3.svg 130 indent3 vpad |
2 | |
3 | |
4 | |
correctAnswer | |
Answers
U2FsdGVkX1+Ilg6f8m3pmgsFL2Ux4/CsQa6JpXlgoPp7lnBurs/GlmZGVw4mRM1m+opaIuLrJ6Hx0Ow9BOlMocKRB3qeZDsTfT1YhTY8Mg1PBcOP9oXPN/XKIMk4aotvNx4K78y+8AbouCwA06csHtA1fi/l+Heu4tj3Oh5iLVR+FsRGymvFj6h2dTsIbKaLXpRxqahKa8LEOETInrr1SigglKjP/DUwdSbG7qir9AcluB0G4GAphLN8PfprYa+F/4/rK63F7cujGCSgCVJW3VQmt+8fQYr0Sl/sNREuys4pHw+YCiwJ7mKUIH6xYsJi3LI/XPMEgyZ+jS4VBbrJucxdCoJe+7kyEAH8Wj42t54Zdepj+FwXHC+o0qbEnJdiPNpqS4VTOB+2E1f8zc24aAbJszTX2dwEY2g/5s7w/H6BLGS0TDZ2V5rNc0+PBor62KqdohLGN6jPZtvgzy8H3Uy2roABf3VCEOTXqu/n29u2lxQPaNtfkkR0bbAmc1upNrANFeh5PPIM2sThATV8jRR8QlUbTBqez71d7ld/1fPptRcVwsQ8ZZENaP5kyf1oIUo78Z//ja6YQ1FlxkSB2UYcMn/0w8RrglB2JYpvNrUYaF5FLxuM6BdhpqDkX3qC9oLXlGr0cfDvTMIzFImHl0Fs2GEQJT3TgAMtBP13sdcw4pUqxJy+CRkgZDwPYcrt7EBoeylQEcm8sdfJ589UrSIW1yNAKBaVdl6pO2Oy1JANskigbxdoEPpnQ8JRPx03fYs12SAf6eh9nkawg19UJuOIjKWqDPQFbnczEXi7ID6O5hkMxbnc4A6lsUCtkG6S27N4rUM7k93zzeBmd6VBHDg11RHDVZF6wvK8cvWa+T1Iqb7Ws97rIIUdLgwklgzufr0Vp+1ERnEHOkVqx6rTtiOL524oA+U4UJgeceBzKrpSMmOOEf6stAR+yea3m2fXJfJ80JRZsvpKqY49ybwtZoCGw760hRQGzD+Eu6Pg8tHlaQNkuxkzvaZn30cSiEMQb00sgLxf/Gi3OaAgFQNFUsB13q1h5zNkqzVScoapVwWGtx4jjku0UuEKeSfvVDSH2laFyY+gOoXQ070klfFJDIZzRyr/w3qw4Ti9ndAkxwIaZ9Unr2DpVLv0XDZigB8aj4trCKVl8wIFQqnAjWZBv0VD/RkH7R0Hg2MR0LvUnaWOBlyH86HGhKCYOpXLPlCageRNWPz2Jdzc0UDpPQsbiQLXBypILeB+/+hMkH4MTThalgKkO74aoY327WY5zH56PYCF8XicHKjkg3ttW82KGNvx6ZAlB7TCFeZhxXIDtDRZAsbT3z5lpWNtUzM4EFir3d7PuRrResOWWoqif1IUm+PhiNuVn6CFViBMMfhzXygeRNX/X9EDJ5x/NpGZXhz+Whxs61kPjGBTwYosmOFB4OXBVu5jGHOh313bQZI5dB62wv3cP2X65hGe4XrH7DWbkYqCR3xif2cS8mjMNlbpjX4DjvRoWTmzbFZk5Spo+/XZmIP/UuG5V/BvnofRiIJbaPSv+vbclk8LlOyj9sCHD3dckGjWOSXxvoQPu5NGEVG7hfWvuvBjZQzsviXtvn3H2Ft6fUOFSBFcFkcqDjMMeDhDqH5W0h+Ab8CpRbzrQeHq53h6qHBuCUfYEqxHWUiIX80+kMa9vKQ6UZNvCT8YzU6G2rrGAQsivVHZfrr66y2HcF/Kam7BraXgqjp08i4fp+mx9KSHqSd9F0XunXJ2irKIKeI0v8kj/ipOwkMPB62YM68tNecWgY7BROFXOaYuWoJ2jCzCPBeA2j2R/SekSiJtdUDXPHsi5fgqSO0ZqaK1WUZizo2BrQGPcyTKn1W6/cfw8rwPzVIseHOgRXXdzVwjE5pGIGOhiRkwyhl4KqD5CF6HufL7TOvPkmVPBhrqJumlmK47iOPOgsfHhuGIWAjd2HhkbodlP92aYCZ4CrlFhkzBLdgXMIZafT5iIDNEkR8sbmYq5JthAqrU3NyT6vfXDU7oEiijaDJyltD4wlAIx7SkQHzmDRrREWe8/DOKmnr+1CqP9AWJlTyrw+8ZTIzo5knb8RKYjWzmcP8A/0S13jkkBD1tZbtNsNjm8BAcbJo6LUaC3kgp+Lml9VEojulJ4kwo8DDbdlcrzZSNcfLhnapIY0AQbTxRVCgsN4HGir/5iu0A7dFckKKtDteAUCiIBQVBmHrwlhlpB4XWvPfFn5aeBr6pmyb+rywaB2Fi1/lBoPvT279zdUaak74PGhTdhKIaY/MUOBs9nhJhBWrSOVLx343JG0JZ7uhCFNy915r/H2MomkVN9FplBKX2EWR1FmzgMqWqdD7kEUUWuFp8tRjJ3jL4mVopJrQrZrGilykhthfyGHanLel6Ru2EFsxsef3GEpF8hDeYj7fdfytt9kcbaquJRza1F9uXK3jIKlEHJwXJkvN4ShH9l28bVpgw7vIm+kKSBgHcuVrKGLgpjIzqFO9j3vMRMtCRFz9CFrZUGaHOYDfUeFhvFFrCrgjflGjuA8/jTxNt0wOASPYI2zfHv97q+qiHt8zXqOAcw1bIQHxUTMG8MTz16pYD3ku2LEI6H+JWZcl1ss4uZJRhEZTyi+5uUa/BwAWzEfdZyfv3aNkMGt+P0Fu0NkdtJzo0bHBEdBpiPim/jkyodzo42+EqHmcNjnqxbnxXKygm/Z/hWfh4IV4cNx5OGwULV+jELshPeWcKa17hV7RMEJ203fR+n2CEcGvJ4/GC3BY4s6EE9QuyUMc7X+c2Oikt4jgMvfuO7bXec/gLxDIU6ul1amWLWwX9r5eCsua305CFqGMedDv60eaPmuBrq7YLpa+FZmok+INLCG1n2o+bEHdnl+CBIDX5WGK7SiWHrueIDXy9Ho3eV0qK9TkRF/kKno4jiIsh/I2lqFg5Pf+ZjMc+6ZtDGeu+b6dPsKsMKkuUYH4Wux/3fZ18r8Ml9KpMdn2ltMXUo5IWVRC9ZteydAmUTqrGsc1CFunHwr1xZnaIx61AGzoBEENinkhZQhV6mGJSNs469HA3Bef5CmF0h2/bZYRSBGSV4BZwR8Wlxy3v8djFs+dah3uBwuwtQh2H3FmiiXywA/C0S1fHdB5j5+P5xMM/ykFF53erZ0JDiDUFZ+JKxuvzx49zax3wwn7pfIIhe/M93W71hS0K5xLnZpp4jc22Y70XcO6xlg2Jbu8xP5zI3Lc27yPGi1wIgsfRl4FDxQPcYMiji6+z//DqFF8d3TqDGPcFE157zlEHQ4P1ANBuJXbpgBzPkYYWPQmif7MZ12lHYLVxcgpejgamZQaRipYDAbUnCW8zBRXIEY359e8X3bGsiL1LK6T4kC+PivzLbyCDqxnNCSDj+hjUf6xh6s0nm0qFxruDnsoQJftRYUy5nXQMxkxPgn49K4S3CQLIHz83N0btyWqWaKhQv4AIEz3v7LGvh9I+2fvhNjgxf23xOihy4XYUUh0hT1Th4Qr9JUGzJ1By4+RTvIY7r5Hq/7yqO/F3nX/AEX12vKNxoPiHxSFio/y7v+/4vaOZMLGvYHgNSaR46V1vtI7RPSs6uo/7SYWG7LNdzA1Aj/DoGEtmTs4SxOFBIq9Y6UxYxG8i+17eoaDwtDKTe/MzUFWwsZib9nxQmCMCFPCpaWMbwoRYRYAf00ZOS+VmSma6pl+OJfr+9Fzrfw2Yc2RQ1Lk3QQcWj/Dk9rOW5v7U4GyhQU65kRxniSN0aHR0rpRR48gTi2k8CmS3LyNfYn7W2LNVtgdsIwhfqAAybruCPzrDo/Kfle6YPM85tGnsWJ+sH0mKtg7qXhtKWu3JxV9m9DgJk1JQT0NxkHLBFUN75f7UNdCQcyecNgtYoI4yJgxSIXTzTYAsVE1dFNvQtqBWU1+1atFbyCiaF8sIAJ7YW2jfEJhzSXfFcNQjwWQgqAYn5uc7uO48sFkcxKABASG+qP+luP+zMvDblS7AIu3LPJkiH7yc4OQqWu6N/bPLabS49/XX9NkZERk/zBNVx9vNE1msoEwIMH14VGMgp/bsZ3RHlc+UwgGN3lIXxhoBOrldRuwOI+bFKhLOm27aCprGNdMI1yXzy6Mafsf8YVhOwZP/UCQhtvbO+LVyKH2JSc1LDcC/zARjWI735uIRnIB8cxuQv9Q6ex3YSaYT82KRNWSem2JekqB77/eRIQdwPeOTlF41geCeZ5qn1cOARgftYytqdXMID12sC2YHVPmKneDtCU7QLOrlco3ejhW3P2QF/XAVNOtVv9061xaACSr3ypUMpHd9hdEz0Hdx0N/1PHtBhrjuOXzX9fZK7wyXDfWBUl2lFEWhjJBKB/4vxwe+hyQcggCST93tFt8nMpESOluwUARXZxEzCzqYUQX97ZFZ5nTt7mXSPV7VdmQikbUnBrUMkkKEtCG1ZsBb+zh6CIQQL0qvzG90Q+15ELXPfEN3grNtcye7VNCJXUW6HBol9dVpme6X+EVPWgAfCPN3Aiwmz6ACTOuuoQ9PdkbPrzEmOzI8xAxvcQvjkG2XO6qkK6S8b45r92Xa5NDFyqGFFxhUxU4YqsixsEMqgGbfZ3AXVa2KTYGR3xQVa/VS2qUoM9WqF596TMKBIyE7E+JsvkE22SJLfJSMuP+eHde/eS6DwOJAO5L+nShUF/NVk9lwif45Jj0DWClY8doX0/Hr+cNyS93eHAIoEFu3pQ4df8xs6ENQ5SBz1WrT2M3Y/hBtPGRY6AUd0HxOvaUe1LR7gqkkohVOLN45iP4INL+/+CCGzolPunNNP8Ny86pfMjTBJYfCAGZidhPfrZZ2uVJqYreThhwqp7TmrNh/BOEhC5K5PNkjfEJu7MDgDIe3qfVXhJSufQ3ZFYU5iYTZKXad1xkZOSFy7CQ+5Wf4Tv6hKJJhgOGi+qiq2iuXNJaWTwr9lIiMj6eW598f9kQ8ETlQbjR5f6s4alLyW2/Lzf4IttsY02X8oVMrfnR4pXt1NPUIsyKoi9c4izLD0n4RcLLOwzmtpkHUgZy36S6oMYITHM9onyg1dZtRD4IaZ6nJHKbrd5iyLiTPmyWDxwwP2npRpntUNidpttzOW3SivNomD5TonTWBqaDfZrtXkI0Ifz4tmrYCm0MCI4rJbv9pf6fVoy9+UnP7Y1kggJkhgBVInIB9xVWDDeDNaYtkDaiurxaz8qlSdMnmLFkLr6HiLGbecPJDpF4DnuEZOpdeAMwffaQrEeUKZ8UIiSrHyyrR+9+gCTjbyc8MSZBNIM8s3KfM3tlmKkoPlmvKmdxeaWswypso8fH5iTsxeM46ONaEcKVtAontziF1Mi8Lg/rkiPvqRAdU+1rX0MXYh4SFpJYDnLCi3J+KD/Ghs6fLaIbZVX0wQimltcoJPmTOC4ZIzb8hWNxulYGPiHCY/fom8bejicKPHEVZTOXwEBw96E1ZOh04ohk/0x7D/RklgC5gqh6FJW/gtjkuoo/1oyrh5fk19tNDv+ewmHQoVSgRkHCxc1c3iJyc7ANF2NPZC/fUYQUXvz8rZ7b2okiD3hJ/8CJxNKk1NGL9V52jefhKRNyZfqROiTN70hg8WBIArGLIKOSrp3QefuxLhPDJQl104iPIGi+UtElE0afYERn0csAkPtq+wAkYhP+tW3M5lM6ZfYQxS1Z/ad4bF6pkMcjkyQBb8ElD4DSS+DF3zqiOjyNbXHzCiOQlJh0UAE4/x+C/53kiopnEYZ2q2RYO+2RHBvFkDYiYFn2EVNcraqhqh2YtucgxRXCXZDQUzLCyxfpKzKAhLp+LCmuNJS93TcTSpiHIHc+3ya7Dc11MBEr907MFO8DbOitW47G0lODzVeX5gqdmY+YeE5IsVAqdpNCPGbUeBxGEqhMFej0NJ0VrBan4cVEWLnJHB0pxkQvxy4exKqdo9t7pJnYMikIQS1AZfXrf2Fu91dklMHNv9uqvCq/cqB4x7YL/eDAwlli3HTYzkV743jt/28LU2i2KqsYZD6uAIS5e2nVJ1WNiFNg7Ny+o+4bVfhgWa9ihK17a2s+4j5dcc3RMVm3St0I58r5N8hUrLIo496qZCdldRarXV6Mq3aXASIj9vQidht8oxvtv2JfYCp3OMXFcV2dPtRvEzRD5qUO9aQIftXSzuBdp0YUWnRXLwp1biQARDBXfqMivagSvNgKv8Kl1gEUog0mV3TTdxuf8GZzrAJebXdGoyDw2RFjE897lX9+07bHjDMusEiu1QagslRonGzk9tPtNyqx6ukqIfNVKjvG7nFNwCUTbvdPhf8Obfh+2qBW5zGikUG4J6oCrXa87sY0mtz8PyX4OB//opNmKaWSbZLsoC3gU1EgJ2XKGwWPkyPMDCTKaJSeAeZw9sD6hVQqndSH+yLqHo0g8Nie/S1VDbRulnXDiiKKOt+As1yUr2fVPo2Zr7ZhfiYQxVDhM/SgH0EnDv0x52ZsD9ypdpl8pzKYLs1AzQCtOdypcv4IgU6u3zxP4jABs0K5boR+5DkrSjMM4T5fR778oOjtFOnb8nAwPvKzhhzJoLg7dmfFJa9VynLyYPQiwdTu4wH0aLRs7oHN09yHseta8G0MH+SnIgB2oU/1jr26n+RI/c0j6dgVEfBKvYCn80BvKbYMBaJEk89qavL2DVaiuFy4k4zZtRJqCx2OvF+W62r+dV22YlgKMziukREatQw6xF0QJupMay0aOn03VZusbQp2tJugVDLUYnTGjWXQ5llViDl73I5fFzYYTTmGWZSUu9VGl8/PKcMymXAk3miWhJk5lOAInIy8Ha2vYEpMBiYeOsRIT56vSeh0ZxxOXe5fLG7X95EeA/5eHiTH1MHXoYBIUFYQ32iCP8gi5csI/wDS+VFd75kF/s6kI2URV6Dbe92BrOxgPZakM0ErHlVzcZjncqr5HgPTSdvIhlGvvAp5VNWTLvGLnLzs/8PXfAndncWjmTEumM2a1m7sjqENH2de6880DaSv1jFFHp3ac/oq0741Q62SZroeSJQhvuzx1Amgsq7uD/vp8Hxqq4Jf+3xCfgDCxC2YMK1dU4zPc/nNq9/9UCuV2OjWdo0C8kPspPc/hPG84V9rPpK5dsaHyozlGPvNXkY4BtxJQvdLww3AHSUczrx7IE+UljDjpxMpGT02Tl61hOqmPvMh5y02c3LpTgeBtRvJtfiJykihXGzlc0/MfT58VoIN0gErpgW70YzVzsOEd6/EeptlzQ9jeqF3BT9AXU4q8zk1+E2F+Iso5uicg9sIJtfuhMHjI82b4MQWBx7vDKPjqcmN2WDhzr7TBnqC/KUqCbHm1fkRI8Tz0Lf/kCsKIRQurzywKORm+f2oGFBa48rRw935kVPjqkVka4SxUsbMbOCfTseWo1MnEvB63AEWzkOWt03Lzkdj0AsFGuFAmX9v1sPZ73pJ1Gl0/lvq+J7oYGt0AwCVUKSdZm4FfVXifn+ssgNGO5WFd2iW+Yf66ja9VUBXF9UpZxRYyrEV9mLM7+dFHTnA5aiw9/bIw5rH+T0Yp678Se75nJT+HEoIsJ2uP+zRjj/IpP/Uo5wzEtHip023a5y7v5uAevd2saxILSBp6Fv1ZB7pB2WqemcBfLumc5H1buLf9ImXrz/t695+vtQPFWQHMQ26ZpclIqD8mG5xSb4MifUhCnmWCjYXT+G3Zgm1FS6TTCYSL6YeR1/z02j4VWmpQ7u7By3rmAZPTH3c1G7kPdUT2ObFjcGziRfxUZL9yRR8/iVP5eYITUIFLaJuaM2POUsLqiwmBaXQQ7RUHm9Rhrwt0kymkxb6+R1CspdDsMTBlqrsC+Sj0+A5U7Z4JBsAdV1NAHabNvvIPi+MYLrVbvdMXrOeAJTPge+X1KTQgCBLJPRqK1t47o4B15uEW4xtQKUuqlawBZrG70eIjduC6S6onDgoJypEWmVS2k95Y5UDHPht1Y5wSd9+6RHCBNOJp2tIeK02cfKWGBXcUSa/Chuu1tbdmgN6rEGq1dQJIOKFYsPS1kq9sL0YkmV+0V35OUqC3Vn85Ejt59/rx+nQwpkyqFMo9iAivyErXxd91h/xG+xDeRwqklRIUtovwJQ59xKTTKN301Zgs1R13yiQ05mgLIgP29R42kGUPw/Ii9rphhz8Mz2sgBL1n2b7/giV66V5VaomHJyoSl2o+96gAp8qV/7JfIl3lYo+MWRfUAwGnWly3Qf7wtZB0Jtej3/4autDCi//V0522Lt+I0D6P80L6TY5q3m7H/w/nCYjkUqO2dl+nm8L3/ClluMd/ecsN/CCOfVMOlMvyaCHPl95ELti8NJFwP7+i94EJXZ2BBDYol9/UlZtZLj4ct8zFg2gvStGLqheVNqAMNPXCUuK8JWJjnt6O2q+d4du1a7DC9Y+0iMORGM2b8tW4BcLdrt9kTkbV8x3mDgZ7qQN4pxu0D2oVaVd/XSOjAB/b2AfqQeKeYrl6cRMynx4WeCyJUIG/RVIpEZ8pmHkPK9ICQL4GX9GzKN8sHNQvfqBc966kaxca7pQlXh8Afpnl77DPZxy3eS1msk2mbSF5J2vlO6DrtbqYkUt0DzK8uSpKbwtd9vtUuhRdID3jgah5uvU2d1FL8hS+CPS4o9E3TSD4eUIfFa/kuD2fVa1L+aJBmonUZeBqJHh+aMBLY2GfWcznNCRQeh382XpV2nV5SGN8kr5rZ7MZTr3uqNIaq8saCjzNpYFzpw0U8SGtFHwAu1h+0P781ZfefupxU/5oCJcJwAteRW9S9wOiBmsjbwDjiwkhczYvIhrctZyZBY4iltWANdP/BR7rhQyxDjnS1p18s7sp0WN33/5bJuB6Jt1fPuiKBU+qeRfoOBFSKABEwdbxY+fyirKTOuvZ5tjD9MUEHrOeEY75iERsBEDL4fqROeiLdHDGcJ8D6RCy0/FJyQj1wmlxZAEiq2eSZ7DmOW5pSxXDBM8qaRH2c9xjDrksr3UI4DEjUyZa8QEkLkuhAzVJh3EwgTlH25BtjQ2CQfNwW6K+JB76jzP3fvEY4KE2XYDYDEXPZSbV82h4ZHOyMY6pO7YOzY4N/eI8eS53ObvejqH5HgbQQwyfhvKdmqFFgjK1zG0IJFROn6OTGpYRMN56Dz5zbOdKkUOlGOEoJyBHiehM57HJKIAG5yP48KnQ/cvddx+7GcA5gCXW9Sbv7qVe1LjLI4dBz3Zr6hjaizBy8dwdL/W+ypmJZyxhq7cQFMqg5tb+MiBtH0More5G7WOyz7HMHuj1g5TMsnIM0oAWGLfkqBiaNqInSd2MKpxtOn47bIIpLLFtUrrxIk3TgmuyeqO1JB25SvTvdf7olFmiEaLls/7mQy4W1YvDuxGjcongshmmCUv1wcU75Wx8B9Ti+fFYf25hApk43xeD3SZZiF7EWIA7jwMvsKb5DodRINXHnZtXDZDcLtOKVrIZveiABptQZUScoyiqM38N+/PYi8JZu8sSSK+o8Ln4HBSYgsVaFy3Lzd+PkxI/1Ku78xpNz4ibmdjaE1KqU5JiESOmvYtVu+/S2HXbyzuJlNa95dS35gb9S7o80FYgHRcK99lS6rkhiM5g1kz0xKLcsO8Wnl0Z2l/65jyYXwGyQ3KFN/t6e+gI18PL6FgXLB+tdJ3fQZjOTF+RA5f9Sxn562LelNswflORKvaAz/pvzi6wUhL94xHjklrV+GAJk8cuVgnDgVUMH2CXHEAlvqF5ae7WjAp9UGKXc/S/tnNFycwxcJFrP+UQn0hR8g7d/GXoiNcK1F98b6raOxGusHhYTbTglfSYL+kr7TIyhd2lN00WOqc+XdEn5JIoxPN+M3EpbncL5Nh6Ptp6+50mtQ/T7ZslQJE1/gA5
Variant 3
DifficultyLevel
553
Question
ABC is a straight line.
What is the size of α°?
Worked Solution
180° in a straight line.
|
|
α° + 38 + 95 |
= 180 |
∴α° |
= 180 − 133 |
|
= 47° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q26var4_QF.svg 100 indent3 vpad |
2 | |
3 | |
4 | |
correctAnswer | |
Answers
U2FsdGVkX19xMBXjkbWLEtjCx60Gphb+nNHXHRLWtiMVGkE3L/2sWL8XAwTqLdT6xNSVBogrwV8MVdgmxTZF/YQLZ1unvvQTE6ZfJYhhfD4BpmseeyawZ4FH9zFH8Qa9lN0umeb54DTUyCUd0njTHXhD/reufQ5JMSKjrV9KyiAfrpvBTWaQ6BNRsCZcAZWLfejQ1tS3hfJfjmZFKZZwM4Oq+gIUL6XhKRyY086VS8fK/2Q5yfjCB+VA/qgOr3BllI9241GC0uv3Mn9t5V4zi7RcDXwlS4Yv2mJI12fXolH/LACmng079QeWHWXFBjf51NCpISshUTsvSb6K4aaA+LX9Q17xAvl45PZPJuL1TjsDlBzLV394n46PkBe3QUB8P32EbtFD19i/vppPwgv+22CaDT3NXEPszrkVjww434gNmLHDwlrWPdC9u6HQLFDpCmSyQZpNizvcSHOKqNnngCvgdQrBtq1lpT+/1X077uBoYvkBuN/5DcmZ/po4KOGURk1tDp4GZgJZWbN1tOyM1vFkLnE40jrv6cC+8rlAm6GeOkvl3Agi6dqACd9EMwOH1OsUVEr7172CXWgjP/5iFg4lSD3X1tCIwch1LBd7VFz/4m39ivawsTfUgbpvTUsvMR5NlAVqzDYdMLvGHIAulTsHkkHpnLmY1ry/rw540kVsEepgUaMC82Jx+g3Dc+5MCJC3pdu/yEkWegD71ZXisx+lx2ekNiyUeASsaK9MnwAcVH36F8xZLsW5uqTfLeZFQwIqA0p6g6rQoqgstMHlXI43KdhU+5sAkR4LAWXlyG/4LPEwgg3Bmvau6UlnF31zyRSkoI2KOFZzii9BCOqy15xccCO8ObVHXgE8GMKf0G8uGbs1v7AxRvI1aGs/J7mnrCpr0xF8a33wILvNc24OUA3rNNe6Mk9slUyWsAQ1MXsOKIEQfsgVkk+qUc96lLdcEqgGaVqYivIoC4knxoONl/sVaE/fzJhD6b7Zl8/6eFGlFEtVWx3s9HpUT/WyG3k14CRNN40Yk5zwrCNDYtKBjDF9CggFYXAYuQVUWLBT3zwdVyuNukhL18juZWqYXGXRrmHkSiGKMqjJf0OyvLsmJRqEI3Tvi69urU1oq3+um23g85EtwHb09h+wMRBpXMctx9lYdG36g0qcihxoQQh/oGdoxHJRZTuxn2pSQquRam6wO/ZP9VU7tKfzfp2Aw+dQ5F9KgngdXEyulZRITzAP4phqEzzSEzCmLUa1tPXeVRcJPWQHzS4OsLoKhZSZM1eLaPi0kGlMW6WFxDTnnfzeEP54f4okvm2F7sKxtW76z7ZiwNy1OmYe8pUdk70F6vVzngBPBwD8t2LZ5yPFE7YZrd6pfhfRd6jCXDni22GF2XDv8u1FXGuug/dM5OdrxZr/2Ju71yNy5WH1Rnk3+sqzRjXHyJ1OUKvV73ZTR5/+203QUctFdVm+n7n+SPxDBFv6NawGHZaoe84zrC+3Nl1YXElwHQwT9NmxukIP99TjxxPaMYXxEjo9kY8bmwKt++LURKQmCERfkLSIwzqFw29cd5KVm24AdaUjRhlYvtFeyGCpYOouYwDA7IBHit1SzHBEzf+9StA1GbYpX0+72d6wijs308WgsC+W1+avK9m9n3cXgYRLIraBKu2BqyE9Pc/IaOkMiGlWvUz7mR1tSFRGnPXLPXvvPL4eybF/6zHSSRniKrlsRAAOnD8TKofkszOZR8u7AdVMFUhzuTRy4it5mfUGGRrmLBXGdml1MLE+vUszBdrqXd8btqk1DiEY7hjBIv0HXaSEdUqqy/dRRbwa9TZnAF3+KobZCDApE+yaP6IBStNlU1jKc3NcCOSechJVKLbLgKA4Y6qRqOojpcEpnI7+FJ52fiwCE6AcZqPxeOafM1xNIcA8xgL7ZkInIESgC/s47cX1DGtS97mJ7DaMuu0FWwa7o30CJrplqlpoNZdiXSyYz/XcJew8ImArZwKzOuAO0ZuXlxP9rRzKYgdss1kgN7ikq/qxqHfOlwbZz8ggrqn95zYzrDyAhky+CE+BpLulmaNvKrsXJA6sIcJZbcdUQQUrbxpQ9EjOxvs2lSjR94yu4FZ0JK/qNZVCmIexm5be8U5yWa3O1DrRyxwSmarecF8O5iQ3/U8lABdQ83l22UZDoC4Jbp35kR7ruBxJKrvZPy9KJCGdwMwsM2noDjJZwuF5V3IxL0RGqqsvbM5+VtkAVB+3H5Lx8n65faD9bNWGtQ8nQewLS1YPFfsqBb0pXAV+9BWqdY2HlYrvTR+8HLF5rXTvg/eX3/au4BiCqOUR4ev1dAN2Rw886pMot/q41SmIYU1sTigBdwGucMXvbmz3GGdeY8yt63fS7eFH6GoXfaH6XGN3leOljFNFvd2G4g0G4RFIeFAQwXj5L6dfcqxTvveKuCp65sNP2Avk49HxvhnUPO6qwSKbuSSfKW6GFnW8WAbIHnVuh3+i96g2+zOu2N3xKvPzf+AYcS2R99YN6m8m+imKLQP1C3M8Y66kyi/BEJ4vPJ/QdVVIq3QARakyujH0DV6jhhK8Xq6JEbU1gKN5eHWp0CEn2m8wWkyRN8peVJ8xTy9oCiRa0ITIRx2GfmRhREslQ6QiSbCUC5/vmDylPeR42NYF4fuTd5v8mYAWr5BBfwydT81dR+Zy35QXBCk0r3fF+92M5ZKUJRD9E+aoLUdwW6fcMhBRXtkBlp6WFt7I62i5ZZIi9bzM8h/7KpCE6UWjQivG8wkKniq/0M3hbKQkuIhnTl2E8RdFcA+mG2rq5+4iX/cbbknsyoJf7KMdmCLZQA/8opB27QZNonGn6KjVJ87FLUxi4XBgB+XCU9DEdYJDY+ueJNeDj9i5SVaAhSJRtug9P1PTebieaGkHPTvtw/mRBlcVkuhgniGdNMz+4rXpbUuq0PdjDPB1Tw8zi2pO6HKSjIuTSFfWuOO6OnIRHWrSab0UVKFgLYuRoAiYE0t45kKNn7RILgIGuI9ARbipbax5xVDFaZYkfcegxvxipmI3+h0uczLIHvmpVYA6UabB9pkAcZNRBZAySi6VaGa1kpMubz3f8LcahhVnpMPZjDs4mAcKKnXTMGol8s55mdomeLWcoCNP5Gx9uX3qAjTtXlUVLD68nEDyKlJ5NhNMYRa4cSBuK8x1Sgu8WVMmUr6kZgeToGt9kNJp3pHYqtxgxe2IT7z8P0f5LOFX63ZUQRgy3bwqLBJ5BzsJP6xDZA6QI/3rg6fhkq6m4DY1RV5vN6uJdldE8/fDr/6KRzAQU+MiYUG9lqJ3HCzW4s9s7V4SWPMdfwEAOtBpBA+YtVJ4ziiqZKazX2MSsk00+t7QjVhg3FWlIQw/4jMmGdLqvGL3NlEbmp/nGHVnX5phClrvGZrtay/yPcu6s3+e1QiANVXoJH9rrCGK5ooWpcu5LgdW0VGkY15oq3uCe+Fv93o+STkaTZ7tSw4X3zbvFi03nqD63vh5YOkYjm4pxjUw6F7yHEtSAWNA/q5FsRFnUeN/60yEbRLp81D5ASKhWTXetwuQO/E//f3hF70Y3Rtzlp2BYZFDGUy7G1wzKRaVbADT07+H7u1BHwM/6vfQdPn5Q2EI4Ijzg1Sjc9/OFF8onFz7tQRBF4IrwDeSV/dZWrECg96H0Vm4vBuqNi9W49ctOFyzVXzlq9ktbGxsnJfcOp5rjyx4TcJpDEd2amuZHrWpeixBZxNOSE0/2ZvJPxtA6LWjELSplgDccUhaKB7IKYH27M5hMBQGcGI29iLmZV+++n88SALx3sqzO4JVhfjeSxXRHvp7BKXhBOAqUHMC29ubzdlsk78gOKqMv5nSoyXTe3FZoNw18ulX3PYVvz2H3F9nSpIvuzs1vJX/n4SCDSFz09giZH7F4t8T+qJYDqeFLo/dvHpRHrfeO+iuL19duhp+Wc0XQzRX3UMZbK5OjkPQmTUMmyOxcQjQ0SzjhID7i+7rWUguA8VRxGQ1vwGDEdtP8lWccbIGymJ92NTKLZJR5lS71uk1N/lR7yYnqmACjWlMrNTIBKfHFcBJcpsFOcgViH0DL6dfy8eHMu59wW7zIb+yP9BCKvu0oOzC1w66Iw7iLFwd4mGCtpsSsuoVTPc+uAVxqdJKEXqjDxu6no1vkcSuh2C6lzM9huRcelkJdLzhoRtuKAvP+cEotaE1XMAsELN61L564bw+pjdSqJDu21giFB4FseMFk65fzd9Ix0QRVDHPplsP1xkFt4Y+OB8C+YFNPYm3x8h1bayjsY43xfqYg2hhuusM2G5iMe8c64QIEsCiKIVX3E91HAjdjrZ3IuJSla99sd9MbP3P15zUqJn01RGcSfGHv3R18pgjZDYhoBvLEQYWue3FlD+v6b88dWVD6w3d/1PzQKw7d7jlHQh+LqEUCfu678sJwDdvthc421CPL6hiYY1LHIPzNQCvxtgbT58lg9WGIBXjFvDVt4bltBfDpbOrmJtX8okK2pWQKWkzgjyeMhw3F0o1o5MxbNSbHONBqLrYTPerTFN7FEUkkwVR4aUq97O2cVPK6WO849n0GeUo5uF2PEXr9y5MsJzEyGeqj71XzdVKku7AZ9TS743WnUzk2O/rF9d9dse1Ey1f3P+2hREYZr9KcjisgDI4+XcCeGuNC1XHlnbnOyfMz2dNGPmS83CpMccr2a8CKXobmUebwF6YqT6TBhahqDozqXePpgrT8U7AOWujVRVSCg1GIf9WCcjg8yRD5zNK0sHBjXHM33fZVoy+1FCvt5+qvJap6fQPzMO2ITSwdDmFOBepOxdXPxJycSK1ilKfPJjA63ZgpDSRBzVLjIwmWn8/UCmoZHLoGTJbXHQCCRrqAj/QDeWW4zVlD8UB3/xV/oCoAF8UYZZ8KUxFTEuh2mTgr+zDTZGAc2OaaAJKNrrDw4gk0pXSN2ChUlaufZkR7c8061AVGzwEZuiv1g4QjGjYeN281B8ZWTcB/LgdO9YIX1ITOK0UiQ9iFu3zp8PHwvveOix5QtCuKaDuncQoznvGuLgBDNDzfSnshlDgVwqaeb8Ip3Vda6iDV+JFBIqcd8GG24KggaFLswq04oJNLst3SRbZcH6Q/d2xpac7dxnz/ywVotwdy55aBNBRcMbzi0nPNgzxaVvVkVtIIcfv4hdrpoeRF6fkob1fhhP7gipZgFdYd+ksVECSzXx1c8T26ulvcfJ7zyY0DcTSftA9BQ5LIbEvXesr500QX7TNoIWAisaYSUzy9IPRUWv6wGX/RfWRetmsToTxW06Qd/SjEnjC9qyFyrRaoho8evKpB5/pciac+iEUSOLB7OcwA2ZmUJJYJubYyWDFVP3FACCUvGns4R0X4gNJWEa/fxHKlVD2r2Qz6uJQzhYkqybMQwWCmrr/OzGJ6ZFOCI8RXVuDq1J4Cg1bdpt7ZNtoD7HKu17TLXqTMWeAL3Bgx/kn7FAXepaPcb1JtSqzGdjTAx+Y65owcyYt/dOrCLJVeU//v1T1paJDxb3W+jmzGhzx+2aN+1j0c9IbMudxiZjJm35pD1+PqejEzKr+C3QydKTLMGCR79M4YUdz52TOyl+4y4Wpf4Ae6hgTYqG5Np7s3ZkxjvA4/j9FzEfrE0aPG/7SXQMwa/t5J4mWKwn8kky8nJWCIkBAqolMQwfV8OqIaZ1nEJ0PxQyFZIgKKMZAFpj1ZUqkvQYyUXzvmsyRB4XXCQpnNuH7rE93xnjhbFFeJBkpZY2B3JCer+VpXaoEuKtvsl3ZcnL6Xr0UyVF977j+2belX9Ym1leMlZrWi6OohQcX5TtVM4C9AlY9EeJbUVblNfbzc6IwqxTRAk2gz98XSQbZK7P3vspC9Tf7rOTNPL8jkBqmpM09tjRgVdglgm5YbNLZJsg+HriXwBb9DZNYYvAIR81ebc0t23D3kSoqUYdSTFk/yJF2/uq8QoHpVgW9EMeXeUpOSqdOYTk96BfJllPweh509g8Uvv/VSPbn0QSbwIUiuYYHHxLrsG3K5NbYAQtC2S/9Wj70oc/ynh6VwvsRu1qrN5AlRNKpbnzrIfM3Z0sK48vlSaerw59skzeeWMMso6cc6Mqo2TxheX4relKLG0nkHdvC00Ff/l4ZmvFUKgmpWtzu1AIE9Av9hr5hy43bSty7WHDunllcuTuiewI+usE3hVWWEpkWHDrE8z9rRonQxA5OunCJwkqkxVHi7Rcz2kRQ3GU7bJP+0OBNbSum7jCdAB+pXqBGXhCcw2RqE2ehUhSSpkrEf44T/z/n8uBtaBCy8bOvvQET6x2lHIyIJ6HQivVLQKcMSnRvEruOsKTbw/RwlfvFcwS07Kmw/z4sO3XsC2ZZ3QC0WPa2766QPOTk7YbwQpOoWscb8RtI0e/ZwJ9CVKivYXK5nRsPMcVDLo4BFl/SV1Nl5MhO6HZF1n2nCTrrDAVo3cGbdE0qnRkEe5L+xWrXWEg3hkWqR4lwdZ33vZ5VZYIycDOdcx1Ew3g9bAxT4p442C/sTU+pSmcfeESGnmSEBoViVgsXr5bw3XOY7xcszVb9WWJfZbTEmVDY9f36fNtdd14DXIKxeQpP5iBu2JbsAQalghLG1tHdNRL4XXwe6CDQ3lQnkYcuKwacpZxZ7Sm1QmZbRphYJHZzLCa7Q4LFb6AKoSE4queZzqZwiEt7vlNT4/jI+hmAc7UxqrMHHvDPRbvW7BE9c/6LSpwnqYVp5pQvbznCuh9ntX2EaIymLVqoRwqmVSPcJ1uvbhbs9abJloBhdo16paWGhzvImw+7tEPUSI073v4lX6cBsf5o8ZBm3eps/fs6eSE+AP62o6KvxXaZgWN80zQIgTIVD3E4b22N0pzgWK4mmcpR/ENaUs7u0dAwwT73Pm3veVq78IYaAjbhzYfVnYjN0+c7SQHYygsYIaly/qtTtM12KZyCZUIjN68pEb4HK/3j+BrcWrW2l6cjBumu0GefyupzuIZBhop8hJivpYwq2yttQhl2HCzT3gsyhgtOAfZ1X9eCg4SS+nprVSc+BTpqogqy4KLYKBTr3VAfm4MjTbGlrcItGuYcONnO9z/TQx4yWdWYlM/9rKbDI1vAi+tjuk+3iZUaLLkuq2gUn5mMP4e35c8OS3Z45tPqsDoGkUK5xyViX+xoFb6Arc3MPa9pjRkMOlDp4mBYCIoMY9z6NlQCrEJ9xA/X4JowO13Hyr09s6E0NrcPFk/WFy9ADhep/RGxOCZD1ufDR3AmOFVd5/TNKihhxlVH8QBv96Swo+Mq5ul/FyatrAM6WBItQ8iW0sywszqi0/5j3jUlFDdrj7WP0WGsrjou3tVN/7b2sOOBg66mPSc9//nUOiuDP+K3AEDFqBwfzZJO0WvQDtg8kNWdoXriwFhUaotKd23+ZxQYPXS9U14hGg+5xPBMPz1JCsoyuCYtyoO/jjE/rIUDLoZlrkA5FsADZ7fwIZ4N+cPs9LbGsU6kBlyQcYpq+wr37scf6qD4zKFUbOE+Js8GlQEdGxlpc96pK2ktbfZi2QngdYpKW21RejGPnCTcOn2DGXrp85arw3vXpC2Okan8Ruth0lJklNv1c/HenEs3ARaHFGhsaa/L4U/jthxlARO0LTK4YW+y2ckBjPRwrcrDrDv1kFCYsWlJOkstas1zjqtpCiBjpffNOH4cgpHyEHcbEpkTsgRVfjWjBLX6L4XEkMJBFsRNB7Oqpo+2eH7KXCdmfd9a/xZ4VbcTVW3nCL60ToCvSM38hvVrTvoaG9G2MpXSO4Tnzx/ZbEeZjPRnHp3OKsQL9EZKBLfpWwAto5CbpMXhkTdoPh6TvxWnBSOYqXlDkjApj0cdp4lm/5vTQDtkC2eqfxhIwJHguH5TLNt/Au7atskcLhgxLBd7cbyT22rUznTzMjNUFTNWjefyvCMUw7+8ZVXS8mkxuYZi3ZuO4v7n8bDwgDd4q921xSOFf+iOrGzBZBSBAaqaogftTaKnU8sgcyVLjd0hdaHL+626urwYq3uhftveo15HtjVQlDsDTBWx0pH/sGBkGWYUNAJEsL9v//8sT156hXyFj5OaDi910GkdtkUlgW4fJZMoXHEsU9jHAD13L4ztWet9Z261RKb3biHBevKYHpC8sEwH5KKV9NKegPfMw5H3fDO9fs8PSOo80DZ++BuGXM66qKkH5agNNr/hJxYgAT1rEngMwDsKBNr97UqJFjzVbtcf95AQ0Tf5sX6aJLsrMeQ9bpIvbWGkRENuXQWPNn25tLVB0ENfeMxMvgs432mSFqOpb9PECBore1NoV44tUqfp+y8vyXuOzhsSP8/yvJrvbwNy5RsrFDt7cobhe+jZ4xPjbDwYVKlGheFgfyGx4f2Kl5kt/3sSgH44wxmOV5RAd7octf95xc1PiXVw9tjWJGxmS1+IGtRkJhXOSKbxZwYrZUKfNGTC1KIjKoIjQY3kGjZ2gyFTU3v5JdtsPPeJkOqlg8pclbMfaJMVIhVWg20lSb2ULMi3k3N4qoPRPt6s4xrlkmLaobk+mXH6xbYooMZgzEaLKYJBVRcKJVm6PgRj0Y1RHoIr7DcoWwmzNVNiqFNwtJHPKLSoOl2/RmJ1/Ob4cWg1X287HRTOd+smuKImG6BmYSfcMgXD99ELw5Ryq/ydnjAUoTDHdkSno9OQnHpcsu8B/KdxmTAssa1gVxyoGF4JNWxgb1DkSimP+IYfJoDEk/MJrVJMsS5WD+LP/XXvl4avC2cOlJEf77fh9cKQnyaSqIUStGZxCvcv0I4nC7ov2QqKJnnGwexdir7PixtqDcv5Y79AqHjUtSA9qpPAgpoBEHYS17LARREiWqTOTLnLUGTXMJupQfZjLQZKgTffKXmACoCrj2KHhNseSVRoxKMATwWfz5jRC3HXMw+75N+0UpT4rcA8MrajWVTp1LwyF+b566TfSjcO4Yc223WFYoVafxH4IjgA/VchoruoSaK4J62WUPFhBbaE1bJXsAeeCWTKp3fwfY+x3z4m/ZWU7MDCIdaa6+WwHdPzR8YdjrXZ8J7AyftE2SAb/M6+vz/lbDTZPNFNxUcdKWT8ovcegE2b/Ne+WsHXpV35Kw2LQp6nPG5M55pWKDUnx3bHwUD8V2Cqn2qaq/m0UfDPFfGk/+z5kpzjwDls83oqolbDhEnqGxWfgEFpUlOWS0W/TBhB+lgXRO3+YPm14j8fbG8nvHXmIdPrY1bBM4cH1LjvBWKAeHsRqPlLb3HJ74JA6cRO1jLPkRjwe8wNxl+bkq6l7r2uHz8Oxvs7nf6zNH4mFlYkCUoIrWYYtNM29xVH9HMU+Mpy4b+2l3tcZw4voywOflRrUN1ksKu3pbJJOSc7euBRIql5KCh4UesjOHc9Uas2kUhd7Q9gFUh/FgGDSW4UXBXdDSHSWiWEVUfczwIn8E9VlihF64Od1W37Hw7etD4jdIqgyEx3GEq6l26CY0BxHT24AOaY0ea0khd6SgIAqAv3osmNSt3YCF5zqeDdmmamw9hGOl9hESz1fpl39rK4GbIy8f4oT5JywzF+M+bULKmgDaumULH7S3xGYVfBWHbkt4z3nxdtxely6+U31xdCb8zgcMsX8T96dJssi+pdlZoals1ZCOE0JkSfNJi5lmVTWJokBQi8moVRYUlnBw/Zwo84t0bs6ZTFyBCwb2XfkgqWEXRMzU7LtINkY/+VLQtFh7De6lmxn/uWcO+//88CXyIZR87Z4SnxnBLl7KHtnOYAO+OehxO+bZWm+LKeIUDBBASopNxwQ9xiyxe6pCRgrgSXJSysm+EL0vpeYcx7YGR0nSrAl03faQ2p+/c26McgoL3PUiGeobOVd97cNSfO5N6S
Variant 4
DifficultyLevel
552
Question
ABC is a straight line.
What is the size of α°?
Worked Solution
180° in a straight line.
|
|
α° + 93 + 45 |
= 180 |
∴α° |
= 180 − 138 |
|
= 42° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q26var5.svg 240 indent3 vpad |
2 | |
3 | |
4 | |
correctAnswer | |
Answers