Question
Peter had 5 cups of flour to use for baking 2 loaves of bread.
He used 1 81 cups for the first loaf, and 2 81 cups for the second loaf.
How many cups of flour did Peter have left?
Worked Solution
|
|
|
= 5−(181+281) |
|
= 5−341 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+qsvhGDPEPR03wpJmadIgQb4pvJ9/u9Lhy0J6orMJ9WWNNBgWd7i2d25UxvI4VLiXSbBTa4OclXQhcvmzjpbXCo+sGS47ETyVRa93zZ6RDe1mHrkqBCP0lUeTwl9TpsRjl+W5piWbML2Ypk8Cj+6SPAh/GG5Hi4Wv2Y71U9KI+qeYWQJ5Az77MpfI87uR+Tcklg7NPZmBZ8F045kFrgtJNDLpyQXCysyhLQeXtRHZoyKaN1n9aj5S5cCFW1An65X+NAE6D6wr7pAudOrrXOIsb7XKIGA/LcRaH9E0skwgUYzk6fWXaB6jJ/Ur1EtkObmvXxZR2hw3Xi6Zf7IxDsV5cCkbae0JqVkEo4wOOPfqfolAuRzsBXscq1H+ynCQpR+LNIS8UqXxiHBH5ovOuv6FSWAHEkhYRuKgblrXCwX6S89upge3zSYgC5GthEWRK9lJ1sIBp1rFEKbLXo7ic+3/ZZFYD1cC1wZPoIhPr1DL/GSeCsO/P77FUF9DeX9XNafy5dtIaFjEu5NIT2LJdPoYv/gb1x/t1BMt80kqsa1Y0bsf1BiLno7VBaC47L76gIngDqvJowqbbYUCVmjJw1LplZ0LJUlH3atySo2gKcUJJswFIQRQQvNPHGLPS9UdbnFuXFR8k4RmSx+mNAvw8IG0vKD6+TZgBWBpnhPpxdhLdwNNFMdwfr0zjB0kgueOAWzzD53KsjyFnhE2DDBGmyoC53YMnowdd7kSmrS6nKwwUkyDI8CBGyf2+rFDSc1UAHPlxi2FZ2ZeBsQjUTdB+BfpK87v+9T0TmcOaCAsldIg8cy1fyjdo3J550C7PoxvxKQ+CvLOrY/f+05F7Fazmn4auhreG6x4vSAFYYFZI8A5sqpJw8vPyxTNn/8iqHSDGOJn0txgvDDSQ5NqH3S8JtA9tZ7F7bmVTbWiERPhmSLaAfn7PtZkPcPBkEa6o+zSzDKwtZ8+cDyRzcKN6jF09cWmDXPm0Fg6Aah/t8IuDFPWLe9K26BnN/7AvLAmjqL/dXLTsW5V4rW0/h5KHrHio0GOEAYImIicLl3GDd1SWDR47kS5p7XCdJZ6fk4IqHlHyOqG7rK5yUCYo07wmxTWHX0YgTNzxqfjR/SGQxqtJB4Emhf28NUO8VbwQ9EEtxbF0GWI+tlAGlFPV/czHgu1zusRHeQ0gxHiknyzUydtRpLswOUOUVYp4oRWufvHaXAByG3GnNNue6iqbkQKS3xxvCEPVF/G1elPHGDhK1/H3LW+Tum3XF+xBDifdsrR5YfqiZuOv6nh5tNmgguO67yKhvjzBF30ztgiJomvnlag1S2zSEmOSrZ2SLaD1aEs8uz4tun1/dCbaLG19i+Kv49RUSahV1TaUtLbqq3soYKVslXZD35FdVtxweeFO3MkMcoGKneaObCDgOwIwfa1bTMhrbKDrkKzgHAfOw/b1oNyqGx+dM2a3Dmpj9K2SFJMUXyCon00OxX/8yR7SdGofNWCX0XrPycSl3q18QcfQuh/AGHf+p44bfTYOWo3o5kUxd23tN8rCFdETjLSlmYNknfxFlWK6hZgJ88mjkriWBY0RMIMzgAAWUPY0R/ZR3/SCWvv2x/7h2Nsv7Urh9WsCC6cEgNZ0/D/uJKsCGyk3GbXAlxNzZJD1H2OxtKnthMGBHufrJ0Hp1NrwYrysiycN3E8M4ihQM4BhoEZ0M5VszfOSVyC1Pyp6eFvSCyALiSenxAXD4EwoNEzWauPwmin/LdNh/6woOhY2XBRwOR7Qu2pQ10+dHwnL/BeSishx0Jn4zKy7jCcGVTFAXK0tA85+fC3leClYewq9+J6PaqeXUD9f2TuXPxCIXF/0TYW/e+nlbD0NCTMrouq+iHj4CnU6WzyfsfPhC2wNDCMWYB6BARDXNTMRA2A7fxatwn0WyfgGLFvGFqtPfwWHySc5WZOERFtSjeiFPEbjEJiOyXQZJ/YYoyiYzlEAPejKeeFhGNyu4X6KRV4lWte8+97fE6Pf3ZVH2fqSkK4Doi4OO4V6yWuijoyRyw7lUrIJeFzI4Axu2wtdU0aTCmuV09k3dt5M+7Op3CXxSceQjVxJpYwM6XTuoC8vnL2U/PNLxQskaWRMXZB+5CFJd7FI0N9AHwTpgyQlyQ2bKnHv/DHnS+BZF8qY+Bbt+cl+kVx8EFTRrmhGFsZxHQuCI8Vl5GFgnHVeFr6lAH74M6/6i4ac+9P/yUjyrcYLgwfzKAu8mgPIYEs6Ud9lxcOgIH874fmBN1Z9BTno6vToM24Cf0kQWoaYJc+sXl4Zf9CcHv8fOSdLTj/7KT7OiZdgNFf2O0t3vn9gZ5+vYZPXNXaD11XZANeUeUq33qglUaoNJbObnLOvfXaTh7jzMjbOUcgKVKezHf2JetVNLim1BuIWMT4KMKV8dFpooiL5RIdj9nlmF3dLM5Q3eQifasVejln3OUFBSWO+8cYvgtgU9Di8nLC+4WO/F15o4ly8rBT+54T+CsQ91PRdjok0UoH7HgvFvoLEhduv9hkupSn9flWCjjxBRv9/DZry18QpLRpZilAFhH+TJjrX8085vqu1wiGY4+nBsWZs/J486QicX0eYj7F3iFX7v5PcfOjYt0sUAZKAhUdYx2YmTbCl9RPUw0EFwBkBiRjs+RSxb+RrSun3snIeVEa4q0eXcxjSfDdvjRoQWxUquHYLWyCl/uJef15yTNNeYNUXQIzb/HQFhP0x9/T0BFyP3BRqZZKIKuCNUElI4bq8qruomEIDVZiXMsfFEnbwOwuphM5XtHDivH9ZCPnS+wzpoIi0uW21L1sjz10dB3OrTIwISsyLruzPzKidy0adb3tnUaXdDIYXeiK9WSNHmxjlBcAtkuaMTQ505MmCBThOsVwLDP0xcxOQ2NyOoYEgidjW9jwO0NutPwocbPgtCGOJGWroQ57fwhSpuirNTP3mKYBuOdCQDqAP+iHGgR9kxcVakO4bIGxt2+YmyxjHqn/poyA63BboOA2xdf/5tUNhxUY3D7Cs6+l7g8VgdmksVsbGMaEsQjnkXaygBMuhpowEZHULISg79FIymEjtzVe5PlKXhzI+kVHtknezcVxEmKpqas6qOgb9eH2It8o4LI+5ZbqSASriXYHDYl034EMgz8FxzIeRe2pL2TTJIX7r4aPT80aecSz/vabRhOpSNy9KPaDnZlGxsl45Ys/PKdYkqJLuboJ0qDooNz+dChWZcXL28+LdWf9rS1vEjxT6OX3kGn9/MmKn9v8Phi129AhTU2QqilmGZ7qJwciyfNdEj9uuv6ijm/TTcntE82NsrrpSdkQ9I1xLm+/bYlRW7bdOamMU9maJww4gFdlg+mAOl2m+rmLyY/vuXA0fiZsT2nPBJhak/Urg7MdHXgxhTjobcpl4YVQP5+gCKRxaGAS2Uuwef9Y5RX/h0aBTbcQeG+hznHwraXDchv38h0sSQVtPs/n4kGNynukRgbAX6aY/QqjnkfLn23OncCKeVBaSpjNAaenxFX4Ky502f+Wnm2pBfTbOtqOXoqd891GXF5dAb8EFvrFWONSOJaZmJ6K8FoSfQi5XUMqY/FBIRVKqJM/SYDd34U/yhpwwhcBNKt72F4XNIgUyA/oiQ1fwbDqbIntAL7XzhHzN6wLDGv7vsRdS/vlhUUb/DDxImJGY2SLWdIIXOXL6q6mKOqy16HiODbzf3kGeqbIDU55P+zw4L46Z0JhyWp7HSCKT3yWA4+nJ5LiwaC4h7z0wulNzJtSWAwf3eclULR14FauhkeqxrjUMPntzYpgQpfcgY6ewEPXDBb5ELndydImc67oBld1i2/p8lciD1E2R9y+BrNAxA9YTi46er63uXiWDYbVet0Rb7API+wy0Vmx1/n5HyHr2ao7CqGdtiBbv1/UK8JlJsKieok+3VLMmj5dQofsOwUR9lAa4875KADeoTgCkfo4bnpQocPGtt0Nk5TO3r9/iv+wuBexLNvibOxCoVagVv2XuiMNM6cMyo+avaSUue+iAoTUux4M4dVfv94I5Sp/Jvmd/5h491nioWkeky4puyqbxyGcuo1sjXRYG3AOnUapNkbeetmIri5GhQhcw558V5Hqu5hEY2t6p6qvU6H+w5gld9VUayJgWh7ge6aT1aYrJ4g8HDNsWPY85hpzaelvN860wMhJvQFuef3j5pH7Eu5NDIFUD6bqYs+Y1Zy05GABubi0XZc6LSnsDOsNET+cISuMXYhjZtmU8AUKeYixrfmj2KTyL9/Cp/2o0DeojRe1YX557r/qHSHlLRnbd2bMAoxO/IlfrdwcF9KoihJ5y8AwgpET0nSrSO9ATD8I+V+1Lnc1KMdClCI/K+I9wpwnpOjQo2YJrpG6Lk1YclBDfAzAf19jHa64knrJDj+aFdHTNgdCT3xWpV5Ss0nWVj6x9ne8Vrp98rZHa0+vItXtz0af/EM7mzDUqyy40up/cqYyPnzF07KJBdqnaXL1b08PHdEIou5VzmLqIIinP5ilJ1bpSgowtROT7AWzjBTwIsUGSpnm9aDM1M7ilUVgm/Krr5oj3OOxB/VxAKJsBL8G2X1sieQ07LInBKVjypA9QKtIQd/3B9UntGVPNNH7Wyf8lUNwMa6+RelmqQZiwihw3gbc4nG4PbJOV68mq0mQA7GSYvl33jM1eBCC4Y5AuK4MgeT1wvQhIdtENOBzgafBO+tNjIXs4TWVinvZ8uFOPY+rLZOxjJksLjNfSjfnxfP9D4mZuELyaVJAO5Crl1UlXtTAxuw2Ltw8asf9aq6uOvIzVhY0hfMP6hKWDPO1OFT9I9/aOuR4B1zT/Y5nXwWsIeXe5Wj3fQCY/PF9RQ9SZWcVUjM5DjbykKfKxfuI31wv4w/b9WN5Z4fcSvtUs0CicDFDyynexe2XHumyyz9Nt7du9se3Oa7pgTjEfdfj3GpbOSSegzBtEJjxaoJQlGNHe32vo/vbSsP6s5+HQNJtHwhKbAOhIpQQxHrx42bAioT8uJzwtO8UlUa6i7GE3Qc+TI4k6utQt+ZgIB2xA13BBqOu6ZgVm5fFniRP0p9qxRo7eb/4Hc2TCA638z5YbvX25DWRi23VIdfxceI56GG07V2F6BsuIsg5mHoGtH1w0N1/ZDopi7v5g/pvqfOb2zkS5tWSuTtB8O1wxQfggg7HwPc3D52lyAcNuols/XFd/JrTkQVLq2ooAmRi3d9cTtuyCeS6zbtQH0SRog1MFhsSGCaqI1fzgRCmDwiGUZu5XjgCIeLU5sZ9SYQPDULIIBR/000RbgjwZQACgjiV8nlr8K1GLIaXmcuh2bVMm04ZRaffh5AVr7tCBBXhyje07vx4UTZh1PMdfZ6jOfOIt6dMTtpDw/WPBSYhLgBNIBya59ZdwopYrOu5pHu8/RuPv8KFYnSVsgAQmwTspC7G1VaqjgyNbpNA8rCA2Wj3FhIwHK+mClJpQ1Bt+gISC7LRDXfR2zsL4Korjwoj42sA3+VroKuJ1FzwlHcYg/ptrjPcg2/05tMFdg5u6yXBx1hovr/JyjVF5UG0yEACNuUCguqxrmJksQGhHHInm9VwNcNAG5wieqM/CEFcVxk9uvaSZfEUvMKJYaN4HreZvB6fMUK7O2Abu1r0R9BGWGgoJxxPQ+Z4Gg6WmdG0Oc8AIiEwbYQBtnlyNpKoAjMFRqvDFGG5D8TrRkFvrerKqolZx8XGLjaETakaTk3GG2vZfQNzNkJp0n3pGgjdnMHd3vqoxwHCgXSH25qFiggFkCSYBGidV5dxIgWr6mPa6SF0lfnHJRV2S8rKzTFShtn8EA26phNocFz2NoMMMVVOkL3so66PCEacaNHlvTtiIILKkjyJN7zd1RntodQY+nwRM34wN1vNofpXA2whUBL090tm+r5gt4MmAjYE0F2QgnYu7ynQ5t6ch+6BNk1/XV+EKOKIpts5MZLkM8AgrGJ4sKH5iARp58mynw9ET+iSnRUytBCAIqt+Ukttd0dXkkzz4Nsdg/YpTQzoSoNf0uIpJOsEx3glBdFYmX5H4dPU/Urpb8F/ooonl6t787cLCXzbt7Y6w3gdJe0ILzlkWYmp9aq1FHn9Hbc9vqPX5yon7mi+clfZudsDUASc6Oc3qLLwVKBbjjdf9JYhXWdOG9uNxLqBWFEP7mM6lyjGpcyVV7uLetXk+dHENOk3lQY9+47tfwLRcnvy8e+lemCaDblA6Jz9cFgtd2o5QVMYSsZykVHN1E0saxfo21jZuv7uxjce2oVC9TNU4yZbOU8/+fSdfs9SquGMR/O1Ey/VXfJa4umCnLxp/dSB97zEgFSsLlNvEskywlYLGam52N7siCW9IPpggIwr11frRbelbaoLFB3whdKfHJiqji8zxVr0w4yLDpef5oPA/DjoFBKevXLk3ihO/pcbiUaMPkpHg6POe6D6niy7AXztgQNjL4JquEK2AQnyMrt0V0HPuNxGIUI5NZgOVyTKequVC0xM0S9Ca4C0ovf9qZXTGyTI6qgCcxpS+krnzEY3u6/Kll6veZh6jO2DOX7T6JrgLZ+CT5lhJ1wcvsXl7NseHsxLJ7U9J8Twng2XqK4zzMv7QxMNahwvabJQmbbMTunU6vZZP4J3PJPEBpJ0Dh2CNlba+4gUIppXNyLK+kEdonWYrDz/thkeezTPl6dsLIGiNWnRpEAIseS6VKPrfGQnoKs53+7+AFL1CxiGtXGlTUEXnV3A6oPQApru+lXXVAAF9oYwxkKmEoDvJ6P9YkbX1wQeJuHo5xoHsimA+qkDZcQEkmrBqM2ReSrfg6vTY5eIfrONVbxLRdJkSQZRPwEFI8B+AXvhlLS2LbE0i80/H3nrCJiJKbr6jDpi0+Z+cGCcf6r9BVxt6Lx1RGoaYAXve36BSgP/zyv8eQLegB9e4wVyMDwXRhU/AlEk/GchffCf0hkRZOkVq2WW2AWBLct9GIdVlKiJ8CgVXvWKjQlOPspI1dTHn+lgm0vtKIBHfiCPCTkqxCVEAHGVx+vefOHCE4IY90ulPnq3EhRE8R80e/NBYzrE8kIMTajvJEHsEiy8S0TdsSGRsbuaK83F9PjJTJPi3daxh7+d4qXyFVvN4ETsdHfcZvVqQy/U+4UIV80ospzei15PxEfdz1Mn3CyhhEzcSnmYxOzSCh6kQg9s0XyZXUMGxSxiRG3ZJh4GuU3zDJeN770zgZTN2GQLf9W5keUW3wBEaX/OGmWNG+SYAUleSpdZ45GkX8+9Q55xUH7s6epmrR3Cqkcj+w7h17tzVm1CC6mDrv5OW4ANMlKERF0TKgXTfr0C0ZqvtEDIHm3rJvEpY3Y5VwjY+ZBkWBY96pfB+5Gbxm/udV9IaTpF7GPpmslv7UqSor/BgfjqxVu557F1zYETXHFqV2BWbcCh3vDH1RIa7U0huJtgCgaQ+OIxy7tYS/F7w1o/Bsab6tXqZuHyy0xQMhhVXQPyE0rKqXLqWJ/a6bkpNKXv2Ze2ps/iKXhWtO+w/J51r8BW0XyKr00WnuhTR3g6Xh6rrkxyUyM1UCzNKGZmrftpUpkbQeAYEi1mYWt+O9/yebkYuUVPtjq3pHTJgicUnLOhDZMUU9p1FwqyMdBYWoorzSK5tZZKDN0jNoz2w7QWtAJajkh5320s45qqPv0UWiALr41DXSeDdhZDHg0YVlctbStK8+gCTOJeo4GsRZ9Vk8xC7gsHAzPKSXSehuWo3kgle2ZcdBX72f7NmB6NdhFXeldRBXvlMcJjpBr3VAxUQh/XfylYn2Ksn1HlMK1sZw7eIvfr+QAdjpyh7HYFvh/6oxbVdpLAEa5O+k5MvwCyQT5aqc/D4qvV2KPyCjkmgIMi9EFePHoa27J21lZITpSfNU02G228kQVQq07ESbep/+sfw9aaClDvE3JBJExe7sTKIpo3h3eJa1k+ADvWlAjQVMyQDXMwfHika/G4Xij54dtCKfwkhHZVZJUBTipHpTpW4ypWe1AwE8M7UDOlGTRZWBU8mFkAcDM3Ro+ctPbGyFvM+Hv80RYeLoyuLVdo+eFsDx6TUnSvjEkcIzAguyCBo3Z+UmBS7lM2J67fWxiqB5SBuTeZhY2qq+k1LalZ+Vylc7bjds5rZ5P0L8SY56zlULm3QZLMmeEVhmFhnbMOou0xtJmJO8qdD2TpKf6Ht+cbaqDcMkNnyeI8m5blTsJETZPgLAeCR9CoHMPWGRuvPPUeMjTuBvJ2Z/Tt90NUCy4tCahYCqnb/D+VwNuh54AMQODY9SjmhoeOcstT9WJIpPexQ+G0lGSF3CDjFCUDhzLub5sMXhP52VPfK+AIy5W51Bqp7J/XuWvNI1Oi83viyASjqw57AyabkM+33N0bNFkeql9FxKemket5utpKNEbyDDy0NEuBs7UEPHs1QuZIX7fzuOcU+vW0vuzHN8naTO0j1FmmHhEO2tMtcNw02d4mtroK0qSS3I1ECUDJMd2dQ8lE5xOlh6dQuUFnN3OHhtbV1CqujzgMdHyyC0ZKX47OHv8y2d6csvztDg8+DmANmsfnwpFC1RTUrVJemgpwilBk0ac7DBq8Pr/47GPDd4I1BoI3Kqs1DxBuja/OfgoET/V2tCK97tKq2fEUDqyv+ZKvmCW1j/q+K7/gfekceDH1bVzzqetaD1Ca28+8IA97AHVPT8FSXuCfitV1EOt/ulWPtfJ0zf1Qd2dwXQJnoBgv9UUFQhX2aXsQJkMuG8bxt0MO/Sawj3bxceMAJi7yc6hLwTtZrIqvV91oqu5ANlbmxmmNZYEhigNYqLR9Tiy2bEcJFj3Uq44+U4Pw1Q0kk4o+3HXAUye/lHn8h857c/j5c2SM+F9laslQ8zhHC/dE2kT2l2H1t/ejmo7njrpWgeRnKV4+3NYVFObzNIZxmflpbj081YOKgtbqCP6f63AgvYZRaXKiljUrqsEInj43vj6770rEPh/EsyafpvRRJl/3FFICBKAkSmaZvJNSJdtvPvPUneGkPTL1a1tS3O5sxjKqfF6WzQ9OS56cHTyjiUKZQFx4h0ZUzw0lwMQEIcjy2vTg3dYogIzPKaEIki/oYQn2n04jJvBxcw0AwCVJYFUMZSww1YJjKgG87d05U4Z45RiCsBJb9JbtdhXwQhqx/Rk82BBCce13hfaUa9WTY1Pvm7B7Ym3agarVRMaE1KxF7NFdVgR2dBHmIm4/Kx+WPrZf+0V2qWhiHu7O9MSWknoqXermadv7qCF78Gw5Gd0rgIzIkDzD2qfRQhIbto/wOWJJexmDXXe5GWt0Lz/fvKv/JznZfJXNg30sEQpKFvpHB0ItIlDduM9Fon08Tzbp1BBqk7884rV3GCk0KQ3c0UMOWgGb9kMMcaIXIGFquEM55fu3Z11J6J4cgbxCKMmPxoHzoHUyOOmjE1voL1iAUqNkS2pmAuDvgtnaTLe7ABkkP7lbKmsyyUIoxQePM3qz9EGqA7QIhTt6mAYu8OdFSbtZcvN02a+kOc4EBOQZzwiNiyDBqkbKEl5wvOn7mf5JlcZTZ3AjAajTsmtdLzwRuyaqCszzcsjE+Id68BdAxj3jktN0Bs/iUcedSPSDjRi5HNLUKwJmJsKnjGzw+Iqx2f7TEmys21xRoerB74PXIJth2xvSZy7rlCqvbwgo/0gHT102kTPpjfxv71Phll4f/NLGFwSIMxcEvuy29laM3w3lBKuZwul4nliEvKiyNSYDM1+OT41wNKgyabeGNM2KB4vMzP9MkgINXqZJH3Wak3966Z0fIswlEqXU8PkuBr5bGd87Xkp9G7LT5LtrA+8kzOwwmG+MDN146zSLv9AHKz2wfX3jR3hj27lPI8svGGChdCeHH+LFWnt2jslM/R23mXped5dkJPrEJblzc7ByE7XxL2wRnBtdmjAU1uPaP32Ysw9vdrynY9T7SxXVRCfYZMfmBepmdeRt9saIY6aKE3wT210f02E0gV1pOPHs3c9me51PZKJxZU48u/nrQ7IyQCsBanNX9LBKORVA4oW8gsmhhAEaoh78Zud8KTREJBI6szvajDEsn8y/a25qAItZxOhghU53EtQxkuQv4ouGajG5cbvN3X9BzIVKq7nT8/lgqHF8v4DgMRZLAPnj2ps5CJNUxSPPtZVt8woexEQhB8cXDVAQz4ddwCVt/qkW99tOx9mxwkaB39CYgDfzOZ6QPLUrlpzp6zuP/KQLgv9iSb9bE5DheEwuMW3jpNh2zggzcSYzdVbwpysjjS1sPvhmSJSkYBM2GN7RyVgoc41Njln/pI9gJis9l5gtW+x/NOIZbfatIRKAOYhvy7aPxkkW6V+temJyPDSuaPOiJRtvEUWl1EArjF5JygoHtVWkcrV4KQPdkKkbhDR/s2HDA/IIuK5x1KLoNKv2FkQ8RbgzwUImBfPeeL7vkX7KHGXGYvrNaA77lANHVCdp2usSVwOTXsHrAfoh1ZTkwQCH7pPXHoW10HNvGbH6gTwW9wEr4cuB9TtWqaCmKNGIBS7lJAp7Mg3cH1KGdnfHmAfjAdvimJWFEOCi+UCCzmH5kZBuFn1SG3qxsLNahY23Yu6zgNNUpzr1zK3pnqsC565Mvgb5hMbUpP2SHbOc+7LKtBl+BLpUYp67pDVPFwpJxL5LR0o0mwcN2p83a+YXxfnZqPtLwo3SRUAhGARVS2jSjaQcue3fOju9dkZJjoIE2kvo9hm9aLHS6g37zVqHHOxIjhQEIchTIeuuTqFWEj4PAQvIqm92zbgEtM5G7a5SD0thHSXRvFsDeAigEybIbW1sqk7rtb9gTEcX7lQf7o3pq2g3EtO4rvSradwKf+Lm0WhORDxWua9HALxCUvCBv9QtoMUTRQIzFcAd5qx7qThglIBhj4Sy9fk9rIRUqmK+TZhoj649e89aHXl2jlJxtqi811SifJsEXdurNhkGaH2DY4F0ZEZbJYjGTEcobqkzJu5kfty7r4q2SxdrhlYVn9UfklbABZQ4/tO1yl+elw5qHobWZDFw+ydT5NQ+OoV7zuW8l4kct2UXlVsRKclmARHaXpwTD9uNxR9yEjQRYdqrTY93AUOWQjxDuQ3K7xKBB01NJAlvOYtnw3LtMmHRyWSSJ7sK3AF73BZXVQjW5qYWprtbXRgH8mMwa6yjtKWpfjNa/Lvy7P1E/8mBpO/hEky9Gv67gB+oVh/kdiLmDmmIhGXVz/136Jm0BLvSb5M6/QbV0uDVepELuOmWKXvzvpIDkI3WXaQhtEVvrF4fXH9NLag7w8RXuS56B3Am1KWnK3o24/01PArYk8+OJKdotnuB/c2pYxY9ZcKU6Axmz+Bmg//Bo6d2nEWEBFpHD6dBqvKeRVNIqVnruUCWXHzCldQQQNa/zda8e2t8JQ91o7JUUXwve0fXJGAvJqWEIWWwLYoIg/KINhqGaSwhSFnlFec93EoCNV0KDyvbaN16EZIrQ+aLpfiAa6fnpGmvMET5bAW8vYBJMZGYRdn8NM63D+8tmZJerlULWErsoDlYKt/fuBoNbqi0ocQfl9KSCAoVxpHcrjJYc+rKu3T6ZEdezUhgs3MrB0e3UXwQGgAnBMuScs3UUhEkJ11m9J6ccuXIl5M9qG9b30wR8VtEW3LbMLZ5pm+nqdVPBjPd0EejkZ44AMmSuI5gF30rW22e/m+nwQrMMGDezH5C6bUJhFg/0SSHEooXcWv3QfD9vMcp7WzNzHg0OXWqsxADggJdJ4gKUM2tJEcidwf0TgcWqodz6QSN5cDLBefgtiH59jn9xhyVcA1DgWLkP0uRE9dacPcWgWRcFwBcwprKRaoWd4Dxq/pUyuJMWaiC9BNVHrPCoVchpmqgkHrI0P5PK2tDs1OX/Xgd3cvKhDWGekobfV+Asw6uYxbl+Phz5l5LIXqEAbG7/cI6gDyVH2oE6CIUM2EX48/4Y8p6FB999IaA/pecz/Axxx6tnL1pBE4E8psCum6EmFczROe3lA/vFcqqypwLwFVB2RX52udOAZZidHftkN8lGS7ifd08DTvkJS787TPSbx4yePiJsYDZ+KLtOveTuyYIKhmkUQy9HKUDF7OHRwks1F+ZI1n4ZPSa5HfR9AwA6jhPRnYHiYZu8VRXDbwr2g6ZhUmsf7hfmYhj2cUJ53nqygdnrMaRWW+LyUWxGqNBPgc2BrUrAnyLT/SwlY1sKN9BqXkFM433K6DlX+4WwVeQOLHRvrCTgjlCdEOozWkWeleDxoUQXvlameCz7r1+9gNYSLelbcM+GOVMsdt4aNfgG0m7jdy6KTKQZdAu7oIgZDUktPxCzbHbW4NKhYM7mYiqpdtABb0ODp5cSNtO9lyen6X0jt7vGu876caysZSdyhyNg+ZZICsrDB/8vzDxF8Qd1/oaf3r7prty45ONWK3wwx6p7BM8e+DoDOYa7xVW1jLYOzwL8fQPs+W6+/0ohPpwzca57ZzRWzf/OJGFY3gSRgdTuuXc9CHLfiw38mfzXiyzPi+JtgyKemdEjGHAKUBeLObv2uy2q7uFLS00EApEnWfoXayWiOY4wGGQzTD5gsjaRMfc3DdyXp0DnrzOlL/lOefPREPJoxCm/Q/Ns+jdogeJ29pf5JvTLdP0x49qaEp8+Ldr4sAgPKA0AwwCB4+J5YVHRK2dvtMKO4iPL5egJ2Ic7F77lFXT11wQp20bO47x5NXd7l3+Rjw/7hCP/1VtO7pXKBd+m9gKsr/DpK9qXD4W7v7T/LvY6cxR+1Cmk6yRDRHJh8VCRNmvvoOr90tHneXvhOdeOX0Xwlvb3xwQsX5FVVGUbpSNpOa80TIsIRmBGX4uAn8c8tqsSc8FUZgHZcBnwWoJJDt3nuQUfbyvEjQD0ZjwJXXoK1jVskr4bFsksyw+lEREg5truCpY7qOj2h1ChOtBxzT1MH5FO7DDTa544HYMisCVOnXS8NETlV56/0SvdLev76YyPASFmkyjMsiyU7rE8+C9VQRF5+TNV4lPkqmsbbYgCbo5AExBlh0oTwszRmAfIDUIHnHkKarfU74NRQgNSsLnjUq8R8AlSJJtxlnwR3pnvDalXtbit01PlB26aQOHJSKOGySAIbGwkPvQEaELpL3UpRQEIrXV6SoOi8wkGksqJcziogjDEeCZKxvjftDR+vHfj5d/QK7GPqq+XLyGl78uOV1WwWxmvMDnNZ0CsIWFUnslC6djtafpYPhTFFZr7AJJ2WTr0AIUH2I/yFPCny34AoOvWWTxhrIZNPPSgARs6WoIaeWLh9132N/iknZ+/JTqACAqtHnYRwBGmVMlPsD0v+QUVVAqynF6rsOCO0EV/nF0/fTm8k0MB3lz/lkTWHSoojXa35EXhEIWsfTwDYb+mmcFFuAToh67RJqq8q40KA+dSf9gG0ceAOG2pgE1mXlT693tkxCugaGpJL/ei5zjHO9u/+nwTDNjXyi485fTuyiZ30+WjKlj2hdv3Dp5+1WMYwX2lzSaVOtSFjo2GcpIbWizASFxjBHq9b8KaplT134O0LnRR2v//0MeWnIg4a2BG1xPxiq6xCHfNHe1Ze6NbSmj/f6l6zxy0S/n2waWikA0YQAVMIkzT0xkNYdE35slzJCcRm1y1nHLktzKp+B0/9VTrDXUAQJ9DXqVjw5slakO46zusIy46wnldJgCri4JctUPnIEgAC9jHxVwdDeUHIv7httw+xHrbPrLoxXMKedZlXRJfQp+RzQwtsskEo1oyogoE9qy8YNCzryxXSPKtX+UkWNqGTnUL05lbZXFPddbfrdIDz684aVNJm0ukVTscEIVJfWXC+ZMGAxDYYtx55TDVV+rE5vSUoD2Vpk33nTYbbiWkwS/iOFcNifPbcwkFvEA5bgiP8osyMZQakgkpGCzM3tbSruQK8NWPNf/l9AWWUDttxBfJfdARlEeNTczXd7WTeIdk+evxPQlwQyGZs1GrifwdOaL/jZKKyVdPHwQ3jrvreLfS/FoFA5lfNiUoGAQeNy0IsKpVvGkFDqksPANkDIWqTWLYolDyb9WDGGZ5R2+d7mKcJMljKyRfD9/p++K5BXkoaywxgOzP/EwS1LEVeIJUwNYOB4GiOPwReIjPxt7Hu6tqhzwv7/GdKRiRQAOfw9nctYi2arbB6EyQLN3Hn7dZ2HEobQddFjPVtzJ4TVYTh9pNeyg4rbnQp3TdeELaKp4wule6QlUCqNMWcvL0AszC/tw14W5ZScc6xQirgcQGBEE1dyP4Mb5o9SYWwuri0Lr0h8Vm6SrKfKQyoYkKEs5zZEOzvqVMLISK+IjGUK/uw6IjvzDOg0yExRoHQIszxOKgmMt9vms7trZaKQdheRE7tqil+WZrfuQ24C7DVEdUitdITi+s3QLTYZB/bcqD4K98po/aWC5F/qaKx4aviEh/gxQcaA5bPSNb4jH26HHQjNiXlmVInU0nq+odqSBd4tweqLgdoDlox5/k4SolWogKpiPo2fnArx5gmtGrDeabi8JH2OrhkHCNwOjg5skgWhzuZD0SJLuVd9HFpRuzk+qGq2eOGYGVFNSDVCb9p96QCmgwXcadb2sgdlNmxk9lyjiNffAjqR2axtvEJ1seRgslY4xYQc8pUrJp8rug3+YOINTgTtq6zwvnCE2h/HqCkJR6Cuaud+evYINlDi1nu3Vls9w2uyuoOHB60jLOdhUxCY5Bze0k0q3qxJ4AUx0DKaZzMOidni0ZtFoy5WnV6muW8SW/F2fpNTlD6es0bSV+S2Pbd2NwLza8531KHOsXuz8wpWjqyPRfqDfbUGZNLTMP0GF4DVI5P5DsAmllnmqWgQGEyLiwIgRVT+NgUzfzRhFUEg/HzUQZvNNN67hwhy+s7MR4EtifhP2m5B8vX+2azNWEm83otSPWHiPQRL+30V9qusks07PvlnsXKWdHT1uJsUB+rQq+gfTXa98WVwkK82j9p3sTNAmTXS181RCh53XuWi8mzrlh81zy3IYveRZJ29VgX9/IlAfKWAbBmwokBfkDW/VPBRnX/NjxEGK2WDCg8A1dm8kWew5Slhm7iEvqF7lsQI11RDaSM4S4zm2AYYzi35r47JfclpDo5fInt8xS8y/2naXzW8uZmhJcEQJujU8vAuGmRA2EfEsrTfp+fnGchsWXCnOe4myZn8Wqq1NyxyJIkycKea+oDJNaZDdsVdj5GKGoZiAtao/F1EM9PnPSR7v1tiU+6mchdHtM9bvAzvdKaOFK4QaFLT7CiB1nQqHcQtQOtZ2EADi2uodySKULbYRT5xImP1GGIjd2ijPgyw63vuk9D8oEZV3XtKaaUb7vlPwwXkzxbM18/iVQovUFL5fBxADjyzQyXFcJ4SwantgYkhc8ceDTZHOvyMhvbj3UWFpHpfp0jW+tRLt75E7sbjg/xPtDnopOfdUaMRBeseyqJxlo3VuDKlDtRaWlcrdh8GXwe+nmMnHmTBvKstc6t/nC/xgC5w1SCz7CkpB1cDdR/t+xCslUqhEBjju3B8xlWYzf3ZeGgk0ndpRAR6EK3HWcalY+7Qrqo3gcAe2pBZay37yDil51KLGiXiXx+QAaRR9F5dUY2KVvyzi8CfbuVXwSdfLhTrGkbz3Ve0bCdv+XLigbiGPYwLQKHSRQmWJrQo4VTxwQCE8ucStVk3sU5s1iYn39f/A568Pg/Hk9rYr3TkogeJy5fBjvBJo6TZIZg+eqOXWMyXj5JvvslM7Rqt1dKRbQE6562nWGaSaIV6hF9ekRhdKU/VFIPKfqct3Ug2ZyoQKZWY3s/Dkx/0TRHOK5rnzgLF1FnZcFBAkUj0DnFvKwXvJCMUJYUuJbLPoX/DG+qIjFUcUly0RZ447PS2hjmY3b3XhE/ytzBm7wqtpbIkSzeqNjQeHQdlfSfFAFhqN38jOAgzNdaSJQzhRq0p4pJy7tZfJ2buuThLJo7l+/qGvUNuffxX1WbgKDeZdNjIlDSqzpOQIETVHpk48JQkPCBQsUW+cWS3UVDhMTMvdjB2OP82DtgG4AjgE0xZ9Iwp50WJxED9smYD/qviqKdQLuO/ULPyn0a0DF6wUxggguMT1eLbDdmnZjmmR4v7Az0m7pdkP8xeTdj/a4w9izFaa9f3KbtIRbo/VeAF2e3NfF5QkmLUErEiDOqoYnK36DKVc4GRoU/XseaqXZlVxw6WOO+ImWNeozs5r5tSIDVJlsQSMPj0vRl333bMajHWVgbIiAFoGm7aZY58PG7m2OH+mBA6us2XbV81nDvTT4LVvpuKa0P5ytL9KQ2/DlYFxOLsBB34Dx2vVDwJSvGkRna5Ox26fLXhzwg3g5pgNFGkrO6286K4mCdG+G/Vf5JzWT+7S5+YYHMvdMGMFuhtkV/W4HDFZKoclidPO/51m78fMSimO3BcqDhJzum0QY6GjmsmXfRGroi0CFvas6sc5FjunjgxA2I/0sL7nb5mhpEowsLBUJ/oOKPXzPFPcyXHYyPYczy6dynBd5opE6SBfGz/nnW6R2K+pnu60PusqGGzX4k2hmwbMeNqQCRuf/OP3+k+FdiDy+B4uGnXuXFqFCLFpekpynn6v2geNNpUK0jouiscuBKqQMyqeVZVjCgahWOz3e9Nw4Hw6xTIldb3f3uvctwDFLCnw3ilrhMovBgyM9l9vxyq+NEvvX8Ax2CEvmoL2USyZaW7/3ST60GfQVAt+oVCpqKCtjdEbQZrpPm4PDkk2j+ZGg8mEiZB7YDWXvT6Lp1DEXKaxzZlrmPIJS4PqncP+17BVI7W6/XhS467uyhl1EJRDGYhXacLsLm2CrGaLWVjbvyBwzCLyoFLMoY+tQW29KhiLcBAAUnGOC4ouoFefvrhoCLo8tyI9ZLQFZs0XeqI09gpq/B+p+0YWS+XyPCdDqDK9vs6Wvtq8zyrKx7ZtZyIVo5xntdUgj/d41rTp2HIZlX9itOAHXrYJO2lwnlzwid4vAByBQliQSzShW2liyPcDMru6te8Zjs0DpEXax1aM3AAlFIXttx6MK/5U1LY2+GI4EjB5H+f4oMwMrusNwnfzH3n11xZ2hTA7tWsMdtdwoD8yr7JUNwIsdtRKl+56rvy96YLv/U61kBr37oZCgNZM/Hsl8JC6rVihJp7h3W7Z7B3X+sbK3SRiN+ZgZr7HKCzlq35JusSLEG8E3FRv2R2B8IivQvOSTb8AtvdvF+fNzSo90zSzqz6Wfat2Vc2gQ3XPezKlXtMuGu6v4XBRarjswF8X/9Db9eJmprXI+FrAOOCcWOJkXfYhkxdlTTimtffivuWfnmUH+PwFxm2ycXAn2R1lnmnL2GRBP4UK/1px338HTwITykbCfHGnTG4a8e4TlBBhoHiX0zGnbWv3/WiHXF0IMtAZC/BwQz24Iq76bauJtTDaUAYmT90rbzkA9DPMeJJcoNkADlm2+bymvlVa9gW5Nc/23tSnK5NawL+G83K9K9n4NJxOjtIGPg1oSeiEfzNhZsHgApK8PmvxNuI1Rnr85nyrnFmb6zvAMSnMGiXknJ7pI0Zoose8LotnGfWUBiJbcn0hdt/3vQ1MmLFD+LEpvIYGxNDF30CNf1SFRgBtW2GxwNzZx2eM6vm9pJcCR/ZYYgM98e9PmtNJNEIEMYqjSu3R2awvCXqjxPA2DRPsMEchuWTUYfSq8gKvkcBzprlF5ntr3tBJMFXmPYkljWDC5bRyxXSp2F981s853ndeEx8IsN7k3OTXocxJ5y+QsbfTpnVCzSZsnvNLkz1AQnw6AWiqJlceuygLQROv2ZDKYwkyOnkcTz6THgxHWmrIjI5GDjmMBubiqaYbDoHUVLfUDpydB2thRtuGPYWV1zdFL6d/PbmlGFTvtig0zzFOVJokQnZmSJ0Uwcd6kWLUN708H3DLHpnUnkM1DZ778FyCA88Aja2vR7DcT/68n2lDnAOebAn5Yr4wYj9z+NP67r63NL0Cvd8JUmaVm3wiMldo1mr0Yq/zav/PW8uhyVtK4OQ3OiQut0Nz+aAkDG9z0EakEwEuRNbl/2AGImDtbAa5gBoWoU4kXykoUnrtgUWOpSn11BZYrJbXilvhkZfDHsJNDn1YF1KFp/RiOJztoshib0r/tirhg0eUXomY+XMO4z7A7hw+YqfLMAJPS/1WkP3PXZJgMi2YjVBs66QdbTvyRuN6WBOzI2UjjybNV+KzPCq6sj4Y+FBKT/ffAql09Fmh50pHHb1P6LTIxXlxIuvqLJv/Sp+6xpKpk7sQfTjLyUHVsqQsGZiYCxdS6dWfRIlFAJI4is+QuNpTpmv0dNu+lMu73ZshzRjs0BinQH+l8hG9qwxUoWj9p2nhpwvaHoRMmqzKXN6t/z1XYsFNtChUT4aFffBhuVFtSKxtGRG9JrM/50PY6dzKPIoI9VEa7RWPvE6zViRkz1rvgEH1xFVG78QFAOSLnytSlCAJdgn0dCCxQavvxu8BHPd5kyL/RWBA2Io6W5jwBXrK1erNA6nkd73y7FHmydyLWqiFoBsIXguwqqGXxyQTKDhXiJ3+CvQYhfHmiHL1y50gjOEcFauSBjYQXh/H6Ep9LDBD1b2akY9k6MFFph2Yg0qe7l3bMTYDypSHSrcy1fLjwk90VCDxnq0rMeu72FieZ3tckiGTLuM83ocrmt0QGMlfVwcBuhjG6mqirVAFrS1+yG1XcIRm/YUqUQz/jEswZnvoXPWO98ERyJA1/wu9UGTXeNcJ7T792CkS95W5rs6jfprbSFEKYGUSwR0qbHDckc2uDWWebzHsYjVpdd9CcGFIELKtVp6lSJtZyhYnd/Z3lpQPEadmMh+H2RlCMfupslgPeZQ8/LMW/9ycKUdRt3AQKonXOIpYiwnTJTAFikEYvbAZJz7BNk6AdinRBo4wqcGqOncW5zVXNuZORxRQftFj2s3ik9zp6qUR8qIhW6VAt8b3ozSnDMs0IpgVP+BV/F/ZyCf+Ajj4IazsDvXXlXROuZjncyTkJfjO27luQgKwoDMjIo3UGlsP6nJIV7mUlfFvjl2xRv4kJPI8/dqBextO84ZhlRuz7QnWxtxljKohwbb0QEDWJsykDScWAm1AhRaCkNeE1BFohQaEUmF5xHUUZ1EbgUDvQt1RcY6Nh0gzuUVIklXvG3QLqoHcO9XXuRn57xHY6iBt48ipLd5pHddJJuZa6WyaIn3dUi8t7vOUtp8RO0NNwP7i1smDHNA3lkdFSLRkdBan0JLs4Ia7sDU5smQhbQYKbuRN2EOTT2Vf0AVVoJW6PwNEuishlzT5a2/CaNtUq3cb1e1ryFp4Yqr10+sjxPYwuUf8ZC+VIgHQSMj1yZZ5c4ZMTknfiNtnjCcmjTBgBJjyUuKXupvYam3ZMa9j1hlIFO3OwBQplPBJkYAxbbjFm5lvy5zdshWYM8fbboLc7diimZdQbjq4lmtb+5CHyrLLBwiFUBdRGXNXSekZhzKcaxYuSvkFeFVG3qKu5AAbFQ4PQW0f+GdRVKly1DcK7rLZk4Gmkv4MRCz9QUnB0GGvduamn/CCxBiCy1UTgpT0XpS2i6z+C3OJioSMtwFfIlbFsS+d9SYvUJywRmIcEywAdhsKK+vk2woknuzYWFvlWYb3uLoV2CA97f9POwe9OUTG8z9BBilFON0k81HIaEybWkiFnqBjYvo8cp1kkad2mh8go1t+JrE9UzYK05Vp/Q5TSm7LZDjymXVnXydYAVyEpI+8wiOse+X3ZI2ZfGdi0uMT86S+EfI0VEe7sl74wAIvKa5fjRK6OngWfiIjAKgxqXyqoLjO+p6CE7oZzh8U3DuH/jpQHaSpoURWm5PeKkcWBPQ35DSTDYfMclrR9jqgxEDCOba+n2eS04FFbRNLQTHeKv8tTYyrIKFzgpW6JXNF2vu1SduxCv8VqVB32ldCJ/lVMF5NnhZ1VENM6vTNqQ4Xogs0QnDU4oLosiSpmi69diYXWYu9ynMdRptb1dSVbES34lPb7wzA6u1T3p/xL6tHyPjrmSNhzJxMpaIqer5hlw6lpuVHtE6eEpC+l/1Lafu+gqoUX5EVjqijE/DyQ5bdJqiq4D4cpOJQwB9fVRIlw8S7PJynErbvFLYEZpXaszt51WB6MI3G528Gq2HFKyWNhXEOrJB7fI9s3llMaMzs1+9yeXaYmVFCo0My7RW1Renw1yf7dAWEHbRFz74+DhUjUOsJ4y/tNMqqZMQkSgyLvEDJvVaERakaLf9NUSGJqxnO+ASVlg2tCLBPlhjzSwiqFfCX82oPVi1mZtCOnUYLZbsDgtjV9vnCTdlGq1Ch+O5oQQKlI0wtQyBvFug0MYCFAFU2t/MqL/nMrW+EUfBFhWC2dpm5B5f4JF/Dg9GEKH6C4HoN0Nlbll1qrpKeAFx7iMR9VQ/1C77/u73v9Jp93sjG98Zagi58s6lEipXixaybyrQJ0UBdUjne3rtKLxQfma9Q58Risl17dyA9Re0BZOaFptz9U/7rww3myxeddTAwlRxcZnJXUuAQ+0waI9+qvIwdsz4W2r/AAb+2QS6PjcHMePetcZ76LsphTLORgfX7yhLOrwGh/KUFWpWe0n+uPLaEcYlAcwE4XRJrmBn1DQmiHK0+2pIzc4Qu9phrjAJaTMCUVOpGNBBn8Okq5UeyCL//UtakV+zx29+Pa9WSc6oAJlsAXdI9nb3jpdrdVhgbS0O4DB1Hf4M0Kx7aN9qslVb06lM3rDzlyw8Z+fB0LQt66POH20//o7bIpOtd76qfVhbwvOhEPB/yXgL5OG0C/R/00pb1YQdAHYLwL1UZiD0ub4+Wv9KYaoTGziwmbnJL7B4Ed738je6j6nA/CmI85fHi/oziWx3dkZRt3i2Uu69rRdMu+kQy+zJtbPDtXik2G2iZ2HWwtZaZB0/Qejra9KOuf89KjysbTF/YW8lnlj7Hu7pcXcbqKsKWQqckHB48hjfRXp1K4zISnGsb5x/2ueLZi+vlJSx9XdsOLT37FGODJmZ/5jqL0SQQUz0FWiy22so8Hvpu55juFfWYFyh5XBStAAux8HGy1QDatcWSwIK8tMCJLVQsn940OWRL3T4B+C98rb699dSYHeCRQN+zG5xIvTDAPjWj60bV5BajA2lo5VwA6p8MPfOXNmwhJsieGFHy3Y6/4G3MwpV9Bel6AkJsu1qmQHUKA8j3LiBxV1ZhJ2O/zqZI8y18ADFM2SoIq75j7rfr7weIcED65HuNGpkKVAmLIy9RtRWsdYBH3KltJ/b/9E5bImHaV/jFfR1A5GAcn7qLY8QDe1N6hNFp58/XhiKBiDBPNOE8xbJs+Gx+KZHghKEFd/xeYeCPVm6KImOeiUSN2MyWs59K78rLOGRzms2DG/A/B/c0bMlLXI38KidpL7o/fc+iyl+I29pEdwFdpW5J1cxIxTd+xD08fGpidImVo6wFBjOOj9Ul2lsnUZNijrarK4mOjeSTmA+I6kJVSmy+t31ELckNUGs4aEJYWAORTFglSea3/P8XZ1pqFQ30fhf7Z3gPSkcZq5tP/k6/n7UhLszW2ex0g56BWycnu7AowsKcyzbZrCszPtJLEVg+bsOvSmpTydCD7v3xIsGulQLc8fe7LoQd/w6dLG50CZjZV+A87p6qBWIzKY9izrwfPG2lXhnd+I949eErBX48T5k0EHLh68oNbFGKpcKlUkYiFMEZobaZQp3O7PUIsadF1l15jsweh5KxisN3NiWugVcQ7cJSnisYeFapwVE/YTt9Wn5uCGmt4AokPDcsvgTAMPBCo41TvTpZFTHTm5TwTBQM13qHaVfm++mL+VOwrvzpMVtReuUHWEBmmKrCHMizaLvk4Sbc4fXB5bObNCzNJ1p9qzxotf6+FEW7fTGugQeOkDlJMsF84EEQOEZC/7YVgN0aXwm1glrXxRB3pL89bCFMWMv9a05gGoZSYi0rZNcTEdwRy5a9zXzbo8FX4sJ6J69EjPGC/ql9rsIQDGS9WViP/ymyiuz5+pQhpJy0JwVU31Cdl9TxVEz+klKFGOdSr2AXma/4tz/hKUTuaBELjNc6Lu6kjCH0bJUgVlfhT1WlaI/hCXnUUOwvq9WmvrW7YFb2eqNE2Z1P8NwNaS0mUyNgUgkcaQN2VN0QBI3zyZ2IZ3SIoDb6sTQh72VPIq+Ede+FOET+amjLjveZ57hYFrCidszsPL0qA3jgL05yEpoS6Cpoj6hWVy2Mj7HgAaSLWrY6+48NmNw5KUhht5WsYDLkPjn2SAijx46pC1HUoNKwIIbI9ZLmauIqSQeF5YFYBRyJyxn5w1AmQRBcSyoAo6HNIsZ9bEc3z2IOPVfvCmIWi6uTZbzf0o6BKJzY=
Variant 0
DifficultyLevel
508
Question
Peter had 5 cups of flour to use for baking 2 loaves of bread.
He used 1 81 cups for the first loaf, and 2 81 cups for the second loaf.
How many cups of flour did Peter have left?
Worked Solution
|
|
|
= 5−(181+281) |
|
= 5−341 |
|
= 1 43 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers