Algebra, NAPX-J4-CA22
Question
Phoenix drew a straight line through the points (−2, 2) and (3,0) as shown in the diagram below.
What is the gradient of the line that Phoenix drew?
Worked Solution
|
|
Gradient |
= runrise |
|
|
|
= x2−x1y2−y1 |
|
|
|
= −2−32−0 |
|
|
|
= {{{correctAnswer}}} |
U2FsdGVkX18gl0jBXgW6ehWy2KbYXvRtLAg+ga2zjzfpel/7SCrN6PmyEx3cSV7GUKRg/e93ec9doGd5ZfY2P07vQsFacW6rxLUSACHEmTLZDBxptZmPW/cHh6cdrCsgBAH08cNWCDTmB1/rJDV3VjSldT2k3gq4Iy+vMkPIDuHRqQCDpuB/Ap0oFXEBHRh3ry74F6WihconCtIImo32wxaATGbRGofUFtif++q/bzrUtGUuvsN627dFfKVwtR61nGnS8zO1IzuxWod0IS0r4BHXNShIp/onXC6RD2apKn7ojq5EDRkydPGD0REaZqwyLYVqZxfBOZEupw2Yg/+hVfLNSUaOP/b0ntK8wffRV3uWkAQ1+Ir5sYW9aXC39utIChkzIJT+GmYclA4jd5KwYnSzKS24HbyaelhpP21tXknpPIiz1A9OIjrgQr/pEi0chUu5+6ib8ghgsLAbAsYubs99VyMjoSIpFD+wz14jEMUz5xCALCSJFSirq0dtWPdHzPBDZjM3X3sYwI0dps4RCCt0wCxN8DWLmoUqh/GqWmwrKnWpBrdQDbLZ7CveoVRD0jhWBuddw5mmw1K9MmJLh94fICUrNA1fRgWqzArcHA1NDfdrQGPm3vQi8PZwZckT4Bw7I0hl21W/e0ozpmA7LJmUQoMns0QE1a4Xxk87+5vvLS6CbueotWOl16J41kvXbKpm0bXZLcDVr+QhzSs/rHpkIImUxrdfPZ2e3B6sOQPa+rxbUnc7szFLHVhN8UvmQZOR26zhBlHB+52gd9atnfXgXJ2r2lTFMn8Alv+GYnKhYWhD+fLULT+8pHbvN24gDaBlzphvobIYGgw3HXniW1eUWdeU5r0IS7wxdjCJQDoojhHoCH20wt3Z2dYYL/Lelq1+7c+qAAiTLeZkirTZbUonLpjy63uadgeiVQa9Qj9D3xJQ+82DlY1FYok9rR8e4QXqbgzP3Nq9j35PqtxO0+/bTDHYDOfApRBhwI+2frW79RNPlhmLLIZKKJrLmjPDIjB4pIBvHNFElpfWqfIbMdQFbEuF+EycTlOFTjvszoW1EUBtnXvsWrhb814FTVjOShg7yibSHeOkeI4bRUeVq1G0A3noZElEDECxUrZM7duM8qXSqMj3hLPVbC9QBlcz5QHQ4+8HDzIM81+x9IQHH/s0JDUvK1fEujkX4zoVa3EQ2nWIY8CgTjwBRNQnsaiT+0Kfz3hCNonLn9D4NUai2Zg+kpNrJIZ+tTcJJ28c5CiuPgC5ZyaTnE0f96ojpv6T17YnDTXTBM9E/zBGHLc4ujtczZ4BgFJde1W1dsIk8OUB0vRHDVkVmKfIrrNWss0QRg/ZGpGZEJc3g+0DVNbA49nxvt1s3hSCjxc09cU0/PmokDNwO2c8i3RceQiR7KUieJ3k4hzWGal/xczionLfHIrQU8bR3vt+5BsjqGjzEkeqbwlbInYDUZryzBf0mmEUeUP3n3ZkoPz4AHSzainlri7u9JlhEArrla/EisJEg+MMNoOPJdZXsiyjLEVtfabyRXPMuRLxaaon1daV7Xe2GV5LptZ49zmVAhqzejqymsj6ULmKIRtctXFTgYFnQbJEDJN2TZa1jpXGRvRYIwRU6syDOvlZc49exeKLOd3uBgCeOlz2Ghhzp2I74StMMqyFgfejMZGPz68SKY+c1SdrcwAuGPzqgsr/mQxzvS0XpmlFkUlcMCdLD260p4e3la8pSe+/hnrJ3LbDZMoErXsx52L4dobzGs/57wFh2785VdZbq2OJBLskFOaegXiuRp5nKr0705tISe/bulEiO/9DEucqkeYcvc4n+sCAOyL+FjWW4pKWieAWwBdIke3mQe/3sUJ2ttyInFUE5bHN/TK9gT6x33FavSBju9COUKTWr7bCRkvpupMQSYUur2+xnEWnblEutR+JKSfpaQ4V8//jFuKv0tFLmnZRZG8tlxNoFtrCiMC3IleXL4dgnrNzybU8pzZimiEge2C9FAq7Gqi5jRTeUALLxAk+fZUiG/BHzmXR3HbVHI8nrMPmgD5G4E1g4rSqQFvC1+0EoKfQOE9ES0DLnVpOP4DFnhqr9ko+prW8o+3p1NB+u72JcwKS40DYnHcduIundFQuSTllC30ZlDLOQ4Ts3yBdhhwW4A+KqW/s9TGiZEYJgMfNmKB9KDynSw2YcWV7cQNd/UPcf1zorlY3kTNjSxxFsgvy4wEq2OLM6oZRbfzwToT7GQn1cpbsefr+tOIvX9F7Kd91/ej9wpj7TDEyz/SZLEzxovYTr3dX1NFQfjZLMnhSCn2yJrVTiafQkCpdW2wjaaqptrXFdshUL4BXzbKEU7HRmMBpiC0zIHkfeqw/6R/knjJFewO/0LYgs1IY8LEEKVQa/siPUDGSqySjF9xfFaFVKuINgo2D8iO/4/SeV6RgV0bBpI9Cphel8ZgJrniQdXcvDu4wEg4zth+9E/0jS8XFYEdeNeljmSarok5koajS2+d3sYwmFgPZcwjvR370GdXmPY10o4VqOadvDih305Q/Vzi60X4Dw+3WKtAPAH2BJVY+N7kQ9dcWEXeUNjRhaiWVuSVxJzhAqVPeJZP0GVXuudEiXXX3aB+pw2JZ3AFBKhSCRvb66GrtxWYHSzQ8tHZuPB5O+kVE2kVK3piyg0Gauid0oR+/X0gLswOBBo7PRgNkJ78MB9MMFQrct2H3tzv4I961VUwEO4ELC5UXX0BrpAKYiijbVcEQAnr2NGQ4e/gP/tYNjYt4Yh2SmaFOeP7WPOYaygrsV/43AuaC9qtBsnZh56oFnpDimmElcoJT7CG603AzCokk0bMbPlj1PMMsS2QhFkRv2mC3+gPR6BNOOooeTZgl2xGa/BKNn6YjVtdOFtfTj8sB/I7Yo8czCnhsJR1SS91TTtlITlfXHQh2f/R2O7r2YX2TeMdat33D8RzqQyXwik7PpBWMIMBGZmWK1tND8L7SzSRbrGUl4s7FIHGx38y5hTJStIcBcYAJnmbrETypmcLm7tNM1ouYDt65NRedVggRdXEaXNLFRGcX6fCTUhhVHxlCPMBP9wkHcwJUoXKl6SHOwh8GNCh3yLkAv5cQ3w0A5VBcu21IxOOxrj1CU/aNH8BMOLsOOSdWy3fzjozzYluV8DwQjEzhei+xNxHc6gCsRh+LIiq8CWKun9nY0HWWP5hVV/zKNXbeiwLsDd6/4VNAuOcsfpSuwTfdZKbO7QrguI5CECiUUF5tqsAcnqYpZ1EHOllM7iBskz55s8TnxaW+nQ8pd/oz8cOIs3ICpyfuE574f+YhsnALvbSk7bQ+mZkYqKlXLmF0rfHRg+FiVj4gKsm3EedjMBo5kvALW82Q+WQOYl/elhn++CIyCAUQDDaxkh2p56YR0SjkvsKbLio+8KTtCKmykcauBOcB7v4TFL9XALpBFeEbWChxeiZvmnNfTFnOA4Qn8MaBbkJk0mYEK8WMjDoy8vx7mCXa5Cxl+/75KvTkII2ssWRukI353SUDqodGltTvNzAbJT79pxnCATjTQNS4GjalMBNIuXDtH8A5ZmJdbVYfkPFj+cHqIb/pB3EficMFnLByuSsZnVULDuIrRuTYZYsWAeKMoXgkTWOexy+KtQD2dx7I0wtLfn8tCswpARDwZsuv0Niv2C9x3NQ1V9qwXvxbj6/XWv2MpEcAbZlIm3iDUFnrq+xeWF13DGlM8v6MCbuuydYDyiStj1ZJMu05jpOF6yefs5iZWnvnn8fcMAwFJfCDqXFmicr6iL3wljIoRskeCpAu5ym5hknrIdvHSH8qCbRD7c55GgjmefsX5rJFzj2On1nigxok1afRNC8VbS0MdRKEXb2MNtJsO6+n47OHTZKiuW0o45twlT1HbRpIInKXwwxEM8ZlHJnqHKl/8wJ9+FrtFpEGR/rhGITYJqlmuZFOYp/+F01vYpNdgy/x8t0GxWftmYUcRxrF/f8PUQG6qwiu2S7//sE3M0KN45VXvJnDE+IM5Df5DBOBYj3inSMwlAiIstf3v4+fDU4/VBxrsAtNnrOpz4U/wPBl6TM2E3kbmI0o6V0jaUumEO4boVwtHBWY1QQn5xEPazB77MZBlmkrxftZR588VwMcqFG3zXHo/IMwl2zJadFt14LNkqYHq6iZ7nWEQoGIF2QhoIcA0fLIba+Ec6oDmExtedLfujH0ru6M3Ukspbbjx3Vh8I5MZXymvwO+vJKZnUufD1BvVS76DlzXB9haid+OHDoXc8NnfrEI0YoZnOWSgSh3r2+9In5uyDnSFtu1Cn/fRtB6QpfxGmkJli16JP48yoABl1RhgyJJ1xqOkwM3g5ARX139h9fmPAr1yOX+7/ZrcWWDbbOtzu58JKASVykB47w7/NvlAeYZn4gPgaz9/n0g9oeOugMVIiC2r6i+mr0l3oMiNKoiY5U4Pc3c0b0x7qQjD6/FHsyHoQT9w11S2fXtL44MY0Z4ZhvispQpk7Dwft0nC1AoWL3HpAwc24lthWyfjzaGKET+rqh9jJvwfoOGJkhZ4uqLLSNeqortw+yxkOJT4FIXoGPtIREC6iofAQe5AZ5O3cYvd11xtm9J1BSED7GKeejsIBhpuPzJqeBji1vlQdcYV93AF/EmCJ4WPoK1/M0LL87RxJAr9h67lXl/4d3otHrUnm2BJoIcWHvd11pG60Evb8p/B0ZZfGzK4lCNv0xaqOh4tRbdoLg65t4YdkpRCzv6HKpQhxkphZVmE3pV/hiXjRd4IOdEKAV7XfBMuoc99u8ysK/gtwH+AnX9G8dkLN9exw8VmiHhpTj2d/paCT5M0Yt/pHTKmFWiR1JnSHFVq+fyHKsTgn5hlDwe6ut3kBWPQZ1wbUejp0Mi3JMQzCPk2KWJFMjUKi6xe3jfrIsS1ZqugXUWXnWe9MVJdYya/N4OM7b6vs7Av9xPqdlwQuCDT3wTaW1IHO/7zVqDHYDBYFqUejceu1CZpD2Uj8LDamVd+tjaB17nR5r8oXd0sfgdSaM7LkB/TKzQBltxjEgRmOplh0XhoUFKBb2RKHFVwUCTAhWu+GIQAsRniEs0PzDeYdotjJ0yUcyBs+InvLkTN5t/9jBrqzOWZilpOLT/dREvazf4x3aRTrz+rtbLTncouncnVQHpbpZ6wI4dTAE/UOlsNmpQC1snaZLXGZyQs9mdnPlhJaCE5nhGgX66L5QRIxyckw5AwUe/rJUjlkKG1m+bKofGYMMnAu1Md4zckabl4RGEKfCwZVjEQCBsM15vv/qPzHkVqgEPDEskFA5xlbLX2tTDuaQ0iZet8EY+Nwlj5VqGVALLWHfg+f/Gc2602IEpIifyUE37B6k+9vvh5cyETsJT5dm7LcS/ZtOdPuaH4qkVd/4f3DwH58UJ0m5JLpPI4EXQkOcxeIyK124VwZ8XypIvz3/q2nOUFJlsnqXI1YR4JtPaFBnOanaDwF5C4WWZE9SDjHqBRYND83G+PwuQVYuQVRl1fzK+a27Hn7sseg7CgtE0N8SdQ/Cdv5+D6aeTrt29VpVQIn9/fU32CkDJHBr1u5ajq8+Mob6CLnRRb7pSGFK7ANL3c8azRefydVRi1Waz2E0L9MEeku0ksq4yf2KWpFnF694dlj7fI+4BcZEhTIzDsVrbmy+vjhnhvs6toomiEPOZDah6L9FvlQtFeURSj8JFsDEmw5QEabqyyBxRigpSLxoxHWM9QyqkRauXEsz+BM3Qrortzox8Y0LNZUjQTuYygCsrkIO1CoCYPUmMYtM8ZrgdAXakbmpDKei3Zqq9U1YSvKLTzGtEX8xHCsK4AyfnDXVtmYgQ4OnywgokYtMiqNb5v1X0CFDTWrUrgTfgJan75RjN87D6KO8vLAwlnNZpB1w42lfHL29iWPA7Hw8/CzR1SNLyGqYqHeXubLFT6NbmTy3SAdrL6gsH02+OYZFyqEBYJ5XtDIubXXt0Uw2MQ1joHcgXAJg90vgzoMzLYskdz+Ivv7prvrH847uessr6bn283rFJba4C9bhv+C2ZODdpPG2t9GCSw9BCC9Kowx93V+e1islo4GRHE9NBJC1wlJYYVq9JcvXxF7Lg9X1NctEpKQerNgN4oigE4Xz+66b1NBte0FUusZ8aWTfOup2yEchNTYUfPk3zBWXtIoeJurbBnBNzpsNxKBOUAJmAbh766bn6O3NYm/GspiMybweks8rtM+AA5sjaLdIuMtOOEjcB8DdFQSwIW5PttACV+QpkobiNX29KeDjGYuT5/Z9udRbiM92UWb4fUAuC1LM9XeT4CDflp9C/ESNRyz/Fh2M74IykWA0nX02gL5JWnYLDfYW6U8FZUtg66z1DpcAUDXDAOVVNGFsgkl5qFNbQWsSI6vaBwz9bu38nzqGBfhWDnZMJJnqTrCd+Qc5gAyCYTS+3zmnFhjVBXwhOxxjKUr4BTGk8g0LKLLTlAM5jKRH+3pyH3QUfKqUFGhL8iB6hFLKVXBp9GNDVSV6mqSxubhwmIjr8MCc7KGEbYONkmh+e1WcdTdOAsEAEIQZlVdJF55nKRjOrW68+FIqN2kja1zKT8SzthuTqtC+73Df+7odDRJaH/y/lLiEkZvqwxbWBWkxiYD9RiUW5UUNeLn505hxuXM8ftf7A6O2hszCnQ1NReymnE8I9ULl8nb4am4CsO5AavlWnNFnpS8zL+UguspyZyx7WLQ2QEeP8SvCFl0qxDnHwCfR8e+J+ZL67svLaC2MZEIHhrJpHfGwotDc6Lg8wd61SAwp0/jvXxMcUt7u8cP5xxE40Gdmm+QaE1eY2TjrtBbub7Z0j00pPzXwfrJrgteCSxZeu1bcwvvIcBS8hKcpgiJFdYjm6Ec5lDIqLK0bPs44EGPGVySoyry/5nqnpfivMY76M4QcTx/zg/haBlamT3P+cGfR2h3bXhMaLWbnx0MNt/XhDZRM9C/O/K1ZOpB3BfOFgLCSaORGhO046rHK9vMjh8Z2yjTzDYlM6mKC9moSD5TGfc+AnIbjQxZsCQljCbXPxlof+XLV1pu6OoD0SXrtCPiyYhs/EWlo0YmFxJnI73szUPQcdUP2II9UdnPPSNJvoExwgOmQFVBeZbrgGNXFBABjVRhja+ePF7wnfuNebS8u23ENO85hzA+E7KICKi7Iax19nDb1NPLx1kKkNW9BOZlQZDJbukSprPvD59bpVyr1LEVNZNDUgmM3PQlyxIDLbL+CufZykw+4ZJE8KiVYqctZwNlQ4rsXYmOomEjBt8OEla2t9QjYv4VWZhPRQhYBNvOAjf80WF9LiOX8dlMLWQDQ+EnBW6D8omMb/OxHbweYFgBshFy0yzfbxvzc1jZ/VSqz8WkjXFwHgMoXyfLvhBSyhtXQqDtnKn2v3Qs2/lg2k7DFTDbmCJy1b1/aI1mj8N1A6+IxRMfvMdoL7Sq82b9EsXGoyMzHWdaiAlJJ1vPlCTM/X9BuqUqGXW5cgJf4uQ4JK7zacAEAqtkLXLTxMM/pkjjSdwjNWap+zshjPb52+M6FmS2bF7Jslt5L/XUl0zUPIZMEeh/2O162UeXYb/nziY7lPsuTUznjXDlDt7lPLhxWB8xExF1Mi1m37I8TWRiaRK0vM3fHLR8ex5BRf4wlF7DCEv4iVgnaJJRQ5VSNfNDKWXzUvDxlPy8G5PsTVfGvCEDLwsCj8FVAQ+0UesGIDAYpai/sreyJLaaSD7tZ91Uow5+vHVruTWXNMxyvClksx2ZukRyJw4JxED6WqWvzzqua7AS/HCyPWvJYwMzfjN9e7PtRGU83dOqUZUuYOxivGEPbFKIfAm7Tw7kVeJzVqy+lJM0Ps9zQvRdmrAkBCZBGJOmUQVNziVpvnOF7J/zUEKWOOG+1U1+ulekjdlwLrFJZxCdQY2nbu9bkzLjc7u8pWZjqzMhhh5PGPTRLx7A6LS5c0cm/MnGRQz2+YfSn8TV2T6F5L8/X1aR38tmLE8LATjp+eXSEafQPaMvSwGLPCRc3zD3M5Pk9XH2sUg9jpbSHxBUZHNhDqwb1pTH+bkKIVQlRRaDKpYZTJpZy8BPtPB1cPo3QJhuYGv3aAsbr21vtZeYGd/R45yLOT2Gy+t5dpgAmcFRHplw/hFbw7Y8zK7u0kdaBL3b6Ho6/nBi3D/FdXH3WQ+0eFMAKaoAJMKtpucoBdKyqyWdxilP/uh6Jdyr9ZKnBWub/npUbuL5XyHz6iP+t9dpVtPP6BvPzQUg8x6YJVDRv5R1wMK5dZpu7mDEwB2N4f0zNxWuI7lJ2kIgN3G9p1+DBvJSvwxRzNKFtYQwVS4UGxnTmypwgCl+Uc07PemH6YajD5JjdzCzAofC/wus/CIg1zQOkHVriO4iSmSCCTpPtQP6yY44jhWDq7tFQVxADSBMetNACXy+M12bU/Ume5kjZZ88TrCYP6bTCR0NEMRTn6PhEit0cG1iEuYgO65fx3hZFiDNRBMiaI5NMn/ngv71ZPcPZKw+baSSip6LG2x0xwG0Vau29wPQDoSRc1K7CI1ZNc3TkIioskfFbjzvsAcwuZaQrqT1WDCS2cL8OM6ytz8lXFzMwzwbYhV5wB6kVwI8XFOAJzEn8GAe4qXb6+J9uwvHZC9gr+PSaB8o/eC38CJvjZ+cGoI1M4Ov9ZareD7HsD4q2V2eTv6mz6VIJPJkzgZKiAQHPYrMUCsk23Q9QRr12rRK7xCJN85c9raj2k+2y57GcN343pil5WpgQMhBrY7eejA5wMR30VnXfdrBdVsXkscAU33bPBfp6mgyf4xFq139rjUyJIQG+t209mbH9JMsfLw9Sw0zAg6qVZttMk0aOYaxVLE8R7GHt/H8+FjOrtn2l+bdq5lU1PP0+mNhvcETcfd2P0Oo/9MD+8MN2NgbqKsc+fGD9n73IVqw5fwS2+KY6iCShttf3LO7ukt+UZL+4YVMdI+X0+xTpGRtE9b1hwSwvQyc2VxuE0JMBtV+fE6hAwperRMal9cBxlbNYdNNDfbGxGKXSZ1vM2bVarBSMtH873P4fMTVjSZXWgV49TjaDDQjF6mAWHiYcMFrE5LI3Yijab/7vWslBBKW+opuy6zmbKGdHix2bbhEg8hwRyo4OG/GDPPaEuIeSVfj3eV77+yh+Uj0LWc0Tg6wdMWpIkRD32xroFtsm6JFsDMBbCatIEPjBAsG5JJN+AAj6xZ5xrcojtT0RUH7bzNrUmLx6+d6xWi50hAwlfVcYUoyKFCjzo4a5ck1XqjaU51wRO48hfbkIoqsOMd8QyFBO1QrkStko9hHD1dTgri91dWR6G5mLarPWW6JQzJIXmTxOlAl4iB9D2NfHcu2SKvbPvQ+1HoXSrnLBu8WVXJfp8lGBTD6IZ57qRMKGzuxY0BJvXyRKPq0kgM/LDVd8y+1tLNYZH+yFKZRV8dKR8iRRtl0yEOz/n2nFHwul4jfqm9+x4sYHF9FpCWY2z3+ESso6/Qxsi/lTzVkG2HY8PaWTnW7i/skLbsCm0oxH34EHZHmtkSknwn1PI9UcGSpo9Hwl4BzxUpE5Zrg6gii8D0h8PQMi2WHRCFnZ3PLW5zs+XiYxTK/4vVjwjPDSRPPOFW1qcRfKGIy9sH11HC4NeGeIWSxjo8QuXoTW2mf3xlvtbGKp4cqg/7lB4fjT98YuHG0OA3HfishWfhKo9tQeBa4ebEBGAK0BK6f80eUfUXhl54Ee+f2ffMopdWkfySkZFZftDTWk88q8Aapm5Ead2pWDVE19lAN2D2oYVuNBF4aqbAdSh+uevVzTZ7Kq6OJVisdEU4A7L1sUcuRk1XQMT1gOKc0HTb0WR0NF/Xj1JXqPZT5QLokgmcj2jtFMQzMBfKpzsCbQHIYj/055UH0y6IGEl54Bk0YcqpP6QJBfXwp0AitpxvMzpfeZimlY8QYXDOpLI05H2yPctwFJUV2XLVKbLp5oeQHB1a/r8Oi+t9BTDW/o/jVEZlaYn1AKVzttXgKW/tYFLvBFp7NQaEUEON3dtxMxtW7nQy01YLovl6Oy69NsZwJUiPgk8S131NhsHR67X4ud/j2OizalVq2PpXRBnumaEceHmC7RzX+WUBoq7gwm4YX5CNODtvYK5r64+vek5vtSOGJigyRcdtdYwrtqmq0M5CCh4ni4KYXQAliT3FlgVWFa/HDV36qAlsnfxaKgxiDjNI+UY+oGjdK6gZaY2cRxdBHETzx/ebj/Er4/s8DltePpujTokWPLrA7xN3x9jfDZ7HMNGtTVpryTsgijoHhvdIz9f1UCwDCPaJLhDVDs9yOYJPwcLzoZb9s9Navkovmnhvb0n5n6U9tyC6L49di0aIcnTCrAGLyszp1TBBNcLDG8IlyMqOzla1wy1npTLdPuLG6glK9UYMLjP5oLYcjhZqh2uxFSS+TpfC6pa/rMY26z446OH1CTtaz4eLN6SBa7WxL3a05FshLivRRG6DZL6+npZJca/IN1kCjCSbEuNd6NJC6I3zC6ZLaZxgP4irTPGJo3Smnl/+lsM44hzcHcCzvtDCt9lPsJ0qLMdCL18LxleDLvtbFCKhexfvvXMvooq/c7MHbWS5NEKFJ3lN0FvnSAvTuHEvsyXEXsnnZ6xDSQEW8Onac3DJpMkdBCPc1vSo1R+QxpwN5q7/JueN3IoCysSHJB0ZW2WmM6boduHJpiFTCNvpFi3iSsIkZo4qBty3cDZHIIzCFSb+kQDn96eThL6qrXMMrDiWMNcOVTRqXbZ30H0EgIOcyNjLCtDC1up8EdkCsu5VDBKO24rCEToThl7k5ZoFm5q++Ec3BlD6pJyLthMVSpDgPxu7GifqfCOxuO/41CcZ9DQQPW6wxcz0S04vbVze139EQtiUSLMCEzAdf7GpmdJpRttbzSXx4AjJu2VHKE2s8Ej+yRF85MbUlUNRefUqOjcy7COIJkbV6R4nKaRPvNracwCSbsxUxUH9h+ghp2TQa4KQvzWKiCaIJekFd6xAfA6WDjgmGmKaY1zvQz8pcUuhTyG/pwSAp7p/UGS2p0Xi0wD4jnVwX6/kAdL1V4LH2XnthUK/4N/hHvuDSIVNGJFLCMgN3CbPeKFbsX/hGKpeo6jG8xOtBDrIBvvp0F/DzrpQZ82ieFV8+BwF04Vwd25xhKsXXxwPif5I/ry75aeupKpRkG5i7a31AnXW8s3pLdrvLnsNwkyfqPsnvifCqQ1AwCmiHgMgb9HjXHsVRqOhXQfo+TQHznFUry39/sSTlsiG5fyOBdGrQwqtI+e26tNUSWvwSBzh7jHrBz8BT5/5ziK/4vY4EW6pQLpJ691NPpumMJA2gJsjuL04dIRuwu00c4EfxwAE86EgKA16LvNV0A8XsoaL+Y5gtbJb6aE2LwM5cCGjrPHA9gvi6TpOEm8qcmDwdVXRXF2RVbwVBx2OdFXz8U3B/x+P9og3pB74+Bhm0094rapq6obprJGsp8Bx4x4H8aL8wR5shrbQzOAp3ahdmy0stbAGfOt0L7s1nTiQWv4BqSe5bhjacaD2u/xGrjwu5N8oWnNxyPtO8Qev+X4g3q/1Y2scMYDSHPC4jIYCy4i4SbBx9DhTHWfSzh+lppK4mCV/24kzqcR+utjbFwmquQ/PCu2/IISBecbcPaR3BUfrZJkDZx9GND5yPhqlJNueU/vLXn/Zz0CYPNtr0vvhUtzWe0t8kjxCfx7xR4SFULEvxJUOHR9IHqirHe5LmfMe8jawsiGs6CxUOgyW9jLTKFJLB+tpFIMhJw+OdITN5QByTu1ap63/5rW7W0y0wS1UAIngT9wfFHfl8ncTo56ihCk0dUZfkEOpUr4wr+/yhQ90N8NmUb5eurOk7VOYm7Bhe+7uajHB2P7LRvP+He+5KybDSRXwNUDQw79EwmhTQZjYXYifqXUgXlhK5Pf8anSpLsDuM4FHwHnjje2iXdyhpw/57IVOGrjXTV32mK+T5gcorWWp0xKa773bjVYA1Tgi38vc126yPUSZY4/ah3aEqUBFS1EpbzCbxAzLYckIIv/rlbRd9jywh2U/aIpo6MnL67HJtCzf389m9yzB+ZG1SGStOph7mWGnB06DIdUfareBXZh/gUSPkR7bYljQFWLraxekKE4MqSboVUpPiDkrVEeiKAhxeajMG416/8+VXWgayv75u1epA4MdQ800OLgs2ZCYxaMEBo5n/9uZaipS/0RewDryDS14LG0/wn51PKSBpbVyhduiSy4efAFocZcInp658A/Ijoxf9VNcXqq3+YABBkeGeCmYTIEg9Til51b9vYCPQ0Ib1jHD5A+4QHjE4p7J0GpBV+9k9oM8zVwVMzf7HnupZOUtEvXKrrS6HxghL2ESvVhcxIlRE9KEAZl+8hEjHkGCYVxin1zMtbFAulfDEpxUJG/3SjjyR6652cZM+zI8EafmUN+6nG244Y9vov9e7JhDspXVX2CjC01sMRjJe/R+gC4E+InbkA2oIvJKCpbJpzgCUxXRlRM/CHXvAWV1x1EJvCk/TOCystR1j8jZaMM5EeukTlAtbq0HOlpZ+bNkVuHkpkF3nJzoVMzbA/o8w7t7L3h3UGW0vtdNlWRI2Fv6kKjlNtlpmeWOW5hba1EPlsCEpLPMo7NOlM3xlx0qmJq/Z6rZE2v8yGje4jG1Ffnf244abbxB+eJGuO9cXJQEJujYKhDZgI23i4wILa0vo6xzwURhGJIMBAOaJtzabJDNGuOcKkUgAPqg0WLXTlitHCR+01u2WLj+g7N0Fa1asQtf5P5X6l35bP0Jk9cL21E+rODVM3SkXqS53JS2N+xH6ct2aFF0TrFuCA8fhVjiUSlFmVRsM9Ovb3McoVYw7kGR65j4mHh9HbmaDAxwaWw+mbNThnsFsk/Rory7tPvsBQ6MFtkyVTIbnx9cK+oXdMEkwYrj4lshqnnzjQwgYmOo0ODyygY9HS5tG/qixBFXm06Pwfxt3jiGp9wXMtPsH1Kkpse04KXjDKqRCv3agIOlNGUqNhWVaHdeDlb/Qt9/Mod/TAl9QJ3tvTMQ2KgEGS2cASzOIdc6g9iXazMzpKEd6MSd5uaNx0XNEvzluXtc7QjHJmaOWvxCAaXwRWvBfjTOACGdWfCXHCm4jnSZ2cInBopaCt2c1bJAEFbO1TfhR7g8gRmzZfAAqL9V1v5vqSO9r82s9Tv8Er99FCpavUVmEylI8E/TDUcmKmMSdDKNJdWstWKxdYV7naMimyVkXha61HSI9TKJwk0yqiwx8d/NySnDQp0DuOfCCNcOIjUSHkjb1th5DVNHHXpelqVLKrkWipmsfngqh1fxb4qBIjW4JehlWYdj5kAgWbAxRS19rJcZTOs17sLhKVOo1+Lo+G+Gjzvzrh9frqeqm+lnKCt+Edo88wUwc4F9yJqbrBXvksN2d6ar0hoMEpSEveGBKkojwJhcX5hOKQBTsz28ZyU+wAdULeTgHOgudVtq4j+MtAaDgNRAFIDNPOZEnB2ze0sfpsZNxrQnoUmCP6hZ1Cq7PpMV3od366+43i1V4wSh1lwACGF/p/r4KY9W8aZVwAD2Bs/uCWbzqSye7ibYeSZ5aQYeu1O55pg9sfJBSD06+2/cc3WnYesGNaaqoeV0mGe71bsy0WrFyXkt5yflQopSWWaR28/SuQOAroEug0De6ikyWuDzrPoFIQ43NNp7/OZZNpoCY3iPYW0cNOu/jBxc/2no/NdG45XICAyemds9P+BmcyrCvzM4g3OsXURxOl66fSV5e11D9u+GDv+VpwyPdLfXBsLILc15/CYELV3cB2aMjL37MkiMQxn4/z4a16/V7kqGi36exWPacL3Or87+L/AdzBCQ8sKrhsAme2oq/A01JyYxnp2fBEbuilgZenMzLovMag5iFP+K4CZgduToCipmRNblnr4WjZkReSDGnyQLpUI/OyBd93qnre6mb7OxKBoIZ9KX/PdPAGUZPN74kt970SZvijsRKnXhwZt+2/OzTh+SHdEJud7QEKe03VH/kFkCvID7BMnC+OfByjDQEVKOwHkQJIFPVSYVaERtW8FXLfEd6BqOTygwP5C8uYrz/ulWlaY2qTENEsHnNgQTUlzsKEl3ZUI8dehl5zYVuv4MUqtVrRRs4Ol5TZ5QZQQQs/yclg/pka8HZqAREn7qxFl4NqIrMFUBOgkUmFP/8h6F+lQR55IE7Sv8gqp8IcRUW8Zqv3BJMCx/4xE9B1KVhcZe3axhzJNXRJdGWsN3spKFai++88QpYNlXxjxWscsi1ivgIc9wCMNEytB09DiG4OakrQMkAqA571fUQlmRpyd/4wLzML4s5YP881hLD5n55U8UvsTUQtlkPCS1I++urQirtuRC5/F2T4ip9V1Z+3ZW7atGLZBuNfBcuWVQ6hKIMP1Z2iHkNdRJsRTcb1YNkY8CCQr3CVtLjBMidzN5JxY48eMAwdmHgNyuzvzVE1dx2IVDlo/S26YayUQWQCdermELmIpVqjigRsY2PRdBvp/iVjN3neGSSQdhButTllHKpfsMj1mRboWB2zA1sVSzog8oeD2wqv3L57ctEnQ0cAC7GhbkZW9tN3VdwSkQ74/i5koFJAhi9wdTTxnklR4NA5KOTVBkcyoPXgUeUX0wVleRJpKZGgPHPrRsuKAwrScxyQSWpO/CWDnIEYJ7JmRtiC09isvZDDPHtJ4vAUPV6qQsmy600RMRghmFXVyclOl7rbBivxOHlN0DMjPAkiZoEcr2c3gYa4PMCe9aHWPY/cxlXwUGSxfY/mjT+vthRdeOsQ+L5bNvRohcg1gKLnt5yvhCy/yAY6m8vEP2+FfpLvOGUxvk6inVyyx5S4hgbp5P21rRpaatHqY42PBQmXww+ClpTOC5vZ26vOKdkrr21EF74tjjXTAZa76CAtGw36joHxO7PTggG4O5u25P30iT8dl4k2/4n7SES9WcmnWpmzQa3Hfq7CjuEUHPv0hZRQkz63R5Os+3Owu54bX6uehR2k6c4F24tR86mdFAAhHRulSpuo4oIMIMnqaVDZurlt0BajxpZ9jIJW9OGsJ1+Vf+vdsEeZlftHgi58lliIWfqaWNArhVA/forWR7Tsw1IClmHge4pa+5dRhStOxHnTyJXcEFGshYIlLpGER+Va3zo7ijD/tA28tycjXwCkAjEtMjBw/iBK8iVJcmobXv29FoNi3k1a1Gw8PkQdPhRO7AKGfgP7sh1oJUPvIySEuBOP48c9HEkls6Acinl6V0z1vzYWzmdEru7YefOQgv2vIC9i9unxz8DfyGhc/PPCOEEbhERSmLfrSrMGXaabVuxibGd92OBZaIIJjYv/LOwNPPHhfho+7SNMp165jbR0wUngD1xgroTSvQIU7tyT9pCaDa937jtMfDqcPujxmViXoSGeP+WdbEvi4kiMm1lIfULf8WRxkkFBCWgjcJd9Cgj18v+FL2n34XdRhW08EUS+CwP5JPhpdd3RSlJdU2Lv/1zIja5QrFmHI6mihvjeeD64ogA6UsqE20pWzjrAjuKa25/XgoYhk9fCY4JImwC99b26CrLhtQtnsjKlBZWSYb9Qr6NxBmP/2TKRnDCANGwKhoQYTgxietvAANctFXi/CEg9Km6NE/HZKNcl645njhCwMKHeffyWnafsBCjjdqYmKlVlaAcWWGRINff60MvvNn3IwuqRcGjohzzfknUVtq8/a8m6fXv871gFmfzr9MqXYEaf6WPQ4lHWSeNtVbKsekF9L0NKmQrxXPGQJIguG7Rgjh0UoXF5rN02RjokdFCTzIgm3D9uM3PTmhzlPA+dQc73bGbxwYBkOanHJ3T5JVGvX+kDojJpORnlQMF0BpxcNqr+dX5GmEljoahr+Qq9l4Mm2Mcdio7mRVR5ey6GmHVzGGUzSl1g1HcasTUSIS3DOToGlHYRFwmPjgFJpFnJ+bWuRZxeQzXTuVB/eVrVDNq9IWd8Kx+oj/Grvq1zHH7T6jyskBdUCAfANGPNt969LAJAyI7CD+z1girmvLjQlz3lMf0e5EEnZsazNq6ULDIYgQFX/kJjPPtt2nNSGUA+84vmGmrdm11sMTopRaD0Q3difJ6bjE0WgWNX+2D2ohzX7voPvpME0nya7CBrp0DjoodaF6xqlwDP8tLvyPEv7FVbHP+VO0ug9KeqV+07+ihKvkmh21zlgywXHGPKTEv/McDSMV1ZpBC10fQMBaus2KmwaINiOZbPjwmLnkaQeKRzU/SmCv7f6ZEbn2bxkmm4wyK/rWGf+f5Ls+/aI7FEUqftp2p+wJ+bz5lJJkbPnLxxjPserAmpvzutzcZi9+qHoYjyYE/ZSUkNefQP5PiAhqSkAx63bp0jVAZjLmVVRMTTCxMVQFNtR9oo55CtRVrho4kB6EJibDx0ZFQFwmzJZPAia0sxd3FljfBcTC32azflMBUnJ9IxiXOIIDEc139SwtoYxYNTpjpXMAbCOlfMKe/a6Ow0s82gYU30LHk6g3jLfy8y3LRYDByWYzTTVX+nzwOM1JVsyHssD9SaTuIA87HU6TdBU8xauLE2mEdZNN1Jb94pvVs3/2jhF1y+DlERFtydkyi80YiRqnCPuLF7rhfUQiQu04L0JuwkZvH9ukB4qkG8SqVTur4HhdVTgU9YzHsknoWbw4EYHO6VHdcDdx8hsZDmnnYIZsjf2kFPtm67Kx0HcbsEIvLQFc4cfEIxAATzifEgiAE5Qkzg4cO5BD5SgWmADFmzKZS3ynKLDO1FjDZpaadKgUJluDWQd93+r15X0Z4g9zYFzN94vR8TC/h13XPU844NwRir+z9Ahj+3rY9cMbBUu+Kql+Arz1NNGEK6sQLMA4mv53VR7mLUXfWE3Lw/Ou6j8dMt8GY1jxFXnguwjRjNboF2Da09r1ooyaQP5RHAnT/b+o3b71H3u0iJrZZY7BpNndVUrwa4rtRy/Ogdt2RexGHvH+KpfNvTHcOWArUmmYlqHmEBcNnONTFXmzGxELi03mCmX8LWQ3Hr+cxU+zWJAyI5zgXxW64O+/VDhN53nPOn8NhndirxKJJWAcost1Cr0jJM8rZ79W7V7iMdLX661XVHestnLHI+DR8pDpbvkE7Ehe6/B3nTFmjNCxL//r44muvGgDVa4WkEUQ8ztce83JCJKun/teCuFJANo4xRahMjvNNh0JETJS1SfReGRzbN1Lfbu0Nox0BQerjeEgUOv0SCw6U5kVAEGs3UILYZ3kCzZn/SjrLRZ8mz4M1dQmSgc4UzyeLkIbpGhSvUZKTNgtKU8qeuX5d4cyzjgWycxMNwWNENItoIeDX9NSeiB+gS04KqnU/TwRlwdYtEwUIF5YXgLi3qiUza7AxSY9da1I0hmAjE6VF/LxdBx3TvK+uCOFKx3keGn05MBk+EZo01Z7i16OQrgraZhM+dEtltlCO/ATNmMrvlxhWYgj1KDvnjX0O8rG6rKMFT//Jnrxo7GNF8QR3fr+RF2Sebpz5LdXr9yMpZHsqzSUOe+bDcxzE0uemCEeM5ge8RuB6QfSP2Rvxlc7GymOon5faEoSo94sEYdKQcblCYvXQOFVa1XBd2k2PpmKK5S9kQbjmbqNIcYa0v9Qwy5GWJUm03LS3ODypr1/jnwEDF+u69Kenh4G5ckj2GIsui5oH1woiVffRwLentQO/ZGIeEcvAD2+KaPht+yPJoDeVdif/FD4FQWIblOAiqpEEGovK35eYMje5GDjXAsFRGoezTkO9eVfprFMO8FHx2kSl1JdlaoveuH6xjj/4g4tR/HbKzAnlNMR5om61THrGt+oWvXsGV2sJFNYtRtXJAgmJZ8ZrPma4rCK2Hm6PrxP4vjchlnuHbsAdjQ6c3pWXZLsk5dpSI71eUZSeHdoGRjwA9hVjF7fFqL9vGZEUO2kvJKLMwo2WaMK3GShwsK/fGHeqX5cKVYBYiSPAdkE3koxShPY64k+SzSgVyeotBTgUraL0IvUv/oSPssAu9ysMjDZsGG+k0yMlUwu0BnQGVPvKUPRarIVinseZA8+XM0tvogRx7jXsyBtG9ncsoyZxdTqixrw5h6lYPwhwTbJ2EJ/qOC8OlRk87bLLUDqgy3HIHGNor9yQ6d/FoeRHV81gMOUfPrwx97e2M4Vu+e25M69CauV6jJ2fg7QtSLwJtrI5/dkWp0djus+Y2kJb8Fh/HL2h/gulWAX3FsDucXp2xpd2wciSmBa7A1TOM4cT0bsQYMu9Sz//U5rBIoeDUv+uSzZ1V3B5vyarqc1hNwJGmTtgs4SAqScpmK7NI7QZ4rDjHm0txkEKkEmTZq+8Yf/54zhE8wk/6oIhk61wkdKCa+5O7t1Xk6sgvEomvSaWYvEIp3/B3ZhiZ8/Ft0RkCo80NXScQ5RhXF0qtfyobc59Loq3BqtvmifUuBZJ19apc1KxT8orliSPj4c/7kbToFgihYWiBQMWi2sH0Qh+nnxWBkawSSxFKmA9WWyZwaX6g9PuDIrTSgB9RCasQizHeiq5Q0t4I5HXg2vjfwJ6rG8yH1wr90JytLKDiBMKwJBE9jEoDeAbw98LyCbDiQsfIykVgjzoOsGM9TJRZ7MedSqICS5NbCWrF2MQeVwkeZJVCWKzwXoHIsdPjykXXEIMUCShQRUrJpRFJ9x3z/3HkJb8v02+4teQi1NbLQ31yCtx4IUByzFVs3tcOnAXDOGXyo7JvKXJ/Nu6m5T/JttI2MM6MIwjX2lVtOjHrWBjuzuNepKyYcihqsnD/x4aalB2ap9VaYqHq/S7pMdSs9AxZNkBRTla/d5/YhXz1U3moyJfZs4sCbcKjtmEwvJaSYuLrNlr71Fdnxh4Ett0gJBFvzU6JNaidCfFRGNyvcYChXWES/CBMK0r4AiqzjTVUsXcXx5IfEKm6jZbcc0lKoXyRdwqZuwPUv/dSkYQSOsp8IaJUpssoqncLVocuZfNi5wqMQ5XqbbaEo2I+DwOkxnHRE0uhVBLGG1JBZOhe5syN01tRh+7OovKBd8pm7eeGp3lq8wJPsdudCdJ5zR/yk2RHcwUbQovoFLth0l83/6QCu9hrIpugSIiffZrEK5To3+b1Gwdd71xeIJmZOJlZpNJ4xNwV3hZAEMjVgWS8JK2b3MJBWVSjJcQCAejHz4+ZUmLTumLDPpdHeFz5RSLcPO2uQD16bQ2i/iMABhoBYWw4cEkw87/OnKMmvsLxfXYcqe939wGCw2iN/cYCY7FLyEzcf2LnEwan70XfNFWrSdGPPphIXdhbd4HLoT2lN3pQOA+KUlG3LpjE/XERZJiXI6jhUkt+nrmtN+0OWmvJHtL0iqaYapk5H3muzS37VWLSijBhs3tp0gNSswSWstrQLKoN6tLflLsnwgAiJvDqKWAAgUmBJLnNmvZw4gsjCdRMAzd9XUpSoJ+Qx82K09etJDBcUYWv9LOmClL109iwWm222u0V1F3j3+gQocyfUjoo8wWfIDc0uCwVLIXtUakAfFWtACe+YLPo7sAqCDTrJ3OE3C5s46t84Fe5e41zQCv4XD2CDX5SmuyvsVnCxIyW8qLu9U+Mfew/TltS/TfSRuv2QS6H/FKCYCzReNSB3ddLU57U8FIxeGNDCFjtDOlDYtpZt2ZsWy7ejVaRXlI9PkUvEQ4zEJoexk+2JsS+nO+OocIPshR3SXi9liQHQeVHjBa17Jl8Nq5C9pjHHyfFcJazzK67vLKeYg4QMCIKp5u42n9r08l9DbWzSDWjHZm4BBYRUisIYpp7JvIgCGxzIHm1KmZIRMAJxqIwaBDRf42d3dQs8CeWcm7JqssMNd1DjNBZ7/p+ibo7ZtLbfjqU+p5+9QdEplooxfr6bIrvSBJgSPxIqSu3Q5PmEMRuQhXphB7615It0JZPmpjEEKL2x0rMyigS35B7TS53cjimodccGLdzjRo/UgY4F2m5wRgXQP8tRf0u1LdHTLM8OnGRQBNgY+ry4dtU5C5M7rOtIEno1E1EyEGC4D8UlJamszOqe3cph05GgSlRqpDXzzLjR60lb5SzH7jSQwLUAUAMsxdU6+ZydPfC4PVYBRAwafHFndfdOweJX195ZAMhDXPcyg/v7VvZLNa6Xuhd6N+uRvG58oyR4ZVkKMXuVQ2LfHemNu1dN/NBFM6C9bPxHAGD+uSKcNyLi1v7u0OROf5IC6hJtqiju+Ouw989O2anRUUb/DB4UZ01vU3Qnwe1jjO7S8suPDE39VBeEhREz5IiqEqCO/N8bh8mGzUzawx87+y0mib9wEpBqfxnagNaaC3H17MH/aT94F7Mf0ufdzliiSaOsRtWb6sZRP3VQhWxZhnl64fwgyfYef4yPZtOjxTwtKssxTGIz5B5pKzUq7PmwX0cAlz/j1wnjRzoSOqxdBH53IIZQ7Re1+5KFcq5aqst5zBjX+WiOKGnq47r3bJvFdLUp1hm5fFuvE6MHZCX1NSngwm8ebg10tT8DPz2o2PcCiuu9p52DMKhHJ+uWUcKQq1IMIwjFzb2ASq2CtMq7xD4H+8ajYJ12jkO6f2ymKK9rIikplin3rvipJFzXF3+g0F0CR4TRA3qp7LW8adf25orsfjogsr2MVQMN9OY1Z+Hy+HtElfIoQCA/Eprqmw28wqw9amSYspE+1gencBq3KXg/XQjEXoYMQI0zIfAvtZchK8h/VCTcR6c4npfwKmUfz/PQ0LL95KCYObhSJQ7ky8a4JkHsYX6kgxD4VaUqaRO62iwEel/GrXXpLDPRjpsnhvJEiob83HfqzC/xftX2sy0G4XVRZbFDLMAfxgiwtMNCR+h9B6hIy1H6DozM48CR9NzDBwzZ8U2N0FOF+Uo2puI1PG1SMFYPKwlP7+7JFXLnZ7G6G421Kot4p0l1yzGd9oe1VrOLu576iJYxPeHTTUM1QM77q73/VUxORE8jcT6lSWbPQ8DNSEighiub1pNT3f69Kbf2nnWRPjGyB5gzl/cJMizzj0vzNL1aOlIrWxeSqZTZ1uOZ43c4fMdNTmQ8H1GbRyLh5Af2DeIVGFRhx0VyN4TTMpD/yKgPnIQFcqtk70GAX/G9l/BOqGqZHLCckql1t8aPk0sNgkJNwroFVlV4RB2xSp/cIK1EXcKk/t3wkY8zqfs4n9mp8TvYBluXGgh02LQkcqEzCxIUjKKz/Ckd8DYQdMuM1I9+BH0xiNwEty7SEQF8ragvC8q/M56WVTJV3p5Wy/ikY9SqPap4iN9lm6h4TrNBlMJ+9CxFpPOzGCONlBIYJwpHhCyWT7neo/205fBWjLB0otJKJrRRTWqKRwcyeKrx1xJ/Y0qs6VESZwDSnxE4PAFnlAnKOJUF6jqGepe3yQAIEuBStWlP+z5bpVn4YWW9WAqyNWivGnSmWt221HTmWB4ErbohTwftt1gLDnwpI2KQ7mk9AwAi6Sf/cOJUA8sN6UL0DiX2P2sPspvsCodVOZZ5SK26+vwd1VfQIKLJISgX1ixSWNdp+nCOBS58Vq+/dbWwCdbA266jBHaHnbqZezhX7m5V8UuCC+FpdPRtn8RXAsshAYChjZiplSTpcR/i523TzkEaVJQ0xTMqUiuWI8Fz+g/fkhQrHF2hGQ==
Variant 0
DifficultyLevel
680
Question
Phoenix drew a straight line through the points (−2, 2) and (3,0) as shown in the diagram below.
What is the gradient of the line that Phoenix drew?
Worked Solution
|
|
Gradient |
= runrise |
|
|
|
= x2−x1y2−y1 |
|
|
|
= −2−32−0 |
|
|
|
= −52 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers