20159
Question
Zoey scored 88% on her Geography exam.
If she achieved the same mark on her French exam, which of these could have been her mark?
Worked Solution
|
|
88% |
= 10088 |
|
|
|
= {{{correctAnswer}}} |
U2FsdGVkX18fCmed2ncKa6cBxzeE6hXtFTV3AwaGbLYu+Y7k7l1GbYJ2vZJeQl1kosJwhpj7j8Rd9gcolPkbCo4Ac8Pry9WUR9U7aE0rCkuR4UCWDanjbY/+pLjeaHw48ahgdc4MXcDuW5pia5qGDSNi3sdRIZt+LednXPjx4N9qWAvz0yeKkPiNIyQB+2ys0ZduPSvpvNSQ5xUeHk1t4Wj8ATo76wmxt6jLAWpE2c3pr1x09yOeSpOIIaRJCl9qMx4fWu8hY+4MKDBc/TpFkNl26xmIjoLzS/ID52bkwKxh6rk0U8+UlSO0ShqQ0W+lFvcbchlL9vTIrsV+jikgL8kH5K9o6QLRxR7vTHD+CHd3LR3ilwiaaQVhnUG/sB0bo/+ZMCgzxHOCU4IlwYIMt7JXJTthIi45rUGT2gA1JF8+IiqZ2lUdplv2vUuaLFk0yGXy1z8ofAwyBpaG6jvE6guk3KhfWQTAci3oPJwK+AiaBh5W2zONoKU1nEpE/zZA2+fsSYd2FG3/Gm/eoV4LkY5oSPKsBP42H2GnBxfNbEpgi7gHJJfy3+LmIrTG++BzI6fqXx+FkaiDnIYhZJzazX6FoInL7u4bmsmQIvMDZGMTKC6ggts/rPgvsKsOIjH1FELiT+co56rJDXSH6q23/O7P5lfBMVo0lCzWYI2Y+LBMEJnj1bHnbM2EsOTRYxYKIYcH1AujCMrgmP+3kQr5oOFqvNeAhfJjoW9ZHwbkBtLBjMFFBRyZVTINy4DYoMqibYaOqxfdbsHcN8xm/8jwLkVC/m1NXKa+bKOJgja4E8G+h7pQOMjZbfEI8tEzif5tGgoUE0RdXaDGPfLFZxiL4DD5YTi8Ji7vSVZYDs0qyZ8RijC5aMkCCTeQd38xo4C2MRzcuYlviIsYpUtSmmIuAV4Xc6/LI+JVOxKnew43flmzkT/ZZW4OTGRKvfTVCUjRn5y6+wxEI2AxYBmO/Nybitz937hmyZxV1YkvGVVcE9mZL/cFl0WYX6FOStb6fKxlYwVRcvUWK+Ut/ibGe/0u/56bMaPMIgyHkn6M4d/HSkCtPi4CziZSZZhBkZVgOjK7U9GopksHGQR3oBhnyMne8K2Qr/r606KZa4ilCBOSaWgvu+I4NvcW+puMCqA6Ci/o+zl3MjN9WclHB+Kzm9O72HdxJOwQrXzx2KuJ+0xwzdZB6yBEzmkms79A1Y7o3+BOuLq6W7/WbN3sxNT/q8bm/Ba/Wo8pjMqWNhwzP92+ozeeMH+PkWgxLVibN9UCOIqhv+XnjUMw1jySC4SrPW3D1K1UFHlGs3Dlqiggw0+FoEXvp5pQu/2YDYdXv1hzfkfZKW7CrI3TTdCTJEhgoVDzkHJ6HRYyw9zOcxtXsjur3vksssrpAI39XiYtoS0j6KWMJSmDvawUjaFic9HiOBN+P7s88TeMi7O//RcUgm2h9MbpAyS8Wlk61pEkwEP0Ok7e0oMymrHTK7iX70Ntm5ixjzo8lDTFSWfy8DNt9V0VVeu9ovcedX78CC+OyQ4XQLQePcydEnl/z23QDkdHu+17euY3H1j8dzyLXfck+5t/7VCCjcG+xMULuheuIIETihQn2UC40meQ72RPHn/KXSPJcSL8jKwRF3yyqquhhNdpcKsLu5MXpKbA28Kns/9Yn71hMCTBc6NWV2WDI7YV4RyG9SjHKrzVvQ6R/rBE8jGCCJpWVf4C1J+6nId/zpWd0/ln0A8+N92sMhLqyhx46tCdy5RsJyP2hcJwG/jnDTYxBTUgOVFoSi1AAzD6+xbwPGhkrj2Wc5gCQrMFIqdHe5ju8yxZ59Cuc4G38rZKc0kCdvsN0jkpD3LfyV032hanTDrWG2EBn6eow/IzNKVJ1M5z2B88v4OeJuzw8gPWQ+ivocorgcBRSIhowLSj+39WkkUuN6kKV6u/c0LEB8q8610HrBv+dRRSSxkAZEjUiyGh+StH12dB93uS8EGA7QSqqcqdjKk9fZD8fLHHlFWMPuzk/zpbwqcOBoA2QUT68NLSqA4mpk1Ae/KJG4SutNo0qQkQFgN8QSuhQNIfWuoZv/cnRPSgDsHhIey7NyzfjivaenbSHooAfAUyAKO8agHZ9aW0EDdZNBpzPBlDW0vnIj9+i1uqGvhuARROHZEGGv8DiGkmtVgtOLq3NVJRCX6/SnMOV5iy7ZpGPsDGSn4qWipGZJmfhnBXZUrcCjDkmVUYnpYSfYt3R439dsddXrKBO8/7997LXeUh/s953j3aIRkXUiLbDUk+JEBQNUHLfI7E8XgIlkejb7lyE1RC/aBI5i3lYPzY6IfEL+ZT96f75eduasGA+nxSZazfTwb1DW0lSGraMHSl/gZPpP9ak2OvATYOZlWygG8KHNGUhC96UtB4fjF/fwzrBUrX9/5mWHw1umo5mP9obirc3LxaLEqHz9xvUqVr96Scw1QJ/knRqieMpXEjJzQCvp9I1rUTqjfmK3JF0QdKrqobNr0/g14xLAwtYctu77EJu9jtCwVuDIc4dZg2VCW5nnYl+2hnw7TFTRpJmM3UkC51LRdxnrL20LB+1w30ZKT6/rPR+XDtM17IWn8pKXsAWVDkKAbpKJLM0S2xyDtGIVEmivKxGhbPOTsGxNYt/tnVjRJN7BOf+WDQa4LuwPzRW+073wuyG3l2aENk9kkXyUPc9z2sEPg7PluJLPy5U1GFRPbCXsbgHx1JTo8bH7w2v4CpwussrvOdjYl9z++qua5c1YH06wxUv3/DLc2E+7mbzgOzb5R2tbMGzMBfRgS9YZvC3S+3fI2wHBQ0sa/ps5dpe9x3tlPY5t0A/08AnOr0thdZKe+n7u7pokheUuShcyRCbdM8NzBvHL8mbaejLOeaf87BiiN0PkQ7gpufbctrn5K5lFwiqG43PUSmKFbPUbUggNZqa20IJyfzPJ7SeLVgsdNcEE1a9X1qoJWRr7AG10tspe6NoaMeH/Y6+WOwpk9F3i4FnHsAAerPH4a+i3T+ReSXaf+AgoQS0YVwVPumN3khG4IENWKvLBlYuPa8aUycNmle830KDWEVRI42hk8tnicYZQMMke4ptr2DHB+0Z4gHBh9kicUTuC9dcKvMu4s7JG4fnb1B7a3iWkeEjhDg/mqZYW2En30BY9v7KhmcsNwEnWkcTgvTM0/ZoVZu+AV9OpSrYq1OSwZvGKphSdlk+0RMFUceS4/nox7CwiGn1o6ES8ZGlHXTPTVjSmRY8/WbBJrJYvtn0H/gaMYtNWoX+PTQB8OPjI8Y3aLXOxP/Ejbis74twvL2AoUhFVRfHbS0AapnIlYhiP/ZwH+6ZvUtnjObwJtL/exwCcCu20GWTagqPS9UwJOJVjr7SW9dggkJUY9SNCW1hWFUwF+tNHNSGKFXghLXqrLXq1xw4/X/e00NGd+pu0ldxnrvJNp6iquB51UWLl/ZXHPkPMjpZEo+OUg6xNiJtBlW5/8ra8yzeWAVYGKxB0k8OFKgjSoadEycwtiw7iJh80ZkryJ+3k6UczNpQWQ5qmntdlRV+Qu17DGra26y47MPsxzFqikcOznUzp+6+fx1WQXGBWOkKbuTK4eNWcnRLIlUTrKlJsciCsi6I2DKUKTPxmQUbqkk0h1/iph8O2S1F6SDBX6f4cfms39mGQrU2jbUnQ5us6UJB1CbQ30s7J5CbLDYFxEK6fC3j64CAjO3+OHlne2EIdB/wbt5Xqc7Y5dVoRWv3/dBlRKqFhTqm6E4ydpyPyCNug0TA481kVOfHqn0KST/PyjOarYu9KMX+xYZA2Zm7MglTCxcFDiUbplG1nmEGbd/ye6C1TXkbYAH7M2JbMejX5YxdFC5p4+2/VL8CzqvMYj4cwr0xYSpjvII9xuUKAz2VHcurUTKTuIOsWgdA8PKbtko+fwdGpcJKKexOO/vG2BbP1rzM4s6WsE2QfJjbmJaCr26KIuwOIeevyaYHlbJh0aIiNduR1ZNbX/rDmySsYTDMquYPnWox7HiO1Ow870P48moRwzVHJUQW6p6lk4Gkyqn5IvJ/SXcRiVu8ETo8ddxLtNUdv2S8FX+efqLYnQAkemiAlbd7I7BitREEmzYTKzLx+SHBEGqrXmT9kWwTCI0TYttnwXb1aoVDtw/PBaLtDWZODweShJ8KyBe5z7Huyld/iy2Odi1zKA6dTDUe1VhjUFw0RAwZXR46lmhLm+cMi3XMqv3d+0vh69HHKX30jsxj9hVAuTumia505BFEp+/zC9nFPdgFoReGzG6I3W4Z//1+9UCEq6PVzQbjSMcRNDOa77VUd7DSxAyTcMrbN3YI8P2Bhsz3eo4J98EpXflZ09993w8PAFAXXs7uP+5Q/cYgVwIQBHSM7msMfa5QrPcRdL6vRacQ6O0wu7crQXETW6Hp2jH+o3uRFU5tIAUp0WMnGLyVxfvejDi81LNX0F11vevnq01SF4n83UD2jfJNSXMvAh1+RQNjX3VS5hQY4HXoHH8ipKrNhuou6TYHN8/KxAz22oFHo12KVAvLpTgrBMJm8dBsXiq6+XgZ7tYXiOI2PUZAxJr0IxDIq/Ivw1Z7P8nUFflUVgN02mDJl72HFHvizlUPbFPI2JWq+P+HLZ1iXmmUyPcj6OgKWiDm2q6ISEUDNYX6c3o9b1tGWXb4F+D6XXEbdQ5cr9z5ZwMO8d6qrhmdeMHxPlGFUX6HJuxlpr80xVVJX2IYG2ZuqwAJOqajmzYbhacFeRZGL1MUDZn9aunuZNZLS8g6AY1WOY4bikcHmwQQNZTsJciYgmqI/90KC6/knfWumC/o56U6xue9FLBQLavwlXOyZmSFQUGT6gMLFduj1/ZUjQfFdcCGlah0VQg7Tf2tj9HLzMH5Ayz+yT0ORMb8MT+Zo1+VQHDorK5Dg9XtRUJ05w+62uAR6Efg+wHq1Q23WYpFbTN5ENApUFZb7aw3IOpJMZyh38S/rDi0H4q0VbTcrHwYUl7YpygQMFuibNadMVQ22IQzqIbDJJkWqcoyl36UZtuRII1K9r9PN/HFhnsw6OwOsJcAzT0d5GFk2VsJLcIXz8SMKCiZpiHzKZG24/kRviU1sWrUjDaQ7SQv+z/vwsQMg0QTDAzCLLlisM5ntdAg1sChKvipO+1LL+spp7CjZwYJoY3AiZPsuWr+Rtx7EzDng9gNEQBRQD8hxFxUbth0Zpt9KyjcNNv8pvcSwj1Uw7IXIEpfWGfbrwsVPFgrvj1Uv++9/c06QYvdWCiPD5HxlRwR6DtJwKON6dDIIrL7NbSxZ5rkfRU4Wg0pfdB7j7mtXlqOVTyRF54PfF4JeW4gkeThWFPa3y/4Ot5FcoLPsmGY78JVIvHhO4XzBCo4qRg1RqjSr+P5FebQT3LOWm6Djbn3VzSLLxIAVOsDgZx3M6+59c/IUDNRaeK5Pw3DEF6qUV4gYv2YX39pUyVwHuQMXEpxscFVNLgXEWBxyl7GX2dtVUGxEy2aaMumyfvgNGC51INh++H87OH9HvPD4kqZ49JOY8EcfPx+bgHadrfQch3BtbKWpUKJZW0Oes6UEjiOOXDWtq2I4650RnoiYqzLLtqihy1FbddxTHeq5O/c4eBaGBohE1bOT1ylFNcwr/U73v0yRwX+axWoW84wgZzNpN5Ujpj/DajrUsiP4+QPzzIg7LvzCRuL9D1EHjo2RmYDM1YBNDaaZP4Mnmq1+fo1TN78IKD3L9IkWtutKGi+5Bp8FqG/C/f5/lRrw0d5/tE8WVFOqzk3ZxasHANX6vPXj5WXP9VAEIaACoB1esVcFlox2AGZwUI3q3B99KLgC3krz6EyQy2hxQvT61YtjF1a9D38KJCbpdxlb24VorTYnJ2QGRd4PGMhoNe/xpYCBxZgB2zvfP7hqbwAK/ok8xeCkTv3diqD4huHBh7F1tHmxANZLQBOOC53+nMTYybo81FuwBLsJk3p/ZzVDEf4yycMwL64CDDh+5ynT/BSnBu1PDCxCa5FYZnFf38kzE9vzoL6NU7nIR/4UL82N+0cYvCtwHIIXaY7ct+t8MyOe+zGEaHfKGZdl6BB/bhm43zwZQXc9wdXien89aY9zp8EhLgywAeitopD9xWAqPaf2BUrfjvI5KyZ691dJXDyc4Q+0e+MP+jPNAyJD7ItoO4UcqBamiMsADLm6D4g1Ti7vG3+3ehHcipFxEhE/1P1eQ32/n0fLnTeByj2ZO81D+yJIKuFcholCBEtofTELIiMEkBfZ9GJMfjb6WiqLAsW1h7phrL32CAWtaoss1ZVA2S9r7FZ83TSsFanE38jCks86Gz30F6idh1xcjRiN7Djiu5YK5mSs6sV4TJwmVegvD/q2DUMjWIMelPTONaYnl27kDwDwVyhFEiuZXhtncUdcEA9cJVDBRAmIxdMFIOAQX4lLE9bx9M/blX4fbSEEz6JbXyiUILb3UXkrZZ9xPq3Hg9yTwV2Bg1w/YYP6W9LGAuTFz00StE3Pc6zZ+IB7iVNW+HVFwCmcgxTRurk5qmZhrrJjwZvZs4NkrAS9WSqX+kKWq1EGB00qSUK5qYQ5QHvVHOoIhDVP08l7er+cmFVpLvULJB1tsA3jAfZHL9i1RNqpLQJ5IDRyXlTk63Mz57SM2INNpBcVJwzElZnlRhCFYluWG3V2TaXDFmbmQVf/Q+6PnWJuM6eyN98qaDnltseeqUIbxC0zC9w+81xLOAqUDSIYQEmpWCDgFMGrin4XqKx7Bt5G9cJqF9uIH2Pq8Y0TZ1dKorxfMH48+KRwYf0pW2A8pPyzQTomufidP5GGxACUse2U9xcSefeYx70LH1DyDwZY68VW+yTm/j9CWcDH0GGo5TkJ/IkLmpYsZPF1uqRI+60ODj93/uGo2k3w1SGaOU1wnP4/FSfcPuvp9xl7oEIzgEUX+AnLNosqt0hySiqgreXkuMs656Q0BOhoK2KWWSgmfTS0melsh8M4Bmx5YQYkC2ph2n5ztALFmiVj8uoHHZyZRr+oHWgTu3e3P2yybLwIHwHfKTZ1irIw5u2Sz8kpu1pLOgDRg/yc4NuEYDYt4j5+cmFC4pm99fBWFzKNz38Xn8HQz7T7jlmuwkKD+c07qdHtxjvh8X1Q8IY7PKfKUD3Xzcxk0AJWsYpxazjib6jSOykkTS+mutLEdLS2orT9480v5jzdyZSnSvSOsQZNZw2+t9aVL5SvpuEj1SWWeLQF+Ste8Rk4pfhA9+/sVbMdDACAlBOktzV+eG8h34MPUhYBxfHGTuaBsryDYTHet/4sOxGXkPxtUM2Eth/vA6rRavgendp8UguONFTa6HPJIZU1KWN6qGcoBLxxxlyAtovLePUrwUFNE24RjdZRlMpS2Eh72hCvNQr2bP8YSe2c/ZicILq891VDScAk28BpB1ksXO7u7YbQMsXifUbrUCmxlp38vaScn9Q/bt33Ky9RlvCF4oQLwb6XnSJCTWUEhgEa46YHbqGrCgUZdXVFEtMpgTju2eN0Jha2O5jCzJArdIEWJTNxiJW7hdjz8k8waWTzFjHGJuHjQ2Pj+C2POs3Hg+n+MrS4OB9CwV8dvqbPdghwV0Y+GFhDeusmnGijV6xtPwUSWcyXKCU0p/1uMLzgeaOLSZaAnMdqfxbtOOdq3KSoMvR2zL4PnCfUzfO6Y2l/2GV/fyzG7z6P7rXAL1D8YD8UE16jGDt5M+f4OauBhDp5J0k99iIY/YaQH0wiJh1VjZVpOuuxGct4doF6YzGraPEI3Cuj1zvMenuRnaOZ42moJQN2+cgmLmyfrjRBRYlRimamfxPZh/4/SdQAVXL3eMzoJuGqUMbre2DbcSgANgLbCi4+opn0WLKC51YsJ4NmxJptWRqJJ5yLHhfXzQ2SPq3hCQK4CWk30XlJKXWPWbASpBDO1zBUNIDCP0dQfqsKdpGPpIJYeD8ssZ3rFUC0w+gpsN6MhhpB0YzIT6OqlULND/690oHN177SRTx71RnSfP+lhEp4n6prDj/PqiJwkXWzkAr/aAoZ+kW3Tt0XRzzclfeJVuHSlwrTJ7vm8hZkMNYg2a0f6EW4IdMBLq0CGO4qZcgeQUwaFb33vis0TF4FMkYO3GLRXWrcggciElb0mXQb8RbIAl1x8qhB94otIiIra9qax94VnaHsp9ya/e/Pr13HMzng3F/wp6YLXHulYqAn+lr4w3C3Fi5zCZbdaSbtsJze96zWUA2l/ufjnAA65xS7oqkJ7c8tGFlV4RpEkyctDNE9zSysImnDsoEWxSoQc/1nqm+k8/8pV6dFNKAf6If5feBTNn8C3SLyHAk0a5xZti8keVk8SvWh4qZznQZB29c4lGaM/zpQHeqlg9sxMwEw2JuOF5SMEl9nFBtd8r/yF+oAFvMiIczBngnkXLZzWXoVzWPJgD4Yjy5vojQAZF5StM83SaprX15Yb3cksUM9qOWHql8XrfjTKrhu0CUdJNTHwhntVBL51P3F8KWDyjpn9WO+rGo7Z3ab3/ll7YH7JsAUt4B6ZRz6NmIQJ5NSzRGoCOv7GrkKkU1ztSOKw5jcwQyqUvyDLRN4C531/TCulMwg92t8qN84ag2g+lZtdavrr22hQeaczrzeId6Zdu+LjUVTDSxGekARzTqnkxahx+KUCb77fP0mbydTkixuVuo6KpuIDeeBBiNq6BN4jzQOTgtvI5NCADkjrC+YboL9sSX06mhtk7R/Hv78y+UpjjQd1tEhJkr3Rf9CEsQG/clm34kGKq1C4QAXaVFAlEYF/0MpMVdijqRjqTRdnvpuIljuc2c9jhFt2BNOqp2CvSLSzFFGpDnd1y6s1dwX+ynDcW6hjPCaFmKDd0ULuB5bTEHtrd7YchDRsj2Df0nDHIRc8Jeu4c5A/eHnT7YtSFYZw+wtu6s2No87O+If5uvaU11QQtGYcZRSxNa1nyBX2nMXXK2c6tDtpO2sYWO+gDLKT7YzQK0KgWLNsNIHnvUX9C8F9fvRud+ci2+6Bo5rsxGSFXjAq9gF34u0U4Q5OkmwbZ3FWYDQ/4PSwMsQbEsX53VtBWIrPIvSHDNh/ooZ5VrYScehwO7vV8fuedUlk2rVCimjMbPBp9Dmc9nDqk4FwsgwKFJJy3OCQWs5nL2hd8wF+D+VqriIzSbnawhM3kTsws0754XCZaRQdmDPb8yo3rXLIBan3TNk8PGwWXyA0JObOaOEcsZ+255wAjWbtBy+pwlkkWgq8z+hBa8cnJxiw5UjiGGuqpi+oFngpfZLXdxz6ZEbKfIITrXgDVaFgK5gn/H8Y7YJfZCFHxHMWQBQol3nwv/o7ql5GnKtrhwRKHy3K9R30Qrrt7ddLf0s89s1FQywYsqrqbqLKosmD8MtCYrF+KT0movKiBwU5UCwKY1OU522g1US+DYYSpXpZPTVHr4s4gEaF88TjlCkWwr0HnTvWLdaG3dPYJygwJzd5K+oU093lTJtuHbCawvvqFD2y9Xv/Pa6tRheyShg2rq5q93z/CN6qdoF4QlBcwvIlryR+UNMNmINQA8UQfWT7a14P2QLCimIIb8oXT/FtI6T7xEQ/9ES260Tfp7GR4llIRQBU1U0Xf2xt0iHScAj1yZ869ge6WXI15O8N0YUBkSqP3F1oTOzlwkPGsuMdKoxfECC8GAOODlQ7JAO9ix1OEW22mIBDLN4D1/MMy8wp4HHjnPK1GW/QVUdysSDxH3ITZ6hjQYakvSu2t0SqmVgqUVkY1hggf/KUM3hDYzC9HbE9lHAU1T6hB6vYosyvYt661kGUVFEHvzzKyvqZkow/jsSNEH2lnAjPDqbbyRMhOMzpAkU0Fzz16TkNEV4hesV1gTzPHnf1Z3wwJj9cnlpn6AGzRMR0AEiCLqtC4siJfcnj+MQsg7qEDjLalMb/KTzo4GKn0EUrNT8HHnfWP+3dbwZH85/qWmBDaCy8P3EQWw2RTMQJgJwy+BngiOtyYUHgL4FsmamqwJI8I2GH42tK1PoQ0bybk654+DwxyM77Fnvcw7YYbpDCz5/zslG29WLS2jvkIvrkFzrXgwSXGyGzFaQkFrGA1YMaR2BdOeQtMc0CoDKIF9mxaRGnFthcHyPLigbRgK+wN65ewlgMfNj4I1PG6P2/+KAXtavQDqvuYqZ6M0VqrfnXTfcpL7U0uuIM+b1ne2AamZaJl/xXxgPiPxrQBa0hg5T9u7oFvrOqaCKy1OWnCIPwSyHwvzdMMzWqiAwmim9jMWgyr4zytbuub4FcpA2FkyuhOOzYW9Neyr8iVAHvcb32ptqlyzhoHGRN7+SYCO8exFv96cdd1Zym6oL5uEGgTNNHVI0Uc8dRefGtgu3PEFtZ9//310aGojouRYyEH91EVmVtmHopmeYg4Hr8PVCM+VGdm8GMmR7jC74OsyWYcMuNAkSjuyz7zbIwfN3SWen09hRrLhWhenxOZC2CVXMhPLFxakISeSPgP5uB8nufoeKFKjCOYhbQts+FuPjdOc38+n/1N0XdWr2PorTCsv9dzvKEnBR5AozOfK0Tz1FmzE2IDF5cvPeR/OiUARoZ0fuctPrXAE6aSdmmlhE54iL5+Xf8XKun+emFmlsqM8y3jc+2WSCLO0RYCK+kiVzy8lNjne8W0tcKFau4OhvVNspy7YHDxmUaKPg+fXrB0v4ElE/+k/fP21ba0/Sjqv88xc1uNTTxwlJj2gtNs2eF/Q1TtcGlqagxLeQPkAPYo98WAC6uUrMPYGIGHnJ4yKRMRoI2FIiUzqznzyB9nqrTQSI01v4kE1EtcjxWFK0sTDZkgQu7zf7LNbblUj2bDFuClh4GR+Q49LAITttRotMJA7KdbMBboxn7skOJcxZffzyGLOzmvKitiaFs4C95D5f850ZJRtAInQqmNRjfDzf3/nWRc9VxTprRl0qy4Z/nqM1g7c6LbZGo7Z6jVZuF/cDRXqLm4bfHRir8YKga+GpFgYvGJ1gUcWfHghpeXVF0aEyrMWWkgJelgHAJME0y4L9rzjX8JX2Qh60gh7jue31NvS9DL4Ow/k9+aY5+imwupX8O9zZTJYFzZB/xCV8GHZ67vhAOhKqLxl3mpuL2I6mgrgTqTakB+anvu3XEjVbt1IJlz9ZytkP/pyYG+NvZZC+ULIremrfJr5DcAgFbtn5bG821dkBVWg9F8aGTmLKvJxQgT2x0pdgLUUtl/q37n3nXWOrOnjr2rmpQl0TA+qxjrJXcFdW1dManjlpC5LizoT3x90+tDpPlwqhLY/i9EoJ/FPhyV/2Fe56jCSfPJlOacjvTqt0OJJoy2Z5HYZYzzRTVOBnn/U5ysm/dNbXEzQdkb4p67M3AYQRYVIQmxcR9d5ppPIKgZCds51slqpWVfZ1VT04wcGv46PEIAhnNiP/Dz8pUzJvTBFqNhYmzSbidGC9W38+wYJuQw522kXcwFKBTw9PK1WeMRnGb6zlxzoyhrctWZ9pcxyt3SRCVXgf2TP1WzoZgS+LoY76DGZgAkdnJhVQQ/WkLW6/vNzMAikp2QmP1OkouwRWy5KDf6a70WuALZdCA2OEZoTRRtmQPcxz6DYry0HHkbrZBGtbivc275pX3UNoF3NjfBz1NBJeiu2U1931UK/rAhNKiFm2X2lF/l/8Y4rEuMYONBdZ29a8gjI52otZ0cQsVrG3kIYuEtMuiOGeirSwSu5fYTV2PFFh2+gvgnkPl1opJBdNYot50CG5Cdz1Es9tTtz1iDhD0igbv+5YjHy8404MpgXKB1g+L6T2soyIKhoiaXpswRiqdh+ZS0ZxRqs+2ABFPUsQA1WrUg5gPzj6B2PSIbesZCsKU7E0sqcFpmXQrx8OljovIhXUDxM9EmIIPJb87ORzxUtPjr0gFEMqr+EzZwabp+0pkFK/PpOLvH/0Qp4c9Wf38UFErkvBQXQlyhVwoAijp/h6UFUC2UBoFDyoiI2wloWBYOrBd5H9lUT4m2OAJhz3e9OHTww6Jug5KFne/wl+mdF9/Ll6BK1TZg/HqCWXlw0jn4IhzttsaCdv1dM/jNWBnxqztqWjQpJvdnXIs3cjcYI/U+JIC6sLp29AQx391yxAyisr44F7lVRVKEJpoejUwsxCfogzVCkvAEk83Wgw9g07kCpXFDh6zoXAm5SKTgC2MsGAtr0V1xwFYliLjdnvB/fsLaMpkO1cDbRn9os5XIUpa3ear98SH+xMokfFOa2uUOiQRYktZTdgZm1ArIE0t3KW/HMuUlrzbUr1+JtuR88qBJz1oqjEfEs5yaJxUYst2UjchsEWOQypb8pdwgjS8aFhtlhZk9aHwO0QaAONp/CGHmryYkDYtB+H4raOgJxx5B4Ot54RCPAbRTgKz3EIJy6DWU2GtMr3mvejjDnp8V3Ay0id0tNnpIBUv1beLuLQ2lYxICh2K9LjDLCfxKXJ6Ar+JACi049FTh+ujU2xB01BgT5W+Re1Ob58Z00VR+QIUSo/bCVmRoUlGq7/z40gQrjTtcjFztKUSA7IiLiKA7l9aAdNiM29w1ADrDqExQJzyfRN7P5OHlPPDgnC7pr2KzXQzfBCDXS8FRVm5/7IhZncueUAJGiQzbOxwWIuxW2lGr1UWKZf4vDz6aYh+SnZEfh8rAfdK2gg/mmN5V7gtWvCrJ9X1F+JTW5FuSt6ZPOqfRd5Cyga4WkYILgn9O4gOax6W304Z7Jsq+jlxHq9r9wbVkuu6vLhFu5T+a6Q3T1QOCNsBW5cIYFvNy10ikox2NaPJb72k+up043XkvPjYYPEeT4IOSB8hevTR/RorTmLt0cU93l44YfC9wkduKBQf78AfeCxFM1pAPJOTrChfxmsDKhC/J32szaEKamtLbZcwvy/Qu2nUmNgxk/t3iG3Mhj9CXThKBAqHYA8q3T/i0p37ytC3X60iZxgxfW/19fpGSpoX9IhL2Ddy2pYetiLvuxf+ncWTho1Py+tC4iXq1HFTLBnQBQAAGTADII6ChpKIs3o2Fum97lwy/N8A2nLV6VtL44cX3Np5r
Variant 0
DifficultyLevel
576
Question
Zoey scored 88% on her Geography exam.
If she achieved the same mark on her French exam, which of these could have been her mark?
Worked Solution
|
|
88% |
= 10088 |
|
|
|
= 5044 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers