20103
Question
The image below shows a game of noughts and crosses in progress.
What fraction of the available boxes have been filled in?
Worked Solution
|
|
Fraction |
= total spacesspaces filled |
|
= {{{correctAnswer}}} |
U2FsdGVkX197tPxdlH6I7Sp9t7QolwxbJNJQRU5TX7f3w4OTvdPQIu5BfediCcaRyGycSLBdiUpo5GH2s2T9uylHAD9U4BKFqmh0Lu+tQ3dRgQYFzFVm/hX4vgoE89OS8mmj6jTIVovQsmQn6HMWjVA/q/4gxYbF/+ElEiQAvM8DvyMvawFyCKXt5U611oekcRPZEEifF/h2Rtd5YKFbyT3fS1rWdTQ0ZhxCEa8wWbBFg/4C09Z9hZP3l0wBz6qp+1p7onYW00dQkcSn4MgEvPiSngq2dwS/KDa3uTZZoHEDalOVg/eo6H3Vpnrwx1tpZMYcJuNtNmH2N0FqqW0YwYWVcENdbNoHrXet4onaDdWhb7ZmVsaXhB3+8WyaPBLb0rkHkTHaWaRRy6izFxvFMo9HF3S/OaxPcvQTBA7kpvqZV/ml7I5fOHemI+R3z4qBjHBALH+24FsAnCN+eMxbv7t90nTIYOmlqXBJlVIECJuOBTC2hzL+xTH47ut5lBl7AMvg1tFmnoW98dUBA0XO802BDRiub+rYgJZAdseCHzPAAHEkVF0n74fENBDwu312O0tFwZfa7xYDhqwgHW3rn2bhI3wcTMmzGa0aDA+sp6PjRfkkLvKO2Gw0cA1IgpbgGdch5sA0ET/b2rgIlLkxCA+VL+feBHHbqORI27ysvdzsIEzXhoc/0LVpdolVIdfnpvxBeIaBY42u+26bkJTaIk4CsxxDfqeOjLZYnUvbE6I7Xc+edq9PJiM1a1MloXolgqo/y66vLlrGlCfR8djEsYbEF/692Ftdm3ZFNGyK5No6YMaeH2rOmO0ghLNCkZNdPL8romV13O1U202aZqcUudZzYRAH0sV/yd3N3ZKfbAN7wyuaVIqT+BeB9EktkSwqm7vulahC+C4a7ICR39b8ARQ8MCYnmGBtG0dALL5q7atRHPnqxlWwqCwII/k4YDNcE6Mp9PZd1sDLRWuTGQCypRbK8LDq+PemGtRDRmelVcPSOkdWqqlHsvfVN9XKAr5/qWs9pYMdsT8e/rvZj8hfrPaWOUp5fw0Hn7FYb9tB1ak1ceAe6SBdL2I7cGg5tuxNyx6KnMXt7/IHduw7qIPE7OsAymd7Bjnfqt79z96IsU53Hzq+lYZK3TEJkdznVTA29Z/q5xKOIm6+0O556uieXyBWJRbcAZ9rMXnefDbXQg5qKfOyOrWLrUxsdpK9F4oQ5FFGsBlsQFs9KTezEVDC8+E0BLpLBhOPEBvVCcdmJU0JavPBcJGo4tPDws09T+pBrqqwpSyTO8enUo23+wMj/bOEOxFm41intHXSjilpqOByM2PnM3UDlbTEH9b8Cgxm9V5GdmR+2zV1nsQMzW7CVkwrdL0np1Uo36yFa38CHb3satHAQknvDZRgLq5RGnGqo0Qg7JO9oJDKyU2j0s3aQH6vkojy647/BJD4JDSeRdzjzlSXK84evGT8ajZJkBRXANltvjJHZkibMeCqN++4lx18lfo5hAwRVh+sREiy5mNYnjoMsRxcN/an8w0kHpgTJz+Ha0yTZQiEN8N+nW0ev5BH2MQMV1baaRLvQja2GDMpWMjDcWNyUR96VM+ePYXKvWl7RKYN8altITfMyVoQ+f15r+C6DUTbx0UFJX5jV2P+jwxZfEEwD6K42tQZG62Xq29asqs1nLFtlsxkkDGhEpLgKqcEyEdjurSc+RgGjWK7rJydiUT3RwP7zFqURp28DLPnVRUZWE8W2XPXLabRWu9fdVKpO5xxTLEE8eqokc6RHh+Rx5yV0unYBbe8/ehzO587Fc9phpc/3CMrCif7Yf1JLhBa5g8L/xwBm8EPrKqhpP8Lq1BZrB49ZHUuh+c06UnUXEWmhs6Ujb7U+r9rCQRPZ8RfSwtqaljzju67vFyhHNrCHwzbSTKqQe6VYSNOt7xNNUAgkwGl4V4HAa8c9g/kIl+N5eAvcTUGc4RFHcYmgU6o7E11/SlfLth9Z56UDesClppkn3SQ/nfPsuS2PP9guOlu2CAf5to1Hc8e/VFeaxEr8wvawH8L1nVoFE1O0X0NndjhIdfOPAzIkwteLysRDKVwEh04LIcZJpTdKhNLRAhsbz41T55KqGDK/venyPBZUfZlIibL2hy0v+5hAal4Knozyp0aILB6HzlfF85QhGvnyTfLqgnF37EtVcMT8BYDbfinDFlq46egPWDt87qpod/AAqHTl4oNtP6GlIaZk9+mC5K2yzuqMbdoazl8JBZOASB+i39X+IkutIswtK0VJXqD7qFY4ACL1bLqYIBdMS3Dymk5dorGpU+oco4AA8I3d4W45bsjOJWxY/CTYqbUbKdSh7SDMakHQxbTN0c0FZaN7+mIqjxcageghWGIYCZ2MW+c2u1aVYnw5jNZKuIn/ykEsiiXD6BhtEvMyaJ1XKvUXaf/bQdd65iU3qGuAA+jfz8grN0grmPIqeB8peN0WVDtFdGXxR5170QdGw8AYEUsa/ASrZiSVhwIWTNhZ+DXfqcw7Ml81sZ4JjE/JGK//efjmrpoy9T/PMHz97/EGIGJ1DJGUce03z1Fy8Tb90RxsOFNcqC5tgz+1oRU3VnGSJN8WmxnDE2X3WDQoZ6K8uptz9DBYsWPBOkmOSb3rMrn9W3z8PFvc8JP9xAyCzDY5WeLLcd27Nr8BDOH4gQwspST9od0iVSXpW/WHoIRXF5eXUFo2MBrwSLtmcIADF8PBh6dFNoSu/j2EwVrTlFTfpziaC8aRVi9NPLxvFiuUlL8Z2Am8ufEtqGjMOkDFQbGQnD+FAO6rWh3hsgVmLC/AIpoLNyqvSF8hd0fQqkEpG+PMTrgNPZViVxFlatcPm80xSmx+9zydfi1i5W1gPGj2yFC/KCORlu4nln2WVK9io3jvOpE3JinET8PO3pSBmJlJVWgmnKcYAaD/md+PZ72qioLtkCYMy4kvu9/AhW3rLj+TdKn0ev5r7PEMOw7ugbEOqIGGKF/D/VX3yFAh2LaxlQXGqmmsu+8jt2Ptwm+m8od8O80TA1mpTQj+iGUBJFmbLzpcl1buZ4iKZuJTgsYAt05YXXFG7SI/EfswIFdFrfC7wy0CIaEso/8jxfiuXMXs5oA2iSyIfPSRsRhZPavQ6HaWz8SF9aLS/btsPoq0qE7zk60/9qR2p8txLv3E2jkGojSNYE9klrZCjIPf3SO3hiZI9V7UuXdKCVRNSqFHEEVaS8drRMPBZgR/lMgfRcYX3fsr4FHqgIO0ZZ0juvvzadm03NqsnxijIhnz8OuRis7EK3Z1Rl/kCbyfrMBHcnb9+onHLki9OulvIZCP2sQ39FMMpHwcPksWbbzwsPfQHTAm/cmVJRXnu+f9klXODMostkkofvZXuy1r2LMbjKDU4qXXYoFb21+fYeBGmEVTzqV/6th4thHtjzpoRvrtBzN+EoAVuUu+i1w6yj+MUBsW2agrKPkt0nlZtKNJcUDCuDH3zKWOTcLJez5DYUUf+wrojJ9a+DSG22JpERF1WFoaBetFCQAnIHy/kPQQgFWrFx5LOMcJYySKwPf6zRyMXho8AXuwsRRWRRyKKxxbeLcqmiPk2FsTfwVEMgC+9l72OOEmGuRMOpGxniwdXeYYhPdxmhqO1oIHrluzLMyL/6c28gB0ikDKrGvDR/QwNND6IL898XoU7uH4x0NbYj4DyX8dmnhPQiVVyA/cC7Gau1zE2Wb2TVlLVdepWx7JEHFc/RRuZR8WQBllWzLwavL05m8FPmbKKslPPf37o1F5HtyazndOrLFjqc3mxuDov39npC0ezsGLRVW58u6mbyJFG8qWTWGzPmvBVgkDWoouvqzAZh2Pc+AIHh+JC+G5V5hfmhp8DBYjWMPhJTzspjUpuU0xH69Xeu+AOUa1FzOhyJ4G0iiqMseVhXD7W8KQNvMMU06Lrna1JUWVyR7we1PeSf+epigfsa4Dm8fH9pySMzgQEdKwssa7P2ymsxbuQjbYyyL1V+r8XesKjTRSSrvZSjMCk/yFBzczjvKiS/yfB0OP05xQm890btgXOC3tN/tdbQO8q9LygNKaRgJaHf3WmVIZpeTTZ4lKf4klP3FYcQQLaFkxaH04kDzSm2L7WOI3TjLDNKefziPBVcuU7CmmSIQg63lVm47kwceuqiOa1z0Bn0Q4dBSyh3rJC/F21Y92SF6RhnykNKfrPXOPdTvBRtrZ+1/qjm4Dx5Bry2xE3E2TqrlUECV07/+/lscuSCYClzHrh4G/iwrkoHrV5eF5z8/Oo5eKK64TebSyCXBmm5x8SFyzjkzjCzf653Gzk6r4FFjfhOhYTYFIsaGh0Jnpv7a2ndUMFuuWheq4c2/C+X0LgnnG5cM+F2Hz55DF5xK6X6OvNtJffG3xiGD/lb9huuUMC7p+QNHXW4yrCoUoSoE4wZwlDCfI8bi+y51PQ2wcT060Y874KsfRLs7pPWwa4LQAuOLs3xDqk4UKxVpApds5/5Al/CwSCWaABYt739pI/cTZzNafsi7GsYxGn6MLINBEtE4Dy1gGS+y+FqkvHUujZ3spwHAS7AN5c89GwDoZpE2kBMZ94RrxbnCmWLy9Tb5ufgaLIGfmUuM842ZLUs5yL+qJbX9OD3UlJEN4lTQ0MoJs10ewDjwfci881p+gSuBEsv4qLbFlJ0iJvqm++rK/Q5CDpBG+olcdE1WLPTYR+CtxyPp/4fmDnqCef4z2oN7DCyBT2otJYdgRc+q1p9UvTAAQhNbEsoK/Lez6Bw0qzdcyVFylOaNpgWED7tlT6fwzsyV8BljFHJiOCqcydUhb675rTa7uiYwXXrP/A6NdiwxQe4U2mr6UDftYNPYAfIwiLh9HoBMCtWRpPMd6FNkRs0oVKYLqxOqmZo/PGGClU6nrcqQbZC8dzNspPPiPyVoLKQF/g86m3O2MAk2qjHZMOxbGrM5tk0YMkx0xHjR9hq+2M+BZj35F7wtN+0ah2UHTmHs34dxwgOCgNnJCIzk0NhjhBizjL1yM9M+NO2U0JZIUWTXnswXfie5tumorE5D3oZLwa6Z9flEU3GynwQbCjwSNtgl4oV+vfonsnUPRSAU06+ZvG0s3CcNmPVumqR/3hN1ILWlDWy27MFg+iET751295tHc8t+7FcMTzh/InBUzr4BkfjBWyk1q8kYK1S6zWw21nuaBBqrV+L/LXXGiDa2o0Neb4JZhaSCRJSxSyKp37vmkp7kGLK1/ncL69DaaZSYcdcBW3k7RoTrnTZOsY+C8+0HD3JekoY+lsQJ+TgAY1QVTjy0YiPJ0ikDC8m5a2slbilsia1tDFXipb4cNBYKD4UWFlgY51mcekmkCezksjLksslSZiM4ojFuLdTooDXn0dJbKkdLoGRcqBUwBFmY77v/UMhVUBYlwYirGwMOcUbd6CZmpM2HcdclR7XHZgEKMYVSGaQhIh5cOWtFOO5r9ktiDasYEQse+j4N5l+xyd04Q6dx8RCdEg5OWz4RTkF/N+QzKrZ3VwZg4Zq9ogOjLyQj1xBFomrl/OmxcEipkyHfjrVqP+X5Ds0uePrqFVUXYbIwq8wEJnGmSkZ19hz9OEGg57Y19h63u8Q570rOCc3UsTpZ4UsY9v21VvvcunoIdHmB27vVnYhJVYHat3w7Em+7+A0iIYYYl2dgRWPY9OTYFL0z3iGD5NVPRRbamkpXFmq9AEVJ2SI2jfzsil1+8gZk+sC793j0qZZlTttHWJSesYCo5qATTpvEqW2Yf940+Ajlb0qTrbKyxh2nvbrWk+DfBWnRLqPvtjq4rBjqHPEi2wGMjfGhGAL+5EPJmx6t4GeV1FND3I0u0tYm5YUWFecAA6UXlADbczwDbjcD7mEq+AusSLJX7RonGPi9T07WdnfwKGOU0iEpdRQgZBnv75LqvMgqdl3KL07aEb7e57ZVElx/qxxE0sjvGXBJ0mUmT0/rgftCdAMc6c2Nr0IJiHysX2M5ZwwgsdTSorqOtcrYEBNjJ7q/QmRc8q7w2YodJyskhQEmND8tLLsQV9jIKnAN4fuj1dUHy5wOD8vP2xAwvpiF1x5juXI+QKxBr4AFaIKwqZ/MAH+IHPJSuG8h0LxRQJqx0TvpfX2X0xkW/l/NXTzK+dq4KGlA58fe0xfVvc4LNhH0iortbLZxmybz2lzliQyoZ6xFuvGAJ0uGTiVK824xmuq/7SEv349//TXRennPoObMtVkgJ/JHikEDx07sB6rbOPxjtOx6bsJBnvssbOrDK0svE75AWz5yiiaG71b7ihhyTrvTvqLT7XB4/q3GKzOOU5iWjxPbfz8wIcoxSH+CtvH264s0Vqi2oVs3otNiJpP1kdpL05q4/kAGFm4wYpzhT9uObnwCpR3DDlDUe+X4dnCZiRFUZ+YRhULGEyUnaRKlH6ym6PJua0mJ69i6p/yjTKgm43bLuTpla2VFm87LouCia6xyUBPYEYYED2Z2TccElA5I9K20FJ7h+gZsppbXCe1U82RtbRN7BmPYKxfmV3VEAqENdGaS6x1Ulte9ZmkRMdde6bR1skHfVJAy+rfi3gUlIx45z+moDN9dU3MQaeq1nU30F75wXuwr/HTK6kDB0GmLWe6WlRbNI6B9tJmbM4/xhht3Sz7iTvv1al4amNZ1D3aBd8BTIQ9JKsvtOW2+6535Qwot148XLORb58Yj2bXR+Aim4salulMNunanWHxK4tHOl/ZaDJWgoxcDbZlg3uHnDiutQTkzAPU/UmJoMUYkK8f88WEcbvK9/LWf5mUA4FEFgfIwpbiC8Ti3f0U14vfAQPMo9cnwmE454Hh6rVru/9sI/mP0F12rYmrPhLNZaJZa1d0qG3V7D6OeT84V2UPj3qL2zb93VbLnO49IP/FEYwMQ2ZfEzVbuZBLAJ1BmfCWWz9EYDdO1H0HzdWS8j5B8t6BKcadzt+F56zkk4SeeEBRfVAj3TP4jkkmvQg8lW619tiU+XcG9bHIlFHggn0iUsa30UWxVt1UP35FG+k8H+coa98TwoNoOTWqBiuI7tP/ZwhI3w678ZtTzPdbqB15sjYyuzMhu80oS2FFCU6ieLxo4YTMpjKNv68e+LAuGC1bEtfk/c2o71RAVvPlCTMOwrtxbELAPHIxu33Ky4dZJZJYIoSNzgTfvQHuhwdNjQZeq4qSL2r/LmHPn2Em1EvOGktrsmSNuX1cfXzSxvNFKy24xABEPM+BS4TIdy7FLhEqACOKgoSqoX4/Ldlks9q4QrBywRUXwZyacHP9f/po3h/2ZmGh0cO99RFFzqcw89g6D1doGv6hd2FnFLRpa02T+83wYGvMNn/lm6hSLGRTCpI62ftqgtsf8cuNOy//mJ6GEjx4U5b/OuNAujrxhYkYv2GJYT2h4IQbjo42CKhSNpybPRcKmywasLTJcAMwzkpHoRIe9pi3sv2gS9pk/LlVXkgT8S/TosHu7fHeivpvH0Sbq6WGj9ONPNvyEvpnpGC8Bz0tack+pBg35p/dQtahjNY2+YbbjcTCZQOkm8f64jtcEgAuziGCtN9i57KqwXZTibmzXUHn0IdNnWxgDvXQiQWgXfriC57Uv7S1x5mLWeKFd5k1tPhpB5DP0Sv8GOjdL4cJ2HIk1fsOg8AeZXFZ2vuGSp4QAg622MzQjRCNS0dWmnOKRPA6a8pduZK6Ke5ZpB459zEdc9GhkC9QXW3RhhgH27gNRMOep6EqeZLEXOOKeHwG+Jo7oi+/yFweRKI7fOlwiThnvP43YF4HZLX+z5XbTf3wQ94h3Wzyg8oMOTMnVib4amoqj1MMK/nMOoGrgdH/QCaa0IhfOmCwEcXaQxQYNFPJ7UCH6aJTBCrnXj3wyPpQf7hEZUXHeFdYRD9WdWiuUnkEudN82HHOMuzEIjGu1uXNSyZdHyAvuekgU1MMribRUYsTII+bwD6G2hWKF6oRBSHQemhlMYYmYkWH6R9OYRm0xVD/uat/zYMzB5GyEx0r4vcKUWI/hC+x/+VlEhdRfxer+QhJDlgCWQkPDVUVUWgpjjlOgZVSszO9jYNcq9xgJUqXWNXGYliQmR7DlJHw1ewgrx1KrwEuePLd5PcTz2ZXtpZiSt7hcjvcw/nqCIfADx+8/d/X3LztGZ0KIbPbekPr2RMJMqAfaPZO8H4p/d/4y5YT3w61l7LNRQDiDNWE2AKD6lVccK16kw4hjchuev9SlOme27+aGBd80mQtfG18DNpvegkydB7zAzGJWi8CT2kvu5dyjiWgZ8eZHlunS988G7s8djqLwZrgxmCGc1tGNn3kiic1oRb8yG2mu3VQ2ZUI+lcT2UJLcjwSen6QabG4b9cZcJMJkkB+SX+NoPS7D8L2K5N6rehoTxpkJb5D6LCT+ScIE5QwkwTcX9hElCDhltV9LZJkgLeRyrpkRWRCPSeGvUFZm2NK+ne+RUFoayvt3DSv/1NaRSnEZoCm9iRpLbcchnrZLIcIUufwNRXCB9XBhPH+dq3GkoS4Ntt3BMTGKZfz0+gRsygpPzZmA2oxO2XD0EvoVyJMRy4t1+A3MK4OeE8L82l/JhdtNYRdPFYTmkbm4CloumoOEtXqEhUOXNEQBnuK5+1Eg/nv6Gn0a0V/Lmj+ooPyrfSyB72p8VVysCMFYUkEDKMu01bqkFM+5qvUYw+YN3QRFhYyyjaqC8Jxvj6Fwn69o48pKfgRDReLRnPRAkXovU0y/fHJIe9PT4N+wrZA2NKZTLDkKJ3sy5jM6OBB/qBx8cBH/HzAfUrd8XqQU4cPIGMGWF+GnOfEllzHlS3T++3wcB4T7tTyQhE2eT0VONxzWKscX+Z/2cREQ+/HjHX+35Sm73KxfSwruCwCYK+ZQzxIpQQ+/uciZ3xfs0wkAMszolrkv9eMc2OPhOaVgbvIUz6H3VBP3W3foXGkQdJNJLiDFUUKrfsDqO/0jkQENIbl/TMNti9QeUnzjTnBXYV54Slr0c326CmuyRZWZA4MO9uoOUhUc69vkmIkXfNCI4lXh53VxvJhafSXhEaITCWukrEJRbE53AOXgTC58WGG9hnxXcKM3yoSNeRc0P/z/nYZ3RtG/10h+ZnSfKkKkQwDuscZvCWJOY9zqftcs+fGiexQLLCfkDJIxKO5Yob7vRJ/X81TLJNwyVMiPoMDsO1sJXJqpyfHunPeZz6Q1jRHJw7WWfFHLOjrCVJERQamtaICUELUWBGCbHfqbOoZiqIZGdgIiac7S+BpYiXJqg1phNn8eXalyUBT05IMOLFy01XpR9WVocGxw8XZ1ggDlOBxwUQPdkADxUu1xDtJIPC4JWsolEX38ah1N50XCnm69rx8SM29EhEcwJCpt+6NJhifnolQLLtNdx/1Fg/KHN+jnZbqYutyXgdqp1CQ9MEttT13U5tppoHHums7nCweqNg0wLW7lQqloLGim/9pS/4/YssEt7oA9yH81tyDVYn9JQzQ2w3BTtc2680AXmyx8gU5DJ6Nczd/T/yJuNOPT4nRbio23O5D59Pg8OFGi6qjdf/3lIbw6H/5xCBsH+leGCeW0H9zmukIyN/6NiDsORzQrBEGcQHN1RqCfjtbVfU+J3PLY9QNTIsEOGB46zG3z6G4Iein1WKtShynvGiaJAtE2qL/MRUhX4vnCB66J2WosFZjYl7wDCt1vNQ7CQTgFGoqXj+GssaKmTOqlZNCGynz5bXTD2vnQzuaCVvCXYh5iXFsW2cBOEMA1QZjUaYN5kP5c0WcGj3WI1xg0RBCbcikKWXBy9DwKkTeVLeXQ6bHHIh8xKqtiFAI23iFpPKGf4MBuUwXvGR0GET17/exbk/+qJRdnic/mxx3lq5kzcsxKWmb6PTajIvKXbGZNFRgzMOJU4hY4nddcI6Q30zYQU9qZLCnYAzyFKGfbof1ap6Mh34IRk5faGBQvS2vHLBGYlql5YtzS/VltOMXwSF3DXHjGTwMMRCt0pwLipn8cNCLtKL1vfDe2Iqmzj6JJy1PoxYp9nbJnIR9SAPhNWR2fCvGs62724B+jcxr+4K4l49eTsHLbroQVciWW0wzRqEcOAD403Qhl6FX6xH1w011SKYWiq6SdvCuojPw+0o5nb3LqoS8IsfXj06k7Mhbpz4hmT7Pr1cvF/n5I3ASaOXlav/whCUN6bygrThpEkfLfYGdVK+cD88ntafCXxLXanN6l8q/MMbvZ3CYLd2XIhZ6Ufpg6JHHdP+778Fd1B4sfHey7SUn6caFH0t6R5V9X2qMDpXDiL8SdCmlxGtHrfjSTrJTD6mbInEqtbvSNbAf7+BzNzSazeh7lxwC+ujn/Vt8OUehV76OjXHVJR/nSlC0JzVD2DPLLKK9U6pkTBKghWcOq5iksJ4VIWNXAunYf48lElDWU5eK4vu+40flaSqc8Vn+ZJqyKCxT1yv3gQNTTFBBpfSUgLM4SAkAGQlWPExBD10GMayq4uWGJieaaFiXh4s5w3oVF+Vzhfte8WlMSWy0lOaO2oOWaWaR0+thKe1vsWQ4l3iCv55ETHLtMYSS5CtyxD/o+ooqhHKhtjlujneW8dfkZOWFi1TUhRFI6PJudSxrZLDGgSfPiP+bIxNM91aB4g2hplCSHPMHoxURFUrJK01fe05XguT8gGqg9WJZbOfTpjO8ERg3KQn1ls/VRfpn0igWhE9ZklLDWEyrke0SXaSypv2nU5Nt1DAjSpyMQtj+EGC6IEV+JQLV1+2SIf2fw2NPLKjBKoEhvz7x4T3l8/8KYQLtDqrbsfdjbABerLSLNm0UDGi7A22INgYU6rdYYvlwcSDEp5AazIC/aKhvpUk5ISyNlrKPgKCCFnxnR+fntPGdH5AgOZvS6Yi5vWipeCszvzx/zby3sqRAbGrZHXIQ7MGqo8bDKp9iUQspyW5i8IZ0qPPB/FmyAfIAeJ/i84qx6Ex4gaBCJMhdMwaEvVq97qUHPyU/MRY4q1upPmg5dEP5kuH6jtBpJMMET9QtdxaJLzufftpR036ezljHe8mO782xYICitZIBMEE3Lr106JQxr8kP1MckSyAvrLjMm/XD84YU1W4HYrqarvCQXj5tpmvDCIxB6FuSpKDwAk+upz80hyenuiHvQiR7zrUG5Bwga5lQFRJY3tpCvwNNgjR60DJ5XDDUqW6J/OJ58Ln3OEmU5LY9P7+SvOwUqpBqhyWOUnh3XtvWq8j89ipAtO9MGIMuX6aa703ypstrJr043gJITFW/PFtoeajXF7HLG3xh+yNpssJ/DrhUDPgGejgx29M39yMCzrX0rLxJx9dXMkCiTV+yTQGMmXD+ytYY4+KTm1zM3hJsgVnUVYzMaXriDAjXhYvgf2IBrSQ2eXsn+6ulazAdZqvJL6Mx4r0DHxLy8WRFXNHHtQyJPEyI/w5Oc8Vw0oHFDbLGoF72G3rYXiLw0qwTPcWjnOW1R/MIImHklz+M/st7WBKcQ1Xpqz3eWpOOun297YsBKSGXhbi7rJGyU6M9xSPjmvwLSo1UE/3Qrwec7a0fr1G8QNkXcs1grZGoIojE2OtPwiyGIvyclQdXPoBqx26H7nnhgKtGCcow18t8PpfNsvgVe7iCVKSPbtZ5vAuHac20lVeR+ZbCNMsSCd8GfBHEtm89Jp2rOabMjKhCQ1b4DixiOeu7jasXSV/WBOTdMjyaGWtZrSo/tdVsv6X8FZS1ieacnJNZVyjRfmgdbB+226mTmHjF293L8FGmirRN3HiKjb/3s3/D4xrgR9durObv9fkglfOtjJ6zxLz4nYcM5YSUW60XQiwIOW/YbNFT76r4ibV0eQ/HvE2Yemgvk3xgFkG98Tkv5xXF3Qtj7kl8JRhC5RtvqNy6lHECPrtAb+8D5ovjYDZ4U5ho5uzCOZstam49vLgg0Z8D3/HLaTLCw5AKfnffwFnvHRdHQ5zLtpuWRlQrLFhzNFXlDX2d8Tk531LfeI9z8mxC9HFYldl09bNI/TpLnaLtVmhPm+gGigAk7ayGyCM5ggcYyc4thsuO8q6ysI6VxpYVjvtyEsFBzCCD7OqpfrT80JB+bS9ya6ML49IvdWHnFcFCnGdPg1RaUZ+o1sJhrJVtDS5L8wWelY4PYJ4updF8wRWuZDX6LO1ib4wlAmqvh1ZAzYh+V7W1f3bBW3iPo1ahdaShCy08fncrICpKo2RkF9DvNtOiaRLWSwenU6HuChJcpzzcZcusV51sAT3+aI6amsYvaks9QJmvzvCtHbdFjgaRMMtXX6vrjPQrxVEKLpfgUznr+MVw9OmxzHs73bmIIwh9Z7jnwvu3oNQG+3ffLssFkK+nTu3UuggWh8I/at2cgAMGMiHqmqdhK159uu0xgwRRCN9h92gGQ+HPq353UaNIXVhniVcq5xe62mwV9IIMRNYQm7eEN/N34Vhyc2eIwLd0GFIBIAUWLhbBxKTMZUUNGTB3vs0wg3GCP5H65zsXo0Fdvgvr2q9klwC7B5ReIEXhgdtCqUdq1I6Zv4WgjYk4nKlxvdQ+H1hMekH2JN9FWc8v5MASCwHoeesqNdobkM3luRHceN3W+SOaLljwNpiaicvFLFK7a0oVAc07uIvLuh8CvuZxH1rHvy55nYtWdc8f8YwThIUIQWHYAk6XlN9ajmoFkb264MgvS/duK0IQ7P8h03xth2CVVeRLD6VGzAFCLl+2AlDCnSTMHyZJ2RFaRUeQ4hC7AARoIq81RYReC74v6xniD4dYMNDiVTyOcwWpAFibEmBgve6dcGetv8zeFjOHpLao6xNCHynG++N+o3RL6YkADD/Iv3MxSwCfZTAl2fsAyLVK4cLBUehGwRhI63yT4zs26pWhVUC3bybHlpRNMsVkcgBT+zVPwrmPDzoXzDZGbpZ9iB3l2KEgxyVxGkTiml9N2C47soAvsTwSSlg7Ig9V4jWBIennTxBh5CywsgHHNvbLX46Y/aOJ0BMvB7Tf1rVIQ6HBg8MoWNgOloz+jf+bo1KEnzpWFXMC13Fq8hKdJ5thkCWWmtn+FwCoT
Variant 0
DifficultyLevel
448
Question
The image below shows a game of noughts and crosses in progress.
What fraction of the available boxes have been filled in?
Worked Solution
|
|
Fraction |
= total spacesspaces filled |
|
= 97 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers