Algebra, NAPX-F4-NC21
Question
Pepper uses matchsticks to make a pattern of shapes, as shown in the table below.
The equation used to show the relationship between T and N is
Worked Solution
T increases by 6 each shape.
Consider T=6N−4 :
When N=1, T=6×1 − 4=2
When N=2, T=6×2 − 4=8
When N=3, T=6×3 − 4=14
∴ {{{correctAnswer}}} is correct
U2FsdGVkX196qJGhoVcQCr6Nnd3+rT/hfUlMymBgRJ/MSo5cy7vlkTt6V3AAWbELhCdmCHJZc9K9nknh4inS47Jq4BqGItqF1FdkjCKs6FtQu4I9prxzUDBq68p6zTMqbd8hqBdPEwDlxn0qhTTM0QWxr7L24A2x/t5NxIl2P00WqhP5UYl39FMl9Oo3vxbYAEfy8qr+Mc87QK3amCBO7ffOb0EO15W85lu/BJZeTqhPy1QNV7+P4WLmutk7PbY9nBjI+iL4+OjYhGZmt2XRI7veEz88uAMoLwmclyI17eY0fr+GSOAcw08iF7CiTi+WX44Y4oukXg7qx6Rlh4Y8yoB8W3aLgHs3Vz7jST4tNCp4WrhxFncvNmcLOVCyaClUbnfCq7lpDkgrgLZgl/YyY8J7mEzNcGCwbPXQGjFWacwdCfb0v8xmmNpkjPR6jEb17uVN/MAAUh38KnI2bxOF/P/RONezQZ/LCjhpvvjrfaiZIIKqv+rZFY/yR17sRmVVFPVGtghg4/LSJPxeOTUNIoE617845fOljbHOwvHjm9Bfg0HEWAXylpM5G4Z/RT3z4f6cT8mA3nOG8jLnjSDQ/A+fcIcE+4MDK7hPbxiEomN9dWEiQ3xFi48hsJSJHPLBexFRBeOIrKrEqq7zKIRZd0/N9W9Pv8VD6zlKVXq0CN8DXj3JStYJR6QCRW4f4SYlPW0tcli+/1OFX5sz9PM/5jagW3mpNTWSq6QX9/ePjatHgaIAHUk21P6bnvbNnj+H/rpTh3jRiU1zHHxFbhA4GQxANNKLyGm59R9cNNihWo4bdm6Hj5XtlIGc7OJx8ZTsr5z6esf8JXCkaGACNie+kwnReXp74qUHCttLkkO3EsvRW1zaLANhhWJlLdtETrhg9IxSOfWqfBqZi+wykvByPiTXyhAW3/LOSNalrxrsAlsDAapGNFsJW4zrOxYN2+VD0lMAUlDzTszjABvg8CHlUsGvxeyKkNO1wd8QOFOfT935rcskC0LVSL6X/Opt31D2wZGm0SzxJCOkTQIF9gzF/GrN+IVacipMg/mHyMnH+UFrcNeXqRaVC8i9Yf+/Ggr/a2IhNlp/Uv1ErIpCHdzHsLAJBEARNvq6NogDV7fAHOaQ17IvPtZSLLhY4DPcI8WqDdYy2Plj5zDL7Bc2Q970dYtB9L3mXwiObc0IhdcF5CMS1DC3xzhpmDjv6AyDBC07i4rbhLlFu8tuDL1+0CYH93cV+sTdm6buVPgMLOFMWx/wIwrzMeoGXgMLUY2FIXqlRxb1mcTsK//5PvQ/yOyISBIHYMsn13/T4JBbAdNjkZJGJ9MDaM83P0HXEd+o7q+VWGlFg9h3E6qjH9hlJKL8qTTVvDy7WaA9RxvsJ4MVF84midSxqfDu6yR/uiBsC+qwNZ8FgaQV3CxmQUlZbLIxScpFqYE8fHn+dJH8wV0FbqHFrnJilUX2e/XsYPCRS8aJpz6PfY8R3MtxqvuhSgsdCc4igIQ3EsSXkKUxcRg2v1gnjenS9z+BhOdn6iASD116QcCK5eUfVQF5V+l0t9zSjgCIAYMEmw2LayNIz/Igz9qwmGGR9FFycFIDYbuFO5XT7+p4Yj4p6enVusoSFES7eLr9AgXtDR8KSBkDQZgRp9no3l1t+lFyl196Dd1RXrMkev3GAKsHr7mpqZ3Xg1QL3C8LGm8FEapBqINhSHaPH47QK8tI9cS41KX57A+O9bPIizymhg3e+asDTJBPZKBWcjuw3V1aRwsA0vZux+dW0DsmhYM1SMiybaQ8O0HZLJrGCcw/nGo7alYTZ8Wx/Yj6+lfIa8oVCb3F1PFw+75tQSSbdY3rx1KkXQojIgvneNP9/Yq4L+4BtM3VKBzhB8riR5UOg2PasLB8RTXdYiDKy6n8QUkHd0j6MerDbV3Fz/+WIZuU6ngFi8wfelPQ/8SDi2f3rh0iIeILhGHHJu34GgTZlp0zJO0s1iOLmmAIwQqCqCJmMtnMJ69R9y9L1BRmgyQmhMp/ON3M5wXDkzkcb3cZLBlWoRlZMXj8HdMZBKiNpgl8AZtMVBXzlJLKPhMCYgYEhp0Dg4wD2JKnfoBklINxbcylHEnHYtaYsSr6L71kC/6b0CbRy4OpKFoAb2Xa6so+Co0p/e7YQKHww71c6EVna3VzcmDd9aC5H+3D5b0s9G/HUTmrF9rKIdC+1AAOXFsGkkYZkyoA4U63M8LvEHJwAr0dTLD39JAkgocE3f5M6bKmSe/XjfRwvF+8HL6BAL+acBMLA4zUP1YeIfgh0Meqv0+Gdn0/GegFy7Ua/4NUOPaIZgrtG3juDBasFZiyeSVz2fst+jFlce0oeVg6ZJA8t2MDBwdtsU0zpqcInC8nHHCrWvYZIhfJ1NXXiJRsIuBjOWqkDcW4Iw8d5XM83nbk8OFXZPVbt22j7k2oT8LKozRLUW/26wvaNJhRT5bPoezveOMHJ1xqV5+eJ6ubEvNep2qBydTQswUflbanO54tRoxnil7RJrLHJKzJklHpFdlTfzX+Ne3QtCJ9hJsdIRasbq+Ztoq9Anq2AIc0worzgRxitiS4fU2EdbC6YDnrLqwlCrMuKjoiglp45jSOFgUr4xVioeYTqNOWolnrNZL1gWDi3te0yMM/4dM/unogE1bxqRaX2qnObU6eEK0j7CHkU3FNDBZW2oODjziZ+RsUGa1M2VlCTODZFo6i938zaqoTqszXMaX8XKYl+29yMlX4SQnVuDeZeZArnQITK6H45saU/elbgn2ZDsORyEFjH8p33qngBVpL3UehwUhURpEZwowE1Ab8W8d1SQs1cZ+apWPqo2XXznYIrOsBtrbsQfnVIZO7DMpnvhWbKbB9QxsEQDvSzuATQhR+dPD6kThQT/LeynNE92PrUNr/i+spYq0PB78BfO9v4xe8r5+gvv9Dzr7YMjyU2EJeFrXalMraGldVxPDzCmntHDQfZt0HOfAlo84MAiWtt5mwbZtKfsbe9vT4vKh9Jm7XxGj7hbry9+CayHJkL+T1djxXv0PzsGjZ6ZZ36ifMzNp33vzrLHk7XVO/BVJnAzaIRBRvlYL5fE/VSzJEfxCrdSsBMCK9jNeWTGflKJp6PIkZbcrEskFNy9HnvWD3RNXfl8rke3Lcs4FEdo5slwYj2+le7a4Nmb24/51pIlZpLzIkYq71cqDpbE301NPtXad2H6Va/1KyMlX0dGqabfDR/54PgdWQ34mll82+ljfJQhAIcSGNfUuaWvxkHhx3eHmzMpV+6bjHKEe43Si1DT/rKnVJpQVMEOI/Gmz4PdwxVLWZq1v02YXUjtXaBaaqudoPjlwTM4tbnZWMXewQAkv5twk+RW5lI/t1wC/NI+qQmYvMAfp0/C4nUkEpb+6lRfS4iiAkwmMl1EjXk74XT9oprhWZTPpPX/nomwl7bWhjgQq+ZYWhQ5Am0mIiRFgez0AulcR+W5u4T3qJMC6tgx1Ct4c7AnxI8CRLEPbX2cVWeVaFaMWZRv6WpysZ0GfKQ0U/PE8ZZTj9e0Oe+9JGhog+YwErSyAe69d0eh0/2jcMVyJW6qQqOQEKlYgs3rsYHJ12ScnngHeuhwad+apU4bts2kRoyEDZgs4IF8PV1Dg/63dx+mAqyR8iE633EjVqAdst/DZUEv3U+u71tF1llvZGPa/9hAogPMyyEqQ7F659jUBo1DtIkR75opXe/M0R3/zWwxHNCtxT20KacFzhUl3LetuTPlE34CQTaKKKo+uwJHCalPqTXoP0qPrr5F3Ptozj0npHvHS0NY+duMK4X01gljGwqcxMzzezpIqfndDoUtlaUpwYz/pjB+yLOPNPEU0/RAatdMovG77N52tCqNVvO8Z6dPKMkUNY8nkrSZnY6I5oTVOtNMOmV36XFmPt5QJ2j9gJDSZqPBW/SsJZFi2vqus9L72jpw8753WEVYV8kl3x36ZDkTaRFzbebXLFJ7tSjAZRrdYRspmA8fKybOMfkYDZA9PVBzpqYVLm6krVHG7+gjdk9rt1uBSE4us7PWCYIsRAKmE2cMP6NlD6657mZGlQItd5rJzaxvtV9cFgjvqo5/lcdyA8bTQeot/motnsbJ5n/yze3XgKr19kKa6PCMOrv0PtajDVOkojkgHonycRqEPN0Y7MBJ4d8rGB/4yRXFTFtq1iSEqQTV8aJDlThVogKneMNzQdn8tVKk0EANvyldIIn/dNKPNEN27CxXNj81XYyQsBtlFSsftoeBvvdI6NiUyitfWx7XKqEqw5ZGc2Jfa0xJu/kYqNE1uONYIWgn3TlKZmlNzBNtcNtY2qzcJKnkgl8E6n7tSIb+lgvaQZvmIEg9iDiZffh5dTALMc7d6TXfQ5H8muWfFfpdQi4VFUV+c11iBSWYAgyHcB8nUu1tpH5Zak/6QyNX18QC6a1n1ti4OmKGLC5SMUXTBdsAWGYqsz5+wzoXFuDNttPPP2ymX0dOBNs88W/5iGG08AUbMlOEYEZV68jCzLTFM00qZcNfEvhATgF+YdOwvNPtvlIfMfMd9NDeV3RFBeud+FJUm0GSGXSgHpKodQFis5G6veU4pVlZ7tqIHcl03kB8dUm5UDSI5ajF75owBCoch0C0dTvc7pT69uRlAap2RmNaRdetot2KvBBD4TiB80/vnmgstUtJGFdl0+gMt8vbFGnUSenc+6HumtUZpdap5kSbHLOh3etXU09heFuNwSkUKcU6H3cRBWqFcechG6tYPmcnZeyNEOw2Jr0Y8woBDIqhhb/F2iuEmSzo9TGwo8oRFwb9C2Y3epnFzlTALLi2VtbS6WVSULYSmJHbg3XEpywZdB4HhAe1n6kw8bWWaKEL718K/fxb53CBxc1GFMgS5BYDcNFxFkMSR6rGKm/86wF4x3dl9Xgfb7i60K6t4ZlabLJZrQr5pqAupojuGIbA+url6PaW4GHstAUBa4QUzxQshlOZFxXCvORp6AN93iNSp6CZI6DTSW9mokX3AZWDsg3tQzAsnE3bnGbDBmnEXZKKihWArYwbauZ4TBeBrofWyUHWAXnobqvGbK5XTgNGsc7E7Mc2TTOnQV/+GlaDt+9gaoLJzt1oUwZjG+Hh/fHIrwJb03vdcTcJZ8z3qioF9Ax/L/y1pjmpSdFsfUbvyZ4bQCtb/bPEhi7lOdMaxtJKHTDmzFsBgQ1/Lfm6C8nQ4udjs27OZ4p8LiH0au3uMQ9sMhbMIWfkO+By/sBWjMollqZ4fluK2/MNkHBuqmv078LLGHBcPaE5irsRPbZFlIHXQple3kWJkpvkcyuuVg94CeVD8eq9ybYrnI9NL9ET8+rAEWN+wXOGAo6tLT9AF88gykYdGqnQuXh9Eyn2OwvRRfFhKS+PfthkZfGHVP0VfsAwtmmXwpe8Gwefe6vkSocqS3nTQiOMuBRgmEL8dhTP4hw0E3m0dPJ07toR0ajrIrM1gs7rTKgtc6rviH8U5PPZupP8A9YV5JJ25pSJMnO1YeYR4Ac7Gghm6KH9ZuRoyWUGLPIduvWUW8hmhuVdwOTOi19qdleW/g8U7quNJdCYbWW66/SOJmjJB02lppMX93Sls81chAJuX1kvFTZgIkBu+owP0kaSEE5J5VJuhUY52oDQVvWT9ROT5rl+1B36ndhetnP5xDeDZbecG94XzRXQ2eXF+sVyYi55zWrUKfQStOLqscMACm2Zm7ol4tFNUqfC7/G76zsqG18dgHr/YkmJSf/l2SYg4iQcrF79ZmENcC9+c6P0oLPtIh+qvrhQ8M5Hkrnrh6IRWP6inC48jVXCgKP0GDcaiZIKpYh2BORIEQNY7e4UNlns7BzyEkVpJwSUN3jMITH03qPgWh6QddmeRu502v5sfm9ECov/G3dfvgHMVuQApvzWXjhoBXvNUH6E4eZWdLMIG8VE4WMTS82fdTouU0q+U19oQbl8fpiTeVTo7K13GiSJ5T3J7O9jsmU5peGUes3yyKXaIABxxOz8TcfN347fdzGAoSzYmJQoUAzR30X5xfngxbF62wjqWOMbsBf4HcG8SVGOc2uA9tf7r+A0ttsI4B4oQjic8EnzSU1C+WYqYyxiNy+HZ48kemOLkBlWMmZmK4SPzmtcgidwYCHYX75HlPkDhzCvwqHqC9oSrCVDdg+ICkfBoKSFqpAKXVsisbeJUxLXkIA69gh5LJtPePa801X/EyXrVW+CZsiYrxXEXKjQKQRDMkGCidsAB6v/Q7a9HEJys17OfiFe8065ZbkwyosjXWnlFo3lLCdJBIx8IV/qlqKMrT6uYuXlcR6XLxEOrnbl880E5FVwP715vjaadt5/BFUQJulUmmUsESH4lKGMeuuEwog4ucT6RHFdvavoL7bezf0ZdO6luL9cWMTMuU6Yt+SQ6zlMLMqg5VLzzlFnVS0ZVKmHFXPoCcs8ueHPp8NdP7HKDzZATAZNMMZR3tQK/x/0kXGuQzCruCSFTkHK+SXHyMA3PVLYtRYS90i81iH9oBL/ZunGMG4p6HicDlM3T9vP70keEv8hrEGRRmC4cY+0kVdVbAPz1KN69PDfWlxuoEp7qSDWfyIO1XGniCJOdBdKzT0GoU2cZiC5feb6ABBSFVEK6y9Z2HZ4L0a+S1w5ID5Lkg47BKyVWpCPgG4F+Kk/9Nb7mP14KNBff5dpXEZlsjDX1EHGdnTZ1IAKQVJYKRKpHdnY8Zp4tPY7AF4/96D23BPDoBL60J2mMcqbr5BdK64tIK9AZeSS1uNfOyaLU6IO+jioXmdJCh7F6U1ZxMpNOz+g1ANhABTrZ7do+9OYBoDFupu/uPGnT2UvcXXWZaRWi2gbkyx5i4N+3wC+1Sz1WnGkPtFFtgGR1+ylKdPZ5zaLVZGt/m9+Mv/uaws4nVPZ6kPDrAS44BJScY6IWnJ2hcu3o4dwKd4JjsWmUQLtcIykj55guojp2iOLlvxlNCLmKeG5il4EkkMWoBcXDqBMsxi4giSsUXgvJZPcezOl3Gm0mve9uhHwCQZxxBpsi1zquVQrlwJZm9d40ZcouZhtMPRiIbLISKorLFPmvXLF/KDW7DPviCf9d0h3lwqM1SyMTmApuAN44maE4zoCkLWob29KXSSPpwGsaZr8Np0wd2yPrAAUiEQYbhB8Qtxas4s4u3qZA+fCxI2nnYXrbO1XNvYcFheDD4ZJwuji/AD2UqXXll9lE0CTzL+dizL7cRVeSIEAHy41W7i5hvhtFBdqUSvjy2FK2lFYlVzFEWpVy9I1FXLsq+Xuy2OqRIskyHU2XRx7KX3U6TjAf9/dgd2S43crdK8uhUoEO1hKm8KSDfqZmJrM+ZTXhfUhBSoGCGHIObCAFWUMPHDLc6+bDVxgobNdgy8N3L9l7BoJyKtb4qTT0HYfzKOt8ePegH7OXkljaSy4AOvPtTBYdAT8LMSzVD+oWwsHVGJiNywTYDV6N5+IgOn4uRJPOsBJT9CpjBWq/bIxDGz9SXSwBLsDgC2DyUXmkOk0RvazZNe0yTRO8B3iUm06iJ4LeAKx8GmBsXND/xCKHvy9xmNWwef4cjC/CAnorv1bH/P29tJKUH6j9C9okel/OYQnSqsjy/bcDxDUniLFzU4Ue1E4milblawN3yEr0AkXllY2efwshNfopqxnegPWF5VaRSJMsq1b0KdWsSRUzKHVMUY1Zri3JF8e9n2BkkoWP8vlmI82+j28KsN22xSVK85euj6+420tTpaJmqD16niiZf6aAtsJA5W9cEy44UjIBm5fdAQW4WlFdv9B+RVSKkQAinzUzzU0uTyVdb+uQfn/BYyctq1Afq79Mn4xrDlWsSph7+pexjFd7LeTJZZJAIuzHpaUJD2oLkDV8/Mo0eIojWxQyPJalqPDi/1S2pw9GEslxELxVxGUjSRtH7oi5kW7qLrJz4usv9D6kiGLa0VtoR5xrzx2sW/QZ+inIafhvcpy/broPPPDqiUyg1Mc/ANnxFvzRd8t//KSx8uSP/NRmrHZCKTPw0CHwjQ6AkOSU1D97M4UJHy8fK5ZlKSJxlGCNkvsfwlevBDC+OZdN1AEOdOobuMu9Wzd0489A2LjtXpn4Cz1mHb6/RxMSStiZSvjJU59b+BZST5Zfi5V8N3kYd5VcpS+Q4NfAtbh8ZiJS1esMY1dhY4AYTuRNOHx5GmtMQhCH3a7G5Uezji0sYEqL59JfkuXYt7Qk0gKV+vGgHHTnaK4hC/BU8uWBY4MAIuXhqQwzGMMznydTasiBKQTvYm3fxX7qpbBQF2ozSTGNUyDcNAo7lvYi9w4Mget2rnzBzCdBfN9PTEkWlXhCfO2OWIsllW18x6tN1WlGeV5Vq9ftrGArxfZjIPt9AdX/DIeZ/Mqr/azV+cH2rxI7OVWZz/DTAw/Mhx/VP8q2ER5iOeo2J/BM3q1/cxt4YKXtFuYxPf3UP86PAFFeXusHKjM0DGD3uMkGOq60J3xhAMKw4prN01UiFl+id5zx/MK+SbVh457RFHCKDUQd7ph0tFCiBlh+zPHjhld++BcNCaGHlugJD1Hda6vbxleqVnZImkkFLgNGsYT6Br1EWsMOe8xbzV93EGRZYy4kdbo6D36f/G1ztsShqlyMBP+BXxFK7lrLS662UTGDc27sxPI0+M/wpyP5gmDecU99my/4lGCihIcgQZSztE7rYVpx5N8AUOSXlBbYSfKpqncte+p27ER82USbdE+cW8+dp56uOR2oiHQ2SLzMFV0H62W1qWXouUHdyz23ZWrFSJ07QE3wGjnDegl1E5gaQXG1RCDahQsITsAFm6iw76H1Vz7x/OCElgOOI+1NTV5Aksh4OuH0UQZw5QNr+dPeuHCtxnjDdQ7zLKLUhIktgTa1T6J71Bl1+vQ3GiZnuerr1zC7ibkcw9TPhwOm3ArVh8egsygidpB+ykdCjRrmPPhAKb7U5qrjrBmNUEb9oV8mQ11KI+tBRj5FqiwidK/OXSLGHaV9sPBwwT2ZOfHNLY0R41v3jI8BZse3+Lypy5jleldDddQoFOyfn0O3QhUJ1OHskn4Lm2hqiigRDITvox3NKrOlbg/sDbOGg14bALzqGYt/nPI2knOZaWGGdmGXzb33WljoZpSVLMQoZkU8HYbV5n2jOtxmt0UHn9UQ5pcR+LioAKJqMCNGuQ33WblfZaeFiwB8fCPCL19pl6g6vMV9guUGqCnwCltJ5POo08+8yI1K1XguHBOwQhz1Q11Vk2xkihaXqOhY1iU9m4X8dxkqY5VtvifkW3TjCQ2+MPIe2Id/vY++H/TU8kyiDH0NlN7RKVyccwVnETp0mGnu/uGGyEWZkpPglryCM7lbDQj3lzBIbn1fqzDc6SjtRQPTugn1EQpYYsFsA0hiXiA6cP0BTcmEPFf6HhUiaUU9/SttzaiM5GGwU8deYcKyzogSuy/icBRAfm6Sa6kXd86bdvH8FAMZ0uyrzEr1X1kk8jjVpJ5X39+Ux59bnJOesrO4I3gGJsS4mL5ks6JT0lDdiOzkqju8KZy2zj0fTFsbrZx44LniPc3TzmkQogcXtejlUjVZ0bOQ5xqzRIJ8+AeVIJ3dfx7Q3Y22r3FPl9opt/WymeLSQOrOUqBCAVRbmBOghaHSxg92GA7Y4Yxu6XAw72sBRY1Ap3SEfJhm3s6QSv1SC24gHZhT1WPF0rTLYTtPzi0M4EX3JYgYl6h9MTmtebHR8GlFhftahpOjju2gdorUvs/+wzZbHxTgWFn86tv0qF/Cnvz14Iy8g51kckRvPvdNiSOA4iR2jPtt4LdTHNsZv6JYwX3XWJAqWOKboIWeqMMc9lRIGNajmZDCSB6jQnl012Xd5YDdu3cTdS40oKpX4Hpdm9osQuAe6oiUUyqqcy5o7hjrBld2HaFsgLp/tcQRxQv1e1yjIsAXjwr32MLavBKOl5BxhONvMCUaP7JECF/Gjz/HR0nX+fJoydbCK/7cw7g2QWSUb38WATfW1uMB3D2PEV7pL67NzG+idyz/27ykn9U0qSqOCIgBvvxgzwtBgQGhigG5n9LDsYL5iIhfRuyvyvSK+FFLIBExFCROWBC5MJUg2sE67v5UR01jURkftixFHawveFL1Ew3W37RqPM+nkiNuqPrggNJS11UJlNMACbmDBJF1m/wi8k459KFWPJeuR2CIoDGVeXcFKJz52eYcUGRf8c3J5bhgCciYWUQXmxPIO3dvlsNH302x769yzl7zVfYMserRR/cQMrGQjwFN0lqHFz4xBERaOrejOsZYE3ZmnWmLGNaSM5xNZa9nvp8ucFHhqOHzhaqztzc50wXx6EunVlOmUb3+SGHUtquQLeMXX5DLPicaUtaKeiYHD9vZtBu1hZtRzHDkI182VeRmKQUXE0JEyCYDA3JEXRddM0qBafA6JBm6hKdRWuMlJwU9ijG4ZB103KPjJBmy7mstfMotvY3pE+yKjTdeJ3bzL9uBSQ6sgN+tXzs2G6dEvwwr3W550MyigJKR/3I8FdmGyI1PLkyXtCcFZNYqhCJ3aecH+QThiOskNzMMvGXrIXg1U1iV6ft0bj2zkqBXsnxvEx0FV0XPRlKqWFcEJKeX2nT0d6jp3BDYBUJqj9y2Fq8VGzXym7cCHL6ubCcVtVflKV38rFJipYmi1YzIJAwD7k26twEGqeyLwoMHvt14EozLLG7IVLd1vG51uW+ldH1wvgcP1oCQZWrDaXtGaba3MoG23oY4Wc5bpYtMB+2pH5LU1QTFv/NhEH3n7JerbfrVEZ3+8dJeZWA6vMSZyr0tBhwIYfxkJStRew2tmKc8Qu9f8Jp8WNoH/EtOsDTHIwFe2I59uvIGP6BDy4NmMvrlm0Isq8oHyA87GzaePvWoddm8XZSo4etflZrDtaSgIpRYgLfjTwQfqBJYdiJiu9lCH22r7u2CsdCLT2SJTCnDHXqagPL55HBzlJhnHA7codYSO91G+zL0kqnGJVaDS91muO4BIeMFc2Vxp3e05qD6+WYkwlEffl/+bM1l+0vhMc0h4pBu8OdReAAW8Mbv/dKfZPx+tOeb/gQNoM7s77D+1roUV7z4VVBsz0+Ra2SJZCq3hVsz/KS0KepzsMKny5wvB0TVXZXE5I5fm3JK5FGf/QJFU78qKx9F+GlWiroDkaN30qzxMEF8uMMKcjFIVXMUAM2XxtiqIKeoVb78bQVZ7mQ9ZTlD2svXa0PNTKfAL8+ox/8ezPPf6rPLPPuMgv52HLksE04YFkruYuLOgAT6zFRG101nheBZvcLFAfnUQ7cw5UQa/qj22KkdgUuIVborBlN+tZa92SpB9OdiuaixBfqssUiE3vyKbLnroplwIbb2CTjJeyEsHFnS0rv3No2XX9wWSOfsqVAZ8f1KAfOErw72ZeoYLrcY9syH996b2dxYL7fIaDj977DceRRn/XMJaBYSVldVwgRRAjmKWHte8Qtql6o0AWTyW8Wwqdv7kRE/YQnWf1Y/BXKqjHxOXsReilCObMVLhD0UbCsCBe5kZ5x7e3e7qSvR9gfC3K1CyDDKzSQNzciebsf6vvpeQRNcOit0TS01Gppjkbrq0W8aCQYldpDv93KrxqdhYmCSZqR8klwNLCAcx9lYzuNiX25jxDlTFWgf/Ome/iwpHmZUgkvFEtORnL0gefDP+edqXPG0ks6dMvsMph45lc7WR/gWK0UMe9GBL+xcVqEwoHBPivv6ak01PjkpIdwBc62YHuzTehIY9fudMj1J8tqbdmioG2axCxFVy3rDBfpu3sbRNulJOiU/B1Hauz/xRrBAyyDt6q723gh3AQjmXW/It0quFJYbwge7uQj7DshwUkpPqcmjx5sN8L48ndrGyCBts884nXjqkeI/krkgj9IFQPgkOTsc5I8SQxoQuY6ycGhyTtSY9PWUdjYnbc72FtzzFT8l1vzNa473148m/olJd/W0IMMFUybe4Wao0QWiv6RnycaFGfdPcxWuuXL7+7ImgFnBgwh40RwORRFMffyq9wQcy3vs1sK6vlwObBwgFFPKhCKBUIaI4pzlUPWNvDLFPUuC9tdcYRSbvEZKXN584o8NDdQBBn/nrSB55lRllmL4gIMaKmDex4OZT/vH2PEqPMia3TFyP6ukbWLZK90U8elRTAVvMpFnvDHItRnctScN6NByRXUqGAVra7ErmFDaoL/03ZQmpVVP3W5rMSgo5g/V54gO8wwpRhEprRY9s6T+6jIwHM121bmNzFw0qFXMeo8TH1wUjBrYQg2VpksA2Z8e7AFpPRC16dQP+TPtFcPWiVcnnbyhalkuzIKu1ao2SNcxpeUkRkRoO5NAUxOmMvqP9IyI5UYHbPtajdBanXrpJE30JW06I9kw+7bhgz9mEw6x6VFKA4deVPqkxrpnEDesCvajWCXcsFA/hQ7IzygmWT5B0wqyn7ZErwAV7flON79uQOtklNvRyp3clhE9LxKaxZ7vXeQ12dKBpvhdtv1VHyWODOi2VILXVV0iuC7T2zIZodc7e/0PBDHRyBxZLdQMtQkjHx+h9uh1iNUZRO3eK6KIEp4UqmO/6/G8kHI0VpEUixAQSDTsCpjMVzUS9lSbFIspyBJsn5xLkDduQf9HmgeLDIr2Flvzmgj0EQwZd9a+/lBwf3ls2umgec3ZYxgXvt9zb0DdZXGwL6OYn4lhD6P7lvf8ahkrtlJynLtIa48q/D5J5CLVUfqlEO1ZBwP+N7b13rRkQJUpgM/D2xiKTAWkZcvkEvEc2MvTalMJQlYZ37b+3eeisReTKrMG9dzvzy4cobHgKS7vUf7x51msylHMcq4vtBEI7yuJbZm7S99vfQyMIQMXpyA5JAkDtmxlkJG9eVfT7BQpWWJrMGqKtvKcAhiUaqqNC4pRuP53SIibSCwdaL6h2bTZBIkN9g/38g7IdUY1WMbs27l088pkEDfwpkwZUl+bZj/u3rg14c8UFG+VXEd9bfeaebaHL5Y0H/Ky9taC/zk6DtyfD5Jkn9PLHfbrtalG9AkHfN6ttFzKQRKoNCeRSbUiN6bbM9zqAkpXk1f8cZojszXYy5O3bEGHkT8PuhVoqcuaP98PHpmf+2ohN3pMir6dZvEFRd6ZMqmUT5Rj62xQzM0TMYNl4bo0yN1BTKSkR4A6+NYR5eGttS7698diBFYziCGieoVxC5SMGdzrCpsL+FauduAgOKsMyjO/sN34ivJJS7vyWgaBkL4LFVwC1RPlLT5MKwLB7QBAOTTQ09LzGBhdFHWtf6RjujX1bJrsJFpPvz6ygkwZlXNEk1zqqESdZn9ChqouhpgDl13YTbJ4FJNlQLWvacGrjExeRJMZ5HvM3qCASQ2rvegSsXKrdlA0Fm1d1grTCWldN7UvyHxmpF+mvSQsR8Z1/6B1vUN/jPz8Bua1qCkTvph1lVmxgPq3KcK8cNarfYfdVns8GFG6Swzxy6MFaNLNh1yTxZUI3u9hPaqY0zdH4KbREBFNVaeR34EL4c8Y+JC4CFIsovIouvZ391Q0BFzSW+XLXv3+0PQ4Uosc5YQm7/Rv12MMzrRTAH/eyITuXG9jCFuRnAoMOYF9HciAJtkhE0BL7ejo8nkSsl17KnzXthAwzdBozn5+dcjaEe63Iyo6mKqN5HGaJEtjP+D9oD3QyYSyIkFQEaxjdxiuVaJzvgvXPNcZ3xDgGw0VG8fQ9GCvxSMo1uj629rmSKKlDDtYsSChDzJotET2UksTBy4Cm623OJpZH91ENONuBuImXp5UkFiGQbf50SN7NIi5pAcS6QIVuSWMgW7FzqOxdUup1woXW4G8fzLzXfIDTcOSeT0O5+muPBKVAvid+7RYJHdh+ch66L2fiLZpjKIETHfCi93Z5/9QLY0U4De4+7PDjigUx4RaC462cUCuIih7jXeb2QiWyBbOr6fHagy/E0VsYGb6MYSkbAdhmeqYtlYzBd1bua1ny7XEdIyqSknb285hdgCrVra/VyNtVQfm0UGcMGU9cdQvaEb+iEaEn4WDZsn3Ot01hJKCadEFjN0iijom30C0s5GnT1t9JjJq52ZBryupxjwfpm9qpj9BxgllcwI8sgH8uvkj+fIV381MAeO6yaQKTnn2mGdugivTcRG9lrLtbbyzPsQapaUeOSBaDihTTAPX++x74qfliZIJFhco6OmvRVbxrooYJbJBY3ZVa4ML5APbyjexdX15HSJBraXqouKQACs6S2OgqoCDjd74HF4nNRbLhQrmLNjmcc7algT98UgE2XB72Z+WB9VL/DoEboYeuGjf+m8caKXK0g/e15RhxHAmVIw+S7KClaDdiDcYclnJTBqAMfP+xegthA9J+PYHqC4QBQLO0b91VTEQT1nPdejTFCQLTAPesHzt+1jPQh7VDM5HpSlU43yH6wc+whpK76gzvmttBGO8MKOayUnJJYqq4vo1pIjsqXQpRZwx3ZFzjwRLnDJl5rCx9xELqfjUODb0ndEM9e1sceTvmoASJejESzH98WJ+UxzecUUIC9HO+Er6PE3XWeaRpZYpj4kGH1BhQNs+XB5wfMMW3+lD9OuS0YWU1D92L3jHvNnJSo59Q7o+x6vXpliO44kMiQbtQz7J0sLpvN6i+IomcSiEgo87d4lZwg0VVdcWvgfdVeiTiXq0+NphlpKltdWeQIg2utGJHnmwfU/2rsoFwXblYIpEx/wTz9hdT8jsuYxOrwhEKppSwMLjusE8D78+cRgW7tWOt55rq/NcbuNyX6gU4mgsx2tVXna9/uHF5akC0Nb3w1kBykCkemOjDD2YUhj783iWirL8mXyUWNG4TEiAI9vVJVl7Xn+em2rZiqnjpr049ZNaf1JHrmKiVvQ8yle9jZ6sToBOL6PzZFLPE2BCSSIOcaECxJ17iNAwvm8u5+hhiQFFiOTYdpGa8M8CpQalz9BNJk0SzAa7mZ7vh2HRCnD1TTNtZhSUB0j3S7+FlcAnQcfUIv0fgBBTZaaOeHDF0tfHc7ly4Zis5GDlutHQeXAdC1fCU3fQusbNYI6l2/KJEo1LFBu6nOCISN7YOJHJN8Hl42PW/gdKFaVuvRseAvOfyjlt175niPjQllz+IjgYWbjN6LpdKxT4/TOOFQO2kc3h+/Zjsq0r7t0tsjDt+EiM9JrpsiW8ZFEp7HeYSkizDpDCFVmb43QAE1iLYW5X5semEyp4vJ3VtGICs7VRJq50QdfR+eSdbdpU0OpTR8EqRYMSpymWyAgJrSeZJtsiRRju3Gd9VjoZpTnQMiHdLHVB2XjdzCAEFBoYRAV4KQSBN4rEoSae/fDbkgt6bscHtvte7FR7UCk2KG1H7FKGOgVlWJwskTSAcOttMuKs5o4oeW2q8EiZSyca8ZjV1JkK4cEB3Jg6Mhu3v5tdhqZ9W+KGicIEhE1hY9NgEAyCn2TWn9/IYfE03ibedrc4lpjMbQdXwM9hicLbepKbWVRL2DooGgT5PiilB/pf6Lyz9MzotN+XOqZMhLeki6CgMXWTI9+D4mt1R8G1AnZ+6Rc5r/q6mxpau6mSHOednQuILvAMo8WHPTURHGOEOBaqw9jl8WYjDhDv6bONY3Er6twKX5X0y29CB1VtBXnEZWfI1cJK7GGB5xnbgcD1HRqWdJUQQNtH0iMueVmnfr+wQ15LxqWco/bHbeVXGDBpEq92keywGddiqvDoDGkHYlU9M4+sG6BV3PW8FZ/oQYsXA9s2jAX5sc7r/PTqLWN6r8m3m0vz4lk6zB1CjdPhSKJrY188Au/Z0WJMv5c9ZLgYkBVaPUD1ZBbd037oCLzgGAZPIw/yTPnvTh8qO0Q88vpHVTGalQGZJloTmZOfb3qJI1J0uveBMA2E2oulrILLVMaX/BaWlcv5qsOG9OoanPhrdODUNQk7NvVXg51pRj5aK74KRHVzTgsB2lRZ2R1pbuPh5t4RYNGqPI+8TJk913xk8Mm/BVsDsl8R3oF9Tsvn0k2fN9NLtI3yNwFcdZcn+cXSzhQBgBFH7h4qpi89X8qE2DNeFpGhZ/61yaxvpdwABk7eQbLsVyo9V5rWDjMUeM6iIRnpjJgIGP4pGiyyVvTuiNq3e/Swrum9zM4EHGDdzat8QpAYZdRCJOBogt6FnqHzjcARvz8zX4VmSOXBRr0ZptRh2at5cHrgTPPihfoUj2hEMl/CILO/+aa4KfZ+GtoiKXtcUiJEdQ6vMXzdCxJ0OWVYB9gaGgBsN7BuaFwnq3ectUZfHUEW+djukUUUTG1KuxGmo0xSWHO4JWHESxw5aMiLg092BdsjiwiiDTNBV0jV2f819dtmEE/f5xg+HfTW/oTsRDkCpnray0KoDCHqURh9Yu03AFVYtQh4ZcwxN2eCNHx3v9GPSJsFIDyf3JSh+8D/OuTCiTdyGHQ5D/AL120AFXi9UWyHj2Tc8WmhcPT4KCtAok7NgTvuGRX3pU9aFranUaxbrF8zfR8vuBA3mhWZdaOoOS9TH4iFA2vhXW0JIBTj+2VlBTzDVZlbp7dtsJxBEAUbe5VJLbWHltyzWFIveCIfxB+RQySlxK4y9uftQJZcIwg0i+cGRfy9UNYcypRD6yK87c3DdZCfa9KJb01NWDHdPMmotEDNx6RDKPOJ9w3+2D1z2Q6X8gLPJQAmMghyV0YK/Hl9CL8Qxp7f6cRioy+0nwW5zsbvTgZYkmrQwfWjo6sSI36T/GlsT8ZGhbIGzl07kYTMf+e7hWgvDRi2AXr/SD+G0t/0/AuRZn3Hy9E+dZPt3Wfy4b6zy24PXfpW6xIGaFsRMJ1bxgcNJBaPdnfvzDsb62Q/RHMf9dzSrjCUD5/E8vlbbAYeXQLMSttY9RIrn8f40FnVd4P22IFa2RCZIGiBvKsTElKTRgx1cwcIewg3lzl9/feoh7IgePv1Y2vKpHgHe+ZSDLYo/sskYDi6gFf7049Kt1ZY2t4ntPPP2Yef6fwKy66iSWpglO61Ywgaebj58CGTCZgDp1MYMI6grtJwTg9MfhTK3g5GmzLTtUh6iuewXfcfmVHb6FWeV+jCn+l+j/T9yo873AzgfBJ5JXHXCGeL35wFnxINzNRL9CiZfYodSX/ymjagsLkVDCdE4r/PkOSbwoGx4TiTE5qNbXhMnt1BvoLt1HCbcBBBEH19uisbAgAIGmVGnHd45M0XgOyOFkCrKEQGPJ6OWgVyVcfCoZu/UvMYgrCvNPuq3ZTpGPjLGTdepq53XmlmcLX+/iD5050oEvTi06rJcp+3Qe7pHcPoTmktmIrXMfd7wicIEWDsskojESp7RfC8YCTAoNw/hj2fTML3G1UB4mI+XN6HOwGeWP0Bkp3XCWusEVL78Ijby8yKsXay+VRWfOan5iaKPCqYpz7/HluCXerIWNxKwoKvooh5gy5uWDgBi2mTuKJ2E/xfUASSVEy39HYfq47j2+5zXgvoFyY12OYoDYtZw8DG6rvzyVsL1rZKVMlWRKfGYarzoRdME96l9DzvHn35yRB4Zd0CP2WtLbVDronY8PBylTpSKO80oBKzPZUwvmLb9cpg1HLnnPYT4oFw2pNgBrgcIbk+nJC9iQ5J1twJBqMZb8+1yyXU3jV+fFC9AUfIbiMReNOYpvbsZepohXpDYchmR/AmukPMW3g8/NhBnzmVzejYh7IxwMQ273ncDT8wDkprX5m6r7Bzg7P3hQ+fPEqJwI9Ye4p2AhAzMounOObPy4M8P9WmorVav4B/dL8EJa5I6MyJxk5X1zVGyGFwrpMrSnHHeGik4XDWLf6BzxFjMN5hmFgBWXpa1ayYdFaxqnLoKhM1aMY4mmTvSRlEoFHrh1w99OpxNruWhdJ4n2TAqVGXySu7ewrZOzgq+3vlwsQpvHV2Ob9Mi1yMlVGmhbZ4R+gPvaTdAkOeqsyeyLeABE8MKal6EM2GRUYkae6s9hRV6mf48LlbG4vBraMsxY3jFmh4KlPGefc2n3MoZEVFg/a5iwAwPxj+v2SuFFaozir0WLa4Aye74xY+R5IJypluITeTn24AcmE24NlzgEmf1qSfuoCgY7zaPPbs6ZERT5N3+YyuhFnrLQG8SBbzM2q90PwVNPaaNCHAzZI4gi4udCrHJL8woBJyVdUlQXMVfoMKnBoA91m23C8M39L7hW080vKbQ5vpDFEE/XZ24T3+8JyU+77fVyCOxqRQe+jXN4yDZB+RA8puUPYs7Xrkx32Ut0M8RYwRo0Jf1LNbBRdE8wry93Jey8ViIq2IeA7N8Kw0aAVpCmv6TRhqSbvpXeI09halNxmlWCC5lvT5z9cpUWlSao/78OyY+ZrBmd8jU7GmvQDrl7B8a6z9RvtYZ4xrLpSrHlZ55KtT4TFsIW2ztBTA7D68CeNJURyj8RN4vAS7RGqvsQb/55f1FNjINGZyP0+38MqhdL7598JdVdrLsfVJWJPaGMPW+yz3xB9gQCU5UyNd1T/h84EKUYfZtbrUdaQviWtDR8WrZKLduaSKGUMsO4tTlEQcQeUK2wp5s/CJJpC1SeT8tOkp9Qz8OzL5USw0iJIEItySxi44zvlKe30I5iSrQRNDIbIvs3LVg1K6zXFFkCDYk2QNzGEaXGkJMIoCWNGvasbqtQh25hj75fA8c5b/0ptQ7QvAh1DbOEgCOnz3iC50lXN/Z5bVYuOXi1P7MNXg+t1qXPErrLK12S4S8a4NKvLTWn347SrJDwJWLxcPP1QykIJ/+pT96PqhLmvpTVm6g44I6oWmYx7SPo6Fb1AxkJjoUqL3Arwr6wZTXi+8BxG6r9Wcbxlo2USISnk2DFXZtEmOQJA5MR0Oz8+SveC14n5bqv8xHpmrRiK+T4abzRmUigzKeryscMqefq7jF0RsjEPPboGDGIKg5u6fRevMGzS3QeLOyPrxJ0e9HS3kS/xEvwoFKOKTGget7we464ocDYXzauWL5QH7nwjZaG+ClyI2+YtSQv/h3NcherR3NC+L7cQXPB6aXqYounzKkF7u9DYI6K6+HrMK05iyRPLlfgoLbys/rxIJLWDat678mfuJp3xMHeye172+OTzkN/mEePauswFkGXueeV/I4LlMPe4EchZWCg+ty3ZR3tJoBPGGJbUCsD39QtnqpT/VhPIF6xf+muEoIyTVtnisIRzWnnbACIVFZrCe6GIZ0HUKSH60zfXoNQnrczfso2PasnrDTSJTmmlOYTE4gV+I3HLjok+CWtF0f1SCV4AieN5rkL3B1afvigh7zeNhXMfnal8b7ybrvGrxso+0bxcRwXsGbyxGkMIiQHaC/rsJIBK7+AaEeu0QMv/mT0Q0snasvKTI0MobZo5piqnQ7IvG6My05QGCcfyKvBTbeViHakAoVsUI9criyuz04JaEBCgjc0JIFRYXeHbzlnSIzgFfieYaNJlsEUxvHTAN0B1pGZHQ202WJPOW1/pfYgJeeIdMkKETPP8pqm8WpfqvcrC71/WBpw7LtgBo+deBrh6wvbL5gjJIkI6Zf9IFHKVcNXKRLRNjMvltFg0Em2U/datG9qUNE7hcfSc4kC7bHhAdmqDb+wrEB7l5/Ew7tKn1OGjLKIjgyoMOI2bMCDlxniKdoIAcjpmrca1OOvNmaVPxG65UVoFc6nGNyMfZWiroYES8RSHICj3zo9+ab1TDIWzA5l9MJ0Ld1ejwnW96/imagnUkiTgstYkWyrE3HbP/IO+uuvfsd49piP7KAkzeoc51PsqYIZt/m5PAumcfIVRyQaT5V0Ye899oImChdaNc0N5vxz1Ux4HroV4/z9b6UDXMrEKXG03x0eZr1xQrZdLvrla2VvyvkWB/SQ1ov1nle7Y/Ji/4xVzk2u547+Lw6+UnBT/XOF5ccHmixeKNusn4YYkdW5WPkPcFMMS+NZgkigfH+i8XVUT5oFP47IbXbGaa1lYwoxWllbpQTxRayXs6d8M51Qcdz6cda0yXAxGMyCctVNx77xwyQjsNbfwMIDAmth/YkgH88SZbBkzoI2Tj9pKN0657H1/G0+jUoyXHBhFDWYHfKUb8jGXxXunnhkA3w39EW87efNHqaEoJK7Wdq2sQyUwrPtTjIFM5uBFpxSwUM6NjzZYdbl6/6ATlQ+K/I3hO1BY3rRA4rWj0R2gkIu8MHZ3QFKwKBMmdTxH8EKrkdMJq+Z7m8kefSOu+wIM9PINGHUzOpNdvyXQTtkP1Ue8zVs7aH9u7sDdW6+DPk8W+KzYT0RDt7fyVgq5es90aXx1gvGTLUM7/H689dx3FmieSOHVU3X+Jm20pA30ucsIQlG1N7e3/9eJ+TrD7svtMiAYD9iRwz2pz3vlZwfiw3MuDRKfMBoAKAicoOmRCZOo7wWSm/IU5p19UoAkIzmjjgJRFZKUwcuisZLHUldAfxDtmrz3JxEb7vllC/9msz52p8t4CWzmQ0mIe0J4CCC+lHEBdSd62prjLHtl7Ed7Jbn1tPlr6PVtfAzgz/36hw+9ZGbbXsDgSn0cvJmvL6IJSSC/1cKGDc9jEdFy4BbCC0GPemMQIkjB5z6EZPe4szrm+moOvFaEt448c/SMijxMYWeNVTCIe31KrndmbKigrrn7/gGoOzLj8btTasG9RrbwMX6BjKijrlO4LTXgSLIDTotqbm9Dlc8mMgwjd8A1AoFW/ElScgDoHh4SFFMNTXQb095F8Ek7hURMhdBKD+JT7lMBwHao2gxjX3QwkcYD9MSRdMC0Wm3gEjSK0Lj3mRvpDdVoytc5RMmo18oLAdZ9Cn7CL7XJA+T6TRk1Kw02Z5E6seyikL5/xRPS18OUSfp/onVu0Zji7+XnBDFGCFIBR4xU8tt9z3zRH5LBD4LVApVmM9PWJOewa7oArwMdV1cjaQ8QMTmOkTDgPLtFj4vkLBVWyCNoYhJJDuPIfOquLwspXxut2cIZIV6Ac6LE3mdgh9RnF/AWjJ4m7rPIsEGGaVFGSmI2Zo7mDzj5VCQFSNs/GPTzzr4k7uTlg2v3SWC1MDF3diLM3nBLDY7YmMHLnDrBQDJTDmajEqsbpygff/tuG8RdxrSSaooIXBxRloGbOMRBVuGxA7ALf2m/qWVs0D4DDD90cWS9zAcDGGVGU41V0FIANJAa5b8Yo993ZnVMfXlPDuVkMIqXCb1ud264NRk+83ZOsu/0YrGUnOqQYV9Sh+LMx4mUwcbM+XGekHk9bE7lnAbuqUGrsIbOEokRjsHSCw8SHdF0iahPlXAlIo1k9kcMB9QQMVM/XRr3fWdAnu9oF7A6ya7W0WG+dX/+uDKNMb1W4dgnd5el7vPCyhPoXMK2GL2+fECyXVBzJbSoHLvLjCSu3GBaQcP7KGyqCH5Tqx1McrdyMWLQlOHiwGcLvoDJSP+MBl/hI6DkF8FJfJ9WFuBaJWdHspSpxmz43pSbAuONzJlpiPKMvVujupYQZZ0X4/XJkt8qB4DCiyEVKa9ITEUl2YQcgzWyesQ4xT6N8UNkbJJy3IAaX4p6E9m8vaYtNcRKg05JYfarXAS8cl+5TS0ER0KxA706NbkgRkOi6lRaG5Arh2mGZUkNoQes7fqOdl8u8wfYfcTEFSl1n8nUhqfktD1Up6dgTc2CLs/5nh5NEzr/BmvulN2QNE7jdAG0MQy5QPRpKjd3YtR3b1ygRh/gidanOC8JQHK8N5pL8RK73ryKlcRY8orxnGnwkua0XTTqRGoYF6ti8ap2B6ufx5hFlkGaAOHVuOkQDGtkUg52Lb/4UHb7MBg/HTWxsNtVSD0pAFDh0TNB4OFqnGSbKe46ao3kju5liuGlsukl3z5xvvmINwr8flKB8f88ZlqXQ6qwZ/R4if23iMKhGVJ/q9jQgFJYekODqodzKp0e5LfIoQEZyimX2bMOSC7xgOS23LfkYKEsC/8GFPvW5rvDvqDOziwPWXL1YVduZmvMOhkFIoNMHTkCCxUpn7bXYfkxTl5lXNelhMfvBqhUfMSmSB3idYC0VxzRhRoEdpBmjywB8KEVLlRheH2fdNZ713GtyWOk6i08Iq0S9wOfe2dZvyfjWvswisY/J6QCHaK1yNmzDoLyEn3gSVNj+MtFkkTWId3W2J1XRiAWEnfDBpKOtgWVIEisMcBl7KIe9SYCBnCSztsnHbivtwr0f2a7yOhKTU0jKbSWPfoZEpmeZrL9CYNoRMdK/wwV2DTlGCOMO/t3HwKEPkQ+QyhTOkt2y5ImIEm0jwlDIGMm7aZQfR+RO7/TJxDM6W/Iu+l8nxsX/deSy6j39qeKzFMgnfJuKMukBgYnFvm5AfMzrJSJ3hl6NT5vdm1lo4OxU/GfW6dX0f0fP5YCBsaD7wDG+L3tb06S7dXxJr0CbbgfVzUPnbdsM1kcofQWvf1fgk3ky16zWRexSabT3ytw84CLDNsVMqQiN4lkADbDYbBV/dB3wYhlWGADVyvWDAbFhNjC0RKNmuypeSgWOj3GOG/7tUyvNTUOlXbI0w1qpwpCE1bSmnVdBlWI193nswaHhkuBfSGqOsG2TbIY6Q1BKEf3fAxtjqLQ8vig583ZsrTJtMzZO24XSglSX4GeCxmL3d/htVRKeXYAm7QbhR2EignH+fcFrmR/8ZnejSuFxLMtLhwJ/tzNQ377Nd4vXDItfEloZHsOIebsrHZTQbZeRwohPNMBmcNyE50W8uLLC1VVwSHqi5s2+/tEn+WmPAEjb27CNbevVM022y6TU6st1fpwraA+H136ztwchWK0RtJPSHsWiO4DgAfnFzqV3xZ0/K4B7fingvs6quts4yAzWzVgfXWmRkFud90KliRlv+4u6ju7ghZIyVLkLyb9hkqaBsWWybrWxmHa947nAKkF8ByPaspguzrnuyEspkAW0zIwBjZ4xq5tkT3CKZTEwT/c42eWx5N22z6jq+wVW5BhbFpGmi8fOnBKDMnqyv5QDs5/tjU1BJWZx3QmRj099MdRUlSe3k5SekQqvyY4N77V8MYNpM9ylrd6O3MZaa769iFhXTTuaZBwBR1bY1+ziBSBMZPTizUY+cmJGxEBoamFfAwi1e7jr8ubat+tpJYhGM1nuxUI7aQ8l2TsWqD+HNNlOdQnYIHxv70HcXHSrIUXKY3xJSth677kcmJGMeQQSuy2yvN40HsWO1RCd5SF5yYACL+WAsU5Ms5YxbJvjfiD8YJhMi/UU6fZMVv7W52lshmnI1ri18TSF4AOWfR8JuqmBK+OO3mt5ndkTHDTYOFtqOga6Go+SxEEZwGdEC5TVxT0usfK0DLo7TVSmFyY7crJLiPr8bS1ZXSimV54FMBL0Oo/dC7L5qzkkdp6sm9EjHH46l+ykxnIjXZaQ445MQlGRoHo1AKf51RECOgX3v9IFPXWeuBlnfgZB7cCsMwahQv32qVtILrI9lUVI+/3ohitcX56U/6R+ERz9O/OPDJt1Z+yEjYYwvxlGUZ55QU3IzzDcwlglij9BEc5mW3TWFzdsf6yxT/1yEeLWo/p1YJ3pSUpKATGmKPRoHniU6o93vdx5wYELQbWJXLfrmLS5/+cc/q2drHbMlRD1UtveLyqjoMzaLyy6HwVkYhWdKH8hUF7Cxudh2Z6qGalYIJNkSNEH5g5laku7ANCTbFozM8KI3XLZg6j7GAEo2CpPdPuX+w7uCjv/nQu4lo0U=
Variant 0
DifficultyLevel
637
Question
Pepper uses matchsticks to make a pattern of shapes, as shown in the table below.
The equation used to show the relationship between T and N is
Worked Solution
T increases by 6 each shape.
Consider T=6N−4 :
When N=1, T=6×1 − 4=2
When N=2, T=6×2 − 4=8
When N=3, T=6×3 − 4=14
∴ T=6N − 4 is correct
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | |
x | |
✓ | T=6N − 4 |