Algebra, NAPX-I4-NC18 SA
U2FsdGVkX1/Q2V0teDHiWP9rBhIiRD5ma4o4chsHeUlU1BDCVu9SJzaj/4k+LGkeTjp0CEuJmgZXRTW1cLoR6XREyAyarC/T+1VKLKHHGws9ldFfRsl5YD8gKTDMBD02ZbCHbDu4ytIQWcHX9R0uCNwiPgP2lhjOq1NvVIW1cydtUOUFv7QrD8q0PVxne0G1WDpiyhRyqv/+vzTgKWkTBApp3/E1/rSnRjacaV0TNVf68HQWCknjZl+gPiohtixqmTmq/MPvUF2vqJ/SeG7nBnwK3dupWH3iR7xfpswL1I60jasr226HYZRDsedi6q8VdfMPE5kLbJ1xURNkB3F19foTvJlLpziyB7vrh2fE5cp5uYetMCeuKiQBD0VuKbJIADuFjsMA81wCrB+1XHs0qp3ab48YVAdCKaeYL7p8nCLmqjyh1dtIjzLWK2ynOE2CW5cNvVgH/Jek5z5xfoWiJDylMMKWZpXikBEQz7bxra2ZiJsolT0xS/eZtsE0D/Vu7bk/z5yaMOxHHvtTlQtjnC1mnX1QDvQVXVDE7O9O4kGIUlGYML7FkgAN0RfcBMsWQTuGYeuYBuZ03pnk+3ZAsWsmnj2CAM3c6MN4jj70626L3TJsPalPEz8gRiiQDDzOo4PQBHl20Avhkmu9KMQj07QmFVVkmPf7bzYCqWmAa21g1aeTIIjtIH+ePN3U3BL+9twjmyNOy/Ds/lqdbEgevb5tTA0MO7PnC8eCOl6U7yjf1RrS9SlfOFsR8eQrPR7mbZ3+EE6kY8BZ3BlrxTyEuq/nqXWNy8OdOjbvdTS1H2E1JDqoiDts6IHKyrK6BtbuNZ7bdLZ2af0UP0E8An9lNucqC7OeIwBkQ4yW7DO6GVC/i5KMWfnkV9RPXbHxTWSHaQ9kE8ckmytjMUNA1ioa2vNbDyhKI9EqbCEvq/OMXZnrXbl94wOr6VXmcegBGZpIPuWJ6rFo+dsXwRpks/v9tVIc/yZZw4o/1aJC6akpc/XWuRaKH6osBnn5tpSQaJvkVZGPNo2+W3zHIbyEqtmKNH2QREqGN1+iFTcs4AjQ9so9Vt6hmzKP1Uq0K5S6yLVEd0bq8VNQQd557NqtkMJaAURBTKy3MukQ4rFDha4HU1EDchcxk8iOz5NUYBOXbDXDJ0MrZWVvmEzj1nDEDUQjP27B/W8YzMV7ElgzQVpQ2HZrObMLl11M1SV4RKz5raokB0dFqVYIZSJkDS3XBPN6fytDtaQVIq5vQgq8Ln78kNdVxUgHFDXROfd0eJsYhbJxQcxFTFR8xpr3pZJ/GU/Y95rUGVz7LHGg6M5c1ICt4AjTRsGbtFa6Gregn89gXrST1D0/Vf1NmWoWSBd4Mf3hS6/pbql3aLAZQQDOWi0GXG33EHFCdIHOyOUV3fztjhwT90Rk2yrsOP5jVleR3h7Kt/+iBjXvuZBA/HoUe/+aDrSzpvqvY7jl2zmDL4/IDxlv7pa2DMibi24inHheo3J3bgVASln2gZevvhYmq8ZMJQ3tZ54vr/GLy6NCNNdODpp7mhZGPU/yDg1pFRhEPFhUsiPij0cIj9WisyCPnS2rwrtMN/05BnDPY6/N7rUYb3OLk7eHQFHZVeM487LCRceo9VLNFB85F2d1J1gXRCyDsrJQXAre+/xanYZXH/bD7lOrzFrqcGZYiHQja0491ScsDFr+MxV3Bm1YDiUwajWtDeqPBLtxNFmsZiFHWQoaMRBIni6gK57qVrIZxE9rJ0OkELHwlKtwhAOBu/BGsoQ88pKELemprgHWBUUt4oi/0eDvuOd/8osEyPA7HjiCZJohritr4iVOWPKZP5psCRzOARoGJDvSuiaxpZ6q9OyUo9p+5BM62IgpJBPE4seDx5OOKaV3jiKzmvunz5WP4p6u9hAk8mLo94+ayAPK6LwhWYpKaMBbP0DECe3QhQGdUOj3RSjYiqKl2oVWL+7JldRVdlaZxjtprvDsurqQx/KvuOSwJPVwTEGGEi0ooO8E4RHWB8u9tf+zlypPzgdRGRPBGIZg5kwKobBINyJyDVzhmhRjG0DJWPwM+/XKzuEtFJAVDqM1xHpyRawZJDZoM08P1xIy1wWZbzOHywI6TnwAe6vVmSOCAyeWcW4kQf3g66exEPF2GPOkMIDXmvT/CM9mUiKvJB/FUqxLgYDQ2SOVrwCKcJgbn3ulViTovusv1deQteuHeuF/h8PjwDVC2fP4YY37Ni7nz3oEMiaJMfF+4ghV+LXMC+KasPwVZVZkp8j2kv5Xj1ieAktVciWJc2GFnj2A/+8tNjxdf9ZL8ca9tHnYMaA8nnCN5tCx7GBdP9QmfzhoA8tqOTAUMlxaA7dQIeRMzh4MxrCE5thZOnEW8zhHilq2fpK/w6GmMw4gW2gxXo4nEARjldYcfxkrRvzsK7c0AkNb5oXHRH/+6SkKqPSZnYX208yLWatr9VwfW5NR6OmC/VKGDuxgRq7UqXwy9AtBFV+CwGgaei2BSKTSc27OcRux+obJNsrhf+RUCAhMujzhWbHeMxumwrymrKj4U2tpaHIQ/rp5UwX3mShOOzq7LjaUxPmElJtbhMwHRtVCbEVUYCdZCoSZtpx4MW1Hohu/pLflad5PaNKNd12jJtRisBd5A9UXxU8XlApjrId3lWH07VTFACMvMD6oqRzWiTPei35uoytrKiMDgupPi1XcQVxE4lmnYsxWvneDd1AvfdgNV+saGJGtsvpx7xUHE/RAp172n00xR4HO2ZusSOenFE+4tcBBO1ieLemk1cmJdPyLnEel+b3a+WoYBuxeyl0q2l3eHVBMauaFSwQuSfjyDj/InTWPANtXDKUsTDYiV9cLu+zfZzvCexlHjwuRgtK0NlHkQtrL7Jd37ZzcLKIaL9OgdwgAJHfOrAmZnKcH/8/V7pc5gUw1FRMEManKmjGyKJ7rLvG+fVude9cQU9ioE2oF/3GFZrJaYHHzKSaKS1MzFqvmziPLA6kk/j/3H1AwsXe9YpIAkrXO08eGUtyUj4M2LObU5qSbgFJVo0EVzWFKCrXueszxPVyzpUd9aN1BrTK6sPXJfRWt/d7f0RCbaQG7ApzLgwGYcec7mVAnNzaWLxVLZtGy7lTGBMDzmM905Xdf4tHDslKlmaV4xAJ1NqEfkWQ6HTlIwRQp1CEPPHWDznNMvg9Yvf8vvNLyJBDLpDHCCvPE/hZTVKAFhPbmkRh+fHsR2STv4TAxDWPaowMUUreISmI9jryIfzoYSumsx7gMShF/Yy8kkA3/RHBofRSkAwsmbFl6iQiCgZLUIFg5c4Nu9AyIP5KwaMLBPOxzHZ/r+91S+TySmInE5QST84eQ5r8eH/ZA4pzjVjWL7GKP3p1hanKCJGvbWxD3zX0FDNkQvyM2Z6p7r72x9eU/IyRO4CLoe1Isp950Z05obPMEpEvfq0ezb4Id0mqd8iULQpaXfvoUqStK7WR+jcUuul+W57YYOcNQ02HL/fiXGvTBsnvJ4AT0Do44gJ90WYIaXtkdPaY7+BZIw0GZ7vF1tHn1u5s9tn18dYIvyuTiNgqtx537Fjxh22gUN02jIkb/AipqRqaLg95NacTzlZaDBW4XXIy7zAfQ9Bro9P0cboihX9H+Ea3Q9bUzLuh5U+f9ZN5QkMMNNBZbyd2CwE4m5JFB+g6K7iVb2bo5v2/lY2Ikg66fD5FszkfIBtyPd6tW8i/9YFOI00cxWdLzwcd5hvtKG7Ssut0woZWZYvB8hEWMPCRAfcabZZ3SmyBRHxIgbBpPDIkIWwYWvMJfFe73YIpTPv4hZg9E2GXWDGhOEXc3KFL0/R3aGr/k823XAvPTf6Wu9iyww8Zw2c29CIgPrcL25Qduf/Xc5c00kQEPDY3/+yBDTOs2Ppn29F3xfDxY9ga1N9CtsvXnt4yEubYLohUHOOOdxW8HetwZYQp/TGO9lj5sUUGp/AZdQ3c3p03xDTXr5ciaFGsCWX+ZXc3BFAsMCImPA1RnyhEec2rLD2UxKAqm0SDGqm3YMjFBIl10X6MATysZBu2mMDSVxT9iAKQh0vexaJ7Y6LEmXpI4VkCWkZS7AA7FMDcy2/Je/iwsWytAdyxsJjrrLooaE8vYYig/2xQL3kP8zvzeou+ivFjoNfLqkQ840vFYCXvaJgDIoR9r8WPnImPpKwPj+9T9DDnt18abmDi4mSE/lx67MKuKwnJ3Pi0SrAu9WzynzpmWTkNAp65P/j2TW0156ayLroOqVIODuuhiY/i/RAABRIYqYQCc3JO/L3uSayQvkWon65kvE7AMCzH+jh64GoqEupTmzrcR6hHLpRJbdGhRI8XmaRE+UA7iR97UUVRcFkjeFsBdGbH9z7BhC9Ld/JISg62TbW3iYeE/4cDEFqUQc1NjDiqzjAS5RtTGTH624XlXc2FFO5Nry6XiyNaRzDrBaiGDX5dynHUKrXKujnTURlB6eyVukr78hXBKE3nr97K7NNC6dpkiFHRmJlCSuR0MVKb1rz5NJz6NGg7han+HKOVdWYTZILq+sW6y6bewr6W17VH1HgHTk6/pPFKYzKdKTMvtVbWYUOyBXG5QmDrZCOCAUkT8IRTt99dUq1+PAls6cTSzY5MLcSAhTfIfPXdVh56mX5DCxX1JYn9bUeQh9cpS8xe81zbIe59kVm9qO9+tPmMjuQyAEuArqecP87lp5GQtN9TJkeUWLfW6RvxPNt9Salf7UhxyNqLzZsm+BFVsAA3XOqFRfaBRp6H8TdXwejLiPAjNYslvrN/+Jnwt8F3+LgN5hftDccLiTHbzlw8AHFq/qtB+00Rj9yJ2dDxXKGFR55cewCjl1ZNio4NwKGTlc8atE9/udUztUPZZopERNdzdxYfM4z7Y7KPZ0FvJEcpUuLyYM4H1oP3YX6LAFImkona0k78SWhWZP4LOa27hwh+0D8UNzaomGa/WL0ew1z+mhONa1ZuLYz/PpbhAGwOE/C/t0jVeQQAxxiDSozBpU6hE1U/+rJSvxLM2Jv/iy2+yid4dumeeeoD/xf/URqaFvV83ry8bTvUQ6B0kWod8JnJo/94eP3SItG4wqOQJyDpThUyHtppcXqRskqP8jBbsNa3wls7UgMESQvZ9v8/2AD3hbHvsZB3Ht9w+ny7Zz9YKPctqmKFvfL+KqfwiTX8GaXnWZx0UqWowY5WWibZSyP7jJvlU4uPUoLmuzOyOsTOvhFhLRkrxkYwvit9eySezRXU3ALPxFgazk851U2xDgrSWr7ogKzW70RIS3PiFfTn9BHmEU6QdfbAND5WZ0Mx15hxSlkUwL1LRHAfa/YtQqX2XfcwD/I5Kqq3NJ3GeVvPDw+s52+YSVSXaDm5EVaS6YormAHgZ2pRKc4C+4eUiVtVNjY1GxkuqjTBTidYHmi7OYdh/uFgTQ8Tgio3xUiESFn+Me033Wt+WqV2BUoEafncKy28/1MRQBs3DQiE9AV0Z151mv04oC6DHz4PBk1Un57UBvI4tIluonnUkqlhsvxZNt7vFE5RJpZSckJbg9qWdK6CNX25SGLtkxb244N1jMLuKDwFNJILbrITDjwd5ZguZlocIjO1lwsAfkZnXrVw/Ze/TueL4dsxRv3+HSURcWpKyHjO6lMRE5+s9cDOxmQtEsmXSPEUYdwj53DchVbT+NrxzjzeBsNkkaT74TutR7nKRDObUVIkVsj21Zlf8Y7pquhJTP7B5ukaUWJiLtA0V9mpQL7hlocUonDmO0HGD7ceA9F15Y5P9ec6PGIFhIx1bl3x7zN2Zi7PrzrujEx8qvjFoQzjxLFK7b1ayVHJdR3QerzgcLwqFCWaa6QlF1Tq7Nz7KJ2/ZZe8GaIkp+1KAzhcms9erxwaCxDbaAS3SYSktaUSmy8eTlM6hIFJnZ8dDVGGgPy9iTAM5Iwknb483bCh90w6DXeKUWOy3NRaFB6Y3LH3sVTq3Rsj5siEoH03DNc9Nlkstzef6dMDrUIynujhQfnKRQ6uCMjwyoI7IZQonbBkeb05bBI430klMq0mV43tdwlFqM3wkzqMTMfAeRx197knhYv82M+zFR1D3qNFo0qfOekfX838CzwtPWF6AdbhzCbUxAismhdCThCY2F9iRyUUZNvWfMQRuIq8C4jNhrrydVgsfCfMBVMHP51Gy7ZCE8UTHafK1+wFrNlEL6s0jh2TlboaBIROZMO4zgZJr8OCl3UPlHU476dVe03mPa8O6obLzLchLkrOZ0eX0VkMSCwef6MPNfFj/kRoaj2haceZS6q01vbrksGrI0rds9T/pPUKC1s4k962dDSB5+prFxs+4hpeK9gvoOm0rJPQE7WeCZY78EVl71eLYHHyzpDvLMC9y7rl+pfi/ZPUFIGmpHVmAAfvq0nqVckC8An0SxximI3InYsLFAucnSR3IWQNyjQFx5WaTt9QfHzWYW03KuYMpLKOOzC7I6ac9qrPUONWTAuEQREddGVbFt5SSw9kRfKL4aohEvy+yV/AUHtioOb6hLj/bgOT0htmyLsxJ04XHJGXDYhelRc60xWY4nqannouVosjmGBclsdw8WK5O6d/KCO7GORWEBi6BAiTuLF6g74hVyZGwsLKHL05OeEpMfuQgcZ1+Mt4jkXS0W978c78ms8cG4my3tjnQJlTmMT/lAqX/ypQpGDXI2t92hs2qdifbTpAOf7kYKBeLnWG7wdUljOGUhvUXyDGjg4OnTwQhZRvQ4rpBOI+trh++11qT222krmQDI6BXGyAi8+XzPw+5fNr0QrbPHS/nl4mSZo/vniJPkPw4qWJGtR+JQ5j7tY3A+46v7OmscXiD19jcNfxImyuIBHymi2dvgtT42902Mec+Be8IVWprZJbhl7+B6JUpG1BNqaxSgw1+tgLONVq1WeKu0Uj8JXgwsCu2UQsHpiyMrQgG7KDjM8tNvl/Bdb6oSDtMcAlmhZV+A0qAh/xFaNSYKhA/8BKF4R1G3lXpgZEAZVVaJ21fXZMUaw5YIZEpctiBqE7p6Hr2oqCUPsDihjeDNG17OE3SAbiRTqHw1JadeY1pjOc4/7RvWUjHRRgIewlHtkUrMZMe/7BpcEc2xvawqCULtoqkckFI/K8nTYvtK54ba3pGuyoZqXwOnmk/dQgJ4LBO3Q/n1UsHpRto5Hm1GAjOX+f0QWNaf6vvXCEtd0o2xBYtxEBqcuKpki4tniF9Bz+80Yaaphz08ymRbypD8fApP3SHa5v1fuRGynFOgTbtCQSGDEqlDAkrwoml8Yo6f5xIffnwE+NFyQyfajCOI8ppbuWyy2bGRtMnabh72SvbR8lMV3DDOKl2maG8Re5hcTxpE/FRYQ2rweCBvUsxU9760Y/W8rXT9U2/ZNlROw5AGiB/lsN1TQsiSK5lCickjQ//k2z4ZY+a10qrLDKP9ouNVVbDB6A2mqYCAH37BHpgSyQBg5FA7jgXfvvPA0tBMruLSb0GN7OSUw1HZ1S7kkoBLBV3GsTYEDcpes01mQQKGd+UDWJEBHpZbNz5mP3cFdL6X7UIcHFzSU2Xm5woo0+gBRJeSL9KNns/LPQt3gZAMZLLzBtY0XqTKNe3sII3zKcaYgY46SMDiqx3KYLuVRtGQAakkFf2E/oVjgidFxWJd8+C/oPYRYtjZizPkpG6ekWYEYsNeGnxPPy16n7/NYhpV//CWkNXV2/C+X9KmwYQRulmMM30IZDTtUQysie+7j2DoVYgzVwwWn9tDD9YMmaut1dF5VcuxnVKAWo0KzJqRaoClmq13bFnuQA0okcjynFUkkMhJfsqcQTqDH1nP5B+eQAiMcer4LK9G3BCGu8kb2HnHEngR64VN8NPfmnbASd7Vwh5Mo/40l4z2SFuCkP25pybg6sxu2ANlkVutN+wyotKKOmdSxkcLidrkjitO5FK2fWNmavLMcVW/zViMdhq8CxCDrGgE+aCXaCHjjg19/slWPccM5G00rD3ollqLz6/Sg7HJOZQgLU/PiTf1FgaNe0AMHZ2HGk5AX/4qkULPCnUaFMXy+9Pbad7XBsivJzmuZG9AWnOMWqcwz5S37LN/Nz3hcvQe1cus7/z79upSzpy0/CYQcxDb8W6mhGqwOhfYovihmNeZEVPLi4ejQKptMO6LivusqJ19XBqRPaNO6pAM0qelnxZNWo+zhroSStTFFafX5e87SZs+ZXE/RrpRsIFTY0C6UJLUZxhbTBHvNdHWhPnXbH1wVzJdym6QDTOwYgKpN4o/u+NZwDcAjemrbdOUVrNMzLW4ugjCs3/BmN9vPlAe3F4M30Y79K2X3CGUCBEItddagT5TYDfC/bw7ou78twgRqLLIeSC4q3n9pfjEy6iZVwLvIogZKadIzW8oA5MCuwb7ShWyLN/eL6Zi0Z7Q1tkuj2GQRbVB0C/CMlUwcmWJLmMs+NucTlEqlpu924VV1jLMRxhdXNPl0Ch2sVBZ0kVB/cxHYN73wYikz3La89xkcY3O9+7GDF9Ap1rftDBJHGndYnans2XzMFFuht/xHtqNNoMUV6WsZbQoqdTbs2k96hBwABKz1T1L6PF+FYBlAc01cJ4zUucRjvABrC18msh04Nk3aklgyfeyZxaZ1/ZZusgPh+6lsWscUlFyMyMBsX6LpxM02Jd627Cw+a62PNTfIcD5371EP75rXGknusilf+mu5Jw89uNJwYFAC7RreeSGsFZskkLmTH+7fGSwV1zPkZi/S2iav5w4UR67DRtefJoAme6/USVfCfHEjeXQF666ZzgJSkKckZcNTg1as9uraK6TSPqO3NV4Stebw5FrY40QctPJZqoZet0jRivwszdRIPFM4g4i7BXOdiQ0KRaM/V4TpbKHNm8hmw2QI7wLC8twcQgPXpfMGSBxwu3OAuMYLUYDnY2aRNNtuLTP3zhzkh1En4JQEQBXrHnmNX0m3hZS4cDb6+WuFbrEhUmmlJCLN/5w4lhnhwqBhQrlZhJqmXDJGlI8FqOtc/d1CB8sNraG8zgfz5/NzC3SwLZNiZXps1++06Fc8k2HpPWaOaclfcK2H9YYqX9iO3xYYKVmUld251NcsuU6+wu+pMMIKbZ8t5J/oa/i5KtbV0U1y6dlvDmR5fv7ZO94kAIygJFDyXE7lLpMO6RwFGCOL6vy7Z7Q7pgraE8ItKRVoFioMr54ovMjigcLNHNbiPJlrjES0NcPMtbnxi4MmCa/sa2SNA023Uoxz1Rz5Bp48h0UnGTrSA5cNyYc5SPm9Zsb1DgM7njbaXZdbJ/epaF5SiScKXxYWiIA/lvUnzXYYjHfo6wPg+UgJ/0nu7d6ukW0ntCABAhHk5hhYjHHyy9S1uY27+g89kFK7dPawaQzKvg1dA041erX2jxa+1CDfKCYjSUiQ/mNRUEV1XDhcNoZxWsn0okg7MQyrNyKfxHq9/JKmY/zYRTgj2bWXkxGwYdsrKaEy8To8xrGaSeYcsoaTywoWS/6tuvuyUDFbWa3+VfQrbgryHOGpvCkblc7RsJ02Hf3uKfNFnLuRQSqKO5/i+r3WcMS6PeA3f+jLYEdO9+lsa8cDo6m0qZEVCLUw08YtE/oW1s7WC844w/kviIHpk5PsN0B4CTspRXBxqFqstiFKejvlOMnQtLxiYSYHtDKLsvpyM7VQYPibxGkpEpZiu2Ol8Zwnf7m1zZIDH+bQUfzhpXFEV0F46NMO5xD1a9yGiE7BEy3tTbLyZm0Vnno/FhVdZuxp6/kfYKqYLsdln31foBm5VH/zpDn9KoqpMlY3CMAT9hq/QLWUORHJz0sMxgwO2/Pf4qNl+wMCqA2h89vuoD2wTd1Rt/6ZPgrzyRzB8XA2/uHxtLMEJkbVmHeYaVyuEJhiFKa7cu32DFaO4eWc6iPQPwNo7LeHp6UjU5SA8ZgDdakxNeMfU0A6I9pyNdPklY2yqK05lcuGmBVYDCIFdEVfE1yiULFWE8wOr5kmP3YpCDCaEX5MvzJkkvwYMNtmj7GA8cT1TKx95TYNC+QfgvElE5yfX9WC+HRkSEtc8rLHCMbp26gTpCzN8Swr/adcm3MBI0Q0P4ojM0cT/DGJznMFKdf+mZlnUmGq37UZabTG89ACHXjRRhuKW9ROwbQN9hmlT4rywbsf8eoXdnBjTX3By18ag7F/89q68aEi6UxlP0IL0geRZMS8YXsf0vjJyW9ERF/6tGhQVP99uyDT7WRIFVN2VGOekmh2hPP/r8i7xq3r9ldI0OSzhpCBkJl0pXQ2U2oAAqatCFm418uHwr+8RNNYE4tpuOQfgCv9fC3nRV/Ao9Klujhc9tODXJQGQFNYxme8vK/3AOKw==
Variant 0
DifficultyLevel
659
Question
Paul and Simon are saving money so they can visit their grandmother on a holiday.
Paul has $200 and plans to save $50 each week.
Simon has $300 and plans to save $25 each week.
After how many weeks will Paul and Simon have saved the same amount?
Worked Solution
After w weeks,
Paul has saved: 200+50w
Simon has saved: 300+25w
|
|
200+50w |
= 300+25w |
25w |
= 100 |
w |
= 4 |
∴ Amounts are equal after 4 weeks.
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Paul and Simon are saving money so they can visit their grandmother on a holiday.
Paul has $200 and plans to save $50 each week.
Simon has $300 and plans to save $25 each week.
After how many weeks will Paul and Simon have saved the same amount? |
workedSolution | After $\large w$ weeks,
Paul has saved: $200+50\large w$
Simon has saved: $300+25\large w$
sm_nogap Savings are equal when:
| | |
| ------------: | ---------- |
| $200+50\large w$ | \= $300+25\large w$ |
| $25\large w$ | \= 100 |
| $\large w$ | \= {{{correctAnswer0}}} |
$\therefore$ Amounts are equal after {{{correctAnswer0}}} weeks. |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 4 | |
U2FsdGVkX18gN5AfaQ/z4yr1MZ9PerZxAErYGGjpDWoM83HQTlYFlXPpJfJHZIyKAFV4NnaQ3lzLGAhDXxMyYq7PlhVw4SLi5/aFNDscNRS2CETOTdk90Fpu9aU/OgtmCo2AulIv1VJpqydGGXrN61B9m64UE1JVZX9L1Re6BIYLf2Xd1jJfiT0Mbz4F+hoilISAKpmH1mwXXTRppDtsL2m8hbwL5oql7avbJUMwa0mLl1aTkB2mtHpbAmMGBjiHszLlP3F57XmYvByz7aD998XAflxvEXTL+jN+YfGZQ5bwPpHNymexRJ38M2SY3gne+PDidrHFAD9UyUEmtjPeVEvgRi+yT9mJQOyd0RJtTOIMOx8qRaSeEg/FljQ5/aijHRNuwI9TUO4m0UV4YCORugWEyO/ZY2CDYsQZaxfbttYdy05D1dKmIdWvtbdDVthvOY1fdpMSVoRUs/XQSiiW3lXzDd91Rjtb0tpgK0rGaIctgYbbKd8P6cA8q4Cwx+R8ohjExpJ0l/bJXmgONgCb5Me86aYlhVtNn5l9divtMjxVC3rp+BAZEgcSV4FchAgWT/2ajzgYe6B7l3AoR6UaZYsVjMjRTEl6f0oOpnPnRbPuwnTj9uKG512I2fW457xf3CbNycAL4fAU8gfFT7czOxRAyi/HO3iPpNWsCC6fvBvU2uCvnDstUkqreBLM44Ow7NSKcEnZlpBaMAPTVUaurFU5UJ0UpYX95KBquERqfKlPGg3MCcYktFkTuJNYWF45sPdqny3okFdf/z6yKoN4WFivbfSN+EFqkrR4/QNBLPJXfuwxVi5bhoLiSYGGoTe/qqDaDzUHJnQRYt+rmFI1e1ZOdTDHHjHjCgF6wrVHSOcC9Np6dmkE8OmNYC/S6fdvtLKMd8ANBuKLjbNilngxZMl6tDT8m3BNfObs4sL8FpcWk41L/r1960HER0U9yed8PAKWgNGvy2EUhCD78AjfNFiBz9+LIfn/594/7i7gB2CSCGxltFeXdvqNJksWOJrPPqIt3DYejn25diDkLMfdPVOqM0VwtCds4QV10eKGpkPeCQhW/WfkcJtDqZgMdCLJpToyBXv5k8NpV8BMiwuI8Ol0VmSISpTXMhhJAPI5Rl8aRq6bmnqIZUV9jmqyD00uO9Wd6Gt0LUyflylCSMaQfMN5NHxeJzFo88YGxCEg0AD80kVmszX4ypMGS7TQEyYoh4PTzRzmGv5foAIi1TNcBiII3SfoMa9E2DdFnNycQGGzd1Qkc7yjtP2D9FCQjiT+SyXtSVWNnSpBRU9jN6E/dYDGqdAaduIlEcjgpTbGMmyWyPT2od2RrTlPR9WVJE1jqds/dqzGoz/6mr0vE5MaBslJSYme72mKc2HtsrI9efkUxo0RkL6DGJOGbF9YuihdN8gPGtVedwvzQg7mj0fZhDm45+yRJfY11a1pZWLmD/kkt4M+/YqwvRVi9XD6Nyi14fQttT6Wy92kfKs+34PrMcoaHfRk9YGHqPLtq0TsgCDLAW3xAqWaZEbaV5wiKtjOvdetPB5wsRi/jKVid6N3hPOfBNtJpWnXVdnlLy7h56c38J7Su2Gkhzvfm7MceseNg6ljoS3i7UF17A6egp1L30naEEvTGUsi9g25ClgwQThGxs28wSU8r33h4dcth4DfO2Btkg4zmvb0TnlL5KQYxYFl71OQEDrLRvXxkiwWEG2jiFeA9Tt6SBMa2ypQq5IW/LcqvnE+Y3r6soe/lDOrh87oLksbZbRdkoukX+nOEFR/OPSvbrNR4jDoo7SXeG59cgeIbPmXPJMpjpSDu5F4uCwK2BNYkUdiD2R5U+yWTK3Sixy/O26sZXOvUl1tD2QyAMGg0HkIT23fMOGH3xH20QlE0dBvGLOxsxgJKhNGpAq1I7J1dOobZkA67RZJnBdkgn6OPvAZjbwHqHqYYg1upGZ00VNWpZHXEoJuYxB9/yJ1dtNRIus72v4VIDBOQUyEDzokr+5x/+UDRarSoucvdQdN7iDhGJ442biSR2r0kkF7tjqCa0Cgb6N1ZI+sRUt0MZjqrXsddsTBh4gYAWHkAxcYOSX0ITv4ATHr+qRQnMhUQdpLGloF7ygScvux3UxrZDmUUzeBgJzcw3F8gJDmd7yI1bAtvHMbdLugIrMMVfwX0CUv6hChEHWDIW1AjjiVsSeUVzGTEmPzWy0Or8UKc7c4YgBH6Eq5AzTiLLsyF8Qe0O7hSS25mL69NzWKZrMNSpT8DsK+sh7DHN5451SzPZWlz4u57pzJez2bKkRfBCYSxGGeEwdJsHorQSt2kF3sCQgVKqBW57YbbsXBZwXwhRugbm69tCh/HoYhF8d9F81fJM4eAcjcI/PEAQqiplSRfLjXAqdPkj9VLb1RCtpcaM9r4GNTvbpDKeY8ZaCRVizrFt5xepe8Wr9an/tcrENIOWGfvY7MQrKLRcJDnY6NgfGyfYkIUGPupOLfLcPlKwUPVtR6/p2/i4zj4Hw7E8byk3KyrjQGfqY/wCIMi3kyKEtchxr7bqOTJEKROER4cnHU53t8/18k4Dzn2ApxZqPONrXuAN91cOb0bry8DpzhtC2zVe+prDPDjUJ/vqd5DOxhwC9Yu/XR+QHOiOjE2As5P9L219SPY8+3AQV/rEmtrMG2QkElxkAFPf3LGlAgnhR7VDy03+SuhzRraZxNJseG2+S4XqD/FBWKti0E2XcTO3RUIcnXTajkANa0eoFb/s16+EUOqaz6YGe6PPAxqmPkO1P+n7NHYL9bgV7V5oUXhOk2/vKt1+OOvDTALkIpLPxrf9A5IgSIH6x24hfAWNWy7ndjtvph+Sk22pvCyl0WkIWmjl5zpTjMaLUbIMFCa3efN2BPkhPNSKiklj6g4pIVraucR7up9WN5/r0Ky+WzI0NAT5WOIbbH4Eeo/vy6XoRkzRUW+1xouhPAdapjGL2QD6wX6vyWodo1rr+KhnwqILjuhUTYuqMJ1UUlt3T9HuQIXlNQnGzJ/gUab6DOA7o34z/mZjubAlMSsaC3kI0hqAk9z64rZCjj7qJDZM1TZIKlezbcTOr24iIJv4U6PgwOU+82Rj1S3EvMNU9UeFonEzvkzCBipwjzvViy6MXKzzf6zU5ZWHHVLsMD5Am+mTL5M/lR/M4kOpXtJQZmhUZk3W10BtGIX07QGquQeIpYTUIQJ6gIdGagz5INje/LSDTW1kBre52bsrIW1KZwPKUsht6vrIzrPwjWwA2e87v/58XVtDeFYvyfbnfelGp0O3FM7A3YxtlTo41BTwR+uPVqaGnMpETEBX/6reDP1q6D43J2Pyi+5XB9/5aOo/kSKViMEOzVpipc/8k2v51KTe9RUKL1jt8zjJUWZLbp2Td0t+ShKOja4aiKky+lQIdgeXqvZnwxQZuiaIHWIDUUiQ64tD/QAkcdQuYx+4/2jEarzhcImyyxavuHfrdygALGZm7ZPfoXvyi3u/myWsZcZxYD70wcOCXvdVcQX8dKs6JOJ7D9D96ZfRsVfvWGgjA1rWBe3/dkbaZ1Bb1m1gRR1Uy/H0txcHBQY1195G20eG8aOYjF10kaRdtWlSaypjZEPwhJ9vOb1R0yOjmiD2KJo7SAm41dwtrKXwof9WUOyKN6lSTOPM4V6c2wzwMpQ4q4Y5FYUKJdeqBe8WN+HasswajGVLnGBzxT3fuwiEOhw4iiHbMU6PSfaKZr3AYl2XHtSpvsm569ws2Te+258+zG21LiJrkBEsVWojTQezEJPljpE1XppAzpeDuG8Zr1tfzygncEnLfaJeEn2Vvdt5jPM3e0/OstecV6RrVhLoTj+GUW20iuH9pcagcLy0xeXzC83gfsd90rmUuWsqtoOaLhrthe3NZdnJTns/kpViFeEX6McvAxDKUFvuF4uZ0v8zXnwnKOsuPfulHHByCG/t9YzLMuF/PSEx0vg4FxzbBzKYvGDp9HCIvfbeqksJDuKjeKwBvvHU7VCoHKyILqogDHAR7/oU2pNESb0tRRVK+HG393dQGe04NgmyheAoaSlWD1P0BBJleTXrtwID/dw8YbopO3MkY+yBcHVFQt3JN5UE2JCmrlrncqR/iMWMY/SrlWD1XqGrVYuvSbUP155CS0wd4PS83miW6YIKnpjyW83x+xyUQoX7zzfhQYd9o8SEZ0R41OmyDz/EZA+bFlGjTUGMa6woAiWTJEd4HKOYdRKEdzHi6RcCgg+n+Hve0LQHSL3l2IGIKE9Htbn6s/9n/+FELySRJ+49gIlbwtaSV+ufhm6o/ae1p7s7qIJassGlYvvoobq8E9XhFSv5bb3yfWmpfqceqXjc6bxRAi+9ZMfo1yVMrJOfUwg70B2qpjokKYXk8VpNt1DNh8Y6Y4j/hcqIiliNyFqONBykt1aE/lIH7FD7Bd/OFf8kUfvbPJP1KPak/bgxPB5AqwNPsP5yKw0pLchciBAuOVxXtXVVIooT3GykKWd8QTbjRz4LCOP7JhWb90qz7eNw1L/He1O+U11Xp8veCF13+JSEV1SIcqrA6C5zyv+xw4Ol8OGkzFZeWVdKnt7DMLaaCWWgHb5YBQzSlJCeChNgqttbpZHyllUwkl/wEHTXpBVL7pstuH9oUr85LlCZMp1rpufG0tGysnpsEvJkYOrubp2tzJPgo5beqhcKxJh5CgaW9XSQdsY0/PhGuVXTkykKHL3qKUhJVwQQ1bXNTWWCKTqFziGX0pxICDR/oRyGWxAM6Vda65MdEkiGb73bNlWEqUX4xdYxxLzzDmrErMXhikKi5OO7RRjE2BxxGaJFxvTI9MYh1ohyud09Fmpyi9lrFG9CCFI1DL9wJBJFC+c10ZjToacxrapAwHJMamAUEWx1yb3vCuvuykvS2XnozTWS0kgm/yqZbmMQrCNUc6f+1VE7g3LegAsQV7aIhhHoCxV37fjE1I4E2gVppAIw+7OKCe3B8TvVZmlR9EH4n6MWevFv9noK/7NigkgbTImLgcT+yjwF2b18l904NCcrFNCsC101d12xBVmbOFd2eDx7zf9f93WG0edmM+mBZXq5bMiKtdrPD//QrtCzEzGWr+QaIKWi63WEOMrjaW7c4IlgXhodvbKySOdzAqKGWP66ZCaU0RVpA2RADQ7C2k+8KAIZ7a72g0McAjs163kHw5ytW/4xFDsurbohY8vzhglOIwMVMWHU1ZpiUokMQsmb1M533oxuTtoLYlH+u7zv7EUKCLa+TPpVED0Cz8NjeHhUjHF10agUvDY08gFUAtjmzNyy0Ob8/HyoSACD5wXhMs0s6m+QmGoEOQqkuWeDTnUo/0yxIOVwlQzVuK9wGsa9KBsgX3hJ1bbHT87ta20UkjZmQI7KJijjdcL4Ddr8AuGMykgaLIZNHUDHblic7kghR65eavZV2DdusjXFKQp52292YbTdSDxaBc7karUhlWa0mvMRVLMT/Ruz2sif0nPq1qKGeku0gY63BBN6FascvP53/wWuk7jg73/mKkEVtjlyNa9j2UY6ogjbCwxjTCrSorxxrr7nGH7/bK4TYveKYMEKLod/wJr3Kq5hYjL5odlxER8fuAgXS61oYMpTPKC8J4I5iBJM5DDN++kL9k7cFRzE1YTbIdp6F3Sbmsi9cuhTn0WzhYBI/8mq+fcJAI9cwxDM+Gr6oGTASCZ0/eUWghsQS0e4l/85uTRYEXDO7AelZjHzq7cfH36SN33FUPXUlymmfYkYRm4ybHqRY2Xw4tLoGw9NN4hfI349n8AT2QD9CsjKJDPU5ePFuOBPGXqlKEQi45A88EReFZGlPvR3edk/Z9F93svFluf7vKI/LiUUd+89PYiU3m8c1mHjUqyaLQSlgRnVjpLBbo1fjnVb0SL8DOVp+eHAt2yGT6ctau5W8fn8ldXiGugiih5YNmWmwOfdfwgs+N3uHf4QIVCIYMJqW6FyMdTujLuXHvwDW8xz8yo2REqLGn0z4p1qygyP7DvvOdtYguY1Db7hazOhSxxYcwROnBWcQgFaEIBR9XnUNq/qQfziEKh04KQJNNhCurCmvtdzPfL1UYUiI4eWuUQKZ4WtNKj0aApcTUsKEIGlLAMRldHsT2Ba+z72mJdQitTkLa76cV8kFdTajnShTVfyrSrqHf0JEUz9SiaLQlb8avy4NFibKPV8QwUxAvO8dNNIy3fZh++0ob5S3iHqQLpBeUxCaNEyHFgieGmkg/HoQShae+6rvoRhMrChn4bwO2eK6+tF3e9JaLStT0zb8hxu2DdyEdWAlo2iMM7lxLX0e+cXfUvhcdw8bUBoQTVPcyxyvlG33Cvi9gWGHyU6qwTKEmqCDPoIPtXZis8MWF7CRppYvStCwZSZ3KOSv7Ti6SZu3z+7TLAV+/J71YN1Nk6MAGbxTgeb4canq+T43K06D+sLQptEwZUEWzQxytt7H3CxrOWRWyAHJI+X53AAz6OPRHUiu1UNGmFTKXev4q/nnaSy4DbPO4wZT0MWogus72o+1LCRK4Nr/Bys3zeqYZHzmvzKsTwaeuVHqinMjekQZnZFKPZKVbe32eym19wlQHYARzE5VSalhFvSWpAnQtF/3F3x8vwGxEcOerXRztrnvzd/wdHFf8ztOpFRKw2ggJandZZGSO4olKWdB7AjisKV/miLprEwdOgIVhNCRViQOn47FotHlwKgsYCG692L6SwQm/4+SOYXVE7QsfTZooU5QBrk0aqw+3pDlZAlmf9meODukd9tZGsQVKHD+uuUi87xMhW9C9hXcb5pLfXCUM/0/RL9+ndxlQxFIUphK/o2vWiuwL/NvPqVfpc9hVp848j4IZA1sfobrfTKOGw15+k/j2iukWXJOyiCQ5eQSb+lj/mAlTOAuykweAvJ5lRJ7v8uRo72/kiDpRzzN8iiE74rSzvM9lEOcfI7QaT1dTLUnFld7eFtgygJWTtgPe97Z/49Hgak3WqSfPUFN4XPttq+TJyhENawHe8/d6J3N5PCXRbAO86AKNrqZ/s16IUdkbr8ydxlp6FX0veKG5uvN1U/8HJDeWjCdSdiot9OVmFFW73EdR1ilyj/M4c0U0EtYH2OFSRxyglTC6k7kQkV2jemeDtKt2uYXHsjQu82PErYXpLR5EBrpjiQ2HaIxokpqfDMx6hOj+gp8CHAnDBWQN+gVN5qhgXOMaxixLaaSzxCKub6Vjaj7mJb4ClUlpCUlmp7r9Crf/4NVfDUaWWSk+hHHnJdafRggu4DOG57M15v1oUReRQ5Rs32GijGNVcndMkJ5dbVSs8TzEvEU/HEMhxkwSNi+AYxcPoAUqKNrftU9E9VLEp/Yt2zfVw9KOjqq9qYH44TxH4/p6lgA4221k0TK14+IgiJSRKHebXgOz+o7/mtUBUpmg4trMhlm4rFwAN+XVFri4R6644S9/0K4t3xZyMMVndl/4jqdRg5Axjy+gDsUSqHeHbKi9nSkd9LNcefrgh8bRn0hxW7vcXgUax3X0tgxqEMw5EblPhGRRbEPEY+Zb1nycncteWjT/92sQu6kimeRXCJ5Cs0VDypumNzqSo4nqmadYfUO0G2Wq07QJez0FuSqO+DU4viDxQCYtAuJ8WwZyNQcreIuNjz/geJvOoJ8SnPEzH980ymVdGF0EcvsrJw2bPp4bTAQc7L6EX3gDkxTHo8JLhHlYcLg1koS7tV+nhQm8b3pOHJnmrWaUAWChorVNpjhQR0wJ5M14VzsRqeDd8didjq8VX78jCXncgkaYlWntNvtl5BSuKedkRJle4I/uSXloqDEVAMg8wDRkA2WgE0EoppJTKv3X2XVtZHZqyPrD+5SokPMc13rtcwfynX4O85mIhOAXe4EMaMPoo9Lyo5ZCN1WwN7G5Ni+nMMusU1A6qq9BVWbAfu/zgflHbW2JKuZ8oq8BbOJE+b1FhIrYLb920w17HEuOFVJRuKHT2Eo+LgI1cTi9YELpoxO5Sc3lN/c8I38M8ZzJD3sW78cra9V+0SBQwSSa3DwkbFZQFzCbcgP3odAp8df8w7B8zPoJQKHQyt30Vq780S0eOowEsQk+2+ku1S71vpwKAMGHHOXyyyKf2iuCt8xvA75FNITbcHvSCO3uKN9Y4h7bvyKw+0sDC2h8aE++MRLC3iEVp8bMuKgCR6Yr47peG92HRBfGNP4eBENuDbzeT4JHdxOXkNFOivYrVifEc3idxkq4KxTXE50xRetTSDcrnYlq4cDq2z24dYV2RVA304KkqVPsqjciTza3bMP0HvSThVSegnWj1BsQVce/Ti6oaIPx5pSwYzY+DRimi9l5ZiBU5K6jgiXN2htJKQxAPo+/O5Qdo8/pKlR5wiW+GZ//FjdGu53ToeEyjNcSihTe7QR97SxCVf/QejMriR1h4BptgUKPsAY8lVBQJalJ6dZiX69051rMy7YcI5ZOJmKzd+aoKfDQsDhGpWdYdQSV4PC3PiOYqU83tZDCulAxamq6fQksIftwF2o5GQ115iwKp7y1mJ+ZK+M1usB7Lm0gaS71O6dTE0/9mVWr73fY9pMHZ5nizy1H0SwPxm14X1p5bLFHdFoD0ZlRDm9TZuIeivpXzfDMwBzNlrU5JJMBx1YD+PBI8Vp21Pn3LznhmChK6kEdmwXbqrqsizQMPLYKS60E4re0tnV4g0ai6MI7JjaU2EF5ZvPGRLFUccDL3D2Iwx0ImS05Ku3UYdK+U4uw4saHRgjNTiF7ENN2aUwgnX28lW+Xnx1Ga+JaG8VPZoRImKGhb4+b5lM6EwTHE0B42W6CJ1JR4Da9Km2UBO0e0yNwgLyaTCoT+vYKAVZIjHs5qRuVzxu2YUICECfTqIVGj4hZ4Q1vT5MPzNYOVxMSYysX5jrZfccGhYMIZ0vyUG0aVmzz6AiGcIGF0pmFYEZo0bzMjHv34XnfFGamJ8ncNGT4ACbTS2bxptSRhR3gq+IwwedfBvcTTPbi7nVwDiy3DACnmn40JY/2V/V7nXNUzCcHyYArLnnQ9gtXXA6U1QwTBVEApyJpJ++YxBWYsSr7C2Y5ZyWOfMll0d8OrnwLmEBzAQ4sR1PtYvSm/En6MA6cCL6k5tfs7wi9TC0w2jMNZBUnJpsWCxhw5kMpTOFKKLeVTg0WRbwqudcOHS3kqHf0ds84M8uW+OgV0VhAf01+vjy8qEP7xuCwTKFBj+rHWgSk8pkyNTH8JPjNc1tyOUbv/5gqfHjKo/o+JvK/nFd//vOIcJBAvWDIG+Sa0zb4l/j2xK8G4ebLKgaOdPKlZEDhr7165chJ87hvxRi0lbgJEgLBSs7gwajRqoll4VFEtRQZaWwQZivrR7BgkN7j8Tf0CJfh8wZhBF6VTl5oYZF9napw0KefUQZUxCVeFgPqEZascQX5etLSOMaysHWjofdtEcR6SW9f3PeM0nHb9QG1HRcvrv8wWLaV7V6PzmmWPE9SU6hBKsWo8QV3QT+yidp64cdXpOUGT+vVUw5+nHTeKGQiMC4Jw6NChdHHrZ+cRYykvTsr5ZJUxaxfZu0Cm+Qx+NnvP72/ZVkq0V1heKmu3OADVMbwMv+leRZ7lTG4+Au0g8V+q6bFchPvlGvt0KRdm3V9geUbWvi9th2YmG9eAl/oHCBz4EeH6uK8jW5BHJoGyJnezYrog4wbS9yXfaCPZbg4Ef0WgkchlL3V1VDVP6ocipnyJFV6yRejQ9e2/t1TEbLe2obN9oJypQwB9IQv4E+m5QA9US67wIz2zyHFKczZ7FI6aGVqSbEVZI7jCUA9lH/NV7d3fHoJ0m08WtdTJClB4FzWF0m0GKow1qw+0C/dZWm+NKOkZC0tUgf5fchnMdTX5bDW3cKPO1BJLp99yHK9nUSi4fA/ljIacO06m9Pv0Nj+9O6Xx0zHcVI3PphebCTn+LobgVxCWVN4Stt1nxrQ39Blf1/ZgVyHV7Ga2C+LStjtZbr+mw34vRdar3dXe7NhuD1p48EHxo21nHVLLIJz0LFYfOlR9rIyynLYDNjwjCoE1wNHKRtqL3AMmmL8CkHtRyOCEKFJx6uRSDqnGLHI+cKJBUnKQ03odEYYkouo/boYAxGYUqd0T2fesxwRCjB3/I8R0QhJ1rR/PFrV5X8dG7RrndQOqE/Nw4cDe3uQVx5XRLo3LtJPsxM1ka8cgrR5pqBK2I+82JOlqAtskdaGoC8lZj4Bzcpc1D2c30K7QBsAzmtvHJ7iob2gDU592sB/vy/QJxtbZgi4zvsWa9l5il3AX9fSJo7StxmyJKhKmzB730zUx7zpRhQYha4zacZXNwgHgPM87lw3phi02pUK3g8Enq+ziJY95lRfGCe5RSysO0UirCvc76iTZBJhvffV0voxC6NfhFQBfdzpkTMRBrTT1LlIk8weWpqaXR6VyUs+UJODYJj8mPByTh+N1h/XPpfR4kgezInRqdiZ9y7TBNf3swHgn7jioCBUfHCxZGc0GDcLQ58v047IRnrU03iQi+uV9mCHYBZLLoFFIE0Q1BcoMCdlGIuZYs3KbhCnzVK6SZtv7jptuqs1SKoCT6t9XNAj3LLk0CsM5ntg2S25h9AU3K/LTog8D3GbO3dqjOpaK3KNW875XbPjkTv2cfW6IVx3zjKV7rAhnIG+azyQy5W+pF3uyEXCfuIydCEeQmvgZNmNXiz384/1I0mExXbv0tDBsj+b8g8g+BLtt0s2SrkE82i5RET4t7S/EkkHugS8MQFFviDTZfg=
Variant 1
DifficultyLevel
667
Question
Bracken and Fern are saving money so they can build a granny flat in the backyard.
Bracken has $1500 and plans to save $450 each week.
Fern has $4500 and plans to save $250 each week.
After how many weeks will Bracken and Fern have saved the same amount?
Worked Solution
After w weeks,
Bracken has saved: 1500+450w
Fern has saved: 4500+250w
|
|
1500+450w |
= 4500+250w |
200w |
= 3000 |
w |
= 15 |
∴ Amounts are equal after 15 weeks.
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bracken and Fern are saving money so they can build a granny flat in the backyard.
Bracken has $1500 and plans to save $450 each week.
Fern has $4500 and plans to save $250 each week.
After how many weeks will Bracken and Fern have saved the same amount? |
workedSolution | After $\large w$ weeks,
Bracken has saved: $1500+450\large w$
Fern has saved: $4500+250\large w$
sm_nogap Savings are equal when:
| | |
| ------------: | ---------- |
| $1500+450\large w$ | \= $4500+250\large w$ |
| $200\large w$ | \= 3000 |
| $\large w$ | \= {{{correctAnswer0}}} |
$\therefore$ Amounts are equal after {{{correctAnswer0}}} weeks. |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 15 | |
U2FsdGVkX1/J3G7833uvvwapI/PdAhw+iif8UMAnzrHLBhq+wjKEadyfDf3QMbDhwSaDV3BxSIBkLLmxre+nNfsqRFrghyltShCFLgyXfwHNMQeWG/X86z4FmJuhx1i++lQwtX7RrQvxFWFV5wUStj0XunSiIBwVMx1vC6fFs2QiKiQCfl1BAYKR6+ak81eQewxmhk9Psx0hpl5RvLoOfCEh/WefCyFWSgHHalLqBG5Q8fGbzoG6NVGQ+CdG5UcRx3xpiwS0YwcbKDDu20N+Sh2Zg1rQfKGCid71G3WfrxTJ7Ch4Wx7eXgNOswyeESqoiLxeckm7ab90wCbS3WGiffLo6gw9H+dPtj4k1G/r1r3rEUruSCUuhQHGZhViW6ReN20L0019uRiS6q39yVO1/QtmDtMKWNweuLDywlN56kmFhMTC9h57lrWwtXdMNypgwyalDfrLLFWymnKGfuuS6EmOTPoY/t0mFA75PsZsMlAswPerhihZ2r125H//zZ8aTKU22PzKXwoZ26Eu+JylGyfHlGsditGbImRBfwCnoAr3520zS6TlA+WGid1ApfHn5kAi0XZw0vq7cJ3qZYzbQkmSC3CrPOQYGK/W23bkY4x6F/d2M4JP3Ll9Gjeid3nK0BWaknRBR/xLSFJ1lM9yOCou8L1okCUufpNGf/osBVOg2LCDy8g/6xODOcnUrJecWjucuq8wFVaMZW04go76pBZE9dQExVJpYpIWMfJAf7841EIxxsS2EiLI4rY95Qhm+MfhUfMaKYhFCf9zfMcO91RBQyqF7dzi7ik00OlPgQkVipkYG2VbG5THkWbid0mX56T0gmKQC7K9hJ9JTFvgZxZ5ZPvLI2dJNs/GJm7utARouhjHnMbMxj5sNKBt7SElXCD1naQvRRHIxqPAFD+YCq5E4jL/fP5e5hY1YRYLPgYFC2kMUhNzrc5ttfAbD/0/K1HnlRKV66DJ/g+6SNw2JzhNtFalKMKYt1NUrfRNka9LKSgWc8XWuvtoj49mssIWXJgMk6b6yi9ssGMDlNcUVJVZPTXWI0xwWb/JQYdTD6NPQTCJasPL5E2Eg6Xlg44AMhmb+cO/IqgJYkffWwqWQ2ThsIwLO48iiaRFE+gWIoxYD63yMNS8zry6mwXcoAimVGO8UejADFtWX18xwLrLNWaY76/HJqmbIugDmEGiUeVjU0w2/jDkFyK8rXwDviqSw0C1R3iAuJbFV4hwTgiKFp0aoy3XPZGttA4ZV85fC613Dy9uqAglY/mIpI+z4pn0WZ6kZS/YdtQRK1/hjOaSEtjjJlFwAF3Ny0eMMIO0MmCkUzhbOSfD03WojIaXUTomfRUqcap6sGAjjtQv1PENWOH1Ozlm7Dtspy+eMbT7xQME1VpnYhvZE+8+261YubYmOGyW//f8nyLEzSwqfkaqVqhQUXaMKSVoK/RJ8D3Dg0JYD6vAyPNoGphK8rwbvo4VWvhrk/p0pRbqlJn3LAMwJgyskecUxDnIW1zjbfi5C0oH2+0mxiGdcrzOHOVJgumTKKWFMjDqlgejIqEsgEbm9Vl5ySkdZkqgMvxZ8rhA1VvwuMwqQTxe1II8nWLfKqcrCf3l1AC91yGRqx6Cq3z7LzHrt7VJE0UsBoBQnlThWcsMZlK/FUSgk0X+x04eiqmyKom1ki6vYVt9GbcAq6xLlmua5r2eSBPSNGKmxkUySON98/WWDnNk0kiHrwA7GhlbRqrcjkjKQ+jwma36SwYgO84etDDzKfG7yMqENT/3YYEh3sU/1aYcESW2DGk/jeSRcQkRE2ulqsJrkQBLtdmuDbNEJ3bR1OkcP+kTNMgFq3RUFq1i9bV5f/xYiNqbXj5B2liL1VWCyshsve3uhiYgleUm9zWn8JiPzTu0oEUeMD/q8ikaBHyjpRcCrzl+Tsa8z/qtahfa7m1bcfTXKiGmhd4BGhIXwjyldD9T2HBRnUY2SOCzKC6jdp16xgSJN+JoxyNos+By8BpoRvyz/ku5z2ExLnJHAjx71OuqaN/7ixtRIVG5n80IXJXXblvoy9APC/ucVANh6NApjxTfnDTuB3AAPT3LQxB7S8GLO2FJWnkkpVYw/DaPoO8pNv91yxt2i/fbjZfVtAoliMS80CKkA1Whsr6/yMDSHjAHMLniFPQBqLT06X9W0FcqyWk3QJBlri2HEUoIEzq6Kw/5T7JWfLZqUZHcT9YNWH2QceskgAMnFZivv8ZKrG8a8W1UAehn6I/wahU3AmKcpa0nvQaBkACHLFz/qavv64WRbKCPD1rY0WxVGMk003bju7BlzOEO+M+u/cMa7Q8TfugcvXQ++D6zRBbkPTXWhZ//PM7Sv/mtcTaeFEy+vDCQVD17fToSv1wCkU4DtfTxcqecg6JZHTttFk3SiVHs7RsdabAVrtsnds/GRlOLNdw+drF1QtWWS/nEABRbHqT4KPB/OAhTxw1sHLHhxQNqSx6oZZMyma71K7Djibj9AuUH97KYkQOh9KK7Acl7I86cgZnlDq4WwUgoyNLTIA4mKP/v7aUjqvg8TgmjepP4pdmNCU4CquSaNaGthl3yhB3wk5aQnYSZy7YKWwI/zpfzWG+op2UFCqQuv7R0QsRRvPOflcwlZFvGLf9HHlpSDDl8up151WOO90NQ7Iph7gv55ynNrVj+aU1LJ0Hu0VtxdQoJFLcCwpD4sdcR3eAsLjdXez3qgRoYjahsNoheZFceAThHZ8qy3lDE2fDN6YfCOJDli5BvUEwR9zCak87FWTjQY9HXdi4ZNgMHaFOUhAIe+cj/rKjrKuW8Nd+2PpMMV4fCPsece9IQdxdCMH+7+REOIEVjuf8u6/O8sovBH75FZAFWfxoYYImZPH59dTVBydavwzhtoNMHsItX2QIyLoMlkOHXmIP3CR2rlb7MiAkSxP6VWkquInWzBUoYXSm0U7iWZyyyvTBID+4HPxBVaSh3Sr/f8h8QP5wPfIJQMVkBN0L2lfbkL5Zt38aoKVHsmDaoHJd5M/9kCbm4JJBUVjl24nedra/9jhxS+psGlABME/goyhx6NS2TQTvurTH4eI531e9gjQP3bzt2yeuS9bbnf633jQx3az4P3QmGNLe7ol3g6Bb12lvQ5u+eHKL5YWRjPEo8cghDco8TyqzJXiMTCbyGkgpc83Hi+Kicyc9NIlZ0Sefy0lgSVNmPcJZhDAy5ywofSk5p8qRXzv5CGKIVLn39XXSnUNTt8g2iye4eOxlrBnixoNLPv7GhMnGRNesD+v024FuqMBM/sVH+7b8jr61R35QzdURgZK3Wb4Rwzixw7Knymx7xamsprCvHRrOHXPQERXpp3lvp74vKrVaOo+Fhr1YP8y6dqMgqusKp/fLq3TxzeoDdSnbVzSVxlmmWWc2i8crhdX/sSt0pNpP2INyCNfthOMjtLfv6peScLAdqsDVb00DKEtyuy1u4XZEtzimOSt65N2tK4BtktqIiUr4EuU3MuB+IZ77EF9Q7d8UElbUgvlv3axqfdnr5VuNuqe1x3gLkae1hcOGtjR7C7EqzUn/h9XPMjK4Evzggybg7hy8jAwd2nfN3hTOH36Swec27byE56YrNgNnHToKI/1POPXqhRjSx7pbq4kk9do/mMN0Xb7FPpZ7GJTY8ndGdOxLHaZi6mHPeRKTj0BRgBbwnTcUdnZ7qCSMUNWyw5KWjwHN2TZoeZoZ3UEg27mMm6c3CCC7+L2vW3K6TiW7vSHBBC8vKJxrpj/Ox2W3FxKsXHWzSuYd8KrQ0AMyeEOSjLreK0woBUcsXrJRIhdUmIML++TcC48xl/TR6GSJXjOG5fCUIf72W9KKF09Y7PaB9KTMmYa4bb6mUo3yadbfKHPcd+X00mGR4MS8gLWx5Ry8UeAfuCuIePGZ4wtwH5q8sws5Tx0DYupHZ+/YND3WyY+vBdVY3WGcYsRTX4CZaZQ+mOhz6vF77r97u2BmnMW/LDbHoFFaOuGMXyFLXbWAouMAVsWcC+awegRINRK5G0bf04GE43LcQ6VXQtOCqpL32X/Gmdc6LNYCKcrBCDMSJMwkgMkD/HkLEYCKt2fTR7EEZB+FOy9viAXrAiWh2vZbTrwPfu4jH4/Zry6hKUyoW8M4bf4G2ZFeWxDpOa0x+5jVlcJOH45p86WBf+IMTeUi7+dSuNl7by1f0C72WaNYNIIudjqWTYWEUActro4DlbwtOb2JjImlw9m1lMn9xETgFFv5cPvMkegHdPaOptBXESmixgXPlfpl98m/xEj6yW9juT0CqKhBSgcwQsSV8gt1RPijtW85p36W8ayO2h9Z01KV47CSfNo61azlfZIHjgXhyM1p22N4it7Ep45pDGWHgQem4Be5zeyiSIeshmpJviH9DLFKPjmSq38ZeYKidvQqoIkuXSAlgfd8wnPCRjQvByU8tRcKNlW4kaZiT6mnbGBSpWuzSTZN6VdBNtsC3bc69Ow2A/fKSyKDJOisABHa/mwxKlJzqaehU2nQC2a7vVk9hZ4Shuhlo/H8/hr3VZuEDt3zQRNv7gCvupTBDy8+tJ3YMU2vuEEPcJNayP46ExAGzV/bFSDKu36MfOd0vYqZqozB2aKCnuIKxK7xw7Keer8r8FL2dXlgTKZTa/QSHuzPsQGN/E9FlThg1QRWS4I+fh31DAkqCJyc3Uhme8kuE/A6pJaU15rlqPtZaNCXBXJu6XTfD0ucJUIPPFSMp0/+bBihmf8dMkshXciODyKnUadBVLp/5iwhZ88olLgj3S9ZJQRXlIjp4f1yboOGk9bjR8NR3adStIMLZAcBklvOeBz4ERsH26ViYe7FB2DfsziJEFnUTDbnFl7uOiaxBi9mWzzfUihzBSdChn0cgzw/I/XW8wSulYHNfojPShOrMpo9c7hnAmUqXv7X713TSVwnK1i0eUwWa8fLS7WQAk/SZSnxw+QD3WaFYI+FLn6Wjf/OMhXJP54jf0DXPJLl1lES0kURBMQIBnDD/UVvlnYi3aw9GUIE8HwpTfKZEfdtU96dFe0SsGplAEG5FjWoDXsTHyPX5K6YplvWf7jnY6Ud7fTTPZGaNkAHI/zpk4h8Olngvo/sYX5YcAF/R0MOhUGFsYO0WoFPpgG8KZTgM8E7F5T8r/ydMd46Ces0sQrcviIz7to8K0XFM90/4Pxe0zVsCMpGyNBsNu0QYcHoWPaabMidRU+rmGdMYkdeHNYHFL8qc1DMsNYTVxZh6RlNYIeB1UtYFK5qPeRYYacW2CKbffJxFgGkQpouiJkizrVhpccvb7FXYtjTBezigHguC8pLIn/oiA8Asjz1SiZ3rQeZadTOiP2rOCJ+bmoMIu/nFL6A+6BSRMSur5TJNEvkCwvso5Mb4/6pR4Tn1xXQTH3Qvf3zRKcWKUKykQqpd1XjKExzadFukoRrVQSbTr5QxH0S7J7QPbPwh+PJDdwtXWZoknr1IWWEObhHaEwCCY4mje22Bor7duRGMwGzPfjhnXwQwp+nIuHTBI9BOgY4UNSId3bf6b6xKosABZ3SK7+uthOsRmNLazS+94hoClv9EJuc5V5RLdLX7pKEt48vcwibENuuKu0BKTol6gcHgOp3ipPYbbwcmTDrqEi9t929NaaHWt6l35RNwdgbU4j3eTaotABNG6WcRrAsAM0m84LPWec85byQy5gX22zBtRMsBqmfV1vmV+VcHyiaW+NYnGd+G1PtFaugUxBEgB13cbTyYUUoJbor3uL5Tedtc5ZE9B/K4ZiCH1sfiBOBvxkfsHUgPLls5AkA6qCTI6si214yCs2k+T6Lm+PYq1C4zgJuFk29jRTa3THkXaC02VCvcjjZHso2V9DXpP0WHasFfdFPld0YtcliFDtYwrU0F/MSc6W7qpmezQ2iuei2yIidt/rgsgAp1ctA8WWvGYJiYOF6Z2EFQSs++3VD4hfQb81RilTz0WA6W1C7ERP+x+tLOWNwFVp1tLaxOzffeekYyuiTSUppbsM95CYTPUsOSNCspmW6GvpPuud/9IPJ4mx3r26Rw2D7m3FQL+lTg1ZTABF6+jsDoYaR1p9SoJBFJmGJxBrXTolOraOWFvwH4UCqabaBvFoofCjwYL5aRRfeYJx4kf+LgljbP1GcStkhGg9k7Q20gHGfEDlTKhhISS9l6Wu3bPqIVwGnrkeahuA4PK8gc2HjuVtSGPO3qdOoR9hbYz/GASD8nW66TCPUmQCNMo/B+uvCwuWrhUQsj7XGy/blBv+3mDIDQ7d9TgJ3mo6LUnFPgL7jbwEKvGEAeAxUOhRxf+nxx4qPm1p7vRe+3L9ZXDl0MQXOLuBBj1oc1xLhkXpQwYhQWVlEKpoqsgIqKiCV8nX0g/l4UQDh+Zs4hMwYELJKXHq5ZTiZWizDraK2hxZtYrMEatGfHpgxV7wibnqAfT1TKbkZUufrysy2ay5cRNZ8xEtJwKqd0BwjyJ+GB39uhnOnOvZjR80WfsriXKGeH8i4M+sREHodwMbrfG8cHIyZVuytIRJee9vI3OhMLwUOxrh09ggoj7eSkGSikdz3iENmfGvC8qcydQVRR8mURVNlw57cCzvpteaXRqe5BYYNq5GCfcFVG/XJjsMm3N/izUmE2N9eCCC4B2SW/6RgTr09XjaNRL3tI2MXJ2ovnSj2VC5hlPhNdk6y9ivSX3CocmvL2yJVnQx5Dtss+vS93SpsPKo1R92FId/goBRjM/EQlfcUu6Cl8zThgUMKhNEIXOyZShqaKdU8ftNwAeGGGBQjhhtFR9SdOC9onFxnYhanGB/f/X8mOKxeac83NsvK/OzRkM/vum9nM1iPEHxdecPJ9OgJ1uWrU9LjJbbaf9WmrwlWio8pPKE+NH834altJuKyYhlmOmPBOfxryv3X2B7nGVU89IrQMqYQptJUNHU580+3f7f1jZgBWjtRWM0ZLdJKxNQDCugl3vSTeM9e9Mh2Ql5+GNg9mqdhcqfHvGlrLzGKb8CsnL54F4RmbNlEfjAn+aTieqs/gWdacIM2u/VdUnYYePPl4Ay13SFw6HSO9EVYKtoOoNESMVWFtr3Kr9m73npdRrdCnv+Zr1+GE2St4AOA4VbPZ7BRYgL5WtxoDMiYHTyhnnWNaiSXUC7bgRqu9+AdgY7CeuJ9STtSh9DYYFUOftUA9vKOb4FeqVtkuJH/LxC5c/E+eYR3rZCmpsH8R1QURRVdgXyoLDDe5nACnizRIHG1d7SgU+xvsdU13kW82PdXbGzVULnDSnH39gpNbfm75LZTAKohLQ6W5e2n80eJZDuOzLR730mm9vZPYSRgHBcyKuymrW2sJOkjFxnitlc/2hlbIJhZBWVirfgutJfH0LgCY+aK6S9rN5E9gDlJli3wBt0tMyvyeYpjVcsvvTmeQxq0Ui4VOz6/HG9+OVB0sy/Gzoj8T4aqiHBVInwjO2JcDvVAT3oBYVrkKvlpky8u4CTrb8w2aNm2ll451jEhChvbSO7n5Vs6uctXQsgZqGdP+obzuEx7R8A1Lpyv3ZPSlmHXGSlSBvzS9rpsqq+1yjuoorfQA79O6bC/Bo+MrLPdLH8Ir0hEm4PtG6qP4PJve+y7opZ5BuUOwot8iA5bj3YC38UMrZFEmPFAWgrl09njyIjpjh8TaJCOQzLMAKxubXHV13xHtNqlnXZj36ggB4v9JjoWQ6XeKciFUkOnXMYRIJIw/ZM2VAkyP9yvVlbhyFq2+x6nQNU5pOIS5B8whIrGp+w49jUiJOYNVdyE/jCArQcPkmiottw7cDkYTVSIBCy2EgxW9vc6BRUhUtbudYLTyFNrpDwPNKoiyXGUKcasDqWAaJy9dV95t9GF2PHUwRsKNKGRzjcv+XbtxvK5yNvV/gt12uP6ST0YtjcszN49wrKA6MvswkQrzk0+0N/EWmcZTQupWpvWEMZr6LU8MDkcXTojUT9AnSu2ApeB6GN4zktG6UDuLj27/nJNEy8Sv8K8NROmrNH1nxVCoYHcq/o5p/+HvhYJKZAtPHHhzPJBOiu5+VScAJ5mF54ErRpe881R7X8e/h//dnSXzj4iybdS38GYUp3RPDh3w8AcbinScT8wtaA4+5xOo76p9yvnq490f0+op+beWilii+8AJs2PMs09/yrO4OAkCAv5O2GZCI8ZR96Wrk5f+z0ztp+Yboao7+KorcdXoRB0N2/feoAzi5bENKTY7gDX0odxdI2DtOtGjUDGWkX7D4YSq+GUOFFjlduUg3YaJ0x6srsNE7iFT6CUjUxgMa0SwrikIvDOEx6O5IoO6xCguqKBIdO2I2IBYoNOr9HbAmIEHg3icYoFK1C7J3+eYIcmUIadXoHXga9dyAQ0xNvFTU3g7bqVlsaVWXtPOgX0r6d3wsy3gvr2897kiYi+phhxOn7q8jXSnjYxbkVz2M3XRu+CoyvifbAEF7fNVSdU+yDSy6xoEZT8opb0u1m+dnVIQmGpKLjMpAqTZCrvBhrfv54xhd36U3e3pEgZozxxijZFKoCM2t6O9IH7s6Nx3x/1m9GiFnlCfMJ+j7p1al3bAKTgR1TgCuLtiz621x2/jUk9uk9n/dqTtR+Eg9JvvoJ40z2h8+BPIxFpvhTizSyHT2tG5/gTfL7iFQf9ETc0xqLYUAGtoe6vFDNXMmSmAQcGIQDEdLTsStlG0McCbvWb58PdbsmyH3JT0Cu8khZvx6CcqaNK7PE+XL1T76acU3d8Phtz1sjWM/dlKf8XHDO7ebGHiMIE7AvH4qddPy5abyfrXY9+I2zOOSeSCu2JVURBxZ/+8HjTk6cbw1jfoL7M8rlWOQRz5/cRFF9CGaGqlJeKcxYrXadt5DYlFcizCqFlfMJuGyumX3PvD+Yk7bq15dSon3V1sh+e4N1Ex375cdxHGUxfj4ftF6W6mbsh/CZUMehzYDau5NzvcwWScNyqXp+TDgWq/s3W9hRuXJ44a84yIDmYq3CwAAl8CdE53LE8kf1yoBlK1Fhr43Xp4h7yQc0MZHUiRrQ34OYeYeP8zJ2JgZzbZm0Sb0RRrf/Al3J7TogsDTSU+rxBO8+eLJlIs2HeqU4HwXp8CFspOweXYrOBWewRBCgipqAMzm6wPv2y6Ekrhv8vKqf+JZ2tQ+r1wXkCMJ+bgnRVf4T4PVtQHWjLlR+Jvq/ROwg8pyRuYZCT/tEVIU82RxwocP2i5uvp2E4zgZJzRJxatM16edCvqh2D1w+e2zhgGzuvwjdNDqcOEkwEo4TzEBQxgES4h7l1TsJI4qfAl9HJJmXcOcn8bkfZedJX4GBjn7BeEZ4l7yoNiSENc3eXdFMmSxq8NA7eXxRjsrJzjiYiiqWn6XhehB+tJMf0cVaDxRHZkARjaA/uKgnrF1xZxEWksThSYw+TYLbUDAx+Kj5tbThxn4WZVlkQmx5nnp4ys/YvbJyP+M5AY+JNuD0sXyJZXsn3DnRWzso7G8el8xEK3JVDSHc1Z6ZsC5qa7Z8x9YgODRj5TPb/zGZagneo/b2ZJzW1kFQGQYDKkqNBRedXZoB3dFRZ68A4GLWUCZv8F6agtNqxgCFRdgMBh87rdaPDi7ueqbRBs2tHyZZlnu1mKPkMGlRvD2c/Uv6LC+8FMF98nPPhVVG/hexjJsE0Y7bxGHZ99SCuEk3/UL8N1q4Fd8xTTD59M4Y0YvfJe0eL+gwqr/XpFTAdc+ErAEM4FyjABjJkCaGc4MtKcu3ca59XWKH3qrxUTYdUCeBZFLwWR294ieKEzpC4ASbP93SBOpm+eDKMQpwR8eEdkK/SYY9Wig350uGNe2pTFsRuU2fbwKNU0o0pD03gpwbV/Dyuq07Cc/TfmgPCnX2IdaL7zkJqz6HzZWuHtJZ35u9MzhPg/TZT/OghhnTjuDOPoA87KBQYBdLudbFWGIj4N5fQyNPLDmRk0rjfOSnsmpo9g+3HJlUgBy7BolpjZcTILfleQDGY7V3QN7lM+4vahfIs2Hvg/2Fcfny8K/Y3eIrPM8Wm4A0y7P8kKFQuxR5Tclm0M7tOJC4dv3wB+ZrRyvr1Y6SjGtg/BakO8ByrMZt+gSCn+HjHCvFIaa517XOnsyt3DJIfzk4jKmdlpdna4L6XmbezYPRNKQCX89yRgEbyJytpOJC+hi0i9TMhGRn/+7lsyMN/3VoOQaKakUpX3nTlKDE/momgBvTqOCrXYEK03gQl3gZRCds20f7lhvRi39YNqHYhdEuNNSVJ/0YReIVZTgKMEmhCL74zqcSYjalJk1n/sYYpQxG/xEFQme+wK3WtTHvRZpO+JkHbvy/H0p4Mc+XWt+03OACgZZCyAPEJHpA==
Variant 2
DifficultyLevel
659
Question
Ribena and Oban are saving money so they can stock their greenhouse with plants.
Ribena has $550 and plans to save $25 each week.
Oban has $750 and plans to save $15 each week.
After how many weeks will Ribena and Oban have saved the same amount?
Worked Solution
After w weeks,
Ribena has saved: 550+25w
Oban has saved: 750+15w
|
|
550+25w |
= 750+15w |
10w |
= 200 |
w |
= 20 |
∴ Amounts are equal after 20 weeks.
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Ribena and Oban are saving money so they can stock their greenhouse with plants.
Ribena has $550 and plans to save $25 each week.
Oban has $750 and plans to save $15 each week.
After how many weeks will Ribena and Oban have saved the same amount? |
workedSolution | After $\large w$ weeks,
Ribena has saved: $550+25\large w$
Oban has saved: $750+15\large w$
sm_nogap Savings are equal when:
| | |
| ------------: | ---------- |
| $550+25\large w$ | \= $750+15\large w$ |
| $10\large w$ | \= 200 |
| $\large w$ | \= {{{correctAnswer0}}} |
$\therefore$ Amounts are equal after {{{correctAnswer0}}} weeks. |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 20 | |
U2FsdGVkX18+QNDAwDiiEwI9CLYv3kY54R96tcn/D04MpBpN2trrjJ5cp7vtuJEaejyfKRNX1mE6E9sLmFUWHCIkzDqdfczZrOCvWU2xYvI+CEJzN+FWqGYvwtnvJ+OQrHo4gaLFYoIjAIAaHvOzSPk3QqW+fYs5rPJeN1sAruk1a3SWZ1kgIqLD+mnUwDvKyrnomcHP4JJwKqjgQ1l8y9vGO3f7vf7XXPhWCox0S65LbjHdrj1L728hI3mVPB1GnbzV22eUMwaTPcgb7Y3AVRRIms3PU9q7uVqyrBGeYvzh/gNrigMMkRpa8WVY3hzGEbdUTUT0EdRRim7TDeqsipfsQPPyZLJeOHJtZqmxuhNj1WSyFdB47mLMp7XnKQVrZp/qKiCRmghC5L1pkwvNydzaCOAKpzcnNBXVxdxodsCT+k3LE/3ffPoyApp+1BrYuG6LA8DQYbGJYmM/NQl82KOZQM0+SciyHc/YGYmadSCYppIB2EvTJNHXByd0mGTxoeRX7S/Tjkso2gbqno49LOghcCWtgiGnhr+mbEvHziGvcU74RdZ5LO7OhJbDaOVeSELFE4TcnhAKYyZzKPpfv3ZNUw/eq9hxYEanPIo89RFdbl/KX7B0OMHk4qmkiRwf/W0dksJH7Ud00zZSpxhgLjTe3h7LH7v1SYbmJENnDewXBrG9JfOhkjfY2NCYwU8h7/wGYhOH1j6MGubdXthv/jYp9MRTWRVcgy1nevYR8hyA8RgXOaaQO8jkpDGNfc/bMb+AAjkpghLW79X4Zo74lDbgxi464QcW4APZksvAbaMwUYAkX2r8ktESjMJtMfCIKvOtg5oI/zgxizef2Z1KspubkQqjqx4SrKJUV6X20CdMfWVKkpNBehKvm7bWXooEpjF/i7+aFW32DB6LCnIMJd2gVL7HfhLrbIwmImSDlqEGlBPz+wcJUmtwVwwn11mVhdJ3rPSC14rdmTKGveCKLjv5m+7mcpwFs13WncrIH3vQImZdtzjwbEnpKm7yHgEID8gjY1fcUPROVJ4WRjwfO6AznQcZKp57ISdUxJant4EXl5sw3b5TaGeqK4qCJeUtudqcXvzdhmluzJExrUF6f6/kwDVTo5nDVsxQLkwVGstR46Py02wkBzxvDt3QQy+S1oFUQs879/pwUALBuu9KlmZAOogeHdtog4zrOKTL57DCxU7UgBcuQEfeLOWGtBRQBHThZgDtKLQjrebO1NboWTelCY7lVEpAL13zL1ZLx7MsBZLVMDpV8M5syEGCLkhVak+IXmgmTtybrLm2Wc4+7AcEyFNVSUlainYzw6+6IHIDZdlSdAECRmQtTwySnRhv03O4t3saj0C6kSDeJV+r7Tf1mNPjASaew8f0QEh4yBCZ7FHNDE61W23fY9ng/hZ2SSVWxiHVYbqKWKdZO3Ga8QtFIp3V+mo2x5ayyAEL8h23f5Pw9W0LVO8mKegh6f/NGgrVqDgajgFJ2x8gzHuaS6bSA0vHnazjOb/QvPTETAh3YEiSdrRyWkdIYvOqbfhcICTg4A1WZZDhEH8XUs06bYUOPKzXUMwQu9T0uxZ+TxBxG5UhIguS2OgIQV4GtgWSDDo4xwl7J/NHeguNNHWGkEckTeNjT5LFce0s4unmXfDsOIWhBzBMrMiEvx1sNXQIvgAFo36XeKvwgkP9Nkq34+W1MlKKtOZT52/mpgRCx2XxW3rHhFNdXGLnVOdtxMWfJATxtPNg0xoL0u9uz2OiaaF5y6l4Ng6Lz6vbPg23OPFJzhu4XuUkXcYkCOhJ1IEg0qaLxhWBb59ayNFLNjY7aAFxNiYBoGTpWtDU+Sw4jkp7Ko+kYkf+idRzrkNz2ca36cChuxYMjClHiLJ8axuUhlgloAl6cdYjdUF/IHualf8dPT7Cav8wvEAdltQ/5yJIkosCGsXkkff1tLihJP5S3QY/GVwpfxGBuImlzT0WrbSEgTTX1KWgWOV8qjyWAJO4NeZUxID7YYvroNG80NWqoN4eR6Zg1jr9riLK2xJimeczFuJTmZKz5VbjTRGWidgr/boJCrtkIAawSrK363H8WLXNtti14bNR9mLt1rDiDYdMoa7wGiVdl4V7WtuXib2tONsc0d9HG2+b5AAfdwVKNVS53UO3qqPVnQ4Rz5ArtyysYk6hTHb0thVVYbCHmOR78qvEpzQUsZuOkH7NijUN5AHbkFzIeW2rMTwWtBY0b50kGlAeHZKmB8hc4ydkxF8F9v2VrQR+hNnucswbmpAapJJNA2MCWEwWKl8MTed34S/8dNHIFenUcfvRiQDpepnPx1S7ZNPvZ0hY4JgRKa0YDEqJF2JS3dtERF5CRMldeHunMtzAo8H4di+G9NjOw/GxBNzF83SjCy7uY8rr5peS9M2zDbIV2v7E1ZPcF0XYAxF3lcydoYIGLOIGeuruDg7LR4n+pIWEu6y9WQXtAjj/0fTNGH5Ihon/JvEh/3PnEpSYVZzJCj0iBNHGVgts+Dotz28DZ/jWy85pU8+pEm/JnpwcU8jXjb/Eq5zX8hMe5YD+EZaryfHrRx7kDpWps9heSIEoZ7+lZ+exG1Zr4GvgBzTMlZcu4e5513Bxzq6GVx3br+CYVbPkMQcvNcyjm22e7/Vnw+RcA4qYqaB6TipnZyJ8/Belw3EGVxFE3SpZ/d01LrSbzWwS+3jJ99i4OT/QGKFtDRxMxCWa1t9IlWUXhYswcYj3YbJHF/RXW9JEehHFcAf2GSfHMn4qFk8jGcE4vXTWJGt9TSFiERdbGYVtVEkG3uesOJWCMIasdzo0AQoU0RFwWIGEc3Cb1g9QQd05oHt8Vqkn5mNn9L/WpUSrKC35+B+7+YJvpDVnIV2bHu844OjCAmODWbg1f6PWhm4Ka/7vnabK3K9aEwJVwwjR/3bvjqpuASvPEKWR1Hx7zJa2dU3B7uhNHkzC958IErTnlaYxpfSXSJo7c24Ugk03Ot2Ges+CeBZHMvSTafvd5IRcQh+DyR0enG68C8jlt+3SsM2TgunbtpXuFSlPyuDD4UPxQ/ijWlteyDX4CXlF6enmMhCphKSWw4saJyeNLHhNeCee8PL1sJCdIuHeWEetcFWvo6zWipVm667hsGWdUguIikKmhllcd9KFwViIU3p5MQvqTnrUOIYYjgJlIDoERXbAstItUNjrq3Om31VIIMuMa5NocKZYG4rJJGEXjhU1mBbnwnF8UojUZGgvpdlrVKK7WeV0Aqqntnk+c+qUN0LflAkYl88OmiVBQiFawoBuB/p7mHnN6DA0JhmQyu6A7cid+GkfKon3sgxLFTdXx+K8qwPEBYEHFK0mjLHuLQg8d0KmW4dXR+2PnCVTcR+gM6BFZRC/8zztQEQ9J5V70fYBidlWkGBvxzOULb+ekzLsZX+ycLGMmZX+kLxL/vYhhUZ66gpAYrJtYw93WqnYFSxjxXBM1baYwIMh9cts+b4Xb2RyJYfIJuZGdKNVRAl1gCOnMAtDCDyr4PyXwrOaU2iGXqXl5GqZJY4qGPmsWYolSHr2QlYA8+MwcVeq2qNXi2lant2E9qhFju53cbo8SU7HNDra7aT06z6TuJ8mE0rXbYguErXYezCCgdmhK2Zu1i0O7KZv7kwLsLI2LXnxP7X3mqa3HAKz7voObGxNZGeotgL+0j74nNvCCF9q/4uEUsyGNONZ/9KmPxdiBq8LL8iO4k9pbPBpUK057625NAn+DttrCDIKFTt6umVrNedEOcRkLSeoEwVeA0kjwokz96csQJcDWdCAl9FqzMWl/mPjEtWh7OA84mrLB6YhrdBSWn4jt6KKZEmoGI1B+OiW/guX8nfEupfgossn52OYOiR29HLriAvVEoffwb7K9fqCXq7pxz8MNOVuoiL4GKykDRluN1U+mFuFxa3q1BMf+LDdieXNyIOKlxyvdtcuj4WMefOKtstvL6rD1wHC9yZsWN0V4LCMPvVYtTmEGmVqGBA0WzpJ85cNspPdCw6v8Ai6yWjedY5Ep7p6SUztGNl3tIaw5nwLQSN1V9IwP9KzhwCoD3wjRNVYmQIObBCDQlOBPLllMVYf8aN4cxt4fsn+XZL8lTOqlxPG3wqbQkZlhjDr8evncBBE3vbXARfyBl/PmWrTenQOys5vQ2wdKbWqJQE9KomzK1v69+cJsMKB8XDYGDP7j92A03MRNvM5pOVVvfvRKdaopj0RcVzZ4jzNQGLQtsB1oWZfQAoT/4Ed8/e/s/eK24s0lMpial854A7ymwYcUQWkbE5e51bD7hu04weLyzpYZA2PIUISPTC58tnq9RvLA9k4JgzM51WoSM6eyF0yJJIDi7JgKVwE2OfG+OjXCG/r4mkVa0gvfHF3yqxowypCbB6kb7XE5xB8sOiXFm0gilAEad/UH1i78VahEpMU/VTnF5c2G86zeA6ttHGW9m/NRBpt/7rRZaSgNWIX9mRWDv0HKMK4P4HqAMkWfG5LTFV2oImXbjcoHWMXBLVkpMdX6+UfsBeZ+IAeq+bpeAjcJS4dRc4NOIrg6eeDXhJr4qy0H/vt5vFyiN0HdCVMJ5Ig63rDYjtwgqxAR+rYQC+qfy0xfLm86jEUEPgSsxE/LKuqpt9cEkRtSHdO84tJdhbKYCnrTZFvLyo7vvCpeqRFCRpQwSsYb+9uPRZ021JlFgifVt2TzQ3zn14QeuaQEF8rMmGThwYp4fs83wFYowmR4nhnwhylHJo7SVXm/XnP736wuI/X/Q5fF7OjiyyR4/T6xHvaQrkc9cNCcZbZKt1kT7RPChtycAsumbMrI04f4P8e6cnWNg8pzH4BvA84T/gWXSBObM3JSxWOyrLr2f8XsIqNJhUkV3gkIflmlR7Io+OH4PZm48t7wQaHKN57MqfbR//t2wp5Iw/g4CxXe5UxAZl4NvRBvG+rtVEpOLnRq4gNCHVbsE8AVi4A8fDyOMD82nZJbusnqsvRLO8bIVtUP+FoHRG+0P0r8fADB5+zeVhWjWXLwjidco2xx9FE5uYEZQSdxJf5eEcwZL6cUZzqRaLg4zBHUHU8/zYrRErOUKm1SoE1FykmsSPBhiSFAN/0QcD+Ckz87KDSiQ3+yZ8j3ItCxLBAU1jqKaeXgzpd6VrGUtj46+Yv9FcX+0FlhZltafMMrccu1r3qxiZnzn92G9iV0Gl35n0S8U5zJr0epLcybWSzV01frUMk06HoZPOXX2vCDpYLavWANJUqhx7yoaLKtQwkvOVTV012WXgO0qoOUi6UCZ3fl8PGzXMIBwMHU0x0+8Da8GFxxFYXbv6xFlqNOYb4qPKfiSbcB03ikNyl8MMEGoYFAvsjgYzqqkQRbPHWHIzkClr415QqyzfqGF0ayhg9axJrW42pn3d0gmHcu/i+kr6RRhpZHxxtkKTsvF4WewRLv6ctzKGwgMBgqLYY5eXVh+hrHBtBriV6xiurhD7BXcZMDZnCv/b5gnsvV78AEPBIKTG0ReXebWcaIQrq20IP7zyjm5KqpZvzv5GEQO6PcLN2BnAmcOElrwaqwDiJRmgVcqz6w3IpBjNxPm00c5A58v3hdynXb4AIo8yN16ulvrBo34z6f0tbqcBuZFA3YIRcXBLYEQ7vnWdaCRS2CX2nf/+OGnRzmsMpEm57mTSwVB1PDD+h48VxuoW2MIeueaun4DgypHt7AAgMK+firZO0k7yrKc7Ws7taHXOc9qC0Xo6sK8tRVcHYR8AchqCcN16ajqW++kKGIZqwGJXj0QNpPeM0h1Vseb3Oq5kcswjo2sXifCvmNPv9UzqySnh9bHm16jYNOC0WpbIVOzRbEiPTJTJCMSxYizgW3UYZU4fPZmODvVD+ROEpX10GBdhcyKgnft0NZ0rWvZWGcNqTIR/mf0IkVsg0BKv+Za/XflW1+HUdDB+Irt6n5MwN7d3XT3Sz2u6H7mrTZ3PLU9evF66RGTkRfhVkks3lKFZzDqAB3sektuX48ZAUFPci26MRj5xaK0ruuNprr8Vv+CBmZg2J8RQCp714x3+qh5gU3c4gKHr9FYIEC7WbycJe+m+2XFlICdY4Xl+81Ug5mMPt8+lISadq87u9YBBHAcjJkQ28GAiq0h3NJYyS4PH4P0fLXIGzalNRjL7wtQtt2TvNODWYZzpvtbN97cA/Jq6Gk0P80oSFoyVMzOQ/Tin8NmxquB+UiKB2A00g2RBNhMsZOtrViQxXHweXyP9FJJ5R/P/9ss3dCUpxOyeKfHoyGJZQq2/8fdCGt8odpiX3md8q6em+07DwGZy7n3lUKNRoGUrfuKsi4RadFXEY8i+00qvaZdVVPFiDL/Oa/J358vz4EgorCF3qtZHN8uo6g7A3QEzFzNISgTJ/vLyHbj0NQZOGLCYbzqEpb/PAHSMvZjyuyfcVHk5OpBXEE66/gfF5HsGQlpkRXnPt7YVrwczxtua4D5VknK3ZlI1K/hOIb8+sTRMgd4zf4dPvwjOCB7xXedpACyWztXLHMc9gvNwo2qdJeM1L1XI1W7TPn3nWiKfp2hwd7MuqQqdcQSFT9R+rVPU37YTjYRuC05Y7iMK9R2VXxwPcCDcVgR1o+E3OG29U+isZKdjPjvdk8URzLy3hyONKwdS2+/K2ebOWmjnxpdZTmbtvmwxd1mG8NocIv8f35U4a4MHePhHj9cdCmbjzk/1EFZ1ww9ln3FOnWy9p6ZNh8Y8DkvoRZS7UyV6D6Ljw+uim7249dk7MEQ0pGg/UjUDZbsFfA8znhb3jXcvK2eHgtmxxssZwVrrUY89AYEy21DQe+frwcHRMBbhBAMjJutkPnpuf5DAv/t+wpjxNMAZt5urf1UpqlF33KOlKolGv1d0RRlfMyeyh7pbUXnzbsogcvGZvkmwyPJlqemPAXpXH7LoT8KGx41CEip/IC7YrFIlVBbuAgYNtlT061fixRLenbSL67wfJDQWsYBa178WvNaaJbjzaxYYNRNOEe4VDWiZsEJNbFyNW6+UTWved07mPchsNtAjeZkXzXpucZo+tkDUU6zrfAMwlA3mYhCFpFvBYnb8y0jfJiUmBuqNCLnAkJwsAHB5iq7V6uga4MCAf5W6vCFihPtBvfwjb49h5I1vL5tpObuOICdUsg8fc4NSvq4/ko5h9iyP7FVkzlplWNEpTStmd0FoKpZ0pxgDJY34ekZaiSwrYt4Yp4ZCXmArvgszjvYumAW7tOc83Z4cEXPZJKV/z+MmSe5sydCXGi+KGbh/8U0KC5wXmaiUWAZUhiXnhmk6GEfdKBlf08L2g+rMNA3jDoodKT3ak/68v4eJkQq1y+/rO/02P1MlGwgINi5yLUw6jdNS4DEfFEAp74TfPn5fVKRMFwdEjg5xQzmiqtLNNP0vOXUQ6IjgSBKj+g6rPHCOWlKi/h6PyhqW495MjttBkfX8xZrG9fM4t8gs3vG9iQ/QRwaa8xID/cPdblzCngtnOSVX4cbtmyz6rbdLBC6EHGtzZimnOR7T+UaMqLUECPFUHX5oywRbEDGD3wFU6vBR7Cpg6td41K6ni4X+SkkpwYmA+TYzaos2tOrHBTnLNJSaj/fDKNisJWfreCQtV/xlnBVyawOXUGzykr2U4mbevXn8usWKBYj0v8t2oJlKQI7il30NHJq5ezdEqCs1OpTQA+a35ZpJruQd/T0jZrHR8JzEhPQjRgE2sVQADV46ZnMo+YCfvUUnPhESDQa5tUJ+Gta5CKqG5vzDT5FnXtkcuD/pG1iBgx3q+ckFJZalga9YpUpE5DfzV62oNqOmhJX3xWW0N3cd1hIx/kk2G8/Z0yNZk6Q3y8M4C7cQXsKgzogEtUtjGV1Tn7WYQI0kziFpCRfEwUCsKztcXkgApjVjfA1sxkQbUqqTzL/INSMGOCwA+BwUjdWVhNNhdJ/BkfPy52pW90Rh8g7dlP2mxsoqJcNUrRXj7/N7v9en0NC0nXZ7/+rb9j8BV5hIvxiIhkuAXYQSZEl4a08qFFpFK16+rDGHLhc+QbxiJuojoPFbOYgoNwCtOKaig6x5fcFUbYNwv2e9GBSDnnvc7Pa6AjvWXWZJA3AhmZdAd8IrMOB+5FFo8WiSn+3TKVW+BWq4zTeFLdEUuYCFTPjPynPUPsN/+rG9tlrrwQkzC6SeYDf/YcScd9RBD1ahYBr5jbOCU1r3BqFudj0e396IoXcIrJMSXfZKK/3x4artCEfK66L/Xg5isbLNqJDnoTb8UC12E4I2M/G0hJ2rTc9TeKCT338pzl3PFmyqEre1Otyp7oMFFrXgXpQFHMyRuV2jSu7632h46A4oxrvMRe36jKe84/8XjJzE+BgzDQ2e1jw9L6LaN9RUHPQh4Q+3IUQ9CfpwR7Il/+XHLBybUOHao4xfSyqV3N3I+tsBywbMeCt15eynlST6j4QxJwmP6AKaYGIeJkDvgSxZoQ/tCMnQQnplbdXC4HV2GsD3lnIdopI9KTIe04e07cZNIBkZXNilHCvXiLYmteujyVlgnS5NZoGiVFyzLFLQZ3VLIbuWJ0mpEBPKDcUMKAG917Sz4Eln8zFrrtg9Hk9k5MVjmm5fNKjNbmigqv6WXIIwourPtvyjA4OnK3btbbImOewFL7Ho0rq36Q/46ImO4wD2z/xPAhjZLgEEolfDrraVuSN/NKtgCetFKaLl8hd2Yo5LdnGG1our9w6rqvvrldLSY1Db/kRSb/7BDMbvBco6JTy5SB7Jc3hHJ6JYrdeB5BNK+za+1GuTEVjNQ67qaoCba4ZK3UZu1nMH8Y5q6Geimu1m9z2kLs0WrbGHtV6Sf4FI/2c/s4ZlfeXBZLNry673T/OdxxhWBGZnajTWyrs6OWjkaA+nPurYwbq3eAyIcRJx8zdbIJlyqYzb4O063f8gpVUnZx+8LK30LTcTvNIwbwajPwudfVgycKsYfh+e95S92uhVTLzWrJwzDhXMZLBD9pfVgcCWgmlw4zOulkqmufqMySUWn3iVCp2ED8ZXbypP8FAl+9Se131p9sFjNgICWZh/QxHDyPHAi51z/M38VFveg+b2YiS8qsD8xUPO3WovB/urtt3ek3wIu5j9+niWz9/vAHSLy+o4t8irm5qCyUHUIz5LLFGU6HTWAwVQf2ytsmJDLCMtM0bDDqi9fCOdiqFoBgX4FaL/2NhhKnfhGro7DwBebLwuojXrnI07SQKEMzCN1XgeIDB42ZOUr0QMtCtwMdVCJdgjKlNz3JMt/1BqxdD2KAV4PJ68IcE4kS/mQe/dHuMn9VJjysmgTgwFDtnrNJUJFHFff3tln3ecxNZx8U22tc70hiVe4WI2UrZYj6QTLbPqCfGcPgAjZ//Ky65mlNbcZS/w1knQpfXy16xhISNq3ZiefJ1J52HyBGI9b1VecqyZYdkqWoZlJpUmgnvir+nfSa94gSaJHM84qbmRVQxLXMMJxAzue9LWC9jj0o6S+PRss6F6BKllIsSb18EfIJtN2A5brDieEI5dPsjBfNngDFYxJwmeY1u72rJfspjp4htL2NQVxiCMwKf413kyv2J1DxjqX+rbGz4zF8GJ2s0gvu2XNenTbPL6f3qhiDi+m0djHZdYAUM8LSr2BHFBWagNILnBQWkLBiuFoPJIzEceMpMD45vP+oLUFca0d9FnL9/sIjQz7Lkak5puEkiRAkCwmszt1EDsqklG9pvTueRxXJKVsxiU7e5mWcedIvkGQvdAe4N4zX860YuRCjprKl3WB8rI64aBLKsLNA4E+M1sLb5besQMiKPvhHDBUNj0aWw7qRtonrz029IJaOu6RWoTKck3L54hfb+qey+i2HOK5aROZ+6iSlrmJYR6RL15CaZjyvIEdAij27b8QuMgt7Ar/gGONUwQyXNrRR3crJDdBTWqSX51/zjtNrnvSV6glZbo0kQtI0AwFQVRB/ovETJSADSVEUhrg7/bWlWu8zYyVW17wJ9+ChRKcg0x7WiPafGXogXwEq/vebJ4QQsHI90uKmSOVkbJvZzaWRoBfh9g8adGRrGiIM3A3sw1z5EEaU+aiZZ5cm4+40j2v4bPvsWz9PExOxDZz9BYyvNAkQXCNR0sEBxBzq6NqXiIfEc/MsXXHS8IMUk1FF8RqsaK6mI8DA7P6ZizBod698NpDD03f1iT4hQutRaWRNN6yKC9YSh103zpacMMrdFBM8Iy5vIYzsCBmBvyxvm+FkQ0WjM16y22nDiuUzgjvk4z/aYYxsEcZaaT9aO9p3mEkl/S/f/o78YtM+TKz5X9R2HorkXTPWKZf8BmODJBUVoGMYu+F9jR2TlspIGjy/5Cr9Z438dI2GgBP08CxBK0QgxyjoK2fs+xco1aTtzFwd822wcXMfJXbrMkIIIQu7/v3FSZre6C09cyd7hx0bewMoOTuhq1fPJvXRi353TRX+ezArD7MxkXHIH816EpQx7i0KYaoJjXKk0emueuIMIcYorv9egrptmVjrZuEkgw3uvLzogONnJ9SdQlcT1U8YssEMiQ3uaj1fZdpiMIG7iJCFj1GItJSbE6ojlqpv8zsU01l//AzBoptvH/b1096bCKGZbzx2Z594p0woPAb/oQVH6gDHI6oWKbTDULI5sr0KZ+MUIAmbfg3/lcmY98g
Variant 3
DifficultyLevel
669
Question
Meg and Ryan are saving money for their wedding next year.
Meg has $2600 and plans to save $120 each week.
Ryan has $3800 and plans to save $100 each week.
After how many weeks will Meg and Ryan have saved the same amount?
Worked Solution
After w weeks,
Meg has saved: 2600+120w
Ryan has saved: 3800+100w
|
|
2600+120w |
= 3800+100w |
20w |
= 1200 |
w |
= 60 |
∴ Amounts are equal after 60 weeks.
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Meg and Ryan are saving money for their wedding next year.
Meg has $2600 and plans to save $120 each week.
Ryan has $3800 and plans to save $100 each week.
After how many weeks will Meg and Ryan have saved the same amount? |
workedSolution | After $\large w$ weeks,
Meg has saved: $2600+120\large w$
Ryan has saved: $3800+100\large w$
sm_nogap Savings are equal when:
| | |
| ------------: | ---------- |
| $2600+120\large w$ | \= $3800+100\large w$ |
| $20\large w$ | \= 1200 |
| $\large w$ | \= {{{correctAnswer0}}} |
$\therefore$ Amounts are equal after {{{correctAnswer0}}} weeks. |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 60 | |
U2FsdGVkX1+Emc1MA0JN0L2+ET2Xw9OA6dVuW4NaKvRBL6fIXoEiFx9Q3HseK0J5ymQSK/Mgl18b9k8M4WS8VdDvdB6rWjXGf+stGlUNJj+zr7DrjdtCY25Qt3U4E6xYGlFPOnYHsDkXxSUldtnxXYE6SAcTLy4nt5zcPx6Sq1Mo+cTpxobcgRmcZ8MKe38yK5h5kzdZOt2ONX7/Flkjt/QCRl8hebHmOB2yvkaoDXW+/uqj3NdiZevlgTGhqOknQUUvLt3/fHtuKQUMXv9Lmy526tiM6vJxNk7fjCFF7gdeusCWDI0GGTXaYHIETkoCMyHEcNfwHI/o0VWsRg+3f4jzpw4VLHdqtP2NrU0mx9GrmdWhy+9ztzg0P5wwpwb6Scmh982L0JsB/xRnsU9eezb50acEKv9wvyxOvVlCFa2tdxlm/E5YsQyVvUT2wHDnbKPDH5yKS0anRdYt6HhpHqFj9B5s3TBRjLHIlblez+qqnjdO3S3AJcJihSnBy0XtqxIkAjUKi3tGrIsSoc9skhki9vyUCraXTFAzRO8Bkky9U/7Jg/6TYvHjGK2mUzEjSv2wb4FWriLOrmGrJCkxK8AIwrpxcpvpN000z4eNa/CZQlpun5o/Dvwh0UglcCMtK0PVJfiuRxwaMIXxJ/aGSPb8PvqHeu4NtyFrHHFfjMNFPPqOon6dz99f7PCoIPHE/Wm1h0noSk6/4ClDBTzxFfoW1wHpzOOmAdTu0Gcoap5CYLKvb5K2zAR027jE1QUc8q1M9FOpSSmg1fFmaxW2MJjxMROriA2puM34e8k/M4qGW0k58FW4gVJOxU+lmIrzfsi67I0pCDHOYPrFht0EqpiLAYcHULORDkAaheUpPlK2lgn19BcBovgntpl8pavZpxvLekXY9ub5RLLPzItTkj1pJOkrVEwMholqxqMnVwmuok81LD8+a6K5Ljv5jd3+Ph8Ef8ksLSZ2V4qdftVSQIYlzWHzlbZjJNnPKnEjk+jgWgnaWOPDo3rFE6Ai94y4oZAlibHY9DNaUDZjvJMyhFF22YCkYZQnCMSqDg62I5ls7gyd0v7lvsLlGPdD1HkmDMQREVrfK8MVaZVyOasU/kE70/mGLyqLSiOWyxi3syWt5fwwNt3+4/iorUmbG5OVbKR/KDzJNqLVWGmYfAJRmAMVZ4vxSA8/yuMJp149wCWd9Rtsu780XTP2Oq1GiJp/WT0LgFZMttIRBx3UmtowvtWfMpavd1mtvE5/bBCk4my3n8OxuryloKp9uQHuPGzh7hxiOu1kC2RxpS0hfOLBH6RfBdjtusVSla1bQGEZb+nJAVQ3sHaWsUDKN7WVYk2Ix6u/Dm+tCWrCpj8Ga0S9nFpfJ5WdTeQUC9G63yG2vV+cezAkZhiVRUrNmQtpaUaipfxsiMXgjOvVPGuf8yehD5tFSTIGx9fQKXsTxtGBF2awqts6ApBcHiif24Mx2M5qN4pGzgeOYRFY7xsm/VGTQubtlNpieSndXM0lWRNkdFY541l8CdEE8UbKEKD4S8mpEsVhBP1MSlTHMnvFyXAUj//rVsvukpIMEdkIjYrve3ooz7M26lYILo4lzjkBqJVzmk4oX0nKbYjp6PXjZA4QiGe1rNnC7ieYqpv15s6xOr9Zdk1hAc1RnjnnL3ls/GEAIu+XCO+BgdrSq9sm+TAP57/dDWRZd8/LkMrlqap30+UVOmVUEUYNsUfP4qqhFcYC+r6iNL+fBWTBHy+6x62O39yQiQZH+HujluxPfMTcYzggqYwguFG1AfLXKL1nraVH70zX7/xy+Eo7ONcv5Dh8M+J6kXSKbAMLIgFjqEGMh3ANNNvZxDrO7FeOht2vI1GsqXZarwhVB2mRAmV0lXZLXku4PqTVxN6lJIi9QH74RsAvTe6uCcA8MbZSa2n1NiiTEzCn60jI9Tks6n38QZjzK1d6sA7+VeNjoeTdNaEuHkagZMy9Psb9/3r0EyxYKTwzp826JnVXzzA49S+5ZNvJ3rQjBVYMzcOax1W94ULls7q0b0fK0BnZ1wrlo3S0iA9BpyC6+RMEXS/N9fk6FrRPH+bFQKyTo1usVsKHfDCz/kHfg9N6jcw6hX+xBnPMrE5joDVTaY7CyGGQW3lOUZQAhKbuZYLDx1pAzQTez4wfGLPfTjakd3zKPBw6VsmOaXNk+goVqF5t8DYBLH8RAUkuXm1Hw7leNb01NpLBPXUBmNcupA/umQZs7t+jgPvg91IydBc6PsuQ7cb41YjhN9jnvSc5FHX+i4rnr4ybRT0dEZdMnkz3eGCFnNTuvZKnjdpHAhv8yZUs99dCRm31d297ZJGr4sAHzwGRGev75QF3YnDawfZu9HwRlal/VlJ63TwIxWXn2my9FSte+G155+9EQneU1N1FytB5VOW9s8crqK/P1uwnmQkOb5im7kY2oypOXwzvBs8MDO+ozSZWiyYgzpsX8RBjdR7fDI5FdUMXgIXWsHJI48nuVH6GGntBhD/4Z4zb/Y2t88nmvD7KQwUqNVqRsDlb/x+zAEVhUh7pQT01ZMBLouR6ob47lCrkodvWjnlDAfdl01FWD5ggg9RVvpwQOE4SogaxHRP+E/9Quc98ubbMDHld5rSEsb1POaIhfW+DazguVZJYNskNNdg9e17qlaBVGJX2Qbuz5NFDBHkXlxxxPdN0wP3y/UFEY8dSqOO/HVFGaSUXlam1jNOugr2oCIMzqhmTvMUff7OFdwRvI9oxHUpBZN3tLTeRNqhBGUIBWoysEWX9n6/6GzmjAm35qIeNBAikDFgNITBZxKHjWs/2mii3elrLfrm5QPqPw2CcYh/X8JEivcZNhOqkPPVCYgxNJkiD12mtRCiziFn8xPINvePeQs39HdVSOptcxFINSR1vxy4tG1jT5pwtm84ww2tdYcbLoB2Dg3RYTWobavrrpe5tK3ezPezFBNc81V0X/PudJXnjDOAyRQzzWkPKigqTSuN7lraFKIT6/sboFRQbh6QMQOiTVjq7HEVUxp/MIyT9qhQcuSsqO8LYxh4DowI+oH7FDETrlsOwiPTX3BP1I77Ah4gpnQIInhgVgFIzps1iT3U1GCQajqdOPjctJKy0lg85dOynwsYFOUfiXkbfxh+iwjIQREE/gcBQht69KI7itYY8+SaIy+RkjCxONo00qmLt/25TMXhlKxSICjxbkEkV+Pv7kNAAor/IutGsyZQvIkivM4K9Y0577t6iM270RFn3R36vDaRZaS3Gz9wn8L2Njln6t32O1RVSnN1ekSxACxqoxhXAu4w4ejxIjvncyDeLCdNUUc8CZqgcA6pKOqJBbF9rzmL78FfDXJqnVxAtsl4mmzVz54iwRfp6d5QCFz2MrFzOEmrd+AxX6Mg+yv5/fRWdyH3cOW6OhBu/FcdI9EIER5IyvjSmIoWqzR5PXUH4pjeLXW4l2LsDCsUckB/xvswWm4P789KkKbV54sFeITQfSsL57UhUhYpOZlBolXn+gYa/dfzdqSUJn3Qhz/w46teLnVzcXKbEFzg5fP3c/dGeQIxX7IQbofHtbAmPw3ikCVDNHIBSg0Hjqq3Swqjy89NQRd4d8Gmnbah81RxrozWA26NnJktWxUEy2ry2UqjvLQEVC5BpwUjTHeWWHahX+iIGqC6jjQnS67v+CTbriQTYJttC0qobgWNfvyz11/o1Il2v7kg8ceaE+hDbg3tIdh/YiNDOzEVzzbkX4Oygd75RLnBuOMNm2upYM7vnpzCPFczJWbF/uqfzmfAb4cN+pAw47qQeOKC07Z2ikczGYAG87LbzoIZ+ZsWFSvilIkHKxIlh6bDdc6CC2hFAoC01XsGQQIAYM42B9VQDmKSxkknsvog9oHhhHWHkOBG/5dcVM4ziHBL8Ss/SC08wSfh/PUuqHpc294wQ+kzmQaM6W+hau8zPz5Ncnivw1g0USZyReDsnaIqdnE+QCCgq6guyEg8LtIOGFPfdxORFTW7aG4SglaTgLtkLTq9Y948O4+9T7m0UhCQhuQgYBvGSif6E4C/scTE+yD2gfNxjkh4fOeqe3bAMt20upyU7ZEYVxl0bZ5pojmmBgWzwLXmyv2nUI7tcPehP4rPzuaCRaK2pRhMizfjaxZ37LQoli4+hDkMiAkQ0ZxKuAbkscdwmICZI50qlEO5h2mHAFUoXuSTOrlmz6hSB0dASEWrJfmzh4K3wi2wOzzj58121PdUPKGje1kIEs9iHu6lZjFgSdFbTxIEZH04M9B8TqFVU2BB2ZTbRCn1ssg60/Ww25WejWFCJCQNhOtHuBu48iMwAyf8YGa0DsOVvnsl01KTffuQCaSJ3hcMBoQ0Wycitttxk4on45xJh2XwyVAaHAe3t/8NppeBkJLbJyqtJ4JzBoOgrq5YrOFUw8ukZWW6NdxyZwynjFcsNFWt6WNzejOWNjwyfNiPwuYjenRPUJsn9GM1oU0F4WyrPkzhSfPO2RKhgd+TY1Bbp0aXq7wOvqWXhNEnfdj6ta4Jw2E8g52IHIqM+3Jr+SEFHBs5oy5B8ATtA9GR9tMRhwBhzXcoccG+KsEdCfuAvusCdKbDNm/K9l7f3H7a2QDbbZkKNxxTodEUiQ8TIx8siwL1J/PcZ0gQ24Ucr+lWbX6qSnlxvv8g1g63VEWnFTxkSoXG2flYkuOrsxW5ioawCzU5rteg6HjoIVyNc7XPjzv7ZEboNedPBjI1noPZMKfiCtkh2nGYcliIf+KBKhlC+xuRokYvYGtRqefNFU7Q1hur2789IWU6dnk/yPHhdNvghUKAN+4Boo8RSmSLdJIXeAocGOUnYASVYuSZQr86+J2puyv0NvfSsIdVB+t5eXdKSkte+R2cRQK71lmmgpSvwSRTJq9BLUYCK5MSQsysW3DoV3j89n4od0RwThEs3nQTx//eOddi1Ag0vouy/c2YC0rpsH5xMDfl2lIQp6manpaRJDskWbute7tJxS/gZpxHmk8HTgjFMqBnxdhtqBAGbqbJvcAqi8hoJ6aGi1WNRJUgs3Xh9DfaVHdYSHrKOcbg7i92GXVjH3zYDWpyP4SwNBm03Y73ph3Kv6jBzdsG/n1u+aKguipBh4HOgwtrxSxBxN8T1YX+JnZ7buneJxv0mhZPsUpTWR+ZG4mdTtCkmP12fOSOMPCv8BjcOCVePALodrkbxNIMffjk+ueP/7y+8MzJM6kcOckSSCXYPcGJyNV7YA7+VXx8x7+asya6t7Zxhkbltv4KQ9cliA2KEHbtYtFIRRI+J81tKLzlo3obNwBWBKLv6j8VQqyLjPacpHBYlvGT4kuFEh1abcW1k+Bz3qIHWOQAZDPJWIMZ4cBLyRySwacUXMav985+V3kF+8MtJWDFG0CCqvZgdGhfJ0oH2Fl5TPIjmh7C4H32LWIM1D+/WR7sVTCs2IjszDnPFimUJNfFnLdtmhSnZ4I8WBJkgZ5jRaELQtQk08WrNJ8Dxoq26mMIroNUWXL6mbrTJeGuwwfIVcTsR25KEk/LHS5/XCGYVxazmk6cUQ9hRoCBsfdbBIz3EDvCFcav8ztYTAi/eObirYolnEHufe1wsZHjfSiWpvXqD8aRleiebM6rzuxz1myN7sPDXfOyI9VLimgg5dksWiu20cCOuJUlfesB2iTlosPiW3VBuniFJLwNCK2H377UmvTNQkn60bwQnzr9M8us+WRPPkZZENq4tPn1uGrjnwcSQFsDJyvzN3NezMtx+vxJlUKxwZVPhGuS+ZRl5D1f/+Iec0SlmwsHPJ8I0rwU9NrxwRiFDjZJSeAHvBNIozt+zkZ7JJcbbxAnBTG6/63cQN3CM/VnIl84JxA5QupvemEvV3/hUZaA/y5q1RoO3nV2PKgJss+i1ENl1rQyVAoCTZ3bHYOatCBkhAYX3uqmvKffCa16EFxZLrbLOtg8Pwam7lQg7W9Y0KB8dStBJQY+YLkxOIErBVnlFhlVHeQqf2dGXC1nn8WQVZ7/U61k/ZEQnE3iC/VhmtvftWMaOyMvXmsMzzV8CgmhGyFN481J0Ac8gp8eg30GDsA4y4Eg5hHYvg0r6gVWc21dJrx9mrWRo+JHXgiHskUQH4APMCy5quUKakUreigukvnCrRJLrXOjLFmgJZcfFtEUirz6UtnfLtEqM2o3ArNWtHU3nx94qtkbeiUWqYbNbZjEe7FxYw4LPy5Pm9GmzxJmd7E37FYPAp0JK+pUb/dEggBDAFRcCTBZmuQkF1hyhe/ybG/ClU6jURoIKOsHmIM0E78dkllZGYYXQaARLTH6/ildIzBDv2GDxgA0YF1rqwCJFkjnGfLTlOmRaYv+AuBgZ2ZuFwhXh3FqjM6pGtUHzEGerDNoPfd1khbo8duyPl9VKz4rlg6ckGKGF3gN89UMDo+5ap3PoZqQRd5ccZ0un2ppXXrowHl+kJkZq/HStVjESU/g+Zq5TGKDnZVatd0/uJgEBCHrIeqPzsbGzF5popoENaGCNKM3CJmpFlcv6nKl43pYLcGR8u6QlPuWJniw2MPZ7q+KosvJnk8zSROB3N9+otBi9KTYSPlAwcUx3PF96QpwKbtG5vlTBZk/puEfvuIk75NNHE20GeTi5Q03GvhfRHOfO4CAEB/NEKMPB6etwXVGqtKZwgswLM856omgR0cu2IHYFq0p2I1Oo9L5yCF3SlUmDmPe9ZzZIpJmOkq5fe3QZkML1NHVXDMcYRuUmH+iltO4vbNJC/7PHB/BXoO0/aa0bVKsiFoIacinUqJt4TU37+t2fpiSoEKLUZeZu3lUI8cycda3vhHX13GAHEpLtRXa4+pNAYug07CtX+fKy9rA4PvGQL5iTknGOWD9bgbzKnomHNhrcra7ucMWERU90hmi/+vjP+ruEQOzFRaoqBf0qIXio1VZP/AJJhgpuya3ghPSqVISw1+t9MPKnppar+WCkwVKWyFacP/zAoZz+Pt1USp4qlnSDkBTBvryYJAmeD8BH8rHBToLA60CM9RULzJWRk2S93XanSInoSViiPieVpJGt1XGqxIduz2Yy2TRWICftiamFwXzlQ7P7hcDQ+IhYNYyhaGEIobLSpYv5ma+1QD0xpAQgyrRdFtyG0VLSgX6e3TlB+LkCQ3wr2Gcb+wZ9Ck6NyG/jppbJJfWvPUR1uqim6la5Q8iz4es5QMYd274cN/1UU1fLWOuhjtqeKGm3QxRq2RcaYQKZN9kNKpw6t7hntJedhM4PxF46hLVbFojmOP+jWLMRMADc6yLjBFrcJZFirPex/O97Zma2xT59+6TlQOYMab0+42SAYTFNbrXNuO/YLoZF2hNtCUyOFqB9i83TKNrMauo51sPMKrhm+F5VfpRZ8pOd+fzdrGEVIHi0IjQC2lTs0479zexoeUrZldIWvuWjPxEC2yN4+M6EN7FgUyCc4YFX36w0HlLi1EDW94D4VuVqwycMvq+VJsMJZ4vuoSMl6BSF2br8cVuRjwjkpHXQ78lNHj0hvRsLaWH4mWeTJdd4JmcG6oBvZ8+7OL0qTnWephIqmtot229ME4k8VXuJrrt1ibgRuGqTYb4C1/7OBgSzIMQcWy+jhLoMumaBTVsid2eEvSlNLOT/gISz7zK4ru0PoQTnapOMmHzaGR/shEvTEsLdZ1bRQxuW8yHB6Pnz/K3m6G4eAJG2ZoXqVT/2XhSlxvRmcfSiftS9VfdggdPS4UxCrQggOFuuJS9CKHlpaYQhmTy+4ORFcBK4nzUzZVOp3bDCwWGhJCwU/xLidzHSI2PUyqHze+Wy24xD7iSh1lx5Zi9j9EBWZ/Eh5MvGSpPBER1n6yjmZcxNBVsBg+CvwKWCS/EoW+Yqy31URh7qG6H/JGJzwI0Q9l9DfbFlmHIBBWB9fFcPf2HQtM7Pe4YblHMVmvbl/DSYkzlV+y81FPod6QxfjOco7eCoQCuXUqrmSk9rO1WxHDP4E657DBqmvR+kDj1bziF81hkPeTgM+hgIh2HG2vQavkpp24pKLzb/R2AB5HGB3FNo/BG11RN25qNRcCvNWhl4p+PzmSE4SL5DLEWBJAGm1lc0kAdLw/2gS7frbsRqxSQgDC5zBWMMWuPkdB8CgeomPd26y8m2ZVSJkNfzgHT8Zw7Yz/6lTxflJkBp+Q/zQn0JggGzHo6R6agbyCrdx/jmuEclv/tx/xHdtF1Rj7TScsRq2DNkdd+E76UAOH3I/yhGaZpBS3lBPkjkbqHIhLVLsw6QUo3LMWb9t0SbG04v4zwy/SX5SxmdqxVa8kNyvJxojBb2zQKV6CZrlYsFPNJMDtU1hYhLMV+ifEA5YNAYx/ltUQRa83l8TTMvMuU8/Ac0oSwn99lp6CVWCFFaNPVsaBNzUhypp7QXY/mjbdPztd9DzjTDCtM8OvwodPdtP05cn3ezAwRD7JI1AD7i6xv2vx5y8DQnvuj/OKJArzvDgWP6Awti2tn0VJTjgmkJUmuDs7JJHzJKI/jzhgZIl6xSXygmhBTJQzbgaiV8geDWFZnHsVok4S3VYvYkXlBEBozF2oOTBzr5AkP2dOgYbJJVk3y0J/me/rnJynSqoQSSnfOCL5/cyhPpSN3oePni7ahhWTA6ltYwbuj8GW0Yf2eDwkc/MTiHi0H140HZwX130MvAm+LHdEoZ/gs5tvDilw5QrLFSzlMgDSQHkyWbRFmUhV2Qjlrm3907O6/GFliPuYqSn0iW1sH1ACSphWOUP94UiZhdowd67nKiEhyIqYsX/70g3hVWROHFg1GlKO7ye516wyq2kWRoP5DK0kfk3oV5ulaTJxQg/DG8J23XpuUBBMjHZIBz8B0lIjncMAhd7fTmUyJ8YwsNG8WFvl4n8UIsG5dPi10fMTFf0e8a34Wbj7mf50Zv4CLeBRjIapume8d4X8vFKn8xeTPXiBMskAnQwzT0M7VNPLNadVqAOZt7kcOOxU2zDoC5CF82rXrJEIIpVZhcL1SmbLDRdt0krrSksCzGLQfCtggDxCaa7XUbCAsBWtVsGtFJ7Iygnl7mpAz6BtFOTuq4YJn1Lhu01KNftG+cGHl54WvlwkAp9tDvTYUBjtV8e9dHYllNGrfasgvtagC/vYT6HoyWD2FHAjXG975vwRV3ClxG8oNgByoAGYLa77iPUqLfo8Hn1lBiZIDl+yN9wSuUO6Z0LDBdN1D2TzOfm+3rdq+sFkSRHxkIQr+vRlkAIvbF7Rrgzh88HdLdAV/zAg0GRZKYRElTwMAMPYw5f5Gxj6rq3ahVTEgyOtmUID9SDV1aIkPmGM4B+Fl1QfMnQ+ecu76ULDE0QJdC7yooMHW36yJ9NdYRXyUtCO2ttuVUjP7BLv0NaMyVc6KdShvnH7s1AsVc4lGZRw0pRpS4Xbrflq226WPXj3eQCS6Z5syEuyHv8ZQM50pZvBK9SbZ3lDoQb3tpBIE7LG5shUmA/t53neBljCUpQqHtVMz6pOhEzAbrhH/dG6VYG0Im1CkYLsXeZUk9r2kJ+ou0xQk0aAD4E/aOlE3WAQrBtoQTaRT4Bf6w1l6zCOAIXrIarMt8207sdCpQovX86NTm7ytNNijqPl5azsPc/qfIIQxcTQP77clUKcswwDPYazGrhJnyAffFYPGwk8W0jlSESh1FcO25feEkpG+m2tlRqTwhKKyvzHQ+5SwLk1eP9RZCXUycX7YMheRIoK6aprR79a0e07M+YDLhIWhIeZaBbA4hIlKoCa3ZBL4EMMtyz3iaMCARb1gAdLw9nWKqdWtXMTUZO2dd3MW3J0YAYgdL/g1xbY8hF0duLKFiDUOeCbwVQ73TPKYp8o17GJeEz/MTI2fpFvj4u6vAmkZrTWsOno/nAvSq/TbymYrprxLScddzrn9vEj6smWnLTlfPXwrlmKwC5T0TxExxXbvey71ADS+XL8Jpzy9Sof9Sz7GQ/9w8jtEqyHbTosatmeMfLv1ubRBUvCK+uQLoi9lL2YGPK0UG3C3BgwLf05fuNCVCw/5BIA2Tp/G9cUGdJsoGxXVkQnzzJv9BQ7PjRxzm8k2k0/kubeYnSXkNBSTeHy9nmsOyvSBusOxRZo52fyB3NTHITB082iaxpFjdCsPtQabwNpfPoSj/4ZnhD8nBoEX4clshbN7rKOeT5R2b8DbURZ87Fr7nfUFsY3ezWc80AAYNIImjNRgqTtfl751XnuPiclm8Dun5mx01uugMY5999yKQLQCHQ4Xkz4+M1FGpiMYfLJ8Nc9sU+lHYn6NSo+NpW76Ive881waMwRr/A09KI9zelI/4Qpf7TTaUjPNaLPO14cUy
Variant 4
DifficultyLevel
659
Question
Ketut and Made are saving money so they can stock their new online handmade jewellery store.
Ketut has $540 and plans to save $20 each week.
Made has $660 and plans to save $15 each week.
After how many weeks will Ketut and Made have saved the same amount?
Worked Solution
After w weeks,
Ketut has saved: 540+20w
Made has saved: 660+15w
|
|
540+20w |
= 660+15w |
5w |
= 120 |
w |
= 24 |
∴ Amounts are equal after 24 weeks.
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Ketut and Made are saving money so they can stock their new online handmade jewellery store.
Ketut has $540 and plans to save $20 each week.
Made has $660 and plans to save $15 each week.
After how many weeks will Ketut and Made have saved the same amount? |
workedSolution | After $\large w$ weeks,
Ketut has saved: $540+20\large w$
Made has saved: $660+15\large w$
sm_nogap Savings are equal when:
| | |
| ------------: | ---------- |
| $540+20\large w$ | \= $660+15\large w$ |
| $5\large w$ | \= 120 |
| $\large w$ | \= {{{correctAnswer0}}} |
$\therefore$ Amounts are equal after {{{correctAnswer0}}} weeks. |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 24 | |
U2FsdGVkX18LwJcCDGzIZ5VAlOzehN21qiSb0PQVCHkiyt2vB/bSwpqPilwmmMMiyVnoiJMyX2oIAt6v90zEN/7ReroiZwWOc/LVwVyExe56vLmAT+Wch4QlfukUpgtXmN4Ol4jN40objDWYI+QJ2BDOGr65WqKNwo0/Ti1jD7gIMjKLj2hjdDtxkUzhCCwsF8/S76jKLEbF5aNEePmznrAnbvG0rYYw13jlaLunwsaA79+hDd4AV4NKMatyhy6wrrcgUzMk8Qh2AqPG5thH9xgPiFJgeeFxln5UXgjvbNgI/W5KQ1nmtsyddxUBwtx787pm//45rX35r1YerBZecAMHi/r3Pr4EHtFWxSXWidLVpCMU/uHYSg+ARtXDWxOQOrlDJ0U/7Dn6WxEjQmbaVUhHhWKMdLHtdxfBn80hXgj85wUPMxR58ltvJVLi9NaCc3d6syKRq9fR9JiAmVpn53sRwahRyyVNGanqZIl8k4ufuiFouVvilAAWIYHDZmCHWkL2OI5H1rmsoAtfoyQlx5eGTP1rP6vx4/gUYxbQ0/tr7nelxORwTxP6F6977ZWd7GXBq4jIi7UCVMbrmRhHIOeplmh4Q2X2gYw0qmmx+Wpwo5i3Z9tvW387j5HoBklbPVFn5ADkj28Zbxt7aFW5hpqzTXRi4to+pSpSUf6pMNiFFd8rvLIMF5eElXA7teVlAiSorZoS8hcAcScRtob/o36HJswpfubaWZBAJSklx8XmSieZVua8b090zNaO2tYrjOV8GpvzvlkEC/DJsu9vXV64lQFW7aZsJlo1+sax0osRmpLDxUcSJeDuCtIPr2Exg/UcCEAUpQPQa4OcVBvf2uXaPYMzH0CDcM/rPDhs4mTATHG8xT9e4QSyQjWbRQzQT0R9nDcNNai/hSkysUx+fHaRkVw3bCW4o36XOwuiEBy/VjVMMcXiv2aLDpj++FSxPJU7p++oHM6I0c6VqG/qLBnp3bHKT6nqxHMRPIkR1fmRsueeHOSq3KGzknBqdQEnkkrSFrGX42jVwhsum5KSFpwr7dkRhqMFBDtLC6TozwdqofgaM4V3yernKJGy6/FWKgv1lgD8+Y0RUpx+9J+6GStTjXvUEhkTWCm5jTaq+8xVqGKFQlw3ubhTUcFkBxHYF73yaDf676VfZQiMQKTwJtnm30KH66uUEI5edWpOQM34b4As0QTST4OrAJW3YhgurCAhcmcHmHZHPdeMUDQekwo+WdjVyK74kmA2wt5lOf3EgoqeCd8J/6u4JCd1/EmqrvM+o6JtoRePYTBeiotqQFxk4tj5c3O/falNwW0kaLZL68bZp5YV59f9norq94FhEJK/IClELWKMlmVaDnBPWMoTCRM3hZEhUnIR4b7PgNHo63i8T4ScqJbTSEZ8dk58BLBvHBQYRtaHGZ0+Zq7y8gD1apISDoLKBaE3TUAgCIkK3lgBGK1j1Ja8zpnnMeX2/S1452kgzt1W2pxUvGevlHYw8ImsOEZm81tuuITgQHp/ANsxGnpUprGr7wYPKmfV2UcnPKUF3oyqvPCo9YE3V98+RHF96RU5lEncpvyJ8+vKxDoYJbFOzezfYRp2x5Ka+VuqMTR4NQFFlRQTYk4cwCw4ci8p5j53HsFf/N18tfi7MILm/BxUxz/hXCwk5m2ZGBm7YePpq9/dNcN/USf412N3hyN6+L8tnRckKT0bWdyXnDF821L7oLD2Ue3MRJtcx9jw++jLtCyydh/w1VM8c8z0U1kWYWKQVXcBKaDGp+g7aUGeFswbtWtSvEFYB5XheemZJPeQoZ5hJwEjYSSzkx3f+wA2RKSWfx2PBnVTG5ZA0MhLsZGGLbObyZqo0XqyqPBJULlNIbdqplAUXLR4MKLG0dZfcGibLlMl9IRAnFRrjo6qD/ONCmA/RlIIqwvPCZ2S8BFj7BmBeBzolu9pjNk4xrOpkVIJA+YJpq+RwWHG2n4/dL32+Ln5+IuuiFHCxf/4+23kKDzEyj5s1+q0ZALk9Ywjr9DKQ0oc8LdzVkEUVp5uj1TnUnwgQKsi9qfBs0B0oRoSdG5jfftXbB2PU684K5voBltjJmnMVz+U3++t2zbuK5/hNZY1CXrE07ayrkbFMjX8/838xX54nKwFAJZC1LFvYsoN22yyZMu3bOHX08R4b3hVyGwuyLii9w1GQ4oHThNz4rPCAPO1pJfh1kBlBmiD02Ys7EywgmLjEJlE5jUoSc9ap2IbmhuDud4OnuUByVG0+45q/zQbwB1CjbKZnWv4YA1hw7Y2KNo59ng628ZFLJ8cNr4a4tnmZ4d6EMc9ysLk/p3M5uX0Pz2YG8ACPgHKHYNAtOan9GrhpWqZYYwUR4ubOqLzcpWbUUCs0UmY0Q9aEYziFLIrrrgbHLyhQPHuQd9QtUCC0Bfykt304IiTapJhhIOMj6U7u8+TwaC2mJ7rGWP72/R6CI/BYeju0TAAyxPzWMeIEwdksSeRlIH0faX7R3FPEliV+zLl9pUS7iaaw/yxD6sFpMB4CLl34OxqsVFpF3UJVpR1rcNJCSW6pUk77idjnhq9mWa6hoZanWR7e9Pb6Ha7iMIHxEQ78KkJzc9MMRAUaFOXEz6hcu8dZNlgEt/dDQujdUcuKDfwjOtTQ4S6WDFcC+iiWFmNozZ6P1SJ3jTwtu8lupSavM1oML1pQ5A4Y+p2MUMNVWgqPinKZMXt8MujmmnEFNH944CcMvCtUnWm0wCUnDHKfhP7uDdYQ3GUY/N529pelg0Fgkqpggdl8aChntuI6Dd5BnCXhDFg3fKJXWE31pN89CEgMPn4oL7qArvRTSlxq8w2tVaOdHF7gbG7CQKMUicC6PGpk1TOCAs8rlhZ8f6U/C1dhrjTIx68d4mAOU033s1olgXXPKK+gIyu6c9up1fzw1oILAztpaYEaVx/37Yp1vkvGIi0auLxJiHdBW7bf4/OTSn8gSTKw/CoUzjWQ6GA+BaDb7ARE8mrNk88XL3rrC2y6R1/QKHOmRV4MMGh4wVDwfkB9z1Kh2N9sV3ITE543zOmYgQFxS7t+9ARcQcD2UjaD5GD6earFqMVZMVLEKdDP70e/t9WdJ9UX0xUxtduMOXOP/TIzMM9WXEwt5hY6RRIWFHLHvfPdAzebRyC4+l8xH8nyJK5G7tpYX277aVQGYVhl3c7hQVFSC2QMV5GmULKAFVpcgQPOgopMOPVgkJyHKSXgCC0gotyG/rhnXipuH/p3qAIhVSC2JriZ1eoIuRE1chUlivqbdtrwujj7uVB/yk0hImxE0mDo/l8Z39ShrnufjgLN9HSc05LWfDhLb81uO/iStWCZghpJkHI3DqlHE8eZ8Ut2sTofVTi2japfU/3pvKQiNDnoBtKrzvsXVmKk1XW1CLG5lENqX4RCAZCeIqah0zpJxL2LkDZVp0j7GTV8naGVpKDkCG2UM+pVaimwKY8U713DpHkwmdT6Z1R+ITodEi7kavr+Lu9FisA/niQjElLdcD3ZN/YA9J5Jw3iV9la1oUeJmXnr5xIWpPM9odYQ/iUgjrEVYDmaQwxSz+qFC+kHOlNnlEBY2fqS+9N76Gz0bwde9is5uhP3k6ycOgQtsAjtXSsCiBLqa+sC2oiiabNbNSDKa7FvKrV4CnvCLCpKrkLUOQBaQeZw4fNn961jlCvWBjQ05Xzf1F88adH3DQBimw1ykViK80lJgFPAbnKfRu+l34j7y7TJBQmLbotuZWa0vmCCan2I/MDRlInj0nmBGcAWHIMMXnX7FD/iOrbK5d0PO5GtfshY+JKrDg9zLEpSRxgaCz8jeC6c0EWgYeBIDLxZoxD2ba3J+yWg7rHBKgIGvKLKNUpngHlVHNQqi0m9TUaacu8RMhdSbUQTH2bFPqI885+XVXAKo9IYLHS7SBOv/Sf+9hkjX8+vpFBl8zgpGPtCunWE3zh7pMWpp0coUqPZrsNKYY19rBfuANGHKoh+HLnwE2YGg4O5gar6BRclKi4B6ix7vtc9JkAolTGyL9I7EqB9/7IeOiKAwEbFrGaRcM/sVKkURm/13djoYRF7rSG58Xyp3wWmC8hN930WqH0JY5dwsMJWR4M3y1z+MdHZIIPUQbRFwa7MqFldAFoSJaFadmBBsZKd9wfeVPgqghlRTLbU+QF2L5fwUrN9x9F6oy8+HP8hrd21mWqDrFKKCQkKL9LPnN12eg9QYj+vTkrCIHoqRTNd6cg1RcDV8Fa4KaUG97+6Es+cJuf7kqEA1YUduCIN+xSND72LQbDc51W20jH8aHvGaTb49UoVAoBOf44C4ojnc4QcnDvC805K0dBTqDptSrU6DAS0NaDh+RnIHNFWaF7Eqo3OKlrX2jKBFQB5LizBa/FD1ZTLM6tg/ApimfsGfEGpfrpfCA8zwdPH3599BFdVsYejOTFtZ4xvdgbkc0rEeV0Qx3IWBHO9H8KkfsuZep9fl4bn3C6B1dKt4jaPAMJ+h4O7QPL7U6AsVG1qBSx9iHG0JQF6Btnqnq5xPbXdEzPvhVSIy8eUIAfEHSl4FPoAS9TRBEjSopdSMOgnicqy582QoCnWk5zSXGbZWR4BztJOWHfhWCGzR9BTUkMHH/BI9AYK1dp6Rr3dRWsMrtZEv7zEnDPrgYG4U7EaJe6MfPClOk1EFuEQg4gw/PmofH3ySAno3NvsYwVGqABEzt3ZHpKIFra/2Mt5teKG8FusAwxR4yoShMZ51FqAxHCJnfYLtdISGtIaMhUmaE37Q3iIJSXkbMi+n5eadZ2sQqE2NMOO3eLI+Ij5EKwGEnVUkGXbVzPWYxKjkTNGce5f33dBho2+k0cdnL0AxgtNI0BUsWyb5JaCtNBVJFUYziBRapJLyYfCqiypZKwfY7N6v3uYhbtxLiO3mJrjEwCGQPkpEDxwGxsCaYgpo9LEGpiZQSc7CoO9KUouYO8MRF69I81anf82GbkQ3mBKAeFXqJhtPpH+c4RYhHFhijLYrJgZ0uxOgNDpTACWj+bqRXPOauEr46MhhVjCE464I1qx+3p0HEYxdGKd6m8OSUdRmcwZ13Qvd1fj/OLIbJCeZI6IpSKT9SIO5dcNW2i1ETLkkaOPYcWBOdf0sy/FIllhuoKf8rqeSwW4MzHUkR18J8iqgxV5xcEjd5TCrsPxxxA9LAw0wtTAp5+Zxy713cVmroUZ27Uv0ov3H5vaOPzmD7AtlL8yf0YNkUNusbpcy9PmvzUSMgnJtNmVJk/6ImfAkZm/OFe0miW/Nf2jE4hrXOzqZWQ7Jj2DTaesn8Qjl2+n1egKSWXm298z2acEQKz7OlLaKnqXkfO4XrwOEqbH05yOYl8K4CCB7ha0Jtk+Psx5fPoWqnKhMdBpCWnbe2kaamT505+pTgMLmrjO+KLt6wzkDPwq8KN2/YBNxynenQvMJ2Ci+DjwDFy9i74lrjBni8y9of5gyNhB/UypQjlREjr//gLssztXQpXdJH+QgOwwTI7meFbvjaeE4hj9VXzJ2fi41yHVhxPFvtVtFz+puA7CIfXD2bIjJdgGu4B/FBah1r3CnyWuysDZW9FbJ1m1jRkw4AFpshfry8l5e4JT2yVSTtKLN2qW4HZ1fZfWQG9YVf1G5akx0LzywKZI5Zxm0mJugSetyewOPv93IkNu3QIBqFrAQSkggWzP1D+or+O69Pa2e6gfpbdl15sxUdwFMtvv1v/J5zjfvPzyCA+V3lInpBJvHAacLRz83Qd4JDvArCPubNO2FZ31Qga6Cgt+Vtb6zB+Lj7tVzzL+Ujp5r0PPXYFCfiFliXQeS5/u5raqptu31BoAYZwP1NBVSkO0t65SK7/K2eHTFvzRhweuoL3dWOYUnefgv5syMsLK0FigEs+R+n1vU2yzpdJEDXAfiQzz6x6PLyNui3VGTecsJ7B7GxXOLA9i2wXvM3biiRR0LVmtxE9lwxm2raS7VmjK5+q4ofmVU1y6s9hZM/Rhj64Hllt5az2OVcdp4vnL6UPtxptYqKMeacRzm2M71Ne/IXek+l3TUisXqs5NVwRDx6gqO9feaolHp+YIxZyEUWtN9boeEhFM62pQLiSAd4aMk1gfyHAJOnuA78Kz1WXQjhFqFsRnJQtWZVGKFzE9MNQLjtIOasjgU/aP3yoJS1eznfwLYTbV/vlTDeOtJL9TRP7MhiVpd77QNZTA03Esi09Eduj8WzKW2gaNJsvf47LsHQh4+y8UiK26A+TWemhLO77PpKc22W2wqxOKEkC8rvKUapayeDm2IYGyAdal0Ofw/2AdToy8uNcoh4Ov2Gi2t9IzvFkNOiHxUXVzYxCINbNsGUwZKc9n9ho9ZE7xTOcA+0zG8EiNiIExqKAaxl0ycq2JMqTNG8drxTeyCRdW4cFvfwNtaHVWrj/xKbi2ZqgfjGVYf2FxWnZ+tihmKYb4x1X2CyN3h9zFqfHBFjNCdLU9AOyqTCmCQx5pphVl5ku485e52Bk0VrGlS5kLOokMwuCKlqLwwUf4lMcL+pKf2kslkbmuXwrLMipCi1DZgjwcP3btgtxUURwi8tYs7rJJ+x6DQmc+9p4Qh8lc9aBTADvJURJoDXSJKNNJC2ZVLcsuQHJvGYzilayTbQsVU2N1BF1ZFXEnDyB1l4B+7mqJHUe+F8aEdxguwTOIWws0tLgqfQ+L5P2loOWVonxIyCFWH22Cth+oXXFlIECIuB080wbHboZPgBWyASGi3mtRT9YVI1p5KOqVEkz/l1fj2JS5CH5vEUmDitWEl32xmKlpd9Kr4tr8MLOYHTxjDu5AXGoBYWuxPa/tC/NdkVf5wsXswkS6SQsxqF8m/kgAVcMsfLsbfsarzgA7A+CEwI98smgz8pwiK9aT/mGthmh8lU87DBmaMhafObRreOLzX4joPiS1tt1pUGP9LylSBxNaXEo29IAeyFgCb2fC7q4vrEGS5Hc4LpSBm87QUIiLgJdoDwyvPPAUXy6dvwd0MJY79ULMr1C3P5nfyKjTQRzoaw+JoWJPEDrPxty6FbtZ4P2L9KvCIwHJC3U5rfK7u9J3YqWD2Sb0V5kbzqsgZ/P7jSwdkYaUf++dJgJfnPUNsVm+sVcpXx7fq+2gI3u2Y5QcJrNEoQd7ZNVMx1zZh29zQ3KpmA5lxuaWUQYWenLx3m5I2ygVlzu5PmWFRgoSWj1pVKBN9Ol8GKsX2WhdBGtW3avkJkMRzf4kS2IzPGtszNxNRTgW4gykWLfS+oNHGIC9tRGSmzUGa3HCVwi60YeYZi+3fdsMmcefb6p4oWfQps9fNG1Ya/D3dTFdtmDtUWokTVjA6lpw3w2uPm2bUIuLA0R5zkN1fITVUPH46CEu9BbufliU/MZwQEA0wMgfDDJUx9VoUQgiLYEHv0H95qb99E+EDE1RW1kMEkzF9MSHRoj6kVot1ABMhgZHxSSWhZ84+a/9xBzy79mF1BlBhqPcU1EE/gu6Tsybgg5Q5Yu29S4+WjJBI3mpsXpJGY4xw+IJDeovUvF5Do5r5Iz9IJOODBeTCXldTcVXYzJLwT9n1WyeKCXhGVzShZt4D/JQQJ6fxZ9AbIHOEwOADYMJcCKtUWT9S6J9jZN/U2vJn5C7Ejrl3u1jwtAtysCxF57QeuFEJrQmdlYP96YP+cai45RHMvaa8RNQ2CF+F1icf67TkzbQZ6VGL+SKhZTG5psa8a/31alw8cPU93GKaLtWadTgZyqvhpcGLxud0GpXVryn71v7A4mjJAsfbzTF7Q8elIwCKJz4BXBbXzidl+efk+FE2N97VqaoKFg6lM/f8ll1bUJcZvKkQ3QsKQ1W/HJdixuzW3Ks9PpsHPVUUVWtC1ibIjCcvL6IrMJTSlukNq6XRvAbRxDpZGhSLMNlmKNjtirH/26vKjaHbel+wq+vpE/Vp0lVSu/Jvr4tc468a7HfkwNaKs/faljIbFMppFewm+hn7gu/e/SX3lr4WvbRVRrfEAIrCk+nkJPi94RFxd+ZCpOJsrLIu42z/cTJUH+JpiU/1sLD4hNxOC4r0tXtWaAlZShXxQZrVzn738zSUKvZ3AlC+ZY4+JSSAFr4VjmGvxjIbzJyydNRdv60AL/0ZOd3NP6yMr/nFW1FkuDQPqY5liGldVj3a3K/vhMNc+C+Ikq69h0vAkSTv6D9hUbQzoFIhRVWePDPpS3/4pkV7NRDmo9QBax6eU5VStF7+p9fgqc+CJoIJOdhbBNnhRc8UuDX1M0hYBCwCWEyd8JPAwCjsyKyDBevQnf2GdlagC0SxOILhunF0mhfmM3VCW6w+EZP2zuVwlmEue6SRiSc0hw/wki/2gRi9Oy68vJYKOX576kLi2B8e/Y8uYLYDXChbbCQtytzlQYXoA4SAnAL9uBep5lYPyjNY7Iz7VSI9cqYM7pFQKSZ35EJLEkSxyjbvX56onKfv2+cKaelCJf64tgeIoNZveal1T1PZX7MTUVwbBmtLMsEj/ePlrsg2j/stQx5NeXQZW5//7D6BYOBCTDO4yN6uXx3B1k0cncRVrU5Y4mrXbGg8dm9Rr9JKUKPg8ekJ72b+RcdHp0C5QzVHoQYQyDgN+DDgQ/zq7ILh5ZCRduziaVAuB9uoA55SFnH5JqHI9V9pC/M8zz6RDnhL4e+lwd3Y70EcwQ0Nh5zPvqNfK7RRrcjN7wD1wLhtzPi/S0Rm383ymyWxO7zQ9wJju91ai1odtHmzL/9990/zmI8h0jYzK/5znB0Fdo5S/IEyBQFS8PVyd9NAbFEDPSpFY9M3291mprUlr7e436xdYkk6Uf1aKEFMZPZ0gLh8/RU9t2JvzvGSpy/mGl7S0axRMfnaVpKSPLvtllciPnYUoOHd6aZ7/U2UzOFVlGBRCUVUV3LJ+Ml/kJuQl1pnZVgJrWlsjudPavKcPFocsAVDHLWazUzfdl7zfHmxixcUCtXWZ36Rfsf12maNCVTVpTGGumvzKlz6/aWOK2XJBHaEl14+TfttjUtuorJdmTL3G9vhKGdb93Raxk74sQemzoCCil2yhz+Q+vLbPe1pPtfu8+TLe9AJNg5sv0xi2qj78KQGrwcZkcEcGlT+M1tAFqRUf5nGA4IKd2JC9s4ilXaDNsu2AD0BMMmSAA7+41YEwpn8UowCuD78w1gznGGahuF75fulzG2DBWMJUjoaU8vJixg49PaVmDzEMJNMECvm+U8/mt1gp4J5PMRy0zFUg5DiQ2dqzsDsVktDOM3qallmdEEaU9pIaOiUVZG/XwxgWbyKDsbOx+UOJWdvuql8h7DgI6F9CENzssNUmWYsCme3Oe49luWb6hWIygjpc7QMoB8GXwlcnNCuzuTozPZPuGluqnAqj7EDO6MIXPGMApYHpXcULB9ni3/EgmzMvBhr/d45emFavYFrr22UEhvPLdJeTNypEoxvtZZfF7p/utyP31PPWVhZDdl3r1TYWbO80Zix1iO/NroLJd4CDqonGCEJ+ASnzWms/WdQOs2ZD/gftnrZdLr3oQ/n7E7vCa9GIJ3K7jJrWxHlw5kKz7mZDpxzUcYg2/WOd67NInfdNypHMmdBSrLgUIrV8nIfq9iMrYcTV+Vgzp7GY73AVBYKfrV5G+2IZUFnwky01b5W+oC9q9q+HjE/E7z9lH/W2qTARnyg7LsHiT+o8w4mJ0u3G4za8pWVff+qre3yvaStcS3TDTzHPoemZGYPn++XNtTWP2zLv9omsyvKtz0gFN8pOL3Igj9LaEeizA2bLwK6XhHGAoAFt7yS7p8tI+OQGkUMWB0HTCzQivKEljWj3uvN9mud/W+TQJmYl4mr9h5NPqfEQsHl1eF/D6WspSCE9qlIyBZIbhSLyxVsSzPOL7k/rDMBmluyWgY/1E3sqWF8vahRgLhpWgDPtHakbdoFhRYPoDomwtwFFXwaUJPS8Kagn/3iJmjTmG6j1UWunrh6LXr/G5TH8cWTpB6w/u0Rfnm9LmwQ0usVjcRZdPJx6ZSti15sXgb9UWBMncikU/Roxwa2cUrls8lPfoq3j4+1SzddR7VAG4zEFxyeJxe2wVjIjsy1wDDERZlppCLOO89x/yvbegO/6sy/ffr8NajWSOdoeKrj/JiLjooLGuFPWwds3PfdmJNjMIgKTYIpEx6+VgNQQ8fCZyVHBTFkLMCSlhBBMD2csIjBMZormeMRNEl13+s8r2minIKfgsGrnleim4bEdWS6ZmIlvrXS6xLor7Uee5ORe6HQnA2hmO/4igC9/SbAw45LzHV+9cnnBdy9SVoMTWCDGSwx1133R8zzyw9fN+s15rvOWDrvrrTxHo9J6CmyFXusqNlUf/FUxsL2YsVEksxeIk8ATegbmUOwC2CmlOY2RDhF0cxbQ46AMwurgOFMnNuPQcXReAQC0O71bksCtGN2yA8U56pWUJYGR/7fP2UhQJYBbAkHWrJ2HEsL6QAdNzkof3+MLE3eaMf4C4OjCSkt7VwPGLuwvsAObJ0gytbPLxQ6uryOYXoqrQ
Variant 5
DifficultyLevel
663
Question
Diego and Santiago are saving money so they can buy a fishing boat.
Diego has $4580 and plans to save $55 each week.
Santiago has $5640 and plans to save $45 each week.
After how many weeks will Diego and Santiago have saved the same amount?
Worked Solution
After w weeks,
Diego has saved: 4580+55w
Santiago has saved: 5640+45w
|
|
4580+55w |
= 5640+45w |
10w |
= 1060 |
w |
= 106 |
∴ Amounts are equal after 106 weeks.
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Diego and Santiago are saving money so they can buy a fishing boat.
Diego has $4580 and plans to save $55 each week.
Santiago has $5640 and plans to save $45 each week.
After how many weeks will Diego and Santiago have saved the same amount? |
workedSolution | After $\large w$ weeks,
Diego has saved: $4580+55\large w$
Santiago has saved: $5640+45\large w$
sm_nogap Savings are equal when:
| | |
| ------------: | ---------- |
| $4580+55\large w$ | \= $5640+45\large w$ |
| $10\large w$ | \= 1060 |
| $\large w$ | \= {{{correctAnswer0}}} |
$\therefore$ Amounts are equal after {{{correctAnswer0}}} weeks. |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 106 | |