RAPH13 Q1-2
U2FsdGVkX1+sH8Lc+ndM4f1lwKh1/pVZ54UiEacoayWTkeaq3nEZsAYDOVfx9by4HTgr8YggavqSG4qKgSU6qUOpkVQR08X+GA4OIswMsM8p+W0SpAUjy4mOXtAtVWIfPng72KMLBYFxqkBo2YdRt2eH0GltxZN3NnofoXYU5Cb6heLwJ/ELlYwc2M+oCSFcJYk/PS0iSvgJP2U3W0XQy7P8jI+rpg3PY9MYQg7ptKdbQOAlPx/m7Tleo/dNiT8tfTXmpA4YLecgRD6txWHIAS3haJZSGsFu/zdmTQ7EY0vBoITJobHsjyZVk6rqEFXMik684fhADqRhpmR4pHAGetQhieMiifeSxVP6BhTqdmuI4EAH4RvTUnJLKD/7igIP74t/qfuXCOFsaiaFJMNMSS+6Iu0iW2HRF01WHEgxyTvWgZ56ZtIUE+O9ndFRorDsB7jegr0WOxPbU/Q56jh2s7KkC7T48ZePBr0Y0klAXdd34Fr8OZPOrlMach10eyXbHrUONaFSL5fU1+ovqD8XP+Y8taEG5Xl4wdIP0Gt5+EEWJEixhIFWEgrVXwjr5lmvpwyJL7vRCTqfTd+bOiODqUFBS3JCux9mgafleP7NSFBqvyKKpU65MY2Ons5C+rxnDRjmUZcKHqnpHpTYvS+b9SuqMm3wB9v6cuol2onz4eoKSECpXxiC5aAx//AkSlNyhzYXm0+/9DSuP60qY66xvDem7lP+iOEXTHKxSLAq4Pwdcr/G5qPa1mTeTosbe+dUW0qYjAHyH3VcvjK4+FO0p8eRZCV1zKA25axOZkKLmyzyWwovXDCxOyYC6Ln1jdKLDSlcAgqNKvEXwHbnkeRmy86dSo1AP6YSsKq32DcXEhuAbz+SqWDpgqo+HYnWe4gdpBi2WZOzo/AeefXDX+gXlPIvZL0O50Wcf6GnzGtYB4PXdgb2J0wKqPMktHVdX9e1Wh+iAy7EPAFvP0dgSzRvQmkoOp63bMWTWY1ExKHd+tu+fOtZnsdgQE3qDrXraWqrDEdYpN+r9pvJj6mEaDJ8YM1/4zlA3mnw/trbnsC17IIhSquwGp7Dmy1UTLaEJSfWpa37mBrhOiFOQF1+yYY8Ldg0m0f50wxlokN1FN1fk4DFs3lE3YArM0nOKlNlnZXozyoWSDhOZOdrOkLXXV4EPFjDecbfReVOwTswOMZqEMBoM1vgyvWFov545DnvVzDfky9/60eMbsPKZLoOkBsqPFRuH0oRU834WMy+TqJs8t78ydiSIvL0rGva8CzUxTTkwXtpq+X4AvHDtaxypMWVGnq/p0mGSeF6aZ8YlEw2qFmu1QP5T6SRMcJTJWgah9g/u6erM69RcG4stMDefVLGvsGHzP0Ce3VltbZFRsrfrzFdxlkrtOlxVcl6yZuG/ucmmEEG9FNDz/KDb7wLu6KYYzgU72oWrWNuJbL/do2sTZWA5Ufdx+NOz6kk+EMxqEM/dlJFF1EfVeGekqx1uPLYVSaB7K/H3jZCV3oOQLYfc1dGomws/AjejYRL1T93BlDbTLY16ktAkhQ5RRoB6jBip4eHczYraTlno+1fGAZkc3DIWdhg9oh2DYYmTgaQfwUKovAhZLO1gptM0jOybyLvKv/Y0KJOPPXT5mF0Ek8aJqh/gAI6UcRCYBvg/Ms5LhbocBVg9quZZdJZyPQS0x7GNy7/hHBdulEtKdP6idlchQso6vhVAWDMKptSPqPgSir8myNcj4+pdAjGvEJz1fw3rFOi8Mji0qLKuf4hYZu49nyj0udRbP8mcVpk0rqYM9qUS7fYe+//HFtILAR2lwAAWk7ZgJ4J49V2yY/Y3KvxVOiVSETNpIQz2t7oW3pL3tGQdlfkKJA6OgN9663vyFcDoTyP6g+IK5J7piwuqwmsZ5iADOfNnjxxPilCJfGIWXAYBNZzQuzd+Y6RCuVTkwDD9qFGUtXnNauFrMLX1jmDHWaI5Rmg0Z51+UjWtA8ki4GwMv5tieuQRXeHOccaM2NwM+1rvOQfxweB+xU59HKYhSx7eKmmgjB76bnrFpyk0QxtM+ncL0daf7P7mF7V67gjuHt0Ta7dy96MHBjCqYLTyJokDtasBbVQ52oQWlG+L8qNDEPlqbyDh9w4yOFBWnSE96rzHrtm+/vd0kCeg3rUIb0OGSIcXmZl0c21lx3Javm6zXRNRAz7V7OE6L9X2KpLFUPFxXBsg7MSHW1yyUqHTS/9D86BgKxTfpMz2Yq3FhHIhhuCt6pcmJ6lP4H9BI3n6NEvLbzWPTIgP7mnzCrxzeuKsCWwEb1mpqbsc50FQLXzh33Qn+Uh4mlD9BfrUCynGxJdCfhI0CXbLboz6P4wi7feBI4Z2CGi/FUGXnvetNw2FfVmOD3yyWQILKNdcf3YeFVvo6dI7bJX3F2PdQnT+sc9eyu9cJumLiikz+nBQzY2Z42sgC9hrsrIagPDnIE9SOd58duTxIuFOVnEKmTF1rT4VRVTRU7D6U4mqu3f1khUcWNTzLVgmDz5SYtHcOgQ1pwJHyojV2XvAnQr9+xbvKDhvHt4DyW63NbygMUOKWQw2Ow4s4Gh3LKUUjTarQQsizZ1Tbop0I0wSrIT/F/cLdGSBanUdrZ9MFKPbOBQ8N9hpjiSJ1L9aJEzkVjJjhyxI+3vBO8oIwjUw9UHFT3Kqn//2KDcDysXuCcRTEF4QTLMyDsA5B6I9PE1q4uFHin6+CLGc0ZPy80juR08Vw2/u/NXM8GXaB5ZOamUEZW++S9TP9bxxsDA/iHUqvVmKfVK2CdcJKO5lNrAp5PwdpQZex6SZ3CgZYBMhqIgqcTa+A4+tFKsWbVLY318Gaxa+Og1BWQrEz7YvVoBmvI/xOFm0Sh777dlxosjZ5QqfCm6+the6cqGx92b36eMEdP3TzCfcpkLlDXUpjcz2OK1gNBXQbTEyPus8UMgxDWWHfPGZlUCH0F1n3681nggsFII+IYUXbfv9fCf2cf2MFcdn7T2O4yPEhAOE2rcDqbIQTywqsB6h16m7vHjpgmWRqu5UohpQE4xcJNG/VFnAuLn4O/CaSMe4MjiFWTMSJGa9R7nsYc5PCQooQJgP0OxuFM07aoarHHExy232CGVpGD6IQBaFYCIofmsgmx6u/0N96SWwjakM4weDPBCKBS2pnoKDvKzSdU2dttVbpy1j+6iNbQsjBCRRuBcDf7sD0OVKHRYyjfMUD6XvX2rWgKhb5t+rEDQsKXh2CAxtGeRIDdvFaQUqommm7nHXbCysfhNuBOLTPrm8pQ4lw/AJSTcb2zKjSC4Thq5+3RKPSVWgqD06ESee88nF+dZh4EVUT18OvEdm8gPv/3s2QVz0bXdV6loANwW1RlKULoL6mZvwJJCsPCvrW4m2o1WxwdN5tmBa3XYE5/XDdmf+Q8ZieBkff2npCOJPGUTRkoGIRLtcsASkgZTV7MvUWWyo918Kb8IS66i7lgtnN32KWhFeQMBKQ4+dXM6OJjSZo8+RaoEVXaEkzoNMWg/i0a0dtuiECdrTQxeusO40pS6HPVClpV/YgpVzZYKxMhhS8Ql962FDPDf93rX/Tvtbdifxb1e1Giqq1dISXu/kOEc+RS23UpZXT155Q8Pd+Sg8bqz+Jtu6qv0czqrH74K+z3i7CsPd6VVdijnm03o9xJWPwDlkIdShYil/l6tZNdmegKa9MPdfa6fTeMYl7qqdRthI9LfJBj7KhBWGVTVPr/g2ZTDwgKcZSQCl5RrpkzzRG+AwSgJWWhtytyYNVFUzpwzveCiND+KOwFEr7a6nNwyekRIGl4VSVjNB6vorglmOSmUw27iPCfmq8B87V4JHUQ2iTHBX9K6SMfG7+S3Xy3nssSD5c1anCug+8jiEuR1oLIX0F7k1ZM6Jh14gD2hw+k+9qk07hipgR+BgqCnZDTNx8psVBzK6YGM7v27e6Ka7ZVqDHiWG8uWChgNS/X5+Mq7qdcbYVLbEG6MErbYZTmI5MrNnyr/Ydu8ohuolU3QazI5bhN86QgARNxiUbhSNhQzUkwdlXEXxbm30t+SuVYFn7FQ0kUfEM8L0iesuoD5ydNClPgi5AObhOYMdkoe3eiRZrGSS300wb3SnNUQSsgRBGqjTs/yb426Sw/ALbrqUaBrOUqQEuhIltR4tFk+YMRJBVzZ9bWphr8D0LdaUxwnqwLZ2Ty9ADZxoOlJ9OvZCdwlgwT/Z7mNqIRofUBGkaU6eg++waKmsQixBukY5Mki7rMjqpxA5uU/KsNdvXgbKFaWu65Pj0FAekXmU0QmDYKvfaMPc2gTcrTRBPx/Jgu+uLxcIjDBspcdVV2nOJliDaNoa2ML/i5vox3sx364191Q6HkXOoPJNtHls0nv1k+fGxg6Gc0d0fduWU/6xRakYC5k4gjUSqCT7dFxXO7y6cMlPTLJZLUPIAyj73/SOXc9tfeVQvxg2WaAKPmZiCng++5xk5BWOof/vD/68EE3KYWGH/8Vc8A7FY1cNLF+Jt3G7O+ibXzKmjJZEGV13AEV0nNV0crJ/UjxTWAyLKd6KcyM2x5oLqZsKrIGZ8DvXHPdns15iLBZZz0ylnYyl0u2qnazpADHvcyxN3nNDxAxkvq9SlD+jD89Zmo1WKxEgBN8PUAUNy2KkVskVOuSIlJbOjryFt4ulIsFJHFBVSchSToPCm1fqLQie7kwxJYbaIX8LQLObhqI9IghS8sqfb6xB7InpeAFfVYgFdjHOTcnOQ25W+eIOKWDxFCPQbGUm+WQUf53BBRk+M1A+2WZnOsUTtK0ORC3Jt270bF/VmtyNuw6hZTtjDwBno6BAtQ1jvclOSPjwUSkgw+ACtO094/dv9C8lCo9j+VYyqSWIn1z6QDmWkdmO8AEHP0nTapmRCYrTLk2sCpPZ08sjjXFjlBJOHVXsIofxSR0bTRtPn4KIECYf/s+Qzv7mTb9tSgx7WRwmB9/qKlUYYk75+j5aUnOaWIzgk0Ps6X8S0AJddMylf9P6wee/90J7jOOb7Sv7EQJ1DOMeH3weOz0qSgzbVLyq7bQyxh875uCyfl2mdgPZOhh4/bFamDjbvn03jmlCzkYgAS9gewcIe0oNtNpMUjvZNbHFpf2X2CRN6pEIlAp5/s/f3IZqwKZ7WhJoA+etS6LxgqNz0oQCmxCJ+JdTu+pNMB/zyFg7NCNQBs1RPz1WOXM8fA00hr5EiW//wrZ+DNdlhFSTtHa8bJ9UKQTJcRZAtY9K57RKC4j5LDB8T4t6nBHUABYZL3gvbe+VkTjX3Yo9oUdwcDDTNhczz8pJ8C+WMnDAP53m7nd6jsYVP9YcgsquD/E/NSixT8wIQOJoQup/R2Kk/ly7KXEcJ9M9pIxLasR1GWwni92fXldEUnmd53/u0qZiNNR/g8J5hN8r6bxahA4MEbPqTlHVQlpKE1KlSdErxbP5EgNAL9Mk/fC1CACnnK/8yEAv+c+mNDx/EoXPTivehe/qMF65xbvV5MRWmKen24laDCkkG/ardC2vT6/n924HhEuIMu6Fhq3p+1KKW1EdwE8PfN6eGCRKUM5tIu91BZsl0wUeigSEQdRCanVSN9jfO+IBbBQXLAetWCxIvlrCarmpJnTwLwXj6LRJtcu88ncfFLBuxLmlMO3a9gsmMxMu9dbUWIL7lecZHGIL6xKe+gz70svF7kosqXP4IWNs6i2xY4rOSIC4Cc8L1+dIH/ZuRv7dqk6XgQDWlGaFxUDIPp+HmDjZVLth1/TUR9vc9ujrlkjGlF/qqbqf1rs8CfrrtzHHQck4xi8klSv4tmRU3x7ydZFyHlez5o9NyybMdvwEq4w+Kf7eYpy2rGHeOUsycelkhYtk+D19xSH1D1Vy+iqA+a2KuDejMzcfGkDWq+mz1CpOH4WbPFpXReXC5W3pVoa5K4cBPb3cMCj46upFXadnkE/zXzY2l4eCMZB/n7oBfc6SuDkuqfV8TuVVSe/QHrlhKu/XlpVUcPuvnWL4do7cf1ktgnYspnAFBgDt19H4MDvHr8ft2cv/GmFEHE266DujeKe/wzvbxN0tqEm7Odv6n6vmuIvLYw5G7ctzE5yv/Q/mypeGh0nme5K+zLB+B/B3ouECxXMHnljajdklWUdvWCJmt8xPqg0L6CuiBV5HAQ0em0G4MOEJ4DebTi3k4xqIEcOKJlyqiV4T7tqoNlDYvTsJSPP8dFOchKfEmzrmtLFh0K9Bi2I/x2N3ZZ7JwVk1+wI/gYAs65yX8igYXsLVMKWWP0l1z5oNbrdkdDsI2XhbB437fNVI7rTazPWb6uB8Qa+EsWtiLYVaxlT8A9mRpKMOdpvPNuiM5IJAGJq4OmqIco22rYhIIeQE6ZifsReVP4B/bGGWxPTNKV/kM0uqrMg15Kn0pwCnecBE3g9KmSctrWB9UTBjNCONHZnPWBd/x7SD+auqOPVT3ckfhSJQjGUrHldLFijhXC1JOO4XTPE3JIjP3H/4M+PS8DwpslSVsecGdHE+/r2LzVKiVWVGwuEZLf0ou1RiJTm2QHrlTuo915/7zVSBLqmYGDgjSHFFFOWj6vDWncSGd7F60980pZnTtDiW1iQqmVTBkeX6aFadsRbVS/bYOmgw/RYpp7EjGKU6YW3NILIBXILfOQHqY3XPwEMimNssMgFb4FacekRQ8xmpS201O8JyNE3Lpcgu+C7U4JtC5hlw7SU8KIbesr80EjGbvDIv3i6A4wS91UTDxdQvLNWSLgG43xhsdiRYZkU7Cm9xPooD3amzCRdQc6r8StPPYwzyG0g3LYh59iVc3QuV3dNNu26ZljcYij5N8qs5WNIOYW4M1nzcyd/FyFdw3yI/aC0rmnxq77xl0dJnD7WhIkWH2v4GlW2T0qOkQwh8yUYhj+qfX++UYsMs+wo+XxN8OxlevTZE/cQ332/mEVKqGEpAU9stg4fwnEO9yxPXbz17HeKfpQDrK/Y0744PU9dM4ZZFCqovGrUZSJuS9oJhYMwhiM1Nz+k+fyQryJ8kvvUJ20uI2Oa3zPBMWRDl7RBXK7yfwoECJehhfCqEMcDcOtOqK7BIKYWasgipWFE0X3NICipKr3FdnPxLVVMVyojepvwxCu/C5ffpcIDG2TNN9CSj4G9qMVGygi5mDGHPKNJG3py0QygcQLYhQ8CFq+TMcJaoItq1vlZ+0Tvug4Em5vbTnIteW0kYrlh1gQOy+w2ktqyBrJW425dfVuBF6boRldtEJhIuF6gzFPvqy0Xnu+YJioOPCSKaeiz2d41y3jUtiruwJur5KrPFhJzkUQdsbmRIQiJk8L3fObakFcJFKKEKmKLlCHHgnRsFrB9lw/s
Variant 0
DifficultyLevel
497
Question
Brian drew a shape.
Angle B measures 235°.
What is the size of angle A?
Worked Solution
One full rotation = 360°
|
|
Angle A |
= 360° − 235° |
|
= 125° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Brian drew a shape.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/06/RAPH13-q1.svg 350 indent vpad
Angle B measures 235°.
What is the size of angle A?
|
workedSolution | One full rotation = 360$\degree$
| | |
| --------------------: | -------------- |
| Angle A | \= 360$\degree$ $-$ 235$\degree$ |
| | \= 125$\degree$ |
|
correctAnswer | |
Answers
U2FsdGVkX1+WVbAXtKM0nsaSRKOSk4XgmZeqFo5ZxcXqnGeABcYG88S5rwSHu8faLIO1Td+QlVR6EIV6D84o9C5rsXjk3p5XZM9mzxDnY0KPlyofg/Z62sKwhmlGSNPFJ0/pB3xNNgOPX0cxAgMPfViep9UmXXUVF7O2lZc222VXs59DZaf11totn9OsyS3q93mESYrT6/dH1KYxsiZ1kgOVW4hAFoiTCMNvsV5fU48+rKVhvBYvarTV5lLX2UowWcbts+l+XPSzxg3w3jzfRl0uJux/n0S3D23gxyA7cVslwtH0tQGxMBDMpxRL8uOiULkjwSlnIefMMznQBHXuOWv5xsuT19aAk1dJ22VJIClaEs2K/T8Cj/SxVRUpY+NzvGBEGB4m+l4BtFz9WqW+1SmwvMgMK57Ee3d5MfckBI0PYTG5ylcrpd/JAAQwy0SUAFd9TlDZaPAgiNVkvx2DGoY2cNtYzKBB/YrAdQU4Nwrpj41bbENDnfdPT5URYrZmitmJDfTMrxJrkEcqvP3s5Rf1KcY8F2VaBh9SqGqD2V6n28ohFH9ALDml3OorkBaf34nVtCUixU0BePFHMgOuH/SsJs+DABWqShCRR0wQ73bwFu0aS/cqwGdf/IVn3EHIdr78dBL0VTDVOnxNqSGlarzP9+c/k2VW0JkAOOd/hEX+1XpUthP4NDfgzVoevgL+RIH3olGbu1V1Ei5i6e/8zy7e/d9TXX9UrGtgNFwibe97zmp8VQWZsDAIA4IvJVGKx32TFVlTFX9qoHiBFzVYmsvrl9HMOP/4csmYKnUvFdDJmRO42xhpJadb+f5hLIZj0bjp3Mp5eYD/iF4hTKZisMcWhOYffuD7GUSC7e15yRjroGQMHhwLhmtezwcEuHqxCbXSxw/I5GWwIf8yfg46QPCQOfyhAn9ljAqzG8dXFTXkn8hvxfIo98IVSHe+/5bgBnkzN61NCZly8iwHCH4t/xipW2BNrLpzOu9QGY5R62CwE0gVP6Az0CZEfSh3sdgHJoM8tiUQNBnqolUQ7h7gaLRAGJOqNop8eQ8bArV4tCHll4g2rs7d/1JedXJoEc3Y9pwb+0Kh1GzfN933r9HdBunEUUljmVCxcBbep6pNKBG/+plpxf6fgITOvMYJegWgYjfgueh9S3WZrrT4Gu1YkwX1N3udYz2Sf2+zzL6n2/heuzj+1jRaCvB5YQ00WWaSSl8AtPeRAsWyM6f6NIhNdAn9iREJhby/S0Au3cXraDzvTITPSgpsTZ4IIMlEHaj4gPg4Iet7T+DzZs4o6oy3//pBIol9bFAffG5Msphk1ukkp1ZoFYoBQ83Xw7Ffaw3CL+GJ1dkYEIQmQ5648698n5i5WDcFw3t0utDwOeCdlr1Da3KV8Ch8PcK9grabDpd6Q+BL0rvOpsE+P2htWDTtVHxkNSz7JFMFRpwuGijX8kq6PnmmGbc/JrHDVOonA9TOdu7q2NXp0U1UMrxGOw17afKJyoCLQZ4CL0ik5ToNyUNOIWJ91UjEIs25H4aUIJz4hT4mjAby0KqjYW2NhQeu9ByjxRScnwmoiPVqp4U7Bs1ZabeGJ+Y+5IOcJqM7PwaQb0+1Ivl/BbVOmZ+Bd88f2v76KMF+z7P5ZPw+STU9yogD3BZORAjoJaosvYyJedx39H9057yjD/tl1uzXg17LCgY21OpNG5HYKTVx1VaYudovG2KDWVOccui4f1Gu8eYqAA+z8aW9dy4iE8BhsvUExHXj22r8QuNWA8CR4KyHVOFtOVLPt/BW4sbrPR3L7NMJKSXBZ9rBbpwk4yPtm82OQ/0NOSCwdXylvxse5I1BktnphIzzGV1as1lB3wSuirFzw8mv/3V0HkUneqZrw7jbM86MobYk9+MW6bSggZ2C68Dx0z3IaSM0o/PwGo1Zo3MURtTKjCWbe8rkKZ4uUVm6T/fVvdiqe5h8D0tq8Sx7wcnzREUmNWTdL1KYgalnO0SedPiHbUInhoz6bP718KKmpZ3xD8t/Ve9qy3rCAMJwRRUtyghiuWewr53BKq0JD2xnhJbWwb6pISeO4q8+eubx/hBePRWKV/GLsxzbrpmqNgCHASnx3IJ4NO9o2tEHppyTKwLesmAi17LHmEP9ppa614jBX8CNEXQbjCuLu6WozzoQaE2aq/nTT1dhVma4HoVjvSUlStOU4/pXo92hn/I+Twh72c4sdJETYLBgismqOzwODJymhuIfvg5PDWJ7DJe97HAWmpNaGMndS8ckN8jVdUO5ls01Rw2qyQbYp2ASbMgtX3lKgPh5LTZRZrCV4vbfLt9WBSuujB3Apa7CaIfFEkJr7PWe3enctMzXJecP8ZMZdCOJSse2svvqNqw9y79MNoxMmVkvyWwhBAZOXa+zonc7KtNHfdLUFW4/WVni40HPBwnoSzzVmCc3HQnRAbFiJysGaWmLI79JFrAW0fzAJMWLzVYBY0BGbFZwbtWg8MrddXJbEIUngM1HSiK8oa2OqqYzUWrasHWLyuIcM2iCFe5kPOw8opyxciXJypg1gBFoNIEzcgy8jvWHFTtJjqsQ0HfINfG1B/ZbgAx6zhp7Glzo+y5shxgRmGPkx3fASXdJdmau8Vi+mPDaxvTxHK0t6iMu6OhQsw0K64Uqu5SFqS8QdpyHcPCcnyBpSfxiOAh6N2r0cAnNVql2DZyehpypQo1PqqnDdc9gUt6DXj0mreW+grkUgPrwgzJ/y1kTGShdJ00Iz6eZmQlikQPahz2jpGLKBYXydg5IO40o3OPE++QNMeLwY9gWsJfakL6q3slzpcukk+w15lRfszBg2pQkH0oHyRL//8WIeJRakkr+UVSLpqiCbuJBFKiTblAwLQkZ9g/8LCYJAHYKN9I1FuVrgnheffgvK5N3lZmDpNe2b1RWH06gZ8sjyK9eSIS1wnjTdTGJM+y1CqiAoR6YKJ/+z1RrZT342M5pqlw83TqzRaN2EkVfKC9SYnOgsPZ6M56e8rEiAlUMWeLZp5mja17TtW6HuJ/dOZ7v1s8CfUpQEdvyTyOqjH7i9ZAN9oSpD7xco4GfzK7B1GWWrZ/j26eSk4+aemryE6kuBBDeikcSGo4wAUeHV4jlFu7Wvm3aw96d4KUpZbogs5Cbcotp5rsDwPgnce0KZHI6JFwkoI+CypySekO/ICqjZ/1l4t17SpcbmNwxpoMTbxosmz0jCFSCpzDlXNcnvvfBu0sn1mrs3aRLpPQGJ/HHD/+ruyc3fiMzHaXF4SZjn1rzu8U/AlRZNICqMQh00/bbLhKL16HSUC/SW7HDwEJz2klUFMlEoHCYlf1T/L8VIwfG/P/H22+dv1sf1HJ/pA6NC3TLWBSnfbLa3Ok/6MvNQJqbPLccmqQOYzH8FV+MD/qOx6EwpciMvcejMIq7YDZF7vfFzGuslTf8CzS+VMdONitzpMp8gSbHARQE02lWl07qwIbWwQykPl7olhrsGsPXv7SlC0pUEIF5gJAWrDY3A/2cTqLZKyvanaPJ8BzKPKXJgc20b1lnsNw4z2InP0vZ/1/gXy41yyppGrZ4cBwuSwRKmGgU4kz9U2BuHa16rQEt9F87b8qcqVYlapRqRnNCVZK4Fo4SOsks2wS8+3JtsisIcK+PDZdq73hQ/iM2oMILte2nkVJdnpHQIakT/weXJQj3As0wqeXfxcywoy+DqJF6xff8ueILK6EzOdu+vxrBriS4dv4e8Og84LnzxwTRHF+fe+Iyg1qDGNOy6C2qrIQkUNj/fECb3PN1V5SdhpbTekhczGGnrFcSmugu6vTK1wU9sgO43c8rpCYD0p3xdVoFHgE7DkNuzhl955eSyxXPxECPE6RrD3q/29LeQC0rc0jnjAFd+cta4yK45nf13yMqPU20bu/pRcsTANkeicz7d0f/O2Lk/SBHs/ck05D0C37siJEWVQELlB9VCLoOoXs1jKlT/KxivSi363wQl+WwAk3rK/vOGI21H4y2TBfo6VazKIftx28ASmACydPeAvMUyu/34Vy7ckwV+vxF9Nvy8mmp8c7g+Ge08H8lX8L7WhzkAKRdg7hvyptroDEWecmfvOsTguddSWMMjG17fWt+X1wTzFImq0GesdZiPr/35yGYzUo97fr9M7MoElMNHrPusTTJIFjlqz+yBRdIby1oyuooVlM/tQufJysr0TKaKCgCGAWb4GqpVyjWsQUAr7z4LqbJ2JLR3k6vYtayf2M7QeE0vvRdNfCvkH6WVp7Dok7StBNUXrS6Ad2gCBWybVfdbuvMicN1cJjPXgHGfhZUMul2DmGmA4Etb0DwzPl0TLm8uPPdvVGErHAS4pshh8fqkEWNl1IdrJW8I8ZBBB7sxBjvXbO1BQv31FiDLVIE99JCKzA3w2Dt1bcXpBhBaa88aHIg+CDizGkREHSB1GQqIUP8btUj3kQg3xQBhsOWwfVvbT/+ZjaSsyrPSAtpg9ItU5Va5ULwygtFaXvjsN6V2um65G3Ms+YKx3BqZZdsXrEt2RT+CGlyt8spNt4DoTBA10tsxW2NRXulfEatlr9zWuuLX5UXJExA3nmt9w813UUNXr7ub0iPQhkfcgpeHfP/RcAUQkmbsKOtpra5wQiEVe2bKx2+R4nUsLfQ8puZULby3x+uj6kXsDInBQEz4GdJgvR0CZGaYVvLrdsL3sCvShRQINtsYV/4jUixTUgy++oV+OPr8XuQqntxCuPIPAVVmAT6qiAoaZPI9M6Au5Epx6oOP81HNErg7UBi74Tz5W6+a7smGhJ0kbiuFLLybavRSRV5ZodD/neuljKQlX7Bp0vlrDkd2xVWnUBNPYMkmcSwtnl9D71MCj5ElGKIH5tfzX3ss0zwC9fTWBxmAcLpXx9QwAtzGbvFVi5C6ZYkLVId+icFAaiQqshc9/g2IHOlDj8qx0eABdEB3oJVb2O6xuuMs5NRdwuiWksQBlCrPgSa3EnR6hK3ww7ABJTdYQtLyJQDkAZgXM29VrrKMvOAI+/lfbGxf6Kuw2SgsbhqyvboTM76b7FpLG+PLWttvCyWP73YeKLksrjsnhFHLdW8aj2sAP2UqmjI3IM1/msZh4Zh40vvuXopAWhfmBS6k24GfGCs4cqErWvQ0FwJzE4WqUkxOfw6dObK6CjGU/TJ3AFKI77ibpItzcukcNgPhGt2zSe2UL2iVAK9a2Vop+LQMd79I9tLXGGb2hDsko+BMOumym4RgHLIHzr2RVp+EdgKf9uZBfb5rQrSRKTUhhZfnh/ZFZDlcR6BtUBe2AUXlZM47PUi3u06HG+f0erzLdBEHDQ6UG1vQbMMF3BH3Zvke+HduzpCaO9aQvKNNx5wJaacH92kP5j91RVNkScLVzN4FLJ5F2GNAkaXt4icYT602ciWiQdBy/KN2Pm63nfhZK45mE3M+FbQNf87Ocg9RATwgOPwm3qREKC5/+zoVAIe66T7i/Lc7Uzvm6N6kp+dew7sgNqa7RbjtpH0w9OVu4r38QihOAttellXPyGsKuluIsyHSFSxLfRrszf0Dso7EiAHn/KP3YmVrIzZ8Az/qATq4gftsPOiHRPqxNottIXkTWIsDP7SIdgMtBLC2WHcPKHMa9EIa6K28Y5tHuua8WN2ImEDzecCcLT5dff6W049xUGpRkk0nOLoXaHWV40JiT672KrWfkhnfDG6CQ74IYjlykPJgqWx4rdQD3rbAXpTtGltFvIne0Ul2XbAUe0CSg0DB2w6STrTkZh5ZXa4+cRKNKT8QmqRi7oNKC1sHSahiGJhiam5euip1ge2Qn1X0NPkrPXaxq5gPStnzbtGTK5gvSr1qkGJQ9P2Dbn4FvrrI1HZc2ylGmmLU9w/jfWHtUefKQiwy1qonpVDz2SSMQgoe74ZptbirgTRKTqxA2fBrIwZDiM+ODStjMs8nyvzCYyinU6OJVcI45su/bFjQtd3iZem5ZXBf7j0n8BnFyflQCvI3TVNIB5lUgPJZwVhSI8OgnZZJdJ0JCDkDNzhy0/ErtHPVtNYrzFkgICY04rnwT2ZMoHOCw276eMs0WhtRkTONy9NDayauDSewcjCTzx4t6u6fMQtuqIBgwqwrAV/xsR1vZp1LgWnhb55wVEfUSpBbZhLvzgsQtKSx5eJEBQyMKZrZ8QUrLFjin1sSZ915SD0sAuRm0QJ79EJo47Eb3h5BoagbAnai8LaL2rcsSVBlfFs2ITSRjEgt1EG9+atM127NhSuGZY2NQuFM9Kqomnx7Hl8eAjSvzdc5d6BiFQD3Djy/oiAZrbsQpcaaESf8fvm3G2WtNtiwZFhtBP3LKvCdY+WdjzLmTjtthOpear2aErnTKonBKuqSYVire4Y5sNLI3jp7ciw/j/TVaXQIS52jzp9YTpMMTv49PsxHqCjAV/87hxtgVpT+E0SchPNM4rB81OlLG7Q+87RTJgaFFXh/3l53cvUyaYaoLQAuVYbsw8/olKFhrSWBmbdR6m0D6SI7hP21QOJg2RNFTPs84UZ92syJZWhKljqvx3jYfKma1PMRBl8zFpEKDBO+TT2PNatyZ2qN9A9KMjcY1xrrfd+83a1JKlO8yyClOOa3X8VqeMkgBdzjA/H15Q7jvZIyGWK27pspo2rnGK+CsrnwNMjFbRJPzSTheV46ozfquy12WKlmCr3MdCDd8+AXm1ki2zVpnwNss9/RTrQ/6AYl8JpfQIvTL3K+lnXvDOW6jRssENTpRmKC1HCMgVQKzeD09dRsengTRAbXSj3mCGGvkcORdZHRu4J3sB8zHy4gf5kyAIgc5TVJXB0ybIW2rT75y4NyTPPBd1lZR29iNmhPNyL84p3fYrxRB4Tuh5LYVLuiB9bOZfePk5pvlj/DE5uXaPUMgDnKYC/FyjuWicNtzSWac6HHRx1ldyayYWy6oFvdWI728A5kQEn8b0B0no58e0NHF2HYj2iKYSz2IY4IdQMAKN3HZS/OUc86P1lLYYBNcPFW1vF/fJPSB7ZuWvxGk+5rehZT/vsJP/Tlhw9b2fdRl1m7/LWHPUoPKZyFvVMqoUSQlU9QEYK+t1KQl36eiEdB3dLXoVXItm5cXzkM1NhQbYo4/orjgZrIYfcka4PSLI+Fxr35koTbK4NnNol290XzInuJGdUVZ4fYc7KwWS/Fsg+P0TSzETQFnm4irtJB/33tIHTWn32jgrPU/H5SfHYmQ3mbVuB2DnU9HW2KCgAt65H64kFP+PMx/jFmx0PPbblg5Mn4X72gcAoM144c5Y9Jq8z9KtQ7E9P9evISr9Co+rIW0FO8KFKAh7Ju/8xwjhRybjskrId5f9XUh1nNGHKNegt
Variant 1
DifficultyLevel
497
Question
A shape was drawn by Moby.
Angle R measures 147°.
What is the size of angle Q?
Worked Solution
One full rotation = 360°
|
|
Angle Q |
= 360° − 147° |
|
= 213° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A shape was drawn by Moby.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/06/RAPH13-q2.svg 250 indent vpad
Angle R measures 147°.
What is the size of angle Q?
|
workedSolution | One full rotation = 360$\degree$
| | |
| --------------------: | -------------- |
| Angle Q | \= 360$\degree$ $-$ 147$\degree$ |
| | \= 213$\degree$ |
|
correctAnswer | |
Answers